]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - kernel/cpu.c
Merge tag 'led-fixes-for-4.20-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/kernel/stable.git] / kernel / cpu.c
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/nmi.h>
28 #include <linux/smpboot.h>
29 #include <linux/relay.h>
30 #include <linux/slab.h>
31 #include <linux/percpu-rwsem.h>
32
33 #include <trace/events/power.h>
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/cpuhp.h>
36
37 #include "smpboot.h"
38
39 /**
40 * cpuhp_cpu_state - Per cpu hotplug state storage
41 * @state: The current cpu state
42 * @target: The target state
43 * @thread: Pointer to the hotplug thread
44 * @should_run: Thread should execute
45 * @rollback: Perform a rollback
46 * @single: Single callback invocation
47 * @bringup: Single callback bringup or teardown selector
48 * @cb_state: The state for a single callback (install/uninstall)
49 * @result: Result of the operation
50 * @done_up: Signal completion to the issuer of the task for cpu-up
51 * @done_down: Signal completion to the issuer of the task for cpu-down
52 */
53 struct cpuhp_cpu_state {
54 enum cpuhp_state state;
55 enum cpuhp_state target;
56 enum cpuhp_state fail;
57 #ifdef CONFIG_SMP
58 struct task_struct *thread;
59 bool should_run;
60 bool rollback;
61 bool single;
62 bool bringup;
63 bool booted_once;
64 struct hlist_node *node;
65 struct hlist_node *last;
66 enum cpuhp_state cb_state;
67 int result;
68 struct completion done_up;
69 struct completion done_down;
70 #endif
71 };
72
73 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
74 .fail = CPUHP_INVALID,
75 };
76
77 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
78 static struct lockdep_map cpuhp_state_up_map =
79 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
80 static struct lockdep_map cpuhp_state_down_map =
81 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
82
83
84 static inline void cpuhp_lock_acquire(bool bringup)
85 {
86 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
87 }
88
89 static inline void cpuhp_lock_release(bool bringup)
90 {
91 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
92 }
93 #else
94
95 static inline void cpuhp_lock_acquire(bool bringup) { }
96 static inline void cpuhp_lock_release(bool bringup) { }
97
98 #endif
99
100 /**
101 * cpuhp_step - Hotplug state machine step
102 * @name: Name of the step
103 * @startup: Startup function of the step
104 * @teardown: Teardown function of the step
105 * @cant_stop: Bringup/teardown can't be stopped at this step
106 */
107 struct cpuhp_step {
108 const char *name;
109 union {
110 int (*single)(unsigned int cpu);
111 int (*multi)(unsigned int cpu,
112 struct hlist_node *node);
113 } startup;
114 union {
115 int (*single)(unsigned int cpu);
116 int (*multi)(unsigned int cpu,
117 struct hlist_node *node);
118 } teardown;
119 struct hlist_head list;
120 bool cant_stop;
121 bool multi_instance;
122 };
123
124 static DEFINE_MUTEX(cpuhp_state_mutex);
125 static struct cpuhp_step cpuhp_hp_states[];
126
127 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
128 {
129 return cpuhp_hp_states + state;
130 }
131
132 /**
133 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
134 * @cpu: The cpu for which the callback should be invoked
135 * @state: The state to do callbacks for
136 * @bringup: True if the bringup callback should be invoked
137 * @node: For multi-instance, do a single entry callback for install/remove
138 * @lastp: For multi-instance rollback, remember how far we got
139 *
140 * Called from cpu hotplug and from the state register machinery.
141 */
142 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
143 bool bringup, struct hlist_node *node,
144 struct hlist_node **lastp)
145 {
146 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
147 struct cpuhp_step *step = cpuhp_get_step(state);
148 int (*cbm)(unsigned int cpu, struct hlist_node *node);
149 int (*cb)(unsigned int cpu);
150 int ret, cnt;
151
152 if (st->fail == state) {
153 st->fail = CPUHP_INVALID;
154
155 if (!(bringup ? step->startup.single : step->teardown.single))
156 return 0;
157
158 return -EAGAIN;
159 }
160
161 if (!step->multi_instance) {
162 WARN_ON_ONCE(lastp && *lastp);
163 cb = bringup ? step->startup.single : step->teardown.single;
164 if (!cb)
165 return 0;
166 trace_cpuhp_enter(cpu, st->target, state, cb);
167 ret = cb(cpu);
168 trace_cpuhp_exit(cpu, st->state, state, ret);
169 return ret;
170 }
171 cbm = bringup ? step->startup.multi : step->teardown.multi;
172 if (!cbm)
173 return 0;
174
175 /* Single invocation for instance add/remove */
176 if (node) {
177 WARN_ON_ONCE(lastp && *lastp);
178 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
179 ret = cbm(cpu, node);
180 trace_cpuhp_exit(cpu, st->state, state, ret);
181 return ret;
182 }
183
184 /* State transition. Invoke on all instances */
185 cnt = 0;
186 hlist_for_each(node, &step->list) {
187 if (lastp && node == *lastp)
188 break;
189
190 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
191 ret = cbm(cpu, node);
192 trace_cpuhp_exit(cpu, st->state, state, ret);
193 if (ret) {
194 if (!lastp)
195 goto err;
196
197 *lastp = node;
198 return ret;
199 }
200 cnt++;
201 }
202 if (lastp)
203 *lastp = NULL;
204 return 0;
205 err:
206 /* Rollback the instances if one failed */
207 cbm = !bringup ? step->startup.multi : step->teardown.multi;
208 if (!cbm)
209 return ret;
210
211 hlist_for_each(node, &step->list) {
212 if (!cnt--)
213 break;
214
215 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
216 ret = cbm(cpu, node);
217 trace_cpuhp_exit(cpu, st->state, state, ret);
218 /*
219 * Rollback must not fail,
220 */
221 WARN_ON_ONCE(ret);
222 }
223 return ret;
224 }
225
226 #ifdef CONFIG_SMP
227 static bool cpuhp_is_ap_state(enum cpuhp_state state)
228 {
229 /*
230 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
231 * purposes as that state is handled explicitly in cpu_down.
232 */
233 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
234 }
235
236 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
237 {
238 struct completion *done = bringup ? &st->done_up : &st->done_down;
239 wait_for_completion(done);
240 }
241
242 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
243 {
244 struct completion *done = bringup ? &st->done_up : &st->done_down;
245 complete(done);
246 }
247
248 /*
249 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
250 */
251 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
252 {
253 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
254 }
255
256 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
257 static DEFINE_MUTEX(cpu_add_remove_lock);
258 bool cpuhp_tasks_frozen;
259 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
260
261 /*
262 * The following two APIs (cpu_maps_update_begin/done) must be used when
263 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
264 */
265 void cpu_maps_update_begin(void)
266 {
267 mutex_lock(&cpu_add_remove_lock);
268 }
269
270 void cpu_maps_update_done(void)
271 {
272 mutex_unlock(&cpu_add_remove_lock);
273 }
274
275 /*
276 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
277 * Should always be manipulated under cpu_add_remove_lock
278 */
279 static int cpu_hotplug_disabled;
280
281 #ifdef CONFIG_HOTPLUG_CPU
282
283 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
284
285 void cpus_read_lock(void)
286 {
287 percpu_down_read(&cpu_hotplug_lock);
288 }
289 EXPORT_SYMBOL_GPL(cpus_read_lock);
290
291 int cpus_read_trylock(void)
292 {
293 return percpu_down_read_trylock(&cpu_hotplug_lock);
294 }
295 EXPORT_SYMBOL_GPL(cpus_read_trylock);
296
297 void cpus_read_unlock(void)
298 {
299 percpu_up_read(&cpu_hotplug_lock);
300 }
301 EXPORT_SYMBOL_GPL(cpus_read_unlock);
302
303 void cpus_write_lock(void)
304 {
305 percpu_down_write(&cpu_hotplug_lock);
306 }
307
308 void cpus_write_unlock(void)
309 {
310 percpu_up_write(&cpu_hotplug_lock);
311 }
312
313 void lockdep_assert_cpus_held(void)
314 {
315 percpu_rwsem_assert_held(&cpu_hotplug_lock);
316 }
317
318 static void lockdep_acquire_cpus_lock(void)
319 {
320 rwsem_acquire(&cpu_hotplug_lock.rw_sem.dep_map, 0, 0, _THIS_IP_);
321 }
322
323 static void lockdep_release_cpus_lock(void)
324 {
325 rwsem_release(&cpu_hotplug_lock.rw_sem.dep_map, 1, _THIS_IP_);
326 }
327
328 /*
329 * Wait for currently running CPU hotplug operations to complete (if any) and
330 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
331 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
332 * hotplug path before performing hotplug operations. So acquiring that lock
333 * guarantees mutual exclusion from any currently running hotplug operations.
334 */
335 void cpu_hotplug_disable(void)
336 {
337 cpu_maps_update_begin();
338 cpu_hotplug_disabled++;
339 cpu_maps_update_done();
340 }
341 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
342
343 static void __cpu_hotplug_enable(void)
344 {
345 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
346 return;
347 cpu_hotplug_disabled--;
348 }
349
350 void cpu_hotplug_enable(void)
351 {
352 cpu_maps_update_begin();
353 __cpu_hotplug_enable();
354 cpu_maps_update_done();
355 }
356 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
357
358 #else
359
360 static void lockdep_acquire_cpus_lock(void)
361 {
362 }
363
364 static void lockdep_release_cpus_lock(void)
365 {
366 }
367
368 #endif /* CONFIG_HOTPLUG_CPU */
369
370 #ifdef CONFIG_HOTPLUG_SMT
371 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
372 EXPORT_SYMBOL_GPL(cpu_smt_control);
373
374 static bool cpu_smt_available __read_mostly;
375
376 void __init cpu_smt_disable(bool force)
377 {
378 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
379 cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
380 return;
381
382 if (force) {
383 pr_info("SMT: Force disabled\n");
384 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
385 } else {
386 pr_info("SMT: disabled\n");
387 cpu_smt_control = CPU_SMT_DISABLED;
388 }
389 }
390
391 /*
392 * The decision whether SMT is supported can only be done after the full
393 * CPU identification. Called from architecture code before non boot CPUs
394 * are brought up.
395 */
396 void __init cpu_smt_check_topology_early(void)
397 {
398 if (!topology_smt_supported())
399 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
400 }
401
402 /*
403 * If SMT was disabled by BIOS, detect it here, after the CPUs have been
404 * brought online. This ensures the smt/l1tf sysfs entries are consistent
405 * with reality. cpu_smt_available is set to true during the bringup of non
406 * boot CPUs when a SMT sibling is detected. Note, this may overwrite
407 * cpu_smt_control's previous setting.
408 */
409 void __init cpu_smt_check_topology(void)
410 {
411 if (!cpu_smt_available)
412 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
413 }
414
415 static int __init smt_cmdline_disable(char *str)
416 {
417 cpu_smt_disable(str && !strcmp(str, "force"));
418 return 0;
419 }
420 early_param("nosmt", smt_cmdline_disable);
421
422 static inline bool cpu_smt_allowed(unsigned int cpu)
423 {
424 if (topology_is_primary_thread(cpu))
425 return true;
426
427 /*
428 * If the CPU is not a 'primary' thread and the booted_once bit is
429 * set then the processor has SMT support. Store this information
430 * for the late check of SMT support in cpu_smt_check_topology().
431 */
432 if (per_cpu(cpuhp_state, cpu).booted_once)
433 cpu_smt_available = true;
434
435 if (cpu_smt_control == CPU_SMT_ENABLED)
436 return true;
437
438 /*
439 * On x86 it's required to boot all logical CPUs at least once so
440 * that the init code can get a chance to set CR4.MCE on each
441 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
442 * core will shutdown the machine.
443 */
444 return !per_cpu(cpuhp_state, cpu).booted_once;
445 }
446 #else
447 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
448 #endif
449
450 static inline enum cpuhp_state
451 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
452 {
453 enum cpuhp_state prev_state = st->state;
454
455 st->rollback = false;
456 st->last = NULL;
457
458 st->target = target;
459 st->single = false;
460 st->bringup = st->state < target;
461
462 return prev_state;
463 }
464
465 static inline void
466 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
467 {
468 st->rollback = true;
469
470 /*
471 * If we have st->last we need to undo partial multi_instance of this
472 * state first. Otherwise start undo at the previous state.
473 */
474 if (!st->last) {
475 if (st->bringup)
476 st->state--;
477 else
478 st->state++;
479 }
480
481 st->target = prev_state;
482 st->bringup = !st->bringup;
483 }
484
485 /* Regular hotplug invocation of the AP hotplug thread */
486 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
487 {
488 if (!st->single && st->state == st->target)
489 return;
490
491 st->result = 0;
492 /*
493 * Make sure the above stores are visible before should_run becomes
494 * true. Paired with the mb() above in cpuhp_thread_fun()
495 */
496 smp_mb();
497 st->should_run = true;
498 wake_up_process(st->thread);
499 wait_for_ap_thread(st, st->bringup);
500 }
501
502 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
503 {
504 enum cpuhp_state prev_state;
505 int ret;
506
507 prev_state = cpuhp_set_state(st, target);
508 __cpuhp_kick_ap(st);
509 if ((ret = st->result)) {
510 cpuhp_reset_state(st, prev_state);
511 __cpuhp_kick_ap(st);
512 }
513
514 return ret;
515 }
516
517 static int bringup_wait_for_ap(unsigned int cpu)
518 {
519 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
520
521 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
522 wait_for_ap_thread(st, true);
523 if (WARN_ON_ONCE((!cpu_online(cpu))))
524 return -ECANCELED;
525
526 /* Unpark the stopper thread and the hotplug thread of the target cpu */
527 stop_machine_unpark(cpu);
528 kthread_unpark(st->thread);
529
530 /*
531 * SMT soft disabling on X86 requires to bring the CPU out of the
532 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
533 * CPU marked itself as booted_once in cpu_notify_starting() so the
534 * cpu_smt_allowed() check will now return false if this is not the
535 * primary sibling.
536 */
537 if (!cpu_smt_allowed(cpu))
538 return -ECANCELED;
539
540 if (st->target <= CPUHP_AP_ONLINE_IDLE)
541 return 0;
542
543 return cpuhp_kick_ap(st, st->target);
544 }
545
546 static int bringup_cpu(unsigned int cpu)
547 {
548 struct task_struct *idle = idle_thread_get(cpu);
549 int ret;
550
551 /*
552 * Some architectures have to walk the irq descriptors to
553 * setup the vector space for the cpu which comes online.
554 * Prevent irq alloc/free across the bringup.
555 */
556 irq_lock_sparse();
557
558 /* Arch-specific enabling code. */
559 ret = __cpu_up(cpu, idle);
560 irq_unlock_sparse();
561 if (ret)
562 return ret;
563 return bringup_wait_for_ap(cpu);
564 }
565
566 /*
567 * Hotplug state machine related functions
568 */
569
570 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
571 {
572 for (st->state--; st->state > st->target; st->state--)
573 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
574 }
575
576 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
577 enum cpuhp_state target)
578 {
579 enum cpuhp_state prev_state = st->state;
580 int ret = 0;
581
582 while (st->state < target) {
583 st->state++;
584 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
585 if (ret) {
586 st->target = prev_state;
587 undo_cpu_up(cpu, st);
588 break;
589 }
590 }
591 return ret;
592 }
593
594 /*
595 * The cpu hotplug threads manage the bringup and teardown of the cpus
596 */
597 static void cpuhp_create(unsigned int cpu)
598 {
599 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
600
601 init_completion(&st->done_up);
602 init_completion(&st->done_down);
603 }
604
605 static int cpuhp_should_run(unsigned int cpu)
606 {
607 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
608
609 return st->should_run;
610 }
611
612 /*
613 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
614 * callbacks when a state gets [un]installed at runtime.
615 *
616 * Each invocation of this function by the smpboot thread does a single AP
617 * state callback.
618 *
619 * It has 3 modes of operation:
620 * - single: runs st->cb_state
621 * - up: runs ++st->state, while st->state < st->target
622 * - down: runs st->state--, while st->state > st->target
623 *
624 * When complete or on error, should_run is cleared and the completion is fired.
625 */
626 static void cpuhp_thread_fun(unsigned int cpu)
627 {
628 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
629 bool bringup = st->bringup;
630 enum cpuhp_state state;
631
632 if (WARN_ON_ONCE(!st->should_run))
633 return;
634
635 /*
636 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
637 * that if we see ->should_run we also see the rest of the state.
638 */
639 smp_mb();
640
641 /*
642 * The BP holds the hotplug lock, but we're now running on the AP,
643 * ensure that anybody asserting the lock is held, will actually find
644 * it so.
645 */
646 lockdep_acquire_cpus_lock();
647 cpuhp_lock_acquire(bringup);
648
649 if (st->single) {
650 state = st->cb_state;
651 st->should_run = false;
652 } else {
653 if (bringup) {
654 st->state++;
655 state = st->state;
656 st->should_run = (st->state < st->target);
657 WARN_ON_ONCE(st->state > st->target);
658 } else {
659 state = st->state;
660 st->state--;
661 st->should_run = (st->state > st->target);
662 WARN_ON_ONCE(st->state < st->target);
663 }
664 }
665
666 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
667
668 if (cpuhp_is_atomic_state(state)) {
669 local_irq_disable();
670 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
671 local_irq_enable();
672
673 /*
674 * STARTING/DYING must not fail!
675 */
676 WARN_ON_ONCE(st->result);
677 } else {
678 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
679 }
680
681 if (st->result) {
682 /*
683 * If we fail on a rollback, we're up a creek without no
684 * paddle, no way forward, no way back. We loose, thanks for
685 * playing.
686 */
687 WARN_ON_ONCE(st->rollback);
688 st->should_run = false;
689 }
690
691 cpuhp_lock_release(bringup);
692 lockdep_release_cpus_lock();
693
694 if (!st->should_run)
695 complete_ap_thread(st, bringup);
696 }
697
698 /* Invoke a single callback on a remote cpu */
699 static int
700 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
701 struct hlist_node *node)
702 {
703 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
704 int ret;
705
706 if (!cpu_online(cpu))
707 return 0;
708
709 cpuhp_lock_acquire(false);
710 cpuhp_lock_release(false);
711
712 cpuhp_lock_acquire(true);
713 cpuhp_lock_release(true);
714
715 /*
716 * If we are up and running, use the hotplug thread. For early calls
717 * we invoke the thread function directly.
718 */
719 if (!st->thread)
720 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
721
722 st->rollback = false;
723 st->last = NULL;
724
725 st->node = node;
726 st->bringup = bringup;
727 st->cb_state = state;
728 st->single = true;
729
730 __cpuhp_kick_ap(st);
731
732 /*
733 * If we failed and did a partial, do a rollback.
734 */
735 if ((ret = st->result) && st->last) {
736 st->rollback = true;
737 st->bringup = !bringup;
738
739 __cpuhp_kick_ap(st);
740 }
741
742 /*
743 * Clean up the leftovers so the next hotplug operation wont use stale
744 * data.
745 */
746 st->node = st->last = NULL;
747 return ret;
748 }
749
750 static int cpuhp_kick_ap_work(unsigned int cpu)
751 {
752 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
753 enum cpuhp_state prev_state = st->state;
754 int ret;
755
756 cpuhp_lock_acquire(false);
757 cpuhp_lock_release(false);
758
759 cpuhp_lock_acquire(true);
760 cpuhp_lock_release(true);
761
762 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
763 ret = cpuhp_kick_ap(st, st->target);
764 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
765
766 return ret;
767 }
768
769 static struct smp_hotplug_thread cpuhp_threads = {
770 .store = &cpuhp_state.thread,
771 .create = &cpuhp_create,
772 .thread_should_run = cpuhp_should_run,
773 .thread_fn = cpuhp_thread_fun,
774 .thread_comm = "cpuhp/%u",
775 .selfparking = true,
776 };
777
778 void __init cpuhp_threads_init(void)
779 {
780 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
781 kthread_unpark(this_cpu_read(cpuhp_state.thread));
782 }
783
784 #ifdef CONFIG_HOTPLUG_CPU
785 /**
786 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
787 * @cpu: a CPU id
788 *
789 * This function walks all processes, finds a valid mm struct for each one and
790 * then clears a corresponding bit in mm's cpumask. While this all sounds
791 * trivial, there are various non-obvious corner cases, which this function
792 * tries to solve in a safe manner.
793 *
794 * Also note that the function uses a somewhat relaxed locking scheme, so it may
795 * be called only for an already offlined CPU.
796 */
797 void clear_tasks_mm_cpumask(int cpu)
798 {
799 struct task_struct *p;
800
801 /*
802 * This function is called after the cpu is taken down and marked
803 * offline, so its not like new tasks will ever get this cpu set in
804 * their mm mask. -- Peter Zijlstra
805 * Thus, we may use rcu_read_lock() here, instead of grabbing
806 * full-fledged tasklist_lock.
807 */
808 WARN_ON(cpu_online(cpu));
809 rcu_read_lock();
810 for_each_process(p) {
811 struct task_struct *t;
812
813 /*
814 * Main thread might exit, but other threads may still have
815 * a valid mm. Find one.
816 */
817 t = find_lock_task_mm(p);
818 if (!t)
819 continue;
820 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
821 task_unlock(t);
822 }
823 rcu_read_unlock();
824 }
825
826 /* Take this CPU down. */
827 static int take_cpu_down(void *_param)
828 {
829 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
830 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
831 int err, cpu = smp_processor_id();
832 int ret;
833
834 /* Ensure this CPU doesn't handle any more interrupts. */
835 err = __cpu_disable();
836 if (err < 0)
837 return err;
838
839 /*
840 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
841 * do this step again.
842 */
843 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
844 st->state--;
845 /* Invoke the former CPU_DYING callbacks */
846 for (; st->state > target; st->state--) {
847 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
848 /*
849 * DYING must not fail!
850 */
851 WARN_ON_ONCE(ret);
852 }
853
854 /* Give up timekeeping duties */
855 tick_handover_do_timer();
856 /* Park the stopper thread */
857 stop_machine_park(cpu);
858 return 0;
859 }
860
861 static int takedown_cpu(unsigned int cpu)
862 {
863 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
864 int err;
865
866 /* Park the smpboot threads */
867 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
868
869 /*
870 * Prevent irq alloc/free while the dying cpu reorganizes the
871 * interrupt affinities.
872 */
873 irq_lock_sparse();
874
875 /*
876 * So now all preempt/rcu users must observe !cpu_active().
877 */
878 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
879 if (err) {
880 /* CPU refused to die */
881 irq_unlock_sparse();
882 /* Unpark the hotplug thread so we can rollback there */
883 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
884 return err;
885 }
886 BUG_ON(cpu_online(cpu));
887
888 /*
889 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
890 * all runnable tasks from the CPU, there's only the idle task left now
891 * that the migration thread is done doing the stop_machine thing.
892 *
893 * Wait for the stop thread to go away.
894 */
895 wait_for_ap_thread(st, false);
896 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
897
898 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
899 irq_unlock_sparse();
900
901 hotplug_cpu__broadcast_tick_pull(cpu);
902 /* This actually kills the CPU. */
903 __cpu_die(cpu);
904
905 tick_cleanup_dead_cpu(cpu);
906 rcutree_migrate_callbacks(cpu);
907 return 0;
908 }
909
910 static void cpuhp_complete_idle_dead(void *arg)
911 {
912 struct cpuhp_cpu_state *st = arg;
913
914 complete_ap_thread(st, false);
915 }
916
917 void cpuhp_report_idle_dead(void)
918 {
919 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
920
921 BUG_ON(st->state != CPUHP_AP_OFFLINE);
922 rcu_report_dead(smp_processor_id());
923 st->state = CPUHP_AP_IDLE_DEAD;
924 /*
925 * We cannot call complete after rcu_report_dead() so we delegate it
926 * to an online cpu.
927 */
928 smp_call_function_single(cpumask_first(cpu_online_mask),
929 cpuhp_complete_idle_dead, st, 0);
930 }
931
932 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
933 {
934 for (st->state++; st->state < st->target; st->state++)
935 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
936 }
937
938 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
939 enum cpuhp_state target)
940 {
941 enum cpuhp_state prev_state = st->state;
942 int ret = 0;
943
944 for (; st->state > target; st->state--) {
945 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
946 if (ret) {
947 st->target = prev_state;
948 if (st->state < prev_state)
949 undo_cpu_down(cpu, st);
950 break;
951 }
952 }
953 return ret;
954 }
955
956 /* Requires cpu_add_remove_lock to be held */
957 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
958 enum cpuhp_state target)
959 {
960 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
961 int prev_state, ret = 0;
962
963 if (num_online_cpus() == 1)
964 return -EBUSY;
965
966 if (!cpu_present(cpu))
967 return -EINVAL;
968
969 cpus_write_lock();
970
971 cpuhp_tasks_frozen = tasks_frozen;
972
973 prev_state = cpuhp_set_state(st, target);
974 /*
975 * If the current CPU state is in the range of the AP hotplug thread,
976 * then we need to kick the thread.
977 */
978 if (st->state > CPUHP_TEARDOWN_CPU) {
979 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
980 ret = cpuhp_kick_ap_work(cpu);
981 /*
982 * The AP side has done the error rollback already. Just
983 * return the error code..
984 */
985 if (ret)
986 goto out;
987
988 /*
989 * We might have stopped still in the range of the AP hotplug
990 * thread. Nothing to do anymore.
991 */
992 if (st->state > CPUHP_TEARDOWN_CPU)
993 goto out;
994
995 st->target = target;
996 }
997 /*
998 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
999 * to do the further cleanups.
1000 */
1001 ret = cpuhp_down_callbacks(cpu, st, target);
1002 if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1003 cpuhp_reset_state(st, prev_state);
1004 __cpuhp_kick_ap(st);
1005 }
1006
1007 out:
1008 cpus_write_unlock();
1009 /*
1010 * Do post unplug cleanup. This is still protected against
1011 * concurrent CPU hotplug via cpu_add_remove_lock.
1012 */
1013 lockup_detector_cleanup();
1014 return ret;
1015 }
1016
1017 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1018 {
1019 if (cpu_hotplug_disabled)
1020 return -EBUSY;
1021 return _cpu_down(cpu, 0, target);
1022 }
1023
1024 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
1025 {
1026 int err;
1027
1028 cpu_maps_update_begin();
1029 err = cpu_down_maps_locked(cpu, target);
1030 cpu_maps_update_done();
1031 return err;
1032 }
1033
1034 int cpu_down(unsigned int cpu)
1035 {
1036 return do_cpu_down(cpu, CPUHP_OFFLINE);
1037 }
1038 EXPORT_SYMBOL(cpu_down);
1039
1040 #else
1041 #define takedown_cpu NULL
1042 #endif /*CONFIG_HOTPLUG_CPU*/
1043
1044 /**
1045 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1046 * @cpu: cpu that just started
1047 *
1048 * It must be called by the arch code on the new cpu, before the new cpu
1049 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1050 */
1051 void notify_cpu_starting(unsigned int cpu)
1052 {
1053 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1054 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1055 int ret;
1056
1057 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1058 st->booted_once = true;
1059 while (st->state < target) {
1060 st->state++;
1061 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1062 /*
1063 * STARTING must not fail!
1064 */
1065 WARN_ON_ONCE(ret);
1066 }
1067 }
1068
1069 /*
1070 * Called from the idle task. Wake up the controlling task which brings the
1071 * stopper and the hotplug thread of the upcoming CPU up and then delegates
1072 * the rest of the online bringup to the hotplug thread.
1073 */
1074 void cpuhp_online_idle(enum cpuhp_state state)
1075 {
1076 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1077
1078 /* Happens for the boot cpu */
1079 if (state != CPUHP_AP_ONLINE_IDLE)
1080 return;
1081
1082 st->state = CPUHP_AP_ONLINE_IDLE;
1083 complete_ap_thread(st, true);
1084 }
1085
1086 /* Requires cpu_add_remove_lock to be held */
1087 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1088 {
1089 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1090 struct task_struct *idle;
1091 int ret = 0;
1092
1093 cpus_write_lock();
1094
1095 if (!cpu_present(cpu)) {
1096 ret = -EINVAL;
1097 goto out;
1098 }
1099
1100 /*
1101 * The caller of do_cpu_up might have raced with another
1102 * caller. Ignore it for now.
1103 */
1104 if (st->state >= target)
1105 goto out;
1106
1107 if (st->state == CPUHP_OFFLINE) {
1108 /* Let it fail before we try to bring the cpu up */
1109 idle = idle_thread_get(cpu);
1110 if (IS_ERR(idle)) {
1111 ret = PTR_ERR(idle);
1112 goto out;
1113 }
1114 }
1115
1116 cpuhp_tasks_frozen = tasks_frozen;
1117
1118 cpuhp_set_state(st, target);
1119 /*
1120 * If the current CPU state is in the range of the AP hotplug thread,
1121 * then we need to kick the thread once more.
1122 */
1123 if (st->state > CPUHP_BRINGUP_CPU) {
1124 ret = cpuhp_kick_ap_work(cpu);
1125 /*
1126 * The AP side has done the error rollback already. Just
1127 * return the error code..
1128 */
1129 if (ret)
1130 goto out;
1131 }
1132
1133 /*
1134 * Try to reach the target state. We max out on the BP at
1135 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1136 * responsible for bringing it up to the target state.
1137 */
1138 target = min((int)target, CPUHP_BRINGUP_CPU);
1139 ret = cpuhp_up_callbacks(cpu, st, target);
1140 out:
1141 cpus_write_unlock();
1142 return ret;
1143 }
1144
1145 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1146 {
1147 int err = 0;
1148
1149 if (!cpu_possible(cpu)) {
1150 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1151 cpu);
1152 #if defined(CONFIG_IA64)
1153 pr_err("please check additional_cpus= boot parameter\n");
1154 #endif
1155 return -EINVAL;
1156 }
1157
1158 err = try_online_node(cpu_to_node(cpu));
1159 if (err)
1160 return err;
1161
1162 cpu_maps_update_begin();
1163
1164 if (cpu_hotplug_disabled) {
1165 err = -EBUSY;
1166 goto out;
1167 }
1168 if (!cpu_smt_allowed(cpu)) {
1169 err = -EPERM;
1170 goto out;
1171 }
1172
1173 err = _cpu_up(cpu, 0, target);
1174 out:
1175 cpu_maps_update_done();
1176 return err;
1177 }
1178
1179 int cpu_up(unsigned int cpu)
1180 {
1181 return do_cpu_up(cpu, CPUHP_ONLINE);
1182 }
1183 EXPORT_SYMBOL_GPL(cpu_up);
1184
1185 #ifdef CONFIG_PM_SLEEP_SMP
1186 static cpumask_var_t frozen_cpus;
1187
1188 int freeze_secondary_cpus(int primary)
1189 {
1190 int cpu, error = 0;
1191
1192 cpu_maps_update_begin();
1193 if (!cpu_online(primary))
1194 primary = cpumask_first(cpu_online_mask);
1195 /*
1196 * We take down all of the non-boot CPUs in one shot to avoid races
1197 * with the userspace trying to use the CPU hotplug at the same time
1198 */
1199 cpumask_clear(frozen_cpus);
1200
1201 pr_info("Disabling non-boot CPUs ...\n");
1202 for_each_online_cpu(cpu) {
1203 if (cpu == primary)
1204 continue;
1205 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1206 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1207 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1208 if (!error)
1209 cpumask_set_cpu(cpu, frozen_cpus);
1210 else {
1211 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1212 break;
1213 }
1214 }
1215
1216 if (!error)
1217 BUG_ON(num_online_cpus() > 1);
1218 else
1219 pr_err("Non-boot CPUs are not disabled\n");
1220
1221 /*
1222 * Make sure the CPUs won't be enabled by someone else. We need to do
1223 * this even in case of failure as all disable_nonboot_cpus() users are
1224 * supposed to do enable_nonboot_cpus() on the failure path.
1225 */
1226 cpu_hotplug_disabled++;
1227
1228 cpu_maps_update_done();
1229 return error;
1230 }
1231
1232 void __weak arch_enable_nonboot_cpus_begin(void)
1233 {
1234 }
1235
1236 void __weak arch_enable_nonboot_cpus_end(void)
1237 {
1238 }
1239
1240 void enable_nonboot_cpus(void)
1241 {
1242 int cpu, error;
1243
1244 /* Allow everyone to use the CPU hotplug again */
1245 cpu_maps_update_begin();
1246 __cpu_hotplug_enable();
1247 if (cpumask_empty(frozen_cpus))
1248 goto out;
1249
1250 pr_info("Enabling non-boot CPUs ...\n");
1251
1252 arch_enable_nonboot_cpus_begin();
1253
1254 for_each_cpu(cpu, frozen_cpus) {
1255 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1256 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1257 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1258 if (!error) {
1259 pr_info("CPU%d is up\n", cpu);
1260 continue;
1261 }
1262 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1263 }
1264
1265 arch_enable_nonboot_cpus_end();
1266
1267 cpumask_clear(frozen_cpus);
1268 out:
1269 cpu_maps_update_done();
1270 }
1271
1272 static int __init alloc_frozen_cpus(void)
1273 {
1274 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1275 return -ENOMEM;
1276 return 0;
1277 }
1278 core_initcall(alloc_frozen_cpus);
1279
1280 /*
1281 * When callbacks for CPU hotplug notifications are being executed, we must
1282 * ensure that the state of the system with respect to the tasks being frozen
1283 * or not, as reported by the notification, remains unchanged *throughout the
1284 * duration* of the execution of the callbacks.
1285 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1286 *
1287 * This synchronization is implemented by mutually excluding regular CPU
1288 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1289 * Hibernate notifications.
1290 */
1291 static int
1292 cpu_hotplug_pm_callback(struct notifier_block *nb,
1293 unsigned long action, void *ptr)
1294 {
1295 switch (action) {
1296
1297 case PM_SUSPEND_PREPARE:
1298 case PM_HIBERNATION_PREPARE:
1299 cpu_hotplug_disable();
1300 break;
1301
1302 case PM_POST_SUSPEND:
1303 case PM_POST_HIBERNATION:
1304 cpu_hotplug_enable();
1305 break;
1306
1307 default:
1308 return NOTIFY_DONE;
1309 }
1310
1311 return NOTIFY_OK;
1312 }
1313
1314
1315 static int __init cpu_hotplug_pm_sync_init(void)
1316 {
1317 /*
1318 * cpu_hotplug_pm_callback has higher priority than x86
1319 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1320 * to disable cpu hotplug to avoid cpu hotplug race.
1321 */
1322 pm_notifier(cpu_hotplug_pm_callback, 0);
1323 return 0;
1324 }
1325 core_initcall(cpu_hotplug_pm_sync_init);
1326
1327 #endif /* CONFIG_PM_SLEEP_SMP */
1328
1329 int __boot_cpu_id;
1330
1331 #endif /* CONFIG_SMP */
1332
1333 /* Boot processor state steps */
1334 static struct cpuhp_step cpuhp_hp_states[] = {
1335 [CPUHP_OFFLINE] = {
1336 .name = "offline",
1337 .startup.single = NULL,
1338 .teardown.single = NULL,
1339 },
1340 #ifdef CONFIG_SMP
1341 [CPUHP_CREATE_THREADS]= {
1342 .name = "threads:prepare",
1343 .startup.single = smpboot_create_threads,
1344 .teardown.single = NULL,
1345 .cant_stop = true,
1346 },
1347 [CPUHP_PERF_PREPARE] = {
1348 .name = "perf:prepare",
1349 .startup.single = perf_event_init_cpu,
1350 .teardown.single = perf_event_exit_cpu,
1351 },
1352 [CPUHP_WORKQUEUE_PREP] = {
1353 .name = "workqueue:prepare",
1354 .startup.single = workqueue_prepare_cpu,
1355 .teardown.single = NULL,
1356 },
1357 [CPUHP_HRTIMERS_PREPARE] = {
1358 .name = "hrtimers:prepare",
1359 .startup.single = hrtimers_prepare_cpu,
1360 .teardown.single = hrtimers_dead_cpu,
1361 },
1362 [CPUHP_SMPCFD_PREPARE] = {
1363 .name = "smpcfd:prepare",
1364 .startup.single = smpcfd_prepare_cpu,
1365 .teardown.single = smpcfd_dead_cpu,
1366 },
1367 [CPUHP_RELAY_PREPARE] = {
1368 .name = "relay:prepare",
1369 .startup.single = relay_prepare_cpu,
1370 .teardown.single = NULL,
1371 },
1372 [CPUHP_SLAB_PREPARE] = {
1373 .name = "slab:prepare",
1374 .startup.single = slab_prepare_cpu,
1375 .teardown.single = slab_dead_cpu,
1376 },
1377 [CPUHP_RCUTREE_PREP] = {
1378 .name = "RCU/tree:prepare",
1379 .startup.single = rcutree_prepare_cpu,
1380 .teardown.single = rcutree_dead_cpu,
1381 },
1382 /*
1383 * On the tear-down path, timers_dead_cpu() must be invoked
1384 * before blk_mq_queue_reinit_notify() from notify_dead(),
1385 * otherwise a RCU stall occurs.
1386 */
1387 [CPUHP_TIMERS_PREPARE] = {
1388 .name = "timers:prepare",
1389 .startup.single = timers_prepare_cpu,
1390 .teardown.single = timers_dead_cpu,
1391 },
1392 /* Kicks the plugged cpu into life */
1393 [CPUHP_BRINGUP_CPU] = {
1394 .name = "cpu:bringup",
1395 .startup.single = bringup_cpu,
1396 .teardown.single = NULL,
1397 .cant_stop = true,
1398 },
1399 /* Final state before CPU kills itself */
1400 [CPUHP_AP_IDLE_DEAD] = {
1401 .name = "idle:dead",
1402 },
1403 /*
1404 * Last state before CPU enters the idle loop to die. Transient state
1405 * for synchronization.
1406 */
1407 [CPUHP_AP_OFFLINE] = {
1408 .name = "ap:offline",
1409 .cant_stop = true,
1410 },
1411 /* First state is scheduler control. Interrupts are disabled */
1412 [CPUHP_AP_SCHED_STARTING] = {
1413 .name = "sched:starting",
1414 .startup.single = sched_cpu_starting,
1415 .teardown.single = sched_cpu_dying,
1416 },
1417 [CPUHP_AP_RCUTREE_DYING] = {
1418 .name = "RCU/tree:dying",
1419 .startup.single = NULL,
1420 .teardown.single = rcutree_dying_cpu,
1421 },
1422 [CPUHP_AP_SMPCFD_DYING] = {
1423 .name = "smpcfd:dying",
1424 .startup.single = NULL,
1425 .teardown.single = smpcfd_dying_cpu,
1426 },
1427 /* Entry state on starting. Interrupts enabled from here on. Transient
1428 * state for synchronsization */
1429 [CPUHP_AP_ONLINE] = {
1430 .name = "ap:online",
1431 },
1432 /*
1433 * Handled on controll processor until the plugged processor manages
1434 * this itself.
1435 */
1436 [CPUHP_TEARDOWN_CPU] = {
1437 .name = "cpu:teardown",
1438 .startup.single = NULL,
1439 .teardown.single = takedown_cpu,
1440 .cant_stop = true,
1441 },
1442 /* Handle smpboot threads park/unpark */
1443 [CPUHP_AP_SMPBOOT_THREADS] = {
1444 .name = "smpboot/threads:online",
1445 .startup.single = smpboot_unpark_threads,
1446 .teardown.single = smpboot_park_threads,
1447 },
1448 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1449 .name = "irq/affinity:online",
1450 .startup.single = irq_affinity_online_cpu,
1451 .teardown.single = NULL,
1452 },
1453 [CPUHP_AP_PERF_ONLINE] = {
1454 .name = "perf:online",
1455 .startup.single = perf_event_init_cpu,
1456 .teardown.single = perf_event_exit_cpu,
1457 },
1458 [CPUHP_AP_WATCHDOG_ONLINE] = {
1459 .name = "lockup_detector:online",
1460 .startup.single = lockup_detector_online_cpu,
1461 .teardown.single = lockup_detector_offline_cpu,
1462 },
1463 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1464 .name = "workqueue:online",
1465 .startup.single = workqueue_online_cpu,
1466 .teardown.single = workqueue_offline_cpu,
1467 },
1468 [CPUHP_AP_RCUTREE_ONLINE] = {
1469 .name = "RCU/tree:online",
1470 .startup.single = rcutree_online_cpu,
1471 .teardown.single = rcutree_offline_cpu,
1472 },
1473 #endif
1474 /*
1475 * The dynamically registered state space is here
1476 */
1477
1478 #ifdef CONFIG_SMP
1479 /* Last state is scheduler control setting the cpu active */
1480 [CPUHP_AP_ACTIVE] = {
1481 .name = "sched:active",
1482 .startup.single = sched_cpu_activate,
1483 .teardown.single = sched_cpu_deactivate,
1484 },
1485 #endif
1486
1487 /* CPU is fully up and running. */
1488 [CPUHP_ONLINE] = {
1489 .name = "online",
1490 .startup.single = NULL,
1491 .teardown.single = NULL,
1492 },
1493 };
1494
1495 /* Sanity check for callbacks */
1496 static int cpuhp_cb_check(enum cpuhp_state state)
1497 {
1498 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1499 return -EINVAL;
1500 return 0;
1501 }
1502
1503 /*
1504 * Returns a free for dynamic slot assignment of the Online state. The states
1505 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1506 * by having no name assigned.
1507 */
1508 static int cpuhp_reserve_state(enum cpuhp_state state)
1509 {
1510 enum cpuhp_state i, end;
1511 struct cpuhp_step *step;
1512
1513 switch (state) {
1514 case CPUHP_AP_ONLINE_DYN:
1515 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1516 end = CPUHP_AP_ONLINE_DYN_END;
1517 break;
1518 case CPUHP_BP_PREPARE_DYN:
1519 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1520 end = CPUHP_BP_PREPARE_DYN_END;
1521 break;
1522 default:
1523 return -EINVAL;
1524 }
1525
1526 for (i = state; i <= end; i++, step++) {
1527 if (!step->name)
1528 return i;
1529 }
1530 WARN(1, "No more dynamic states available for CPU hotplug\n");
1531 return -ENOSPC;
1532 }
1533
1534 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1535 int (*startup)(unsigned int cpu),
1536 int (*teardown)(unsigned int cpu),
1537 bool multi_instance)
1538 {
1539 /* (Un)Install the callbacks for further cpu hotplug operations */
1540 struct cpuhp_step *sp;
1541 int ret = 0;
1542
1543 /*
1544 * If name is NULL, then the state gets removed.
1545 *
1546 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1547 * the first allocation from these dynamic ranges, so the removal
1548 * would trigger a new allocation and clear the wrong (already
1549 * empty) state, leaving the callbacks of the to be cleared state
1550 * dangling, which causes wreckage on the next hotplug operation.
1551 */
1552 if (name && (state == CPUHP_AP_ONLINE_DYN ||
1553 state == CPUHP_BP_PREPARE_DYN)) {
1554 ret = cpuhp_reserve_state(state);
1555 if (ret < 0)
1556 return ret;
1557 state = ret;
1558 }
1559 sp = cpuhp_get_step(state);
1560 if (name && sp->name)
1561 return -EBUSY;
1562
1563 sp->startup.single = startup;
1564 sp->teardown.single = teardown;
1565 sp->name = name;
1566 sp->multi_instance = multi_instance;
1567 INIT_HLIST_HEAD(&sp->list);
1568 return ret;
1569 }
1570
1571 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1572 {
1573 return cpuhp_get_step(state)->teardown.single;
1574 }
1575
1576 /*
1577 * Call the startup/teardown function for a step either on the AP or
1578 * on the current CPU.
1579 */
1580 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1581 struct hlist_node *node)
1582 {
1583 struct cpuhp_step *sp = cpuhp_get_step(state);
1584 int ret;
1585
1586 /*
1587 * If there's nothing to do, we done.
1588 * Relies on the union for multi_instance.
1589 */
1590 if ((bringup && !sp->startup.single) ||
1591 (!bringup && !sp->teardown.single))
1592 return 0;
1593 /*
1594 * The non AP bound callbacks can fail on bringup. On teardown
1595 * e.g. module removal we crash for now.
1596 */
1597 #ifdef CONFIG_SMP
1598 if (cpuhp_is_ap_state(state))
1599 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1600 else
1601 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1602 #else
1603 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1604 #endif
1605 BUG_ON(ret && !bringup);
1606 return ret;
1607 }
1608
1609 /*
1610 * Called from __cpuhp_setup_state on a recoverable failure.
1611 *
1612 * Note: The teardown callbacks for rollback are not allowed to fail!
1613 */
1614 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1615 struct hlist_node *node)
1616 {
1617 int cpu;
1618
1619 /* Roll back the already executed steps on the other cpus */
1620 for_each_present_cpu(cpu) {
1621 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1622 int cpustate = st->state;
1623
1624 if (cpu >= failedcpu)
1625 break;
1626
1627 /* Did we invoke the startup call on that cpu ? */
1628 if (cpustate >= state)
1629 cpuhp_issue_call(cpu, state, false, node);
1630 }
1631 }
1632
1633 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1634 struct hlist_node *node,
1635 bool invoke)
1636 {
1637 struct cpuhp_step *sp;
1638 int cpu;
1639 int ret;
1640
1641 lockdep_assert_cpus_held();
1642
1643 sp = cpuhp_get_step(state);
1644 if (sp->multi_instance == false)
1645 return -EINVAL;
1646
1647 mutex_lock(&cpuhp_state_mutex);
1648
1649 if (!invoke || !sp->startup.multi)
1650 goto add_node;
1651
1652 /*
1653 * Try to call the startup callback for each present cpu
1654 * depending on the hotplug state of the cpu.
1655 */
1656 for_each_present_cpu(cpu) {
1657 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1658 int cpustate = st->state;
1659
1660 if (cpustate < state)
1661 continue;
1662
1663 ret = cpuhp_issue_call(cpu, state, true, node);
1664 if (ret) {
1665 if (sp->teardown.multi)
1666 cpuhp_rollback_install(cpu, state, node);
1667 goto unlock;
1668 }
1669 }
1670 add_node:
1671 ret = 0;
1672 hlist_add_head(node, &sp->list);
1673 unlock:
1674 mutex_unlock(&cpuhp_state_mutex);
1675 return ret;
1676 }
1677
1678 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1679 bool invoke)
1680 {
1681 int ret;
1682
1683 cpus_read_lock();
1684 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1685 cpus_read_unlock();
1686 return ret;
1687 }
1688 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1689
1690 /**
1691 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1692 * @state: The state to setup
1693 * @invoke: If true, the startup function is invoked for cpus where
1694 * cpu state >= @state
1695 * @startup: startup callback function
1696 * @teardown: teardown callback function
1697 * @multi_instance: State is set up for multiple instances which get
1698 * added afterwards.
1699 *
1700 * The caller needs to hold cpus read locked while calling this function.
1701 * Returns:
1702 * On success:
1703 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1704 * 0 for all other states
1705 * On failure: proper (negative) error code
1706 */
1707 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1708 const char *name, bool invoke,
1709 int (*startup)(unsigned int cpu),
1710 int (*teardown)(unsigned int cpu),
1711 bool multi_instance)
1712 {
1713 int cpu, ret = 0;
1714 bool dynstate;
1715
1716 lockdep_assert_cpus_held();
1717
1718 if (cpuhp_cb_check(state) || !name)
1719 return -EINVAL;
1720
1721 mutex_lock(&cpuhp_state_mutex);
1722
1723 ret = cpuhp_store_callbacks(state, name, startup, teardown,
1724 multi_instance);
1725
1726 dynstate = state == CPUHP_AP_ONLINE_DYN;
1727 if (ret > 0 && dynstate) {
1728 state = ret;
1729 ret = 0;
1730 }
1731
1732 if (ret || !invoke || !startup)
1733 goto out;
1734
1735 /*
1736 * Try to call the startup callback for each present cpu
1737 * depending on the hotplug state of the cpu.
1738 */
1739 for_each_present_cpu(cpu) {
1740 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1741 int cpustate = st->state;
1742
1743 if (cpustate < state)
1744 continue;
1745
1746 ret = cpuhp_issue_call(cpu, state, true, NULL);
1747 if (ret) {
1748 if (teardown)
1749 cpuhp_rollback_install(cpu, state, NULL);
1750 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1751 goto out;
1752 }
1753 }
1754 out:
1755 mutex_unlock(&cpuhp_state_mutex);
1756 /*
1757 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1758 * dynamically allocated state in case of success.
1759 */
1760 if (!ret && dynstate)
1761 return state;
1762 return ret;
1763 }
1764 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1765
1766 int __cpuhp_setup_state(enum cpuhp_state state,
1767 const char *name, bool invoke,
1768 int (*startup)(unsigned int cpu),
1769 int (*teardown)(unsigned int cpu),
1770 bool multi_instance)
1771 {
1772 int ret;
1773
1774 cpus_read_lock();
1775 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1776 teardown, multi_instance);
1777 cpus_read_unlock();
1778 return ret;
1779 }
1780 EXPORT_SYMBOL(__cpuhp_setup_state);
1781
1782 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1783 struct hlist_node *node, bool invoke)
1784 {
1785 struct cpuhp_step *sp = cpuhp_get_step(state);
1786 int cpu;
1787
1788 BUG_ON(cpuhp_cb_check(state));
1789
1790 if (!sp->multi_instance)
1791 return -EINVAL;
1792
1793 cpus_read_lock();
1794 mutex_lock(&cpuhp_state_mutex);
1795
1796 if (!invoke || !cpuhp_get_teardown_cb(state))
1797 goto remove;
1798 /*
1799 * Call the teardown callback for each present cpu depending
1800 * on the hotplug state of the cpu. This function is not
1801 * allowed to fail currently!
1802 */
1803 for_each_present_cpu(cpu) {
1804 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1805 int cpustate = st->state;
1806
1807 if (cpustate >= state)
1808 cpuhp_issue_call(cpu, state, false, node);
1809 }
1810
1811 remove:
1812 hlist_del(node);
1813 mutex_unlock(&cpuhp_state_mutex);
1814 cpus_read_unlock();
1815
1816 return 0;
1817 }
1818 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1819
1820 /**
1821 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1822 * @state: The state to remove
1823 * @invoke: If true, the teardown function is invoked for cpus where
1824 * cpu state >= @state
1825 *
1826 * The caller needs to hold cpus read locked while calling this function.
1827 * The teardown callback is currently not allowed to fail. Think
1828 * about module removal!
1829 */
1830 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1831 {
1832 struct cpuhp_step *sp = cpuhp_get_step(state);
1833 int cpu;
1834
1835 BUG_ON(cpuhp_cb_check(state));
1836
1837 lockdep_assert_cpus_held();
1838
1839 mutex_lock(&cpuhp_state_mutex);
1840 if (sp->multi_instance) {
1841 WARN(!hlist_empty(&sp->list),
1842 "Error: Removing state %d which has instances left.\n",
1843 state);
1844 goto remove;
1845 }
1846
1847 if (!invoke || !cpuhp_get_teardown_cb(state))
1848 goto remove;
1849
1850 /*
1851 * Call the teardown callback for each present cpu depending
1852 * on the hotplug state of the cpu. This function is not
1853 * allowed to fail currently!
1854 */
1855 for_each_present_cpu(cpu) {
1856 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1857 int cpustate = st->state;
1858
1859 if (cpustate >= state)
1860 cpuhp_issue_call(cpu, state, false, NULL);
1861 }
1862 remove:
1863 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1864 mutex_unlock(&cpuhp_state_mutex);
1865 }
1866 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1867
1868 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1869 {
1870 cpus_read_lock();
1871 __cpuhp_remove_state_cpuslocked(state, invoke);
1872 cpus_read_unlock();
1873 }
1874 EXPORT_SYMBOL(__cpuhp_remove_state);
1875
1876 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1877 static ssize_t show_cpuhp_state(struct device *dev,
1878 struct device_attribute *attr, char *buf)
1879 {
1880 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1881
1882 return sprintf(buf, "%d\n", st->state);
1883 }
1884 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1885
1886 static ssize_t write_cpuhp_target(struct device *dev,
1887 struct device_attribute *attr,
1888 const char *buf, size_t count)
1889 {
1890 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1891 struct cpuhp_step *sp;
1892 int target, ret;
1893
1894 ret = kstrtoint(buf, 10, &target);
1895 if (ret)
1896 return ret;
1897
1898 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1899 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1900 return -EINVAL;
1901 #else
1902 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1903 return -EINVAL;
1904 #endif
1905
1906 ret = lock_device_hotplug_sysfs();
1907 if (ret)
1908 return ret;
1909
1910 mutex_lock(&cpuhp_state_mutex);
1911 sp = cpuhp_get_step(target);
1912 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1913 mutex_unlock(&cpuhp_state_mutex);
1914 if (ret)
1915 goto out;
1916
1917 if (st->state < target)
1918 ret = do_cpu_up(dev->id, target);
1919 else
1920 ret = do_cpu_down(dev->id, target);
1921 out:
1922 unlock_device_hotplug();
1923 return ret ? ret : count;
1924 }
1925
1926 static ssize_t show_cpuhp_target(struct device *dev,
1927 struct device_attribute *attr, char *buf)
1928 {
1929 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1930
1931 return sprintf(buf, "%d\n", st->target);
1932 }
1933 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1934
1935
1936 static ssize_t write_cpuhp_fail(struct device *dev,
1937 struct device_attribute *attr,
1938 const char *buf, size_t count)
1939 {
1940 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1941 struct cpuhp_step *sp;
1942 int fail, ret;
1943
1944 ret = kstrtoint(buf, 10, &fail);
1945 if (ret)
1946 return ret;
1947
1948 /*
1949 * Cannot fail STARTING/DYING callbacks.
1950 */
1951 if (cpuhp_is_atomic_state(fail))
1952 return -EINVAL;
1953
1954 /*
1955 * Cannot fail anything that doesn't have callbacks.
1956 */
1957 mutex_lock(&cpuhp_state_mutex);
1958 sp = cpuhp_get_step(fail);
1959 if (!sp->startup.single && !sp->teardown.single)
1960 ret = -EINVAL;
1961 mutex_unlock(&cpuhp_state_mutex);
1962 if (ret)
1963 return ret;
1964
1965 st->fail = fail;
1966
1967 return count;
1968 }
1969
1970 static ssize_t show_cpuhp_fail(struct device *dev,
1971 struct device_attribute *attr, char *buf)
1972 {
1973 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1974
1975 return sprintf(buf, "%d\n", st->fail);
1976 }
1977
1978 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1979
1980 static struct attribute *cpuhp_cpu_attrs[] = {
1981 &dev_attr_state.attr,
1982 &dev_attr_target.attr,
1983 &dev_attr_fail.attr,
1984 NULL
1985 };
1986
1987 static const struct attribute_group cpuhp_cpu_attr_group = {
1988 .attrs = cpuhp_cpu_attrs,
1989 .name = "hotplug",
1990 NULL
1991 };
1992
1993 static ssize_t show_cpuhp_states(struct device *dev,
1994 struct device_attribute *attr, char *buf)
1995 {
1996 ssize_t cur, res = 0;
1997 int i;
1998
1999 mutex_lock(&cpuhp_state_mutex);
2000 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2001 struct cpuhp_step *sp = cpuhp_get_step(i);
2002
2003 if (sp->name) {
2004 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2005 buf += cur;
2006 res += cur;
2007 }
2008 }
2009 mutex_unlock(&cpuhp_state_mutex);
2010 return res;
2011 }
2012 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2013
2014 static struct attribute *cpuhp_cpu_root_attrs[] = {
2015 &dev_attr_states.attr,
2016 NULL
2017 };
2018
2019 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2020 .attrs = cpuhp_cpu_root_attrs,
2021 .name = "hotplug",
2022 NULL
2023 };
2024
2025 #ifdef CONFIG_HOTPLUG_SMT
2026
2027 static const char *smt_states[] = {
2028 [CPU_SMT_ENABLED] = "on",
2029 [CPU_SMT_DISABLED] = "off",
2030 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2031 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2032 };
2033
2034 static ssize_t
2035 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2036 {
2037 return snprintf(buf, PAGE_SIZE - 2, "%s\n", smt_states[cpu_smt_control]);
2038 }
2039
2040 static void cpuhp_offline_cpu_device(unsigned int cpu)
2041 {
2042 struct device *dev = get_cpu_device(cpu);
2043
2044 dev->offline = true;
2045 /* Tell user space about the state change */
2046 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2047 }
2048
2049 static void cpuhp_online_cpu_device(unsigned int cpu)
2050 {
2051 struct device *dev = get_cpu_device(cpu);
2052
2053 dev->offline = false;
2054 /* Tell user space about the state change */
2055 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2056 }
2057
2058 /*
2059 * Architectures that need SMT-specific errata handling during SMT hotplug
2060 * should override this.
2061 */
2062 void __weak arch_smt_update(void) { };
2063
2064 static int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2065 {
2066 int cpu, ret = 0;
2067
2068 cpu_maps_update_begin();
2069 for_each_online_cpu(cpu) {
2070 if (topology_is_primary_thread(cpu))
2071 continue;
2072 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2073 if (ret)
2074 break;
2075 /*
2076 * As this needs to hold the cpu maps lock it's impossible
2077 * to call device_offline() because that ends up calling
2078 * cpu_down() which takes cpu maps lock. cpu maps lock
2079 * needs to be held as this might race against in kernel
2080 * abusers of the hotplug machinery (thermal management).
2081 *
2082 * So nothing would update device:offline state. That would
2083 * leave the sysfs entry stale and prevent onlining after
2084 * smt control has been changed to 'off' again. This is
2085 * called under the sysfs hotplug lock, so it is properly
2086 * serialized against the regular offline usage.
2087 */
2088 cpuhp_offline_cpu_device(cpu);
2089 }
2090 if (!ret) {
2091 cpu_smt_control = ctrlval;
2092 arch_smt_update();
2093 }
2094 cpu_maps_update_done();
2095 return ret;
2096 }
2097
2098 static int cpuhp_smt_enable(void)
2099 {
2100 int cpu, ret = 0;
2101
2102 cpu_maps_update_begin();
2103 cpu_smt_control = CPU_SMT_ENABLED;
2104 arch_smt_update();
2105 for_each_present_cpu(cpu) {
2106 /* Skip online CPUs and CPUs on offline nodes */
2107 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2108 continue;
2109 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2110 if (ret)
2111 break;
2112 /* See comment in cpuhp_smt_disable() */
2113 cpuhp_online_cpu_device(cpu);
2114 }
2115 cpu_maps_update_done();
2116 return ret;
2117 }
2118
2119 static ssize_t
2120 store_smt_control(struct device *dev, struct device_attribute *attr,
2121 const char *buf, size_t count)
2122 {
2123 int ctrlval, ret;
2124
2125 if (sysfs_streq(buf, "on"))
2126 ctrlval = CPU_SMT_ENABLED;
2127 else if (sysfs_streq(buf, "off"))
2128 ctrlval = CPU_SMT_DISABLED;
2129 else if (sysfs_streq(buf, "forceoff"))
2130 ctrlval = CPU_SMT_FORCE_DISABLED;
2131 else
2132 return -EINVAL;
2133
2134 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2135 return -EPERM;
2136
2137 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2138 return -ENODEV;
2139
2140 ret = lock_device_hotplug_sysfs();
2141 if (ret)
2142 return ret;
2143
2144 if (ctrlval != cpu_smt_control) {
2145 switch (ctrlval) {
2146 case CPU_SMT_ENABLED:
2147 ret = cpuhp_smt_enable();
2148 break;
2149 case CPU_SMT_DISABLED:
2150 case CPU_SMT_FORCE_DISABLED:
2151 ret = cpuhp_smt_disable(ctrlval);
2152 break;
2153 }
2154 }
2155
2156 unlock_device_hotplug();
2157 return ret ? ret : count;
2158 }
2159 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2160
2161 static ssize_t
2162 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2163 {
2164 bool active = topology_max_smt_threads() > 1;
2165
2166 return snprintf(buf, PAGE_SIZE - 2, "%d\n", active);
2167 }
2168 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2169
2170 static struct attribute *cpuhp_smt_attrs[] = {
2171 &dev_attr_control.attr,
2172 &dev_attr_active.attr,
2173 NULL
2174 };
2175
2176 static const struct attribute_group cpuhp_smt_attr_group = {
2177 .attrs = cpuhp_smt_attrs,
2178 .name = "smt",
2179 NULL
2180 };
2181
2182 static int __init cpu_smt_state_init(void)
2183 {
2184 return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2185 &cpuhp_smt_attr_group);
2186 }
2187
2188 #else
2189 static inline int cpu_smt_state_init(void) { return 0; }
2190 #endif
2191
2192 static int __init cpuhp_sysfs_init(void)
2193 {
2194 int cpu, ret;
2195
2196 ret = cpu_smt_state_init();
2197 if (ret)
2198 return ret;
2199
2200 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2201 &cpuhp_cpu_root_attr_group);
2202 if (ret)
2203 return ret;
2204
2205 for_each_possible_cpu(cpu) {
2206 struct device *dev = get_cpu_device(cpu);
2207
2208 if (!dev)
2209 continue;
2210 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2211 if (ret)
2212 return ret;
2213 }
2214 return 0;
2215 }
2216 device_initcall(cpuhp_sysfs_init);
2217 #endif
2218
2219 /*
2220 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2221 * represents all NR_CPUS bits binary values of 1<<nr.
2222 *
2223 * It is used by cpumask_of() to get a constant address to a CPU
2224 * mask value that has a single bit set only.
2225 */
2226
2227 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2228 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2229 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2230 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2231 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2232
2233 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2234
2235 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2236 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2237 #if BITS_PER_LONG > 32
2238 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2239 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2240 #endif
2241 };
2242 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2243
2244 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2245 EXPORT_SYMBOL(cpu_all_bits);
2246
2247 #ifdef CONFIG_INIT_ALL_POSSIBLE
2248 struct cpumask __cpu_possible_mask __read_mostly
2249 = {CPU_BITS_ALL};
2250 #else
2251 struct cpumask __cpu_possible_mask __read_mostly;
2252 #endif
2253 EXPORT_SYMBOL(__cpu_possible_mask);
2254
2255 struct cpumask __cpu_online_mask __read_mostly;
2256 EXPORT_SYMBOL(__cpu_online_mask);
2257
2258 struct cpumask __cpu_present_mask __read_mostly;
2259 EXPORT_SYMBOL(__cpu_present_mask);
2260
2261 struct cpumask __cpu_active_mask __read_mostly;
2262 EXPORT_SYMBOL(__cpu_active_mask);
2263
2264 void init_cpu_present(const struct cpumask *src)
2265 {
2266 cpumask_copy(&__cpu_present_mask, src);
2267 }
2268
2269 void init_cpu_possible(const struct cpumask *src)
2270 {
2271 cpumask_copy(&__cpu_possible_mask, src);
2272 }
2273
2274 void init_cpu_online(const struct cpumask *src)
2275 {
2276 cpumask_copy(&__cpu_online_mask, src);
2277 }
2278
2279 /*
2280 * Activate the first processor.
2281 */
2282 void __init boot_cpu_init(void)
2283 {
2284 int cpu = smp_processor_id();
2285
2286 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2287 set_cpu_online(cpu, true);
2288 set_cpu_active(cpu, true);
2289 set_cpu_present(cpu, true);
2290 set_cpu_possible(cpu, true);
2291
2292 #ifdef CONFIG_SMP
2293 __boot_cpu_id = cpu;
2294 #endif
2295 }
2296
2297 /*
2298 * Must be called _AFTER_ setting up the per_cpu areas
2299 */
2300 void __init boot_cpu_hotplug_init(void)
2301 {
2302 #ifdef CONFIG_SMP
2303 this_cpu_write(cpuhp_state.booted_once, true);
2304 #endif
2305 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2306 }