]> git.ipfire.org Git - people/ms/linux.git/blob - kernel/cpuset.c
ath5k: fix spontaneus AR5312 freezes
[people/ms/linux.git] / kernel / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
56
57 #include <asm/uaccess.h>
58 #include <linux/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
62 #include <linux/wait.h>
63
64 struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
65
66 /* See "Frequency meter" comments, below. */
67
68 struct fmeter {
69 int cnt; /* unprocessed events count */
70 int val; /* most recent output value */
71 time_t time; /* clock (secs) when val computed */
72 spinlock_t lock; /* guards read or write of above */
73 };
74
75 struct cpuset {
76 struct cgroup_subsys_state css;
77
78 unsigned long flags; /* "unsigned long" so bitops work */
79 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
80 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
81
82 /*
83 * This is old Memory Nodes tasks took on.
84 *
85 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
86 * - A new cpuset's old_mems_allowed is initialized when some
87 * task is moved into it.
88 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
89 * cpuset.mems_allowed and have tasks' nodemask updated, and
90 * then old_mems_allowed is updated to mems_allowed.
91 */
92 nodemask_t old_mems_allowed;
93
94 struct fmeter fmeter; /* memory_pressure filter */
95
96 /*
97 * Tasks are being attached to this cpuset. Used to prevent
98 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
99 */
100 int attach_in_progress;
101
102 /* partition number for rebuild_sched_domains() */
103 int pn;
104
105 /* for custom sched domain */
106 int relax_domain_level;
107 };
108
109 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
110 {
111 return css ? container_of(css, struct cpuset, css) : NULL;
112 }
113
114 /* Retrieve the cpuset for a task */
115 static inline struct cpuset *task_cs(struct task_struct *task)
116 {
117 return css_cs(task_css(task, cpuset_subsys_id));
118 }
119
120 static inline struct cpuset *parent_cs(struct cpuset *cs)
121 {
122 return css_cs(css_parent(&cs->css));
123 }
124
125 #ifdef CONFIG_NUMA
126 static inline bool task_has_mempolicy(struct task_struct *task)
127 {
128 return task->mempolicy;
129 }
130 #else
131 static inline bool task_has_mempolicy(struct task_struct *task)
132 {
133 return false;
134 }
135 #endif
136
137
138 /* bits in struct cpuset flags field */
139 typedef enum {
140 CS_ONLINE,
141 CS_CPU_EXCLUSIVE,
142 CS_MEM_EXCLUSIVE,
143 CS_MEM_HARDWALL,
144 CS_MEMORY_MIGRATE,
145 CS_SCHED_LOAD_BALANCE,
146 CS_SPREAD_PAGE,
147 CS_SPREAD_SLAB,
148 } cpuset_flagbits_t;
149
150 /* convenient tests for these bits */
151 static inline bool is_cpuset_online(const struct cpuset *cs)
152 {
153 return test_bit(CS_ONLINE, &cs->flags);
154 }
155
156 static inline int is_cpu_exclusive(const struct cpuset *cs)
157 {
158 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
159 }
160
161 static inline int is_mem_exclusive(const struct cpuset *cs)
162 {
163 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
164 }
165
166 static inline int is_mem_hardwall(const struct cpuset *cs)
167 {
168 return test_bit(CS_MEM_HARDWALL, &cs->flags);
169 }
170
171 static inline int is_sched_load_balance(const struct cpuset *cs)
172 {
173 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
174 }
175
176 static inline int is_memory_migrate(const struct cpuset *cs)
177 {
178 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
179 }
180
181 static inline int is_spread_page(const struct cpuset *cs)
182 {
183 return test_bit(CS_SPREAD_PAGE, &cs->flags);
184 }
185
186 static inline int is_spread_slab(const struct cpuset *cs)
187 {
188 return test_bit(CS_SPREAD_SLAB, &cs->flags);
189 }
190
191 static struct cpuset top_cpuset = {
192 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
193 (1 << CS_MEM_EXCLUSIVE)),
194 };
195
196 /**
197 * cpuset_for_each_child - traverse online children of a cpuset
198 * @child_cs: loop cursor pointing to the current child
199 * @pos_css: used for iteration
200 * @parent_cs: target cpuset to walk children of
201 *
202 * Walk @child_cs through the online children of @parent_cs. Must be used
203 * with RCU read locked.
204 */
205 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
206 css_for_each_child((pos_css), &(parent_cs)->css) \
207 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
208
209 /**
210 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
211 * @des_cs: loop cursor pointing to the current descendant
212 * @pos_css: used for iteration
213 * @root_cs: target cpuset to walk ancestor of
214 *
215 * Walk @des_cs through the online descendants of @root_cs. Must be used
216 * with RCU read locked. The caller may modify @pos_css by calling
217 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
218 * iteration and the first node to be visited.
219 */
220 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
221 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
222 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
223
224 /*
225 * There are two global mutexes guarding cpuset structures - cpuset_mutex
226 * and callback_mutex. The latter may nest inside the former. We also
227 * require taking task_lock() when dereferencing a task's cpuset pointer.
228 * See "The task_lock() exception", at the end of this comment.
229 *
230 * A task must hold both mutexes to modify cpusets. If a task holds
231 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
232 * is the only task able to also acquire callback_mutex and be able to
233 * modify cpusets. It can perform various checks on the cpuset structure
234 * first, knowing nothing will change. It can also allocate memory while
235 * just holding cpuset_mutex. While it is performing these checks, various
236 * callback routines can briefly acquire callback_mutex to query cpusets.
237 * Once it is ready to make the changes, it takes callback_mutex, blocking
238 * everyone else.
239 *
240 * Calls to the kernel memory allocator can not be made while holding
241 * callback_mutex, as that would risk double tripping on callback_mutex
242 * from one of the callbacks into the cpuset code from within
243 * __alloc_pages().
244 *
245 * If a task is only holding callback_mutex, then it has read-only
246 * access to cpusets.
247 *
248 * Now, the task_struct fields mems_allowed and mempolicy may be changed
249 * by other task, we use alloc_lock in the task_struct fields to protect
250 * them.
251 *
252 * The cpuset_common_file_read() handlers only hold callback_mutex across
253 * small pieces of code, such as when reading out possibly multi-word
254 * cpumasks and nodemasks.
255 *
256 * Accessing a task's cpuset should be done in accordance with the
257 * guidelines for accessing subsystem state in kernel/cgroup.c
258 */
259
260 static DEFINE_MUTEX(cpuset_mutex);
261 static DEFINE_MUTEX(callback_mutex);
262
263 /*
264 * CPU / memory hotplug is handled asynchronously.
265 */
266 static void cpuset_hotplug_workfn(struct work_struct *work);
267 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
268
269 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
270
271 /*
272 * This is ugly, but preserves the userspace API for existing cpuset
273 * users. If someone tries to mount the "cpuset" filesystem, we
274 * silently switch it to mount "cgroup" instead
275 */
276 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
277 int flags, const char *unused_dev_name, void *data)
278 {
279 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
280 struct dentry *ret = ERR_PTR(-ENODEV);
281 if (cgroup_fs) {
282 char mountopts[] =
283 "cpuset,noprefix,"
284 "release_agent=/sbin/cpuset_release_agent";
285 ret = cgroup_fs->mount(cgroup_fs, flags,
286 unused_dev_name, mountopts);
287 put_filesystem(cgroup_fs);
288 }
289 return ret;
290 }
291
292 static struct file_system_type cpuset_fs_type = {
293 .name = "cpuset",
294 .mount = cpuset_mount,
295 };
296
297 /*
298 * Return in pmask the portion of a cpusets's cpus_allowed that
299 * are online. If none are online, walk up the cpuset hierarchy
300 * until we find one that does have some online cpus. The top
301 * cpuset always has some cpus online.
302 *
303 * One way or another, we guarantee to return some non-empty subset
304 * of cpu_online_mask.
305 *
306 * Call with callback_mutex held.
307 */
308 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
309 {
310 while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
311 cs = parent_cs(cs);
312 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
313 }
314
315 /*
316 * Return in *pmask the portion of a cpusets's mems_allowed that
317 * are online, with memory. If none are online with memory, walk
318 * up the cpuset hierarchy until we find one that does have some
319 * online mems. The top cpuset always has some mems online.
320 *
321 * One way or another, we guarantee to return some non-empty subset
322 * of node_states[N_MEMORY].
323 *
324 * Call with callback_mutex held.
325 */
326 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
327 {
328 while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
329 cs = parent_cs(cs);
330 nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
331 }
332
333 /*
334 * update task's spread flag if cpuset's page/slab spread flag is set
335 *
336 * Called with callback_mutex/cpuset_mutex held
337 */
338 static void cpuset_update_task_spread_flag(struct cpuset *cs,
339 struct task_struct *tsk)
340 {
341 if (is_spread_page(cs))
342 tsk->flags |= PF_SPREAD_PAGE;
343 else
344 tsk->flags &= ~PF_SPREAD_PAGE;
345 if (is_spread_slab(cs))
346 tsk->flags |= PF_SPREAD_SLAB;
347 else
348 tsk->flags &= ~PF_SPREAD_SLAB;
349 }
350
351 /*
352 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
353 *
354 * One cpuset is a subset of another if all its allowed CPUs and
355 * Memory Nodes are a subset of the other, and its exclusive flags
356 * are only set if the other's are set. Call holding cpuset_mutex.
357 */
358
359 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
360 {
361 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
362 nodes_subset(p->mems_allowed, q->mems_allowed) &&
363 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
364 is_mem_exclusive(p) <= is_mem_exclusive(q);
365 }
366
367 /**
368 * alloc_trial_cpuset - allocate a trial cpuset
369 * @cs: the cpuset that the trial cpuset duplicates
370 */
371 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
372 {
373 struct cpuset *trial;
374
375 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
376 if (!trial)
377 return NULL;
378
379 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
380 kfree(trial);
381 return NULL;
382 }
383 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
384
385 return trial;
386 }
387
388 /**
389 * free_trial_cpuset - free the trial cpuset
390 * @trial: the trial cpuset to be freed
391 */
392 static void free_trial_cpuset(struct cpuset *trial)
393 {
394 free_cpumask_var(trial->cpus_allowed);
395 kfree(trial);
396 }
397
398 /*
399 * validate_change() - Used to validate that any proposed cpuset change
400 * follows the structural rules for cpusets.
401 *
402 * If we replaced the flag and mask values of the current cpuset
403 * (cur) with those values in the trial cpuset (trial), would
404 * our various subset and exclusive rules still be valid? Presumes
405 * cpuset_mutex held.
406 *
407 * 'cur' is the address of an actual, in-use cpuset. Operations
408 * such as list traversal that depend on the actual address of the
409 * cpuset in the list must use cur below, not trial.
410 *
411 * 'trial' is the address of bulk structure copy of cur, with
412 * perhaps one or more of the fields cpus_allowed, mems_allowed,
413 * or flags changed to new, trial values.
414 *
415 * Return 0 if valid, -errno if not.
416 */
417
418 static int validate_change(struct cpuset *cur, struct cpuset *trial)
419 {
420 struct cgroup_subsys_state *css;
421 struct cpuset *c, *par;
422 int ret;
423
424 rcu_read_lock();
425
426 /* Each of our child cpusets must be a subset of us */
427 ret = -EBUSY;
428 cpuset_for_each_child(c, css, cur)
429 if (!is_cpuset_subset(c, trial))
430 goto out;
431
432 /* Remaining checks don't apply to root cpuset */
433 ret = 0;
434 if (cur == &top_cpuset)
435 goto out;
436
437 par = parent_cs(cur);
438
439 /* We must be a subset of our parent cpuset */
440 ret = -EACCES;
441 if (!is_cpuset_subset(trial, par))
442 goto out;
443
444 /*
445 * If either I or some sibling (!= me) is exclusive, we can't
446 * overlap
447 */
448 ret = -EINVAL;
449 cpuset_for_each_child(c, css, par) {
450 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
451 c != cur &&
452 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
453 goto out;
454 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
455 c != cur &&
456 nodes_intersects(trial->mems_allowed, c->mems_allowed))
457 goto out;
458 }
459
460 /*
461 * Cpusets with tasks - existing or newly being attached - can't
462 * be changed to have empty cpus_allowed or mems_allowed.
463 */
464 ret = -ENOSPC;
465 if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress)) {
466 if (!cpumask_empty(cur->cpus_allowed) &&
467 cpumask_empty(trial->cpus_allowed))
468 goto out;
469 if (!nodes_empty(cur->mems_allowed) &&
470 nodes_empty(trial->mems_allowed))
471 goto out;
472 }
473
474 ret = 0;
475 out:
476 rcu_read_unlock();
477 return ret;
478 }
479
480 #ifdef CONFIG_SMP
481 /*
482 * Helper routine for generate_sched_domains().
483 * Do cpusets a, b have overlapping cpus_allowed masks?
484 */
485 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
486 {
487 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
488 }
489
490 static void
491 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
492 {
493 if (dattr->relax_domain_level < c->relax_domain_level)
494 dattr->relax_domain_level = c->relax_domain_level;
495 return;
496 }
497
498 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
499 struct cpuset *root_cs)
500 {
501 struct cpuset *cp;
502 struct cgroup_subsys_state *pos_css;
503
504 rcu_read_lock();
505 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
506 if (cp == root_cs)
507 continue;
508
509 /* skip the whole subtree if @cp doesn't have any CPU */
510 if (cpumask_empty(cp->cpus_allowed)) {
511 pos_css = css_rightmost_descendant(pos_css);
512 continue;
513 }
514
515 if (is_sched_load_balance(cp))
516 update_domain_attr(dattr, cp);
517 }
518 rcu_read_unlock();
519 }
520
521 /*
522 * generate_sched_domains()
523 *
524 * This function builds a partial partition of the systems CPUs
525 * A 'partial partition' is a set of non-overlapping subsets whose
526 * union is a subset of that set.
527 * The output of this function needs to be passed to kernel/sched/core.c
528 * partition_sched_domains() routine, which will rebuild the scheduler's
529 * load balancing domains (sched domains) as specified by that partial
530 * partition.
531 *
532 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
533 * for a background explanation of this.
534 *
535 * Does not return errors, on the theory that the callers of this
536 * routine would rather not worry about failures to rebuild sched
537 * domains when operating in the severe memory shortage situations
538 * that could cause allocation failures below.
539 *
540 * Must be called with cpuset_mutex held.
541 *
542 * The three key local variables below are:
543 * q - a linked-list queue of cpuset pointers, used to implement a
544 * top-down scan of all cpusets. This scan loads a pointer
545 * to each cpuset marked is_sched_load_balance into the
546 * array 'csa'. For our purposes, rebuilding the schedulers
547 * sched domains, we can ignore !is_sched_load_balance cpusets.
548 * csa - (for CpuSet Array) Array of pointers to all the cpusets
549 * that need to be load balanced, for convenient iterative
550 * access by the subsequent code that finds the best partition,
551 * i.e the set of domains (subsets) of CPUs such that the
552 * cpus_allowed of every cpuset marked is_sched_load_balance
553 * is a subset of one of these domains, while there are as
554 * many such domains as possible, each as small as possible.
555 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
556 * the kernel/sched/core.c routine partition_sched_domains() in a
557 * convenient format, that can be easily compared to the prior
558 * value to determine what partition elements (sched domains)
559 * were changed (added or removed.)
560 *
561 * Finding the best partition (set of domains):
562 * The triple nested loops below over i, j, k scan over the
563 * load balanced cpusets (using the array of cpuset pointers in
564 * csa[]) looking for pairs of cpusets that have overlapping
565 * cpus_allowed, but which don't have the same 'pn' partition
566 * number and gives them in the same partition number. It keeps
567 * looping on the 'restart' label until it can no longer find
568 * any such pairs.
569 *
570 * The union of the cpus_allowed masks from the set of
571 * all cpusets having the same 'pn' value then form the one
572 * element of the partition (one sched domain) to be passed to
573 * partition_sched_domains().
574 */
575 static int generate_sched_domains(cpumask_var_t **domains,
576 struct sched_domain_attr **attributes)
577 {
578 struct cpuset *cp; /* scans q */
579 struct cpuset **csa; /* array of all cpuset ptrs */
580 int csn; /* how many cpuset ptrs in csa so far */
581 int i, j, k; /* indices for partition finding loops */
582 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
583 struct sched_domain_attr *dattr; /* attributes for custom domains */
584 int ndoms = 0; /* number of sched domains in result */
585 int nslot; /* next empty doms[] struct cpumask slot */
586 struct cgroup_subsys_state *pos_css;
587
588 doms = NULL;
589 dattr = NULL;
590 csa = NULL;
591
592 /* Special case for the 99% of systems with one, full, sched domain */
593 if (is_sched_load_balance(&top_cpuset)) {
594 ndoms = 1;
595 doms = alloc_sched_domains(ndoms);
596 if (!doms)
597 goto done;
598
599 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
600 if (dattr) {
601 *dattr = SD_ATTR_INIT;
602 update_domain_attr_tree(dattr, &top_cpuset);
603 }
604 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
605
606 goto done;
607 }
608
609 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
610 if (!csa)
611 goto done;
612 csn = 0;
613
614 rcu_read_lock();
615 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
616 if (cp == &top_cpuset)
617 continue;
618 /*
619 * Continue traversing beyond @cp iff @cp has some CPUs and
620 * isn't load balancing. The former is obvious. The
621 * latter: All child cpusets contain a subset of the
622 * parent's cpus, so just skip them, and then we call
623 * update_domain_attr_tree() to calc relax_domain_level of
624 * the corresponding sched domain.
625 */
626 if (!cpumask_empty(cp->cpus_allowed) &&
627 !is_sched_load_balance(cp))
628 continue;
629
630 if (is_sched_load_balance(cp))
631 csa[csn++] = cp;
632
633 /* skip @cp's subtree */
634 pos_css = css_rightmost_descendant(pos_css);
635 }
636 rcu_read_unlock();
637
638 for (i = 0; i < csn; i++)
639 csa[i]->pn = i;
640 ndoms = csn;
641
642 restart:
643 /* Find the best partition (set of sched domains) */
644 for (i = 0; i < csn; i++) {
645 struct cpuset *a = csa[i];
646 int apn = a->pn;
647
648 for (j = 0; j < csn; j++) {
649 struct cpuset *b = csa[j];
650 int bpn = b->pn;
651
652 if (apn != bpn && cpusets_overlap(a, b)) {
653 for (k = 0; k < csn; k++) {
654 struct cpuset *c = csa[k];
655
656 if (c->pn == bpn)
657 c->pn = apn;
658 }
659 ndoms--; /* one less element */
660 goto restart;
661 }
662 }
663 }
664
665 /*
666 * Now we know how many domains to create.
667 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
668 */
669 doms = alloc_sched_domains(ndoms);
670 if (!doms)
671 goto done;
672
673 /*
674 * The rest of the code, including the scheduler, can deal with
675 * dattr==NULL case. No need to abort if alloc fails.
676 */
677 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
678
679 for (nslot = 0, i = 0; i < csn; i++) {
680 struct cpuset *a = csa[i];
681 struct cpumask *dp;
682 int apn = a->pn;
683
684 if (apn < 0) {
685 /* Skip completed partitions */
686 continue;
687 }
688
689 dp = doms[nslot];
690
691 if (nslot == ndoms) {
692 static int warnings = 10;
693 if (warnings) {
694 printk(KERN_WARNING
695 "rebuild_sched_domains confused:"
696 " nslot %d, ndoms %d, csn %d, i %d,"
697 " apn %d\n",
698 nslot, ndoms, csn, i, apn);
699 warnings--;
700 }
701 continue;
702 }
703
704 cpumask_clear(dp);
705 if (dattr)
706 *(dattr + nslot) = SD_ATTR_INIT;
707 for (j = i; j < csn; j++) {
708 struct cpuset *b = csa[j];
709
710 if (apn == b->pn) {
711 cpumask_or(dp, dp, b->cpus_allowed);
712 if (dattr)
713 update_domain_attr_tree(dattr + nslot, b);
714
715 /* Done with this partition */
716 b->pn = -1;
717 }
718 }
719 nslot++;
720 }
721 BUG_ON(nslot != ndoms);
722
723 done:
724 kfree(csa);
725
726 /*
727 * Fallback to the default domain if kmalloc() failed.
728 * See comments in partition_sched_domains().
729 */
730 if (doms == NULL)
731 ndoms = 1;
732
733 *domains = doms;
734 *attributes = dattr;
735 return ndoms;
736 }
737
738 /*
739 * Rebuild scheduler domains.
740 *
741 * If the flag 'sched_load_balance' of any cpuset with non-empty
742 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
743 * which has that flag enabled, or if any cpuset with a non-empty
744 * 'cpus' is removed, then call this routine to rebuild the
745 * scheduler's dynamic sched domains.
746 *
747 * Call with cpuset_mutex held. Takes get_online_cpus().
748 */
749 static void rebuild_sched_domains_locked(void)
750 {
751 struct sched_domain_attr *attr;
752 cpumask_var_t *doms;
753 int ndoms;
754
755 lockdep_assert_held(&cpuset_mutex);
756 get_online_cpus();
757
758 /*
759 * We have raced with CPU hotplug. Don't do anything to avoid
760 * passing doms with offlined cpu to partition_sched_domains().
761 * Anyways, hotplug work item will rebuild sched domains.
762 */
763 if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
764 goto out;
765
766 /* Generate domain masks and attrs */
767 ndoms = generate_sched_domains(&doms, &attr);
768
769 /* Have scheduler rebuild the domains */
770 partition_sched_domains(ndoms, doms, attr);
771 out:
772 put_online_cpus();
773 }
774 #else /* !CONFIG_SMP */
775 static void rebuild_sched_domains_locked(void)
776 {
777 }
778 #endif /* CONFIG_SMP */
779
780 void rebuild_sched_domains(void)
781 {
782 mutex_lock(&cpuset_mutex);
783 rebuild_sched_domains_locked();
784 mutex_unlock(&cpuset_mutex);
785 }
786
787 /*
788 * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
789 * @cs: the cpuset in interest
790 *
791 * A cpuset's effective cpumask is the cpumask of the nearest ancestor
792 * with non-empty cpus. We use effective cpumask whenever:
793 * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
794 * if the cpuset they reside in has no cpus)
795 * - we want to retrieve task_cs(tsk)'s cpus_allowed.
796 *
797 * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
798 * exception. See comments there.
799 */
800 static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
801 {
802 while (cpumask_empty(cs->cpus_allowed))
803 cs = parent_cs(cs);
804 return cs;
805 }
806
807 /*
808 * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
809 * @cs: the cpuset in interest
810 *
811 * A cpuset's effective nodemask is the nodemask of the nearest ancestor
812 * with non-empty memss. We use effective nodemask whenever:
813 * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
814 * if the cpuset they reside in has no mems)
815 * - we want to retrieve task_cs(tsk)'s mems_allowed.
816 *
817 * Called with cpuset_mutex held.
818 */
819 static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
820 {
821 while (nodes_empty(cs->mems_allowed))
822 cs = parent_cs(cs);
823 return cs;
824 }
825
826 /**
827 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
828 * @tsk: task to test
829 * @data: cpuset to @tsk belongs to
830 *
831 * Called by css_scan_tasks() for each task in a cgroup whose cpus_allowed
832 * mask needs to be changed.
833 *
834 * We don't need to re-check for the cgroup/cpuset membership, since we're
835 * holding cpuset_mutex at this point.
836 */
837 static void cpuset_change_cpumask(struct task_struct *tsk, void *data)
838 {
839 struct cpuset *cs = data;
840 struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
841
842 set_cpus_allowed_ptr(tsk, cpus_cs->cpus_allowed);
843 }
844
845 /**
846 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
847 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
848 * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
849 *
850 * Called with cpuset_mutex held
851 *
852 * The css_scan_tasks() function will scan all the tasks in a cgroup,
853 * calling callback functions for each.
854 *
855 * No return value. It's guaranteed that css_scan_tasks() always returns 0
856 * if @heap != NULL.
857 */
858 static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
859 {
860 css_scan_tasks(&cs->css, NULL, cpuset_change_cpumask, cs, heap);
861 }
862
863 /*
864 * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
865 * @root_cs: the root cpuset of the hierarchy
866 * @update_root: update root cpuset or not?
867 * @heap: the heap used by css_scan_tasks()
868 *
869 * This will update cpumasks of tasks in @root_cs and all other empty cpusets
870 * which take on cpumask of @root_cs.
871 *
872 * Called with cpuset_mutex held
873 */
874 static void update_tasks_cpumask_hier(struct cpuset *root_cs,
875 bool update_root, struct ptr_heap *heap)
876 {
877 struct cpuset *cp;
878 struct cgroup_subsys_state *pos_css;
879
880 rcu_read_lock();
881 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
882 if (cp == root_cs) {
883 if (!update_root)
884 continue;
885 } else {
886 /* skip the whole subtree if @cp have some CPU */
887 if (!cpumask_empty(cp->cpus_allowed)) {
888 pos_css = css_rightmost_descendant(pos_css);
889 continue;
890 }
891 }
892 if (!css_tryget(&cp->css))
893 continue;
894 rcu_read_unlock();
895
896 update_tasks_cpumask(cp, heap);
897
898 rcu_read_lock();
899 css_put(&cp->css);
900 }
901 rcu_read_unlock();
902 }
903
904 /**
905 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
906 * @cs: the cpuset to consider
907 * @buf: buffer of cpu numbers written to this cpuset
908 */
909 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
910 const char *buf)
911 {
912 struct ptr_heap heap;
913 int retval;
914 int is_load_balanced;
915
916 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
917 if (cs == &top_cpuset)
918 return -EACCES;
919
920 /*
921 * An empty cpus_allowed is ok only if the cpuset has no tasks.
922 * Since cpulist_parse() fails on an empty mask, we special case
923 * that parsing. The validate_change() call ensures that cpusets
924 * with tasks have cpus.
925 */
926 if (!*buf) {
927 cpumask_clear(trialcs->cpus_allowed);
928 } else {
929 retval = cpulist_parse(buf, trialcs->cpus_allowed);
930 if (retval < 0)
931 return retval;
932
933 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
934 return -EINVAL;
935 }
936
937 /* Nothing to do if the cpus didn't change */
938 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
939 return 0;
940
941 retval = validate_change(cs, trialcs);
942 if (retval < 0)
943 return retval;
944
945 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
946 if (retval)
947 return retval;
948
949 is_load_balanced = is_sched_load_balance(trialcs);
950
951 mutex_lock(&callback_mutex);
952 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
953 mutex_unlock(&callback_mutex);
954
955 update_tasks_cpumask_hier(cs, true, &heap);
956
957 heap_free(&heap);
958
959 if (is_load_balanced)
960 rebuild_sched_domains_locked();
961 return 0;
962 }
963
964 /*
965 * cpuset_migrate_mm
966 *
967 * Migrate memory region from one set of nodes to another.
968 *
969 * Temporarilly set tasks mems_allowed to target nodes of migration,
970 * so that the migration code can allocate pages on these nodes.
971 *
972 * While the mm_struct we are migrating is typically from some
973 * other task, the task_struct mems_allowed that we are hacking
974 * is for our current task, which must allocate new pages for that
975 * migrating memory region.
976 */
977
978 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
979 const nodemask_t *to)
980 {
981 struct task_struct *tsk = current;
982 struct cpuset *mems_cs;
983
984 tsk->mems_allowed = *to;
985
986 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
987
988 rcu_read_lock();
989 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
990 guarantee_online_mems(mems_cs, &tsk->mems_allowed);
991 rcu_read_unlock();
992 }
993
994 /*
995 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
996 * @tsk: the task to change
997 * @newmems: new nodes that the task will be set
998 *
999 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1000 * we structure updates as setting all new allowed nodes, then clearing newly
1001 * disallowed ones.
1002 */
1003 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1004 nodemask_t *newmems)
1005 {
1006 bool need_loop;
1007
1008 /*
1009 * Allow tasks that have access to memory reserves because they have
1010 * been OOM killed to get memory anywhere.
1011 */
1012 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1013 return;
1014 if (current->flags & PF_EXITING) /* Let dying task have memory */
1015 return;
1016
1017 task_lock(tsk);
1018 /*
1019 * Determine if a loop is necessary if another thread is doing
1020 * read_mems_allowed_begin(). If at least one node remains unchanged and
1021 * tsk does not have a mempolicy, then an empty nodemask will not be
1022 * possible when mems_allowed is larger than a word.
1023 */
1024 need_loop = task_has_mempolicy(tsk) ||
1025 !nodes_intersects(*newmems, tsk->mems_allowed);
1026
1027 if (need_loop) {
1028 local_irq_disable();
1029 write_seqcount_begin(&tsk->mems_allowed_seq);
1030 }
1031
1032 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1033 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1034
1035 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1036 tsk->mems_allowed = *newmems;
1037
1038 if (need_loop) {
1039 write_seqcount_end(&tsk->mems_allowed_seq);
1040 local_irq_enable();
1041 }
1042
1043 task_unlock(tsk);
1044 }
1045
1046 struct cpuset_change_nodemask_arg {
1047 struct cpuset *cs;
1048 nodemask_t *newmems;
1049 };
1050
1051 /*
1052 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1053 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1054 * memory_migrate flag is set. Called with cpuset_mutex held.
1055 */
1056 static void cpuset_change_nodemask(struct task_struct *p, void *data)
1057 {
1058 struct cpuset_change_nodemask_arg *arg = data;
1059 struct cpuset *cs = arg->cs;
1060 struct mm_struct *mm;
1061 int migrate;
1062
1063 cpuset_change_task_nodemask(p, arg->newmems);
1064
1065 mm = get_task_mm(p);
1066 if (!mm)
1067 return;
1068
1069 migrate = is_memory_migrate(cs);
1070
1071 mpol_rebind_mm(mm, &cs->mems_allowed);
1072 if (migrate)
1073 cpuset_migrate_mm(mm, &cs->old_mems_allowed, arg->newmems);
1074 mmput(mm);
1075 }
1076
1077 static void *cpuset_being_rebound;
1078
1079 /**
1080 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1081 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1082 * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
1083 *
1084 * Called with cpuset_mutex held. No return value. It's guaranteed that
1085 * css_scan_tasks() always returns 0 if @heap != NULL.
1086 */
1087 static void update_tasks_nodemask(struct cpuset *cs, struct ptr_heap *heap)
1088 {
1089 static nodemask_t newmems; /* protected by cpuset_mutex */
1090 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
1091 struct cpuset_change_nodemask_arg arg = { .cs = cs,
1092 .newmems = &newmems };
1093
1094 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1095
1096 guarantee_online_mems(mems_cs, &newmems);
1097
1098 /*
1099 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1100 * take while holding tasklist_lock. Forks can happen - the
1101 * mpol_dup() cpuset_being_rebound check will catch such forks,
1102 * and rebind their vma mempolicies too. Because we still hold
1103 * the global cpuset_mutex, we know that no other rebind effort
1104 * will be contending for the global variable cpuset_being_rebound.
1105 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1106 * is idempotent. Also migrate pages in each mm to new nodes.
1107 */
1108 css_scan_tasks(&cs->css, NULL, cpuset_change_nodemask, &arg, heap);
1109
1110 /*
1111 * All the tasks' nodemasks have been updated, update
1112 * cs->old_mems_allowed.
1113 */
1114 cs->old_mems_allowed = newmems;
1115
1116 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1117 cpuset_being_rebound = NULL;
1118 }
1119
1120 /*
1121 * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
1122 * @cs: the root cpuset of the hierarchy
1123 * @update_root: update the root cpuset or not?
1124 * @heap: the heap used by css_scan_tasks()
1125 *
1126 * This will update nodemasks of tasks in @root_cs and all other empty cpusets
1127 * which take on nodemask of @root_cs.
1128 *
1129 * Called with cpuset_mutex held
1130 */
1131 static void update_tasks_nodemask_hier(struct cpuset *root_cs,
1132 bool update_root, struct ptr_heap *heap)
1133 {
1134 struct cpuset *cp;
1135 struct cgroup_subsys_state *pos_css;
1136
1137 rcu_read_lock();
1138 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
1139 if (cp == root_cs) {
1140 if (!update_root)
1141 continue;
1142 } else {
1143 /* skip the whole subtree if @cp have some CPU */
1144 if (!nodes_empty(cp->mems_allowed)) {
1145 pos_css = css_rightmost_descendant(pos_css);
1146 continue;
1147 }
1148 }
1149 if (!css_tryget(&cp->css))
1150 continue;
1151 rcu_read_unlock();
1152
1153 update_tasks_nodemask(cp, heap);
1154
1155 rcu_read_lock();
1156 css_put(&cp->css);
1157 }
1158 rcu_read_unlock();
1159 }
1160
1161 /*
1162 * Handle user request to change the 'mems' memory placement
1163 * of a cpuset. Needs to validate the request, update the
1164 * cpusets mems_allowed, and for each task in the cpuset,
1165 * update mems_allowed and rebind task's mempolicy and any vma
1166 * mempolicies and if the cpuset is marked 'memory_migrate',
1167 * migrate the tasks pages to the new memory.
1168 *
1169 * Call with cpuset_mutex held. May take callback_mutex during call.
1170 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1171 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1172 * their mempolicies to the cpusets new mems_allowed.
1173 */
1174 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1175 const char *buf)
1176 {
1177 int retval;
1178 struct ptr_heap heap;
1179
1180 /*
1181 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1182 * it's read-only
1183 */
1184 if (cs == &top_cpuset) {
1185 retval = -EACCES;
1186 goto done;
1187 }
1188
1189 /*
1190 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1191 * Since nodelist_parse() fails on an empty mask, we special case
1192 * that parsing. The validate_change() call ensures that cpusets
1193 * with tasks have memory.
1194 */
1195 if (!*buf) {
1196 nodes_clear(trialcs->mems_allowed);
1197 } else {
1198 retval = nodelist_parse(buf, trialcs->mems_allowed);
1199 if (retval < 0)
1200 goto done;
1201
1202 if (!nodes_subset(trialcs->mems_allowed,
1203 node_states[N_MEMORY])) {
1204 retval = -EINVAL;
1205 goto done;
1206 }
1207 }
1208
1209 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1210 retval = 0; /* Too easy - nothing to do */
1211 goto done;
1212 }
1213 retval = validate_change(cs, trialcs);
1214 if (retval < 0)
1215 goto done;
1216
1217 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1218 if (retval < 0)
1219 goto done;
1220
1221 mutex_lock(&callback_mutex);
1222 cs->mems_allowed = trialcs->mems_allowed;
1223 mutex_unlock(&callback_mutex);
1224
1225 update_tasks_nodemask_hier(cs, true, &heap);
1226
1227 heap_free(&heap);
1228 done:
1229 return retval;
1230 }
1231
1232 int current_cpuset_is_being_rebound(void)
1233 {
1234 int ret;
1235
1236 rcu_read_lock();
1237 ret = task_cs(current) == cpuset_being_rebound;
1238 rcu_read_unlock();
1239
1240 return ret;
1241 }
1242
1243 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1244 {
1245 #ifdef CONFIG_SMP
1246 if (val < -1 || val >= sched_domain_level_max)
1247 return -EINVAL;
1248 #endif
1249
1250 if (val != cs->relax_domain_level) {
1251 cs->relax_domain_level = val;
1252 if (!cpumask_empty(cs->cpus_allowed) &&
1253 is_sched_load_balance(cs))
1254 rebuild_sched_domains_locked();
1255 }
1256
1257 return 0;
1258 }
1259
1260 /**
1261 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1262 * @tsk: task to be updated
1263 * @data: cpuset to @tsk belongs to
1264 *
1265 * Called by css_scan_tasks() for each task in a cgroup.
1266 *
1267 * We don't need to re-check for the cgroup/cpuset membership, since we're
1268 * holding cpuset_mutex at this point.
1269 */
1270 static void cpuset_change_flag(struct task_struct *tsk, void *data)
1271 {
1272 struct cpuset *cs = data;
1273
1274 cpuset_update_task_spread_flag(cs, tsk);
1275 }
1276
1277 /**
1278 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1279 * @cs: the cpuset in which each task's spread flags needs to be changed
1280 * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
1281 *
1282 * Called with cpuset_mutex held
1283 *
1284 * The css_scan_tasks() function will scan all the tasks in a cgroup,
1285 * calling callback functions for each.
1286 *
1287 * No return value. It's guaranteed that css_scan_tasks() always returns 0
1288 * if @heap != NULL.
1289 */
1290 static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1291 {
1292 css_scan_tasks(&cs->css, NULL, cpuset_change_flag, cs, heap);
1293 }
1294
1295 /*
1296 * update_flag - read a 0 or a 1 in a file and update associated flag
1297 * bit: the bit to update (see cpuset_flagbits_t)
1298 * cs: the cpuset to update
1299 * turning_on: whether the flag is being set or cleared
1300 *
1301 * Call with cpuset_mutex held.
1302 */
1303
1304 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1305 int turning_on)
1306 {
1307 struct cpuset *trialcs;
1308 int balance_flag_changed;
1309 int spread_flag_changed;
1310 struct ptr_heap heap;
1311 int err;
1312
1313 trialcs = alloc_trial_cpuset(cs);
1314 if (!trialcs)
1315 return -ENOMEM;
1316
1317 if (turning_on)
1318 set_bit(bit, &trialcs->flags);
1319 else
1320 clear_bit(bit, &trialcs->flags);
1321
1322 err = validate_change(cs, trialcs);
1323 if (err < 0)
1324 goto out;
1325
1326 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1327 if (err < 0)
1328 goto out;
1329
1330 balance_flag_changed = (is_sched_load_balance(cs) !=
1331 is_sched_load_balance(trialcs));
1332
1333 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1334 || (is_spread_page(cs) != is_spread_page(trialcs)));
1335
1336 mutex_lock(&callback_mutex);
1337 cs->flags = trialcs->flags;
1338 mutex_unlock(&callback_mutex);
1339
1340 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1341 rebuild_sched_domains_locked();
1342
1343 if (spread_flag_changed)
1344 update_tasks_flags(cs, &heap);
1345 heap_free(&heap);
1346 out:
1347 free_trial_cpuset(trialcs);
1348 return err;
1349 }
1350
1351 /*
1352 * Frequency meter - How fast is some event occurring?
1353 *
1354 * These routines manage a digitally filtered, constant time based,
1355 * event frequency meter. There are four routines:
1356 * fmeter_init() - initialize a frequency meter.
1357 * fmeter_markevent() - called each time the event happens.
1358 * fmeter_getrate() - returns the recent rate of such events.
1359 * fmeter_update() - internal routine used to update fmeter.
1360 *
1361 * A common data structure is passed to each of these routines,
1362 * which is used to keep track of the state required to manage the
1363 * frequency meter and its digital filter.
1364 *
1365 * The filter works on the number of events marked per unit time.
1366 * The filter is single-pole low-pass recursive (IIR). The time unit
1367 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1368 * simulate 3 decimal digits of precision (multiplied by 1000).
1369 *
1370 * With an FM_COEF of 933, and a time base of 1 second, the filter
1371 * has a half-life of 10 seconds, meaning that if the events quit
1372 * happening, then the rate returned from the fmeter_getrate()
1373 * will be cut in half each 10 seconds, until it converges to zero.
1374 *
1375 * It is not worth doing a real infinitely recursive filter. If more
1376 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1377 * just compute FM_MAXTICKS ticks worth, by which point the level
1378 * will be stable.
1379 *
1380 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1381 * arithmetic overflow in the fmeter_update() routine.
1382 *
1383 * Given the simple 32 bit integer arithmetic used, this meter works
1384 * best for reporting rates between one per millisecond (msec) and
1385 * one per 32 (approx) seconds. At constant rates faster than one
1386 * per msec it maxes out at values just under 1,000,000. At constant
1387 * rates between one per msec, and one per second it will stabilize
1388 * to a value N*1000, where N is the rate of events per second.
1389 * At constant rates between one per second and one per 32 seconds,
1390 * it will be choppy, moving up on the seconds that have an event,
1391 * and then decaying until the next event. At rates slower than
1392 * about one in 32 seconds, it decays all the way back to zero between
1393 * each event.
1394 */
1395
1396 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1397 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1398 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1399 #define FM_SCALE 1000 /* faux fixed point scale */
1400
1401 /* Initialize a frequency meter */
1402 static void fmeter_init(struct fmeter *fmp)
1403 {
1404 fmp->cnt = 0;
1405 fmp->val = 0;
1406 fmp->time = 0;
1407 spin_lock_init(&fmp->lock);
1408 }
1409
1410 /* Internal meter update - process cnt events and update value */
1411 static void fmeter_update(struct fmeter *fmp)
1412 {
1413 time_t now = get_seconds();
1414 time_t ticks = now - fmp->time;
1415
1416 if (ticks == 0)
1417 return;
1418
1419 ticks = min(FM_MAXTICKS, ticks);
1420 while (ticks-- > 0)
1421 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1422 fmp->time = now;
1423
1424 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1425 fmp->cnt = 0;
1426 }
1427
1428 /* Process any previous ticks, then bump cnt by one (times scale). */
1429 static void fmeter_markevent(struct fmeter *fmp)
1430 {
1431 spin_lock(&fmp->lock);
1432 fmeter_update(fmp);
1433 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1434 spin_unlock(&fmp->lock);
1435 }
1436
1437 /* Process any previous ticks, then return current value. */
1438 static int fmeter_getrate(struct fmeter *fmp)
1439 {
1440 int val;
1441
1442 spin_lock(&fmp->lock);
1443 fmeter_update(fmp);
1444 val = fmp->val;
1445 spin_unlock(&fmp->lock);
1446 return val;
1447 }
1448
1449 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1450 static int cpuset_can_attach(struct cgroup_subsys_state *css,
1451 struct cgroup_taskset *tset)
1452 {
1453 struct cpuset *cs = css_cs(css);
1454 struct task_struct *task;
1455 int ret;
1456
1457 mutex_lock(&cpuset_mutex);
1458
1459 /*
1460 * We allow to move tasks into an empty cpuset if sane_behavior
1461 * flag is set.
1462 */
1463 ret = -ENOSPC;
1464 if (!cgroup_sane_behavior(css->cgroup) &&
1465 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1466 goto out_unlock;
1467
1468 cgroup_taskset_for_each(task, css, tset) {
1469 /*
1470 * Kthreads which disallow setaffinity shouldn't be moved
1471 * to a new cpuset; we don't want to change their cpu
1472 * affinity and isolating such threads by their set of
1473 * allowed nodes is unnecessary. Thus, cpusets are not
1474 * applicable for such threads. This prevents checking for
1475 * success of set_cpus_allowed_ptr() on all attached tasks
1476 * before cpus_allowed may be changed.
1477 */
1478 ret = -EINVAL;
1479 if (task->flags & PF_NO_SETAFFINITY)
1480 goto out_unlock;
1481 ret = security_task_setscheduler(task);
1482 if (ret)
1483 goto out_unlock;
1484 }
1485
1486 /*
1487 * Mark attach is in progress. This makes validate_change() fail
1488 * changes which zero cpus/mems_allowed.
1489 */
1490 cs->attach_in_progress++;
1491 ret = 0;
1492 out_unlock:
1493 mutex_unlock(&cpuset_mutex);
1494 return ret;
1495 }
1496
1497 static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
1498 struct cgroup_taskset *tset)
1499 {
1500 mutex_lock(&cpuset_mutex);
1501 css_cs(css)->attach_in_progress--;
1502 mutex_unlock(&cpuset_mutex);
1503 }
1504
1505 /*
1506 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1507 * but we can't allocate it dynamically there. Define it global and
1508 * allocate from cpuset_init().
1509 */
1510 static cpumask_var_t cpus_attach;
1511
1512 static void cpuset_attach(struct cgroup_subsys_state *css,
1513 struct cgroup_taskset *tset)
1514 {
1515 /* static buf protected by cpuset_mutex */
1516 static nodemask_t cpuset_attach_nodemask_to;
1517 struct mm_struct *mm;
1518 struct task_struct *task;
1519 struct task_struct *leader = cgroup_taskset_first(tset);
1520 struct cgroup_subsys_state *oldcss = cgroup_taskset_cur_css(tset,
1521 cpuset_subsys_id);
1522 struct cpuset *cs = css_cs(css);
1523 struct cpuset *oldcs = css_cs(oldcss);
1524 struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
1525 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
1526
1527 mutex_lock(&cpuset_mutex);
1528
1529 /* prepare for attach */
1530 if (cs == &top_cpuset)
1531 cpumask_copy(cpus_attach, cpu_possible_mask);
1532 else
1533 guarantee_online_cpus(cpus_cs, cpus_attach);
1534
1535 guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
1536
1537 cgroup_taskset_for_each(task, css, tset) {
1538 /*
1539 * can_attach beforehand should guarantee that this doesn't
1540 * fail. TODO: have a better way to handle failure here
1541 */
1542 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1543
1544 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1545 cpuset_update_task_spread_flag(cs, task);
1546 }
1547
1548 /*
1549 * Change mm, possibly for multiple threads in a threadgroup. This is
1550 * expensive and may sleep.
1551 */
1552 cpuset_attach_nodemask_to = cs->mems_allowed;
1553 mm = get_task_mm(leader);
1554 if (mm) {
1555 struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);
1556
1557 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1558
1559 /*
1560 * old_mems_allowed is the same with mems_allowed here, except
1561 * if this task is being moved automatically due to hotplug.
1562 * In that case @mems_allowed has been updated and is empty,
1563 * so @old_mems_allowed is the right nodesets that we migrate
1564 * mm from.
1565 */
1566 if (is_memory_migrate(cs)) {
1567 cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
1568 &cpuset_attach_nodemask_to);
1569 }
1570 mmput(mm);
1571 }
1572
1573 cs->old_mems_allowed = cpuset_attach_nodemask_to;
1574
1575 cs->attach_in_progress--;
1576 if (!cs->attach_in_progress)
1577 wake_up(&cpuset_attach_wq);
1578
1579 mutex_unlock(&cpuset_mutex);
1580 }
1581
1582 /* The various types of files and directories in a cpuset file system */
1583
1584 typedef enum {
1585 FILE_MEMORY_MIGRATE,
1586 FILE_CPULIST,
1587 FILE_MEMLIST,
1588 FILE_CPU_EXCLUSIVE,
1589 FILE_MEM_EXCLUSIVE,
1590 FILE_MEM_HARDWALL,
1591 FILE_SCHED_LOAD_BALANCE,
1592 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1593 FILE_MEMORY_PRESSURE_ENABLED,
1594 FILE_MEMORY_PRESSURE,
1595 FILE_SPREAD_PAGE,
1596 FILE_SPREAD_SLAB,
1597 } cpuset_filetype_t;
1598
1599 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1600 u64 val)
1601 {
1602 struct cpuset *cs = css_cs(css);
1603 cpuset_filetype_t type = cft->private;
1604 int retval = 0;
1605
1606 mutex_lock(&cpuset_mutex);
1607 if (!is_cpuset_online(cs)) {
1608 retval = -ENODEV;
1609 goto out_unlock;
1610 }
1611
1612 switch (type) {
1613 case FILE_CPU_EXCLUSIVE:
1614 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1615 break;
1616 case FILE_MEM_EXCLUSIVE:
1617 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1618 break;
1619 case FILE_MEM_HARDWALL:
1620 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1621 break;
1622 case FILE_SCHED_LOAD_BALANCE:
1623 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1624 break;
1625 case FILE_MEMORY_MIGRATE:
1626 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1627 break;
1628 case FILE_MEMORY_PRESSURE_ENABLED:
1629 cpuset_memory_pressure_enabled = !!val;
1630 break;
1631 case FILE_MEMORY_PRESSURE:
1632 retval = -EACCES;
1633 break;
1634 case FILE_SPREAD_PAGE:
1635 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1636 break;
1637 case FILE_SPREAD_SLAB:
1638 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1639 break;
1640 default:
1641 retval = -EINVAL;
1642 break;
1643 }
1644 out_unlock:
1645 mutex_unlock(&cpuset_mutex);
1646 return retval;
1647 }
1648
1649 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1650 s64 val)
1651 {
1652 struct cpuset *cs = css_cs(css);
1653 cpuset_filetype_t type = cft->private;
1654 int retval = -ENODEV;
1655
1656 mutex_lock(&cpuset_mutex);
1657 if (!is_cpuset_online(cs))
1658 goto out_unlock;
1659
1660 switch (type) {
1661 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1662 retval = update_relax_domain_level(cs, val);
1663 break;
1664 default:
1665 retval = -EINVAL;
1666 break;
1667 }
1668 out_unlock:
1669 mutex_unlock(&cpuset_mutex);
1670 return retval;
1671 }
1672
1673 /*
1674 * Common handling for a write to a "cpus" or "mems" file.
1675 */
1676 static int cpuset_write_resmask(struct cgroup_subsys_state *css,
1677 struct cftype *cft, const char *buf)
1678 {
1679 struct cpuset *cs = css_cs(css);
1680 struct cpuset *trialcs;
1681 int retval = -ENODEV;
1682
1683 /*
1684 * CPU or memory hotunplug may leave @cs w/o any execution
1685 * resources, in which case the hotplug code asynchronously updates
1686 * configuration and transfers all tasks to the nearest ancestor
1687 * which can execute.
1688 *
1689 * As writes to "cpus" or "mems" may restore @cs's execution
1690 * resources, wait for the previously scheduled operations before
1691 * proceeding, so that we don't end up keep removing tasks added
1692 * after execution capability is restored.
1693 */
1694 flush_work(&cpuset_hotplug_work);
1695
1696 mutex_lock(&cpuset_mutex);
1697 if (!is_cpuset_online(cs))
1698 goto out_unlock;
1699
1700 trialcs = alloc_trial_cpuset(cs);
1701 if (!trialcs) {
1702 retval = -ENOMEM;
1703 goto out_unlock;
1704 }
1705
1706 switch (cft->private) {
1707 case FILE_CPULIST:
1708 retval = update_cpumask(cs, trialcs, buf);
1709 break;
1710 case FILE_MEMLIST:
1711 retval = update_nodemask(cs, trialcs, buf);
1712 break;
1713 default:
1714 retval = -EINVAL;
1715 break;
1716 }
1717
1718 free_trial_cpuset(trialcs);
1719 out_unlock:
1720 mutex_unlock(&cpuset_mutex);
1721 return retval;
1722 }
1723
1724 /*
1725 * These ascii lists should be read in a single call, by using a user
1726 * buffer large enough to hold the entire map. If read in smaller
1727 * chunks, there is no guarantee of atomicity. Since the display format
1728 * used, list of ranges of sequential numbers, is variable length,
1729 * and since these maps can change value dynamically, one could read
1730 * gibberish by doing partial reads while a list was changing.
1731 */
1732 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1733 {
1734 struct cpuset *cs = css_cs(seq_css(sf));
1735 cpuset_filetype_t type = seq_cft(sf)->private;
1736 ssize_t count;
1737 char *buf, *s;
1738 int ret = 0;
1739
1740 count = seq_get_buf(sf, &buf);
1741 s = buf;
1742
1743 mutex_lock(&callback_mutex);
1744
1745 switch (type) {
1746 case FILE_CPULIST:
1747 s += cpulist_scnprintf(s, count, cs->cpus_allowed);
1748 break;
1749 case FILE_MEMLIST:
1750 s += nodelist_scnprintf(s, count, cs->mems_allowed);
1751 break;
1752 default:
1753 ret = -EINVAL;
1754 goto out_unlock;
1755 }
1756
1757 if (s < buf + count - 1) {
1758 *s++ = '\n';
1759 seq_commit(sf, s - buf);
1760 } else {
1761 seq_commit(sf, -1);
1762 }
1763 out_unlock:
1764 mutex_unlock(&callback_mutex);
1765 return ret;
1766 }
1767
1768 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1769 {
1770 struct cpuset *cs = css_cs(css);
1771 cpuset_filetype_t type = cft->private;
1772 switch (type) {
1773 case FILE_CPU_EXCLUSIVE:
1774 return is_cpu_exclusive(cs);
1775 case FILE_MEM_EXCLUSIVE:
1776 return is_mem_exclusive(cs);
1777 case FILE_MEM_HARDWALL:
1778 return is_mem_hardwall(cs);
1779 case FILE_SCHED_LOAD_BALANCE:
1780 return is_sched_load_balance(cs);
1781 case FILE_MEMORY_MIGRATE:
1782 return is_memory_migrate(cs);
1783 case FILE_MEMORY_PRESSURE_ENABLED:
1784 return cpuset_memory_pressure_enabled;
1785 case FILE_MEMORY_PRESSURE:
1786 return fmeter_getrate(&cs->fmeter);
1787 case FILE_SPREAD_PAGE:
1788 return is_spread_page(cs);
1789 case FILE_SPREAD_SLAB:
1790 return is_spread_slab(cs);
1791 default:
1792 BUG();
1793 }
1794
1795 /* Unreachable but makes gcc happy */
1796 return 0;
1797 }
1798
1799 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1800 {
1801 struct cpuset *cs = css_cs(css);
1802 cpuset_filetype_t type = cft->private;
1803 switch (type) {
1804 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1805 return cs->relax_domain_level;
1806 default:
1807 BUG();
1808 }
1809
1810 /* Unrechable but makes gcc happy */
1811 return 0;
1812 }
1813
1814
1815 /*
1816 * for the common functions, 'private' gives the type of file
1817 */
1818
1819 static struct cftype files[] = {
1820 {
1821 .name = "cpus",
1822 .seq_show = cpuset_common_seq_show,
1823 .write_string = cpuset_write_resmask,
1824 .max_write_len = (100U + 6 * NR_CPUS),
1825 .private = FILE_CPULIST,
1826 },
1827
1828 {
1829 .name = "mems",
1830 .seq_show = cpuset_common_seq_show,
1831 .write_string = cpuset_write_resmask,
1832 .max_write_len = (100U + 6 * MAX_NUMNODES),
1833 .private = FILE_MEMLIST,
1834 },
1835
1836 {
1837 .name = "cpu_exclusive",
1838 .read_u64 = cpuset_read_u64,
1839 .write_u64 = cpuset_write_u64,
1840 .private = FILE_CPU_EXCLUSIVE,
1841 },
1842
1843 {
1844 .name = "mem_exclusive",
1845 .read_u64 = cpuset_read_u64,
1846 .write_u64 = cpuset_write_u64,
1847 .private = FILE_MEM_EXCLUSIVE,
1848 },
1849
1850 {
1851 .name = "mem_hardwall",
1852 .read_u64 = cpuset_read_u64,
1853 .write_u64 = cpuset_write_u64,
1854 .private = FILE_MEM_HARDWALL,
1855 },
1856
1857 {
1858 .name = "sched_load_balance",
1859 .read_u64 = cpuset_read_u64,
1860 .write_u64 = cpuset_write_u64,
1861 .private = FILE_SCHED_LOAD_BALANCE,
1862 },
1863
1864 {
1865 .name = "sched_relax_domain_level",
1866 .read_s64 = cpuset_read_s64,
1867 .write_s64 = cpuset_write_s64,
1868 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1869 },
1870
1871 {
1872 .name = "memory_migrate",
1873 .read_u64 = cpuset_read_u64,
1874 .write_u64 = cpuset_write_u64,
1875 .private = FILE_MEMORY_MIGRATE,
1876 },
1877
1878 {
1879 .name = "memory_pressure",
1880 .read_u64 = cpuset_read_u64,
1881 .write_u64 = cpuset_write_u64,
1882 .private = FILE_MEMORY_PRESSURE,
1883 .mode = S_IRUGO,
1884 },
1885
1886 {
1887 .name = "memory_spread_page",
1888 .read_u64 = cpuset_read_u64,
1889 .write_u64 = cpuset_write_u64,
1890 .private = FILE_SPREAD_PAGE,
1891 },
1892
1893 {
1894 .name = "memory_spread_slab",
1895 .read_u64 = cpuset_read_u64,
1896 .write_u64 = cpuset_write_u64,
1897 .private = FILE_SPREAD_SLAB,
1898 },
1899
1900 {
1901 .name = "memory_pressure_enabled",
1902 .flags = CFTYPE_ONLY_ON_ROOT,
1903 .read_u64 = cpuset_read_u64,
1904 .write_u64 = cpuset_write_u64,
1905 .private = FILE_MEMORY_PRESSURE_ENABLED,
1906 },
1907
1908 { } /* terminate */
1909 };
1910
1911 /*
1912 * cpuset_css_alloc - allocate a cpuset css
1913 * cgrp: control group that the new cpuset will be part of
1914 */
1915
1916 static struct cgroup_subsys_state *
1917 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1918 {
1919 struct cpuset *cs;
1920
1921 if (!parent_css)
1922 return &top_cpuset.css;
1923
1924 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1925 if (!cs)
1926 return ERR_PTR(-ENOMEM);
1927 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1928 kfree(cs);
1929 return ERR_PTR(-ENOMEM);
1930 }
1931
1932 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1933 cpumask_clear(cs->cpus_allowed);
1934 nodes_clear(cs->mems_allowed);
1935 fmeter_init(&cs->fmeter);
1936 cs->relax_domain_level = -1;
1937
1938 return &cs->css;
1939 }
1940
1941 static int cpuset_css_online(struct cgroup_subsys_state *css)
1942 {
1943 struct cpuset *cs = css_cs(css);
1944 struct cpuset *parent = parent_cs(cs);
1945 struct cpuset *tmp_cs;
1946 struct cgroup_subsys_state *pos_css;
1947
1948 if (!parent)
1949 return 0;
1950
1951 mutex_lock(&cpuset_mutex);
1952
1953 set_bit(CS_ONLINE, &cs->flags);
1954 if (is_spread_page(parent))
1955 set_bit(CS_SPREAD_PAGE, &cs->flags);
1956 if (is_spread_slab(parent))
1957 set_bit(CS_SPREAD_SLAB, &cs->flags);
1958
1959 cpuset_inc();
1960
1961 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1962 goto out_unlock;
1963
1964 /*
1965 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1966 * set. This flag handling is implemented in cgroup core for
1967 * histrical reasons - the flag may be specified during mount.
1968 *
1969 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1970 * refuse to clone the configuration - thereby refusing the task to
1971 * be entered, and as a result refusing the sys_unshare() or
1972 * clone() which initiated it. If this becomes a problem for some
1973 * users who wish to allow that scenario, then this could be
1974 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1975 * (and likewise for mems) to the new cgroup.
1976 */
1977 rcu_read_lock();
1978 cpuset_for_each_child(tmp_cs, pos_css, parent) {
1979 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1980 rcu_read_unlock();
1981 goto out_unlock;
1982 }
1983 }
1984 rcu_read_unlock();
1985
1986 mutex_lock(&callback_mutex);
1987 cs->mems_allowed = parent->mems_allowed;
1988 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1989 mutex_unlock(&callback_mutex);
1990 out_unlock:
1991 mutex_unlock(&cpuset_mutex);
1992 return 0;
1993 }
1994
1995 /*
1996 * If the cpuset being removed has its flag 'sched_load_balance'
1997 * enabled, then simulate turning sched_load_balance off, which
1998 * will call rebuild_sched_domains_locked().
1999 */
2000
2001 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2002 {
2003 struct cpuset *cs = css_cs(css);
2004
2005 mutex_lock(&cpuset_mutex);
2006
2007 if (is_sched_load_balance(cs))
2008 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2009
2010 cpuset_dec();
2011 clear_bit(CS_ONLINE, &cs->flags);
2012
2013 mutex_unlock(&cpuset_mutex);
2014 }
2015
2016 static void cpuset_css_free(struct cgroup_subsys_state *css)
2017 {
2018 struct cpuset *cs = css_cs(css);
2019
2020 free_cpumask_var(cs->cpus_allowed);
2021 kfree(cs);
2022 }
2023
2024 struct cgroup_subsys cpuset_subsys = {
2025 .name = "cpuset",
2026 .css_alloc = cpuset_css_alloc,
2027 .css_online = cpuset_css_online,
2028 .css_offline = cpuset_css_offline,
2029 .css_free = cpuset_css_free,
2030 .can_attach = cpuset_can_attach,
2031 .cancel_attach = cpuset_cancel_attach,
2032 .attach = cpuset_attach,
2033 .subsys_id = cpuset_subsys_id,
2034 .base_cftypes = files,
2035 .early_init = 1,
2036 };
2037
2038 /**
2039 * cpuset_init - initialize cpusets at system boot
2040 *
2041 * Description: Initialize top_cpuset and the cpuset internal file system,
2042 **/
2043
2044 int __init cpuset_init(void)
2045 {
2046 int err = 0;
2047
2048 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2049 BUG();
2050
2051 cpumask_setall(top_cpuset.cpus_allowed);
2052 nodes_setall(top_cpuset.mems_allowed);
2053
2054 fmeter_init(&top_cpuset.fmeter);
2055 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2056 top_cpuset.relax_domain_level = -1;
2057
2058 err = register_filesystem(&cpuset_fs_type);
2059 if (err < 0)
2060 return err;
2061
2062 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2063 BUG();
2064
2065 return 0;
2066 }
2067
2068 /*
2069 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2070 * or memory nodes, we need to walk over the cpuset hierarchy,
2071 * removing that CPU or node from all cpusets. If this removes the
2072 * last CPU or node from a cpuset, then move the tasks in the empty
2073 * cpuset to its next-highest non-empty parent.
2074 */
2075 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2076 {
2077 struct cpuset *parent;
2078
2079 /*
2080 * Find its next-highest non-empty parent, (top cpuset
2081 * has online cpus, so can't be empty).
2082 */
2083 parent = parent_cs(cs);
2084 while (cpumask_empty(parent->cpus_allowed) ||
2085 nodes_empty(parent->mems_allowed))
2086 parent = parent_cs(parent);
2087
2088 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2089 rcu_read_lock();
2090 printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
2091 cgroup_name(cs->css.cgroup));
2092 rcu_read_unlock();
2093 }
2094 }
2095
2096 /**
2097 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2098 * @cs: cpuset in interest
2099 *
2100 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2101 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2102 * all its tasks are moved to the nearest ancestor with both resources.
2103 */
2104 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2105 {
2106 static cpumask_t off_cpus;
2107 static nodemask_t off_mems;
2108 bool is_empty;
2109 bool sane = cgroup_sane_behavior(cs->css.cgroup);
2110
2111 retry:
2112 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2113
2114 mutex_lock(&cpuset_mutex);
2115
2116 /*
2117 * We have raced with task attaching. We wait until attaching
2118 * is finished, so we won't attach a task to an empty cpuset.
2119 */
2120 if (cs->attach_in_progress) {
2121 mutex_unlock(&cpuset_mutex);
2122 goto retry;
2123 }
2124
2125 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2126 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
2127
2128 mutex_lock(&callback_mutex);
2129 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
2130 mutex_unlock(&callback_mutex);
2131
2132 /*
2133 * If sane_behavior flag is set, we need to update tasks' cpumask
2134 * for empty cpuset to take on ancestor's cpumask. Otherwise, don't
2135 * call update_tasks_cpumask() if the cpuset becomes empty, as
2136 * the tasks in it will be migrated to an ancestor.
2137 */
2138 if ((sane && cpumask_empty(cs->cpus_allowed)) ||
2139 (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
2140 update_tasks_cpumask(cs, NULL);
2141
2142 mutex_lock(&callback_mutex);
2143 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
2144 mutex_unlock(&callback_mutex);
2145
2146 /*
2147 * If sane_behavior flag is set, we need to update tasks' nodemask
2148 * for empty cpuset to take on ancestor's nodemask. Otherwise, don't
2149 * call update_tasks_nodemask() if the cpuset becomes empty, as
2150 * the tasks in it will be migratd to an ancestor.
2151 */
2152 if ((sane && nodes_empty(cs->mems_allowed)) ||
2153 (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
2154 update_tasks_nodemask(cs, NULL);
2155
2156 is_empty = cpumask_empty(cs->cpus_allowed) ||
2157 nodes_empty(cs->mems_allowed);
2158
2159 mutex_unlock(&cpuset_mutex);
2160
2161 /*
2162 * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
2163 *
2164 * Otherwise move tasks to the nearest ancestor with execution
2165 * resources. This is full cgroup operation which will
2166 * also call back into cpuset. Should be done outside any lock.
2167 */
2168 if (!sane && is_empty)
2169 remove_tasks_in_empty_cpuset(cs);
2170 }
2171
2172 /**
2173 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2174 *
2175 * This function is called after either CPU or memory configuration has
2176 * changed and updates cpuset accordingly. The top_cpuset is always
2177 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2178 * order to make cpusets transparent (of no affect) on systems that are
2179 * actively using CPU hotplug but making no active use of cpusets.
2180 *
2181 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2182 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2183 * all descendants.
2184 *
2185 * Note that CPU offlining during suspend is ignored. We don't modify
2186 * cpusets across suspend/resume cycles at all.
2187 */
2188 static void cpuset_hotplug_workfn(struct work_struct *work)
2189 {
2190 static cpumask_t new_cpus;
2191 static nodemask_t new_mems;
2192 bool cpus_updated, mems_updated;
2193
2194 mutex_lock(&cpuset_mutex);
2195
2196 /* fetch the available cpus/mems and find out which changed how */
2197 cpumask_copy(&new_cpus, cpu_active_mask);
2198 new_mems = node_states[N_MEMORY];
2199
2200 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
2201 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
2202
2203 /* synchronize cpus_allowed to cpu_active_mask */
2204 if (cpus_updated) {
2205 mutex_lock(&callback_mutex);
2206 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2207 mutex_unlock(&callback_mutex);
2208 /* we don't mess with cpumasks of tasks in top_cpuset */
2209 }
2210
2211 /* synchronize mems_allowed to N_MEMORY */
2212 if (mems_updated) {
2213 mutex_lock(&callback_mutex);
2214 top_cpuset.mems_allowed = new_mems;
2215 mutex_unlock(&callback_mutex);
2216 update_tasks_nodemask(&top_cpuset, NULL);
2217 }
2218
2219 mutex_unlock(&cpuset_mutex);
2220
2221 /* if cpus or mems changed, we need to propagate to descendants */
2222 if (cpus_updated || mems_updated) {
2223 struct cpuset *cs;
2224 struct cgroup_subsys_state *pos_css;
2225
2226 rcu_read_lock();
2227 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2228 if (cs == &top_cpuset || !css_tryget(&cs->css))
2229 continue;
2230 rcu_read_unlock();
2231
2232 cpuset_hotplug_update_tasks(cs);
2233
2234 rcu_read_lock();
2235 css_put(&cs->css);
2236 }
2237 rcu_read_unlock();
2238 }
2239
2240 /* rebuild sched domains if cpus_allowed has changed */
2241 if (cpus_updated)
2242 rebuild_sched_domains();
2243 }
2244
2245 void cpuset_update_active_cpus(bool cpu_online)
2246 {
2247 /*
2248 * We're inside cpu hotplug critical region which usually nests
2249 * inside cgroup synchronization. Bounce actual hotplug processing
2250 * to a work item to avoid reverse locking order.
2251 *
2252 * We still need to do partition_sched_domains() synchronously;
2253 * otherwise, the scheduler will get confused and put tasks to the
2254 * dead CPU. Fall back to the default single domain.
2255 * cpuset_hotplug_workfn() will rebuild it as necessary.
2256 */
2257 partition_sched_domains(1, NULL, NULL);
2258 schedule_work(&cpuset_hotplug_work);
2259 }
2260
2261 /*
2262 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2263 * Call this routine anytime after node_states[N_MEMORY] changes.
2264 * See cpuset_update_active_cpus() for CPU hotplug handling.
2265 */
2266 static int cpuset_track_online_nodes(struct notifier_block *self,
2267 unsigned long action, void *arg)
2268 {
2269 schedule_work(&cpuset_hotplug_work);
2270 return NOTIFY_OK;
2271 }
2272
2273 static struct notifier_block cpuset_track_online_nodes_nb = {
2274 .notifier_call = cpuset_track_online_nodes,
2275 .priority = 10, /* ??! */
2276 };
2277
2278 /**
2279 * cpuset_init_smp - initialize cpus_allowed
2280 *
2281 * Description: Finish top cpuset after cpu, node maps are initialized
2282 */
2283 void __init cpuset_init_smp(void)
2284 {
2285 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2286 top_cpuset.mems_allowed = node_states[N_MEMORY];
2287 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2288
2289 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2290 }
2291
2292 /**
2293 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2294 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2295 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2296 *
2297 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2298 * attached to the specified @tsk. Guaranteed to return some non-empty
2299 * subset of cpu_online_mask, even if this means going outside the
2300 * tasks cpuset.
2301 **/
2302
2303 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2304 {
2305 struct cpuset *cpus_cs;
2306
2307 mutex_lock(&callback_mutex);
2308 task_lock(tsk);
2309 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2310 guarantee_online_cpus(cpus_cs, pmask);
2311 task_unlock(tsk);
2312 mutex_unlock(&callback_mutex);
2313 }
2314
2315 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2316 {
2317 struct cpuset *cpus_cs;
2318
2319 rcu_read_lock();
2320 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2321 do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
2322 rcu_read_unlock();
2323
2324 /*
2325 * We own tsk->cpus_allowed, nobody can change it under us.
2326 *
2327 * But we used cs && cs->cpus_allowed lockless and thus can
2328 * race with cgroup_attach_task() or update_cpumask() and get
2329 * the wrong tsk->cpus_allowed. However, both cases imply the
2330 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2331 * which takes task_rq_lock().
2332 *
2333 * If we are called after it dropped the lock we must see all
2334 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2335 * set any mask even if it is not right from task_cs() pov,
2336 * the pending set_cpus_allowed_ptr() will fix things.
2337 *
2338 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2339 * if required.
2340 */
2341 }
2342
2343 void cpuset_init_current_mems_allowed(void)
2344 {
2345 nodes_setall(current->mems_allowed);
2346 }
2347
2348 /**
2349 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2350 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2351 *
2352 * Description: Returns the nodemask_t mems_allowed of the cpuset
2353 * attached to the specified @tsk. Guaranteed to return some non-empty
2354 * subset of node_states[N_MEMORY], even if this means going outside the
2355 * tasks cpuset.
2356 **/
2357
2358 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2359 {
2360 struct cpuset *mems_cs;
2361 nodemask_t mask;
2362
2363 mutex_lock(&callback_mutex);
2364 task_lock(tsk);
2365 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
2366 guarantee_online_mems(mems_cs, &mask);
2367 task_unlock(tsk);
2368 mutex_unlock(&callback_mutex);
2369
2370 return mask;
2371 }
2372
2373 /**
2374 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2375 * @nodemask: the nodemask to be checked
2376 *
2377 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2378 */
2379 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2380 {
2381 return nodes_intersects(*nodemask, current->mems_allowed);
2382 }
2383
2384 /*
2385 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2386 * mem_hardwall ancestor to the specified cpuset. Call holding
2387 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2388 * (an unusual configuration), then returns the root cpuset.
2389 */
2390 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2391 {
2392 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2393 cs = parent_cs(cs);
2394 return cs;
2395 }
2396
2397 /**
2398 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2399 * @node: is this an allowed node?
2400 * @gfp_mask: memory allocation flags
2401 *
2402 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2403 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2404 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2405 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2406 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2407 * flag, yes.
2408 * Otherwise, no.
2409 *
2410 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2411 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2412 * might sleep, and might allow a node from an enclosing cpuset.
2413 *
2414 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2415 * cpusets, and never sleeps.
2416 *
2417 * The __GFP_THISNODE placement logic is really handled elsewhere,
2418 * by forcibly using a zonelist starting at a specified node, and by
2419 * (in get_page_from_freelist()) refusing to consider the zones for
2420 * any node on the zonelist except the first. By the time any such
2421 * calls get to this routine, we should just shut up and say 'yes'.
2422 *
2423 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2424 * and do not allow allocations outside the current tasks cpuset
2425 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2426 * GFP_KERNEL allocations are not so marked, so can escape to the
2427 * nearest enclosing hardwalled ancestor cpuset.
2428 *
2429 * Scanning up parent cpusets requires callback_mutex. The
2430 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2431 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2432 * current tasks mems_allowed came up empty on the first pass over
2433 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2434 * cpuset are short of memory, might require taking the callback_mutex
2435 * mutex.
2436 *
2437 * The first call here from mm/page_alloc:get_page_from_freelist()
2438 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2439 * so no allocation on a node outside the cpuset is allowed (unless
2440 * in interrupt, of course).
2441 *
2442 * The second pass through get_page_from_freelist() doesn't even call
2443 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2444 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2445 * in alloc_flags. That logic and the checks below have the combined
2446 * affect that:
2447 * in_interrupt - any node ok (current task context irrelevant)
2448 * GFP_ATOMIC - any node ok
2449 * TIF_MEMDIE - any node ok
2450 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2451 * GFP_USER - only nodes in current tasks mems allowed ok.
2452 *
2453 * Rule:
2454 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2455 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2456 * the code that might scan up ancestor cpusets and sleep.
2457 */
2458 int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
2459 {
2460 struct cpuset *cs; /* current cpuset ancestors */
2461 int allowed; /* is allocation in zone z allowed? */
2462
2463 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2464 return 1;
2465 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2466 if (node_isset(node, current->mems_allowed))
2467 return 1;
2468 /*
2469 * Allow tasks that have access to memory reserves because they have
2470 * been OOM killed to get memory anywhere.
2471 */
2472 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2473 return 1;
2474 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2475 return 0;
2476
2477 if (current->flags & PF_EXITING) /* Let dying task have memory */
2478 return 1;
2479
2480 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2481 mutex_lock(&callback_mutex);
2482
2483 task_lock(current);
2484 cs = nearest_hardwall_ancestor(task_cs(current));
2485 allowed = node_isset(node, cs->mems_allowed);
2486 task_unlock(current);
2487
2488 mutex_unlock(&callback_mutex);
2489 return allowed;
2490 }
2491
2492 /*
2493 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2494 * @node: is this an allowed node?
2495 * @gfp_mask: memory allocation flags
2496 *
2497 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2498 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2499 * yes. If the task has been OOM killed and has access to memory reserves as
2500 * specified by the TIF_MEMDIE flag, yes.
2501 * Otherwise, no.
2502 *
2503 * The __GFP_THISNODE placement logic is really handled elsewhere,
2504 * by forcibly using a zonelist starting at a specified node, and by
2505 * (in get_page_from_freelist()) refusing to consider the zones for
2506 * any node on the zonelist except the first. By the time any such
2507 * calls get to this routine, we should just shut up and say 'yes'.
2508 *
2509 * Unlike the cpuset_node_allowed_softwall() variant, above,
2510 * this variant requires that the node be in the current task's
2511 * mems_allowed or that we're in interrupt. It does not scan up the
2512 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2513 * It never sleeps.
2514 */
2515 int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2516 {
2517 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2518 return 1;
2519 if (node_isset(node, current->mems_allowed))
2520 return 1;
2521 /*
2522 * Allow tasks that have access to memory reserves because they have
2523 * been OOM killed to get memory anywhere.
2524 */
2525 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2526 return 1;
2527 return 0;
2528 }
2529
2530 /**
2531 * cpuset_mem_spread_node() - On which node to begin search for a file page
2532 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2533 *
2534 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2535 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2536 * and if the memory allocation used cpuset_mem_spread_node()
2537 * to determine on which node to start looking, as it will for
2538 * certain page cache or slab cache pages such as used for file
2539 * system buffers and inode caches, then instead of starting on the
2540 * local node to look for a free page, rather spread the starting
2541 * node around the tasks mems_allowed nodes.
2542 *
2543 * We don't have to worry about the returned node being offline
2544 * because "it can't happen", and even if it did, it would be ok.
2545 *
2546 * The routines calling guarantee_online_mems() are careful to
2547 * only set nodes in task->mems_allowed that are online. So it
2548 * should not be possible for the following code to return an
2549 * offline node. But if it did, that would be ok, as this routine
2550 * is not returning the node where the allocation must be, only
2551 * the node where the search should start. The zonelist passed to
2552 * __alloc_pages() will include all nodes. If the slab allocator
2553 * is passed an offline node, it will fall back to the local node.
2554 * See kmem_cache_alloc_node().
2555 */
2556
2557 static int cpuset_spread_node(int *rotor)
2558 {
2559 int node;
2560
2561 node = next_node(*rotor, current->mems_allowed);
2562 if (node == MAX_NUMNODES)
2563 node = first_node(current->mems_allowed);
2564 *rotor = node;
2565 return node;
2566 }
2567
2568 int cpuset_mem_spread_node(void)
2569 {
2570 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2571 current->cpuset_mem_spread_rotor =
2572 node_random(&current->mems_allowed);
2573
2574 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2575 }
2576
2577 int cpuset_slab_spread_node(void)
2578 {
2579 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2580 current->cpuset_slab_spread_rotor =
2581 node_random(&current->mems_allowed);
2582
2583 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2584 }
2585
2586 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2587
2588 /**
2589 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2590 * @tsk1: pointer to task_struct of some task.
2591 * @tsk2: pointer to task_struct of some other task.
2592 *
2593 * Description: Return true if @tsk1's mems_allowed intersects the
2594 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2595 * one of the task's memory usage might impact the memory available
2596 * to the other.
2597 **/
2598
2599 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2600 const struct task_struct *tsk2)
2601 {
2602 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2603 }
2604
2605 #define CPUSET_NODELIST_LEN (256)
2606
2607 /**
2608 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2609 * @task: pointer to task_struct of some task.
2610 *
2611 * Description: Prints @task's name, cpuset name, and cached copy of its
2612 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2613 * dereferencing task_cs(task).
2614 */
2615 void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2616 {
2617 /* Statically allocated to prevent using excess stack. */
2618 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2619 static DEFINE_SPINLOCK(cpuset_buffer_lock);
2620
2621 struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
2622
2623 rcu_read_lock();
2624 spin_lock(&cpuset_buffer_lock);
2625
2626 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2627 tsk->mems_allowed);
2628 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2629 tsk->comm, cgroup_name(cgrp), cpuset_nodelist);
2630
2631 spin_unlock(&cpuset_buffer_lock);
2632 rcu_read_unlock();
2633 }
2634
2635 /*
2636 * Collection of memory_pressure is suppressed unless
2637 * this flag is enabled by writing "1" to the special
2638 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2639 */
2640
2641 int cpuset_memory_pressure_enabled __read_mostly;
2642
2643 /**
2644 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2645 *
2646 * Keep a running average of the rate of synchronous (direct)
2647 * page reclaim efforts initiated by tasks in each cpuset.
2648 *
2649 * This represents the rate at which some task in the cpuset
2650 * ran low on memory on all nodes it was allowed to use, and
2651 * had to enter the kernels page reclaim code in an effort to
2652 * create more free memory by tossing clean pages or swapping
2653 * or writing dirty pages.
2654 *
2655 * Display to user space in the per-cpuset read-only file
2656 * "memory_pressure". Value displayed is an integer
2657 * representing the recent rate of entry into the synchronous
2658 * (direct) page reclaim by any task attached to the cpuset.
2659 **/
2660
2661 void __cpuset_memory_pressure_bump(void)
2662 {
2663 task_lock(current);
2664 fmeter_markevent(&task_cs(current)->fmeter);
2665 task_unlock(current);
2666 }
2667
2668 #ifdef CONFIG_PROC_PID_CPUSET
2669 /*
2670 * proc_cpuset_show()
2671 * - Print tasks cpuset path into seq_file.
2672 * - Used for /proc/<pid>/cpuset.
2673 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2674 * doesn't really matter if tsk->cpuset changes after we read it,
2675 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2676 * anyway.
2677 */
2678 int proc_cpuset_show(struct seq_file *m, void *unused_v)
2679 {
2680 struct pid *pid;
2681 struct task_struct *tsk;
2682 char *buf;
2683 struct cgroup_subsys_state *css;
2684 int retval;
2685
2686 retval = -ENOMEM;
2687 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2688 if (!buf)
2689 goto out;
2690
2691 retval = -ESRCH;
2692 pid = m->private;
2693 tsk = get_pid_task(pid, PIDTYPE_PID);
2694 if (!tsk)
2695 goto out_free;
2696
2697 rcu_read_lock();
2698 css = task_css(tsk, cpuset_subsys_id);
2699 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2700 rcu_read_unlock();
2701 if (retval < 0)
2702 goto out_put_task;
2703 seq_puts(m, buf);
2704 seq_putc(m, '\n');
2705 out_put_task:
2706 put_task_struct(tsk);
2707 out_free:
2708 kfree(buf);
2709 out:
2710 return retval;
2711 }
2712 #endif /* CONFIG_PROC_PID_CPUSET */
2713
2714 /* Display task mems_allowed in /proc/<pid>/status file. */
2715 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2716 {
2717 seq_printf(m, "Mems_allowed:\t");
2718 seq_nodemask(m, &task->mems_allowed);
2719 seq_printf(m, "\n");
2720 seq_printf(m, "Mems_allowed_list:\t");
2721 seq_nodemask_list(m, &task->mems_allowed);
2722 seq_printf(m, "\n");
2723 }