]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/cpu.c
Merge tag 'tomoyo-pr-20200601' of git://git.osdn.net/gitroot/tomoyo/tomoyo-test1
[thirdparty/linux.git] / kernel / cpu.c
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/isolation.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/smt.h>
15 #include <linux/unistd.h>
16 #include <linux/cpu.h>
17 #include <linux/oom.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/bug.h>
21 #include <linux/kthread.h>
22 #include <linux/stop_machine.h>
23 #include <linux/mutex.h>
24 #include <linux/gfp.h>
25 #include <linux/suspend.h>
26 #include <linux/lockdep.h>
27 #include <linux/tick.h>
28 #include <linux/irq.h>
29 #include <linux/nmi.h>
30 #include <linux/smpboot.h>
31 #include <linux/relay.h>
32 #include <linux/slab.h>
33 #include <linux/percpu-rwsem.h>
34
35 #include <trace/events/power.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/cpuhp.h>
38
39 #include "smpboot.h"
40
41 /**
42 * cpuhp_cpu_state - Per cpu hotplug state storage
43 * @state: The current cpu state
44 * @target: The target state
45 * @thread: Pointer to the hotplug thread
46 * @should_run: Thread should execute
47 * @rollback: Perform a rollback
48 * @single: Single callback invocation
49 * @bringup: Single callback bringup or teardown selector
50 * @cb_state: The state for a single callback (install/uninstall)
51 * @result: Result of the operation
52 * @done_up: Signal completion to the issuer of the task for cpu-up
53 * @done_down: Signal completion to the issuer of the task for cpu-down
54 */
55 struct cpuhp_cpu_state {
56 enum cpuhp_state state;
57 enum cpuhp_state target;
58 enum cpuhp_state fail;
59 #ifdef CONFIG_SMP
60 struct task_struct *thread;
61 bool should_run;
62 bool rollback;
63 bool single;
64 bool bringup;
65 struct hlist_node *node;
66 struct hlist_node *last;
67 enum cpuhp_state cb_state;
68 int result;
69 struct completion done_up;
70 struct completion done_down;
71 #endif
72 };
73
74 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
75 .fail = CPUHP_INVALID,
76 };
77
78 #ifdef CONFIG_SMP
79 cpumask_t cpus_booted_once_mask;
80 #endif
81
82 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
83 static struct lockdep_map cpuhp_state_up_map =
84 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
85 static struct lockdep_map cpuhp_state_down_map =
86 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
87
88
89 static inline void cpuhp_lock_acquire(bool bringup)
90 {
91 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
92 }
93
94 static inline void cpuhp_lock_release(bool bringup)
95 {
96 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
97 }
98 #else
99
100 static inline void cpuhp_lock_acquire(bool bringup) { }
101 static inline void cpuhp_lock_release(bool bringup) { }
102
103 #endif
104
105 /**
106 * cpuhp_step - Hotplug state machine step
107 * @name: Name of the step
108 * @startup: Startup function of the step
109 * @teardown: Teardown function of the step
110 * @cant_stop: Bringup/teardown can't be stopped at this step
111 */
112 struct cpuhp_step {
113 const char *name;
114 union {
115 int (*single)(unsigned int cpu);
116 int (*multi)(unsigned int cpu,
117 struct hlist_node *node);
118 } startup;
119 union {
120 int (*single)(unsigned int cpu);
121 int (*multi)(unsigned int cpu,
122 struct hlist_node *node);
123 } teardown;
124 struct hlist_head list;
125 bool cant_stop;
126 bool multi_instance;
127 };
128
129 static DEFINE_MUTEX(cpuhp_state_mutex);
130 static struct cpuhp_step cpuhp_hp_states[];
131
132 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
133 {
134 return cpuhp_hp_states + state;
135 }
136
137 /**
138 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
139 * @cpu: The cpu for which the callback should be invoked
140 * @state: The state to do callbacks for
141 * @bringup: True if the bringup callback should be invoked
142 * @node: For multi-instance, do a single entry callback for install/remove
143 * @lastp: For multi-instance rollback, remember how far we got
144 *
145 * Called from cpu hotplug and from the state register machinery.
146 */
147 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
148 bool bringup, struct hlist_node *node,
149 struct hlist_node **lastp)
150 {
151 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
152 struct cpuhp_step *step = cpuhp_get_step(state);
153 int (*cbm)(unsigned int cpu, struct hlist_node *node);
154 int (*cb)(unsigned int cpu);
155 int ret, cnt;
156
157 if (st->fail == state) {
158 st->fail = CPUHP_INVALID;
159
160 if (!(bringup ? step->startup.single : step->teardown.single))
161 return 0;
162
163 return -EAGAIN;
164 }
165
166 if (!step->multi_instance) {
167 WARN_ON_ONCE(lastp && *lastp);
168 cb = bringup ? step->startup.single : step->teardown.single;
169 if (!cb)
170 return 0;
171 trace_cpuhp_enter(cpu, st->target, state, cb);
172 ret = cb(cpu);
173 trace_cpuhp_exit(cpu, st->state, state, ret);
174 return ret;
175 }
176 cbm = bringup ? step->startup.multi : step->teardown.multi;
177 if (!cbm)
178 return 0;
179
180 /* Single invocation for instance add/remove */
181 if (node) {
182 WARN_ON_ONCE(lastp && *lastp);
183 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
184 ret = cbm(cpu, node);
185 trace_cpuhp_exit(cpu, st->state, state, ret);
186 return ret;
187 }
188
189 /* State transition. Invoke on all instances */
190 cnt = 0;
191 hlist_for_each(node, &step->list) {
192 if (lastp && node == *lastp)
193 break;
194
195 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
196 ret = cbm(cpu, node);
197 trace_cpuhp_exit(cpu, st->state, state, ret);
198 if (ret) {
199 if (!lastp)
200 goto err;
201
202 *lastp = node;
203 return ret;
204 }
205 cnt++;
206 }
207 if (lastp)
208 *lastp = NULL;
209 return 0;
210 err:
211 /* Rollback the instances if one failed */
212 cbm = !bringup ? step->startup.multi : step->teardown.multi;
213 if (!cbm)
214 return ret;
215
216 hlist_for_each(node, &step->list) {
217 if (!cnt--)
218 break;
219
220 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
221 ret = cbm(cpu, node);
222 trace_cpuhp_exit(cpu, st->state, state, ret);
223 /*
224 * Rollback must not fail,
225 */
226 WARN_ON_ONCE(ret);
227 }
228 return ret;
229 }
230
231 #ifdef CONFIG_SMP
232 static bool cpuhp_is_ap_state(enum cpuhp_state state)
233 {
234 /*
235 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
236 * purposes as that state is handled explicitly in cpu_down.
237 */
238 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
239 }
240
241 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
242 {
243 struct completion *done = bringup ? &st->done_up : &st->done_down;
244 wait_for_completion(done);
245 }
246
247 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
248 {
249 struct completion *done = bringup ? &st->done_up : &st->done_down;
250 complete(done);
251 }
252
253 /*
254 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
255 */
256 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
257 {
258 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
259 }
260
261 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
262 static DEFINE_MUTEX(cpu_add_remove_lock);
263 bool cpuhp_tasks_frozen;
264 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
265
266 /*
267 * The following two APIs (cpu_maps_update_begin/done) must be used when
268 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
269 */
270 void cpu_maps_update_begin(void)
271 {
272 mutex_lock(&cpu_add_remove_lock);
273 }
274
275 void cpu_maps_update_done(void)
276 {
277 mutex_unlock(&cpu_add_remove_lock);
278 }
279
280 /*
281 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
282 * Should always be manipulated under cpu_add_remove_lock
283 */
284 static int cpu_hotplug_disabled;
285
286 #ifdef CONFIG_HOTPLUG_CPU
287
288 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
289
290 void cpus_read_lock(void)
291 {
292 percpu_down_read(&cpu_hotplug_lock);
293 }
294 EXPORT_SYMBOL_GPL(cpus_read_lock);
295
296 int cpus_read_trylock(void)
297 {
298 return percpu_down_read_trylock(&cpu_hotplug_lock);
299 }
300 EXPORT_SYMBOL_GPL(cpus_read_trylock);
301
302 void cpus_read_unlock(void)
303 {
304 percpu_up_read(&cpu_hotplug_lock);
305 }
306 EXPORT_SYMBOL_GPL(cpus_read_unlock);
307
308 void cpus_write_lock(void)
309 {
310 percpu_down_write(&cpu_hotplug_lock);
311 }
312
313 void cpus_write_unlock(void)
314 {
315 percpu_up_write(&cpu_hotplug_lock);
316 }
317
318 void lockdep_assert_cpus_held(void)
319 {
320 /*
321 * We can't have hotplug operations before userspace starts running,
322 * and some init codepaths will knowingly not take the hotplug lock.
323 * This is all valid, so mute lockdep until it makes sense to report
324 * unheld locks.
325 */
326 if (system_state < SYSTEM_RUNNING)
327 return;
328
329 percpu_rwsem_assert_held(&cpu_hotplug_lock);
330 }
331
332 static void lockdep_acquire_cpus_lock(void)
333 {
334 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
335 }
336
337 static void lockdep_release_cpus_lock(void)
338 {
339 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
340 }
341
342 /*
343 * Wait for currently running CPU hotplug operations to complete (if any) and
344 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
345 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
346 * hotplug path before performing hotplug operations. So acquiring that lock
347 * guarantees mutual exclusion from any currently running hotplug operations.
348 */
349 void cpu_hotplug_disable(void)
350 {
351 cpu_maps_update_begin();
352 cpu_hotplug_disabled++;
353 cpu_maps_update_done();
354 }
355 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
356
357 static void __cpu_hotplug_enable(void)
358 {
359 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
360 return;
361 cpu_hotplug_disabled--;
362 }
363
364 void cpu_hotplug_enable(void)
365 {
366 cpu_maps_update_begin();
367 __cpu_hotplug_enable();
368 cpu_maps_update_done();
369 }
370 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
371
372 #else
373
374 static void lockdep_acquire_cpus_lock(void)
375 {
376 }
377
378 static void lockdep_release_cpus_lock(void)
379 {
380 }
381
382 #endif /* CONFIG_HOTPLUG_CPU */
383
384 /*
385 * Architectures that need SMT-specific errata handling during SMT hotplug
386 * should override this.
387 */
388 void __weak arch_smt_update(void) { }
389
390 #ifdef CONFIG_HOTPLUG_SMT
391 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
392
393 void __init cpu_smt_disable(bool force)
394 {
395 if (!cpu_smt_possible())
396 return;
397
398 if (force) {
399 pr_info("SMT: Force disabled\n");
400 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
401 } else {
402 pr_info("SMT: disabled\n");
403 cpu_smt_control = CPU_SMT_DISABLED;
404 }
405 }
406
407 /*
408 * The decision whether SMT is supported can only be done after the full
409 * CPU identification. Called from architecture code.
410 */
411 void __init cpu_smt_check_topology(void)
412 {
413 if (!topology_smt_supported())
414 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
415 }
416
417 static int __init smt_cmdline_disable(char *str)
418 {
419 cpu_smt_disable(str && !strcmp(str, "force"));
420 return 0;
421 }
422 early_param("nosmt", smt_cmdline_disable);
423
424 static inline bool cpu_smt_allowed(unsigned int cpu)
425 {
426 if (cpu_smt_control == CPU_SMT_ENABLED)
427 return true;
428
429 if (topology_is_primary_thread(cpu))
430 return true;
431
432 /*
433 * On x86 it's required to boot all logical CPUs at least once so
434 * that the init code can get a chance to set CR4.MCE on each
435 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
436 * core will shutdown the machine.
437 */
438 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
439 }
440
441 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
442 bool cpu_smt_possible(void)
443 {
444 return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
445 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
446 }
447 EXPORT_SYMBOL_GPL(cpu_smt_possible);
448 #else
449 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
450 #endif
451
452 static inline enum cpuhp_state
453 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
454 {
455 enum cpuhp_state prev_state = st->state;
456
457 st->rollback = false;
458 st->last = NULL;
459
460 st->target = target;
461 st->single = false;
462 st->bringup = st->state < target;
463
464 return prev_state;
465 }
466
467 static inline void
468 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
469 {
470 st->rollback = true;
471
472 /*
473 * If we have st->last we need to undo partial multi_instance of this
474 * state first. Otherwise start undo at the previous state.
475 */
476 if (!st->last) {
477 if (st->bringup)
478 st->state--;
479 else
480 st->state++;
481 }
482
483 st->target = prev_state;
484 st->bringup = !st->bringup;
485 }
486
487 /* Regular hotplug invocation of the AP hotplug thread */
488 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
489 {
490 if (!st->single && st->state == st->target)
491 return;
492
493 st->result = 0;
494 /*
495 * Make sure the above stores are visible before should_run becomes
496 * true. Paired with the mb() above in cpuhp_thread_fun()
497 */
498 smp_mb();
499 st->should_run = true;
500 wake_up_process(st->thread);
501 wait_for_ap_thread(st, st->bringup);
502 }
503
504 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
505 {
506 enum cpuhp_state prev_state;
507 int ret;
508
509 prev_state = cpuhp_set_state(st, target);
510 __cpuhp_kick_ap(st);
511 if ((ret = st->result)) {
512 cpuhp_reset_state(st, prev_state);
513 __cpuhp_kick_ap(st);
514 }
515
516 return ret;
517 }
518
519 static int bringup_wait_for_ap(unsigned int cpu)
520 {
521 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
522
523 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
524 wait_for_ap_thread(st, true);
525 if (WARN_ON_ONCE((!cpu_online(cpu))))
526 return -ECANCELED;
527
528 /* Unpark the hotplug thread of the target cpu */
529 kthread_unpark(st->thread);
530
531 /*
532 * SMT soft disabling on X86 requires to bring the CPU out of the
533 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
534 * CPU marked itself as booted_once in notify_cpu_starting() so the
535 * cpu_smt_allowed() check will now return false if this is not the
536 * primary sibling.
537 */
538 if (!cpu_smt_allowed(cpu))
539 return -ECANCELED;
540
541 if (st->target <= CPUHP_AP_ONLINE_IDLE)
542 return 0;
543
544 return cpuhp_kick_ap(st, st->target);
545 }
546
547 static int bringup_cpu(unsigned int cpu)
548 {
549 struct task_struct *idle = idle_thread_get(cpu);
550 int ret;
551
552 /*
553 * Some architectures have to walk the irq descriptors to
554 * setup the vector space for the cpu which comes online.
555 * Prevent irq alloc/free across the bringup.
556 */
557 irq_lock_sparse();
558
559 /* Arch-specific enabling code. */
560 ret = __cpu_up(cpu, idle);
561 irq_unlock_sparse();
562 if (ret)
563 return ret;
564 return bringup_wait_for_ap(cpu);
565 }
566
567 /*
568 * Hotplug state machine related functions
569 */
570
571 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
572 {
573 for (st->state--; st->state > st->target; st->state--)
574 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
575 }
576
577 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
578 {
579 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
580 return true;
581 /*
582 * When CPU hotplug is disabled, then taking the CPU down is not
583 * possible because takedown_cpu() and the architecture and
584 * subsystem specific mechanisms are not available. So the CPU
585 * which would be completely unplugged again needs to stay around
586 * in the current state.
587 */
588 return st->state <= CPUHP_BRINGUP_CPU;
589 }
590
591 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
592 enum cpuhp_state target)
593 {
594 enum cpuhp_state prev_state = st->state;
595 int ret = 0;
596
597 while (st->state < target) {
598 st->state++;
599 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
600 if (ret) {
601 if (can_rollback_cpu(st)) {
602 st->target = prev_state;
603 undo_cpu_up(cpu, st);
604 }
605 break;
606 }
607 }
608 return ret;
609 }
610
611 /*
612 * The cpu hotplug threads manage the bringup and teardown of the cpus
613 */
614 static void cpuhp_create(unsigned int cpu)
615 {
616 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
617
618 init_completion(&st->done_up);
619 init_completion(&st->done_down);
620 }
621
622 static int cpuhp_should_run(unsigned int cpu)
623 {
624 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
625
626 return st->should_run;
627 }
628
629 /*
630 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
631 * callbacks when a state gets [un]installed at runtime.
632 *
633 * Each invocation of this function by the smpboot thread does a single AP
634 * state callback.
635 *
636 * It has 3 modes of operation:
637 * - single: runs st->cb_state
638 * - up: runs ++st->state, while st->state < st->target
639 * - down: runs st->state--, while st->state > st->target
640 *
641 * When complete or on error, should_run is cleared and the completion is fired.
642 */
643 static void cpuhp_thread_fun(unsigned int cpu)
644 {
645 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
646 bool bringup = st->bringup;
647 enum cpuhp_state state;
648
649 if (WARN_ON_ONCE(!st->should_run))
650 return;
651
652 /*
653 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
654 * that if we see ->should_run we also see the rest of the state.
655 */
656 smp_mb();
657
658 /*
659 * The BP holds the hotplug lock, but we're now running on the AP,
660 * ensure that anybody asserting the lock is held, will actually find
661 * it so.
662 */
663 lockdep_acquire_cpus_lock();
664 cpuhp_lock_acquire(bringup);
665
666 if (st->single) {
667 state = st->cb_state;
668 st->should_run = false;
669 } else {
670 if (bringup) {
671 st->state++;
672 state = st->state;
673 st->should_run = (st->state < st->target);
674 WARN_ON_ONCE(st->state > st->target);
675 } else {
676 state = st->state;
677 st->state--;
678 st->should_run = (st->state > st->target);
679 WARN_ON_ONCE(st->state < st->target);
680 }
681 }
682
683 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
684
685 if (cpuhp_is_atomic_state(state)) {
686 local_irq_disable();
687 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
688 local_irq_enable();
689
690 /*
691 * STARTING/DYING must not fail!
692 */
693 WARN_ON_ONCE(st->result);
694 } else {
695 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
696 }
697
698 if (st->result) {
699 /*
700 * If we fail on a rollback, we're up a creek without no
701 * paddle, no way forward, no way back. We loose, thanks for
702 * playing.
703 */
704 WARN_ON_ONCE(st->rollback);
705 st->should_run = false;
706 }
707
708 cpuhp_lock_release(bringup);
709 lockdep_release_cpus_lock();
710
711 if (!st->should_run)
712 complete_ap_thread(st, bringup);
713 }
714
715 /* Invoke a single callback on a remote cpu */
716 static int
717 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
718 struct hlist_node *node)
719 {
720 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
721 int ret;
722
723 if (!cpu_online(cpu))
724 return 0;
725
726 cpuhp_lock_acquire(false);
727 cpuhp_lock_release(false);
728
729 cpuhp_lock_acquire(true);
730 cpuhp_lock_release(true);
731
732 /*
733 * If we are up and running, use the hotplug thread. For early calls
734 * we invoke the thread function directly.
735 */
736 if (!st->thread)
737 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
738
739 st->rollback = false;
740 st->last = NULL;
741
742 st->node = node;
743 st->bringup = bringup;
744 st->cb_state = state;
745 st->single = true;
746
747 __cpuhp_kick_ap(st);
748
749 /*
750 * If we failed and did a partial, do a rollback.
751 */
752 if ((ret = st->result) && st->last) {
753 st->rollback = true;
754 st->bringup = !bringup;
755
756 __cpuhp_kick_ap(st);
757 }
758
759 /*
760 * Clean up the leftovers so the next hotplug operation wont use stale
761 * data.
762 */
763 st->node = st->last = NULL;
764 return ret;
765 }
766
767 static int cpuhp_kick_ap_work(unsigned int cpu)
768 {
769 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
770 enum cpuhp_state prev_state = st->state;
771 int ret;
772
773 cpuhp_lock_acquire(false);
774 cpuhp_lock_release(false);
775
776 cpuhp_lock_acquire(true);
777 cpuhp_lock_release(true);
778
779 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
780 ret = cpuhp_kick_ap(st, st->target);
781 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
782
783 return ret;
784 }
785
786 static struct smp_hotplug_thread cpuhp_threads = {
787 .store = &cpuhp_state.thread,
788 .create = &cpuhp_create,
789 .thread_should_run = cpuhp_should_run,
790 .thread_fn = cpuhp_thread_fun,
791 .thread_comm = "cpuhp/%u",
792 .selfparking = true,
793 };
794
795 void __init cpuhp_threads_init(void)
796 {
797 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
798 kthread_unpark(this_cpu_read(cpuhp_state.thread));
799 }
800
801 #ifdef CONFIG_HOTPLUG_CPU
802 /**
803 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
804 * @cpu: a CPU id
805 *
806 * This function walks all processes, finds a valid mm struct for each one and
807 * then clears a corresponding bit in mm's cpumask. While this all sounds
808 * trivial, there are various non-obvious corner cases, which this function
809 * tries to solve in a safe manner.
810 *
811 * Also note that the function uses a somewhat relaxed locking scheme, so it may
812 * be called only for an already offlined CPU.
813 */
814 void clear_tasks_mm_cpumask(int cpu)
815 {
816 struct task_struct *p;
817
818 /*
819 * This function is called after the cpu is taken down and marked
820 * offline, so its not like new tasks will ever get this cpu set in
821 * their mm mask. -- Peter Zijlstra
822 * Thus, we may use rcu_read_lock() here, instead of grabbing
823 * full-fledged tasklist_lock.
824 */
825 WARN_ON(cpu_online(cpu));
826 rcu_read_lock();
827 for_each_process(p) {
828 struct task_struct *t;
829
830 /*
831 * Main thread might exit, but other threads may still have
832 * a valid mm. Find one.
833 */
834 t = find_lock_task_mm(p);
835 if (!t)
836 continue;
837 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
838 task_unlock(t);
839 }
840 rcu_read_unlock();
841 }
842
843 /* Take this CPU down. */
844 static int take_cpu_down(void *_param)
845 {
846 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
847 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
848 int err, cpu = smp_processor_id();
849 int ret;
850
851 /* Ensure this CPU doesn't handle any more interrupts. */
852 err = __cpu_disable();
853 if (err < 0)
854 return err;
855
856 /*
857 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
858 * do this step again.
859 */
860 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
861 st->state--;
862 /* Invoke the former CPU_DYING callbacks */
863 for (; st->state > target; st->state--) {
864 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
865 /*
866 * DYING must not fail!
867 */
868 WARN_ON_ONCE(ret);
869 }
870
871 /* Give up timekeeping duties */
872 tick_handover_do_timer();
873 /* Remove CPU from timer broadcasting */
874 tick_offline_cpu(cpu);
875 /* Park the stopper thread */
876 stop_machine_park(cpu);
877 return 0;
878 }
879
880 static int takedown_cpu(unsigned int cpu)
881 {
882 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
883 int err;
884
885 /* Park the smpboot threads */
886 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
887
888 /*
889 * Prevent irq alloc/free while the dying cpu reorganizes the
890 * interrupt affinities.
891 */
892 irq_lock_sparse();
893
894 /*
895 * So now all preempt/rcu users must observe !cpu_active().
896 */
897 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
898 if (err) {
899 /* CPU refused to die */
900 irq_unlock_sparse();
901 /* Unpark the hotplug thread so we can rollback there */
902 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
903 return err;
904 }
905 BUG_ON(cpu_online(cpu));
906
907 /*
908 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
909 * all runnable tasks from the CPU, there's only the idle task left now
910 * that the migration thread is done doing the stop_machine thing.
911 *
912 * Wait for the stop thread to go away.
913 */
914 wait_for_ap_thread(st, false);
915 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
916
917 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
918 irq_unlock_sparse();
919
920 hotplug_cpu__broadcast_tick_pull(cpu);
921 /* This actually kills the CPU. */
922 __cpu_die(cpu);
923
924 tick_cleanup_dead_cpu(cpu);
925 rcutree_migrate_callbacks(cpu);
926 return 0;
927 }
928
929 static void cpuhp_complete_idle_dead(void *arg)
930 {
931 struct cpuhp_cpu_state *st = arg;
932
933 complete_ap_thread(st, false);
934 }
935
936 void cpuhp_report_idle_dead(void)
937 {
938 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
939
940 BUG_ON(st->state != CPUHP_AP_OFFLINE);
941 rcu_report_dead(smp_processor_id());
942 st->state = CPUHP_AP_IDLE_DEAD;
943 /*
944 * We cannot call complete after rcu_report_dead() so we delegate it
945 * to an online cpu.
946 */
947 smp_call_function_single(cpumask_first(cpu_online_mask),
948 cpuhp_complete_idle_dead, st, 0);
949 }
950
951 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
952 {
953 for (st->state++; st->state < st->target; st->state++)
954 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
955 }
956
957 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
958 enum cpuhp_state target)
959 {
960 enum cpuhp_state prev_state = st->state;
961 int ret = 0;
962
963 for (; st->state > target; st->state--) {
964 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
965 if (ret) {
966 st->target = prev_state;
967 if (st->state < prev_state)
968 undo_cpu_down(cpu, st);
969 break;
970 }
971 }
972 return ret;
973 }
974
975 /* Requires cpu_add_remove_lock to be held */
976 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
977 enum cpuhp_state target)
978 {
979 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
980 int prev_state, ret = 0;
981
982 if (num_online_cpus() == 1)
983 return -EBUSY;
984
985 if (!cpu_present(cpu))
986 return -EINVAL;
987
988 cpus_write_lock();
989
990 cpuhp_tasks_frozen = tasks_frozen;
991
992 prev_state = cpuhp_set_state(st, target);
993 /*
994 * If the current CPU state is in the range of the AP hotplug thread,
995 * then we need to kick the thread.
996 */
997 if (st->state > CPUHP_TEARDOWN_CPU) {
998 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
999 ret = cpuhp_kick_ap_work(cpu);
1000 /*
1001 * The AP side has done the error rollback already. Just
1002 * return the error code..
1003 */
1004 if (ret)
1005 goto out;
1006
1007 /*
1008 * We might have stopped still in the range of the AP hotplug
1009 * thread. Nothing to do anymore.
1010 */
1011 if (st->state > CPUHP_TEARDOWN_CPU)
1012 goto out;
1013
1014 st->target = target;
1015 }
1016 /*
1017 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1018 * to do the further cleanups.
1019 */
1020 ret = cpuhp_down_callbacks(cpu, st, target);
1021 if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1022 cpuhp_reset_state(st, prev_state);
1023 __cpuhp_kick_ap(st);
1024 }
1025
1026 out:
1027 cpus_write_unlock();
1028 /*
1029 * Do post unplug cleanup. This is still protected against
1030 * concurrent CPU hotplug via cpu_add_remove_lock.
1031 */
1032 lockup_detector_cleanup();
1033 arch_smt_update();
1034 return ret;
1035 }
1036
1037 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1038 {
1039 if (cpu_hotplug_disabled)
1040 return -EBUSY;
1041 return _cpu_down(cpu, 0, target);
1042 }
1043
1044 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1045 {
1046 int err;
1047
1048 cpu_maps_update_begin();
1049 err = cpu_down_maps_locked(cpu, target);
1050 cpu_maps_update_done();
1051 return err;
1052 }
1053
1054 /**
1055 * cpu_device_down - Bring down a cpu device
1056 * @dev: Pointer to the cpu device to offline
1057 *
1058 * This function is meant to be used by device core cpu subsystem only.
1059 *
1060 * Other subsystems should use remove_cpu() instead.
1061 */
1062 int cpu_device_down(struct device *dev)
1063 {
1064 return cpu_down(dev->id, CPUHP_OFFLINE);
1065 }
1066
1067 int remove_cpu(unsigned int cpu)
1068 {
1069 int ret;
1070
1071 lock_device_hotplug();
1072 ret = device_offline(get_cpu_device(cpu));
1073 unlock_device_hotplug();
1074
1075 return ret;
1076 }
1077 EXPORT_SYMBOL_GPL(remove_cpu);
1078
1079 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1080 {
1081 unsigned int cpu;
1082 int error;
1083
1084 cpu_maps_update_begin();
1085
1086 /*
1087 * Make certain the cpu I'm about to reboot on is online.
1088 *
1089 * This is inline to what migrate_to_reboot_cpu() already do.
1090 */
1091 if (!cpu_online(primary_cpu))
1092 primary_cpu = cpumask_first(cpu_online_mask);
1093
1094 for_each_online_cpu(cpu) {
1095 if (cpu == primary_cpu)
1096 continue;
1097
1098 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1099 if (error) {
1100 pr_err("Failed to offline CPU%d - error=%d",
1101 cpu, error);
1102 break;
1103 }
1104 }
1105
1106 /*
1107 * Ensure all but the reboot CPU are offline.
1108 */
1109 BUG_ON(num_online_cpus() > 1);
1110
1111 /*
1112 * Make sure the CPUs won't be enabled by someone else after this
1113 * point. Kexec will reboot to a new kernel shortly resetting
1114 * everything along the way.
1115 */
1116 cpu_hotplug_disabled++;
1117
1118 cpu_maps_update_done();
1119 }
1120
1121 #else
1122 #define takedown_cpu NULL
1123 #endif /*CONFIG_HOTPLUG_CPU*/
1124
1125 /**
1126 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1127 * @cpu: cpu that just started
1128 *
1129 * It must be called by the arch code on the new cpu, before the new cpu
1130 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1131 */
1132 void notify_cpu_starting(unsigned int cpu)
1133 {
1134 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1135 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1136 int ret;
1137
1138 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1139 cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1140 while (st->state < target) {
1141 st->state++;
1142 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1143 /*
1144 * STARTING must not fail!
1145 */
1146 WARN_ON_ONCE(ret);
1147 }
1148 }
1149
1150 /*
1151 * Called from the idle task. Wake up the controlling task which brings the
1152 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1153 * online bringup to the hotplug thread.
1154 */
1155 void cpuhp_online_idle(enum cpuhp_state state)
1156 {
1157 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1158
1159 /* Happens for the boot cpu */
1160 if (state != CPUHP_AP_ONLINE_IDLE)
1161 return;
1162
1163 /*
1164 * Unpart the stopper thread before we start the idle loop (and start
1165 * scheduling); this ensures the stopper task is always available.
1166 */
1167 stop_machine_unpark(smp_processor_id());
1168
1169 st->state = CPUHP_AP_ONLINE_IDLE;
1170 complete_ap_thread(st, true);
1171 }
1172
1173 /* Requires cpu_add_remove_lock to be held */
1174 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1175 {
1176 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1177 struct task_struct *idle;
1178 int ret = 0;
1179
1180 cpus_write_lock();
1181
1182 if (!cpu_present(cpu)) {
1183 ret = -EINVAL;
1184 goto out;
1185 }
1186
1187 /*
1188 * The caller of cpu_up() might have raced with another
1189 * caller. Nothing to do.
1190 */
1191 if (st->state >= target)
1192 goto out;
1193
1194 if (st->state == CPUHP_OFFLINE) {
1195 /* Let it fail before we try to bring the cpu up */
1196 idle = idle_thread_get(cpu);
1197 if (IS_ERR(idle)) {
1198 ret = PTR_ERR(idle);
1199 goto out;
1200 }
1201 }
1202
1203 cpuhp_tasks_frozen = tasks_frozen;
1204
1205 cpuhp_set_state(st, target);
1206 /*
1207 * If the current CPU state is in the range of the AP hotplug thread,
1208 * then we need to kick the thread once more.
1209 */
1210 if (st->state > CPUHP_BRINGUP_CPU) {
1211 ret = cpuhp_kick_ap_work(cpu);
1212 /*
1213 * The AP side has done the error rollback already. Just
1214 * return the error code..
1215 */
1216 if (ret)
1217 goto out;
1218 }
1219
1220 /*
1221 * Try to reach the target state. We max out on the BP at
1222 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1223 * responsible for bringing it up to the target state.
1224 */
1225 target = min((int)target, CPUHP_BRINGUP_CPU);
1226 ret = cpuhp_up_callbacks(cpu, st, target);
1227 out:
1228 cpus_write_unlock();
1229 arch_smt_update();
1230 return ret;
1231 }
1232
1233 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1234 {
1235 int err = 0;
1236
1237 if (!cpu_possible(cpu)) {
1238 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1239 cpu);
1240 #if defined(CONFIG_IA64)
1241 pr_err("please check additional_cpus= boot parameter\n");
1242 #endif
1243 return -EINVAL;
1244 }
1245
1246 err = try_online_node(cpu_to_node(cpu));
1247 if (err)
1248 return err;
1249
1250 cpu_maps_update_begin();
1251
1252 if (cpu_hotplug_disabled) {
1253 err = -EBUSY;
1254 goto out;
1255 }
1256 if (!cpu_smt_allowed(cpu)) {
1257 err = -EPERM;
1258 goto out;
1259 }
1260
1261 err = _cpu_up(cpu, 0, target);
1262 out:
1263 cpu_maps_update_done();
1264 return err;
1265 }
1266
1267 /**
1268 * cpu_device_up - Bring up a cpu device
1269 * @dev: Pointer to the cpu device to online
1270 *
1271 * This function is meant to be used by device core cpu subsystem only.
1272 *
1273 * Other subsystems should use add_cpu() instead.
1274 */
1275 int cpu_device_up(struct device *dev)
1276 {
1277 return cpu_up(dev->id, CPUHP_ONLINE);
1278 }
1279
1280 int add_cpu(unsigned int cpu)
1281 {
1282 int ret;
1283
1284 lock_device_hotplug();
1285 ret = device_online(get_cpu_device(cpu));
1286 unlock_device_hotplug();
1287
1288 return ret;
1289 }
1290 EXPORT_SYMBOL_GPL(add_cpu);
1291
1292 /**
1293 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1294 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1295 *
1296 * On some architectures like arm64, we can hibernate on any CPU, but on
1297 * wake up the CPU we hibernated on might be offline as a side effect of
1298 * using maxcpus= for example.
1299 */
1300 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1301 {
1302 int ret;
1303
1304 if (!cpu_online(sleep_cpu)) {
1305 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1306 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1307 if (ret) {
1308 pr_err("Failed to bring hibernate-CPU up!\n");
1309 return ret;
1310 }
1311 }
1312 return 0;
1313 }
1314
1315 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1316 {
1317 unsigned int cpu;
1318
1319 for_each_present_cpu(cpu) {
1320 if (num_online_cpus() >= setup_max_cpus)
1321 break;
1322 if (!cpu_online(cpu))
1323 cpu_up(cpu, CPUHP_ONLINE);
1324 }
1325 }
1326
1327 #ifdef CONFIG_PM_SLEEP_SMP
1328 static cpumask_var_t frozen_cpus;
1329
1330 int freeze_secondary_cpus(int primary)
1331 {
1332 int cpu, error = 0;
1333
1334 cpu_maps_update_begin();
1335 if (primary == -1) {
1336 primary = cpumask_first(cpu_online_mask);
1337 if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1338 primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1339 } else {
1340 if (!cpu_online(primary))
1341 primary = cpumask_first(cpu_online_mask);
1342 }
1343
1344 /*
1345 * We take down all of the non-boot CPUs in one shot to avoid races
1346 * with the userspace trying to use the CPU hotplug at the same time
1347 */
1348 cpumask_clear(frozen_cpus);
1349
1350 pr_info("Disabling non-boot CPUs ...\n");
1351 for_each_online_cpu(cpu) {
1352 if (cpu == primary)
1353 continue;
1354
1355 if (pm_wakeup_pending()) {
1356 pr_info("Wakeup pending. Abort CPU freeze\n");
1357 error = -EBUSY;
1358 break;
1359 }
1360
1361 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1362 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1363 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1364 if (!error)
1365 cpumask_set_cpu(cpu, frozen_cpus);
1366 else {
1367 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1368 break;
1369 }
1370 }
1371
1372 if (!error)
1373 BUG_ON(num_online_cpus() > 1);
1374 else
1375 pr_err("Non-boot CPUs are not disabled\n");
1376
1377 /*
1378 * Make sure the CPUs won't be enabled by someone else. We need to do
1379 * this even in case of failure as all freeze_secondary_cpus() users are
1380 * supposed to do thaw_secondary_cpus() on the failure path.
1381 */
1382 cpu_hotplug_disabled++;
1383
1384 cpu_maps_update_done();
1385 return error;
1386 }
1387
1388 void __weak arch_thaw_secondary_cpus_begin(void)
1389 {
1390 }
1391
1392 void __weak arch_thaw_secondary_cpus_end(void)
1393 {
1394 }
1395
1396 void thaw_secondary_cpus(void)
1397 {
1398 int cpu, error;
1399
1400 /* Allow everyone to use the CPU hotplug again */
1401 cpu_maps_update_begin();
1402 __cpu_hotplug_enable();
1403 if (cpumask_empty(frozen_cpus))
1404 goto out;
1405
1406 pr_info("Enabling non-boot CPUs ...\n");
1407
1408 arch_thaw_secondary_cpus_begin();
1409
1410 for_each_cpu(cpu, frozen_cpus) {
1411 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1412 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1413 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1414 if (!error) {
1415 pr_info("CPU%d is up\n", cpu);
1416 continue;
1417 }
1418 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1419 }
1420
1421 arch_thaw_secondary_cpus_end();
1422
1423 cpumask_clear(frozen_cpus);
1424 out:
1425 cpu_maps_update_done();
1426 }
1427
1428 static int __init alloc_frozen_cpus(void)
1429 {
1430 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1431 return -ENOMEM;
1432 return 0;
1433 }
1434 core_initcall(alloc_frozen_cpus);
1435
1436 /*
1437 * When callbacks for CPU hotplug notifications are being executed, we must
1438 * ensure that the state of the system with respect to the tasks being frozen
1439 * or not, as reported by the notification, remains unchanged *throughout the
1440 * duration* of the execution of the callbacks.
1441 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1442 *
1443 * This synchronization is implemented by mutually excluding regular CPU
1444 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1445 * Hibernate notifications.
1446 */
1447 static int
1448 cpu_hotplug_pm_callback(struct notifier_block *nb,
1449 unsigned long action, void *ptr)
1450 {
1451 switch (action) {
1452
1453 case PM_SUSPEND_PREPARE:
1454 case PM_HIBERNATION_PREPARE:
1455 cpu_hotplug_disable();
1456 break;
1457
1458 case PM_POST_SUSPEND:
1459 case PM_POST_HIBERNATION:
1460 cpu_hotplug_enable();
1461 break;
1462
1463 default:
1464 return NOTIFY_DONE;
1465 }
1466
1467 return NOTIFY_OK;
1468 }
1469
1470
1471 static int __init cpu_hotplug_pm_sync_init(void)
1472 {
1473 /*
1474 * cpu_hotplug_pm_callback has higher priority than x86
1475 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1476 * to disable cpu hotplug to avoid cpu hotplug race.
1477 */
1478 pm_notifier(cpu_hotplug_pm_callback, 0);
1479 return 0;
1480 }
1481 core_initcall(cpu_hotplug_pm_sync_init);
1482
1483 #endif /* CONFIG_PM_SLEEP_SMP */
1484
1485 int __boot_cpu_id;
1486
1487 #endif /* CONFIG_SMP */
1488
1489 /* Boot processor state steps */
1490 static struct cpuhp_step cpuhp_hp_states[] = {
1491 [CPUHP_OFFLINE] = {
1492 .name = "offline",
1493 .startup.single = NULL,
1494 .teardown.single = NULL,
1495 },
1496 #ifdef CONFIG_SMP
1497 [CPUHP_CREATE_THREADS]= {
1498 .name = "threads:prepare",
1499 .startup.single = smpboot_create_threads,
1500 .teardown.single = NULL,
1501 .cant_stop = true,
1502 },
1503 [CPUHP_PERF_PREPARE] = {
1504 .name = "perf:prepare",
1505 .startup.single = perf_event_init_cpu,
1506 .teardown.single = perf_event_exit_cpu,
1507 },
1508 [CPUHP_WORKQUEUE_PREP] = {
1509 .name = "workqueue:prepare",
1510 .startup.single = workqueue_prepare_cpu,
1511 .teardown.single = NULL,
1512 },
1513 [CPUHP_HRTIMERS_PREPARE] = {
1514 .name = "hrtimers:prepare",
1515 .startup.single = hrtimers_prepare_cpu,
1516 .teardown.single = hrtimers_dead_cpu,
1517 },
1518 [CPUHP_SMPCFD_PREPARE] = {
1519 .name = "smpcfd:prepare",
1520 .startup.single = smpcfd_prepare_cpu,
1521 .teardown.single = smpcfd_dead_cpu,
1522 },
1523 [CPUHP_RELAY_PREPARE] = {
1524 .name = "relay:prepare",
1525 .startup.single = relay_prepare_cpu,
1526 .teardown.single = NULL,
1527 },
1528 [CPUHP_SLAB_PREPARE] = {
1529 .name = "slab:prepare",
1530 .startup.single = slab_prepare_cpu,
1531 .teardown.single = slab_dead_cpu,
1532 },
1533 [CPUHP_RCUTREE_PREP] = {
1534 .name = "RCU/tree:prepare",
1535 .startup.single = rcutree_prepare_cpu,
1536 .teardown.single = rcutree_dead_cpu,
1537 },
1538 /*
1539 * On the tear-down path, timers_dead_cpu() must be invoked
1540 * before blk_mq_queue_reinit_notify() from notify_dead(),
1541 * otherwise a RCU stall occurs.
1542 */
1543 [CPUHP_TIMERS_PREPARE] = {
1544 .name = "timers:prepare",
1545 .startup.single = timers_prepare_cpu,
1546 .teardown.single = timers_dead_cpu,
1547 },
1548 /* Kicks the plugged cpu into life */
1549 [CPUHP_BRINGUP_CPU] = {
1550 .name = "cpu:bringup",
1551 .startup.single = bringup_cpu,
1552 .teardown.single = NULL,
1553 .cant_stop = true,
1554 },
1555 /* Final state before CPU kills itself */
1556 [CPUHP_AP_IDLE_DEAD] = {
1557 .name = "idle:dead",
1558 },
1559 /*
1560 * Last state before CPU enters the idle loop to die. Transient state
1561 * for synchronization.
1562 */
1563 [CPUHP_AP_OFFLINE] = {
1564 .name = "ap:offline",
1565 .cant_stop = true,
1566 },
1567 /* First state is scheduler control. Interrupts are disabled */
1568 [CPUHP_AP_SCHED_STARTING] = {
1569 .name = "sched:starting",
1570 .startup.single = sched_cpu_starting,
1571 .teardown.single = sched_cpu_dying,
1572 },
1573 [CPUHP_AP_RCUTREE_DYING] = {
1574 .name = "RCU/tree:dying",
1575 .startup.single = NULL,
1576 .teardown.single = rcutree_dying_cpu,
1577 },
1578 [CPUHP_AP_SMPCFD_DYING] = {
1579 .name = "smpcfd:dying",
1580 .startup.single = NULL,
1581 .teardown.single = smpcfd_dying_cpu,
1582 },
1583 /* Entry state on starting. Interrupts enabled from here on. Transient
1584 * state for synchronsization */
1585 [CPUHP_AP_ONLINE] = {
1586 .name = "ap:online",
1587 },
1588 /*
1589 * Handled on controll processor until the plugged processor manages
1590 * this itself.
1591 */
1592 [CPUHP_TEARDOWN_CPU] = {
1593 .name = "cpu:teardown",
1594 .startup.single = NULL,
1595 .teardown.single = takedown_cpu,
1596 .cant_stop = true,
1597 },
1598 /* Handle smpboot threads park/unpark */
1599 [CPUHP_AP_SMPBOOT_THREADS] = {
1600 .name = "smpboot/threads:online",
1601 .startup.single = smpboot_unpark_threads,
1602 .teardown.single = smpboot_park_threads,
1603 },
1604 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1605 .name = "irq/affinity:online",
1606 .startup.single = irq_affinity_online_cpu,
1607 .teardown.single = NULL,
1608 },
1609 [CPUHP_AP_PERF_ONLINE] = {
1610 .name = "perf:online",
1611 .startup.single = perf_event_init_cpu,
1612 .teardown.single = perf_event_exit_cpu,
1613 },
1614 [CPUHP_AP_WATCHDOG_ONLINE] = {
1615 .name = "lockup_detector:online",
1616 .startup.single = lockup_detector_online_cpu,
1617 .teardown.single = lockup_detector_offline_cpu,
1618 },
1619 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1620 .name = "workqueue:online",
1621 .startup.single = workqueue_online_cpu,
1622 .teardown.single = workqueue_offline_cpu,
1623 },
1624 [CPUHP_AP_RCUTREE_ONLINE] = {
1625 .name = "RCU/tree:online",
1626 .startup.single = rcutree_online_cpu,
1627 .teardown.single = rcutree_offline_cpu,
1628 },
1629 #endif
1630 /*
1631 * The dynamically registered state space is here
1632 */
1633
1634 #ifdef CONFIG_SMP
1635 /* Last state is scheduler control setting the cpu active */
1636 [CPUHP_AP_ACTIVE] = {
1637 .name = "sched:active",
1638 .startup.single = sched_cpu_activate,
1639 .teardown.single = sched_cpu_deactivate,
1640 },
1641 #endif
1642
1643 /* CPU is fully up and running. */
1644 [CPUHP_ONLINE] = {
1645 .name = "online",
1646 .startup.single = NULL,
1647 .teardown.single = NULL,
1648 },
1649 };
1650
1651 /* Sanity check for callbacks */
1652 static int cpuhp_cb_check(enum cpuhp_state state)
1653 {
1654 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1655 return -EINVAL;
1656 return 0;
1657 }
1658
1659 /*
1660 * Returns a free for dynamic slot assignment of the Online state. The states
1661 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1662 * by having no name assigned.
1663 */
1664 static int cpuhp_reserve_state(enum cpuhp_state state)
1665 {
1666 enum cpuhp_state i, end;
1667 struct cpuhp_step *step;
1668
1669 switch (state) {
1670 case CPUHP_AP_ONLINE_DYN:
1671 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1672 end = CPUHP_AP_ONLINE_DYN_END;
1673 break;
1674 case CPUHP_BP_PREPARE_DYN:
1675 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1676 end = CPUHP_BP_PREPARE_DYN_END;
1677 break;
1678 default:
1679 return -EINVAL;
1680 }
1681
1682 for (i = state; i <= end; i++, step++) {
1683 if (!step->name)
1684 return i;
1685 }
1686 WARN(1, "No more dynamic states available for CPU hotplug\n");
1687 return -ENOSPC;
1688 }
1689
1690 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1691 int (*startup)(unsigned int cpu),
1692 int (*teardown)(unsigned int cpu),
1693 bool multi_instance)
1694 {
1695 /* (Un)Install the callbacks for further cpu hotplug operations */
1696 struct cpuhp_step *sp;
1697 int ret = 0;
1698
1699 /*
1700 * If name is NULL, then the state gets removed.
1701 *
1702 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1703 * the first allocation from these dynamic ranges, so the removal
1704 * would trigger a new allocation and clear the wrong (already
1705 * empty) state, leaving the callbacks of the to be cleared state
1706 * dangling, which causes wreckage on the next hotplug operation.
1707 */
1708 if (name && (state == CPUHP_AP_ONLINE_DYN ||
1709 state == CPUHP_BP_PREPARE_DYN)) {
1710 ret = cpuhp_reserve_state(state);
1711 if (ret < 0)
1712 return ret;
1713 state = ret;
1714 }
1715 sp = cpuhp_get_step(state);
1716 if (name && sp->name)
1717 return -EBUSY;
1718
1719 sp->startup.single = startup;
1720 sp->teardown.single = teardown;
1721 sp->name = name;
1722 sp->multi_instance = multi_instance;
1723 INIT_HLIST_HEAD(&sp->list);
1724 return ret;
1725 }
1726
1727 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1728 {
1729 return cpuhp_get_step(state)->teardown.single;
1730 }
1731
1732 /*
1733 * Call the startup/teardown function for a step either on the AP or
1734 * on the current CPU.
1735 */
1736 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1737 struct hlist_node *node)
1738 {
1739 struct cpuhp_step *sp = cpuhp_get_step(state);
1740 int ret;
1741
1742 /*
1743 * If there's nothing to do, we done.
1744 * Relies on the union for multi_instance.
1745 */
1746 if ((bringup && !sp->startup.single) ||
1747 (!bringup && !sp->teardown.single))
1748 return 0;
1749 /*
1750 * The non AP bound callbacks can fail on bringup. On teardown
1751 * e.g. module removal we crash for now.
1752 */
1753 #ifdef CONFIG_SMP
1754 if (cpuhp_is_ap_state(state))
1755 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1756 else
1757 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1758 #else
1759 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1760 #endif
1761 BUG_ON(ret && !bringup);
1762 return ret;
1763 }
1764
1765 /*
1766 * Called from __cpuhp_setup_state on a recoverable failure.
1767 *
1768 * Note: The teardown callbacks for rollback are not allowed to fail!
1769 */
1770 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1771 struct hlist_node *node)
1772 {
1773 int cpu;
1774
1775 /* Roll back the already executed steps on the other cpus */
1776 for_each_present_cpu(cpu) {
1777 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1778 int cpustate = st->state;
1779
1780 if (cpu >= failedcpu)
1781 break;
1782
1783 /* Did we invoke the startup call on that cpu ? */
1784 if (cpustate >= state)
1785 cpuhp_issue_call(cpu, state, false, node);
1786 }
1787 }
1788
1789 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1790 struct hlist_node *node,
1791 bool invoke)
1792 {
1793 struct cpuhp_step *sp;
1794 int cpu;
1795 int ret;
1796
1797 lockdep_assert_cpus_held();
1798
1799 sp = cpuhp_get_step(state);
1800 if (sp->multi_instance == false)
1801 return -EINVAL;
1802
1803 mutex_lock(&cpuhp_state_mutex);
1804
1805 if (!invoke || !sp->startup.multi)
1806 goto add_node;
1807
1808 /*
1809 * Try to call the startup callback for each present cpu
1810 * depending on the hotplug state of the cpu.
1811 */
1812 for_each_present_cpu(cpu) {
1813 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1814 int cpustate = st->state;
1815
1816 if (cpustate < state)
1817 continue;
1818
1819 ret = cpuhp_issue_call(cpu, state, true, node);
1820 if (ret) {
1821 if (sp->teardown.multi)
1822 cpuhp_rollback_install(cpu, state, node);
1823 goto unlock;
1824 }
1825 }
1826 add_node:
1827 ret = 0;
1828 hlist_add_head(node, &sp->list);
1829 unlock:
1830 mutex_unlock(&cpuhp_state_mutex);
1831 return ret;
1832 }
1833
1834 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1835 bool invoke)
1836 {
1837 int ret;
1838
1839 cpus_read_lock();
1840 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1841 cpus_read_unlock();
1842 return ret;
1843 }
1844 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1845
1846 /**
1847 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1848 * @state: The state to setup
1849 * @invoke: If true, the startup function is invoked for cpus where
1850 * cpu state >= @state
1851 * @startup: startup callback function
1852 * @teardown: teardown callback function
1853 * @multi_instance: State is set up for multiple instances which get
1854 * added afterwards.
1855 *
1856 * The caller needs to hold cpus read locked while calling this function.
1857 * Returns:
1858 * On success:
1859 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1860 * 0 for all other states
1861 * On failure: proper (negative) error code
1862 */
1863 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1864 const char *name, bool invoke,
1865 int (*startup)(unsigned int cpu),
1866 int (*teardown)(unsigned int cpu),
1867 bool multi_instance)
1868 {
1869 int cpu, ret = 0;
1870 bool dynstate;
1871
1872 lockdep_assert_cpus_held();
1873
1874 if (cpuhp_cb_check(state) || !name)
1875 return -EINVAL;
1876
1877 mutex_lock(&cpuhp_state_mutex);
1878
1879 ret = cpuhp_store_callbacks(state, name, startup, teardown,
1880 multi_instance);
1881
1882 dynstate = state == CPUHP_AP_ONLINE_DYN;
1883 if (ret > 0 && dynstate) {
1884 state = ret;
1885 ret = 0;
1886 }
1887
1888 if (ret || !invoke || !startup)
1889 goto out;
1890
1891 /*
1892 * Try to call the startup callback for each present cpu
1893 * depending on the hotplug state of the cpu.
1894 */
1895 for_each_present_cpu(cpu) {
1896 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1897 int cpustate = st->state;
1898
1899 if (cpustate < state)
1900 continue;
1901
1902 ret = cpuhp_issue_call(cpu, state, true, NULL);
1903 if (ret) {
1904 if (teardown)
1905 cpuhp_rollback_install(cpu, state, NULL);
1906 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1907 goto out;
1908 }
1909 }
1910 out:
1911 mutex_unlock(&cpuhp_state_mutex);
1912 /*
1913 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1914 * dynamically allocated state in case of success.
1915 */
1916 if (!ret && dynstate)
1917 return state;
1918 return ret;
1919 }
1920 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1921
1922 int __cpuhp_setup_state(enum cpuhp_state state,
1923 const char *name, bool invoke,
1924 int (*startup)(unsigned int cpu),
1925 int (*teardown)(unsigned int cpu),
1926 bool multi_instance)
1927 {
1928 int ret;
1929
1930 cpus_read_lock();
1931 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1932 teardown, multi_instance);
1933 cpus_read_unlock();
1934 return ret;
1935 }
1936 EXPORT_SYMBOL(__cpuhp_setup_state);
1937
1938 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1939 struct hlist_node *node, bool invoke)
1940 {
1941 struct cpuhp_step *sp = cpuhp_get_step(state);
1942 int cpu;
1943
1944 BUG_ON(cpuhp_cb_check(state));
1945
1946 if (!sp->multi_instance)
1947 return -EINVAL;
1948
1949 cpus_read_lock();
1950 mutex_lock(&cpuhp_state_mutex);
1951
1952 if (!invoke || !cpuhp_get_teardown_cb(state))
1953 goto remove;
1954 /*
1955 * Call the teardown callback for each present cpu depending
1956 * on the hotplug state of the cpu. This function is not
1957 * allowed to fail currently!
1958 */
1959 for_each_present_cpu(cpu) {
1960 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1961 int cpustate = st->state;
1962
1963 if (cpustate >= state)
1964 cpuhp_issue_call(cpu, state, false, node);
1965 }
1966
1967 remove:
1968 hlist_del(node);
1969 mutex_unlock(&cpuhp_state_mutex);
1970 cpus_read_unlock();
1971
1972 return 0;
1973 }
1974 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1975
1976 /**
1977 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1978 * @state: The state to remove
1979 * @invoke: If true, the teardown function is invoked for cpus where
1980 * cpu state >= @state
1981 *
1982 * The caller needs to hold cpus read locked while calling this function.
1983 * The teardown callback is currently not allowed to fail. Think
1984 * about module removal!
1985 */
1986 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1987 {
1988 struct cpuhp_step *sp = cpuhp_get_step(state);
1989 int cpu;
1990
1991 BUG_ON(cpuhp_cb_check(state));
1992
1993 lockdep_assert_cpus_held();
1994
1995 mutex_lock(&cpuhp_state_mutex);
1996 if (sp->multi_instance) {
1997 WARN(!hlist_empty(&sp->list),
1998 "Error: Removing state %d which has instances left.\n",
1999 state);
2000 goto remove;
2001 }
2002
2003 if (!invoke || !cpuhp_get_teardown_cb(state))
2004 goto remove;
2005
2006 /*
2007 * Call the teardown callback for each present cpu depending
2008 * on the hotplug state of the cpu. This function is not
2009 * allowed to fail currently!
2010 */
2011 for_each_present_cpu(cpu) {
2012 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2013 int cpustate = st->state;
2014
2015 if (cpustate >= state)
2016 cpuhp_issue_call(cpu, state, false, NULL);
2017 }
2018 remove:
2019 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2020 mutex_unlock(&cpuhp_state_mutex);
2021 }
2022 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2023
2024 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2025 {
2026 cpus_read_lock();
2027 __cpuhp_remove_state_cpuslocked(state, invoke);
2028 cpus_read_unlock();
2029 }
2030 EXPORT_SYMBOL(__cpuhp_remove_state);
2031
2032 #ifdef CONFIG_HOTPLUG_SMT
2033 static void cpuhp_offline_cpu_device(unsigned int cpu)
2034 {
2035 struct device *dev = get_cpu_device(cpu);
2036
2037 dev->offline = true;
2038 /* Tell user space about the state change */
2039 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2040 }
2041
2042 static void cpuhp_online_cpu_device(unsigned int cpu)
2043 {
2044 struct device *dev = get_cpu_device(cpu);
2045
2046 dev->offline = false;
2047 /* Tell user space about the state change */
2048 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2049 }
2050
2051 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2052 {
2053 int cpu, ret = 0;
2054
2055 cpu_maps_update_begin();
2056 for_each_online_cpu(cpu) {
2057 if (topology_is_primary_thread(cpu))
2058 continue;
2059 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2060 if (ret)
2061 break;
2062 /*
2063 * As this needs to hold the cpu maps lock it's impossible
2064 * to call device_offline() because that ends up calling
2065 * cpu_down() which takes cpu maps lock. cpu maps lock
2066 * needs to be held as this might race against in kernel
2067 * abusers of the hotplug machinery (thermal management).
2068 *
2069 * So nothing would update device:offline state. That would
2070 * leave the sysfs entry stale and prevent onlining after
2071 * smt control has been changed to 'off' again. This is
2072 * called under the sysfs hotplug lock, so it is properly
2073 * serialized against the regular offline usage.
2074 */
2075 cpuhp_offline_cpu_device(cpu);
2076 }
2077 if (!ret)
2078 cpu_smt_control = ctrlval;
2079 cpu_maps_update_done();
2080 return ret;
2081 }
2082
2083 int cpuhp_smt_enable(void)
2084 {
2085 int cpu, ret = 0;
2086
2087 cpu_maps_update_begin();
2088 cpu_smt_control = CPU_SMT_ENABLED;
2089 for_each_present_cpu(cpu) {
2090 /* Skip online CPUs and CPUs on offline nodes */
2091 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2092 continue;
2093 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2094 if (ret)
2095 break;
2096 /* See comment in cpuhp_smt_disable() */
2097 cpuhp_online_cpu_device(cpu);
2098 }
2099 cpu_maps_update_done();
2100 return ret;
2101 }
2102 #endif
2103
2104 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2105 static ssize_t show_cpuhp_state(struct device *dev,
2106 struct device_attribute *attr, char *buf)
2107 {
2108 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2109
2110 return sprintf(buf, "%d\n", st->state);
2111 }
2112 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
2113
2114 static ssize_t write_cpuhp_target(struct device *dev,
2115 struct device_attribute *attr,
2116 const char *buf, size_t count)
2117 {
2118 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2119 struct cpuhp_step *sp;
2120 int target, ret;
2121
2122 ret = kstrtoint(buf, 10, &target);
2123 if (ret)
2124 return ret;
2125
2126 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2127 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2128 return -EINVAL;
2129 #else
2130 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2131 return -EINVAL;
2132 #endif
2133
2134 ret = lock_device_hotplug_sysfs();
2135 if (ret)
2136 return ret;
2137
2138 mutex_lock(&cpuhp_state_mutex);
2139 sp = cpuhp_get_step(target);
2140 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2141 mutex_unlock(&cpuhp_state_mutex);
2142 if (ret)
2143 goto out;
2144
2145 if (st->state < target)
2146 ret = cpu_up(dev->id, target);
2147 else
2148 ret = cpu_down(dev->id, target);
2149 out:
2150 unlock_device_hotplug();
2151 return ret ? ret : count;
2152 }
2153
2154 static ssize_t show_cpuhp_target(struct device *dev,
2155 struct device_attribute *attr, char *buf)
2156 {
2157 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2158
2159 return sprintf(buf, "%d\n", st->target);
2160 }
2161 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
2162
2163
2164 static ssize_t write_cpuhp_fail(struct device *dev,
2165 struct device_attribute *attr,
2166 const char *buf, size_t count)
2167 {
2168 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2169 struct cpuhp_step *sp;
2170 int fail, ret;
2171
2172 ret = kstrtoint(buf, 10, &fail);
2173 if (ret)
2174 return ret;
2175
2176 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2177 return -EINVAL;
2178
2179 /*
2180 * Cannot fail STARTING/DYING callbacks.
2181 */
2182 if (cpuhp_is_atomic_state(fail))
2183 return -EINVAL;
2184
2185 /*
2186 * Cannot fail anything that doesn't have callbacks.
2187 */
2188 mutex_lock(&cpuhp_state_mutex);
2189 sp = cpuhp_get_step(fail);
2190 if (!sp->startup.single && !sp->teardown.single)
2191 ret = -EINVAL;
2192 mutex_unlock(&cpuhp_state_mutex);
2193 if (ret)
2194 return ret;
2195
2196 st->fail = fail;
2197
2198 return count;
2199 }
2200
2201 static ssize_t show_cpuhp_fail(struct device *dev,
2202 struct device_attribute *attr, char *buf)
2203 {
2204 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2205
2206 return sprintf(buf, "%d\n", st->fail);
2207 }
2208
2209 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2210
2211 static struct attribute *cpuhp_cpu_attrs[] = {
2212 &dev_attr_state.attr,
2213 &dev_attr_target.attr,
2214 &dev_attr_fail.attr,
2215 NULL
2216 };
2217
2218 static const struct attribute_group cpuhp_cpu_attr_group = {
2219 .attrs = cpuhp_cpu_attrs,
2220 .name = "hotplug",
2221 NULL
2222 };
2223
2224 static ssize_t show_cpuhp_states(struct device *dev,
2225 struct device_attribute *attr, char *buf)
2226 {
2227 ssize_t cur, res = 0;
2228 int i;
2229
2230 mutex_lock(&cpuhp_state_mutex);
2231 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2232 struct cpuhp_step *sp = cpuhp_get_step(i);
2233
2234 if (sp->name) {
2235 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2236 buf += cur;
2237 res += cur;
2238 }
2239 }
2240 mutex_unlock(&cpuhp_state_mutex);
2241 return res;
2242 }
2243 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2244
2245 static struct attribute *cpuhp_cpu_root_attrs[] = {
2246 &dev_attr_states.attr,
2247 NULL
2248 };
2249
2250 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2251 .attrs = cpuhp_cpu_root_attrs,
2252 .name = "hotplug",
2253 NULL
2254 };
2255
2256 #ifdef CONFIG_HOTPLUG_SMT
2257
2258 static ssize_t
2259 __store_smt_control(struct device *dev, struct device_attribute *attr,
2260 const char *buf, size_t count)
2261 {
2262 int ctrlval, ret;
2263
2264 if (sysfs_streq(buf, "on"))
2265 ctrlval = CPU_SMT_ENABLED;
2266 else if (sysfs_streq(buf, "off"))
2267 ctrlval = CPU_SMT_DISABLED;
2268 else if (sysfs_streq(buf, "forceoff"))
2269 ctrlval = CPU_SMT_FORCE_DISABLED;
2270 else
2271 return -EINVAL;
2272
2273 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2274 return -EPERM;
2275
2276 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2277 return -ENODEV;
2278
2279 ret = lock_device_hotplug_sysfs();
2280 if (ret)
2281 return ret;
2282
2283 if (ctrlval != cpu_smt_control) {
2284 switch (ctrlval) {
2285 case CPU_SMT_ENABLED:
2286 ret = cpuhp_smt_enable();
2287 break;
2288 case CPU_SMT_DISABLED:
2289 case CPU_SMT_FORCE_DISABLED:
2290 ret = cpuhp_smt_disable(ctrlval);
2291 break;
2292 }
2293 }
2294
2295 unlock_device_hotplug();
2296 return ret ? ret : count;
2297 }
2298
2299 #else /* !CONFIG_HOTPLUG_SMT */
2300 static ssize_t
2301 __store_smt_control(struct device *dev, struct device_attribute *attr,
2302 const char *buf, size_t count)
2303 {
2304 return -ENODEV;
2305 }
2306 #endif /* CONFIG_HOTPLUG_SMT */
2307
2308 static const char *smt_states[] = {
2309 [CPU_SMT_ENABLED] = "on",
2310 [CPU_SMT_DISABLED] = "off",
2311 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2312 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2313 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
2314 };
2315
2316 static ssize_t
2317 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2318 {
2319 const char *state = smt_states[cpu_smt_control];
2320
2321 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2322 }
2323
2324 static ssize_t
2325 store_smt_control(struct device *dev, struct device_attribute *attr,
2326 const char *buf, size_t count)
2327 {
2328 return __store_smt_control(dev, attr, buf, count);
2329 }
2330 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2331
2332 static ssize_t
2333 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2334 {
2335 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2336 }
2337 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2338
2339 static struct attribute *cpuhp_smt_attrs[] = {
2340 &dev_attr_control.attr,
2341 &dev_attr_active.attr,
2342 NULL
2343 };
2344
2345 static const struct attribute_group cpuhp_smt_attr_group = {
2346 .attrs = cpuhp_smt_attrs,
2347 .name = "smt",
2348 NULL
2349 };
2350
2351 static int __init cpu_smt_sysfs_init(void)
2352 {
2353 return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2354 &cpuhp_smt_attr_group);
2355 }
2356
2357 static int __init cpuhp_sysfs_init(void)
2358 {
2359 int cpu, ret;
2360
2361 ret = cpu_smt_sysfs_init();
2362 if (ret)
2363 return ret;
2364
2365 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2366 &cpuhp_cpu_root_attr_group);
2367 if (ret)
2368 return ret;
2369
2370 for_each_possible_cpu(cpu) {
2371 struct device *dev = get_cpu_device(cpu);
2372
2373 if (!dev)
2374 continue;
2375 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2376 if (ret)
2377 return ret;
2378 }
2379 return 0;
2380 }
2381 device_initcall(cpuhp_sysfs_init);
2382 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2383
2384 /*
2385 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2386 * represents all NR_CPUS bits binary values of 1<<nr.
2387 *
2388 * It is used by cpumask_of() to get a constant address to a CPU
2389 * mask value that has a single bit set only.
2390 */
2391
2392 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2393 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2394 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2395 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2396 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2397
2398 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2399
2400 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2401 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2402 #if BITS_PER_LONG > 32
2403 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2404 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2405 #endif
2406 };
2407 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2408
2409 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2410 EXPORT_SYMBOL(cpu_all_bits);
2411
2412 #ifdef CONFIG_INIT_ALL_POSSIBLE
2413 struct cpumask __cpu_possible_mask __read_mostly
2414 = {CPU_BITS_ALL};
2415 #else
2416 struct cpumask __cpu_possible_mask __read_mostly;
2417 #endif
2418 EXPORT_SYMBOL(__cpu_possible_mask);
2419
2420 struct cpumask __cpu_online_mask __read_mostly;
2421 EXPORT_SYMBOL(__cpu_online_mask);
2422
2423 struct cpumask __cpu_present_mask __read_mostly;
2424 EXPORT_SYMBOL(__cpu_present_mask);
2425
2426 struct cpumask __cpu_active_mask __read_mostly;
2427 EXPORT_SYMBOL(__cpu_active_mask);
2428
2429 atomic_t __num_online_cpus __read_mostly;
2430 EXPORT_SYMBOL(__num_online_cpus);
2431
2432 void init_cpu_present(const struct cpumask *src)
2433 {
2434 cpumask_copy(&__cpu_present_mask, src);
2435 }
2436
2437 void init_cpu_possible(const struct cpumask *src)
2438 {
2439 cpumask_copy(&__cpu_possible_mask, src);
2440 }
2441
2442 void init_cpu_online(const struct cpumask *src)
2443 {
2444 cpumask_copy(&__cpu_online_mask, src);
2445 }
2446
2447 void set_cpu_online(unsigned int cpu, bool online)
2448 {
2449 /*
2450 * atomic_inc/dec() is required to handle the horrid abuse of this
2451 * function by the reboot and kexec code which invoke it from
2452 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2453 * regular CPU hotplug is properly serialized.
2454 *
2455 * Note, that the fact that __num_online_cpus is of type atomic_t
2456 * does not protect readers which are not serialized against
2457 * concurrent hotplug operations.
2458 */
2459 if (online) {
2460 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2461 atomic_inc(&__num_online_cpus);
2462 } else {
2463 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2464 atomic_dec(&__num_online_cpus);
2465 }
2466 }
2467
2468 /*
2469 * Activate the first processor.
2470 */
2471 void __init boot_cpu_init(void)
2472 {
2473 int cpu = smp_processor_id();
2474
2475 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2476 set_cpu_online(cpu, true);
2477 set_cpu_active(cpu, true);
2478 set_cpu_present(cpu, true);
2479 set_cpu_possible(cpu, true);
2480
2481 #ifdef CONFIG_SMP
2482 __boot_cpu_id = cpu;
2483 #endif
2484 }
2485
2486 /*
2487 * Must be called _AFTER_ setting up the per_cpu areas
2488 */
2489 void __init boot_cpu_hotplug_init(void)
2490 {
2491 #ifdef CONFIG_SMP
2492 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2493 #endif
2494 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2495 }
2496
2497 /*
2498 * These are used for a global "mitigations=" cmdline option for toggling
2499 * optional CPU mitigations.
2500 */
2501 enum cpu_mitigations {
2502 CPU_MITIGATIONS_OFF,
2503 CPU_MITIGATIONS_AUTO,
2504 CPU_MITIGATIONS_AUTO_NOSMT,
2505 };
2506
2507 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2508 CPU_MITIGATIONS_AUTO;
2509
2510 static int __init mitigations_parse_cmdline(char *arg)
2511 {
2512 if (!strcmp(arg, "off"))
2513 cpu_mitigations = CPU_MITIGATIONS_OFF;
2514 else if (!strcmp(arg, "auto"))
2515 cpu_mitigations = CPU_MITIGATIONS_AUTO;
2516 else if (!strcmp(arg, "auto,nosmt"))
2517 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2518 else
2519 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2520 arg);
2521
2522 return 0;
2523 }
2524 early_param("mitigations", mitigations_parse_cmdline);
2525
2526 /* mitigations=off */
2527 bool cpu_mitigations_off(void)
2528 {
2529 return cpu_mitigations == CPU_MITIGATIONS_OFF;
2530 }
2531 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2532
2533 /* mitigations=auto,nosmt */
2534 bool cpu_mitigations_auto_nosmt(void)
2535 {
2536 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2537 }
2538 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);