]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - kernel/dma/swiotlb.c
Merge branch 'page-refs' (page ref overflow)
[thirdparty/kernel/linux.git] / kernel / dma / swiotlb.c
1 /*
2 * Dynamic DMA mapping support.
3 *
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
18 */
19
20 #define pr_fmt(fmt) "software IO TLB: " fmt
21
22 #include <linux/cache.h>
23 #include <linux/dma-direct.h>
24 #include <linux/mm.h>
25 #include <linux/export.h>
26 #include <linux/spinlock.h>
27 #include <linux/string.h>
28 #include <linux/swiotlb.h>
29 #include <linux/pfn.h>
30 #include <linux/types.h>
31 #include <linux/ctype.h>
32 #include <linux/highmem.h>
33 #include <linux/gfp.h>
34 #include <linux/scatterlist.h>
35 #include <linux/mem_encrypt.h>
36 #include <linux/set_memory.h>
37 #ifdef CONFIG_DEBUG_FS
38 #include <linux/debugfs.h>
39 #endif
40
41 #include <asm/io.h>
42 #include <asm/dma.h>
43
44 #include <linux/init.h>
45 #include <linux/memblock.h>
46 #include <linux/iommu-helper.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/swiotlb.h>
50
51 #define OFFSET(val,align) ((unsigned long) \
52 ( (val) & ( (align) - 1)))
53
54 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
55
56 /*
57 * Minimum IO TLB size to bother booting with. Systems with mainly
58 * 64bit capable cards will only lightly use the swiotlb. If we can't
59 * allocate a contiguous 1MB, we're probably in trouble anyway.
60 */
61 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
62
63 enum swiotlb_force swiotlb_force;
64
65 /*
66 * Used to do a quick range check in swiotlb_tbl_unmap_single and
67 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
68 * API.
69 */
70 phys_addr_t io_tlb_start, io_tlb_end;
71
72 /*
73 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
74 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
75 */
76 static unsigned long io_tlb_nslabs;
77
78 /*
79 * The number of used IO TLB block
80 */
81 static unsigned long io_tlb_used;
82
83 /*
84 * This is a free list describing the number of free entries available from
85 * each index
86 */
87 static unsigned int *io_tlb_list;
88 static unsigned int io_tlb_index;
89
90 /*
91 * Max segment that we can provide which (if pages are contingous) will
92 * not be bounced (unless SWIOTLB_FORCE is set).
93 */
94 unsigned int max_segment;
95
96 /*
97 * We need to save away the original address corresponding to a mapped entry
98 * for the sync operations.
99 */
100 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
101 static phys_addr_t *io_tlb_orig_addr;
102
103 /*
104 * Protect the above data structures in the map and unmap calls
105 */
106 static DEFINE_SPINLOCK(io_tlb_lock);
107
108 static int late_alloc;
109
110 static int __init
111 setup_io_tlb_npages(char *str)
112 {
113 if (isdigit(*str)) {
114 io_tlb_nslabs = simple_strtoul(str, &str, 0);
115 /* avoid tail segment of size < IO_TLB_SEGSIZE */
116 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
117 }
118 if (*str == ',')
119 ++str;
120 if (!strcmp(str, "force")) {
121 swiotlb_force = SWIOTLB_FORCE;
122 } else if (!strcmp(str, "noforce")) {
123 swiotlb_force = SWIOTLB_NO_FORCE;
124 io_tlb_nslabs = 1;
125 }
126
127 return 0;
128 }
129 early_param("swiotlb", setup_io_tlb_npages);
130
131 unsigned long swiotlb_nr_tbl(void)
132 {
133 return io_tlb_nslabs;
134 }
135 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
136
137 unsigned int swiotlb_max_segment(void)
138 {
139 return max_segment;
140 }
141 EXPORT_SYMBOL_GPL(swiotlb_max_segment);
142
143 void swiotlb_set_max_segment(unsigned int val)
144 {
145 if (swiotlb_force == SWIOTLB_FORCE)
146 max_segment = 1;
147 else
148 max_segment = rounddown(val, PAGE_SIZE);
149 }
150
151 /* default to 64MB */
152 #define IO_TLB_DEFAULT_SIZE (64UL<<20)
153 unsigned long swiotlb_size_or_default(void)
154 {
155 unsigned long size;
156
157 size = io_tlb_nslabs << IO_TLB_SHIFT;
158
159 return size ? size : (IO_TLB_DEFAULT_SIZE);
160 }
161
162 static bool no_iotlb_memory;
163
164 void swiotlb_print_info(void)
165 {
166 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
167
168 if (no_iotlb_memory) {
169 pr_warn("No low mem\n");
170 return;
171 }
172
173 pr_info("mapped [mem %#010llx-%#010llx] (%luMB)\n",
174 (unsigned long long)io_tlb_start,
175 (unsigned long long)io_tlb_end,
176 bytes >> 20);
177 }
178
179 /*
180 * Early SWIOTLB allocation may be too early to allow an architecture to
181 * perform the desired operations. This function allows the architecture to
182 * call SWIOTLB when the operations are possible. It needs to be called
183 * before the SWIOTLB memory is used.
184 */
185 void __init swiotlb_update_mem_attributes(void)
186 {
187 void *vaddr;
188 unsigned long bytes;
189
190 if (no_iotlb_memory || late_alloc)
191 return;
192
193 vaddr = phys_to_virt(io_tlb_start);
194 bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT);
195 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
196 memset(vaddr, 0, bytes);
197 }
198
199 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
200 {
201 unsigned long i, bytes;
202 size_t alloc_size;
203
204 bytes = nslabs << IO_TLB_SHIFT;
205
206 io_tlb_nslabs = nslabs;
207 io_tlb_start = __pa(tlb);
208 io_tlb_end = io_tlb_start + bytes;
209
210 /*
211 * Allocate and initialize the free list array. This array is used
212 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
213 * between io_tlb_start and io_tlb_end.
214 */
215 alloc_size = PAGE_ALIGN(io_tlb_nslabs * sizeof(int));
216 io_tlb_list = memblock_alloc(alloc_size, PAGE_SIZE);
217 if (!io_tlb_list)
218 panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
219 __func__, alloc_size, PAGE_SIZE);
220
221 alloc_size = PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t));
222 io_tlb_orig_addr = memblock_alloc(alloc_size, PAGE_SIZE);
223 if (!io_tlb_orig_addr)
224 panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
225 __func__, alloc_size, PAGE_SIZE);
226
227 for (i = 0; i < io_tlb_nslabs; i++) {
228 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
229 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
230 }
231 io_tlb_index = 0;
232
233 if (verbose)
234 swiotlb_print_info();
235
236 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
237 return 0;
238 }
239
240 /*
241 * Statically reserve bounce buffer space and initialize bounce buffer data
242 * structures for the software IO TLB used to implement the DMA API.
243 */
244 void __init
245 swiotlb_init(int verbose)
246 {
247 size_t default_size = IO_TLB_DEFAULT_SIZE;
248 unsigned char *vstart;
249 unsigned long bytes;
250
251 if (!io_tlb_nslabs) {
252 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
253 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
254 }
255
256 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
257
258 /* Get IO TLB memory from the low pages */
259 vstart = memblock_alloc_low(PAGE_ALIGN(bytes), PAGE_SIZE);
260 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
261 return;
262
263 if (io_tlb_start)
264 memblock_free_early(io_tlb_start,
265 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
266 pr_warn("Cannot allocate buffer");
267 no_iotlb_memory = true;
268 }
269
270 /*
271 * Systems with larger DMA zones (those that don't support ISA) can
272 * initialize the swiotlb later using the slab allocator if needed.
273 * This should be just like above, but with some error catching.
274 */
275 int
276 swiotlb_late_init_with_default_size(size_t default_size)
277 {
278 unsigned long bytes, req_nslabs = io_tlb_nslabs;
279 unsigned char *vstart = NULL;
280 unsigned int order;
281 int rc = 0;
282
283 if (!io_tlb_nslabs) {
284 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
285 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
286 }
287
288 /*
289 * Get IO TLB memory from the low pages
290 */
291 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
292 io_tlb_nslabs = SLABS_PER_PAGE << order;
293 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
294
295 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
296 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
297 order);
298 if (vstart)
299 break;
300 order--;
301 }
302
303 if (!vstart) {
304 io_tlb_nslabs = req_nslabs;
305 return -ENOMEM;
306 }
307 if (order != get_order(bytes)) {
308 pr_warn("only able to allocate %ld MB\n",
309 (PAGE_SIZE << order) >> 20);
310 io_tlb_nslabs = SLABS_PER_PAGE << order;
311 }
312 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
313 if (rc)
314 free_pages((unsigned long)vstart, order);
315
316 return rc;
317 }
318
319 int
320 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
321 {
322 unsigned long i, bytes;
323
324 bytes = nslabs << IO_TLB_SHIFT;
325
326 io_tlb_nslabs = nslabs;
327 io_tlb_start = virt_to_phys(tlb);
328 io_tlb_end = io_tlb_start + bytes;
329
330 set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT);
331 memset(tlb, 0, bytes);
332
333 /*
334 * Allocate and initialize the free list array. This array is used
335 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
336 * between io_tlb_start and io_tlb_end.
337 */
338 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
339 get_order(io_tlb_nslabs * sizeof(int)));
340 if (!io_tlb_list)
341 goto cleanup3;
342
343 io_tlb_orig_addr = (phys_addr_t *)
344 __get_free_pages(GFP_KERNEL,
345 get_order(io_tlb_nslabs *
346 sizeof(phys_addr_t)));
347 if (!io_tlb_orig_addr)
348 goto cleanup4;
349
350 for (i = 0; i < io_tlb_nslabs; i++) {
351 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
352 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
353 }
354 io_tlb_index = 0;
355
356 swiotlb_print_info();
357
358 late_alloc = 1;
359
360 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
361
362 return 0;
363
364 cleanup4:
365 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
366 sizeof(int)));
367 io_tlb_list = NULL;
368 cleanup3:
369 io_tlb_end = 0;
370 io_tlb_start = 0;
371 io_tlb_nslabs = 0;
372 max_segment = 0;
373 return -ENOMEM;
374 }
375
376 void __init swiotlb_exit(void)
377 {
378 if (!io_tlb_orig_addr)
379 return;
380
381 if (late_alloc) {
382 free_pages((unsigned long)io_tlb_orig_addr,
383 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
384 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
385 sizeof(int)));
386 free_pages((unsigned long)phys_to_virt(io_tlb_start),
387 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
388 } else {
389 memblock_free_late(__pa(io_tlb_orig_addr),
390 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
391 memblock_free_late(__pa(io_tlb_list),
392 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
393 memblock_free_late(io_tlb_start,
394 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
395 }
396 io_tlb_start = 0;
397 io_tlb_end = 0;
398 io_tlb_nslabs = 0;
399 max_segment = 0;
400 }
401
402 /*
403 * Bounce: copy the swiotlb buffer from or back to the original dma location
404 */
405 static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
406 size_t size, enum dma_data_direction dir)
407 {
408 unsigned long pfn = PFN_DOWN(orig_addr);
409 unsigned char *vaddr = phys_to_virt(tlb_addr);
410
411 if (PageHighMem(pfn_to_page(pfn))) {
412 /* The buffer does not have a mapping. Map it in and copy */
413 unsigned int offset = orig_addr & ~PAGE_MASK;
414 char *buffer;
415 unsigned int sz = 0;
416 unsigned long flags;
417
418 while (size) {
419 sz = min_t(size_t, PAGE_SIZE - offset, size);
420
421 local_irq_save(flags);
422 buffer = kmap_atomic(pfn_to_page(pfn));
423 if (dir == DMA_TO_DEVICE)
424 memcpy(vaddr, buffer + offset, sz);
425 else
426 memcpy(buffer + offset, vaddr, sz);
427 kunmap_atomic(buffer);
428 local_irq_restore(flags);
429
430 size -= sz;
431 pfn++;
432 vaddr += sz;
433 offset = 0;
434 }
435 } else if (dir == DMA_TO_DEVICE) {
436 memcpy(vaddr, phys_to_virt(orig_addr), size);
437 } else {
438 memcpy(phys_to_virt(orig_addr), vaddr, size);
439 }
440 }
441
442 phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
443 dma_addr_t tbl_dma_addr,
444 phys_addr_t orig_addr, size_t size,
445 enum dma_data_direction dir,
446 unsigned long attrs)
447 {
448 unsigned long flags;
449 phys_addr_t tlb_addr;
450 unsigned int nslots, stride, index, wrap;
451 int i;
452 unsigned long mask;
453 unsigned long offset_slots;
454 unsigned long max_slots;
455
456 if (no_iotlb_memory)
457 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
458
459 if (mem_encrypt_active())
460 pr_warn_once("%s is active and system is using DMA bounce buffers\n",
461 sme_active() ? "SME" : "SEV");
462
463 mask = dma_get_seg_boundary(hwdev);
464
465 tbl_dma_addr &= mask;
466
467 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
468
469 /*
470 * Carefully handle integer overflow which can occur when mask == ~0UL.
471 */
472 max_slots = mask + 1
473 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
474 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
475
476 /*
477 * For mappings greater than or equal to a page, we limit the stride
478 * (and hence alignment) to a page size.
479 */
480 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
481 if (size >= PAGE_SIZE)
482 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
483 else
484 stride = 1;
485
486 BUG_ON(!nslots);
487
488 /*
489 * Find suitable number of IO TLB entries size that will fit this
490 * request and allocate a buffer from that IO TLB pool.
491 */
492 spin_lock_irqsave(&io_tlb_lock, flags);
493
494 if (unlikely(nslots > io_tlb_nslabs - io_tlb_used))
495 goto not_found;
496
497 index = ALIGN(io_tlb_index, stride);
498 if (index >= io_tlb_nslabs)
499 index = 0;
500 wrap = index;
501
502 do {
503 while (iommu_is_span_boundary(index, nslots, offset_slots,
504 max_slots)) {
505 index += stride;
506 if (index >= io_tlb_nslabs)
507 index = 0;
508 if (index == wrap)
509 goto not_found;
510 }
511
512 /*
513 * If we find a slot that indicates we have 'nslots' number of
514 * contiguous buffers, we allocate the buffers from that slot
515 * and mark the entries as '0' indicating unavailable.
516 */
517 if (io_tlb_list[index] >= nslots) {
518 int count = 0;
519
520 for (i = index; i < (int) (index + nslots); i++)
521 io_tlb_list[i] = 0;
522 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
523 io_tlb_list[i] = ++count;
524 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
525
526 /*
527 * Update the indices to avoid searching in the next
528 * round.
529 */
530 io_tlb_index = ((index + nslots) < io_tlb_nslabs
531 ? (index + nslots) : 0);
532
533 goto found;
534 }
535 index += stride;
536 if (index >= io_tlb_nslabs)
537 index = 0;
538 } while (index != wrap);
539
540 not_found:
541 spin_unlock_irqrestore(&io_tlb_lock, flags);
542 if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit())
543 dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
544 return DMA_MAPPING_ERROR;
545 found:
546 io_tlb_used += nslots;
547 spin_unlock_irqrestore(&io_tlb_lock, flags);
548
549 /*
550 * Save away the mapping from the original address to the DMA address.
551 * This is needed when we sync the memory. Then we sync the buffer if
552 * needed.
553 */
554 for (i = 0; i < nslots; i++)
555 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
556 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
557 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
558 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
559
560 return tlb_addr;
561 }
562
563 /*
564 * tlb_addr is the physical address of the bounce buffer to unmap.
565 */
566 void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
567 size_t size, enum dma_data_direction dir,
568 unsigned long attrs)
569 {
570 unsigned long flags;
571 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
572 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
573 phys_addr_t orig_addr = io_tlb_orig_addr[index];
574
575 /*
576 * First, sync the memory before unmapping the entry
577 */
578 if (orig_addr != INVALID_PHYS_ADDR &&
579 !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
580 ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
581 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
582
583 /*
584 * Return the buffer to the free list by setting the corresponding
585 * entries to indicate the number of contiguous entries available.
586 * While returning the entries to the free list, we merge the entries
587 * with slots below and above the pool being returned.
588 */
589 spin_lock_irqsave(&io_tlb_lock, flags);
590 {
591 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
592 io_tlb_list[index + nslots] : 0);
593 /*
594 * Step 1: return the slots to the free list, merging the
595 * slots with superceeding slots
596 */
597 for (i = index + nslots - 1; i >= index; i--) {
598 io_tlb_list[i] = ++count;
599 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
600 }
601 /*
602 * Step 2: merge the returned slots with the preceding slots,
603 * if available (non zero)
604 */
605 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
606 io_tlb_list[i] = ++count;
607
608 io_tlb_used -= nslots;
609 }
610 spin_unlock_irqrestore(&io_tlb_lock, flags);
611 }
612
613 void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
614 size_t size, enum dma_data_direction dir,
615 enum dma_sync_target target)
616 {
617 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
618 phys_addr_t orig_addr = io_tlb_orig_addr[index];
619
620 if (orig_addr == INVALID_PHYS_ADDR)
621 return;
622 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
623
624 switch (target) {
625 case SYNC_FOR_CPU:
626 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
627 swiotlb_bounce(orig_addr, tlb_addr,
628 size, DMA_FROM_DEVICE);
629 else
630 BUG_ON(dir != DMA_TO_DEVICE);
631 break;
632 case SYNC_FOR_DEVICE:
633 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
634 swiotlb_bounce(orig_addr, tlb_addr,
635 size, DMA_TO_DEVICE);
636 else
637 BUG_ON(dir != DMA_FROM_DEVICE);
638 break;
639 default:
640 BUG();
641 }
642 }
643
644 /*
645 * Create a swiotlb mapping for the buffer at @phys, and in case of DMAing
646 * to the device copy the data into it as well.
647 */
648 bool swiotlb_map(struct device *dev, phys_addr_t *phys, dma_addr_t *dma_addr,
649 size_t size, enum dma_data_direction dir, unsigned long attrs)
650 {
651 trace_swiotlb_bounced(dev, *dma_addr, size, swiotlb_force);
652
653 if (unlikely(swiotlb_force == SWIOTLB_NO_FORCE)) {
654 dev_warn_ratelimited(dev,
655 "Cannot do DMA to address %pa\n", phys);
656 return false;
657 }
658
659 /* Oh well, have to allocate and map a bounce buffer. */
660 *phys = swiotlb_tbl_map_single(dev, __phys_to_dma(dev, io_tlb_start),
661 *phys, size, dir, attrs);
662 if (*phys == DMA_MAPPING_ERROR)
663 return false;
664
665 /* Ensure that the address returned is DMA'ble */
666 *dma_addr = __phys_to_dma(dev, *phys);
667 if (unlikely(!dma_capable(dev, *dma_addr, size))) {
668 swiotlb_tbl_unmap_single(dev, *phys, size, dir,
669 attrs | DMA_ATTR_SKIP_CPU_SYNC);
670 return false;
671 }
672
673 return true;
674 }
675
676 size_t swiotlb_max_mapping_size(struct device *dev)
677 {
678 return ((size_t)1 << IO_TLB_SHIFT) * IO_TLB_SEGSIZE;
679 }
680
681 bool is_swiotlb_active(void)
682 {
683 /*
684 * When SWIOTLB is initialized, even if io_tlb_start points to physical
685 * address zero, io_tlb_end surely doesn't.
686 */
687 return io_tlb_end != 0;
688 }
689
690 #ifdef CONFIG_DEBUG_FS
691
692 static int __init swiotlb_create_debugfs(void)
693 {
694 struct dentry *d_swiotlb_usage;
695 struct dentry *ent;
696
697 d_swiotlb_usage = debugfs_create_dir("swiotlb", NULL);
698
699 if (!d_swiotlb_usage)
700 return -ENOMEM;
701
702 ent = debugfs_create_ulong("io_tlb_nslabs", 0400,
703 d_swiotlb_usage, &io_tlb_nslabs);
704 if (!ent)
705 goto fail;
706
707 ent = debugfs_create_ulong("io_tlb_used", 0400,
708 d_swiotlb_usage, &io_tlb_used);
709 if (!ent)
710 goto fail;
711
712 return 0;
713
714 fail:
715 debugfs_remove_recursive(d_swiotlb_usage);
716 return -ENOMEM;
717 }
718
719 late_initcall(swiotlb_create_debugfs);
720
721 #endif