]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/events/core.c
Merge tag 'drm/tegra/for-5.7-fixes' of git://anongit.freedesktop.org/tegra/linux...
[thirdparty/linux.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance events core code:
4 *
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54
55 #include "internal.h"
56
57 #include <asm/irq_regs.h>
58
59 typedef int (*remote_function_f)(void *);
60
61 struct remote_function_call {
62 struct task_struct *p;
63 remote_function_f func;
64 void *info;
65 int ret;
66 };
67
68 static void remote_function(void *data)
69 {
70 struct remote_function_call *tfc = data;
71 struct task_struct *p = tfc->p;
72
73 if (p) {
74 /* -EAGAIN */
75 if (task_cpu(p) != smp_processor_id())
76 return;
77
78 /*
79 * Now that we're on right CPU with IRQs disabled, we can test
80 * if we hit the right task without races.
81 */
82
83 tfc->ret = -ESRCH; /* No such (running) process */
84 if (p != current)
85 return;
86 }
87
88 tfc->ret = tfc->func(tfc->info);
89 }
90
91 /**
92 * task_function_call - call a function on the cpu on which a task runs
93 * @p: the task to evaluate
94 * @func: the function to be called
95 * @info: the function call argument
96 *
97 * Calls the function @func when the task is currently running. This might
98 * be on the current CPU, which just calls the function directly
99 *
100 * returns: @func return value, or
101 * -ESRCH - when the process isn't running
102 * -EAGAIN - when the process moved away
103 */
104 static int
105 task_function_call(struct task_struct *p, remote_function_f func, void *info)
106 {
107 struct remote_function_call data = {
108 .p = p,
109 .func = func,
110 .info = info,
111 .ret = -EAGAIN,
112 };
113 int ret;
114
115 do {
116 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
117 if (!ret)
118 ret = data.ret;
119 } while (ret == -EAGAIN);
120
121 return ret;
122 }
123
124 /**
125 * cpu_function_call - call a function on the cpu
126 * @func: the function to be called
127 * @info: the function call argument
128 *
129 * Calls the function @func on the remote cpu.
130 *
131 * returns: @func return value or -ENXIO when the cpu is offline
132 */
133 static int cpu_function_call(int cpu, remote_function_f func, void *info)
134 {
135 struct remote_function_call data = {
136 .p = NULL,
137 .func = func,
138 .info = info,
139 .ret = -ENXIO, /* No such CPU */
140 };
141
142 smp_call_function_single(cpu, remote_function, &data, 1);
143
144 return data.ret;
145 }
146
147 static inline struct perf_cpu_context *
148 __get_cpu_context(struct perf_event_context *ctx)
149 {
150 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
151 }
152
153 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
154 struct perf_event_context *ctx)
155 {
156 raw_spin_lock(&cpuctx->ctx.lock);
157 if (ctx)
158 raw_spin_lock(&ctx->lock);
159 }
160
161 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
162 struct perf_event_context *ctx)
163 {
164 if (ctx)
165 raw_spin_unlock(&ctx->lock);
166 raw_spin_unlock(&cpuctx->ctx.lock);
167 }
168
169 #define TASK_TOMBSTONE ((void *)-1L)
170
171 static bool is_kernel_event(struct perf_event *event)
172 {
173 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
174 }
175
176 /*
177 * On task ctx scheduling...
178 *
179 * When !ctx->nr_events a task context will not be scheduled. This means
180 * we can disable the scheduler hooks (for performance) without leaving
181 * pending task ctx state.
182 *
183 * This however results in two special cases:
184 *
185 * - removing the last event from a task ctx; this is relatively straight
186 * forward and is done in __perf_remove_from_context.
187 *
188 * - adding the first event to a task ctx; this is tricky because we cannot
189 * rely on ctx->is_active and therefore cannot use event_function_call().
190 * See perf_install_in_context().
191 *
192 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
193 */
194
195 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
196 struct perf_event_context *, void *);
197
198 struct event_function_struct {
199 struct perf_event *event;
200 event_f func;
201 void *data;
202 };
203
204 static int event_function(void *info)
205 {
206 struct event_function_struct *efs = info;
207 struct perf_event *event = efs->event;
208 struct perf_event_context *ctx = event->ctx;
209 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
210 struct perf_event_context *task_ctx = cpuctx->task_ctx;
211 int ret = 0;
212
213 lockdep_assert_irqs_disabled();
214
215 perf_ctx_lock(cpuctx, task_ctx);
216 /*
217 * Since we do the IPI call without holding ctx->lock things can have
218 * changed, double check we hit the task we set out to hit.
219 */
220 if (ctx->task) {
221 if (ctx->task != current) {
222 ret = -ESRCH;
223 goto unlock;
224 }
225
226 /*
227 * We only use event_function_call() on established contexts,
228 * and event_function() is only ever called when active (or
229 * rather, we'll have bailed in task_function_call() or the
230 * above ctx->task != current test), therefore we must have
231 * ctx->is_active here.
232 */
233 WARN_ON_ONCE(!ctx->is_active);
234 /*
235 * And since we have ctx->is_active, cpuctx->task_ctx must
236 * match.
237 */
238 WARN_ON_ONCE(task_ctx != ctx);
239 } else {
240 WARN_ON_ONCE(&cpuctx->ctx != ctx);
241 }
242
243 efs->func(event, cpuctx, ctx, efs->data);
244 unlock:
245 perf_ctx_unlock(cpuctx, task_ctx);
246
247 return ret;
248 }
249
250 static void event_function_call(struct perf_event *event, event_f func, void *data)
251 {
252 struct perf_event_context *ctx = event->ctx;
253 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
254 struct event_function_struct efs = {
255 .event = event,
256 .func = func,
257 .data = data,
258 };
259
260 if (!event->parent) {
261 /*
262 * If this is a !child event, we must hold ctx::mutex to
263 * stabilize the the event->ctx relation. See
264 * perf_event_ctx_lock().
265 */
266 lockdep_assert_held(&ctx->mutex);
267 }
268
269 if (!task) {
270 cpu_function_call(event->cpu, event_function, &efs);
271 return;
272 }
273
274 if (task == TASK_TOMBSTONE)
275 return;
276
277 again:
278 if (!task_function_call(task, event_function, &efs))
279 return;
280
281 raw_spin_lock_irq(&ctx->lock);
282 /*
283 * Reload the task pointer, it might have been changed by
284 * a concurrent perf_event_context_sched_out().
285 */
286 task = ctx->task;
287 if (task == TASK_TOMBSTONE) {
288 raw_spin_unlock_irq(&ctx->lock);
289 return;
290 }
291 if (ctx->is_active) {
292 raw_spin_unlock_irq(&ctx->lock);
293 goto again;
294 }
295 func(event, NULL, ctx, data);
296 raw_spin_unlock_irq(&ctx->lock);
297 }
298
299 /*
300 * Similar to event_function_call() + event_function(), but hard assumes IRQs
301 * are already disabled and we're on the right CPU.
302 */
303 static void event_function_local(struct perf_event *event, event_f func, void *data)
304 {
305 struct perf_event_context *ctx = event->ctx;
306 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
307 struct task_struct *task = READ_ONCE(ctx->task);
308 struct perf_event_context *task_ctx = NULL;
309
310 lockdep_assert_irqs_disabled();
311
312 if (task) {
313 if (task == TASK_TOMBSTONE)
314 return;
315
316 task_ctx = ctx;
317 }
318
319 perf_ctx_lock(cpuctx, task_ctx);
320
321 task = ctx->task;
322 if (task == TASK_TOMBSTONE)
323 goto unlock;
324
325 if (task) {
326 /*
327 * We must be either inactive or active and the right task,
328 * otherwise we're screwed, since we cannot IPI to somewhere
329 * else.
330 */
331 if (ctx->is_active) {
332 if (WARN_ON_ONCE(task != current))
333 goto unlock;
334
335 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
336 goto unlock;
337 }
338 } else {
339 WARN_ON_ONCE(&cpuctx->ctx != ctx);
340 }
341
342 func(event, cpuctx, ctx, data);
343 unlock:
344 perf_ctx_unlock(cpuctx, task_ctx);
345 }
346
347 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
348 PERF_FLAG_FD_OUTPUT |\
349 PERF_FLAG_PID_CGROUP |\
350 PERF_FLAG_FD_CLOEXEC)
351
352 /*
353 * branch priv levels that need permission checks
354 */
355 #define PERF_SAMPLE_BRANCH_PERM_PLM \
356 (PERF_SAMPLE_BRANCH_KERNEL |\
357 PERF_SAMPLE_BRANCH_HV)
358
359 enum event_type_t {
360 EVENT_FLEXIBLE = 0x1,
361 EVENT_PINNED = 0x2,
362 EVENT_TIME = 0x4,
363 /* see ctx_resched() for details */
364 EVENT_CPU = 0x8,
365 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
366 };
367
368 /*
369 * perf_sched_events : >0 events exist
370 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
371 */
372
373 static void perf_sched_delayed(struct work_struct *work);
374 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
375 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
376 static DEFINE_MUTEX(perf_sched_mutex);
377 static atomic_t perf_sched_count;
378
379 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
380 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
381 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
382
383 static atomic_t nr_mmap_events __read_mostly;
384 static atomic_t nr_comm_events __read_mostly;
385 static atomic_t nr_namespaces_events __read_mostly;
386 static atomic_t nr_task_events __read_mostly;
387 static atomic_t nr_freq_events __read_mostly;
388 static atomic_t nr_switch_events __read_mostly;
389 static atomic_t nr_ksymbol_events __read_mostly;
390 static atomic_t nr_bpf_events __read_mostly;
391 static atomic_t nr_cgroup_events __read_mostly;
392
393 static LIST_HEAD(pmus);
394 static DEFINE_MUTEX(pmus_lock);
395 static struct srcu_struct pmus_srcu;
396 static cpumask_var_t perf_online_mask;
397
398 /*
399 * perf event paranoia level:
400 * -1 - not paranoid at all
401 * 0 - disallow raw tracepoint access for unpriv
402 * 1 - disallow cpu events for unpriv
403 * 2 - disallow kernel profiling for unpriv
404 */
405 int sysctl_perf_event_paranoid __read_mostly = 2;
406
407 /* Minimum for 512 kiB + 1 user control page */
408 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
409
410 /*
411 * max perf event sample rate
412 */
413 #define DEFAULT_MAX_SAMPLE_RATE 100000
414 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
415 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
416
417 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
418
419 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
420 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
421
422 static int perf_sample_allowed_ns __read_mostly =
423 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
424
425 static void update_perf_cpu_limits(void)
426 {
427 u64 tmp = perf_sample_period_ns;
428
429 tmp *= sysctl_perf_cpu_time_max_percent;
430 tmp = div_u64(tmp, 100);
431 if (!tmp)
432 tmp = 1;
433
434 WRITE_ONCE(perf_sample_allowed_ns, tmp);
435 }
436
437 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
438
439 int perf_proc_update_handler(struct ctl_table *table, int write,
440 void __user *buffer, size_t *lenp,
441 loff_t *ppos)
442 {
443 int ret;
444 int perf_cpu = sysctl_perf_cpu_time_max_percent;
445 /*
446 * If throttling is disabled don't allow the write:
447 */
448 if (write && (perf_cpu == 100 || perf_cpu == 0))
449 return -EINVAL;
450
451 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
452 if (ret || !write)
453 return ret;
454
455 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
456 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
457 update_perf_cpu_limits();
458
459 return 0;
460 }
461
462 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
463
464 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
465 void __user *buffer, size_t *lenp,
466 loff_t *ppos)
467 {
468 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
469
470 if (ret || !write)
471 return ret;
472
473 if (sysctl_perf_cpu_time_max_percent == 100 ||
474 sysctl_perf_cpu_time_max_percent == 0) {
475 printk(KERN_WARNING
476 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
477 WRITE_ONCE(perf_sample_allowed_ns, 0);
478 } else {
479 update_perf_cpu_limits();
480 }
481
482 return 0;
483 }
484
485 /*
486 * perf samples are done in some very critical code paths (NMIs).
487 * If they take too much CPU time, the system can lock up and not
488 * get any real work done. This will drop the sample rate when
489 * we detect that events are taking too long.
490 */
491 #define NR_ACCUMULATED_SAMPLES 128
492 static DEFINE_PER_CPU(u64, running_sample_length);
493
494 static u64 __report_avg;
495 static u64 __report_allowed;
496
497 static void perf_duration_warn(struct irq_work *w)
498 {
499 printk_ratelimited(KERN_INFO
500 "perf: interrupt took too long (%lld > %lld), lowering "
501 "kernel.perf_event_max_sample_rate to %d\n",
502 __report_avg, __report_allowed,
503 sysctl_perf_event_sample_rate);
504 }
505
506 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
507
508 void perf_sample_event_took(u64 sample_len_ns)
509 {
510 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
511 u64 running_len;
512 u64 avg_len;
513 u32 max;
514
515 if (max_len == 0)
516 return;
517
518 /* Decay the counter by 1 average sample. */
519 running_len = __this_cpu_read(running_sample_length);
520 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
521 running_len += sample_len_ns;
522 __this_cpu_write(running_sample_length, running_len);
523
524 /*
525 * Note: this will be biased artifically low until we have
526 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
527 * from having to maintain a count.
528 */
529 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
530 if (avg_len <= max_len)
531 return;
532
533 __report_avg = avg_len;
534 __report_allowed = max_len;
535
536 /*
537 * Compute a throttle threshold 25% below the current duration.
538 */
539 avg_len += avg_len / 4;
540 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
541 if (avg_len < max)
542 max /= (u32)avg_len;
543 else
544 max = 1;
545
546 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
547 WRITE_ONCE(max_samples_per_tick, max);
548
549 sysctl_perf_event_sample_rate = max * HZ;
550 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
551
552 if (!irq_work_queue(&perf_duration_work)) {
553 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
554 "kernel.perf_event_max_sample_rate to %d\n",
555 __report_avg, __report_allowed,
556 sysctl_perf_event_sample_rate);
557 }
558 }
559
560 static atomic64_t perf_event_id;
561
562 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
563 enum event_type_t event_type);
564
565 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
566 enum event_type_t event_type,
567 struct task_struct *task);
568
569 static void update_context_time(struct perf_event_context *ctx);
570 static u64 perf_event_time(struct perf_event *event);
571
572 void __weak perf_event_print_debug(void) { }
573
574 extern __weak const char *perf_pmu_name(void)
575 {
576 return "pmu";
577 }
578
579 static inline u64 perf_clock(void)
580 {
581 return local_clock();
582 }
583
584 static inline u64 perf_event_clock(struct perf_event *event)
585 {
586 return event->clock();
587 }
588
589 /*
590 * State based event timekeeping...
591 *
592 * The basic idea is to use event->state to determine which (if any) time
593 * fields to increment with the current delta. This means we only need to
594 * update timestamps when we change state or when they are explicitly requested
595 * (read).
596 *
597 * Event groups make things a little more complicated, but not terribly so. The
598 * rules for a group are that if the group leader is OFF the entire group is
599 * OFF, irrespecive of what the group member states are. This results in
600 * __perf_effective_state().
601 *
602 * A futher ramification is that when a group leader flips between OFF and
603 * !OFF, we need to update all group member times.
604 *
605 *
606 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607 * need to make sure the relevant context time is updated before we try and
608 * update our timestamps.
609 */
610
611 static __always_inline enum perf_event_state
612 __perf_effective_state(struct perf_event *event)
613 {
614 struct perf_event *leader = event->group_leader;
615
616 if (leader->state <= PERF_EVENT_STATE_OFF)
617 return leader->state;
618
619 return event->state;
620 }
621
622 static __always_inline void
623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624 {
625 enum perf_event_state state = __perf_effective_state(event);
626 u64 delta = now - event->tstamp;
627
628 *enabled = event->total_time_enabled;
629 if (state >= PERF_EVENT_STATE_INACTIVE)
630 *enabled += delta;
631
632 *running = event->total_time_running;
633 if (state >= PERF_EVENT_STATE_ACTIVE)
634 *running += delta;
635 }
636
637 static void perf_event_update_time(struct perf_event *event)
638 {
639 u64 now = perf_event_time(event);
640
641 __perf_update_times(event, now, &event->total_time_enabled,
642 &event->total_time_running);
643 event->tstamp = now;
644 }
645
646 static void perf_event_update_sibling_time(struct perf_event *leader)
647 {
648 struct perf_event *sibling;
649
650 for_each_sibling_event(sibling, leader)
651 perf_event_update_time(sibling);
652 }
653
654 static void
655 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656 {
657 if (event->state == state)
658 return;
659
660 perf_event_update_time(event);
661 /*
662 * If a group leader gets enabled/disabled all its siblings
663 * are affected too.
664 */
665 if ((event->state < 0) ^ (state < 0))
666 perf_event_update_sibling_time(event);
667
668 WRITE_ONCE(event->state, state);
669 }
670
671 #ifdef CONFIG_CGROUP_PERF
672
673 static inline bool
674 perf_cgroup_match(struct perf_event *event)
675 {
676 struct perf_event_context *ctx = event->ctx;
677 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
678
679 /* @event doesn't care about cgroup */
680 if (!event->cgrp)
681 return true;
682
683 /* wants specific cgroup scope but @cpuctx isn't associated with any */
684 if (!cpuctx->cgrp)
685 return false;
686
687 /*
688 * Cgroup scoping is recursive. An event enabled for a cgroup is
689 * also enabled for all its descendant cgroups. If @cpuctx's
690 * cgroup is a descendant of @event's (the test covers identity
691 * case), it's a match.
692 */
693 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
694 event->cgrp->css.cgroup);
695 }
696
697 static inline void perf_detach_cgroup(struct perf_event *event)
698 {
699 css_put(&event->cgrp->css);
700 event->cgrp = NULL;
701 }
702
703 static inline int is_cgroup_event(struct perf_event *event)
704 {
705 return event->cgrp != NULL;
706 }
707
708 static inline u64 perf_cgroup_event_time(struct perf_event *event)
709 {
710 struct perf_cgroup_info *t;
711
712 t = per_cpu_ptr(event->cgrp->info, event->cpu);
713 return t->time;
714 }
715
716 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
717 {
718 struct perf_cgroup_info *info;
719 u64 now;
720
721 now = perf_clock();
722
723 info = this_cpu_ptr(cgrp->info);
724
725 info->time += now - info->timestamp;
726 info->timestamp = now;
727 }
728
729 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
730 {
731 struct perf_cgroup *cgrp = cpuctx->cgrp;
732 struct cgroup_subsys_state *css;
733
734 if (cgrp) {
735 for (css = &cgrp->css; css; css = css->parent) {
736 cgrp = container_of(css, struct perf_cgroup, css);
737 __update_cgrp_time(cgrp);
738 }
739 }
740 }
741
742 static inline void update_cgrp_time_from_event(struct perf_event *event)
743 {
744 struct perf_cgroup *cgrp;
745
746 /*
747 * ensure we access cgroup data only when needed and
748 * when we know the cgroup is pinned (css_get)
749 */
750 if (!is_cgroup_event(event))
751 return;
752
753 cgrp = perf_cgroup_from_task(current, event->ctx);
754 /*
755 * Do not update time when cgroup is not active
756 */
757 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
758 __update_cgrp_time(event->cgrp);
759 }
760
761 static inline void
762 perf_cgroup_set_timestamp(struct task_struct *task,
763 struct perf_event_context *ctx)
764 {
765 struct perf_cgroup *cgrp;
766 struct perf_cgroup_info *info;
767 struct cgroup_subsys_state *css;
768
769 /*
770 * ctx->lock held by caller
771 * ensure we do not access cgroup data
772 * unless we have the cgroup pinned (css_get)
773 */
774 if (!task || !ctx->nr_cgroups)
775 return;
776
777 cgrp = perf_cgroup_from_task(task, ctx);
778
779 for (css = &cgrp->css; css; css = css->parent) {
780 cgrp = container_of(css, struct perf_cgroup, css);
781 info = this_cpu_ptr(cgrp->info);
782 info->timestamp = ctx->timestamp;
783 }
784 }
785
786 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
787
788 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
789 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
790
791 /*
792 * reschedule events based on the cgroup constraint of task.
793 *
794 * mode SWOUT : schedule out everything
795 * mode SWIN : schedule in based on cgroup for next
796 */
797 static void perf_cgroup_switch(struct task_struct *task, int mode)
798 {
799 struct perf_cpu_context *cpuctx;
800 struct list_head *list;
801 unsigned long flags;
802
803 /*
804 * Disable interrupts and preemption to avoid this CPU's
805 * cgrp_cpuctx_entry to change under us.
806 */
807 local_irq_save(flags);
808
809 list = this_cpu_ptr(&cgrp_cpuctx_list);
810 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
811 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
812
813 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
814 perf_pmu_disable(cpuctx->ctx.pmu);
815
816 if (mode & PERF_CGROUP_SWOUT) {
817 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
818 /*
819 * must not be done before ctxswout due
820 * to event_filter_match() in event_sched_out()
821 */
822 cpuctx->cgrp = NULL;
823 }
824
825 if (mode & PERF_CGROUP_SWIN) {
826 WARN_ON_ONCE(cpuctx->cgrp);
827 /*
828 * set cgrp before ctxsw in to allow
829 * event_filter_match() to not have to pass
830 * task around
831 * we pass the cpuctx->ctx to perf_cgroup_from_task()
832 * because cgorup events are only per-cpu
833 */
834 cpuctx->cgrp = perf_cgroup_from_task(task,
835 &cpuctx->ctx);
836 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
837 }
838 perf_pmu_enable(cpuctx->ctx.pmu);
839 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
840 }
841
842 local_irq_restore(flags);
843 }
844
845 static inline void perf_cgroup_sched_out(struct task_struct *task,
846 struct task_struct *next)
847 {
848 struct perf_cgroup *cgrp1;
849 struct perf_cgroup *cgrp2 = NULL;
850
851 rcu_read_lock();
852 /*
853 * we come here when we know perf_cgroup_events > 0
854 * we do not need to pass the ctx here because we know
855 * we are holding the rcu lock
856 */
857 cgrp1 = perf_cgroup_from_task(task, NULL);
858 cgrp2 = perf_cgroup_from_task(next, NULL);
859
860 /*
861 * only schedule out current cgroup events if we know
862 * that we are switching to a different cgroup. Otherwise,
863 * do no touch the cgroup events.
864 */
865 if (cgrp1 != cgrp2)
866 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
867
868 rcu_read_unlock();
869 }
870
871 static inline void perf_cgroup_sched_in(struct task_struct *prev,
872 struct task_struct *task)
873 {
874 struct perf_cgroup *cgrp1;
875 struct perf_cgroup *cgrp2 = NULL;
876
877 rcu_read_lock();
878 /*
879 * we come here when we know perf_cgroup_events > 0
880 * we do not need to pass the ctx here because we know
881 * we are holding the rcu lock
882 */
883 cgrp1 = perf_cgroup_from_task(task, NULL);
884 cgrp2 = perf_cgroup_from_task(prev, NULL);
885
886 /*
887 * only need to schedule in cgroup events if we are changing
888 * cgroup during ctxsw. Cgroup events were not scheduled
889 * out of ctxsw out if that was not the case.
890 */
891 if (cgrp1 != cgrp2)
892 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
893
894 rcu_read_unlock();
895 }
896
897 static int perf_cgroup_ensure_storage(struct perf_event *event,
898 struct cgroup_subsys_state *css)
899 {
900 struct perf_cpu_context *cpuctx;
901 struct perf_event **storage;
902 int cpu, heap_size, ret = 0;
903
904 /*
905 * Allow storage to have sufficent space for an iterator for each
906 * possibly nested cgroup plus an iterator for events with no cgroup.
907 */
908 for (heap_size = 1; css; css = css->parent)
909 heap_size++;
910
911 for_each_possible_cpu(cpu) {
912 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
913 if (heap_size <= cpuctx->heap_size)
914 continue;
915
916 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
917 GFP_KERNEL, cpu_to_node(cpu));
918 if (!storage) {
919 ret = -ENOMEM;
920 break;
921 }
922
923 raw_spin_lock_irq(&cpuctx->ctx.lock);
924 if (cpuctx->heap_size < heap_size) {
925 swap(cpuctx->heap, storage);
926 if (storage == cpuctx->heap_default)
927 storage = NULL;
928 cpuctx->heap_size = heap_size;
929 }
930 raw_spin_unlock_irq(&cpuctx->ctx.lock);
931
932 kfree(storage);
933 }
934
935 return ret;
936 }
937
938 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
939 struct perf_event_attr *attr,
940 struct perf_event *group_leader)
941 {
942 struct perf_cgroup *cgrp;
943 struct cgroup_subsys_state *css;
944 struct fd f = fdget(fd);
945 int ret = 0;
946
947 if (!f.file)
948 return -EBADF;
949
950 css = css_tryget_online_from_dir(f.file->f_path.dentry,
951 &perf_event_cgrp_subsys);
952 if (IS_ERR(css)) {
953 ret = PTR_ERR(css);
954 goto out;
955 }
956
957 ret = perf_cgroup_ensure_storage(event, css);
958 if (ret)
959 goto out;
960
961 cgrp = container_of(css, struct perf_cgroup, css);
962 event->cgrp = cgrp;
963
964 /*
965 * all events in a group must monitor
966 * the same cgroup because a task belongs
967 * to only one perf cgroup at a time
968 */
969 if (group_leader && group_leader->cgrp != cgrp) {
970 perf_detach_cgroup(event);
971 ret = -EINVAL;
972 }
973 out:
974 fdput(f);
975 return ret;
976 }
977
978 static inline void
979 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
980 {
981 struct perf_cgroup_info *t;
982 t = per_cpu_ptr(event->cgrp->info, event->cpu);
983 event->shadow_ctx_time = now - t->timestamp;
984 }
985
986 static inline void
987 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
988 {
989 struct perf_cpu_context *cpuctx;
990
991 if (!is_cgroup_event(event))
992 return;
993
994 /*
995 * Because cgroup events are always per-cpu events,
996 * @ctx == &cpuctx->ctx.
997 */
998 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
999
1000 /*
1001 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1002 * matching the event's cgroup, we must do this for every new event,
1003 * because if the first would mismatch, the second would not try again
1004 * and we would leave cpuctx->cgrp unset.
1005 */
1006 if (ctx->is_active && !cpuctx->cgrp) {
1007 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1008
1009 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1010 cpuctx->cgrp = cgrp;
1011 }
1012
1013 if (ctx->nr_cgroups++)
1014 return;
1015
1016 list_add(&cpuctx->cgrp_cpuctx_entry,
1017 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1018 }
1019
1020 static inline void
1021 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1022 {
1023 struct perf_cpu_context *cpuctx;
1024
1025 if (!is_cgroup_event(event))
1026 return;
1027
1028 /*
1029 * Because cgroup events are always per-cpu events,
1030 * @ctx == &cpuctx->ctx.
1031 */
1032 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1033
1034 if (--ctx->nr_cgroups)
1035 return;
1036
1037 if (ctx->is_active && cpuctx->cgrp)
1038 cpuctx->cgrp = NULL;
1039
1040 list_del(&cpuctx->cgrp_cpuctx_entry);
1041 }
1042
1043 #else /* !CONFIG_CGROUP_PERF */
1044
1045 static inline bool
1046 perf_cgroup_match(struct perf_event *event)
1047 {
1048 return true;
1049 }
1050
1051 static inline void perf_detach_cgroup(struct perf_event *event)
1052 {}
1053
1054 static inline int is_cgroup_event(struct perf_event *event)
1055 {
1056 return 0;
1057 }
1058
1059 static inline void update_cgrp_time_from_event(struct perf_event *event)
1060 {
1061 }
1062
1063 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1064 {
1065 }
1066
1067 static inline void perf_cgroup_sched_out(struct task_struct *task,
1068 struct task_struct *next)
1069 {
1070 }
1071
1072 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1073 struct task_struct *task)
1074 {
1075 }
1076
1077 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1078 struct perf_event_attr *attr,
1079 struct perf_event *group_leader)
1080 {
1081 return -EINVAL;
1082 }
1083
1084 static inline void
1085 perf_cgroup_set_timestamp(struct task_struct *task,
1086 struct perf_event_context *ctx)
1087 {
1088 }
1089
1090 static inline void
1091 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1092 {
1093 }
1094
1095 static inline void
1096 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1097 {
1098 }
1099
1100 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1101 {
1102 return 0;
1103 }
1104
1105 static inline void
1106 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1107 {
1108 }
1109
1110 static inline void
1111 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1112 {
1113 }
1114 #endif
1115
1116 /*
1117 * set default to be dependent on timer tick just
1118 * like original code
1119 */
1120 #define PERF_CPU_HRTIMER (1000 / HZ)
1121 /*
1122 * function must be called with interrupts disabled
1123 */
1124 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1125 {
1126 struct perf_cpu_context *cpuctx;
1127 bool rotations;
1128
1129 lockdep_assert_irqs_disabled();
1130
1131 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1132 rotations = perf_rotate_context(cpuctx);
1133
1134 raw_spin_lock(&cpuctx->hrtimer_lock);
1135 if (rotations)
1136 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1137 else
1138 cpuctx->hrtimer_active = 0;
1139 raw_spin_unlock(&cpuctx->hrtimer_lock);
1140
1141 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1142 }
1143
1144 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1145 {
1146 struct hrtimer *timer = &cpuctx->hrtimer;
1147 struct pmu *pmu = cpuctx->ctx.pmu;
1148 u64 interval;
1149
1150 /* no multiplexing needed for SW PMU */
1151 if (pmu->task_ctx_nr == perf_sw_context)
1152 return;
1153
1154 /*
1155 * check default is sane, if not set then force to
1156 * default interval (1/tick)
1157 */
1158 interval = pmu->hrtimer_interval_ms;
1159 if (interval < 1)
1160 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1161
1162 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1163
1164 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1165 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1166 timer->function = perf_mux_hrtimer_handler;
1167 }
1168
1169 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1170 {
1171 struct hrtimer *timer = &cpuctx->hrtimer;
1172 struct pmu *pmu = cpuctx->ctx.pmu;
1173 unsigned long flags;
1174
1175 /* not for SW PMU */
1176 if (pmu->task_ctx_nr == perf_sw_context)
1177 return 0;
1178
1179 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1180 if (!cpuctx->hrtimer_active) {
1181 cpuctx->hrtimer_active = 1;
1182 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1183 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1184 }
1185 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1186
1187 return 0;
1188 }
1189
1190 void perf_pmu_disable(struct pmu *pmu)
1191 {
1192 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1193 if (!(*count)++)
1194 pmu->pmu_disable(pmu);
1195 }
1196
1197 void perf_pmu_enable(struct pmu *pmu)
1198 {
1199 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1200 if (!--(*count))
1201 pmu->pmu_enable(pmu);
1202 }
1203
1204 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1205
1206 /*
1207 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1208 * perf_event_task_tick() are fully serialized because they're strictly cpu
1209 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1210 * disabled, while perf_event_task_tick is called from IRQ context.
1211 */
1212 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1213 {
1214 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1215
1216 lockdep_assert_irqs_disabled();
1217
1218 WARN_ON(!list_empty(&ctx->active_ctx_list));
1219
1220 list_add(&ctx->active_ctx_list, head);
1221 }
1222
1223 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1224 {
1225 lockdep_assert_irqs_disabled();
1226
1227 WARN_ON(list_empty(&ctx->active_ctx_list));
1228
1229 list_del_init(&ctx->active_ctx_list);
1230 }
1231
1232 static void get_ctx(struct perf_event_context *ctx)
1233 {
1234 refcount_inc(&ctx->refcount);
1235 }
1236
1237 static void free_ctx(struct rcu_head *head)
1238 {
1239 struct perf_event_context *ctx;
1240
1241 ctx = container_of(head, struct perf_event_context, rcu_head);
1242 kfree(ctx->task_ctx_data);
1243 kfree(ctx);
1244 }
1245
1246 static void put_ctx(struct perf_event_context *ctx)
1247 {
1248 if (refcount_dec_and_test(&ctx->refcount)) {
1249 if (ctx->parent_ctx)
1250 put_ctx(ctx->parent_ctx);
1251 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1252 put_task_struct(ctx->task);
1253 call_rcu(&ctx->rcu_head, free_ctx);
1254 }
1255 }
1256
1257 /*
1258 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1259 * perf_pmu_migrate_context() we need some magic.
1260 *
1261 * Those places that change perf_event::ctx will hold both
1262 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1263 *
1264 * Lock ordering is by mutex address. There are two other sites where
1265 * perf_event_context::mutex nests and those are:
1266 *
1267 * - perf_event_exit_task_context() [ child , 0 ]
1268 * perf_event_exit_event()
1269 * put_event() [ parent, 1 ]
1270 *
1271 * - perf_event_init_context() [ parent, 0 ]
1272 * inherit_task_group()
1273 * inherit_group()
1274 * inherit_event()
1275 * perf_event_alloc()
1276 * perf_init_event()
1277 * perf_try_init_event() [ child , 1 ]
1278 *
1279 * While it appears there is an obvious deadlock here -- the parent and child
1280 * nesting levels are inverted between the two. This is in fact safe because
1281 * life-time rules separate them. That is an exiting task cannot fork, and a
1282 * spawning task cannot (yet) exit.
1283 *
1284 * But remember that that these are parent<->child context relations, and
1285 * migration does not affect children, therefore these two orderings should not
1286 * interact.
1287 *
1288 * The change in perf_event::ctx does not affect children (as claimed above)
1289 * because the sys_perf_event_open() case will install a new event and break
1290 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1291 * concerned with cpuctx and that doesn't have children.
1292 *
1293 * The places that change perf_event::ctx will issue:
1294 *
1295 * perf_remove_from_context();
1296 * synchronize_rcu();
1297 * perf_install_in_context();
1298 *
1299 * to affect the change. The remove_from_context() + synchronize_rcu() should
1300 * quiesce the event, after which we can install it in the new location. This
1301 * means that only external vectors (perf_fops, prctl) can perturb the event
1302 * while in transit. Therefore all such accessors should also acquire
1303 * perf_event_context::mutex to serialize against this.
1304 *
1305 * However; because event->ctx can change while we're waiting to acquire
1306 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1307 * function.
1308 *
1309 * Lock order:
1310 * exec_update_mutex
1311 * task_struct::perf_event_mutex
1312 * perf_event_context::mutex
1313 * perf_event::child_mutex;
1314 * perf_event_context::lock
1315 * perf_event::mmap_mutex
1316 * mmap_sem
1317 * perf_addr_filters_head::lock
1318 *
1319 * cpu_hotplug_lock
1320 * pmus_lock
1321 * cpuctx->mutex / perf_event_context::mutex
1322 */
1323 static struct perf_event_context *
1324 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1325 {
1326 struct perf_event_context *ctx;
1327
1328 again:
1329 rcu_read_lock();
1330 ctx = READ_ONCE(event->ctx);
1331 if (!refcount_inc_not_zero(&ctx->refcount)) {
1332 rcu_read_unlock();
1333 goto again;
1334 }
1335 rcu_read_unlock();
1336
1337 mutex_lock_nested(&ctx->mutex, nesting);
1338 if (event->ctx != ctx) {
1339 mutex_unlock(&ctx->mutex);
1340 put_ctx(ctx);
1341 goto again;
1342 }
1343
1344 return ctx;
1345 }
1346
1347 static inline struct perf_event_context *
1348 perf_event_ctx_lock(struct perf_event *event)
1349 {
1350 return perf_event_ctx_lock_nested(event, 0);
1351 }
1352
1353 static void perf_event_ctx_unlock(struct perf_event *event,
1354 struct perf_event_context *ctx)
1355 {
1356 mutex_unlock(&ctx->mutex);
1357 put_ctx(ctx);
1358 }
1359
1360 /*
1361 * This must be done under the ctx->lock, such as to serialize against
1362 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1363 * calling scheduler related locks and ctx->lock nests inside those.
1364 */
1365 static __must_check struct perf_event_context *
1366 unclone_ctx(struct perf_event_context *ctx)
1367 {
1368 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1369
1370 lockdep_assert_held(&ctx->lock);
1371
1372 if (parent_ctx)
1373 ctx->parent_ctx = NULL;
1374 ctx->generation++;
1375
1376 return parent_ctx;
1377 }
1378
1379 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1380 enum pid_type type)
1381 {
1382 u32 nr;
1383 /*
1384 * only top level events have the pid namespace they were created in
1385 */
1386 if (event->parent)
1387 event = event->parent;
1388
1389 nr = __task_pid_nr_ns(p, type, event->ns);
1390 /* avoid -1 if it is idle thread or runs in another ns */
1391 if (!nr && !pid_alive(p))
1392 nr = -1;
1393 return nr;
1394 }
1395
1396 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1397 {
1398 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1399 }
1400
1401 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1402 {
1403 return perf_event_pid_type(event, p, PIDTYPE_PID);
1404 }
1405
1406 /*
1407 * If we inherit events we want to return the parent event id
1408 * to userspace.
1409 */
1410 static u64 primary_event_id(struct perf_event *event)
1411 {
1412 u64 id = event->id;
1413
1414 if (event->parent)
1415 id = event->parent->id;
1416
1417 return id;
1418 }
1419
1420 /*
1421 * Get the perf_event_context for a task and lock it.
1422 *
1423 * This has to cope with with the fact that until it is locked,
1424 * the context could get moved to another task.
1425 */
1426 static struct perf_event_context *
1427 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1428 {
1429 struct perf_event_context *ctx;
1430
1431 retry:
1432 /*
1433 * One of the few rules of preemptible RCU is that one cannot do
1434 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1435 * part of the read side critical section was irqs-enabled -- see
1436 * rcu_read_unlock_special().
1437 *
1438 * Since ctx->lock nests under rq->lock we must ensure the entire read
1439 * side critical section has interrupts disabled.
1440 */
1441 local_irq_save(*flags);
1442 rcu_read_lock();
1443 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1444 if (ctx) {
1445 /*
1446 * If this context is a clone of another, it might
1447 * get swapped for another underneath us by
1448 * perf_event_task_sched_out, though the
1449 * rcu_read_lock() protects us from any context
1450 * getting freed. Lock the context and check if it
1451 * got swapped before we could get the lock, and retry
1452 * if so. If we locked the right context, then it
1453 * can't get swapped on us any more.
1454 */
1455 raw_spin_lock(&ctx->lock);
1456 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1457 raw_spin_unlock(&ctx->lock);
1458 rcu_read_unlock();
1459 local_irq_restore(*flags);
1460 goto retry;
1461 }
1462
1463 if (ctx->task == TASK_TOMBSTONE ||
1464 !refcount_inc_not_zero(&ctx->refcount)) {
1465 raw_spin_unlock(&ctx->lock);
1466 ctx = NULL;
1467 } else {
1468 WARN_ON_ONCE(ctx->task != task);
1469 }
1470 }
1471 rcu_read_unlock();
1472 if (!ctx)
1473 local_irq_restore(*flags);
1474 return ctx;
1475 }
1476
1477 /*
1478 * Get the context for a task and increment its pin_count so it
1479 * can't get swapped to another task. This also increments its
1480 * reference count so that the context can't get freed.
1481 */
1482 static struct perf_event_context *
1483 perf_pin_task_context(struct task_struct *task, int ctxn)
1484 {
1485 struct perf_event_context *ctx;
1486 unsigned long flags;
1487
1488 ctx = perf_lock_task_context(task, ctxn, &flags);
1489 if (ctx) {
1490 ++ctx->pin_count;
1491 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1492 }
1493 return ctx;
1494 }
1495
1496 static void perf_unpin_context(struct perf_event_context *ctx)
1497 {
1498 unsigned long flags;
1499
1500 raw_spin_lock_irqsave(&ctx->lock, flags);
1501 --ctx->pin_count;
1502 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1503 }
1504
1505 /*
1506 * Update the record of the current time in a context.
1507 */
1508 static void update_context_time(struct perf_event_context *ctx)
1509 {
1510 u64 now = perf_clock();
1511
1512 ctx->time += now - ctx->timestamp;
1513 ctx->timestamp = now;
1514 }
1515
1516 static u64 perf_event_time(struct perf_event *event)
1517 {
1518 struct perf_event_context *ctx = event->ctx;
1519
1520 if (is_cgroup_event(event))
1521 return perf_cgroup_event_time(event);
1522
1523 return ctx ? ctx->time : 0;
1524 }
1525
1526 static enum event_type_t get_event_type(struct perf_event *event)
1527 {
1528 struct perf_event_context *ctx = event->ctx;
1529 enum event_type_t event_type;
1530
1531 lockdep_assert_held(&ctx->lock);
1532
1533 /*
1534 * It's 'group type', really, because if our group leader is
1535 * pinned, so are we.
1536 */
1537 if (event->group_leader != event)
1538 event = event->group_leader;
1539
1540 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1541 if (!ctx->task)
1542 event_type |= EVENT_CPU;
1543
1544 return event_type;
1545 }
1546
1547 /*
1548 * Helper function to initialize event group nodes.
1549 */
1550 static void init_event_group(struct perf_event *event)
1551 {
1552 RB_CLEAR_NODE(&event->group_node);
1553 event->group_index = 0;
1554 }
1555
1556 /*
1557 * Extract pinned or flexible groups from the context
1558 * based on event attrs bits.
1559 */
1560 static struct perf_event_groups *
1561 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1562 {
1563 if (event->attr.pinned)
1564 return &ctx->pinned_groups;
1565 else
1566 return &ctx->flexible_groups;
1567 }
1568
1569 /*
1570 * Helper function to initializes perf_event_group trees.
1571 */
1572 static void perf_event_groups_init(struct perf_event_groups *groups)
1573 {
1574 groups->tree = RB_ROOT;
1575 groups->index = 0;
1576 }
1577
1578 /*
1579 * Compare function for event groups;
1580 *
1581 * Implements complex key that first sorts by CPU and then by virtual index
1582 * which provides ordering when rotating groups for the same CPU.
1583 */
1584 static bool
1585 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1586 {
1587 if (left->cpu < right->cpu)
1588 return true;
1589 if (left->cpu > right->cpu)
1590 return false;
1591
1592 #ifdef CONFIG_CGROUP_PERF
1593 if (left->cgrp != right->cgrp) {
1594 if (!left->cgrp || !left->cgrp->css.cgroup) {
1595 /*
1596 * Left has no cgroup but right does, no cgroups come
1597 * first.
1598 */
1599 return true;
1600 }
1601 if (!right->cgrp || !right->cgrp->css.cgroup) {
1602 /*
1603 * Right has no cgroup but left does, no cgroups come
1604 * first.
1605 */
1606 return false;
1607 }
1608 /* Two dissimilar cgroups, order by id. */
1609 if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id)
1610 return true;
1611
1612 return false;
1613 }
1614 #endif
1615
1616 if (left->group_index < right->group_index)
1617 return true;
1618 if (left->group_index > right->group_index)
1619 return false;
1620
1621 return false;
1622 }
1623
1624 /*
1625 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1626 * key (see perf_event_groups_less). This places it last inside the CPU
1627 * subtree.
1628 */
1629 static void
1630 perf_event_groups_insert(struct perf_event_groups *groups,
1631 struct perf_event *event)
1632 {
1633 struct perf_event *node_event;
1634 struct rb_node *parent;
1635 struct rb_node **node;
1636
1637 event->group_index = ++groups->index;
1638
1639 node = &groups->tree.rb_node;
1640 parent = *node;
1641
1642 while (*node) {
1643 parent = *node;
1644 node_event = container_of(*node, struct perf_event, group_node);
1645
1646 if (perf_event_groups_less(event, node_event))
1647 node = &parent->rb_left;
1648 else
1649 node = &parent->rb_right;
1650 }
1651
1652 rb_link_node(&event->group_node, parent, node);
1653 rb_insert_color(&event->group_node, &groups->tree);
1654 }
1655
1656 /*
1657 * Helper function to insert event into the pinned or flexible groups.
1658 */
1659 static void
1660 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1661 {
1662 struct perf_event_groups *groups;
1663
1664 groups = get_event_groups(event, ctx);
1665 perf_event_groups_insert(groups, event);
1666 }
1667
1668 /*
1669 * Delete a group from a tree.
1670 */
1671 static void
1672 perf_event_groups_delete(struct perf_event_groups *groups,
1673 struct perf_event *event)
1674 {
1675 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1676 RB_EMPTY_ROOT(&groups->tree));
1677
1678 rb_erase(&event->group_node, &groups->tree);
1679 init_event_group(event);
1680 }
1681
1682 /*
1683 * Helper function to delete event from its groups.
1684 */
1685 static void
1686 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1687 {
1688 struct perf_event_groups *groups;
1689
1690 groups = get_event_groups(event, ctx);
1691 perf_event_groups_delete(groups, event);
1692 }
1693
1694 /*
1695 * Get the leftmost event in the cpu/cgroup subtree.
1696 */
1697 static struct perf_event *
1698 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1699 struct cgroup *cgrp)
1700 {
1701 struct perf_event *node_event = NULL, *match = NULL;
1702 struct rb_node *node = groups->tree.rb_node;
1703 #ifdef CONFIG_CGROUP_PERF
1704 u64 node_cgrp_id, cgrp_id = 0;
1705
1706 if (cgrp)
1707 cgrp_id = cgrp->kn->id;
1708 #endif
1709
1710 while (node) {
1711 node_event = container_of(node, struct perf_event, group_node);
1712
1713 if (cpu < node_event->cpu) {
1714 node = node->rb_left;
1715 continue;
1716 }
1717 if (cpu > node_event->cpu) {
1718 node = node->rb_right;
1719 continue;
1720 }
1721 #ifdef CONFIG_CGROUP_PERF
1722 node_cgrp_id = 0;
1723 if (node_event->cgrp && node_event->cgrp->css.cgroup)
1724 node_cgrp_id = node_event->cgrp->css.cgroup->kn->id;
1725
1726 if (cgrp_id < node_cgrp_id) {
1727 node = node->rb_left;
1728 continue;
1729 }
1730 if (cgrp_id > node_cgrp_id) {
1731 node = node->rb_right;
1732 continue;
1733 }
1734 #endif
1735 match = node_event;
1736 node = node->rb_left;
1737 }
1738
1739 return match;
1740 }
1741
1742 /*
1743 * Like rb_entry_next_safe() for the @cpu subtree.
1744 */
1745 static struct perf_event *
1746 perf_event_groups_next(struct perf_event *event)
1747 {
1748 struct perf_event *next;
1749 #ifdef CONFIG_CGROUP_PERF
1750 u64 curr_cgrp_id = 0;
1751 u64 next_cgrp_id = 0;
1752 #endif
1753
1754 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1755 if (next == NULL || next->cpu != event->cpu)
1756 return NULL;
1757
1758 #ifdef CONFIG_CGROUP_PERF
1759 if (event->cgrp && event->cgrp->css.cgroup)
1760 curr_cgrp_id = event->cgrp->css.cgroup->kn->id;
1761
1762 if (next->cgrp && next->cgrp->css.cgroup)
1763 next_cgrp_id = next->cgrp->css.cgroup->kn->id;
1764
1765 if (curr_cgrp_id != next_cgrp_id)
1766 return NULL;
1767 #endif
1768 return next;
1769 }
1770
1771 /*
1772 * Iterate through the whole groups tree.
1773 */
1774 #define perf_event_groups_for_each(event, groups) \
1775 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1776 typeof(*event), group_node); event; \
1777 event = rb_entry_safe(rb_next(&event->group_node), \
1778 typeof(*event), group_node))
1779
1780 /*
1781 * Add an event from the lists for its context.
1782 * Must be called with ctx->mutex and ctx->lock held.
1783 */
1784 static void
1785 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1786 {
1787 lockdep_assert_held(&ctx->lock);
1788
1789 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1790 event->attach_state |= PERF_ATTACH_CONTEXT;
1791
1792 event->tstamp = perf_event_time(event);
1793
1794 /*
1795 * If we're a stand alone event or group leader, we go to the context
1796 * list, group events are kept attached to the group so that
1797 * perf_group_detach can, at all times, locate all siblings.
1798 */
1799 if (event->group_leader == event) {
1800 event->group_caps = event->event_caps;
1801 add_event_to_groups(event, ctx);
1802 }
1803
1804 list_add_rcu(&event->event_entry, &ctx->event_list);
1805 ctx->nr_events++;
1806 if (event->attr.inherit_stat)
1807 ctx->nr_stat++;
1808
1809 if (event->state > PERF_EVENT_STATE_OFF)
1810 perf_cgroup_event_enable(event, ctx);
1811
1812 ctx->generation++;
1813 }
1814
1815 /*
1816 * Initialize event state based on the perf_event_attr::disabled.
1817 */
1818 static inline void perf_event__state_init(struct perf_event *event)
1819 {
1820 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1821 PERF_EVENT_STATE_INACTIVE;
1822 }
1823
1824 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1825 {
1826 int entry = sizeof(u64); /* value */
1827 int size = 0;
1828 int nr = 1;
1829
1830 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1831 size += sizeof(u64);
1832
1833 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1834 size += sizeof(u64);
1835
1836 if (event->attr.read_format & PERF_FORMAT_ID)
1837 entry += sizeof(u64);
1838
1839 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1840 nr += nr_siblings;
1841 size += sizeof(u64);
1842 }
1843
1844 size += entry * nr;
1845 event->read_size = size;
1846 }
1847
1848 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1849 {
1850 struct perf_sample_data *data;
1851 u16 size = 0;
1852
1853 if (sample_type & PERF_SAMPLE_IP)
1854 size += sizeof(data->ip);
1855
1856 if (sample_type & PERF_SAMPLE_ADDR)
1857 size += sizeof(data->addr);
1858
1859 if (sample_type & PERF_SAMPLE_PERIOD)
1860 size += sizeof(data->period);
1861
1862 if (sample_type & PERF_SAMPLE_WEIGHT)
1863 size += sizeof(data->weight);
1864
1865 if (sample_type & PERF_SAMPLE_READ)
1866 size += event->read_size;
1867
1868 if (sample_type & PERF_SAMPLE_DATA_SRC)
1869 size += sizeof(data->data_src.val);
1870
1871 if (sample_type & PERF_SAMPLE_TRANSACTION)
1872 size += sizeof(data->txn);
1873
1874 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1875 size += sizeof(data->phys_addr);
1876
1877 if (sample_type & PERF_SAMPLE_CGROUP)
1878 size += sizeof(data->cgroup);
1879
1880 event->header_size = size;
1881 }
1882
1883 /*
1884 * Called at perf_event creation and when events are attached/detached from a
1885 * group.
1886 */
1887 static void perf_event__header_size(struct perf_event *event)
1888 {
1889 __perf_event_read_size(event,
1890 event->group_leader->nr_siblings);
1891 __perf_event_header_size(event, event->attr.sample_type);
1892 }
1893
1894 static void perf_event__id_header_size(struct perf_event *event)
1895 {
1896 struct perf_sample_data *data;
1897 u64 sample_type = event->attr.sample_type;
1898 u16 size = 0;
1899
1900 if (sample_type & PERF_SAMPLE_TID)
1901 size += sizeof(data->tid_entry);
1902
1903 if (sample_type & PERF_SAMPLE_TIME)
1904 size += sizeof(data->time);
1905
1906 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1907 size += sizeof(data->id);
1908
1909 if (sample_type & PERF_SAMPLE_ID)
1910 size += sizeof(data->id);
1911
1912 if (sample_type & PERF_SAMPLE_STREAM_ID)
1913 size += sizeof(data->stream_id);
1914
1915 if (sample_type & PERF_SAMPLE_CPU)
1916 size += sizeof(data->cpu_entry);
1917
1918 event->id_header_size = size;
1919 }
1920
1921 static bool perf_event_validate_size(struct perf_event *event)
1922 {
1923 /*
1924 * The values computed here will be over-written when we actually
1925 * attach the event.
1926 */
1927 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1928 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1929 perf_event__id_header_size(event);
1930
1931 /*
1932 * Sum the lot; should not exceed the 64k limit we have on records.
1933 * Conservative limit to allow for callchains and other variable fields.
1934 */
1935 if (event->read_size + event->header_size +
1936 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1937 return false;
1938
1939 return true;
1940 }
1941
1942 static void perf_group_attach(struct perf_event *event)
1943 {
1944 struct perf_event *group_leader = event->group_leader, *pos;
1945
1946 lockdep_assert_held(&event->ctx->lock);
1947
1948 /*
1949 * We can have double attach due to group movement in perf_event_open.
1950 */
1951 if (event->attach_state & PERF_ATTACH_GROUP)
1952 return;
1953
1954 event->attach_state |= PERF_ATTACH_GROUP;
1955
1956 if (group_leader == event)
1957 return;
1958
1959 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1960
1961 group_leader->group_caps &= event->event_caps;
1962
1963 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1964 group_leader->nr_siblings++;
1965
1966 perf_event__header_size(group_leader);
1967
1968 for_each_sibling_event(pos, group_leader)
1969 perf_event__header_size(pos);
1970 }
1971
1972 /*
1973 * Remove an event from the lists for its context.
1974 * Must be called with ctx->mutex and ctx->lock held.
1975 */
1976 static void
1977 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1978 {
1979 WARN_ON_ONCE(event->ctx != ctx);
1980 lockdep_assert_held(&ctx->lock);
1981
1982 /*
1983 * We can have double detach due to exit/hot-unplug + close.
1984 */
1985 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1986 return;
1987
1988 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1989
1990 ctx->nr_events--;
1991 if (event->attr.inherit_stat)
1992 ctx->nr_stat--;
1993
1994 list_del_rcu(&event->event_entry);
1995
1996 if (event->group_leader == event)
1997 del_event_from_groups(event, ctx);
1998
1999 /*
2000 * If event was in error state, then keep it
2001 * that way, otherwise bogus counts will be
2002 * returned on read(). The only way to get out
2003 * of error state is by explicit re-enabling
2004 * of the event
2005 */
2006 if (event->state > PERF_EVENT_STATE_OFF) {
2007 perf_cgroup_event_disable(event, ctx);
2008 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2009 }
2010
2011 ctx->generation++;
2012 }
2013
2014 static int
2015 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2016 {
2017 if (!has_aux(aux_event))
2018 return 0;
2019
2020 if (!event->pmu->aux_output_match)
2021 return 0;
2022
2023 return event->pmu->aux_output_match(aux_event);
2024 }
2025
2026 static void put_event(struct perf_event *event);
2027 static void event_sched_out(struct perf_event *event,
2028 struct perf_cpu_context *cpuctx,
2029 struct perf_event_context *ctx);
2030
2031 static void perf_put_aux_event(struct perf_event *event)
2032 {
2033 struct perf_event_context *ctx = event->ctx;
2034 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2035 struct perf_event *iter;
2036
2037 /*
2038 * If event uses aux_event tear down the link
2039 */
2040 if (event->aux_event) {
2041 iter = event->aux_event;
2042 event->aux_event = NULL;
2043 put_event(iter);
2044 return;
2045 }
2046
2047 /*
2048 * If the event is an aux_event, tear down all links to
2049 * it from other events.
2050 */
2051 for_each_sibling_event(iter, event->group_leader) {
2052 if (iter->aux_event != event)
2053 continue;
2054
2055 iter->aux_event = NULL;
2056 put_event(event);
2057
2058 /*
2059 * If it's ACTIVE, schedule it out and put it into ERROR
2060 * state so that we don't try to schedule it again. Note
2061 * that perf_event_enable() will clear the ERROR status.
2062 */
2063 event_sched_out(iter, cpuctx, ctx);
2064 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2065 }
2066 }
2067
2068 static bool perf_need_aux_event(struct perf_event *event)
2069 {
2070 return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2071 }
2072
2073 static int perf_get_aux_event(struct perf_event *event,
2074 struct perf_event *group_leader)
2075 {
2076 /*
2077 * Our group leader must be an aux event if we want to be
2078 * an aux_output. This way, the aux event will precede its
2079 * aux_output events in the group, and therefore will always
2080 * schedule first.
2081 */
2082 if (!group_leader)
2083 return 0;
2084
2085 /*
2086 * aux_output and aux_sample_size are mutually exclusive.
2087 */
2088 if (event->attr.aux_output && event->attr.aux_sample_size)
2089 return 0;
2090
2091 if (event->attr.aux_output &&
2092 !perf_aux_output_match(event, group_leader))
2093 return 0;
2094
2095 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2096 return 0;
2097
2098 if (!atomic_long_inc_not_zero(&group_leader->refcount))
2099 return 0;
2100
2101 /*
2102 * Link aux_outputs to their aux event; this is undone in
2103 * perf_group_detach() by perf_put_aux_event(). When the
2104 * group in torn down, the aux_output events loose their
2105 * link to the aux_event and can't schedule any more.
2106 */
2107 event->aux_event = group_leader;
2108
2109 return 1;
2110 }
2111
2112 static inline struct list_head *get_event_list(struct perf_event *event)
2113 {
2114 struct perf_event_context *ctx = event->ctx;
2115 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2116 }
2117
2118 static void perf_group_detach(struct perf_event *event)
2119 {
2120 struct perf_event *sibling, *tmp;
2121 struct perf_event_context *ctx = event->ctx;
2122
2123 lockdep_assert_held(&ctx->lock);
2124
2125 /*
2126 * We can have double detach due to exit/hot-unplug + close.
2127 */
2128 if (!(event->attach_state & PERF_ATTACH_GROUP))
2129 return;
2130
2131 event->attach_state &= ~PERF_ATTACH_GROUP;
2132
2133 perf_put_aux_event(event);
2134
2135 /*
2136 * If this is a sibling, remove it from its group.
2137 */
2138 if (event->group_leader != event) {
2139 list_del_init(&event->sibling_list);
2140 event->group_leader->nr_siblings--;
2141 goto out;
2142 }
2143
2144 /*
2145 * If this was a group event with sibling events then
2146 * upgrade the siblings to singleton events by adding them
2147 * to whatever list we are on.
2148 */
2149 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2150
2151 sibling->group_leader = sibling;
2152 list_del_init(&sibling->sibling_list);
2153
2154 /* Inherit group flags from the previous leader */
2155 sibling->group_caps = event->group_caps;
2156
2157 if (!RB_EMPTY_NODE(&event->group_node)) {
2158 add_event_to_groups(sibling, event->ctx);
2159
2160 if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2161 list_add_tail(&sibling->active_list, get_event_list(sibling));
2162 }
2163
2164 WARN_ON_ONCE(sibling->ctx != event->ctx);
2165 }
2166
2167 out:
2168 perf_event__header_size(event->group_leader);
2169
2170 for_each_sibling_event(tmp, event->group_leader)
2171 perf_event__header_size(tmp);
2172 }
2173
2174 static bool is_orphaned_event(struct perf_event *event)
2175 {
2176 return event->state == PERF_EVENT_STATE_DEAD;
2177 }
2178
2179 static inline int __pmu_filter_match(struct perf_event *event)
2180 {
2181 struct pmu *pmu = event->pmu;
2182 return pmu->filter_match ? pmu->filter_match(event) : 1;
2183 }
2184
2185 /*
2186 * Check whether we should attempt to schedule an event group based on
2187 * PMU-specific filtering. An event group can consist of HW and SW events,
2188 * potentially with a SW leader, so we must check all the filters, to
2189 * determine whether a group is schedulable:
2190 */
2191 static inline int pmu_filter_match(struct perf_event *event)
2192 {
2193 struct perf_event *sibling;
2194
2195 if (!__pmu_filter_match(event))
2196 return 0;
2197
2198 for_each_sibling_event(sibling, event) {
2199 if (!__pmu_filter_match(sibling))
2200 return 0;
2201 }
2202
2203 return 1;
2204 }
2205
2206 static inline int
2207 event_filter_match(struct perf_event *event)
2208 {
2209 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2210 perf_cgroup_match(event) && pmu_filter_match(event);
2211 }
2212
2213 static void
2214 event_sched_out(struct perf_event *event,
2215 struct perf_cpu_context *cpuctx,
2216 struct perf_event_context *ctx)
2217 {
2218 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2219
2220 WARN_ON_ONCE(event->ctx != ctx);
2221 lockdep_assert_held(&ctx->lock);
2222
2223 if (event->state != PERF_EVENT_STATE_ACTIVE)
2224 return;
2225
2226 /*
2227 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2228 * we can schedule events _OUT_ individually through things like
2229 * __perf_remove_from_context().
2230 */
2231 list_del_init(&event->active_list);
2232
2233 perf_pmu_disable(event->pmu);
2234
2235 event->pmu->del(event, 0);
2236 event->oncpu = -1;
2237
2238 if (READ_ONCE(event->pending_disable) >= 0) {
2239 WRITE_ONCE(event->pending_disable, -1);
2240 perf_cgroup_event_disable(event, ctx);
2241 state = PERF_EVENT_STATE_OFF;
2242 }
2243 perf_event_set_state(event, state);
2244
2245 if (!is_software_event(event))
2246 cpuctx->active_oncpu--;
2247 if (!--ctx->nr_active)
2248 perf_event_ctx_deactivate(ctx);
2249 if (event->attr.freq && event->attr.sample_freq)
2250 ctx->nr_freq--;
2251 if (event->attr.exclusive || !cpuctx->active_oncpu)
2252 cpuctx->exclusive = 0;
2253
2254 perf_pmu_enable(event->pmu);
2255 }
2256
2257 static void
2258 group_sched_out(struct perf_event *group_event,
2259 struct perf_cpu_context *cpuctx,
2260 struct perf_event_context *ctx)
2261 {
2262 struct perf_event *event;
2263
2264 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2265 return;
2266
2267 perf_pmu_disable(ctx->pmu);
2268
2269 event_sched_out(group_event, cpuctx, ctx);
2270
2271 /*
2272 * Schedule out siblings (if any):
2273 */
2274 for_each_sibling_event(event, group_event)
2275 event_sched_out(event, cpuctx, ctx);
2276
2277 perf_pmu_enable(ctx->pmu);
2278
2279 if (group_event->attr.exclusive)
2280 cpuctx->exclusive = 0;
2281 }
2282
2283 #define DETACH_GROUP 0x01UL
2284
2285 /*
2286 * Cross CPU call to remove a performance event
2287 *
2288 * We disable the event on the hardware level first. After that we
2289 * remove it from the context list.
2290 */
2291 static void
2292 __perf_remove_from_context(struct perf_event *event,
2293 struct perf_cpu_context *cpuctx,
2294 struct perf_event_context *ctx,
2295 void *info)
2296 {
2297 unsigned long flags = (unsigned long)info;
2298
2299 if (ctx->is_active & EVENT_TIME) {
2300 update_context_time(ctx);
2301 update_cgrp_time_from_cpuctx(cpuctx);
2302 }
2303
2304 event_sched_out(event, cpuctx, ctx);
2305 if (flags & DETACH_GROUP)
2306 perf_group_detach(event);
2307 list_del_event(event, ctx);
2308
2309 if (!ctx->nr_events && ctx->is_active) {
2310 ctx->is_active = 0;
2311 ctx->rotate_necessary = 0;
2312 if (ctx->task) {
2313 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2314 cpuctx->task_ctx = NULL;
2315 }
2316 }
2317 }
2318
2319 /*
2320 * Remove the event from a task's (or a CPU's) list of events.
2321 *
2322 * If event->ctx is a cloned context, callers must make sure that
2323 * every task struct that event->ctx->task could possibly point to
2324 * remains valid. This is OK when called from perf_release since
2325 * that only calls us on the top-level context, which can't be a clone.
2326 * When called from perf_event_exit_task, it's OK because the
2327 * context has been detached from its task.
2328 */
2329 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2330 {
2331 struct perf_event_context *ctx = event->ctx;
2332
2333 lockdep_assert_held(&ctx->mutex);
2334
2335 event_function_call(event, __perf_remove_from_context, (void *)flags);
2336
2337 /*
2338 * The above event_function_call() can NO-OP when it hits
2339 * TASK_TOMBSTONE. In that case we must already have been detached
2340 * from the context (by perf_event_exit_event()) but the grouping
2341 * might still be in-tact.
2342 */
2343 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2344 if ((flags & DETACH_GROUP) &&
2345 (event->attach_state & PERF_ATTACH_GROUP)) {
2346 /*
2347 * Since in that case we cannot possibly be scheduled, simply
2348 * detach now.
2349 */
2350 raw_spin_lock_irq(&ctx->lock);
2351 perf_group_detach(event);
2352 raw_spin_unlock_irq(&ctx->lock);
2353 }
2354 }
2355
2356 /*
2357 * Cross CPU call to disable a performance event
2358 */
2359 static void __perf_event_disable(struct perf_event *event,
2360 struct perf_cpu_context *cpuctx,
2361 struct perf_event_context *ctx,
2362 void *info)
2363 {
2364 if (event->state < PERF_EVENT_STATE_INACTIVE)
2365 return;
2366
2367 if (ctx->is_active & EVENT_TIME) {
2368 update_context_time(ctx);
2369 update_cgrp_time_from_event(event);
2370 }
2371
2372 if (event == event->group_leader)
2373 group_sched_out(event, cpuctx, ctx);
2374 else
2375 event_sched_out(event, cpuctx, ctx);
2376
2377 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2378 perf_cgroup_event_disable(event, ctx);
2379 }
2380
2381 /*
2382 * Disable an event.
2383 *
2384 * If event->ctx is a cloned context, callers must make sure that
2385 * every task struct that event->ctx->task could possibly point to
2386 * remains valid. This condition is satisfied when called through
2387 * perf_event_for_each_child or perf_event_for_each because they
2388 * hold the top-level event's child_mutex, so any descendant that
2389 * goes to exit will block in perf_event_exit_event().
2390 *
2391 * When called from perf_pending_event it's OK because event->ctx
2392 * is the current context on this CPU and preemption is disabled,
2393 * hence we can't get into perf_event_task_sched_out for this context.
2394 */
2395 static void _perf_event_disable(struct perf_event *event)
2396 {
2397 struct perf_event_context *ctx = event->ctx;
2398
2399 raw_spin_lock_irq(&ctx->lock);
2400 if (event->state <= PERF_EVENT_STATE_OFF) {
2401 raw_spin_unlock_irq(&ctx->lock);
2402 return;
2403 }
2404 raw_spin_unlock_irq(&ctx->lock);
2405
2406 event_function_call(event, __perf_event_disable, NULL);
2407 }
2408
2409 void perf_event_disable_local(struct perf_event *event)
2410 {
2411 event_function_local(event, __perf_event_disable, NULL);
2412 }
2413
2414 /*
2415 * Strictly speaking kernel users cannot create groups and therefore this
2416 * interface does not need the perf_event_ctx_lock() magic.
2417 */
2418 void perf_event_disable(struct perf_event *event)
2419 {
2420 struct perf_event_context *ctx;
2421
2422 ctx = perf_event_ctx_lock(event);
2423 _perf_event_disable(event);
2424 perf_event_ctx_unlock(event, ctx);
2425 }
2426 EXPORT_SYMBOL_GPL(perf_event_disable);
2427
2428 void perf_event_disable_inatomic(struct perf_event *event)
2429 {
2430 WRITE_ONCE(event->pending_disable, smp_processor_id());
2431 /* can fail, see perf_pending_event_disable() */
2432 irq_work_queue(&event->pending);
2433 }
2434
2435 static void perf_set_shadow_time(struct perf_event *event,
2436 struct perf_event_context *ctx)
2437 {
2438 /*
2439 * use the correct time source for the time snapshot
2440 *
2441 * We could get by without this by leveraging the
2442 * fact that to get to this function, the caller
2443 * has most likely already called update_context_time()
2444 * and update_cgrp_time_xx() and thus both timestamp
2445 * are identical (or very close). Given that tstamp is,
2446 * already adjusted for cgroup, we could say that:
2447 * tstamp - ctx->timestamp
2448 * is equivalent to
2449 * tstamp - cgrp->timestamp.
2450 *
2451 * Then, in perf_output_read(), the calculation would
2452 * work with no changes because:
2453 * - event is guaranteed scheduled in
2454 * - no scheduled out in between
2455 * - thus the timestamp would be the same
2456 *
2457 * But this is a bit hairy.
2458 *
2459 * So instead, we have an explicit cgroup call to remain
2460 * within the time time source all along. We believe it
2461 * is cleaner and simpler to understand.
2462 */
2463 if (is_cgroup_event(event))
2464 perf_cgroup_set_shadow_time(event, event->tstamp);
2465 else
2466 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2467 }
2468
2469 #define MAX_INTERRUPTS (~0ULL)
2470
2471 static void perf_log_throttle(struct perf_event *event, int enable);
2472 static void perf_log_itrace_start(struct perf_event *event);
2473
2474 static int
2475 event_sched_in(struct perf_event *event,
2476 struct perf_cpu_context *cpuctx,
2477 struct perf_event_context *ctx)
2478 {
2479 int ret = 0;
2480
2481 WARN_ON_ONCE(event->ctx != ctx);
2482
2483 lockdep_assert_held(&ctx->lock);
2484
2485 if (event->state <= PERF_EVENT_STATE_OFF)
2486 return 0;
2487
2488 WRITE_ONCE(event->oncpu, smp_processor_id());
2489 /*
2490 * Order event::oncpu write to happen before the ACTIVE state is
2491 * visible. This allows perf_event_{stop,read}() to observe the correct
2492 * ->oncpu if it sees ACTIVE.
2493 */
2494 smp_wmb();
2495 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2496
2497 /*
2498 * Unthrottle events, since we scheduled we might have missed several
2499 * ticks already, also for a heavily scheduling task there is little
2500 * guarantee it'll get a tick in a timely manner.
2501 */
2502 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2503 perf_log_throttle(event, 1);
2504 event->hw.interrupts = 0;
2505 }
2506
2507 perf_pmu_disable(event->pmu);
2508
2509 perf_set_shadow_time(event, ctx);
2510
2511 perf_log_itrace_start(event);
2512
2513 if (event->pmu->add(event, PERF_EF_START)) {
2514 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2515 event->oncpu = -1;
2516 ret = -EAGAIN;
2517 goto out;
2518 }
2519
2520 if (!is_software_event(event))
2521 cpuctx->active_oncpu++;
2522 if (!ctx->nr_active++)
2523 perf_event_ctx_activate(ctx);
2524 if (event->attr.freq && event->attr.sample_freq)
2525 ctx->nr_freq++;
2526
2527 if (event->attr.exclusive)
2528 cpuctx->exclusive = 1;
2529
2530 out:
2531 perf_pmu_enable(event->pmu);
2532
2533 return ret;
2534 }
2535
2536 static int
2537 group_sched_in(struct perf_event *group_event,
2538 struct perf_cpu_context *cpuctx,
2539 struct perf_event_context *ctx)
2540 {
2541 struct perf_event *event, *partial_group = NULL;
2542 struct pmu *pmu = ctx->pmu;
2543
2544 if (group_event->state == PERF_EVENT_STATE_OFF)
2545 return 0;
2546
2547 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2548
2549 if (event_sched_in(group_event, cpuctx, ctx)) {
2550 pmu->cancel_txn(pmu);
2551 perf_mux_hrtimer_restart(cpuctx);
2552 return -EAGAIN;
2553 }
2554
2555 /*
2556 * Schedule in siblings as one group (if any):
2557 */
2558 for_each_sibling_event(event, group_event) {
2559 if (event_sched_in(event, cpuctx, ctx)) {
2560 partial_group = event;
2561 goto group_error;
2562 }
2563 }
2564
2565 if (!pmu->commit_txn(pmu))
2566 return 0;
2567
2568 group_error:
2569 /*
2570 * Groups can be scheduled in as one unit only, so undo any
2571 * partial group before returning:
2572 * The events up to the failed event are scheduled out normally.
2573 */
2574 for_each_sibling_event(event, group_event) {
2575 if (event == partial_group)
2576 break;
2577
2578 event_sched_out(event, cpuctx, ctx);
2579 }
2580 event_sched_out(group_event, cpuctx, ctx);
2581
2582 pmu->cancel_txn(pmu);
2583
2584 perf_mux_hrtimer_restart(cpuctx);
2585
2586 return -EAGAIN;
2587 }
2588
2589 /*
2590 * Work out whether we can put this event group on the CPU now.
2591 */
2592 static int group_can_go_on(struct perf_event *event,
2593 struct perf_cpu_context *cpuctx,
2594 int can_add_hw)
2595 {
2596 /*
2597 * Groups consisting entirely of software events can always go on.
2598 */
2599 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2600 return 1;
2601 /*
2602 * If an exclusive group is already on, no other hardware
2603 * events can go on.
2604 */
2605 if (cpuctx->exclusive)
2606 return 0;
2607 /*
2608 * If this group is exclusive and there are already
2609 * events on the CPU, it can't go on.
2610 */
2611 if (event->attr.exclusive && cpuctx->active_oncpu)
2612 return 0;
2613 /*
2614 * Otherwise, try to add it if all previous groups were able
2615 * to go on.
2616 */
2617 return can_add_hw;
2618 }
2619
2620 static void add_event_to_ctx(struct perf_event *event,
2621 struct perf_event_context *ctx)
2622 {
2623 list_add_event(event, ctx);
2624 perf_group_attach(event);
2625 }
2626
2627 static void ctx_sched_out(struct perf_event_context *ctx,
2628 struct perf_cpu_context *cpuctx,
2629 enum event_type_t event_type);
2630 static void
2631 ctx_sched_in(struct perf_event_context *ctx,
2632 struct perf_cpu_context *cpuctx,
2633 enum event_type_t event_type,
2634 struct task_struct *task);
2635
2636 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2637 struct perf_event_context *ctx,
2638 enum event_type_t event_type)
2639 {
2640 if (!cpuctx->task_ctx)
2641 return;
2642
2643 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2644 return;
2645
2646 ctx_sched_out(ctx, cpuctx, event_type);
2647 }
2648
2649 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2650 struct perf_event_context *ctx,
2651 struct task_struct *task)
2652 {
2653 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2654 if (ctx)
2655 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2656 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2657 if (ctx)
2658 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2659 }
2660
2661 /*
2662 * We want to maintain the following priority of scheduling:
2663 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2664 * - task pinned (EVENT_PINNED)
2665 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2666 * - task flexible (EVENT_FLEXIBLE).
2667 *
2668 * In order to avoid unscheduling and scheduling back in everything every
2669 * time an event is added, only do it for the groups of equal priority and
2670 * below.
2671 *
2672 * This can be called after a batch operation on task events, in which case
2673 * event_type is a bit mask of the types of events involved. For CPU events,
2674 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2675 */
2676 static void ctx_resched(struct perf_cpu_context *cpuctx,
2677 struct perf_event_context *task_ctx,
2678 enum event_type_t event_type)
2679 {
2680 enum event_type_t ctx_event_type;
2681 bool cpu_event = !!(event_type & EVENT_CPU);
2682
2683 /*
2684 * If pinned groups are involved, flexible groups also need to be
2685 * scheduled out.
2686 */
2687 if (event_type & EVENT_PINNED)
2688 event_type |= EVENT_FLEXIBLE;
2689
2690 ctx_event_type = event_type & EVENT_ALL;
2691
2692 perf_pmu_disable(cpuctx->ctx.pmu);
2693 if (task_ctx)
2694 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2695
2696 /*
2697 * Decide which cpu ctx groups to schedule out based on the types
2698 * of events that caused rescheduling:
2699 * - EVENT_CPU: schedule out corresponding groups;
2700 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2701 * - otherwise, do nothing more.
2702 */
2703 if (cpu_event)
2704 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2705 else if (ctx_event_type & EVENT_PINNED)
2706 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2707
2708 perf_event_sched_in(cpuctx, task_ctx, current);
2709 perf_pmu_enable(cpuctx->ctx.pmu);
2710 }
2711
2712 void perf_pmu_resched(struct pmu *pmu)
2713 {
2714 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2715 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2716
2717 perf_ctx_lock(cpuctx, task_ctx);
2718 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2719 perf_ctx_unlock(cpuctx, task_ctx);
2720 }
2721
2722 /*
2723 * Cross CPU call to install and enable a performance event
2724 *
2725 * Very similar to remote_function() + event_function() but cannot assume that
2726 * things like ctx->is_active and cpuctx->task_ctx are set.
2727 */
2728 static int __perf_install_in_context(void *info)
2729 {
2730 struct perf_event *event = info;
2731 struct perf_event_context *ctx = event->ctx;
2732 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2733 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2734 bool reprogram = true;
2735 int ret = 0;
2736
2737 raw_spin_lock(&cpuctx->ctx.lock);
2738 if (ctx->task) {
2739 raw_spin_lock(&ctx->lock);
2740 task_ctx = ctx;
2741
2742 reprogram = (ctx->task == current);
2743
2744 /*
2745 * If the task is running, it must be running on this CPU,
2746 * otherwise we cannot reprogram things.
2747 *
2748 * If its not running, we don't care, ctx->lock will
2749 * serialize against it becoming runnable.
2750 */
2751 if (task_curr(ctx->task) && !reprogram) {
2752 ret = -ESRCH;
2753 goto unlock;
2754 }
2755
2756 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2757 } else if (task_ctx) {
2758 raw_spin_lock(&task_ctx->lock);
2759 }
2760
2761 #ifdef CONFIG_CGROUP_PERF
2762 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2763 /*
2764 * If the current cgroup doesn't match the event's
2765 * cgroup, we should not try to schedule it.
2766 */
2767 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2768 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2769 event->cgrp->css.cgroup);
2770 }
2771 #endif
2772
2773 if (reprogram) {
2774 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2775 add_event_to_ctx(event, ctx);
2776 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2777 } else {
2778 add_event_to_ctx(event, ctx);
2779 }
2780
2781 unlock:
2782 perf_ctx_unlock(cpuctx, task_ctx);
2783
2784 return ret;
2785 }
2786
2787 static bool exclusive_event_installable(struct perf_event *event,
2788 struct perf_event_context *ctx);
2789
2790 /*
2791 * Attach a performance event to a context.
2792 *
2793 * Very similar to event_function_call, see comment there.
2794 */
2795 static void
2796 perf_install_in_context(struct perf_event_context *ctx,
2797 struct perf_event *event,
2798 int cpu)
2799 {
2800 struct task_struct *task = READ_ONCE(ctx->task);
2801
2802 lockdep_assert_held(&ctx->mutex);
2803
2804 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2805
2806 if (event->cpu != -1)
2807 event->cpu = cpu;
2808
2809 /*
2810 * Ensures that if we can observe event->ctx, both the event and ctx
2811 * will be 'complete'. See perf_iterate_sb_cpu().
2812 */
2813 smp_store_release(&event->ctx, ctx);
2814
2815 /*
2816 * perf_event_attr::disabled events will not run and can be initialized
2817 * without IPI. Except when this is the first event for the context, in
2818 * that case we need the magic of the IPI to set ctx->is_active.
2819 *
2820 * The IOC_ENABLE that is sure to follow the creation of a disabled
2821 * event will issue the IPI and reprogram the hardware.
2822 */
2823 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2824 raw_spin_lock_irq(&ctx->lock);
2825 if (ctx->task == TASK_TOMBSTONE) {
2826 raw_spin_unlock_irq(&ctx->lock);
2827 return;
2828 }
2829 add_event_to_ctx(event, ctx);
2830 raw_spin_unlock_irq(&ctx->lock);
2831 return;
2832 }
2833
2834 if (!task) {
2835 cpu_function_call(cpu, __perf_install_in_context, event);
2836 return;
2837 }
2838
2839 /*
2840 * Should not happen, we validate the ctx is still alive before calling.
2841 */
2842 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2843 return;
2844
2845 /*
2846 * Installing events is tricky because we cannot rely on ctx->is_active
2847 * to be set in case this is the nr_events 0 -> 1 transition.
2848 *
2849 * Instead we use task_curr(), which tells us if the task is running.
2850 * However, since we use task_curr() outside of rq::lock, we can race
2851 * against the actual state. This means the result can be wrong.
2852 *
2853 * If we get a false positive, we retry, this is harmless.
2854 *
2855 * If we get a false negative, things are complicated. If we are after
2856 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2857 * value must be correct. If we're before, it doesn't matter since
2858 * perf_event_context_sched_in() will program the counter.
2859 *
2860 * However, this hinges on the remote context switch having observed
2861 * our task->perf_event_ctxp[] store, such that it will in fact take
2862 * ctx::lock in perf_event_context_sched_in().
2863 *
2864 * We do this by task_function_call(), if the IPI fails to hit the task
2865 * we know any future context switch of task must see the
2866 * perf_event_ctpx[] store.
2867 */
2868
2869 /*
2870 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2871 * task_cpu() load, such that if the IPI then does not find the task
2872 * running, a future context switch of that task must observe the
2873 * store.
2874 */
2875 smp_mb();
2876 again:
2877 if (!task_function_call(task, __perf_install_in_context, event))
2878 return;
2879
2880 raw_spin_lock_irq(&ctx->lock);
2881 task = ctx->task;
2882 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2883 /*
2884 * Cannot happen because we already checked above (which also
2885 * cannot happen), and we hold ctx->mutex, which serializes us
2886 * against perf_event_exit_task_context().
2887 */
2888 raw_spin_unlock_irq(&ctx->lock);
2889 return;
2890 }
2891 /*
2892 * If the task is not running, ctx->lock will avoid it becoming so,
2893 * thus we can safely install the event.
2894 */
2895 if (task_curr(task)) {
2896 raw_spin_unlock_irq(&ctx->lock);
2897 goto again;
2898 }
2899 add_event_to_ctx(event, ctx);
2900 raw_spin_unlock_irq(&ctx->lock);
2901 }
2902
2903 /*
2904 * Cross CPU call to enable a performance event
2905 */
2906 static void __perf_event_enable(struct perf_event *event,
2907 struct perf_cpu_context *cpuctx,
2908 struct perf_event_context *ctx,
2909 void *info)
2910 {
2911 struct perf_event *leader = event->group_leader;
2912 struct perf_event_context *task_ctx;
2913
2914 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2915 event->state <= PERF_EVENT_STATE_ERROR)
2916 return;
2917
2918 if (ctx->is_active)
2919 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2920
2921 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2922 perf_cgroup_event_enable(event, ctx);
2923
2924 if (!ctx->is_active)
2925 return;
2926
2927 if (!event_filter_match(event)) {
2928 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2929 return;
2930 }
2931
2932 /*
2933 * If the event is in a group and isn't the group leader,
2934 * then don't put it on unless the group is on.
2935 */
2936 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2937 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2938 return;
2939 }
2940
2941 task_ctx = cpuctx->task_ctx;
2942 if (ctx->task)
2943 WARN_ON_ONCE(task_ctx != ctx);
2944
2945 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2946 }
2947
2948 /*
2949 * Enable an event.
2950 *
2951 * If event->ctx is a cloned context, callers must make sure that
2952 * every task struct that event->ctx->task could possibly point to
2953 * remains valid. This condition is satisfied when called through
2954 * perf_event_for_each_child or perf_event_for_each as described
2955 * for perf_event_disable.
2956 */
2957 static void _perf_event_enable(struct perf_event *event)
2958 {
2959 struct perf_event_context *ctx = event->ctx;
2960
2961 raw_spin_lock_irq(&ctx->lock);
2962 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2963 event->state < PERF_EVENT_STATE_ERROR) {
2964 raw_spin_unlock_irq(&ctx->lock);
2965 return;
2966 }
2967
2968 /*
2969 * If the event is in error state, clear that first.
2970 *
2971 * That way, if we see the event in error state below, we know that it
2972 * has gone back into error state, as distinct from the task having
2973 * been scheduled away before the cross-call arrived.
2974 */
2975 if (event->state == PERF_EVENT_STATE_ERROR)
2976 event->state = PERF_EVENT_STATE_OFF;
2977 raw_spin_unlock_irq(&ctx->lock);
2978
2979 event_function_call(event, __perf_event_enable, NULL);
2980 }
2981
2982 /*
2983 * See perf_event_disable();
2984 */
2985 void perf_event_enable(struct perf_event *event)
2986 {
2987 struct perf_event_context *ctx;
2988
2989 ctx = perf_event_ctx_lock(event);
2990 _perf_event_enable(event);
2991 perf_event_ctx_unlock(event, ctx);
2992 }
2993 EXPORT_SYMBOL_GPL(perf_event_enable);
2994
2995 struct stop_event_data {
2996 struct perf_event *event;
2997 unsigned int restart;
2998 };
2999
3000 static int __perf_event_stop(void *info)
3001 {
3002 struct stop_event_data *sd = info;
3003 struct perf_event *event = sd->event;
3004
3005 /* if it's already INACTIVE, do nothing */
3006 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3007 return 0;
3008
3009 /* matches smp_wmb() in event_sched_in() */
3010 smp_rmb();
3011
3012 /*
3013 * There is a window with interrupts enabled before we get here,
3014 * so we need to check again lest we try to stop another CPU's event.
3015 */
3016 if (READ_ONCE(event->oncpu) != smp_processor_id())
3017 return -EAGAIN;
3018
3019 event->pmu->stop(event, PERF_EF_UPDATE);
3020
3021 /*
3022 * May race with the actual stop (through perf_pmu_output_stop()),
3023 * but it is only used for events with AUX ring buffer, and such
3024 * events will refuse to restart because of rb::aux_mmap_count==0,
3025 * see comments in perf_aux_output_begin().
3026 *
3027 * Since this is happening on an event-local CPU, no trace is lost
3028 * while restarting.
3029 */
3030 if (sd->restart)
3031 event->pmu->start(event, 0);
3032
3033 return 0;
3034 }
3035
3036 static int perf_event_stop(struct perf_event *event, int restart)
3037 {
3038 struct stop_event_data sd = {
3039 .event = event,
3040 .restart = restart,
3041 };
3042 int ret = 0;
3043
3044 do {
3045 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3046 return 0;
3047
3048 /* matches smp_wmb() in event_sched_in() */
3049 smp_rmb();
3050
3051 /*
3052 * We only want to restart ACTIVE events, so if the event goes
3053 * inactive here (event->oncpu==-1), there's nothing more to do;
3054 * fall through with ret==-ENXIO.
3055 */
3056 ret = cpu_function_call(READ_ONCE(event->oncpu),
3057 __perf_event_stop, &sd);
3058 } while (ret == -EAGAIN);
3059
3060 return ret;
3061 }
3062
3063 /*
3064 * In order to contain the amount of racy and tricky in the address filter
3065 * configuration management, it is a two part process:
3066 *
3067 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3068 * we update the addresses of corresponding vmas in
3069 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
3070 * (p2) when an event is scheduled in (pmu::add), it calls
3071 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3072 * if the generation has changed since the previous call.
3073 *
3074 * If (p1) happens while the event is active, we restart it to force (p2).
3075 *
3076 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3077 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3078 * ioctl;
3079 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3080 * registered mapping, called for every new mmap(), with mm::mmap_sem down
3081 * for reading;
3082 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3083 * of exec.
3084 */
3085 void perf_event_addr_filters_sync(struct perf_event *event)
3086 {
3087 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3088
3089 if (!has_addr_filter(event))
3090 return;
3091
3092 raw_spin_lock(&ifh->lock);
3093 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3094 event->pmu->addr_filters_sync(event);
3095 event->hw.addr_filters_gen = event->addr_filters_gen;
3096 }
3097 raw_spin_unlock(&ifh->lock);
3098 }
3099 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3100
3101 static int _perf_event_refresh(struct perf_event *event, int refresh)
3102 {
3103 /*
3104 * not supported on inherited events
3105 */
3106 if (event->attr.inherit || !is_sampling_event(event))
3107 return -EINVAL;
3108
3109 atomic_add(refresh, &event->event_limit);
3110 _perf_event_enable(event);
3111
3112 return 0;
3113 }
3114
3115 /*
3116 * See perf_event_disable()
3117 */
3118 int perf_event_refresh(struct perf_event *event, int refresh)
3119 {
3120 struct perf_event_context *ctx;
3121 int ret;
3122
3123 ctx = perf_event_ctx_lock(event);
3124 ret = _perf_event_refresh(event, refresh);
3125 perf_event_ctx_unlock(event, ctx);
3126
3127 return ret;
3128 }
3129 EXPORT_SYMBOL_GPL(perf_event_refresh);
3130
3131 static int perf_event_modify_breakpoint(struct perf_event *bp,
3132 struct perf_event_attr *attr)
3133 {
3134 int err;
3135
3136 _perf_event_disable(bp);
3137
3138 err = modify_user_hw_breakpoint_check(bp, attr, true);
3139
3140 if (!bp->attr.disabled)
3141 _perf_event_enable(bp);
3142
3143 return err;
3144 }
3145
3146 static int perf_event_modify_attr(struct perf_event *event,
3147 struct perf_event_attr *attr)
3148 {
3149 if (event->attr.type != attr->type)
3150 return -EINVAL;
3151
3152 switch (event->attr.type) {
3153 case PERF_TYPE_BREAKPOINT:
3154 return perf_event_modify_breakpoint(event, attr);
3155 default:
3156 /* Place holder for future additions. */
3157 return -EOPNOTSUPP;
3158 }
3159 }
3160
3161 static void ctx_sched_out(struct perf_event_context *ctx,
3162 struct perf_cpu_context *cpuctx,
3163 enum event_type_t event_type)
3164 {
3165 struct perf_event *event, *tmp;
3166 int is_active = ctx->is_active;
3167
3168 lockdep_assert_held(&ctx->lock);
3169
3170 if (likely(!ctx->nr_events)) {
3171 /*
3172 * See __perf_remove_from_context().
3173 */
3174 WARN_ON_ONCE(ctx->is_active);
3175 if (ctx->task)
3176 WARN_ON_ONCE(cpuctx->task_ctx);
3177 return;
3178 }
3179
3180 ctx->is_active &= ~event_type;
3181 if (!(ctx->is_active & EVENT_ALL))
3182 ctx->is_active = 0;
3183
3184 if (ctx->task) {
3185 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3186 if (!ctx->is_active)
3187 cpuctx->task_ctx = NULL;
3188 }
3189
3190 /*
3191 * Always update time if it was set; not only when it changes.
3192 * Otherwise we can 'forget' to update time for any but the last
3193 * context we sched out. For example:
3194 *
3195 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3196 * ctx_sched_out(.event_type = EVENT_PINNED)
3197 *
3198 * would only update time for the pinned events.
3199 */
3200 if (is_active & EVENT_TIME) {
3201 /* update (and stop) ctx time */
3202 update_context_time(ctx);
3203 update_cgrp_time_from_cpuctx(cpuctx);
3204 }
3205
3206 is_active ^= ctx->is_active; /* changed bits */
3207
3208 if (!ctx->nr_active || !(is_active & EVENT_ALL))
3209 return;
3210
3211 perf_pmu_disable(ctx->pmu);
3212 if (is_active & EVENT_PINNED) {
3213 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3214 group_sched_out(event, cpuctx, ctx);
3215 }
3216
3217 if (is_active & EVENT_FLEXIBLE) {
3218 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3219 group_sched_out(event, cpuctx, ctx);
3220
3221 /*
3222 * Since we cleared EVENT_FLEXIBLE, also clear
3223 * rotate_necessary, is will be reset by
3224 * ctx_flexible_sched_in() when needed.
3225 */
3226 ctx->rotate_necessary = 0;
3227 }
3228 perf_pmu_enable(ctx->pmu);
3229 }
3230
3231 /*
3232 * Test whether two contexts are equivalent, i.e. whether they have both been
3233 * cloned from the same version of the same context.
3234 *
3235 * Equivalence is measured using a generation number in the context that is
3236 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3237 * and list_del_event().
3238 */
3239 static int context_equiv(struct perf_event_context *ctx1,
3240 struct perf_event_context *ctx2)
3241 {
3242 lockdep_assert_held(&ctx1->lock);
3243 lockdep_assert_held(&ctx2->lock);
3244
3245 /* Pinning disables the swap optimization */
3246 if (ctx1->pin_count || ctx2->pin_count)
3247 return 0;
3248
3249 /* If ctx1 is the parent of ctx2 */
3250 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3251 return 1;
3252
3253 /* If ctx2 is the parent of ctx1 */
3254 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3255 return 1;
3256
3257 /*
3258 * If ctx1 and ctx2 have the same parent; we flatten the parent
3259 * hierarchy, see perf_event_init_context().
3260 */
3261 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3262 ctx1->parent_gen == ctx2->parent_gen)
3263 return 1;
3264
3265 /* Unmatched */
3266 return 0;
3267 }
3268
3269 static void __perf_event_sync_stat(struct perf_event *event,
3270 struct perf_event *next_event)
3271 {
3272 u64 value;
3273
3274 if (!event->attr.inherit_stat)
3275 return;
3276
3277 /*
3278 * Update the event value, we cannot use perf_event_read()
3279 * because we're in the middle of a context switch and have IRQs
3280 * disabled, which upsets smp_call_function_single(), however
3281 * we know the event must be on the current CPU, therefore we
3282 * don't need to use it.
3283 */
3284 if (event->state == PERF_EVENT_STATE_ACTIVE)
3285 event->pmu->read(event);
3286
3287 perf_event_update_time(event);
3288
3289 /*
3290 * In order to keep per-task stats reliable we need to flip the event
3291 * values when we flip the contexts.
3292 */
3293 value = local64_read(&next_event->count);
3294 value = local64_xchg(&event->count, value);
3295 local64_set(&next_event->count, value);
3296
3297 swap(event->total_time_enabled, next_event->total_time_enabled);
3298 swap(event->total_time_running, next_event->total_time_running);
3299
3300 /*
3301 * Since we swizzled the values, update the user visible data too.
3302 */
3303 perf_event_update_userpage(event);
3304 perf_event_update_userpage(next_event);
3305 }
3306
3307 static void perf_event_sync_stat(struct perf_event_context *ctx,
3308 struct perf_event_context *next_ctx)
3309 {
3310 struct perf_event *event, *next_event;
3311
3312 if (!ctx->nr_stat)
3313 return;
3314
3315 update_context_time(ctx);
3316
3317 event = list_first_entry(&ctx->event_list,
3318 struct perf_event, event_entry);
3319
3320 next_event = list_first_entry(&next_ctx->event_list,
3321 struct perf_event, event_entry);
3322
3323 while (&event->event_entry != &ctx->event_list &&
3324 &next_event->event_entry != &next_ctx->event_list) {
3325
3326 __perf_event_sync_stat(event, next_event);
3327
3328 event = list_next_entry(event, event_entry);
3329 next_event = list_next_entry(next_event, event_entry);
3330 }
3331 }
3332
3333 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3334 struct task_struct *next)
3335 {
3336 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3337 struct perf_event_context *next_ctx;
3338 struct perf_event_context *parent, *next_parent;
3339 struct perf_cpu_context *cpuctx;
3340 int do_switch = 1;
3341
3342 if (likely(!ctx))
3343 return;
3344
3345 cpuctx = __get_cpu_context(ctx);
3346 if (!cpuctx->task_ctx)
3347 return;
3348
3349 rcu_read_lock();
3350 next_ctx = next->perf_event_ctxp[ctxn];
3351 if (!next_ctx)
3352 goto unlock;
3353
3354 parent = rcu_dereference(ctx->parent_ctx);
3355 next_parent = rcu_dereference(next_ctx->parent_ctx);
3356
3357 /* If neither context have a parent context; they cannot be clones. */
3358 if (!parent && !next_parent)
3359 goto unlock;
3360
3361 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3362 /*
3363 * Looks like the two contexts are clones, so we might be
3364 * able to optimize the context switch. We lock both
3365 * contexts and check that they are clones under the
3366 * lock (including re-checking that neither has been
3367 * uncloned in the meantime). It doesn't matter which
3368 * order we take the locks because no other cpu could
3369 * be trying to lock both of these tasks.
3370 */
3371 raw_spin_lock(&ctx->lock);
3372 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3373 if (context_equiv(ctx, next_ctx)) {
3374 struct pmu *pmu = ctx->pmu;
3375
3376 WRITE_ONCE(ctx->task, next);
3377 WRITE_ONCE(next_ctx->task, task);
3378
3379 /*
3380 * PMU specific parts of task perf context can require
3381 * additional synchronization. As an example of such
3382 * synchronization see implementation details of Intel
3383 * LBR call stack data profiling;
3384 */
3385 if (pmu->swap_task_ctx)
3386 pmu->swap_task_ctx(ctx, next_ctx);
3387 else
3388 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3389
3390 /*
3391 * RCU_INIT_POINTER here is safe because we've not
3392 * modified the ctx and the above modification of
3393 * ctx->task and ctx->task_ctx_data are immaterial
3394 * since those values are always verified under
3395 * ctx->lock which we're now holding.
3396 */
3397 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3398 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3399
3400 do_switch = 0;
3401
3402 perf_event_sync_stat(ctx, next_ctx);
3403 }
3404 raw_spin_unlock(&next_ctx->lock);
3405 raw_spin_unlock(&ctx->lock);
3406 }
3407 unlock:
3408 rcu_read_unlock();
3409
3410 if (do_switch) {
3411 raw_spin_lock(&ctx->lock);
3412 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3413 raw_spin_unlock(&ctx->lock);
3414 }
3415 }
3416
3417 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3418
3419 void perf_sched_cb_dec(struct pmu *pmu)
3420 {
3421 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3422
3423 this_cpu_dec(perf_sched_cb_usages);
3424
3425 if (!--cpuctx->sched_cb_usage)
3426 list_del(&cpuctx->sched_cb_entry);
3427 }
3428
3429
3430 void perf_sched_cb_inc(struct pmu *pmu)
3431 {
3432 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3433
3434 if (!cpuctx->sched_cb_usage++)
3435 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3436
3437 this_cpu_inc(perf_sched_cb_usages);
3438 }
3439
3440 /*
3441 * This function provides the context switch callback to the lower code
3442 * layer. It is invoked ONLY when the context switch callback is enabled.
3443 *
3444 * This callback is relevant even to per-cpu events; for example multi event
3445 * PEBS requires this to provide PID/TID information. This requires we flush
3446 * all queued PEBS records before we context switch to a new task.
3447 */
3448 static void perf_pmu_sched_task(struct task_struct *prev,
3449 struct task_struct *next,
3450 bool sched_in)
3451 {
3452 struct perf_cpu_context *cpuctx;
3453 struct pmu *pmu;
3454
3455 if (prev == next)
3456 return;
3457
3458 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3459 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3460
3461 if (WARN_ON_ONCE(!pmu->sched_task))
3462 continue;
3463
3464 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3465 perf_pmu_disable(pmu);
3466
3467 pmu->sched_task(cpuctx->task_ctx, sched_in);
3468
3469 perf_pmu_enable(pmu);
3470 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3471 }
3472 }
3473
3474 static void perf_event_switch(struct task_struct *task,
3475 struct task_struct *next_prev, bool sched_in);
3476
3477 #define for_each_task_context_nr(ctxn) \
3478 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3479
3480 /*
3481 * Called from scheduler to remove the events of the current task,
3482 * with interrupts disabled.
3483 *
3484 * We stop each event and update the event value in event->count.
3485 *
3486 * This does not protect us against NMI, but disable()
3487 * sets the disabled bit in the control field of event _before_
3488 * accessing the event control register. If a NMI hits, then it will
3489 * not restart the event.
3490 */
3491 void __perf_event_task_sched_out(struct task_struct *task,
3492 struct task_struct *next)
3493 {
3494 int ctxn;
3495
3496 if (__this_cpu_read(perf_sched_cb_usages))
3497 perf_pmu_sched_task(task, next, false);
3498
3499 if (atomic_read(&nr_switch_events))
3500 perf_event_switch(task, next, false);
3501
3502 for_each_task_context_nr(ctxn)
3503 perf_event_context_sched_out(task, ctxn, next);
3504
3505 /*
3506 * if cgroup events exist on this CPU, then we need
3507 * to check if we have to switch out PMU state.
3508 * cgroup event are system-wide mode only
3509 */
3510 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3511 perf_cgroup_sched_out(task, next);
3512 }
3513
3514 /*
3515 * Called with IRQs disabled
3516 */
3517 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3518 enum event_type_t event_type)
3519 {
3520 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3521 }
3522
3523 static bool perf_less_group_idx(const void *l, const void *r)
3524 {
3525 const struct perf_event *le = *(const struct perf_event **)l;
3526 const struct perf_event *re = *(const struct perf_event **)r;
3527
3528 return le->group_index < re->group_index;
3529 }
3530
3531 static void swap_ptr(void *l, void *r)
3532 {
3533 void **lp = l, **rp = r;
3534
3535 swap(*lp, *rp);
3536 }
3537
3538 static const struct min_heap_callbacks perf_min_heap = {
3539 .elem_size = sizeof(struct perf_event *),
3540 .less = perf_less_group_idx,
3541 .swp = swap_ptr,
3542 };
3543
3544 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3545 {
3546 struct perf_event **itrs = heap->data;
3547
3548 if (event) {
3549 itrs[heap->nr] = event;
3550 heap->nr++;
3551 }
3552 }
3553
3554 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3555 struct perf_event_groups *groups, int cpu,
3556 int (*func)(struct perf_event *, void *),
3557 void *data)
3558 {
3559 #ifdef CONFIG_CGROUP_PERF
3560 struct cgroup_subsys_state *css = NULL;
3561 #endif
3562 /* Space for per CPU and/or any CPU event iterators. */
3563 struct perf_event *itrs[2];
3564 struct min_heap event_heap;
3565 struct perf_event **evt;
3566 int ret;
3567
3568 if (cpuctx) {
3569 event_heap = (struct min_heap){
3570 .data = cpuctx->heap,
3571 .nr = 0,
3572 .size = cpuctx->heap_size,
3573 };
3574
3575 lockdep_assert_held(&cpuctx->ctx.lock);
3576
3577 #ifdef CONFIG_CGROUP_PERF
3578 if (cpuctx->cgrp)
3579 css = &cpuctx->cgrp->css;
3580 #endif
3581 } else {
3582 event_heap = (struct min_heap){
3583 .data = itrs,
3584 .nr = 0,
3585 .size = ARRAY_SIZE(itrs),
3586 };
3587 /* Events not within a CPU context may be on any CPU. */
3588 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3589 }
3590 evt = event_heap.data;
3591
3592 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3593
3594 #ifdef CONFIG_CGROUP_PERF
3595 for (; css; css = css->parent)
3596 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3597 #endif
3598
3599 min_heapify_all(&event_heap, &perf_min_heap);
3600
3601 while (event_heap.nr) {
3602 ret = func(*evt, data);
3603 if (ret)
3604 return ret;
3605
3606 *evt = perf_event_groups_next(*evt);
3607 if (*evt)
3608 min_heapify(&event_heap, 0, &perf_min_heap);
3609 else
3610 min_heap_pop(&event_heap, &perf_min_heap);
3611 }
3612
3613 return 0;
3614 }
3615
3616 static int merge_sched_in(struct perf_event *event, void *data)
3617 {
3618 struct perf_event_context *ctx = event->ctx;
3619 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3620 int *can_add_hw = data;
3621
3622 if (event->state <= PERF_EVENT_STATE_OFF)
3623 return 0;
3624
3625 if (!event_filter_match(event))
3626 return 0;
3627
3628 if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3629 if (!group_sched_in(event, cpuctx, ctx))
3630 list_add_tail(&event->active_list, get_event_list(event));
3631 }
3632
3633 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3634 if (event->attr.pinned) {
3635 perf_cgroup_event_disable(event, ctx);
3636 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3637 }
3638
3639 *can_add_hw = 0;
3640 ctx->rotate_necessary = 1;
3641 }
3642
3643 return 0;
3644 }
3645
3646 static void
3647 ctx_pinned_sched_in(struct perf_event_context *ctx,
3648 struct perf_cpu_context *cpuctx)
3649 {
3650 int can_add_hw = 1;
3651
3652 if (ctx != &cpuctx->ctx)
3653 cpuctx = NULL;
3654
3655 visit_groups_merge(cpuctx, &ctx->pinned_groups,
3656 smp_processor_id(),
3657 merge_sched_in, &can_add_hw);
3658 }
3659
3660 static void
3661 ctx_flexible_sched_in(struct perf_event_context *ctx,
3662 struct perf_cpu_context *cpuctx)
3663 {
3664 int can_add_hw = 1;
3665
3666 if (ctx != &cpuctx->ctx)
3667 cpuctx = NULL;
3668
3669 visit_groups_merge(cpuctx, &ctx->flexible_groups,
3670 smp_processor_id(),
3671 merge_sched_in, &can_add_hw);
3672 }
3673
3674 static void
3675 ctx_sched_in(struct perf_event_context *ctx,
3676 struct perf_cpu_context *cpuctx,
3677 enum event_type_t event_type,
3678 struct task_struct *task)
3679 {
3680 int is_active = ctx->is_active;
3681 u64 now;
3682
3683 lockdep_assert_held(&ctx->lock);
3684
3685 if (likely(!ctx->nr_events))
3686 return;
3687
3688 ctx->is_active |= (event_type | EVENT_TIME);
3689 if (ctx->task) {
3690 if (!is_active)
3691 cpuctx->task_ctx = ctx;
3692 else
3693 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3694 }
3695
3696 is_active ^= ctx->is_active; /* changed bits */
3697
3698 if (is_active & EVENT_TIME) {
3699 /* start ctx time */
3700 now = perf_clock();
3701 ctx->timestamp = now;
3702 perf_cgroup_set_timestamp(task, ctx);
3703 }
3704
3705 /*
3706 * First go through the list and put on any pinned groups
3707 * in order to give them the best chance of going on.
3708 */
3709 if (is_active & EVENT_PINNED)
3710 ctx_pinned_sched_in(ctx, cpuctx);
3711
3712 /* Then walk through the lower prio flexible groups */
3713 if (is_active & EVENT_FLEXIBLE)
3714 ctx_flexible_sched_in(ctx, cpuctx);
3715 }
3716
3717 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3718 enum event_type_t event_type,
3719 struct task_struct *task)
3720 {
3721 struct perf_event_context *ctx = &cpuctx->ctx;
3722
3723 ctx_sched_in(ctx, cpuctx, event_type, task);
3724 }
3725
3726 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3727 struct task_struct *task)
3728 {
3729 struct perf_cpu_context *cpuctx;
3730
3731 cpuctx = __get_cpu_context(ctx);
3732 if (cpuctx->task_ctx == ctx)
3733 return;
3734
3735 perf_ctx_lock(cpuctx, ctx);
3736 /*
3737 * We must check ctx->nr_events while holding ctx->lock, such
3738 * that we serialize against perf_install_in_context().
3739 */
3740 if (!ctx->nr_events)
3741 goto unlock;
3742
3743 perf_pmu_disable(ctx->pmu);
3744 /*
3745 * We want to keep the following priority order:
3746 * cpu pinned (that don't need to move), task pinned,
3747 * cpu flexible, task flexible.
3748 *
3749 * However, if task's ctx is not carrying any pinned
3750 * events, no need to flip the cpuctx's events around.
3751 */
3752 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3753 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3754 perf_event_sched_in(cpuctx, ctx, task);
3755 perf_pmu_enable(ctx->pmu);
3756
3757 unlock:
3758 perf_ctx_unlock(cpuctx, ctx);
3759 }
3760
3761 /*
3762 * Called from scheduler to add the events of the current task
3763 * with interrupts disabled.
3764 *
3765 * We restore the event value and then enable it.
3766 *
3767 * This does not protect us against NMI, but enable()
3768 * sets the enabled bit in the control field of event _before_
3769 * accessing the event control register. If a NMI hits, then it will
3770 * keep the event running.
3771 */
3772 void __perf_event_task_sched_in(struct task_struct *prev,
3773 struct task_struct *task)
3774 {
3775 struct perf_event_context *ctx;
3776 int ctxn;
3777
3778 /*
3779 * If cgroup events exist on this CPU, then we need to check if we have
3780 * to switch in PMU state; cgroup event are system-wide mode only.
3781 *
3782 * Since cgroup events are CPU events, we must schedule these in before
3783 * we schedule in the task events.
3784 */
3785 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3786 perf_cgroup_sched_in(prev, task);
3787
3788 for_each_task_context_nr(ctxn) {
3789 ctx = task->perf_event_ctxp[ctxn];
3790 if (likely(!ctx))
3791 continue;
3792
3793 perf_event_context_sched_in(ctx, task);
3794 }
3795
3796 if (atomic_read(&nr_switch_events))
3797 perf_event_switch(task, prev, true);
3798
3799 if (__this_cpu_read(perf_sched_cb_usages))
3800 perf_pmu_sched_task(prev, task, true);
3801 }
3802
3803 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3804 {
3805 u64 frequency = event->attr.sample_freq;
3806 u64 sec = NSEC_PER_SEC;
3807 u64 divisor, dividend;
3808
3809 int count_fls, nsec_fls, frequency_fls, sec_fls;
3810
3811 count_fls = fls64(count);
3812 nsec_fls = fls64(nsec);
3813 frequency_fls = fls64(frequency);
3814 sec_fls = 30;
3815
3816 /*
3817 * We got @count in @nsec, with a target of sample_freq HZ
3818 * the target period becomes:
3819 *
3820 * @count * 10^9
3821 * period = -------------------
3822 * @nsec * sample_freq
3823 *
3824 */
3825
3826 /*
3827 * Reduce accuracy by one bit such that @a and @b converge
3828 * to a similar magnitude.
3829 */
3830 #define REDUCE_FLS(a, b) \
3831 do { \
3832 if (a##_fls > b##_fls) { \
3833 a >>= 1; \
3834 a##_fls--; \
3835 } else { \
3836 b >>= 1; \
3837 b##_fls--; \
3838 } \
3839 } while (0)
3840
3841 /*
3842 * Reduce accuracy until either term fits in a u64, then proceed with
3843 * the other, so that finally we can do a u64/u64 division.
3844 */
3845 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3846 REDUCE_FLS(nsec, frequency);
3847 REDUCE_FLS(sec, count);
3848 }
3849
3850 if (count_fls + sec_fls > 64) {
3851 divisor = nsec * frequency;
3852
3853 while (count_fls + sec_fls > 64) {
3854 REDUCE_FLS(count, sec);
3855 divisor >>= 1;
3856 }
3857
3858 dividend = count * sec;
3859 } else {
3860 dividend = count * sec;
3861
3862 while (nsec_fls + frequency_fls > 64) {
3863 REDUCE_FLS(nsec, frequency);
3864 dividend >>= 1;
3865 }
3866
3867 divisor = nsec * frequency;
3868 }
3869
3870 if (!divisor)
3871 return dividend;
3872
3873 return div64_u64(dividend, divisor);
3874 }
3875
3876 static DEFINE_PER_CPU(int, perf_throttled_count);
3877 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3878
3879 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3880 {
3881 struct hw_perf_event *hwc = &event->hw;
3882 s64 period, sample_period;
3883 s64 delta;
3884
3885 period = perf_calculate_period(event, nsec, count);
3886
3887 delta = (s64)(period - hwc->sample_period);
3888 delta = (delta + 7) / 8; /* low pass filter */
3889
3890 sample_period = hwc->sample_period + delta;
3891
3892 if (!sample_period)
3893 sample_period = 1;
3894
3895 hwc->sample_period = sample_period;
3896
3897 if (local64_read(&hwc->period_left) > 8*sample_period) {
3898 if (disable)
3899 event->pmu->stop(event, PERF_EF_UPDATE);
3900
3901 local64_set(&hwc->period_left, 0);
3902
3903 if (disable)
3904 event->pmu->start(event, PERF_EF_RELOAD);
3905 }
3906 }
3907
3908 /*
3909 * combine freq adjustment with unthrottling to avoid two passes over the
3910 * events. At the same time, make sure, having freq events does not change
3911 * the rate of unthrottling as that would introduce bias.
3912 */
3913 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3914 int needs_unthr)
3915 {
3916 struct perf_event *event;
3917 struct hw_perf_event *hwc;
3918 u64 now, period = TICK_NSEC;
3919 s64 delta;
3920
3921 /*
3922 * only need to iterate over all events iff:
3923 * - context have events in frequency mode (needs freq adjust)
3924 * - there are events to unthrottle on this cpu
3925 */
3926 if (!(ctx->nr_freq || needs_unthr))
3927 return;
3928
3929 raw_spin_lock(&ctx->lock);
3930 perf_pmu_disable(ctx->pmu);
3931
3932 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3933 if (event->state != PERF_EVENT_STATE_ACTIVE)
3934 continue;
3935
3936 if (!event_filter_match(event))
3937 continue;
3938
3939 perf_pmu_disable(event->pmu);
3940
3941 hwc = &event->hw;
3942
3943 if (hwc->interrupts == MAX_INTERRUPTS) {
3944 hwc->interrupts = 0;
3945 perf_log_throttle(event, 1);
3946 event->pmu->start(event, 0);
3947 }
3948
3949 if (!event->attr.freq || !event->attr.sample_freq)
3950 goto next;
3951
3952 /*
3953 * stop the event and update event->count
3954 */
3955 event->pmu->stop(event, PERF_EF_UPDATE);
3956
3957 now = local64_read(&event->count);
3958 delta = now - hwc->freq_count_stamp;
3959 hwc->freq_count_stamp = now;
3960
3961 /*
3962 * restart the event
3963 * reload only if value has changed
3964 * we have stopped the event so tell that
3965 * to perf_adjust_period() to avoid stopping it
3966 * twice.
3967 */
3968 if (delta > 0)
3969 perf_adjust_period(event, period, delta, false);
3970
3971 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3972 next:
3973 perf_pmu_enable(event->pmu);
3974 }
3975
3976 perf_pmu_enable(ctx->pmu);
3977 raw_spin_unlock(&ctx->lock);
3978 }
3979
3980 /*
3981 * Move @event to the tail of the @ctx's elegible events.
3982 */
3983 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3984 {
3985 /*
3986 * Rotate the first entry last of non-pinned groups. Rotation might be
3987 * disabled by the inheritance code.
3988 */
3989 if (ctx->rotate_disable)
3990 return;
3991
3992 perf_event_groups_delete(&ctx->flexible_groups, event);
3993 perf_event_groups_insert(&ctx->flexible_groups, event);
3994 }
3995
3996 /* pick an event from the flexible_groups to rotate */
3997 static inline struct perf_event *
3998 ctx_event_to_rotate(struct perf_event_context *ctx)
3999 {
4000 struct perf_event *event;
4001
4002 /* pick the first active flexible event */
4003 event = list_first_entry_or_null(&ctx->flexible_active,
4004 struct perf_event, active_list);
4005
4006 /* if no active flexible event, pick the first event */
4007 if (!event) {
4008 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4009 typeof(*event), group_node);
4010 }
4011
4012 /*
4013 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4014 * finds there are unschedulable events, it will set it again.
4015 */
4016 ctx->rotate_necessary = 0;
4017
4018 return event;
4019 }
4020
4021 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4022 {
4023 struct perf_event *cpu_event = NULL, *task_event = NULL;
4024 struct perf_event_context *task_ctx = NULL;
4025 int cpu_rotate, task_rotate;
4026
4027 /*
4028 * Since we run this from IRQ context, nobody can install new
4029 * events, thus the event count values are stable.
4030 */
4031
4032 cpu_rotate = cpuctx->ctx.rotate_necessary;
4033 task_ctx = cpuctx->task_ctx;
4034 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4035
4036 if (!(cpu_rotate || task_rotate))
4037 return false;
4038
4039 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4040 perf_pmu_disable(cpuctx->ctx.pmu);
4041
4042 if (task_rotate)
4043 task_event = ctx_event_to_rotate(task_ctx);
4044 if (cpu_rotate)
4045 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4046
4047 /*
4048 * As per the order given at ctx_resched() first 'pop' task flexible
4049 * and then, if needed CPU flexible.
4050 */
4051 if (task_event || (task_ctx && cpu_event))
4052 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4053 if (cpu_event)
4054 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4055
4056 if (task_event)
4057 rotate_ctx(task_ctx, task_event);
4058 if (cpu_event)
4059 rotate_ctx(&cpuctx->ctx, cpu_event);
4060
4061 perf_event_sched_in(cpuctx, task_ctx, current);
4062
4063 perf_pmu_enable(cpuctx->ctx.pmu);
4064 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4065
4066 return true;
4067 }
4068
4069 void perf_event_task_tick(void)
4070 {
4071 struct list_head *head = this_cpu_ptr(&active_ctx_list);
4072 struct perf_event_context *ctx, *tmp;
4073 int throttled;
4074
4075 lockdep_assert_irqs_disabled();
4076
4077 __this_cpu_inc(perf_throttled_seq);
4078 throttled = __this_cpu_xchg(perf_throttled_count, 0);
4079 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4080
4081 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4082 perf_adjust_freq_unthr_context(ctx, throttled);
4083 }
4084
4085 static int event_enable_on_exec(struct perf_event *event,
4086 struct perf_event_context *ctx)
4087 {
4088 if (!event->attr.enable_on_exec)
4089 return 0;
4090
4091 event->attr.enable_on_exec = 0;
4092 if (event->state >= PERF_EVENT_STATE_INACTIVE)
4093 return 0;
4094
4095 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4096
4097 return 1;
4098 }
4099
4100 /*
4101 * Enable all of a task's events that have been marked enable-on-exec.
4102 * This expects task == current.
4103 */
4104 static void perf_event_enable_on_exec(int ctxn)
4105 {
4106 struct perf_event_context *ctx, *clone_ctx = NULL;
4107 enum event_type_t event_type = 0;
4108 struct perf_cpu_context *cpuctx;
4109 struct perf_event *event;
4110 unsigned long flags;
4111 int enabled = 0;
4112
4113 local_irq_save(flags);
4114 ctx = current->perf_event_ctxp[ctxn];
4115 if (!ctx || !ctx->nr_events)
4116 goto out;
4117
4118 cpuctx = __get_cpu_context(ctx);
4119 perf_ctx_lock(cpuctx, ctx);
4120 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4121 list_for_each_entry(event, &ctx->event_list, event_entry) {
4122 enabled |= event_enable_on_exec(event, ctx);
4123 event_type |= get_event_type(event);
4124 }
4125
4126 /*
4127 * Unclone and reschedule this context if we enabled any event.
4128 */
4129 if (enabled) {
4130 clone_ctx = unclone_ctx(ctx);
4131 ctx_resched(cpuctx, ctx, event_type);
4132 } else {
4133 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4134 }
4135 perf_ctx_unlock(cpuctx, ctx);
4136
4137 out:
4138 local_irq_restore(flags);
4139
4140 if (clone_ctx)
4141 put_ctx(clone_ctx);
4142 }
4143
4144 struct perf_read_data {
4145 struct perf_event *event;
4146 bool group;
4147 int ret;
4148 };
4149
4150 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4151 {
4152 u16 local_pkg, event_pkg;
4153
4154 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4155 int local_cpu = smp_processor_id();
4156
4157 event_pkg = topology_physical_package_id(event_cpu);
4158 local_pkg = topology_physical_package_id(local_cpu);
4159
4160 if (event_pkg == local_pkg)
4161 return local_cpu;
4162 }
4163
4164 return event_cpu;
4165 }
4166
4167 /*
4168 * Cross CPU call to read the hardware event
4169 */
4170 static void __perf_event_read(void *info)
4171 {
4172 struct perf_read_data *data = info;
4173 struct perf_event *sub, *event = data->event;
4174 struct perf_event_context *ctx = event->ctx;
4175 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4176 struct pmu *pmu = event->pmu;
4177
4178 /*
4179 * If this is a task context, we need to check whether it is
4180 * the current task context of this cpu. If not it has been
4181 * scheduled out before the smp call arrived. In that case
4182 * event->count would have been updated to a recent sample
4183 * when the event was scheduled out.
4184 */
4185 if (ctx->task && cpuctx->task_ctx != ctx)
4186 return;
4187
4188 raw_spin_lock(&ctx->lock);
4189 if (ctx->is_active & EVENT_TIME) {
4190 update_context_time(ctx);
4191 update_cgrp_time_from_event(event);
4192 }
4193
4194 perf_event_update_time(event);
4195 if (data->group)
4196 perf_event_update_sibling_time(event);
4197
4198 if (event->state != PERF_EVENT_STATE_ACTIVE)
4199 goto unlock;
4200
4201 if (!data->group) {
4202 pmu->read(event);
4203 data->ret = 0;
4204 goto unlock;
4205 }
4206
4207 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4208
4209 pmu->read(event);
4210
4211 for_each_sibling_event(sub, event) {
4212 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4213 /*
4214 * Use sibling's PMU rather than @event's since
4215 * sibling could be on different (eg: software) PMU.
4216 */
4217 sub->pmu->read(sub);
4218 }
4219 }
4220
4221 data->ret = pmu->commit_txn(pmu);
4222
4223 unlock:
4224 raw_spin_unlock(&ctx->lock);
4225 }
4226
4227 static inline u64 perf_event_count(struct perf_event *event)
4228 {
4229 return local64_read(&event->count) + atomic64_read(&event->child_count);
4230 }
4231
4232 /*
4233 * NMI-safe method to read a local event, that is an event that
4234 * is:
4235 * - either for the current task, or for this CPU
4236 * - does not have inherit set, for inherited task events
4237 * will not be local and we cannot read them atomically
4238 * - must not have a pmu::count method
4239 */
4240 int perf_event_read_local(struct perf_event *event, u64 *value,
4241 u64 *enabled, u64 *running)
4242 {
4243 unsigned long flags;
4244 int ret = 0;
4245
4246 /*
4247 * Disabling interrupts avoids all counter scheduling (context
4248 * switches, timer based rotation and IPIs).
4249 */
4250 local_irq_save(flags);
4251
4252 /*
4253 * It must not be an event with inherit set, we cannot read
4254 * all child counters from atomic context.
4255 */
4256 if (event->attr.inherit) {
4257 ret = -EOPNOTSUPP;
4258 goto out;
4259 }
4260
4261 /* If this is a per-task event, it must be for current */
4262 if ((event->attach_state & PERF_ATTACH_TASK) &&
4263 event->hw.target != current) {
4264 ret = -EINVAL;
4265 goto out;
4266 }
4267
4268 /* If this is a per-CPU event, it must be for this CPU */
4269 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4270 event->cpu != smp_processor_id()) {
4271 ret = -EINVAL;
4272 goto out;
4273 }
4274
4275 /* If this is a pinned event it must be running on this CPU */
4276 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4277 ret = -EBUSY;
4278 goto out;
4279 }
4280
4281 /*
4282 * If the event is currently on this CPU, its either a per-task event,
4283 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4284 * oncpu == -1).
4285 */
4286 if (event->oncpu == smp_processor_id())
4287 event->pmu->read(event);
4288
4289 *value = local64_read(&event->count);
4290 if (enabled || running) {
4291 u64 now = event->shadow_ctx_time + perf_clock();
4292 u64 __enabled, __running;
4293
4294 __perf_update_times(event, now, &__enabled, &__running);
4295 if (enabled)
4296 *enabled = __enabled;
4297 if (running)
4298 *running = __running;
4299 }
4300 out:
4301 local_irq_restore(flags);
4302
4303 return ret;
4304 }
4305
4306 static int perf_event_read(struct perf_event *event, bool group)
4307 {
4308 enum perf_event_state state = READ_ONCE(event->state);
4309 int event_cpu, ret = 0;
4310
4311 /*
4312 * If event is enabled and currently active on a CPU, update the
4313 * value in the event structure:
4314 */
4315 again:
4316 if (state == PERF_EVENT_STATE_ACTIVE) {
4317 struct perf_read_data data;
4318
4319 /*
4320 * Orders the ->state and ->oncpu loads such that if we see
4321 * ACTIVE we must also see the right ->oncpu.
4322 *
4323 * Matches the smp_wmb() from event_sched_in().
4324 */
4325 smp_rmb();
4326
4327 event_cpu = READ_ONCE(event->oncpu);
4328 if ((unsigned)event_cpu >= nr_cpu_ids)
4329 return 0;
4330
4331 data = (struct perf_read_data){
4332 .event = event,
4333 .group = group,
4334 .ret = 0,
4335 };
4336
4337 preempt_disable();
4338 event_cpu = __perf_event_read_cpu(event, event_cpu);
4339
4340 /*
4341 * Purposely ignore the smp_call_function_single() return
4342 * value.
4343 *
4344 * If event_cpu isn't a valid CPU it means the event got
4345 * scheduled out and that will have updated the event count.
4346 *
4347 * Therefore, either way, we'll have an up-to-date event count
4348 * after this.
4349 */
4350 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4351 preempt_enable();
4352 ret = data.ret;
4353
4354 } else if (state == PERF_EVENT_STATE_INACTIVE) {
4355 struct perf_event_context *ctx = event->ctx;
4356 unsigned long flags;
4357
4358 raw_spin_lock_irqsave(&ctx->lock, flags);
4359 state = event->state;
4360 if (state != PERF_EVENT_STATE_INACTIVE) {
4361 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4362 goto again;
4363 }
4364
4365 /*
4366 * May read while context is not active (e.g., thread is
4367 * blocked), in that case we cannot update context time
4368 */
4369 if (ctx->is_active & EVENT_TIME) {
4370 update_context_time(ctx);
4371 update_cgrp_time_from_event(event);
4372 }
4373
4374 perf_event_update_time(event);
4375 if (group)
4376 perf_event_update_sibling_time(event);
4377 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4378 }
4379
4380 return ret;
4381 }
4382
4383 /*
4384 * Initialize the perf_event context in a task_struct:
4385 */
4386 static void __perf_event_init_context(struct perf_event_context *ctx)
4387 {
4388 raw_spin_lock_init(&ctx->lock);
4389 mutex_init(&ctx->mutex);
4390 INIT_LIST_HEAD(&ctx->active_ctx_list);
4391 perf_event_groups_init(&ctx->pinned_groups);
4392 perf_event_groups_init(&ctx->flexible_groups);
4393 INIT_LIST_HEAD(&ctx->event_list);
4394 INIT_LIST_HEAD(&ctx->pinned_active);
4395 INIT_LIST_HEAD(&ctx->flexible_active);
4396 refcount_set(&ctx->refcount, 1);
4397 }
4398
4399 static struct perf_event_context *
4400 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4401 {
4402 struct perf_event_context *ctx;
4403
4404 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4405 if (!ctx)
4406 return NULL;
4407
4408 __perf_event_init_context(ctx);
4409 if (task)
4410 ctx->task = get_task_struct(task);
4411 ctx->pmu = pmu;
4412
4413 return ctx;
4414 }
4415
4416 static struct task_struct *
4417 find_lively_task_by_vpid(pid_t vpid)
4418 {
4419 struct task_struct *task;
4420
4421 rcu_read_lock();
4422 if (!vpid)
4423 task = current;
4424 else
4425 task = find_task_by_vpid(vpid);
4426 if (task)
4427 get_task_struct(task);
4428 rcu_read_unlock();
4429
4430 if (!task)
4431 return ERR_PTR(-ESRCH);
4432
4433 return task;
4434 }
4435
4436 /*
4437 * Returns a matching context with refcount and pincount.
4438 */
4439 static struct perf_event_context *
4440 find_get_context(struct pmu *pmu, struct task_struct *task,
4441 struct perf_event *event)
4442 {
4443 struct perf_event_context *ctx, *clone_ctx = NULL;
4444 struct perf_cpu_context *cpuctx;
4445 void *task_ctx_data = NULL;
4446 unsigned long flags;
4447 int ctxn, err;
4448 int cpu = event->cpu;
4449
4450 if (!task) {
4451 /* Must be root to operate on a CPU event: */
4452 err = perf_allow_cpu(&event->attr);
4453 if (err)
4454 return ERR_PTR(err);
4455
4456 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4457 ctx = &cpuctx->ctx;
4458 get_ctx(ctx);
4459 ++ctx->pin_count;
4460
4461 return ctx;
4462 }
4463
4464 err = -EINVAL;
4465 ctxn = pmu->task_ctx_nr;
4466 if (ctxn < 0)
4467 goto errout;
4468
4469 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4470 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4471 if (!task_ctx_data) {
4472 err = -ENOMEM;
4473 goto errout;
4474 }
4475 }
4476
4477 retry:
4478 ctx = perf_lock_task_context(task, ctxn, &flags);
4479 if (ctx) {
4480 clone_ctx = unclone_ctx(ctx);
4481 ++ctx->pin_count;
4482
4483 if (task_ctx_data && !ctx->task_ctx_data) {
4484 ctx->task_ctx_data = task_ctx_data;
4485 task_ctx_data = NULL;
4486 }
4487 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4488
4489 if (clone_ctx)
4490 put_ctx(clone_ctx);
4491 } else {
4492 ctx = alloc_perf_context(pmu, task);
4493 err = -ENOMEM;
4494 if (!ctx)
4495 goto errout;
4496
4497 if (task_ctx_data) {
4498 ctx->task_ctx_data = task_ctx_data;
4499 task_ctx_data = NULL;
4500 }
4501
4502 err = 0;
4503 mutex_lock(&task->perf_event_mutex);
4504 /*
4505 * If it has already passed perf_event_exit_task().
4506 * we must see PF_EXITING, it takes this mutex too.
4507 */
4508 if (task->flags & PF_EXITING)
4509 err = -ESRCH;
4510 else if (task->perf_event_ctxp[ctxn])
4511 err = -EAGAIN;
4512 else {
4513 get_ctx(ctx);
4514 ++ctx->pin_count;
4515 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4516 }
4517 mutex_unlock(&task->perf_event_mutex);
4518
4519 if (unlikely(err)) {
4520 put_ctx(ctx);
4521
4522 if (err == -EAGAIN)
4523 goto retry;
4524 goto errout;
4525 }
4526 }
4527
4528 kfree(task_ctx_data);
4529 return ctx;
4530
4531 errout:
4532 kfree(task_ctx_data);
4533 return ERR_PTR(err);
4534 }
4535
4536 static void perf_event_free_filter(struct perf_event *event);
4537 static void perf_event_free_bpf_prog(struct perf_event *event);
4538
4539 static void free_event_rcu(struct rcu_head *head)
4540 {
4541 struct perf_event *event;
4542
4543 event = container_of(head, struct perf_event, rcu_head);
4544 if (event->ns)
4545 put_pid_ns(event->ns);
4546 perf_event_free_filter(event);
4547 kfree(event);
4548 }
4549
4550 static void ring_buffer_attach(struct perf_event *event,
4551 struct perf_buffer *rb);
4552
4553 static void detach_sb_event(struct perf_event *event)
4554 {
4555 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4556
4557 raw_spin_lock(&pel->lock);
4558 list_del_rcu(&event->sb_list);
4559 raw_spin_unlock(&pel->lock);
4560 }
4561
4562 static bool is_sb_event(struct perf_event *event)
4563 {
4564 struct perf_event_attr *attr = &event->attr;
4565
4566 if (event->parent)
4567 return false;
4568
4569 if (event->attach_state & PERF_ATTACH_TASK)
4570 return false;
4571
4572 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4573 attr->comm || attr->comm_exec ||
4574 attr->task || attr->ksymbol ||
4575 attr->context_switch ||
4576 attr->bpf_event)
4577 return true;
4578 return false;
4579 }
4580
4581 static void unaccount_pmu_sb_event(struct perf_event *event)
4582 {
4583 if (is_sb_event(event))
4584 detach_sb_event(event);
4585 }
4586
4587 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4588 {
4589 if (event->parent)
4590 return;
4591
4592 if (is_cgroup_event(event))
4593 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4594 }
4595
4596 #ifdef CONFIG_NO_HZ_FULL
4597 static DEFINE_SPINLOCK(nr_freq_lock);
4598 #endif
4599
4600 static void unaccount_freq_event_nohz(void)
4601 {
4602 #ifdef CONFIG_NO_HZ_FULL
4603 spin_lock(&nr_freq_lock);
4604 if (atomic_dec_and_test(&nr_freq_events))
4605 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4606 spin_unlock(&nr_freq_lock);
4607 #endif
4608 }
4609
4610 static void unaccount_freq_event(void)
4611 {
4612 if (tick_nohz_full_enabled())
4613 unaccount_freq_event_nohz();
4614 else
4615 atomic_dec(&nr_freq_events);
4616 }
4617
4618 static void unaccount_event(struct perf_event *event)
4619 {
4620 bool dec = false;
4621
4622 if (event->parent)
4623 return;
4624
4625 if (event->attach_state & PERF_ATTACH_TASK)
4626 dec = true;
4627 if (event->attr.mmap || event->attr.mmap_data)
4628 atomic_dec(&nr_mmap_events);
4629 if (event->attr.comm)
4630 atomic_dec(&nr_comm_events);
4631 if (event->attr.namespaces)
4632 atomic_dec(&nr_namespaces_events);
4633 if (event->attr.cgroup)
4634 atomic_dec(&nr_cgroup_events);
4635 if (event->attr.task)
4636 atomic_dec(&nr_task_events);
4637 if (event->attr.freq)
4638 unaccount_freq_event();
4639 if (event->attr.context_switch) {
4640 dec = true;
4641 atomic_dec(&nr_switch_events);
4642 }
4643 if (is_cgroup_event(event))
4644 dec = true;
4645 if (has_branch_stack(event))
4646 dec = true;
4647 if (event->attr.ksymbol)
4648 atomic_dec(&nr_ksymbol_events);
4649 if (event->attr.bpf_event)
4650 atomic_dec(&nr_bpf_events);
4651
4652 if (dec) {
4653 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4654 schedule_delayed_work(&perf_sched_work, HZ);
4655 }
4656
4657 unaccount_event_cpu(event, event->cpu);
4658
4659 unaccount_pmu_sb_event(event);
4660 }
4661
4662 static void perf_sched_delayed(struct work_struct *work)
4663 {
4664 mutex_lock(&perf_sched_mutex);
4665 if (atomic_dec_and_test(&perf_sched_count))
4666 static_branch_disable(&perf_sched_events);
4667 mutex_unlock(&perf_sched_mutex);
4668 }
4669
4670 /*
4671 * The following implement mutual exclusion of events on "exclusive" pmus
4672 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4673 * at a time, so we disallow creating events that might conflict, namely:
4674 *
4675 * 1) cpu-wide events in the presence of per-task events,
4676 * 2) per-task events in the presence of cpu-wide events,
4677 * 3) two matching events on the same context.
4678 *
4679 * The former two cases are handled in the allocation path (perf_event_alloc(),
4680 * _free_event()), the latter -- before the first perf_install_in_context().
4681 */
4682 static int exclusive_event_init(struct perf_event *event)
4683 {
4684 struct pmu *pmu = event->pmu;
4685
4686 if (!is_exclusive_pmu(pmu))
4687 return 0;
4688
4689 /*
4690 * Prevent co-existence of per-task and cpu-wide events on the
4691 * same exclusive pmu.
4692 *
4693 * Negative pmu::exclusive_cnt means there are cpu-wide
4694 * events on this "exclusive" pmu, positive means there are
4695 * per-task events.
4696 *
4697 * Since this is called in perf_event_alloc() path, event::ctx
4698 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4699 * to mean "per-task event", because unlike other attach states it
4700 * never gets cleared.
4701 */
4702 if (event->attach_state & PERF_ATTACH_TASK) {
4703 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4704 return -EBUSY;
4705 } else {
4706 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4707 return -EBUSY;
4708 }
4709
4710 return 0;
4711 }
4712
4713 static void exclusive_event_destroy(struct perf_event *event)
4714 {
4715 struct pmu *pmu = event->pmu;
4716
4717 if (!is_exclusive_pmu(pmu))
4718 return;
4719
4720 /* see comment in exclusive_event_init() */
4721 if (event->attach_state & PERF_ATTACH_TASK)
4722 atomic_dec(&pmu->exclusive_cnt);
4723 else
4724 atomic_inc(&pmu->exclusive_cnt);
4725 }
4726
4727 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4728 {
4729 if ((e1->pmu == e2->pmu) &&
4730 (e1->cpu == e2->cpu ||
4731 e1->cpu == -1 ||
4732 e2->cpu == -1))
4733 return true;
4734 return false;
4735 }
4736
4737 static bool exclusive_event_installable(struct perf_event *event,
4738 struct perf_event_context *ctx)
4739 {
4740 struct perf_event *iter_event;
4741 struct pmu *pmu = event->pmu;
4742
4743 lockdep_assert_held(&ctx->mutex);
4744
4745 if (!is_exclusive_pmu(pmu))
4746 return true;
4747
4748 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4749 if (exclusive_event_match(iter_event, event))
4750 return false;
4751 }
4752
4753 return true;
4754 }
4755
4756 static void perf_addr_filters_splice(struct perf_event *event,
4757 struct list_head *head);
4758
4759 static void _free_event(struct perf_event *event)
4760 {
4761 irq_work_sync(&event->pending);
4762
4763 unaccount_event(event);
4764
4765 security_perf_event_free(event);
4766
4767 if (event->rb) {
4768 /*
4769 * Can happen when we close an event with re-directed output.
4770 *
4771 * Since we have a 0 refcount, perf_mmap_close() will skip
4772 * over us; possibly making our ring_buffer_put() the last.
4773 */
4774 mutex_lock(&event->mmap_mutex);
4775 ring_buffer_attach(event, NULL);
4776 mutex_unlock(&event->mmap_mutex);
4777 }
4778
4779 if (is_cgroup_event(event))
4780 perf_detach_cgroup(event);
4781
4782 if (!event->parent) {
4783 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4784 put_callchain_buffers();
4785 }
4786
4787 perf_event_free_bpf_prog(event);
4788 perf_addr_filters_splice(event, NULL);
4789 kfree(event->addr_filter_ranges);
4790
4791 if (event->destroy)
4792 event->destroy(event);
4793
4794 /*
4795 * Must be after ->destroy(), due to uprobe_perf_close() using
4796 * hw.target.
4797 */
4798 if (event->hw.target)
4799 put_task_struct(event->hw.target);
4800
4801 /*
4802 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4803 * all task references must be cleaned up.
4804 */
4805 if (event->ctx)
4806 put_ctx(event->ctx);
4807
4808 exclusive_event_destroy(event);
4809 module_put(event->pmu->module);
4810
4811 call_rcu(&event->rcu_head, free_event_rcu);
4812 }
4813
4814 /*
4815 * Used to free events which have a known refcount of 1, such as in error paths
4816 * where the event isn't exposed yet and inherited events.
4817 */
4818 static void free_event(struct perf_event *event)
4819 {
4820 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4821 "unexpected event refcount: %ld; ptr=%p\n",
4822 atomic_long_read(&event->refcount), event)) {
4823 /* leak to avoid use-after-free */
4824 return;
4825 }
4826
4827 _free_event(event);
4828 }
4829
4830 /*
4831 * Remove user event from the owner task.
4832 */
4833 static void perf_remove_from_owner(struct perf_event *event)
4834 {
4835 struct task_struct *owner;
4836
4837 rcu_read_lock();
4838 /*
4839 * Matches the smp_store_release() in perf_event_exit_task(). If we
4840 * observe !owner it means the list deletion is complete and we can
4841 * indeed free this event, otherwise we need to serialize on
4842 * owner->perf_event_mutex.
4843 */
4844 owner = READ_ONCE(event->owner);
4845 if (owner) {
4846 /*
4847 * Since delayed_put_task_struct() also drops the last
4848 * task reference we can safely take a new reference
4849 * while holding the rcu_read_lock().
4850 */
4851 get_task_struct(owner);
4852 }
4853 rcu_read_unlock();
4854
4855 if (owner) {
4856 /*
4857 * If we're here through perf_event_exit_task() we're already
4858 * holding ctx->mutex which would be an inversion wrt. the
4859 * normal lock order.
4860 *
4861 * However we can safely take this lock because its the child
4862 * ctx->mutex.
4863 */
4864 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4865
4866 /*
4867 * We have to re-check the event->owner field, if it is cleared
4868 * we raced with perf_event_exit_task(), acquiring the mutex
4869 * ensured they're done, and we can proceed with freeing the
4870 * event.
4871 */
4872 if (event->owner) {
4873 list_del_init(&event->owner_entry);
4874 smp_store_release(&event->owner, NULL);
4875 }
4876 mutex_unlock(&owner->perf_event_mutex);
4877 put_task_struct(owner);
4878 }
4879 }
4880
4881 static void put_event(struct perf_event *event)
4882 {
4883 if (!atomic_long_dec_and_test(&event->refcount))
4884 return;
4885
4886 _free_event(event);
4887 }
4888
4889 /*
4890 * Kill an event dead; while event:refcount will preserve the event
4891 * object, it will not preserve its functionality. Once the last 'user'
4892 * gives up the object, we'll destroy the thing.
4893 */
4894 int perf_event_release_kernel(struct perf_event *event)
4895 {
4896 struct perf_event_context *ctx = event->ctx;
4897 struct perf_event *child, *tmp;
4898 LIST_HEAD(free_list);
4899
4900 /*
4901 * If we got here through err_file: fput(event_file); we will not have
4902 * attached to a context yet.
4903 */
4904 if (!ctx) {
4905 WARN_ON_ONCE(event->attach_state &
4906 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4907 goto no_ctx;
4908 }
4909
4910 if (!is_kernel_event(event))
4911 perf_remove_from_owner(event);
4912
4913 ctx = perf_event_ctx_lock(event);
4914 WARN_ON_ONCE(ctx->parent_ctx);
4915 perf_remove_from_context(event, DETACH_GROUP);
4916
4917 raw_spin_lock_irq(&ctx->lock);
4918 /*
4919 * Mark this event as STATE_DEAD, there is no external reference to it
4920 * anymore.
4921 *
4922 * Anybody acquiring event->child_mutex after the below loop _must_
4923 * also see this, most importantly inherit_event() which will avoid
4924 * placing more children on the list.
4925 *
4926 * Thus this guarantees that we will in fact observe and kill _ALL_
4927 * child events.
4928 */
4929 event->state = PERF_EVENT_STATE_DEAD;
4930 raw_spin_unlock_irq(&ctx->lock);
4931
4932 perf_event_ctx_unlock(event, ctx);
4933
4934 again:
4935 mutex_lock(&event->child_mutex);
4936 list_for_each_entry(child, &event->child_list, child_list) {
4937
4938 /*
4939 * Cannot change, child events are not migrated, see the
4940 * comment with perf_event_ctx_lock_nested().
4941 */
4942 ctx = READ_ONCE(child->ctx);
4943 /*
4944 * Since child_mutex nests inside ctx::mutex, we must jump
4945 * through hoops. We start by grabbing a reference on the ctx.
4946 *
4947 * Since the event cannot get freed while we hold the
4948 * child_mutex, the context must also exist and have a !0
4949 * reference count.
4950 */
4951 get_ctx(ctx);
4952
4953 /*
4954 * Now that we have a ctx ref, we can drop child_mutex, and
4955 * acquire ctx::mutex without fear of it going away. Then we
4956 * can re-acquire child_mutex.
4957 */
4958 mutex_unlock(&event->child_mutex);
4959 mutex_lock(&ctx->mutex);
4960 mutex_lock(&event->child_mutex);
4961
4962 /*
4963 * Now that we hold ctx::mutex and child_mutex, revalidate our
4964 * state, if child is still the first entry, it didn't get freed
4965 * and we can continue doing so.
4966 */
4967 tmp = list_first_entry_or_null(&event->child_list,
4968 struct perf_event, child_list);
4969 if (tmp == child) {
4970 perf_remove_from_context(child, DETACH_GROUP);
4971 list_move(&child->child_list, &free_list);
4972 /*
4973 * This matches the refcount bump in inherit_event();
4974 * this can't be the last reference.
4975 */
4976 put_event(event);
4977 }
4978
4979 mutex_unlock(&event->child_mutex);
4980 mutex_unlock(&ctx->mutex);
4981 put_ctx(ctx);
4982 goto again;
4983 }
4984 mutex_unlock(&event->child_mutex);
4985
4986 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4987 void *var = &child->ctx->refcount;
4988
4989 list_del(&child->child_list);
4990 free_event(child);
4991
4992 /*
4993 * Wake any perf_event_free_task() waiting for this event to be
4994 * freed.
4995 */
4996 smp_mb(); /* pairs with wait_var_event() */
4997 wake_up_var(var);
4998 }
4999
5000 no_ctx:
5001 put_event(event); /* Must be the 'last' reference */
5002 return 0;
5003 }
5004 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5005
5006 /*
5007 * Called when the last reference to the file is gone.
5008 */
5009 static int perf_release(struct inode *inode, struct file *file)
5010 {
5011 perf_event_release_kernel(file->private_data);
5012 return 0;
5013 }
5014
5015 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5016 {
5017 struct perf_event *child;
5018 u64 total = 0;
5019
5020 *enabled = 0;
5021 *running = 0;
5022
5023 mutex_lock(&event->child_mutex);
5024
5025 (void)perf_event_read(event, false);
5026 total += perf_event_count(event);
5027
5028 *enabled += event->total_time_enabled +
5029 atomic64_read(&event->child_total_time_enabled);
5030 *running += event->total_time_running +
5031 atomic64_read(&event->child_total_time_running);
5032
5033 list_for_each_entry(child, &event->child_list, child_list) {
5034 (void)perf_event_read(child, false);
5035 total += perf_event_count(child);
5036 *enabled += child->total_time_enabled;
5037 *running += child->total_time_running;
5038 }
5039 mutex_unlock(&event->child_mutex);
5040
5041 return total;
5042 }
5043
5044 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5045 {
5046 struct perf_event_context *ctx;
5047 u64 count;
5048
5049 ctx = perf_event_ctx_lock(event);
5050 count = __perf_event_read_value(event, enabled, running);
5051 perf_event_ctx_unlock(event, ctx);
5052
5053 return count;
5054 }
5055 EXPORT_SYMBOL_GPL(perf_event_read_value);
5056
5057 static int __perf_read_group_add(struct perf_event *leader,
5058 u64 read_format, u64 *values)
5059 {
5060 struct perf_event_context *ctx = leader->ctx;
5061 struct perf_event *sub;
5062 unsigned long flags;
5063 int n = 1; /* skip @nr */
5064 int ret;
5065
5066 ret = perf_event_read(leader, true);
5067 if (ret)
5068 return ret;
5069
5070 raw_spin_lock_irqsave(&ctx->lock, flags);
5071
5072 /*
5073 * Since we co-schedule groups, {enabled,running} times of siblings
5074 * will be identical to those of the leader, so we only publish one
5075 * set.
5076 */
5077 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5078 values[n++] += leader->total_time_enabled +
5079 atomic64_read(&leader->child_total_time_enabled);
5080 }
5081
5082 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5083 values[n++] += leader->total_time_running +
5084 atomic64_read(&leader->child_total_time_running);
5085 }
5086
5087 /*
5088 * Write {count,id} tuples for every sibling.
5089 */
5090 values[n++] += perf_event_count(leader);
5091 if (read_format & PERF_FORMAT_ID)
5092 values[n++] = primary_event_id(leader);
5093
5094 for_each_sibling_event(sub, leader) {
5095 values[n++] += perf_event_count(sub);
5096 if (read_format & PERF_FORMAT_ID)
5097 values[n++] = primary_event_id(sub);
5098 }
5099
5100 raw_spin_unlock_irqrestore(&ctx->lock, flags);
5101 return 0;
5102 }
5103
5104 static int perf_read_group(struct perf_event *event,
5105 u64 read_format, char __user *buf)
5106 {
5107 struct perf_event *leader = event->group_leader, *child;
5108 struct perf_event_context *ctx = leader->ctx;
5109 int ret;
5110 u64 *values;
5111
5112 lockdep_assert_held(&ctx->mutex);
5113
5114 values = kzalloc(event->read_size, GFP_KERNEL);
5115 if (!values)
5116 return -ENOMEM;
5117
5118 values[0] = 1 + leader->nr_siblings;
5119
5120 /*
5121 * By locking the child_mutex of the leader we effectively
5122 * lock the child list of all siblings.. XXX explain how.
5123 */
5124 mutex_lock(&leader->child_mutex);
5125
5126 ret = __perf_read_group_add(leader, read_format, values);
5127 if (ret)
5128 goto unlock;
5129
5130 list_for_each_entry(child, &leader->child_list, child_list) {
5131 ret = __perf_read_group_add(child, read_format, values);
5132 if (ret)
5133 goto unlock;
5134 }
5135
5136 mutex_unlock(&leader->child_mutex);
5137
5138 ret = event->read_size;
5139 if (copy_to_user(buf, values, event->read_size))
5140 ret = -EFAULT;
5141 goto out;
5142
5143 unlock:
5144 mutex_unlock(&leader->child_mutex);
5145 out:
5146 kfree(values);
5147 return ret;
5148 }
5149
5150 static int perf_read_one(struct perf_event *event,
5151 u64 read_format, char __user *buf)
5152 {
5153 u64 enabled, running;
5154 u64 values[4];
5155 int n = 0;
5156
5157 values[n++] = __perf_event_read_value(event, &enabled, &running);
5158 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5159 values[n++] = enabled;
5160 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5161 values[n++] = running;
5162 if (read_format & PERF_FORMAT_ID)
5163 values[n++] = primary_event_id(event);
5164
5165 if (copy_to_user(buf, values, n * sizeof(u64)))
5166 return -EFAULT;
5167
5168 return n * sizeof(u64);
5169 }
5170
5171 static bool is_event_hup(struct perf_event *event)
5172 {
5173 bool no_children;
5174
5175 if (event->state > PERF_EVENT_STATE_EXIT)
5176 return false;
5177
5178 mutex_lock(&event->child_mutex);
5179 no_children = list_empty(&event->child_list);
5180 mutex_unlock(&event->child_mutex);
5181 return no_children;
5182 }
5183
5184 /*
5185 * Read the performance event - simple non blocking version for now
5186 */
5187 static ssize_t
5188 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5189 {
5190 u64 read_format = event->attr.read_format;
5191 int ret;
5192
5193 /*
5194 * Return end-of-file for a read on an event that is in
5195 * error state (i.e. because it was pinned but it couldn't be
5196 * scheduled on to the CPU at some point).
5197 */
5198 if (event->state == PERF_EVENT_STATE_ERROR)
5199 return 0;
5200
5201 if (count < event->read_size)
5202 return -ENOSPC;
5203
5204 WARN_ON_ONCE(event->ctx->parent_ctx);
5205 if (read_format & PERF_FORMAT_GROUP)
5206 ret = perf_read_group(event, read_format, buf);
5207 else
5208 ret = perf_read_one(event, read_format, buf);
5209
5210 return ret;
5211 }
5212
5213 static ssize_t
5214 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5215 {
5216 struct perf_event *event = file->private_data;
5217 struct perf_event_context *ctx;
5218 int ret;
5219
5220 ret = security_perf_event_read(event);
5221 if (ret)
5222 return ret;
5223
5224 ctx = perf_event_ctx_lock(event);
5225 ret = __perf_read(event, buf, count);
5226 perf_event_ctx_unlock(event, ctx);
5227
5228 return ret;
5229 }
5230
5231 static __poll_t perf_poll(struct file *file, poll_table *wait)
5232 {
5233 struct perf_event *event = file->private_data;
5234 struct perf_buffer *rb;
5235 __poll_t events = EPOLLHUP;
5236
5237 poll_wait(file, &event->waitq, wait);
5238
5239 if (is_event_hup(event))
5240 return events;
5241
5242 /*
5243 * Pin the event->rb by taking event->mmap_mutex; otherwise
5244 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5245 */
5246 mutex_lock(&event->mmap_mutex);
5247 rb = event->rb;
5248 if (rb)
5249 events = atomic_xchg(&rb->poll, 0);
5250 mutex_unlock(&event->mmap_mutex);
5251 return events;
5252 }
5253
5254 static void _perf_event_reset(struct perf_event *event)
5255 {
5256 (void)perf_event_read(event, false);
5257 local64_set(&event->count, 0);
5258 perf_event_update_userpage(event);
5259 }
5260
5261 /* Assume it's not an event with inherit set. */
5262 u64 perf_event_pause(struct perf_event *event, bool reset)
5263 {
5264 struct perf_event_context *ctx;
5265 u64 count;
5266
5267 ctx = perf_event_ctx_lock(event);
5268 WARN_ON_ONCE(event->attr.inherit);
5269 _perf_event_disable(event);
5270 count = local64_read(&event->count);
5271 if (reset)
5272 local64_set(&event->count, 0);
5273 perf_event_ctx_unlock(event, ctx);
5274
5275 return count;
5276 }
5277 EXPORT_SYMBOL_GPL(perf_event_pause);
5278
5279 /*
5280 * Holding the top-level event's child_mutex means that any
5281 * descendant process that has inherited this event will block
5282 * in perf_event_exit_event() if it goes to exit, thus satisfying the
5283 * task existence requirements of perf_event_enable/disable.
5284 */
5285 static void perf_event_for_each_child(struct perf_event *event,
5286 void (*func)(struct perf_event *))
5287 {
5288 struct perf_event *child;
5289
5290 WARN_ON_ONCE(event->ctx->parent_ctx);
5291
5292 mutex_lock(&event->child_mutex);
5293 func(event);
5294 list_for_each_entry(child, &event->child_list, child_list)
5295 func(child);
5296 mutex_unlock(&event->child_mutex);
5297 }
5298
5299 static void perf_event_for_each(struct perf_event *event,
5300 void (*func)(struct perf_event *))
5301 {
5302 struct perf_event_context *ctx = event->ctx;
5303 struct perf_event *sibling;
5304
5305 lockdep_assert_held(&ctx->mutex);
5306
5307 event = event->group_leader;
5308
5309 perf_event_for_each_child(event, func);
5310 for_each_sibling_event(sibling, event)
5311 perf_event_for_each_child(sibling, func);
5312 }
5313
5314 static void __perf_event_period(struct perf_event *event,
5315 struct perf_cpu_context *cpuctx,
5316 struct perf_event_context *ctx,
5317 void *info)
5318 {
5319 u64 value = *((u64 *)info);
5320 bool active;
5321
5322 if (event->attr.freq) {
5323 event->attr.sample_freq = value;
5324 } else {
5325 event->attr.sample_period = value;
5326 event->hw.sample_period = value;
5327 }
5328
5329 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5330 if (active) {
5331 perf_pmu_disable(ctx->pmu);
5332 /*
5333 * We could be throttled; unthrottle now to avoid the tick
5334 * trying to unthrottle while we already re-started the event.
5335 */
5336 if (event->hw.interrupts == MAX_INTERRUPTS) {
5337 event->hw.interrupts = 0;
5338 perf_log_throttle(event, 1);
5339 }
5340 event->pmu->stop(event, PERF_EF_UPDATE);
5341 }
5342
5343 local64_set(&event->hw.period_left, 0);
5344
5345 if (active) {
5346 event->pmu->start(event, PERF_EF_RELOAD);
5347 perf_pmu_enable(ctx->pmu);
5348 }
5349 }
5350
5351 static int perf_event_check_period(struct perf_event *event, u64 value)
5352 {
5353 return event->pmu->check_period(event, value);
5354 }
5355
5356 static int _perf_event_period(struct perf_event *event, u64 value)
5357 {
5358 if (!is_sampling_event(event))
5359 return -EINVAL;
5360
5361 if (!value)
5362 return -EINVAL;
5363
5364 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5365 return -EINVAL;
5366
5367 if (perf_event_check_period(event, value))
5368 return -EINVAL;
5369
5370 if (!event->attr.freq && (value & (1ULL << 63)))
5371 return -EINVAL;
5372
5373 event_function_call(event, __perf_event_period, &value);
5374
5375 return 0;
5376 }
5377
5378 int perf_event_period(struct perf_event *event, u64 value)
5379 {
5380 struct perf_event_context *ctx;
5381 int ret;
5382
5383 ctx = perf_event_ctx_lock(event);
5384 ret = _perf_event_period(event, value);
5385 perf_event_ctx_unlock(event, ctx);
5386
5387 return ret;
5388 }
5389 EXPORT_SYMBOL_GPL(perf_event_period);
5390
5391 static const struct file_operations perf_fops;
5392
5393 static inline int perf_fget_light(int fd, struct fd *p)
5394 {
5395 struct fd f = fdget(fd);
5396 if (!f.file)
5397 return -EBADF;
5398
5399 if (f.file->f_op != &perf_fops) {
5400 fdput(f);
5401 return -EBADF;
5402 }
5403 *p = f;
5404 return 0;
5405 }
5406
5407 static int perf_event_set_output(struct perf_event *event,
5408 struct perf_event *output_event);
5409 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5410 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5411 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5412 struct perf_event_attr *attr);
5413
5414 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5415 {
5416 void (*func)(struct perf_event *);
5417 u32 flags = arg;
5418
5419 switch (cmd) {
5420 case PERF_EVENT_IOC_ENABLE:
5421 func = _perf_event_enable;
5422 break;
5423 case PERF_EVENT_IOC_DISABLE:
5424 func = _perf_event_disable;
5425 break;
5426 case PERF_EVENT_IOC_RESET:
5427 func = _perf_event_reset;
5428 break;
5429
5430 case PERF_EVENT_IOC_REFRESH:
5431 return _perf_event_refresh(event, arg);
5432
5433 case PERF_EVENT_IOC_PERIOD:
5434 {
5435 u64 value;
5436
5437 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5438 return -EFAULT;
5439
5440 return _perf_event_period(event, value);
5441 }
5442 case PERF_EVENT_IOC_ID:
5443 {
5444 u64 id = primary_event_id(event);
5445
5446 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5447 return -EFAULT;
5448 return 0;
5449 }
5450
5451 case PERF_EVENT_IOC_SET_OUTPUT:
5452 {
5453 int ret;
5454 if (arg != -1) {
5455 struct perf_event *output_event;
5456 struct fd output;
5457 ret = perf_fget_light(arg, &output);
5458 if (ret)
5459 return ret;
5460 output_event = output.file->private_data;
5461 ret = perf_event_set_output(event, output_event);
5462 fdput(output);
5463 } else {
5464 ret = perf_event_set_output(event, NULL);
5465 }
5466 return ret;
5467 }
5468
5469 case PERF_EVENT_IOC_SET_FILTER:
5470 return perf_event_set_filter(event, (void __user *)arg);
5471
5472 case PERF_EVENT_IOC_SET_BPF:
5473 return perf_event_set_bpf_prog(event, arg);
5474
5475 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5476 struct perf_buffer *rb;
5477
5478 rcu_read_lock();
5479 rb = rcu_dereference(event->rb);
5480 if (!rb || !rb->nr_pages) {
5481 rcu_read_unlock();
5482 return -EINVAL;
5483 }
5484 rb_toggle_paused(rb, !!arg);
5485 rcu_read_unlock();
5486 return 0;
5487 }
5488
5489 case PERF_EVENT_IOC_QUERY_BPF:
5490 return perf_event_query_prog_array(event, (void __user *)arg);
5491
5492 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5493 struct perf_event_attr new_attr;
5494 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5495 &new_attr);
5496
5497 if (err)
5498 return err;
5499
5500 return perf_event_modify_attr(event, &new_attr);
5501 }
5502 default:
5503 return -ENOTTY;
5504 }
5505
5506 if (flags & PERF_IOC_FLAG_GROUP)
5507 perf_event_for_each(event, func);
5508 else
5509 perf_event_for_each_child(event, func);
5510
5511 return 0;
5512 }
5513
5514 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5515 {
5516 struct perf_event *event = file->private_data;
5517 struct perf_event_context *ctx;
5518 long ret;
5519
5520 /* Treat ioctl like writes as it is likely a mutating operation. */
5521 ret = security_perf_event_write(event);
5522 if (ret)
5523 return ret;
5524
5525 ctx = perf_event_ctx_lock(event);
5526 ret = _perf_ioctl(event, cmd, arg);
5527 perf_event_ctx_unlock(event, ctx);
5528
5529 return ret;
5530 }
5531
5532 #ifdef CONFIG_COMPAT
5533 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5534 unsigned long arg)
5535 {
5536 switch (_IOC_NR(cmd)) {
5537 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5538 case _IOC_NR(PERF_EVENT_IOC_ID):
5539 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5540 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5541 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5542 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5543 cmd &= ~IOCSIZE_MASK;
5544 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5545 }
5546 break;
5547 }
5548 return perf_ioctl(file, cmd, arg);
5549 }
5550 #else
5551 # define perf_compat_ioctl NULL
5552 #endif
5553
5554 int perf_event_task_enable(void)
5555 {
5556 struct perf_event_context *ctx;
5557 struct perf_event *event;
5558
5559 mutex_lock(&current->perf_event_mutex);
5560 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5561 ctx = perf_event_ctx_lock(event);
5562 perf_event_for_each_child(event, _perf_event_enable);
5563 perf_event_ctx_unlock(event, ctx);
5564 }
5565 mutex_unlock(&current->perf_event_mutex);
5566
5567 return 0;
5568 }
5569
5570 int perf_event_task_disable(void)
5571 {
5572 struct perf_event_context *ctx;
5573 struct perf_event *event;
5574
5575 mutex_lock(&current->perf_event_mutex);
5576 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5577 ctx = perf_event_ctx_lock(event);
5578 perf_event_for_each_child(event, _perf_event_disable);
5579 perf_event_ctx_unlock(event, ctx);
5580 }
5581 mutex_unlock(&current->perf_event_mutex);
5582
5583 return 0;
5584 }
5585
5586 static int perf_event_index(struct perf_event *event)
5587 {
5588 if (event->hw.state & PERF_HES_STOPPED)
5589 return 0;
5590
5591 if (event->state != PERF_EVENT_STATE_ACTIVE)
5592 return 0;
5593
5594 return event->pmu->event_idx(event);
5595 }
5596
5597 static void calc_timer_values(struct perf_event *event,
5598 u64 *now,
5599 u64 *enabled,
5600 u64 *running)
5601 {
5602 u64 ctx_time;
5603
5604 *now = perf_clock();
5605 ctx_time = event->shadow_ctx_time + *now;
5606 __perf_update_times(event, ctx_time, enabled, running);
5607 }
5608
5609 static void perf_event_init_userpage(struct perf_event *event)
5610 {
5611 struct perf_event_mmap_page *userpg;
5612 struct perf_buffer *rb;
5613
5614 rcu_read_lock();
5615 rb = rcu_dereference(event->rb);
5616 if (!rb)
5617 goto unlock;
5618
5619 userpg = rb->user_page;
5620
5621 /* Allow new userspace to detect that bit 0 is deprecated */
5622 userpg->cap_bit0_is_deprecated = 1;
5623 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5624 userpg->data_offset = PAGE_SIZE;
5625 userpg->data_size = perf_data_size(rb);
5626
5627 unlock:
5628 rcu_read_unlock();
5629 }
5630
5631 void __weak arch_perf_update_userpage(
5632 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5633 {
5634 }
5635
5636 /*
5637 * Callers need to ensure there can be no nesting of this function, otherwise
5638 * the seqlock logic goes bad. We can not serialize this because the arch
5639 * code calls this from NMI context.
5640 */
5641 void perf_event_update_userpage(struct perf_event *event)
5642 {
5643 struct perf_event_mmap_page *userpg;
5644 struct perf_buffer *rb;
5645 u64 enabled, running, now;
5646
5647 rcu_read_lock();
5648 rb = rcu_dereference(event->rb);
5649 if (!rb)
5650 goto unlock;
5651
5652 /*
5653 * compute total_time_enabled, total_time_running
5654 * based on snapshot values taken when the event
5655 * was last scheduled in.
5656 *
5657 * we cannot simply called update_context_time()
5658 * because of locking issue as we can be called in
5659 * NMI context
5660 */
5661 calc_timer_values(event, &now, &enabled, &running);
5662
5663 userpg = rb->user_page;
5664 /*
5665 * Disable preemption to guarantee consistent time stamps are stored to
5666 * the user page.
5667 */
5668 preempt_disable();
5669 ++userpg->lock;
5670 barrier();
5671 userpg->index = perf_event_index(event);
5672 userpg->offset = perf_event_count(event);
5673 if (userpg->index)
5674 userpg->offset -= local64_read(&event->hw.prev_count);
5675
5676 userpg->time_enabled = enabled +
5677 atomic64_read(&event->child_total_time_enabled);
5678
5679 userpg->time_running = running +
5680 atomic64_read(&event->child_total_time_running);
5681
5682 arch_perf_update_userpage(event, userpg, now);
5683
5684 barrier();
5685 ++userpg->lock;
5686 preempt_enable();
5687 unlock:
5688 rcu_read_unlock();
5689 }
5690 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5691
5692 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5693 {
5694 struct perf_event *event = vmf->vma->vm_file->private_data;
5695 struct perf_buffer *rb;
5696 vm_fault_t ret = VM_FAULT_SIGBUS;
5697
5698 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5699 if (vmf->pgoff == 0)
5700 ret = 0;
5701 return ret;
5702 }
5703
5704 rcu_read_lock();
5705 rb = rcu_dereference(event->rb);
5706 if (!rb)
5707 goto unlock;
5708
5709 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5710 goto unlock;
5711
5712 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5713 if (!vmf->page)
5714 goto unlock;
5715
5716 get_page(vmf->page);
5717 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5718 vmf->page->index = vmf->pgoff;
5719
5720 ret = 0;
5721 unlock:
5722 rcu_read_unlock();
5723
5724 return ret;
5725 }
5726
5727 static void ring_buffer_attach(struct perf_event *event,
5728 struct perf_buffer *rb)
5729 {
5730 struct perf_buffer *old_rb = NULL;
5731 unsigned long flags;
5732
5733 if (event->rb) {
5734 /*
5735 * Should be impossible, we set this when removing
5736 * event->rb_entry and wait/clear when adding event->rb_entry.
5737 */
5738 WARN_ON_ONCE(event->rcu_pending);
5739
5740 old_rb = event->rb;
5741 spin_lock_irqsave(&old_rb->event_lock, flags);
5742 list_del_rcu(&event->rb_entry);
5743 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5744
5745 event->rcu_batches = get_state_synchronize_rcu();
5746 event->rcu_pending = 1;
5747 }
5748
5749 if (rb) {
5750 if (event->rcu_pending) {
5751 cond_synchronize_rcu(event->rcu_batches);
5752 event->rcu_pending = 0;
5753 }
5754
5755 spin_lock_irqsave(&rb->event_lock, flags);
5756 list_add_rcu(&event->rb_entry, &rb->event_list);
5757 spin_unlock_irqrestore(&rb->event_lock, flags);
5758 }
5759
5760 /*
5761 * Avoid racing with perf_mmap_close(AUX): stop the event
5762 * before swizzling the event::rb pointer; if it's getting
5763 * unmapped, its aux_mmap_count will be 0 and it won't
5764 * restart. See the comment in __perf_pmu_output_stop().
5765 *
5766 * Data will inevitably be lost when set_output is done in
5767 * mid-air, but then again, whoever does it like this is
5768 * not in for the data anyway.
5769 */
5770 if (has_aux(event))
5771 perf_event_stop(event, 0);
5772
5773 rcu_assign_pointer(event->rb, rb);
5774
5775 if (old_rb) {
5776 ring_buffer_put(old_rb);
5777 /*
5778 * Since we detached before setting the new rb, so that we
5779 * could attach the new rb, we could have missed a wakeup.
5780 * Provide it now.
5781 */
5782 wake_up_all(&event->waitq);
5783 }
5784 }
5785
5786 static void ring_buffer_wakeup(struct perf_event *event)
5787 {
5788 struct perf_buffer *rb;
5789
5790 rcu_read_lock();
5791 rb = rcu_dereference(event->rb);
5792 if (rb) {
5793 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5794 wake_up_all(&event->waitq);
5795 }
5796 rcu_read_unlock();
5797 }
5798
5799 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5800 {
5801 struct perf_buffer *rb;
5802
5803 rcu_read_lock();
5804 rb = rcu_dereference(event->rb);
5805 if (rb) {
5806 if (!refcount_inc_not_zero(&rb->refcount))
5807 rb = NULL;
5808 }
5809 rcu_read_unlock();
5810
5811 return rb;
5812 }
5813
5814 void ring_buffer_put(struct perf_buffer *rb)
5815 {
5816 if (!refcount_dec_and_test(&rb->refcount))
5817 return;
5818
5819 WARN_ON_ONCE(!list_empty(&rb->event_list));
5820
5821 call_rcu(&rb->rcu_head, rb_free_rcu);
5822 }
5823
5824 static void perf_mmap_open(struct vm_area_struct *vma)
5825 {
5826 struct perf_event *event = vma->vm_file->private_data;
5827
5828 atomic_inc(&event->mmap_count);
5829 atomic_inc(&event->rb->mmap_count);
5830
5831 if (vma->vm_pgoff)
5832 atomic_inc(&event->rb->aux_mmap_count);
5833
5834 if (event->pmu->event_mapped)
5835 event->pmu->event_mapped(event, vma->vm_mm);
5836 }
5837
5838 static void perf_pmu_output_stop(struct perf_event *event);
5839
5840 /*
5841 * A buffer can be mmap()ed multiple times; either directly through the same
5842 * event, or through other events by use of perf_event_set_output().
5843 *
5844 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5845 * the buffer here, where we still have a VM context. This means we need
5846 * to detach all events redirecting to us.
5847 */
5848 static void perf_mmap_close(struct vm_area_struct *vma)
5849 {
5850 struct perf_event *event = vma->vm_file->private_data;
5851
5852 struct perf_buffer *rb = ring_buffer_get(event);
5853 struct user_struct *mmap_user = rb->mmap_user;
5854 int mmap_locked = rb->mmap_locked;
5855 unsigned long size = perf_data_size(rb);
5856
5857 if (event->pmu->event_unmapped)
5858 event->pmu->event_unmapped(event, vma->vm_mm);
5859
5860 /*
5861 * rb->aux_mmap_count will always drop before rb->mmap_count and
5862 * event->mmap_count, so it is ok to use event->mmap_mutex to
5863 * serialize with perf_mmap here.
5864 */
5865 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5866 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5867 /*
5868 * Stop all AUX events that are writing to this buffer,
5869 * so that we can free its AUX pages and corresponding PMU
5870 * data. Note that after rb::aux_mmap_count dropped to zero,
5871 * they won't start any more (see perf_aux_output_begin()).
5872 */
5873 perf_pmu_output_stop(event);
5874
5875 /* now it's safe to free the pages */
5876 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5877 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5878
5879 /* this has to be the last one */
5880 rb_free_aux(rb);
5881 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5882
5883 mutex_unlock(&event->mmap_mutex);
5884 }
5885
5886 atomic_dec(&rb->mmap_count);
5887
5888 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5889 goto out_put;
5890
5891 ring_buffer_attach(event, NULL);
5892 mutex_unlock(&event->mmap_mutex);
5893
5894 /* If there's still other mmap()s of this buffer, we're done. */
5895 if (atomic_read(&rb->mmap_count))
5896 goto out_put;
5897
5898 /*
5899 * No other mmap()s, detach from all other events that might redirect
5900 * into the now unreachable buffer. Somewhat complicated by the
5901 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5902 */
5903 again:
5904 rcu_read_lock();
5905 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5906 if (!atomic_long_inc_not_zero(&event->refcount)) {
5907 /*
5908 * This event is en-route to free_event() which will
5909 * detach it and remove it from the list.
5910 */
5911 continue;
5912 }
5913 rcu_read_unlock();
5914
5915 mutex_lock(&event->mmap_mutex);
5916 /*
5917 * Check we didn't race with perf_event_set_output() which can
5918 * swizzle the rb from under us while we were waiting to
5919 * acquire mmap_mutex.
5920 *
5921 * If we find a different rb; ignore this event, a next
5922 * iteration will no longer find it on the list. We have to
5923 * still restart the iteration to make sure we're not now
5924 * iterating the wrong list.
5925 */
5926 if (event->rb == rb)
5927 ring_buffer_attach(event, NULL);
5928
5929 mutex_unlock(&event->mmap_mutex);
5930 put_event(event);
5931
5932 /*
5933 * Restart the iteration; either we're on the wrong list or
5934 * destroyed its integrity by doing a deletion.
5935 */
5936 goto again;
5937 }
5938 rcu_read_unlock();
5939
5940 /*
5941 * It could be there's still a few 0-ref events on the list; they'll
5942 * get cleaned up by free_event() -- they'll also still have their
5943 * ref on the rb and will free it whenever they are done with it.
5944 *
5945 * Aside from that, this buffer is 'fully' detached and unmapped,
5946 * undo the VM accounting.
5947 */
5948
5949 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5950 &mmap_user->locked_vm);
5951 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5952 free_uid(mmap_user);
5953
5954 out_put:
5955 ring_buffer_put(rb); /* could be last */
5956 }
5957
5958 static const struct vm_operations_struct perf_mmap_vmops = {
5959 .open = perf_mmap_open,
5960 .close = perf_mmap_close, /* non mergeable */
5961 .fault = perf_mmap_fault,
5962 .page_mkwrite = perf_mmap_fault,
5963 };
5964
5965 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5966 {
5967 struct perf_event *event = file->private_data;
5968 unsigned long user_locked, user_lock_limit;
5969 struct user_struct *user = current_user();
5970 struct perf_buffer *rb = NULL;
5971 unsigned long locked, lock_limit;
5972 unsigned long vma_size;
5973 unsigned long nr_pages;
5974 long user_extra = 0, extra = 0;
5975 int ret = 0, flags = 0;
5976
5977 /*
5978 * Don't allow mmap() of inherited per-task counters. This would
5979 * create a performance issue due to all children writing to the
5980 * same rb.
5981 */
5982 if (event->cpu == -1 && event->attr.inherit)
5983 return -EINVAL;
5984
5985 if (!(vma->vm_flags & VM_SHARED))
5986 return -EINVAL;
5987
5988 ret = security_perf_event_read(event);
5989 if (ret)
5990 return ret;
5991
5992 vma_size = vma->vm_end - vma->vm_start;
5993
5994 if (vma->vm_pgoff == 0) {
5995 nr_pages = (vma_size / PAGE_SIZE) - 1;
5996 } else {
5997 /*
5998 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5999 * mapped, all subsequent mappings should have the same size
6000 * and offset. Must be above the normal perf buffer.
6001 */
6002 u64 aux_offset, aux_size;
6003
6004 if (!event->rb)
6005 return -EINVAL;
6006
6007 nr_pages = vma_size / PAGE_SIZE;
6008
6009 mutex_lock(&event->mmap_mutex);
6010 ret = -EINVAL;
6011
6012 rb = event->rb;
6013 if (!rb)
6014 goto aux_unlock;
6015
6016 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6017 aux_size = READ_ONCE(rb->user_page->aux_size);
6018
6019 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6020 goto aux_unlock;
6021
6022 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6023 goto aux_unlock;
6024
6025 /* already mapped with a different offset */
6026 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6027 goto aux_unlock;
6028
6029 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6030 goto aux_unlock;
6031
6032 /* already mapped with a different size */
6033 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6034 goto aux_unlock;
6035
6036 if (!is_power_of_2(nr_pages))
6037 goto aux_unlock;
6038
6039 if (!atomic_inc_not_zero(&rb->mmap_count))
6040 goto aux_unlock;
6041
6042 if (rb_has_aux(rb)) {
6043 atomic_inc(&rb->aux_mmap_count);
6044 ret = 0;
6045 goto unlock;
6046 }
6047
6048 atomic_set(&rb->aux_mmap_count, 1);
6049 user_extra = nr_pages;
6050
6051 goto accounting;
6052 }
6053
6054 /*
6055 * If we have rb pages ensure they're a power-of-two number, so we
6056 * can do bitmasks instead of modulo.
6057 */
6058 if (nr_pages != 0 && !is_power_of_2(nr_pages))
6059 return -EINVAL;
6060
6061 if (vma_size != PAGE_SIZE * (1 + nr_pages))
6062 return -EINVAL;
6063
6064 WARN_ON_ONCE(event->ctx->parent_ctx);
6065 again:
6066 mutex_lock(&event->mmap_mutex);
6067 if (event->rb) {
6068 if (event->rb->nr_pages != nr_pages) {
6069 ret = -EINVAL;
6070 goto unlock;
6071 }
6072
6073 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6074 /*
6075 * Raced against perf_mmap_close() through
6076 * perf_event_set_output(). Try again, hope for better
6077 * luck.
6078 */
6079 mutex_unlock(&event->mmap_mutex);
6080 goto again;
6081 }
6082
6083 goto unlock;
6084 }
6085
6086 user_extra = nr_pages + 1;
6087
6088 accounting:
6089 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6090
6091 /*
6092 * Increase the limit linearly with more CPUs:
6093 */
6094 user_lock_limit *= num_online_cpus();
6095
6096 user_locked = atomic_long_read(&user->locked_vm);
6097
6098 /*
6099 * sysctl_perf_event_mlock may have changed, so that
6100 * user->locked_vm > user_lock_limit
6101 */
6102 if (user_locked > user_lock_limit)
6103 user_locked = user_lock_limit;
6104 user_locked += user_extra;
6105
6106 if (user_locked > user_lock_limit) {
6107 /*
6108 * charge locked_vm until it hits user_lock_limit;
6109 * charge the rest from pinned_vm
6110 */
6111 extra = user_locked - user_lock_limit;
6112 user_extra -= extra;
6113 }
6114
6115 lock_limit = rlimit(RLIMIT_MEMLOCK);
6116 lock_limit >>= PAGE_SHIFT;
6117 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6118
6119 if ((locked > lock_limit) && perf_is_paranoid() &&
6120 !capable(CAP_IPC_LOCK)) {
6121 ret = -EPERM;
6122 goto unlock;
6123 }
6124
6125 WARN_ON(!rb && event->rb);
6126
6127 if (vma->vm_flags & VM_WRITE)
6128 flags |= RING_BUFFER_WRITABLE;
6129
6130 if (!rb) {
6131 rb = rb_alloc(nr_pages,
6132 event->attr.watermark ? event->attr.wakeup_watermark : 0,
6133 event->cpu, flags);
6134
6135 if (!rb) {
6136 ret = -ENOMEM;
6137 goto unlock;
6138 }
6139
6140 atomic_set(&rb->mmap_count, 1);
6141 rb->mmap_user = get_current_user();
6142 rb->mmap_locked = extra;
6143
6144 ring_buffer_attach(event, rb);
6145
6146 perf_event_init_userpage(event);
6147 perf_event_update_userpage(event);
6148 } else {
6149 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6150 event->attr.aux_watermark, flags);
6151 if (!ret)
6152 rb->aux_mmap_locked = extra;
6153 }
6154
6155 unlock:
6156 if (!ret) {
6157 atomic_long_add(user_extra, &user->locked_vm);
6158 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6159
6160 atomic_inc(&event->mmap_count);
6161 } else if (rb) {
6162 atomic_dec(&rb->mmap_count);
6163 }
6164 aux_unlock:
6165 mutex_unlock(&event->mmap_mutex);
6166
6167 /*
6168 * Since pinned accounting is per vm we cannot allow fork() to copy our
6169 * vma.
6170 */
6171 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6172 vma->vm_ops = &perf_mmap_vmops;
6173
6174 if (event->pmu->event_mapped)
6175 event->pmu->event_mapped(event, vma->vm_mm);
6176
6177 return ret;
6178 }
6179
6180 static int perf_fasync(int fd, struct file *filp, int on)
6181 {
6182 struct inode *inode = file_inode(filp);
6183 struct perf_event *event = filp->private_data;
6184 int retval;
6185
6186 inode_lock(inode);
6187 retval = fasync_helper(fd, filp, on, &event->fasync);
6188 inode_unlock(inode);
6189
6190 if (retval < 0)
6191 return retval;
6192
6193 return 0;
6194 }
6195
6196 static const struct file_operations perf_fops = {
6197 .llseek = no_llseek,
6198 .release = perf_release,
6199 .read = perf_read,
6200 .poll = perf_poll,
6201 .unlocked_ioctl = perf_ioctl,
6202 .compat_ioctl = perf_compat_ioctl,
6203 .mmap = perf_mmap,
6204 .fasync = perf_fasync,
6205 };
6206
6207 /*
6208 * Perf event wakeup
6209 *
6210 * If there's data, ensure we set the poll() state and publish everything
6211 * to user-space before waking everybody up.
6212 */
6213
6214 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6215 {
6216 /* only the parent has fasync state */
6217 if (event->parent)
6218 event = event->parent;
6219 return &event->fasync;
6220 }
6221
6222 void perf_event_wakeup(struct perf_event *event)
6223 {
6224 ring_buffer_wakeup(event);
6225
6226 if (event->pending_kill) {
6227 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6228 event->pending_kill = 0;
6229 }
6230 }
6231
6232 static void perf_pending_event_disable(struct perf_event *event)
6233 {
6234 int cpu = READ_ONCE(event->pending_disable);
6235
6236 if (cpu < 0)
6237 return;
6238
6239 if (cpu == smp_processor_id()) {
6240 WRITE_ONCE(event->pending_disable, -1);
6241 perf_event_disable_local(event);
6242 return;
6243 }
6244
6245 /*
6246 * CPU-A CPU-B
6247 *
6248 * perf_event_disable_inatomic()
6249 * @pending_disable = CPU-A;
6250 * irq_work_queue();
6251 *
6252 * sched-out
6253 * @pending_disable = -1;
6254 *
6255 * sched-in
6256 * perf_event_disable_inatomic()
6257 * @pending_disable = CPU-B;
6258 * irq_work_queue(); // FAILS
6259 *
6260 * irq_work_run()
6261 * perf_pending_event()
6262 *
6263 * But the event runs on CPU-B and wants disabling there.
6264 */
6265 irq_work_queue_on(&event->pending, cpu);
6266 }
6267
6268 static void perf_pending_event(struct irq_work *entry)
6269 {
6270 struct perf_event *event = container_of(entry, struct perf_event, pending);
6271 int rctx;
6272
6273 rctx = perf_swevent_get_recursion_context();
6274 /*
6275 * If we 'fail' here, that's OK, it means recursion is already disabled
6276 * and we won't recurse 'further'.
6277 */
6278
6279 perf_pending_event_disable(event);
6280
6281 if (event->pending_wakeup) {
6282 event->pending_wakeup = 0;
6283 perf_event_wakeup(event);
6284 }
6285
6286 if (rctx >= 0)
6287 perf_swevent_put_recursion_context(rctx);
6288 }
6289
6290 /*
6291 * We assume there is only KVM supporting the callbacks.
6292 * Later on, we might change it to a list if there is
6293 * another virtualization implementation supporting the callbacks.
6294 */
6295 struct perf_guest_info_callbacks *perf_guest_cbs;
6296
6297 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6298 {
6299 perf_guest_cbs = cbs;
6300 return 0;
6301 }
6302 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6303
6304 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6305 {
6306 perf_guest_cbs = NULL;
6307 return 0;
6308 }
6309 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6310
6311 static void
6312 perf_output_sample_regs(struct perf_output_handle *handle,
6313 struct pt_regs *regs, u64 mask)
6314 {
6315 int bit;
6316 DECLARE_BITMAP(_mask, 64);
6317
6318 bitmap_from_u64(_mask, mask);
6319 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6320 u64 val;
6321
6322 val = perf_reg_value(regs, bit);
6323 perf_output_put(handle, val);
6324 }
6325 }
6326
6327 static void perf_sample_regs_user(struct perf_regs *regs_user,
6328 struct pt_regs *regs,
6329 struct pt_regs *regs_user_copy)
6330 {
6331 if (user_mode(regs)) {
6332 regs_user->abi = perf_reg_abi(current);
6333 regs_user->regs = regs;
6334 } else if (!(current->flags & PF_KTHREAD)) {
6335 perf_get_regs_user(regs_user, regs, regs_user_copy);
6336 } else {
6337 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6338 regs_user->regs = NULL;
6339 }
6340 }
6341
6342 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6343 struct pt_regs *regs)
6344 {
6345 regs_intr->regs = regs;
6346 regs_intr->abi = perf_reg_abi(current);
6347 }
6348
6349
6350 /*
6351 * Get remaining task size from user stack pointer.
6352 *
6353 * It'd be better to take stack vma map and limit this more
6354 * precisely, but there's no way to get it safely under interrupt,
6355 * so using TASK_SIZE as limit.
6356 */
6357 static u64 perf_ustack_task_size(struct pt_regs *regs)
6358 {
6359 unsigned long addr = perf_user_stack_pointer(regs);
6360
6361 if (!addr || addr >= TASK_SIZE)
6362 return 0;
6363
6364 return TASK_SIZE - addr;
6365 }
6366
6367 static u16
6368 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6369 struct pt_regs *regs)
6370 {
6371 u64 task_size;
6372
6373 /* No regs, no stack pointer, no dump. */
6374 if (!regs)
6375 return 0;
6376
6377 /*
6378 * Check if we fit in with the requested stack size into the:
6379 * - TASK_SIZE
6380 * If we don't, we limit the size to the TASK_SIZE.
6381 *
6382 * - remaining sample size
6383 * If we don't, we customize the stack size to
6384 * fit in to the remaining sample size.
6385 */
6386
6387 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6388 stack_size = min(stack_size, (u16) task_size);
6389
6390 /* Current header size plus static size and dynamic size. */
6391 header_size += 2 * sizeof(u64);
6392
6393 /* Do we fit in with the current stack dump size? */
6394 if ((u16) (header_size + stack_size) < header_size) {
6395 /*
6396 * If we overflow the maximum size for the sample,
6397 * we customize the stack dump size to fit in.
6398 */
6399 stack_size = USHRT_MAX - header_size - sizeof(u64);
6400 stack_size = round_up(stack_size, sizeof(u64));
6401 }
6402
6403 return stack_size;
6404 }
6405
6406 static void
6407 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6408 struct pt_regs *regs)
6409 {
6410 /* Case of a kernel thread, nothing to dump */
6411 if (!regs) {
6412 u64 size = 0;
6413 perf_output_put(handle, size);
6414 } else {
6415 unsigned long sp;
6416 unsigned int rem;
6417 u64 dyn_size;
6418 mm_segment_t fs;
6419
6420 /*
6421 * We dump:
6422 * static size
6423 * - the size requested by user or the best one we can fit
6424 * in to the sample max size
6425 * data
6426 * - user stack dump data
6427 * dynamic size
6428 * - the actual dumped size
6429 */
6430
6431 /* Static size. */
6432 perf_output_put(handle, dump_size);
6433
6434 /* Data. */
6435 sp = perf_user_stack_pointer(regs);
6436 fs = get_fs();
6437 set_fs(USER_DS);
6438 rem = __output_copy_user(handle, (void *) sp, dump_size);
6439 set_fs(fs);
6440 dyn_size = dump_size - rem;
6441
6442 perf_output_skip(handle, rem);
6443
6444 /* Dynamic size. */
6445 perf_output_put(handle, dyn_size);
6446 }
6447 }
6448
6449 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6450 struct perf_sample_data *data,
6451 size_t size)
6452 {
6453 struct perf_event *sampler = event->aux_event;
6454 struct perf_buffer *rb;
6455
6456 data->aux_size = 0;
6457
6458 if (!sampler)
6459 goto out;
6460
6461 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6462 goto out;
6463
6464 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6465 goto out;
6466
6467 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6468 if (!rb)
6469 goto out;
6470
6471 /*
6472 * If this is an NMI hit inside sampling code, don't take
6473 * the sample. See also perf_aux_sample_output().
6474 */
6475 if (READ_ONCE(rb->aux_in_sampling)) {
6476 data->aux_size = 0;
6477 } else {
6478 size = min_t(size_t, size, perf_aux_size(rb));
6479 data->aux_size = ALIGN(size, sizeof(u64));
6480 }
6481 ring_buffer_put(rb);
6482
6483 out:
6484 return data->aux_size;
6485 }
6486
6487 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6488 struct perf_event *event,
6489 struct perf_output_handle *handle,
6490 unsigned long size)
6491 {
6492 unsigned long flags;
6493 long ret;
6494
6495 /*
6496 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6497 * paths. If we start calling them in NMI context, they may race with
6498 * the IRQ ones, that is, for example, re-starting an event that's just
6499 * been stopped, which is why we're using a separate callback that
6500 * doesn't change the event state.
6501 *
6502 * IRQs need to be disabled to prevent IPIs from racing with us.
6503 */
6504 local_irq_save(flags);
6505 /*
6506 * Guard against NMI hits inside the critical section;
6507 * see also perf_prepare_sample_aux().
6508 */
6509 WRITE_ONCE(rb->aux_in_sampling, 1);
6510 barrier();
6511
6512 ret = event->pmu->snapshot_aux(event, handle, size);
6513
6514 barrier();
6515 WRITE_ONCE(rb->aux_in_sampling, 0);
6516 local_irq_restore(flags);
6517
6518 return ret;
6519 }
6520
6521 static void perf_aux_sample_output(struct perf_event *event,
6522 struct perf_output_handle *handle,
6523 struct perf_sample_data *data)
6524 {
6525 struct perf_event *sampler = event->aux_event;
6526 struct perf_buffer *rb;
6527 unsigned long pad;
6528 long size;
6529
6530 if (WARN_ON_ONCE(!sampler || !data->aux_size))
6531 return;
6532
6533 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6534 if (!rb)
6535 return;
6536
6537 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6538
6539 /*
6540 * An error here means that perf_output_copy() failed (returned a
6541 * non-zero surplus that it didn't copy), which in its current
6542 * enlightened implementation is not possible. If that changes, we'd
6543 * like to know.
6544 */
6545 if (WARN_ON_ONCE(size < 0))
6546 goto out_put;
6547
6548 /*
6549 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6550 * perf_prepare_sample_aux(), so should not be more than that.
6551 */
6552 pad = data->aux_size - size;
6553 if (WARN_ON_ONCE(pad >= sizeof(u64)))
6554 pad = 8;
6555
6556 if (pad) {
6557 u64 zero = 0;
6558 perf_output_copy(handle, &zero, pad);
6559 }
6560
6561 out_put:
6562 ring_buffer_put(rb);
6563 }
6564
6565 static void __perf_event_header__init_id(struct perf_event_header *header,
6566 struct perf_sample_data *data,
6567 struct perf_event *event)
6568 {
6569 u64 sample_type = event->attr.sample_type;
6570
6571 data->type = sample_type;
6572 header->size += event->id_header_size;
6573
6574 if (sample_type & PERF_SAMPLE_TID) {
6575 /* namespace issues */
6576 data->tid_entry.pid = perf_event_pid(event, current);
6577 data->tid_entry.tid = perf_event_tid(event, current);
6578 }
6579
6580 if (sample_type & PERF_SAMPLE_TIME)
6581 data->time = perf_event_clock(event);
6582
6583 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6584 data->id = primary_event_id(event);
6585
6586 if (sample_type & PERF_SAMPLE_STREAM_ID)
6587 data->stream_id = event->id;
6588
6589 if (sample_type & PERF_SAMPLE_CPU) {
6590 data->cpu_entry.cpu = raw_smp_processor_id();
6591 data->cpu_entry.reserved = 0;
6592 }
6593 }
6594
6595 void perf_event_header__init_id(struct perf_event_header *header,
6596 struct perf_sample_data *data,
6597 struct perf_event *event)
6598 {
6599 if (event->attr.sample_id_all)
6600 __perf_event_header__init_id(header, data, event);
6601 }
6602
6603 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6604 struct perf_sample_data *data)
6605 {
6606 u64 sample_type = data->type;
6607
6608 if (sample_type & PERF_SAMPLE_TID)
6609 perf_output_put(handle, data->tid_entry);
6610
6611 if (sample_type & PERF_SAMPLE_TIME)
6612 perf_output_put(handle, data->time);
6613
6614 if (sample_type & PERF_SAMPLE_ID)
6615 perf_output_put(handle, data->id);
6616
6617 if (sample_type & PERF_SAMPLE_STREAM_ID)
6618 perf_output_put(handle, data->stream_id);
6619
6620 if (sample_type & PERF_SAMPLE_CPU)
6621 perf_output_put(handle, data->cpu_entry);
6622
6623 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6624 perf_output_put(handle, data->id);
6625 }
6626
6627 void perf_event__output_id_sample(struct perf_event *event,
6628 struct perf_output_handle *handle,
6629 struct perf_sample_data *sample)
6630 {
6631 if (event->attr.sample_id_all)
6632 __perf_event__output_id_sample(handle, sample);
6633 }
6634
6635 static void perf_output_read_one(struct perf_output_handle *handle,
6636 struct perf_event *event,
6637 u64 enabled, u64 running)
6638 {
6639 u64 read_format = event->attr.read_format;
6640 u64 values[4];
6641 int n = 0;
6642
6643 values[n++] = perf_event_count(event);
6644 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6645 values[n++] = enabled +
6646 atomic64_read(&event->child_total_time_enabled);
6647 }
6648 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6649 values[n++] = running +
6650 atomic64_read(&event->child_total_time_running);
6651 }
6652 if (read_format & PERF_FORMAT_ID)
6653 values[n++] = primary_event_id(event);
6654
6655 __output_copy(handle, values, n * sizeof(u64));
6656 }
6657
6658 static void perf_output_read_group(struct perf_output_handle *handle,
6659 struct perf_event *event,
6660 u64 enabled, u64 running)
6661 {
6662 struct perf_event *leader = event->group_leader, *sub;
6663 u64 read_format = event->attr.read_format;
6664 u64 values[5];
6665 int n = 0;
6666
6667 values[n++] = 1 + leader->nr_siblings;
6668
6669 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6670 values[n++] = enabled;
6671
6672 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6673 values[n++] = running;
6674
6675 if ((leader != event) &&
6676 (leader->state == PERF_EVENT_STATE_ACTIVE))
6677 leader->pmu->read(leader);
6678
6679 values[n++] = perf_event_count(leader);
6680 if (read_format & PERF_FORMAT_ID)
6681 values[n++] = primary_event_id(leader);
6682
6683 __output_copy(handle, values, n * sizeof(u64));
6684
6685 for_each_sibling_event(sub, leader) {
6686 n = 0;
6687
6688 if ((sub != event) &&
6689 (sub->state == PERF_EVENT_STATE_ACTIVE))
6690 sub->pmu->read(sub);
6691
6692 values[n++] = perf_event_count(sub);
6693 if (read_format & PERF_FORMAT_ID)
6694 values[n++] = primary_event_id(sub);
6695
6696 __output_copy(handle, values, n * sizeof(u64));
6697 }
6698 }
6699
6700 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6701 PERF_FORMAT_TOTAL_TIME_RUNNING)
6702
6703 /*
6704 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6705 *
6706 * The problem is that its both hard and excessively expensive to iterate the
6707 * child list, not to mention that its impossible to IPI the children running
6708 * on another CPU, from interrupt/NMI context.
6709 */
6710 static void perf_output_read(struct perf_output_handle *handle,
6711 struct perf_event *event)
6712 {
6713 u64 enabled = 0, running = 0, now;
6714 u64 read_format = event->attr.read_format;
6715
6716 /*
6717 * compute total_time_enabled, total_time_running
6718 * based on snapshot values taken when the event
6719 * was last scheduled in.
6720 *
6721 * we cannot simply called update_context_time()
6722 * because of locking issue as we are called in
6723 * NMI context
6724 */
6725 if (read_format & PERF_FORMAT_TOTAL_TIMES)
6726 calc_timer_values(event, &now, &enabled, &running);
6727
6728 if (event->attr.read_format & PERF_FORMAT_GROUP)
6729 perf_output_read_group(handle, event, enabled, running);
6730 else
6731 perf_output_read_one(handle, event, enabled, running);
6732 }
6733
6734 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6735 {
6736 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6737 }
6738
6739 void perf_output_sample(struct perf_output_handle *handle,
6740 struct perf_event_header *header,
6741 struct perf_sample_data *data,
6742 struct perf_event *event)
6743 {
6744 u64 sample_type = data->type;
6745
6746 perf_output_put(handle, *header);
6747
6748 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6749 perf_output_put(handle, data->id);
6750
6751 if (sample_type & PERF_SAMPLE_IP)
6752 perf_output_put(handle, data->ip);
6753
6754 if (sample_type & PERF_SAMPLE_TID)
6755 perf_output_put(handle, data->tid_entry);
6756
6757 if (sample_type & PERF_SAMPLE_TIME)
6758 perf_output_put(handle, data->time);
6759
6760 if (sample_type & PERF_SAMPLE_ADDR)
6761 perf_output_put(handle, data->addr);
6762
6763 if (sample_type & PERF_SAMPLE_ID)
6764 perf_output_put(handle, data->id);
6765
6766 if (sample_type & PERF_SAMPLE_STREAM_ID)
6767 perf_output_put(handle, data->stream_id);
6768
6769 if (sample_type & PERF_SAMPLE_CPU)
6770 perf_output_put(handle, data->cpu_entry);
6771
6772 if (sample_type & PERF_SAMPLE_PERIOD)
6773 perf_output_put(handle, data->period);
6774
6775 if (sample_type & PERF_SAMPLE_READ)
6776 perf_output_read(handle, event);
6777
6778 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6779 int size = 1;
6780
6781 size += data->callchain->nr;
6782 size *= sizeof(u64);
6783 __output_copy(handle, data->callchain, size);
6784 }
6785
6786 if (sample_type & PERF_SAMPLE_RAW) {
6787 struct perf_raw_record *raw = data->raw;
6788
6789 if (raw) {
6790 struct perf_raw_frag *frag = &raw->frag;
6791
6792 perf_output_put(handle, raw->size);
6793 do {
6794 if (frag->copy) {
6795 __output_custom(handle, frag->copy,
6796 frag->data, frag->size);
6797 } else {
6798 __output_copy(handle, frag->data,
6799 frag->size);
6800 }
6801 if (perf_raw_frag_last(frag))
6802 break;
6803 frag = frag->next;
6804 } while (1);
6805 if (frag->pad)
6806 __output_skip(handle, NULL, frag->pad);
6807 } else {
6808 struct {
6809 u32 size;
6810 u32 data;
6811 } raw = {
6812 .size = sizeof(u32),
6813 .data = 0,
6814 };
6815 perf_output_put(handle, raw);
6816 }
6817 }
6818
6819 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6820 if (data->br_stack) {
6821 size_t size;
6822
6823 size = data->br_stack->nr
6824 * sizeof(struct perf_branch_entry);
6825
6826 perf_output_put(handle, data->br_stack->nr);
6827 if (perf_sample_save_hw_index(event))
6828 perf_output_put(handle, data->br_stack->hw_idx);
6829 perf_output_copy(handle, data->br_stack->entries, size);
6830 } else {
6831 /*
6832 * we always store at least the value of nr
6833 */
6834 u64 nr = 0;
6835 perf_output_put(handle, nr);
6836 }
6837 }
6838
6839 if (sample_type & PERF_SAMPLE_REGS_USER) {
6840 u64 abi = data->regs_user.abi;
6841
6842 /*
6843 * If there are no regs to dump, notice it through
6844 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6845 */
6846 perf_output_put(handle, abi);
6847
6848 if (abi) {
6849 u64 mask = event->attr.sample_regs_user;
6850 perf_output_sample_regs(handle,
6851 data->regs_user.regs,
6852 mask);
6853 }
6854 }
6855
6856 if (sample_type & PERF_SAMPLE_STACK_USER) {
6857 perf_output_sample_ustack(handle,
6858 data->stack_user_size,
6859 data->regs_user.regs);
6860 }
6861
6862 if (sample_type & PERF_SAMPLE_WEIGHT)
6863 perf_output_put(handle, data->weight);
6864
6865 if (sample_type & PERF_SAMPLE_DATA_SRC)
6866 perf_output_put(handle, data->data_src.val);
6867
6868 if (sample_type & PERF_SAMPLE_TRANSACTION)
6869 perf_output_put(handle, data->txn);
6870
6871 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6872 u64 abi = data->regs_intr.abi;
6873 /*
6874 * If there are no regs to dump, notice it through
6875 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6876 */
6877 perf_output_put(handle, abi);
6878
6879 if (abi) {
6880 u64 mask = event->attr.sample_regs_intr;
6881
6882 perf_output_sample_regs(handle,
6883 data->regs_intr.regs,
6884 mask);
6885 }
6886 }
6887
6888 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6889 perf_output_put(handle, data->phys_addr);
6890
6891 if (sample_type & PERF_SAMPLE_CGROUP)
6892 perf_output_put(handle, data->cgroup);
6893
6894 if (sample_type & PERF_SAMPLE_AUX) {
6895 perf_output_put(handle, data->aux_size);
6896
6897 if (data->aux_size)
6898 perf_aux_sample_output(event, handle, data);
6899 }
6900
6901 if (!event->attr.watermark) {
6902 int wakeup_events = event->attr.wakeup_events;
6903
6904 if (wakeup_events) {
6905 struct perf_buffer *rb = handle->rb;
6906 int events = local_inc_return(&rb->events);
6907
6908 if (events >= wakeup_events) {
6909 local_sub(wakeup_events, &rb->events);
6910 local_inc(&rb->wakeup);
6911 }
6912 }
6913 }
6914 }
6915
6916 static u64 perf_virt_to_phys(u64 virt)
6917 {
6918 u64 phys_addr = 0;
6919 struct page *p = NULL;
6920
6921 if (!virt)
6922 return 0;
6923
6924 if (virt >= TASK_SIZE) {
6925 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6926 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6927 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6928 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6929 } else {
6930 /*
6931 * Walking the pages tables for user address.
6932 * Interrupts are disabled, so it prevents any tear down
6933 * of the page tables.
6934 * Try IRQ-safe __get_user_pages_fast first.
6935 * If failed, leave phys_addr as 0.
6936 */
6937 if (current->mm != NULL) {
6938 pagefault_disable();
6939 if (__get_user_pages_fast(virt, 1, 0, &p) == 1)
6940 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6941 pagefault_enable();
6942 }
6943
6944 if (p)
6945 put_page(p);
6946 }
6947
6948 return phys_addr;
6949 }
6950
6951 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6952
6953 struct perf_callchain_entry *
6954 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6955 {
6956 bool kernel = !event->attr.exclude_callchain_kernel;
6957 bool user = !event->attr.exclude_callchain_user;
6958 /* Disallow cross-task user callchains. */
6959 bool crosstask = event->ctx->task && event->ctx->task != current;
6960 const u32 max_stack = event->attr.sample_max_stack;
6961 struct perf_callchain_entry *callchain;
6962
6963 if (!kernel && !user)
6964 return &__empty_callchain;
6965
6966 callchain = get_perf_callchain(regs, 0, kernel, user,
6967 max_stack, crosstask, true);
6968 return callchain ?: &__empty_callchain;
6969 }
6970
6971 void perf_prepare_sample(struct perf_event_header *header,
6972 struct perf_sample_data *data,
6973 struct perf_event *event,
6974 struct pt_regs *regs)
6975 {
6976 u64 sample_type = event->attr.sample_type;
6977
6978 header->type = PERF_RECORD_SAMPLE;
6979 header->size = sizeof(*header) + event->header_size;
6980
6981 header->misc = 0;
6982 header->misc |= perf_misc_flags(regs);
6983
6984 __perf_event_header__init_id(header, data, event);
6985
6986 if (sample_type & PERF_SAMPLE_IP)
6987 data->ip = perf_instruction_pointer(regs);
6988
6989 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6990 int size = 1;
6991
6992 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6993 data->callchain = perf_callchain(event, regs);
6994
6995 size += data->callchain->nr;
6996
6997 header->size += size * sizeof(u64);
6998 }
6999
7000 if (sample_type & PERF_SAMPLE_RAW) {
7001 struct perf_raw_record *raw = data->raw;
7002 int size;
7003
7004 if (raw) {
7005 struct perf_raw_frag *frag = &raw->frag;
7006 u32 sum = 0;
7007
7008 do {
7009 sum += frag->size;
7010 if (perf_raw_frag_last(frag))
7011 break;
7012 frag = frag->next;
7013 } while (1);
7014
7015 size = round_up(sum + sizeof(u32), sizeof(u64));
7016 raw->size = size - sizeof(u32);
7017 frag->pad = raw->size - sum;
7018 } else {
7019 size = sizeof(u64);
7020 }
7021
7022 header->size += size;
7023 }
7024
7025 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7026 int size = sizeof(u64); /* nr */
7027 if (data->br_stack) {
7028 if (perf_sample_save_hw_index(event))
7029 size += sizeof(u64);
7030
7031 size += data->br_stack->nr
7032 * sizeof(struct perf_branch_entry);
7033 }
7034 header->size += size;
7035 }
7036
7037 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7038 perf_sample_regs_user(&data->regs_user, regs,
7039 &data->regs_user_copy);
7040
7041 if (sample_type & PERF_SAMPLE_REGS_USER) {
7042 /* regs dump ABI info */
7043 int size = sizeof(u64);
7044
7045 if (data->regs_user.regs) {
7046 u64 mask = event->attr.sample_regs_user;
7047 size += hweight64(mask) * sizeof(u64);
7048 }
7049
7050 header->size += size;
7051 }
7052
7053 if (sample_type & PERF_SAMPLE_STACK_USER) {
7054 /*
7055 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7056 * processed as the last one or have additional check added
7057 * in case new sample type is added, because we could eat
7058 * up the rest of the sample size.
7059 */
7060 u16 stack_size = event->attr.sample_stack_user;
7061 u16 size = sizeof(u64);
7062
7063 stack_size = perf_sample_ustack_size(stack_size, header->size,
7064 data->regs_user.regs);
7065
7066 /*
7067 * If there is something to dump, add space for the dump
7068 * itself and for the field that tells the dynamic size,
7069 * which is how many have been actually dumped.
7070 */
7071 if (stack_size)
7072 size += sizeof(u64) + stack_size;
7073
7074 data->stack_user_size = stack_size;
7075 header->size += size;
7076 }
7077
7078 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7079 /* regs dump ABI info */
7080 int size = sizeof(u64);
7081
7082 perf_sample_regs_intr(&data->regs_intr, regs);
7083
7084 if (data->regs_intr.regs) {
7085 u64 mask = event->attr.sample_regs_intr;
7086
7087 size += hweight64(mask) * sizeof(u64);
7088 }
7089
7090 header->size += size;
7091 }
7092
7093 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7094 data->phys_addr = perf_virt_to_phys(data->addr);
7095
7096 #ifdef CONFIG_CGROUP_PERF
7097 if (sample_type & PERF_SAMPLE_CGROUP) {
7098 struct cgroup *cgrp;
7099
7100 /* protected by RCU */
7101 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7102 data->cgroup = cgroup_id(cgrp);
7103 }
7104 #endif
7105
7106 if (sample_type & PERF_SAMPLE_AUX) {
7107 u64 size;
7108
7109 header->size += sizeof(u64); /* size */
7110
7111 /*
7112 * Given the 16bit nature of header::size, an AUX sample can
7113 * easily overflow it, what with all the preceding sample bits.
7114 * Make sure this doesn't happen by using up to U16_MAX bytes
7115 * per sample in total (rounded down to 8 byte boundary).
7116 */
7117 size = min_t(size_t, U16_MAX - header->size,
7118 event->attr.aux_sample_size);
7119 size = rounddown(size, 8);
7120 size = perf_prepare_sample_aux(event, data, size);
7121
7122 WARN_ON_ONCE(size + header->size > U16_MAX);
7123 header->size += size;
7124 }
7125 /*
7126 * If you're adding more sample types here, you likely need to do
7127 * something about the overflowing header::size, like repurpose the
7128 * lowest 3 bits of size, which should be always zero at the moment.
7129 * This raises a more important question, do we really need 512k sized
7130 * samples and why, so good argumentation is in order for whatever you
7131 * do here next.
7132 */
7133 WARN_ON_ONCE(header->size & 7);
7134 }
7135
7136 static __always_inline int
7137 __perf_event_output(struct perf_event *event,
7138 struct perf_sample_data *data,
7139 struct pt_regs *regs,
7140 int (*output_begin)(struct perf_output_handle *,
7141 struct perf_event *,
7142 unsigned int))
7143 {
7144 struct perf_output_handle handle;
7145 struct perf_event_header header;
7146 int err;
7147
7148 /* protect the callchain buffers */
7149 rcu_read_lock();
7150
7151 perf_prepare_sample(&header, data, event, regs);
7152
7153 err = output_begin(&handle, event, header.size);
7154 if (err)
7155 goto exit;
7156
7157 perf_output_sample(&handle, &header, data, event);
7158
7159 perf_output_end(&handle);
7160
7161 exit:
7162 rcu_read_unlock();
7163 return err;
7164 }
7165
7166 void
7167 perf_event_output_forward(struct perf_event *event,
7168 struct perf_sample_data *data,
7169 struct pt_regs *regs)
7170 {
7171 __perf_event_output(event, data, regs, perf_output_begin_forward);
7172 }
7173
7174 void
7175 perf_event_output_backward(struct perf_event *event,
7176 struct perf_sample_data *data,
7177 struct pt_regs *regs)
7178 {
7179 __perf_event_output(event, data, regs, perf_output_begin_backward);
7180 }
7181
7182 int
7183 perf_event_output(struct perf_event *event,
7184 struct perf_sample_data *data,
7185 struct pt_regs *regs)
7186 {
7187 return __perf_event_output(event, data, regs, perf_output_begin);
7188 }
7189
7190 /*
7191 * read event_id
7192 */
7193
7194 struct perf_read_event {
7195 struct perf_event_header header;
7196
7197 u32 pid;
7198 u32 tid;
7199 };
7200
7201 static void
7202 perf_event_read_event(struct perf_event *event,
7203 struct task_struct *task)
7204 {
7205 struct perf_output_handle handle;
7206 struct perf_sample_data sample;
7207 struct perf_read_event read_event = {
7208 .header = {
7209 .type = PERF_RECORD_READ,
7210 .misc = 0,
7211 .size = sizeof(read_event) + event->read_size,
7212 },
7213 .pid = perf_event_pid(event, task),
7214 .tid = perf_event_tid(event, task),
7215 };
7216 int ret;
7217
7218 perf_event_header__init_id(&read_event.header, &sample, event);
7219 ret = perf_output_begin(&handle, event, read_event.header.size);
7220 if (ret)
7221 return;
7222
7223 perf_output_put(&handle, read_event);
7224 perf_output_read(&handle, event);
7225 perf_event__output_id_sample(event, &handle, &sample);
7226
7227 perf_output_end(&handle);
7228 }
7229
7230 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7231
7232 static void
7233 perf_iterate_ctx(struct perf_event_context *ctx,
7234 perf_iterate_f output,
7235 void *data, bool all)
7236 {
7237 struct perf_event *event;
7238
7239 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7240 if (!all) {
7241 if (event->state < PERF_EVENT_STATE_INACTIVE)
7242 continue;
7243 if (!event_filter_match(event))
7244 continue;
7245 }
7246
7247 output(event, data);
7248 }
7249 }
7250
7251 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7252 {
7253 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7254 struct perf_event *event;
7255
7256 list_for_each_entry_rcu(event, &pel->list, sb_list) {
7257 /*
7258 * Skip events that are not fully formed yet; ensure that
7259 * if we observe event->ctx, both event and ctx will be
7260 * complete enough. See perf_install_in_context().
7261 */
7262 if (!smp_load_acquire(&event->ctx))
7263 continue;
7264
7265 if (event->state < PERF_EVENT_STATE_INACTIVE)
7266 continue;
7267 if (!event_filter_match(event))
7268 continue;
7269 output(event, data);
7270 }
7271 }
7272
7273 /*
7274 * Iterate all events that need to receive side-band events.
7275 *
7276 * For new callers; ensure that account_pmu_sb_event() includes
7277 * your event, otherwise it might not get delivered.
7278 */
7279 static void
7280 perf_iterate_sb(perf_iterate_f output, void *data,
7281 struct perf_event_context *task_ctx)
7282 {
7283 struct perf_event_context *ctx;
7284 int ctxn;
7285
7286 rcu_read_lock();
7287 preempt_disable();
7288
7289 /*
7290 * If we have task_ctx != NULL we only notify the task context itself.
7291 * The task_ctx is set only for EXIT events before releasing task
7292 * context.
7293 */
7294 if (task_ctx) {
7295 perf_iterate_ctx(task_ctx, output, data, false);
7296 goto done;
7297 }
7298
7299 perf_iterate_sb_cpu(output, data);
7300
7301 for_each_task_context_nr(ctxn) {
7302 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7303 if (ctx)
7304 perf_iterate_ctx(ctx, output, data, false);
7305 }
7306 done:
7307 preempt_enable();
7308 rcu_read_unlock();
7309 }
7310
7311 /*
7312 * Clear all file-based filters at exec, they'll have to be
7313 * re-instated when/if these objects are mmapped again.
7314 */
7315 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7316 {
7317 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7318 struct perf_addr_filter *filter;
7319 unsigned int restart = 0, count = 0;
7320 unsigned long flags;
7321
7322 if (!has_addr_filter(event))
7323 return;
7324
7325 raw_spin_lock_irqsave(&ifh->lock, flags);
7326 list_for_each_entry(filter, &ifh->list, entry) {
7327 if (filter->path.dentry) {
7328 event->addr_filter_ranges[count].start = 0;
7329 event->addr_filter_ranges[count].size = 0;
7330 restart++;
7331 }
7332
7333 count++;
7334 }
7335
7336 if (restart)
7337 event->addr_filters_gen++;
7338 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7339
7340 if (restart)
7341 perf_event_stop(event, 1);
7342 }
7343
7344 void perf_event_exec(void)
7345 {
7346 struct perf_event_context *ctx;
7347 int ctxn;
7348
7349 rcu_read_lock();
7350 for_each_task_context_nr(ctxn) {
7351 ctx = current->perf_event_ctxp[ctxn];
7352 if (!ctx)
7353 continue;
7354
7355 perf_event_enable_on_exec(ctxn);
7356
7357 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
7358 true);
7359 }
7360 rcu_read_unlock();
7361 }
7362
7363 struct remote_output {
7364 struct perf_buffer *rb;
7365 int err;
7366 };
7367
7368 static void __perf_event_output_stop(struct perf_event *event, void *data)
7369 {
7370 struct perf_event *parent = event->parent;
7371 struct remote_output *ro = data;
7372 struct perf_buffer *rb = ro->rb;
7373 struct stop_event_data sd = {
7374 .event = event,
7375 };
7376
7377 if (!has_aux(event))
7378 return;
7379
7380 if (!parent)
7381 parent = event;
7382
7383 /*
7384 * In case of inheritance, it will be the parent that links to the
7385 * ring-buffer, but it will be the child that's actually using it.
7386 *
7387 * We are using event::rb to determine if the event should be stopped,
7388 * however this may race with ring_buffer_attach() (through set_output),
7389 * which will make us skip the event that actually needs to be stopped.
7390 * So ring_buffer_attach() has to stop an aux event before re-assigning
7391 * its rb pointer.
7392 */
7393 if (rcu_dereference(parent->rb) == rb)
7394 ro->err = __perf_event_stop(&sd);
7395 }
7396
7397 static int __perf_pmu_output_stop(void *info)
7398 {
7399 struct perf_event *event = info;
7400 struct pmu *pmu = event->ctx->pmu;
7401 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7402 struct remote_output ro = {
7403 .rb = event->rb,
7404 };
7405
7406 rcu_read_lock();
7407 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7408 if (cpuctx->task_ctx)
7409 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7410 &ro, false);
7411 rcu_read_unlock();
7412
7413 return ro.err;
7414 }
7415
7416 static void perf_pmu_output_stop(struct perf_event *event)
7417 {
7418 struct perf_event *iter;
7419 int err, cpu;
7420
7421 restart:
7422 rcu_read_lock();
7423 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7424 /*
7425 * For per-CPU events, we need to make sure that neither they
7426 * nor their children are running; for cpu==-1 events it's
7427 * sufficient to stop the event itself if it's active, since
7428 * it can't have children.
7429 */
7430 cpu = iter->cpu;
7431 if (cpu == -1)
7432 cpu = READ_ONCE(iter->oncpu);
7433
7434 if (cpu == -1)
7435 continue;
7436
7437 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7438 if (err == -EAGAIN) {
7439 rcu_read_unlock();
7440 goto restart;
7441 }
7442 }
7443 rcu_read_unlock();
7444 }
7445
7446 /*
7447 * task tracking -- fork/exit
7448 *
7449 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7450 */
7451
7452 struct perf_task_event {
7453 struct task_struct *task;
7454 struct perf_event_context *task_ctx;
7455
7456 struct {
7457 struct perf_event_header header;
7458
7459 u32 pid;
7460 u32 ppid;
7461 u32 tid;
7462 u32 ptid;
7463 u64 time;
7464 } event_id;
7465 };
7466
7467 static int perf_event_task_match(struct perf_event *event)
7468 {
7469 return event->attr.comm || event->attr.mmap ||
7470 event->attr.mmap2 || event->attr.mmap_data ||
7471 event->attr.task;
7472 }
7473
7474 static void perf_event_task_output(struct perf_event *event,
7475 void *data)
7476 {
7477 struct perf_task_event *task_event = data;
7478 struct perf_output_handle handle;
7479 struct perf_sample_data sample;
7480 struct task_struct *task = task_event->task;
7481 int ret, size = task_event->event_id.header.size;
7482
7483 if (!perf_event_task_match(event))
7484 return;
7485
7486 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7487
7488 ret = perf_output_begin(&handle, event,
7489 task_event->event_id.header.size);
7490 if (ret)
7491 goto out;
7492
7493 task_event->event_id.pid = perf_event_pid(event, task);
7494 task_event->event_id.tid = perf_event_tid(event, task);
7495
7496 if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7497 task_event->event_id.ppid = perf_event_pid(event,
7498 task->real_parent);
7499 task_event->event_id.ptid = perf_event_pid(event,
7500 task->real_parent);
7501 } else { /* PERF_RECORD_FORK */
7502 task_event->event_id.ppid = perf_event_pid(event, current);
7503 task_event->event_id.ptid = perf_event_tid(event, current);
7504 }
7505
7506 task_event->event_id.time = perf_event_clock(event);
7507
7508 perf_output_put(&handle, task_event->event_id);
7509
7510 perf_event__output_id_sample(event, &handle, &sample);
7511
7512 perf_output_end(&handle);
7513 out:
7514 task_event->event_id.header.size = size;
7515 }
7516
7517 static void perf_event_task(struct task_struct *task,
7518 struct perf_event_context *task_ctx,
7519 int new)
7520 {
7521 struct perf_task_event task_event;
7522
7523 if (!atomic_read(&nr_comm_events) &&
7524 !atomic_read(&nr_mmap_events) &&
7525 !atomic_read(&nr_task_events))
7526 return;
7527
7528 task_event = (struct perf_task_event){
7529 .task = task,
7530 .task_ctx = task_ctx,
7531 .event_id = {
7532 .header = {
7533 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7534 .misc = 0,
7535 .size = sizeof(task_event.event_id),
7536 },
7537 /* .pid */
7538 /* .ppid */
7539 /* .tid */
7540 /* .ptid */
7541 /* .time */
7542 },
7543 };
7544
7545 perf_iterate_sb(perf_event_task_output,
7546 &task_event,
7547 task_ctx);
7548 }
7549
7550 void perf_event_fork(struct task_struct *task)
7551 {
7552 perf_event_task(task, NULL, 1);
7553 perf_event_namespaces(task);
7554 }
7555
7556 /*
7557 * comm tracking
7558 */
7559
7560 struct perf_comm_event {
7561 struct task_struct *task;
7562 char *comm;
7563 int comm_size;
7564
7565 struct {
7566 struct perf_event_header header;
7567
7568 u32 pid;
7569 u32 tid;
7570 } event_id;
7571 };
7572
7573 static int perf_event_comm_match(struct perf_event *event)
7574 {
7575 return event->attr.comm;
7576 }
7577
7578 static void perf_event_comm_output(struct perf_event *event,
7579 void *data)
7580 {
7581 struct perf_comm_event *comm_event = data;
7582 struct perf_output_handle handle;
7583 struct perf_sample_data sample;
7584 int size = comm_event->event_id.header.size;
7585 int ret;
7586
7587 if (!perf_event_comm_match(event))
7588 return;
7589
7590 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7591 ret = perf_output_begin(&handle, event,
7592 comm_event->event_id.header.size);
7593
7594 if (ret)
7595 goto out;
7596
7597 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7598 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7599
7600 perf_output_put(&handle, comm_event->event_id);
7601 __output_copy(&handle, comm_event->comm,
7602 comm_event->comm_size);
7603
7604 perf_event__output_id_sample(event, &handle, &sample);
7605
7606 perf_output_end(&handle);
7607 out:
7608 comm_event->event_id.header.size = size;
7609 }
7610
7611 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7612 {
7613 char comm[TASK_COMM_LEN];
7614 unsigned int size;
7615
7616 memset(comm, 0, sizeof(comm));
7617 strlcpy(comm, comm_event->task->comm, sizeof(comm));
7618 size = ALIGN(strlen(comm)+1, sizeof(u64));
7619
7620 comm_event->comm = comm;
7621 comm_event->comm_size = size;
7622
7623 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7624
7625 perf_iterate_sb(perf_event_comm_output,
7626 comm_event,
7627 NULL);
7628 }
7629
7630 void perf_event_comm(struct task_struct *task, bool exec)
7631 {
7632 struct perf_comm_event comm_event;
7633
7634 if (!atomic_read(&nr_comm_events))
7635 return;
7636
7637 comm_event = (struct perf_comm_event){
7638 .task = task,
7639 /* .comm */
7640 /* .comm_size */
7641 .event_id = {
7642 .header = {
7643 .type = PERF_RECORD_COMM,
7644 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7645 /* .size */
7646 },
7647 /* .pid */
7648 /* .tid */
7649 },
7650 };
7651
7652 perf_event_comm_event(&comm_event);
7653 }
7654
7655 /*
7656 * namespaces tracking
7657 */
7658
7659 struct perf_namespaces_event {
7660 struct task_struct *task;
7661
7662 struct {
7663 struct perf_event_header header;
7664
7665 u32 pid;
7666 u32 tid;
7667 u64 nr_namespaces;
7668 struct perf_ns_link_info link_info[NR_NAMESPACES];
7669 } event_id;
7670 };
7671
7672 static int perf_event_namespaces_match(struct perf_event *event)
7673 {
7674 return event->attr.namespaces;
7675 }
7676
7677 static void perf_event_namespaces_output(struct perf_event *event,
7678 void *data)
7679 {
7680 struct perf_namespaces_event *namespaces_event = data;
7681 struct perf_output_handle handle;
7682 struct perf_sample_data sample;
7683 u16 header_size = namespaces_event->event_id.header.size;
7684 int ret;
7685
7686 if (!perf_event_namespaces_match(event))
7687 return;
7688
7689 perf_event_header__init_id(&namespaces_event->event_id.header,
7690 &sample, event);
7691 ret = perf_output_begin(&handle, event,
7692 namespaces_event->event_id.header.size);
7693 if (ret)
7694 goto out;
7695
7696 namespaces_event->event_id.pid = perf_event_pid(event,
7697 namespaces_event->task);
7698 namespaces_event->event_id.tid = perf_event_tid(event,
7699 namespaces_event->task);
7700
7701 perf_output_put(&handle, namespaces_event->event_id);
7702
7703 perf_event__output_id_sample(event, &handle, &sample);
7704
7705 perf_output_end(&handle);
7706 out:
7707 namespaces_event->event_id.header.size = header_size;
7708 }
7709
7710 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7711 struct task_struct *task,
7712 const struct proc_ns_operations *ns_ops)
7713 {
7714 struct path ns_path;
7715 struct inode *ns_inode;
7716 int error;
7717
7718 error = ns_get_path(&ns_path, task, ns_ops);
7719 if (!error) {
7720 ns_inode = ns_path.dentry->d_inode;
7721 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7722 ns_link_info->ino = ns_inode->i_ino;
7723 path_put(&ns_path);
7724 }
7725 }
7726
7727 void perf_event_namespaces(struct task_struct *task)
7728 {
7729 struct perf_namespaces_event namespaces_event;
7730 struct perf_ns_link_info *ns_link_info;
7731
7732 if (!atomic_read(&nr_namespaces_events))
7733 return;
7734
7735 namespaces_event = (struct perf_namespaces_event){
7736 .task = task,
7737 .event_id = {
7738 .header = {
7739 .type = PERF_RECORD_NAMESPACES,
7740 .misc = 0,
7741 .size = sizeof(namespaces_event.event_id),
7742 },
7743 /* .pid */
7744 /* .tid */
7745 .nr_namespaces = NR_NAMESPACES,
7746 /* .link_info[NR_NAMESPACES] */
7747 },
7748 };
7749
7750 ns_link_info = namespaces_event.event_id.link_info;
7751
7752 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7753 task, &mntns_operations);
7754
7755 #ifdef CONFIG_USER_NS
7756 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7757 task, &userns_operations);
7758 #endif
7759 #ifdef CONFIG_NET_NS
7760 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7761 task, &netns_operations);
7762 #endif
7763 #ifdef CONFIG_UTS_NS
7764 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7765 task, &utsns_operations);
7766 #endif
7767 #ifdef CONFIG_IPC_NS
7768 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7769 task, &ipcns_operations);
7770 #endif
7771 #ifdef CONFIG_PID_NS
7772 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7773 task, &pidns_operations);
7774 #endif
7775 #ifdef CONFIG_CGROUPS
7776 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7777 task, &cgroupns_operations);
7778 #endif
7779
7780 perf_iterate_sb(perf_event_namespaces_output,
7781 &namespaces_event,
7782 NULL);
7783 }
7784
7785 /*
7786 * cgroup tracking
7787 */
7788 #ifdef CONFIG_CGROUP_PERF
7789
7790 struct perf_cgroup_event {
7791 char *path;
7792 int path_size;
7793 struct {
7794 struct perf_event_header header;
7795 u64 id;
7796 char path[];
7797 } event_id;
7798 };
7799
7800 static int perf_event_cgroup_match(struct perf_event *event)
7801 {
7802 return event->attr.cgroup;
7803 }
7804
7805 static void perf_event_cgroup_output(struct perf_event *event, void *data)
7806 {
7807 struct perf_cgroup_event *cgroup_event = data;
7808 struct perf_output_handle handle;
7809 struct perf_sample_data sample;
7810 u16 header_size = cgroup_event->event_id.header.size;
7811 int ret;
7812
7813 if (!perf_event_cgroup_match(event))
7814 return;
7815
7816 perf_event_header__init_id(&cgroup_event->event_id.header,
7817 &sample, event);
7818 ret = perf_output_begin(&handle, event,
7819 cgroup_event->event_id.header.size);
7820 if (ret)
7821 goto out;
7822
7823 perf_output_put(&handle, cgroup_event->event_id);
7824 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
7825
7826 perf_event__output_id_sample(event, &handle, &sample);
7827
7828 perf_output_end(&handle);
7829 out:
7830 cgroup_event->event_id.header.size = header_size;
7831 }
7832
7833 static void perf_event_cgroup(struct cgroup *cgrp)
7834 {
7835 struct perf_cgroup_event cgroup_event;
7836 char path_enomem[16] = "//enomem";
7837 char *pathname;
7838 size_t size;
7839
7840 if (!atomic_read(&nr_cgroup_events))
7841 return;
7842
7843 cgroup_event = (struct perf_cgroup_event){
7844 .event_id = {
7845 .header = {
7846 .type = PERF_RECORD_CGROUP,
7847 .misc = 0,
7848 .size = sizeof(cgroup_event.event_id),
7849 },
7850 .id = cgroup_id(cgrp),
7851 },
7852 };
7853
7854 pathname = kmalloc(PATH_MAX, GFP_KERNEL);
7855 if (pathname == NULL) {
7856 cgroup_event.path = path_enomem;
7857 } else {
7858 /* just to be sure to have enough space for alignment */
7859 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
7860 cgroup_event.path = pathname;
7861 }
7862
7863 /*
7864 * Since our buffer works in 8 byte units we need to align our string
7865 * size to a multiple of 8. However, we must guarantee the tail end is
7866 * zero'd out to avoid leaking random bits to userspace.
7867 */
7868 size = strlen(cgroup_event.path) + 1;
7869 while (!IS_ALIGNED(size, sizeof(u64)))
7870 cgroup_event.path[size++] = '\0';
7871
7872 cgroup_event.event_id.header.size += size;
7873 cgroup_event.path_size = size;
7874
7875 perf_iterate_sb(perf_event_cgroup_output,
7876 &cgroup_event,
7877 NULL);
7878
7879 kfree(pathname);
7880 }
7881
7882 #endif
7883
7884 /*
7885 * mmap tracking
7886 */
7887
7888 struct perf_mmap_event {
7889 struct vm_area_struct *vma;
7890
7891 const char *file_name;
7892 int file_size;
7893 int maj, min;
7894 u64 ino;
7895 u64 ino_generation;
7896 u32 prot, flags;
7897
7898 struct {
7899 struct perf_event_header header;
7900
7901 u32 pid;
7902 u32 tid;
7903 u64 start;
7904 u64 len;
7905 u64 pgoff;
7906 } event_id;
7907 };
7908
7909 static int perf_event_mmap_match(struct perf_event *event,
7910 void *data)
7911 {
7912 struct perf_mmap_event *mmap_event = data;
7913 struct vm_area_struct *vma = mmap_event->vma;
7914 int executable = vma->vm_flags & VM_EXEC;
7915
7916 return (!executable && event->attr.mmap_data) ||
7917 (executable && (event->attr.mmap || event->attr.mmap2));
7918 }
7919
7920 static void perf_event_mmap_output(struct perf_event *event,
7921 void *data)
7922 {
7923 struct perf_mmap_event *mmap_event = data;
7924 struct perf_output_handle handle;
7925 struct perf_sample_data sample;
7926 int size = mmap_event->event_id.header.size;
7927 u32 type = mmap_event->event_id.header.type;
7928 int ret;
7929
7930 if (!perf_event_mmap_match(event, data))
7931 return;
7932
7933 if (event->attr.mmap2) {
7934 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7935 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7936 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7937 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7938 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7939 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7940 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7941 }
7942
7943 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7944 ret = perf_output_begin(&handle, event,
7945 mmap_event->event_id.header.size);
7946 if (ret)
7947 goto out;
7948
7949 mmap_event->event_id.pid = perf_event_pid(event, current);
7950 mmap_event->event_id.tid = perf_event_tid(event, current);
7951
7952 perf_output_put(&handle, mmap_event->event_id);
7953
7954 if (event->attr.mmap2) {
7955 perf_output_put(&handle, mmap_event->maj);
7956 perf_output_put(&handle, mmap_event->min);
7957 perf_output_put(&handle, mmap_event->ino);
7958 perf_output_put(&handle, mmap_event->ino_generation);
7959 perf_output_put(&handle, mmap_event->prot);
7960 perf_output_put(&handle, mmap_event->flags);
7961 }
7962
7963 __output_copy(&handle, mmap_event->file_name,
7964 mmap_event->file_size);
7965
7966 perf_event__output_id_sample(event, &handle, &sample);
7967
7968 perf_output_end(&handle);
7969 out:
7970 mmap_event->event_id.header.size = size;
7971 mmap_event->event_id.header.type = type;
7972 }
7973
7974 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7975 {
7976 struct vm_area_struct *vma = mmap_event->vma;
7977 struct file *file = vma->vm_file;
7978 int maj = 0, min = 0;
7979 u64 ino = 0, gen = 0;
7980 u32 prot = 0, flags = 0;
7981 unsigned int size;
7982 char tmp[16];
7983 char *buf = NULL;
7984 char *name;
7985
7986 if (vma->vm_flags & VM_READ)
7987 prot |= PROT_READ;
7988 if (vma->vm_flags & VM_WRITE)
7989 prot |= PROT_WRITE;
7990 if (vma->vm_flags & VM_EXEC)
7991 prot |= PROT_EXEC;
7992
7993 if (vma->vm_flags & VM_MAYSHARE)
7994 flags = MAP_SHARED;
7995 else
7996 flags = MAP_PRIVATE;
7997
7998 if (vma->vm_flags & VM_DENYWRITE)
7999 flags |= MAP_DENYWRITE;
8000 if (vma->vm_flags & VM_MAYEXEC)
8001 flags |= MAP_EXECUTABLE;
8002 if (vma->vm_flags & VM_LOCKED)
8003 flags |= MAP_LOCKED;
8004 if (is_vm_hugetlb_page(vma))
8005 flags |= MAP_HUGETLB;
8006
8007 if (file) {
8008 struct inode *inode;
8009 dev_t dev;
8010
8011 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8012 if (!buf) {
8013 name = "//enomem";
8014 goto cpy_name;
8015 }
8016 /*
8017 * d_path() works from the end of the rb backwards, so we
8018 * need to add enough zero bytes after the string to handle
8019 * the 64bit alignment we do later.
8020 */
8021 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8022 if (IS_ERR(name)) {
8023 name = "//toolong";
8024 goto cpy_name;
8025 }
8026 inode = file_inode(vma->vm_file);
8027 dev = inode->i_sb->s_dev;
8028 ino = inode->i_ino;
8029 gen = inode->i_generation;
8030 maj = MAJOR(dev);
8031 min = MINOR(dev);
8032
8033 goto got_name;
8034 } else {
8035 if (vma->vm_ops && vma->vm_ops->name) {
8036 name = (char *) vma->vm_ops->name(vma);
8037 if (name)
8038 goto cpy_name;
8039 }
8040
8041 name = (char *)arch_vma_name(vma);
8042 if (name)
8043 goto cpy_name;
8044
8045 if (vma->vm_start <= vma->vm_mm->start_brk &&
8046 vma->vm_end >= vma->vm_mm->brk) {
8047 name = "[heap]";
8048 goto cpy_name;
8049 }
8050 if (vma->vm_start <= vma->vm_mm->start_stack &&
8051 vma->vm_end >= vma->vm_mm->start_stack) {
8052 name = "[stack]";
8053 goto cpy_name;
8054 }
8055
8056 name = "//anon";
8057 goto cpy_name;
8058 }
8059
8060 cpy_name:
8061 strlcpy(tmp, name, sizeof(tmp));
8062 name = tmp;
8063 got_name:
8064 /*
8065 * Since our buffer works in 8 byte units we need to align our string
8066 * size to a multiple of 8. However, we must guarantee the tail end is
8067 * zero'd out to avoid leaking random bits to userspace.
8068 */
8069 size = strlen(name)+1;
8070 while (!IS_ALIGNED(size, sizeof(u64)))
8071 name[size++] = '\0';
8072
8073 mmap_event->file_name = name;
8074 mmap_event->file_size = size;
8075 mmap_event->maj = maj;
8076 mmap_event->min = min;
8077 mmap_event->ino = ino;
8078 mmap_event->ino_generation = gen;
8079 mmap_event->prot = prot;
8080 mmap_event->flags = flags;
8081
8082 if (!(vma->vm_flags & VM_EXEC))
8083 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8084
8085 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8086
8087 perf_iterate_sb(perf_event_mmap_output,
8088 mmap_event,
8089 NULL);
8090
8091 kfree(buf);
8092 }
8093
8094 /*
8095 * Check whether inode and address range match filter criteria.
8096 */
8097 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8098 struct file *file, unsigned long offset,
8099 unsigned long size)
8100 {
8101 /* d_inode(NULL) won't be equal to any mapped user-space file */
8102 if (!filter->path.dentry)
8103 return false;
8104
8105 if (d_inode(filter->path.dentry) != file_inode(file))
8106 return false;
8107
8108 if (filter->offset > offset + size)
8109 return false;
8110
8111 if (filter->offset + filter->size < offset)
8112 return false;
8113
8114 return true;
8115 }
8116
8117 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8118 struct vm_area_struct *vma,
8119 struct perf_addr_filter_range *fr)
8120 {
8121 unsigned long vma_size = vma->vm_end - vma->vm_start;
8122 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8123 struct file *file = vma->vm_file;
8124
8125 if (!perf_addr_filter_match(filter, file, off, vma_size))
8126 return false;
8127
8128 if (filter->offset < off) {
8129 fr->start = vma->vm_start;
8130 fr->size = min(vma_size, filter->size - (off - filter->offset));
8131 } else {
8132 fr->start = vma->vm_start + filter->offset - off;
8133 fr->size = min(vma->vm_end - fr->start, filter->size);
8134 }
8135
8136 return true;
8137 }
8138
8139 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8140 {
8141 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8142 struct vm_area_struct *vma = data;
8143 struct perf_addr_filter *filter;
8144 unsigned int restart = 0, count = 0;
8145 unsigned long flags;
8146
8147 if (!has_addr_filter(event))
8148 return;
8149
8150 if (!vma->vm_file)
8151 return;
8152
8153 raw_spin_lock_irqsave(&ifh->lock, flags);
8154 list_for_each_entry(filter, &ifh->list, entry) {
8155 if (perf_addr_filter_vma_adjust(filter, vma,
8156 &event->addr_filter_ranges[count]))
8157 restart++;
8158
8159 count++;
8160 }
8161
8162 if (restart)
8163 event->addr_filters_gen++;
8164 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8165
8166 if (restart)
8167 perf_event_stop(event, 1);
8168 }
8169
8170 /*
8171 * Adjust all task's events' filters to the new vma
8172 */
8173 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8174 {
8175 struct perf_event_context *ctx;
8176 int ctxn;
8177
8178 /*
8179 * Data tracing isn't supported yet and as such there is no need
8180 * to keep track of anything that isn't related to executable code:
8181 */
8182 if (!(vma->vm_flags & VM_EXEC))
8183 return;
8184
8185 rcu_read_lock();
8186 for_each_task_context_nr(ctxn) {
8187 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8188 if (!ctx)
8189 continue;
8190
8191 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8192 }
8193 rcu_read_unlock();
8194 }
8195
8196 void perf_event_mmap(struct vm_area_struct *vma)
8197 {
8198 struct perf_mmap_event mmap_event;
8199
8200 if (!atomic_read(&nr_mmap_events))
8201 return;
8202
8203 mmap_event = (struct perf_mmap_event){
8204 .vma = vma,
8205 /* .file_name */
8206 /* .file_size */
8207 .event_id = {
8208 .header = {
8209 .type = PERF_RECORD_MMAP,
8210 .misc = PERF_RECORD_MISC_USER,
8211 /* .size */
8212 },
8213 /* .pid */
8214 /* .tid */
8215 .start = vma->vm_start,
8216 .len = vma->vm_end - vma->vm_start,
8217 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
8218 },
8219 /* .maj (attr_mmap2 only) */
8220 /* .min (attr_mmap2 only) */
8221 /* .ino (attr_mmap2 only) */
8222 /* .ino_generation (attr_mmap2 only) */
8223 /* .prot (attr_mmap2 only) */
8224 /* .flags (attr_mmap2 only) */
8225 };
8226
8227 perf_addr_filters_adjust(vma);
8228 perf_event_mmap_event(&mmap_event);
8229 }
8230
8231 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8232 unsigned long size, u64 flags)
8233 {
8234 struct perf_output_handle handle;
8235 struct perf_sample_data sample;
8236 struct perf_aux_event {
8237 struct perf_event_header header;
8238 u64 offset;
8239 u64 size;
8240 u64 flags;
8241 } rec = {
8242 .header = {
8243 .type = PERF_RECORD_AUX,
8244 .misc = 0,
8245 .size = sizeof(rec),
8246 },
8247 .offset = head,
8248 .size = size,
8249 .flags = flags,
8250 };
8251 int ret;
8252
8253 perf_event_header__init_id(&rec.header, &sample, event);
8254 ret = perf_output_begin(&handle, event, rec.header.size);
8255
8256 if (ret)
8257 return;
8258
8259 perf_output_put(&handle, rec);
8260 perf_event__output_id_sample(event, &handle, &sample);
8261
8262 perf_output_end(&handle);
8263 }
8264
8265 /*
8266 * Lost/dropped samples logging
8267 */
8268 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8269 {
8270 struct perf_output_handle handle;
8271 struct perf_sample_data sample;
8272 int ret;
8273
8274 struct {
8275 struct perf_event_header header;
8276 u64 lost;
8277 } lost_samples_event = {
8278 .header = {
8279 .type = PERF_RECORD_LOST_SAMPLES,
8280 .misc = 0,
8281 .size = sizeof(lost_samples_event),
8282 },
8283 .lost = lost,
8284 };
8285
8286 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8287
8288 ret = perf_output_begin(&handle, event,
8289 lost_samples_event.header.size);
8290 if (ret)
8291 return;
8292
8293 perf_output_put(&handle, lost_samples_event);
8294 perf_event__output_id_sample(event, &handle, &sample);
8295 perf_output_end(&handle);
8296 }
8297
8298 /*
8299 * context_switch tracking
8300 */
8301
8302 struct perf_switch_event {
8303 struct task_struct *task;
8304 struct task_struct *next_prev;
8305
8306 struct {
8307 struct perf_event_header header;
8308 u32 next_prev_pid;
8309 u32 next_prev_tid;
8310 } event_id;
8311 };
8312
8313 static int perf_event_switch_match(struct perf_event *event)
8314 {
8315 return event->attr.context_switch;
8316 }
8317
8318 static void perf_event_switch_output(struct perf_event *event, void *data)
8319 {
8320 struct perf_switch_event *se = data;
8321 struct perf_output_handle handle;
8322 struct perf_sample_data sample;
8323 int ret;
8324
8325 if (!perf_event_switch_match(event))
8326 return;
8327
8328 /* Only CPU-wide events are allowed to see next/prev pid/tid */
8329 if (event->ctx->task) {
8330 se->event_id.header.type = PERF_RECORD_SWITCH;
8331 se->event_id.header.size = sizeof(se->event_id.header);
8332 } else {
8333 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8334 se->event_id.header.size = sizeof(se->event_id);
8335 se->event_id.next_prev_pid =
8336 perf_event_pid(event, se->next_prev);
8337 se->event_id.next_prev_tid =
8338 perf_event_tid(event, se->next_prev);
8339 }
8340
8341 perf_event_header__init_id(&se->event_id.header, &sample, event);
8342
8343 ret = perf_output_begin(&handle, event, se->event_id.header.size);
8344 if (ret)
8345 return;
8346
8347 if (event->ctx->task)
8348 perf_output_put(&handle, se->event_id.header);
8349 else
8350 perf_output_put(&handle, se->event_id);
8351
8352 perf_event__output_id_sample(event, &handle, &sample);
8353
8354 perf_output_end(&handle);
8355 }
8356
8357 static void perf_event_switch(struct task_struct *task,
8358 struct task_struct *next_prev, bool sched_in)
8359 {
8360 struct perf_switch_event switch_event;
8361
8362 /* N.B. caller checks nr_switch_events != 0 */
8363
8364 switch_event = (struct perf_switch_event){
8365 .task = task,
8366 .next_prev = next_prev,
8367 .event_id = {
8368 .header = {
8369 /* .type */
8370 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8371 /* .size */
8372 },
8373 /* .next_prev_pid */
8374 /* .next_prev_tid */
8375 },
8376 };
8377
8378 if (!sched_in && task->state == TASK_RUNNING)
8379 switch_event.event_id.header.misc |=
8380 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8381
8382 perf_iterate_sb(perf_event_switch_output,
8383 &switch_event,
8384 NULL);
8385 }
8386
8387 /*
8388 * IRQ throttle logging
8389 */
8390
8391 static void perf_log_throttle(struct perf_event *event, int enable)
8392 {
8393 struct perf_output_handle handle;
8394 struct perf_sample_data sample;
8395 int ret;
8396
8397 struct {
8398 struct perf_event_header header;
8399 u64 time;
8400 u64 id;
8401 u64 stream_id;
8402 } throttle_event = {
8403 .header = {
8404 .type = PERF_RECORD_THROTTLE,
8405 .misc = 0,
8406 .size = sizeof(throttle_event),
8407 },
8408 .time = perf_event_clock(event),
8409 .id = primary_event_id(event),
8410 .stream_id = event->id,
8411 };
8412
8413 if (enable)
8414 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8415
8416 perf_event_header__init_id(&throttle_event.header, &sample, event);
8417
8418 ret = perf_output_begin(&handle, event,
8419 throttle_event.header.size);
8420 if (ret)
8421 return;
8422
8423 perf_output_put(&handle, throttle_event);
8424 perf_event__output_id_sample(event, &handle, &sample);
8425 perf_output_end(&handle);
8426 }
8427
8428 /*
8429 * ksymbol register/unregister tracking
8430 */
8431
8432 struct perf_ksymbol_event {
8433 const char *name;
8434 int name_len;
8435 struct {
8436 struct perf_event_header header;
8437 u64 addr;
8438 u32 len;
8439 u16 ksym_type;
8440 u16 flags;
8441 } event_id;
8442 };
8443
8444 static int perf_event_ksymbol_match(struct perf_event *event)
8445 {
8446 return event->attr.ksymbol;
8447 }
8448
8449 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8450 {
8451 struct perf_ksymbol_event *ksymbol_event = data;
8452 struct perf_output_handle handle;
8453 struct perf_sample_data sample;
8454 int ret;
8455
8456 if (!perf_event_ksymbol_match(event))
8457 return;
8458
8459 perf_event_header__init_id(&ksymbol_event->event_id.header,
8460 &sample, event);
8461 ret = perf_output_begin(&handle, event,
8462 ksymbol_event->event_id.header.size);
8463 if (ret)
8464 return;
8465
8466 perf_output_put(&handle, ksymbol_event->event_id);
8467 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8468 perf_event__output_id_sample(event, &handle, &sample);
8469
8470 perf_output_end(&handle);
8471 }
8472
8473 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8474 const char *sym)
8475 {
8476 struct perf_ksymbol_event ksymbol_event;
8477 char name[KSYM_NAME_LEN];
8478 u16 flags = 0;
8479 int name_len;
8480
8481 if (!atomic_read(&nr_ksymbol_events))
8482 return;
8483
8484 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8485 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8486 goto err;
8487
8488 strlcpy(name, sym, KSYM_NAME_LEN);
8489 name_len = strlen(name) + 1;
8490 while (!IS_ALIGNED(name_len, sizeof(u64)))
8491 name[name_len++] = '\0';
8492 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8493
8494 if (unregister)
8495 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8496
8497 ksymbol_event = (struct perf_ksymbol_event){
8498 .name = name,
8499 .name_len = name_len,
8500 .event_id = {
8501 .header = {
8502 .type = PERF_RECORD_KSYMBOL,
8503 .size = sizeof(ksymbol_event.event_id) +
8504 name_len,
8505 },
8506 .addr = addr,
8507 .len = len,
8508 .ksym_type = ksym_type,
8509 .flags = flags,
8510 },
8511 };
8512
8513 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8514 return;
8515 err:
8516 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8517 }
8518
8519 /*
8520 * bpf program load/unload tracking
8521 */
8522
8523 struct perf_bpf_event {
8524 struct bpf_prog *prog;
8525 struct {
8526 struct perf_event_header header;
8527 u16 type;
8528 u16 flags;
8529 u32 id;
8530 u8 tag[BPF_TAG_SIZE];
8531 } event_id;
8532 };
8533
8534 static int perf_event_bpf_match(struct perf_event *event)
8535 {
8536 return event->attr.bpf_event;
8537 }
8538
8539 static void perf_event_bpf_output(struct perf_event *event, void *data)
8540 {
8541 struct perf_bpf_event *bpf_event = data;
8542 struct perf_output_handle handle;
8543 struct perf_sample_data sample;
8544 int ret;
8545
8546 if (!perf_event_bpf_match(event))
8547 return;
8548
8549 perf_event_header__init_id(&bpf_event->event_id.header,
8550 &sample, event);
8551 ret = perf_output_begin(&handle, event,
8552 bpf_event->event_id.header.size);
8553 if (ret)
8554 return;
8555
8556 perf_output_put(&handle, bpf_event->event_id);
8557 perf_event__output_id_sample(event, &handle, &sample);
8558
8559 perf_output_end(&handle);
8560 }
8561
8562 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8563 enum perf_bpf_event_type type)
8564 {
8565 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8566 int i;
8567
8568 if (prog->aux->func_cnt == 0) {
8569 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8570 (u64)(unsigned long)prog->bpf_func,
8571 prog->jited_len, unregister,
8572 prog->aux->ksym.name);
8573 } else {
8574 for (i = 0; i < prog->aux->func_cnt; i++) {
8575 struct bpf_prog *subprog = prog->aux->func[i];
8576
8577 perf_event_ksymbol(
8578 PERF_RECORD_KSYMBOL_TYPE_BPF,
8579 (u64)(unsigned long)subprog->bpf_func,
8580 subprog->jited_len, unregister,
8581 prog->aux->ksym.name);
8582 }
8583 }
8584 }
8585
8586 void perf_event_bpf_event(struct bpf_prog *prog,
8587 enum perf_bpf_event_type type,
8588 u16 flags)
8589 {
8590 struct perf_bpf_event bpf_event;
8591
8592 if (type <= PERF_BPF_EVENT_UNKNOWN ||
8593 type >= PERF_BPF_EVENT_MAX)
8594 return;
8595
8596 switch (type) {
8597 case PERF_BPF_EVENT_PROG_LOAD:
8598 case PERF_BPF_EVENT_PROG_UNLOAD:
8599 if (atomic_read(&nr_ksymbol_events))
8600 perf_event_bpf_emit_ksymbols(prog, type);
8601 break;
8602 default:
8603 break;
8604 }
8605
8606 if (!atomic_read(&nr_bpf_events))
8607 return;
8608
8609 bpf_event = (struct perf_bpf_event){
8610 .prog = prog,
8611 .event_id = {
8612 .header = {
8613 .type = PERF_RECORD_BPF_EVENT,
8614 .size = sizeof(bpf_event.event_id),
8615 },
8616 .type = type,
8617 .flags = flags,
8618 .id = prog->aux->id,
8619 },
8620 };
8621
8622 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8623
8624 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8625 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8626 }
8627
8628 void perf_event_itrace_started(struct perf_event *event)
8629 {
8630 event->attach_state |= PERF_ATTACH_ITRACE;
8631 }
8632
8633 static void perf_log_itrace_start(struct perf_event *event)
8634 {
8635 struct perf_output_handle handle;
8636 struct perf_sample_data sample;
8637 struct perf_aux_event {
8638 struct perf_event_header header;
8639 u32 pid;
8640 u32 tid;
8641 } rec;
8642 int ret;
8643
8644 if (event->parent)
8645 event = event->parent;
8646
8647 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8648 event->attach_state & PERF_ATTACH_ITRACE)
8649 return;
8650
8651 rec.header.type = PERF_RECORD_ITRACE_START;
8652 rec.header.misc = 0;
8653 rec.header.size = sizeof(rec);
8654 rec.pid = perf_event_pid(event, current);
8655 rec.tid = perf_event_tid(event, current);
8656
8657 perf_event_header__init_id(&rec.header, &sample, event);
8658 ret = perf_output_begin(&handle, event, rec.header.size);
8659
8660 if (ret)
8661 return;
8662
8663 perf_output_put(&handle, rec);
8664 perf_event__output_id_sample(event, &handle, &sample);
8665
8666 perf_output_end(&handle);
8667 }
8668
8669 static int
8670 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8671 {
8672 struct hw_perf_event *hwc = &event->hw;
8673 int ret = 0;
8674 u64 seq;
8675
8676 seq = __this_cpu_read(perf_throttled_seq);
8677 if (seq != hwc->interrupts_seq) {
8678 hwc->interrupts_seq = seq;
8679 hwc->interrupts = 1;
8680 } else {
8681 hwc->interrupts++;
8682 if (unlikely(throttle
8683 && hwc->interrupts >= max_samples_per_tick)) {
8684 __this_cpu_inc(perf_throttled_count);
8685 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8686 hwc->interrupts = MAX_INTERRUPTS;
8687 perf_log_throttle(event, 0);
8688 ret = 1;
8689 }
8690 }
8691
8692 if (event->attr.freq) {
8693 u64 now = perf_clock();
8694 s64 delta = now - hwc->freq_time_stamp;
8695
8696 hwc->freq_time_stamp = now;
8697
8698 if (delta > 0 && delta < 2*TICK_NSEC)
8699 perf_adjust_period(event, delta, hwc->last_period, true);
8700 }
8701
8702 return ret;
8703 }
8704
8705 int perf_event_account_interrupt(struct perf_event *event)
8706 {
8707 return __perf_event_account_interrupt(event, 1);
8708 }
8709
8710 /*
8711 * Generic event overflow handling, sampling.
8712 */
8713
8714 static int __perf_event_overflow(struct perf_event *event,
8715 int throttle, struct perf_sample_data *data,
8716 struct pt_regs *regs)
8717 {
8718 int events = atomic_read(&event->event_limit);
8719 int ret = 0;
8720
8721 /*
8722 * Non-sampling counters might still use the PMI to fold short
8723 * hardware counters, ignore those.
8724 */
8725 if (unlikely(!is_sampling_event(event)))
8726 return 0;
8727
8728 ret = __perf_event_account_interrupt(event, throttle);
8729
8730 /*
8731 * XXX event_limit might not quite work as expected on inherited
8732 * events
8733 */
8734
8735 event->pending_kill = POLL_IN;
8736 if (events && atomic_dec_and_test(&event->event_limit)) {
8737 ret = 1;
8738 event->pending_kill = POLL_HUP;
8739
8740 perf_event_disable_inatomic(event);
8741 }
8742
8743 READ_ONCE(event->overflow_handler)(event, data, regs);
8744
8745 if (*perf_event_fasync(event) && event->pending_kill) {
8746 event->pending_wakeup = 1;
8747 irq_work_queue(&event->pending);
8748 }
8749
8750 return ret;
8751 }
8752
8753 int perf_event_overflow(struct perf_event *event,
8754 struct perf_sample_data *data,
8755 struct pt_regs *regs)
8756 {
8757 return __perf_event_overflow(event, 1, data, regs);
8758 }
8759
8760 /*
8761 * Generic software event infrastructure
8762 */
8763
8764 struct swevent_htable {
8765 struct swevent_hlist *swevent_hlist;
8766 struct mutex hlist_mutex;
8767 int hlist_refcount;
8768
8769 /* Recursion avoidance in each contexts */
8770 int recursion[PERF_NR_CONTEXTS];
8771 };
8772
8773 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8774
8775 /*
8776 * We directly increment event->count and keep a second value in
8777 * event->hw.period_left to count intervals. This period event
8778 * is kept in the range [-sample_period, 0] so that we can use the
8779 * sign as trigger.
8780 */
8781
8782 u64 perf_swevent_set_period(struct perf_event *event)
8783 {
8784 struct hw_perf_event *hwc = &event->hw;
8785 u64 period = hwc->last_period;
8786 u64 nr, offset;
8787 s64 old, val;
8788
8789 hwc->last_period = hwc->sample_period;
8790
8791 again:
8792 old = val = local64_read(&hwc->period_left);
8793 if (val < 0)
8794 return 0;
8795
8796 nr = div64_u64(period + val, period);
8797 offset = nr * period;
8798 val -= offset;
8799 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8800 goto again;
8801
8802 return nr;
8803 }
8804
8805 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8806 struct perf_sample_data *data,
8807 struct pt_regs *regs)
8808 {
8809 struct hw_perf_event *hwc = &event->hw;
8810 int throttle = 0;
8811
8812 if (!overflow)
8813 overflow = perf_swevent_set_period(event);
8814
8815 if (hwc->interrupts == MAX_INTERRUPTS)
8816 return;
8817
8818 for (; overflow; overflow--) {
8819 if (__perf_event_overflow(event, throttle,
8820 data, regs)) {
8821 /*
8822 * We inhibit the overflow from happening when
8823 * hwc->interrupts == MAX_INTERRUPTS.
8824 */
8825 break;
8826 }
8827 throttle = 1;
8828 }
8829 }
8830
8831 static void perf_swevent_event(struct perf_event *event, u64 nr,
8832 struct perf_sample_data *data,
8833 struct pt_regs *regs)
8834 {
8835 struct hw_perf_event *hwc = &event->hw;
8836
8837 local64_add(nr, &event->count);
8838
8839 if (!regs)
8840 return;
8841
8842 if (!is_sampling_event(event))
8843 return;
8844
8845 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8846 data->period = nr;
8847 return perf_swevent_overflow(event, 1, data, regs);
8848 } else
8849 data->period = event->hw.last_period;
8850
8851 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8852 return perf_swevent_overflow(event, 1, data, regs);
8853
8854 if (local64_add_negative(nr, &hwc->period_left))
8855 return;
8856
8857 perf_swevent_overflow(event, 0, data, regs);
8858 }
8859
8860 static int perf_exclude_event(struct perf_event *event,
8861 struct pt_regs *regs)
8862 {
8863 if (event->hw.state & PERF_HES_STOPPED)
8864 return 1;
8865
8866 if (regs) {
8867 if (event->attr.exclude_user && user_mode(regs))
8868 return 1;
8869
8870 if (event->attr.exclude_kernel && !user_mode(regs))
8871 return 1;
8872 }
8873
8874 return 0;
8875 }
8876
8877 static int perf_swevent_match(struct perf_event *event,
8878 enum perf_type_id type,
8879 u32 event_id,
8880 struct perf_sample_data *data,
8881 struct pt_regs *regs)
8882 {
8883 if (event->attr.type != type)
8884 return 0;
8885
8886 if (event->attr.config != event_id)
8887 return 0;
8888
8889 if (perf_exclude_event(event, regs))
8890 return 0;
8891
8892 return 1;
8893 }
8894
8895 static inline u64 swevent_hash(u64 type, u32 event_id)
8896 {
8897 u64 val = event_id | (type << 32);
8898
8899 return hash_64(val, SWEVENT_HLIST_BITS);
8900 }
8901
8902 static inline struct hlist_head *
8903 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8904 {
8905 u64 hash = swevent_hash(type, event_id);
8906
8907 return &hlist->heads[hash];
8908 }
8909
8910 /* For the read side: events when they trigger */
8911 static inline struct hlist_head *
8912 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8913 {
8914 struct swevent_hlist *hlist;
8915
8916 hlist = rcu_dereference(swhash->swevent_hlist);
8917 if (!hlist)
8918 return NULL;
8919
8920 return __find_swevent_head(hlist, type, event_id);
8921 }
8922
8923 /* For the event head insertion and removal in the hlist */
8924 static inline struct hlist_head *
8925 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8926 {
8927 struct swevent_hlist *hlist;
8928 u32 event_id = event->attr.config;
8929 u64 type = event->attr.type;
8930
8931 /*
8932 * Event scheduling is always serialized against hlist allocation
8933 * and release. Which makes the protected version suitable here.
8934 * The context lock guarantees that.
8935 */
8936 hlist = rcu_dereference_protected(swhash->swevent_hlist,
8937 lockdep_is_held(&event->ctx->lock));
8938 if (!hlist)
8939 return NULL;
8940
8941 return __find_swevent_head(hlist, type, event_id);
8942 }
8943
8944 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8945 u64 nr,
8946 struct perf_sample_data *data,
8947 struct pt_regs *regs)
8948 {
8949 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8950 struct perf_event *event;
8951 struct hlist_head *head;
8952
8953 rcu_read_lock();
8954 head = find_swevent_head_rcu(swhash, type, event_id);
8955 if (!head)
8956 goto end;
8957
8958 hlist_for_each_entry_rcu(event, head, hlist_entry) {
8959 if (perf_swevent_match(event, type, event_id, data, regs))
8960 perf_swevent_event(event, nr, data, regs);
8961 }
8962 end:
8963 rcu_read_unlock();
8964 }
8965
8966 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8967
8968 int perf_swevent_get_recursion_context(void)
8969 {
8970 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8971
8972 return get_recursion_context(swhash->recursion);
8973 }
8974 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8975
8976 void perf_swevent_put_recursion_context(int rctx)
8977 {
8978 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8979
8980 put_recursion_context(swhash->recursion, rctx);
8981 }
8982
8983 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8984 {
8985 struct perf_sample_data data;
8986
8987 if (WARN_ON_ONCE(!regs))
8988 return;
8989
8990 perf_sample_data_init(&data, addr, 0);
8991 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8992 }
8993
8994 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8995 {
8996 int rctx;
8997
8998 preempt_disable_notrace();
8999 rctx = perf_swevent_get_recursion_context();
9000 if (unlikely(rctx < 0))
9001 goto fail;
9002
9003 ___perf_sw_event(event_id, nr, regs, addr);
9004
9005 perf_swevent_put_recursion_context(rctx);
9006 fail:
9007 preempt_enable_notrace();
9008 }
9009
9010 static void perf_swevent_read(struct perf_event *event)
9011 {
9012 }
9013
9014 static int perf_swevent_add(struct perf_event *event, int flags)
9015 {
9016 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9017 struct hw_perf_event *hwc = &event->hw;
9018 struct hlist_head *head;
9019
9020 if (is_sampling_event(event)) {
9021 hwc->last_period = hwc->sample_period;
9022 perf_swevent_set_period(event);
9023 }
9024
9025 hwc->state = !(flags & PERF_EF_START);
9026
9027 head = find_swevent_head(swhash, event);
9028 if (WARN_ON_ONCE(!head))
9029 return -EINVAL;
9030
9031 hlist_add_head_rcu(&event->hlist_entry, head);
9032 perf_event_update_userpage(event);
9033
9034 return 0;
9035 }
9036
9037 static void perf_swevent_del(struct perf_event *event, int flags)
9038 {
9039 hlist_del_rcu(&event->hlist_entry);
9040 }
9041
9042 static void perf_swevent_start(struct perf_event *event, int flags)
9043 {
9044 event->hw.state = 0;
9045 }
9046
9047 static void perf_swevent_stop(struct perf_event *event, int flags)
9048 {
9049 event->hw.state = PERF_HES_STOPPED;
9050 }
9051
9052 /* Deref the hlist from the update side */
9053 static inline struct swevent_hlist *
9054 swevent_hlist_deref(struct swevent_htable *swhash)
9055 {
9056 return rcu_dereference_protected(swhash->swevent_hlist,
9057 lockdep_is_held(&swhash->hlist_mutex));
9058 }
9059
9060 static void swevent_hlist_release(struct swevent_htable *swhash)
9061 {
9062 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9063
9064 if (!hlist)
9065 return;
9066
9067 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9068 kfree_rcu(hlist, rcu_head);
9069 }
9070
9071 static void swevent_hlist_put_cpu(int cpu)
9072 {
9073 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9074
9075 mutex_lock(&swhash->hlist_mutex);
9076
9077 if (!--swhash->hlist_refcount)
9078 swevent_hlist_release(swhash);
9079
9080 mutex_unlock(&swhash->hlist_mutex);
9081 }
9082
9083 static void swevent_hlist_put(void)
9084 {
9085 int cpu;
9086
9087 for_each_possible_cpu(cpu)
9088 swevent_hlist_put_cpu(cpu);
9089 }
9090
9091 static int swevent_hlist_get_cpu(int cpu)
9092 {
9093 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9094 int err = 0;
9095
9096 mutex_lock(&swhash->hlist_mutex);
9097 if (!swevent_hlist_deref(swhash) &&
9098 cpumask_test_cpu(cpu, perf_online_mask)) {
9099 struct swevent_hlist *hlist;
9100
9101 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9102 if (!hlist) {
9103 err = -ENOMEM;
9104 goto exit;
9105 }
9106 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9107 }
9108 swhash->hlist_refcount++;
9109 exit:
9110 mutex_unlock(&swhash->hlist_mutex);
9111
9112 return err;
9113 }
9114
9115 static int swevent_hlist_get(void)
9116 {
9117 int err, cpu, failed_cpu;
9118
9119 mutex_lock(&pmus_lock);
9120 for_each_possible_cpu(cpu) {
9121 err = swevent_hlist_get_cpu(cpu);
9122 if (err) {
9123 failed_cpu = cpu;
9124 goto fail;
9125 }
9126 }
9127 mutex_unlock(&pmus_lock);
9128 return 0;
9129 fail:
9130 for_each_possible_cpu(cpu) {
9131 if (cpu == failed_cpu)
9132 break;
9133 swevent_hlist_put_cpu(cpu);
9134 }
9135 mutex_unlock(&pmus_lock);
9136 return err;
9137 }
9138
9139 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9140
9141 static void sw_perf_event_destroy(struct perf_event *event)
9142 {
9143 u64 event_id = event->attr.config;
9144
9145 WARN_ON(event->parent);
9146
9147 static_key_slow_dec(&perf_swevent_enabled[event_id]);
9148 swevent_hlist_put();
9149 }
9150
9151 static int perf_swevent_init(struct perf_event *event)
9152 {
9153 u64 event_id = event->attr.config;
9154
9155 if (event->attr.type != PERF_TYPE_SOFTWARE)
9156 return -ENOENT;
9157
9158 /*
9159 * no branch sampling for software events
9160 */
9161 if (has_branch_stack(event))
9162 return -EOPNOTSUPP;
9163
9164 switch (event_id) {
9165 case PERF_COUNT_SW_CPU_CLOCK:
9166 case PERF_COUNT_SW_TASK_CLOCK:
9167 return -ENOENT;
9168
9169 default:
9170 break;
9171 }
9172
9173 if (event_id >= PERF_COUNT_SW_MAX)
9174 return -ENOENT;
9175
9176 if (!event->parent) {
9177 int err;
9178
9179 err = swevent_hlist_get();
9180 if (err)
9181 return err;
9182
9183 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9184 event->destroy = sw_perf_event_destroy;
9185 }
9186
9187 return 0;
9188 }
9189
9190 static struct pmu perf_swevent = {
9191 .task_ctx_nr = perf_sw_context,
9192
9193 .capabilities = PERF_PMU_CAP_NO_NMI,
9194
9195 .event_init = perf_swevent_init,
9196 .add = perf_swevent_add,
9197 .del = perf_swevent_del,
9198 .start = perf_swevent_start,
9199 .stop = perf_swevent_stop,
9200 .read = perf_swevent_read,
9201 };
9202
9203 #ifdef CONFIG_EVENT_TRACING
9204
9205 static int perf_tp_filter_match(struct perf_event *event,
9206 struct perf_sample_data *data)
9207 {
9208 void *record = data->raw->frag.data;
9209
9210 /* only top level events have filters set */
9211 if (event->parent)
9212 event = event->parent;
9213
9214 if (likely(!event->filter) || filter_match_preds(event->filter, record))
9215 return 1;
9216 return 0;
9217 }
9218
9219 static int perf_tp_event_match(struct perf_event *event,
9220 struct perf_sample_data *data,
9221 struct pt_regs *regs)
9222 {
9223 if (event->hw.state & PERF_HES_STOPPED)
9224 return 0;
9225 /*
9226 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9227 */
9228 if (event->attr.exclude_kernel && !user_mode(regs))
9229 return 0;
9230
9231 if (!perf_tp_filter_match(event, data))
9232 return 0;
9233
9234 return 1;
9235 }
9236
9237 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9238 struct trace_event_call *call, u64 count,
9239 struct pt_regs *regs, struct hlist_head *head,
9240 struct task_struct *task)
9241 {
9242 if (bpf_prog_array_valid(call)) {
9243 *(struct pt_regs **)raw_data = regs;
9244 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9245 perf_swevent_put_recursion_context(rctx);
9246 return;
9247 }
9248 }
9249 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9250 rctx, task);
9251 }
9252 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9253
9254 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9255 struct pt_regs *regs, struct hlist_head *head, int rctx,
9256 struct task_struct *task)
9257 {
9258 struct perf_sample_data data;
9259 struct perf_event *event;
9260
9261 struct perf_raw_record raw = {
9262 .frag = {
9263 .size = entry_size,
9264 .data = record,
9265 },
9266 };
9267
9268 perf_sample_data_init(&data, 0, 0);
9269 data.raw = &raw;
9270
9271 perf_trace_buf_update(record, event_type);
9272
9273 hlist_for_each_entry_rcu(event, head, hlist_entry) {
9274 if (perf_tp_event_match(event, &data, regs))
9275 perf_swevent_event(event, count, &data, regs);
9276 }
9277
9278 /*
9279 * If we got specified a target task, also iterate its context and
9280 * deliver this event there too.
9281 */
9282 if (task && task != current) {
9283 struct perf_event_context *ctx;
9284 struct trace_entry *entry = record;
9285
9286 rcu_read_lock();
9287 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9288 if (!ctx)
9289 goto unlock;
9290
9291 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9292 if (event->cpu != smp_processor_id())
9293 continue;
9294 if (event->attr.type != PERF_TYPE_TRACEPOINT)
9295 continue;
9296 if (event->attr.config != entry->type)
9297 continue;
9298 if (perf_tp_event_match(event, &data, regs))
9299 perf_swevent_event(event, count, &data, regs);
9300 }
9301 unlock:
9302 rcu_read_unlock();
9303 }
9304
9305 perf_swevent_put_recursion_context(rctx);
9306 }
9307 EXPORT_SYMBOL_GPL(perf_tp_event);
9308
9309 static void tp_perf_event_destroy(struct perf_event *event)
9310 {
9311 perf_trace_destroy(event);
9312 }
9313
9314 static int perf_tp_event_init(struct perf_event *event)
9315 {
9316 int err;
9317
9318 if (event->attr.type != PERF_TYPE_TRACEPOINT)
9319 return -ENOENT;
9320
9321 /*
9322 * no branch sampling for tracepoint events
9323 */
9324 if (has_branch_stack(event))
9325 return -EOPNOTSUPP;
9326
9327 err = perf_trace_init(event);
9328 if (err)
9329 return err;
9330
9331 event->destroy = tp_perf_event_destroy;
9332
9333 return 0;
9334 }
9335
9336 static struct pmu perf_tracepoint = {
9337 .task_ctx_nr = perf_sw_context,
9338
9339 .event_init = perf_tp_event_init,
9340 .add = perf_trace_add,
9341 .del = perf_trace_del,
9342 .start = perf_swevent_start,
9343 .stop = perf_swevent_stop,
9344 .read = perf_swevent_read,
9345 };
9346
9347 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9348 /*
9349 * Flags in config, used by dynamic PMU kprobe and uprobe
9350 * The flags should match following PMU_FORMAT_ATTR().
9351 *
9352 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9353 * if not set, create kprobe/uprobe
9354 *
9355 * The following values specify a reference counter (or semaphore in the
9356 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9357 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9358 *
9359 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
9360 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
9361 */
9362 enum perf_probe_config {
9363 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
9364 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9365 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9366 };
9367
9368 PMU_FORMAT_ATTR(retprobe, "config:0");
9369 #endif
9370
9371 #ifdef CONFIG_KPROBE_EVENTS
9372 static struct attribute *kprobe_attrs[] = {
9373 &format_attr_retprobe.attr,
9374 NULL,
9375 };
9376
9377 static struct attribute_group kprobe_format_group = {
9378 .name = "format",
9379 .attrs = kprobe_attrs,
9380 };
9381
9382 static const struct attribute_group *kprobe_attr_groups[] = {
9383 &kprobe_format_group,
9384 NULL,
9385 };
9386
9387 static int perf_kprobe_event_init(struct perf_event *event);
9388 static struct pmu perf_kprobe = {
9389 .task_ctx_nr = perf_sw_context,
9390 .event_init = perf_kprobe_event_init,
9391 .add = perf_trace_add,
9392 .del = perf_trace_del,
9393 .start = perf_swevent_start,
9394 .stop = perf_swevent_stop,
9395 .read = perf_swevent_read,
9396 .attr_groups = kprobe_attr_groups,
9397 };
9398
9399 static int perf_kprobe_event_init(struct perf_event *event)
9400 {
9401 int err;
9402 bool is_retprobe;
9403
9404 if (event->attr.type != perf_kprobe.type)
9405 return -ENOENT;
9406
9407 if (!capable(CAP_SYS_ADMIN))
9408 return -EACCES;
9409
9410 /*
9411 * no branch sampling for probe events
9412 */
9413 if (has_branch_stack(event))
9414 return -EOPNOTSUPP;
9415
9416 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9417 err = perf_kprobe_init(event, is_retprobe);
9418 if (err)
9419 return err;
9420
9421 event->destroy = perf_kprobe_destroy;
9422
9423 return 0;
9424 }
9425 #endif /* CONFIG_KPROBE_EVENTS */
9426
9427 #ifdef CONFIG_UPROBE_EVENTS
9428 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9429
9430 static struct attribute *uprobe_attrs[] = {
9431 &format_attr_retprobe.attr,
9432 &format_attr_ref_ctr_offset.attr,
9433 NULL,
9434 };
9435
9436 static struct attribute_group uprobe_format_group = {
9437 .name = "format",
9438 .attrs = uprobe_attrs,
9439 };
9440
9441 static const struct attribute_group *uprobe_attr_groups[] = {
9442 &uprobe_format_group,
9443 NULL,
9444 };
9445
9446 static int perf_uprobe_event_init(struct perf_event *event);
9447 static struct pmu perf_uprobe = {
9448 .task_ctx_nr = perf_sw_context,
9449 .event_init = perf_uprobe_event_init,
9450 .add = perf_trace_add,
9451 .del = perf_trace_del,
9452 .start = perf_swevent_start,
9453 .stop = perf_swevent_stop,
9454 .read = perf_swevent_read,
9455 .attr_groups = uprobe_attr_groups,
9456 };
9457
9458 static int perf_uprobe_event_init(struct perf_event *event)
9459 {
9460 int err;
9461 unsigned long ref_ctr_offset;
9462 bool is_retprobe;
9463
9464 if (event->attr.type != perf_uprobe.type)
9465 return -ENOENT;
9466
9467 if (!capable(CAP_SYS_ADMIN))
9468 return -EACCES;
9469
9470 /*
9471 * no branch sampling for probe events
9472 */
9473 if (has_branch_stack(event))
9474 return -EOPNOTSUPP;
9475
9476 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9477 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9478 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9479 if (err)
9480 return err;
9481
9482 event->destroy = perf_uprobe_destroy;
9483
9484 return 0;
9485 }
9486 #endif /* CONFIG_UPROBE_EVENTS */
9487
9488 static inline void perf_tp_register(void)
9489 {
9490 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9491 #ifdef CONFIG_KPROBE_EVENTS
9492 perf_pmu_register(&perf_kprobe, "kprobe", -1);
9493 #endif
9494 #ifdef CONFIG_UPROBE_EVENTS
9495 perf_pmu_register(&perf_uprobe, "uprobe", -1);
9496 #endif
9497 }
9498
9499 static void perf_event_free_filter(struct perf_event *event)
9500 {
9501 ftrace_profile_free_filter(event);
9502 }
9503
9504 #ifdef CONFIG_BPF_SYSCALL
9505 static void bpf_overflow_handler(struct perf_event *event,
9506 struct perf_sample_data *data,
9507 struct pt_regs *regs)
9508 {
9509 struct bpf_perf_event_data_kern ctx = {
9510 .data = data,
9511 .event = event,
9512 };
9513 int ret = 0;
9514
9515 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9516 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9517 goto out;
9518 rcu_read_lock();
9519 ret = BPF_PROG_RUN(event->prog, &ctx);
9520 rcu_read_unlock();
9521 out:
9522 __this_cpu_dec(bpf_prog_active);
9523 if (!ret)
9524 return;
9525
9526 event->orig_overflow_handler(event, data, regs);
9527 }
9528
9529 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9530 {
9531 struct bpf_prog *prog;
9532
9533 if (event->overflow_handler_context)
9534 /* hw breakpoint or kernel counter */
9535 return -EINVAL;
9536
9537 if (event->prog)
9538 return -EEXIST;
9539
9540 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9541 if (IS_ERR(prog))
9542 return PTR_ERR(prog);
9543
9544 event->prog = prog;
9545 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9546 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9547 return 0;
9548 }
9549
9550 static void perf_event_free_bpf_handler(struct perf_event *event)
9551 {
9552 struct bpf_prog *prog = event->prog;
9553
9554 if (!prog)
9555 return;
9556
9557 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9558 event->prog = NULL;
9559 bpf_prog_put(prog);
9560 }
9561 #else
9562 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9563 {
9564 return -EOPNOTSUPP;
9565 }
9566 static void perf_event_free_bpf_handler(struct perf_event *event)
9567 {
9568 }
9569 #endif
9570
9571 /*
9572 * returns true if the event is a tracepoint, or a kprobe/upprobe created
9573 * with perf_event_open()
9574 */
9575 static inline bool perf_event_is_tracing(struct perf_event *event)
9576 {
9577 if (event->pmu == &perf_tracepoint)
9578 return true;
9579 #ifdef CONFIG_KPROBE_EVENTS
9580 if (event->pmu == &perf_kprobe)
9581 return true;
9582 #endif
9583 #ifdef CONFIG_UPROBE_EVENTS
9584 if (event->pmu == &perf_uprobe)
9585 return true;
9586 #endif
9587 return false;
9588 }
9589
9590 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9591 {
9592 bool is_kprobe, is_tracepoint, is_syscall_tp;
9593 struct bpf_prog *prog;
9594 int ret;
9595
9596 if (!perf_event_is_tracing(event))
9597 return perf_event_set_bpf_handler(event, prog_fd);
9598
9599 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9600 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9601 is_syscall_tp = is_syscall_trace_event(event->tp_event);
9602 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9603 /* bpf programs can only be attached to u/kprobe or tracepoint */
9604 return -EINVAL;
9605
9606 prog = bpf_prog_get(prog_fd);
9607 if (IS_ERR(prog))
9608 return PTR_ERR(prog);
9609
9610 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9611 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9612 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9613 /* valid fd, but invalid bpf program type */
9614 bpf_prog_put(prog);
9615 return -EINVAL;
9616 }
9617
9618 /* Kprobe override only works for kprobes, not uprobes. */
9619 if (prog->kprobe_override &&
9620 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9621 bpf_prog_put(prog);
9622 return -EINVAL;
9623 }
9624
9625 if (is_tracepoint || is_syscall_tp) {
9626 int off = trace_event_get_offsets(event->tp_event);
9627
9628 if (prog->aux->max_ctx_offset > off) {
9629 bpf_prog_put(prog);
9630 return -EACCES;
9631 }
9632 }
9633
9634 ret = perf_event_attach_bpf_prog(event, prog);
9635 if (ret)
9636 bpf_prog_put(prog);
9637 return ret;
9638 }
9639
9640 static void perf_event_free_bpf_prog(struct perf_event *event)
9641 {
9642 if (!perf_event_is_tracing(event)) {
9643 perf_event_free_bpf_handler(event);
9644 return;
9645 }
9646 perf_event_detach_bpf_prog(event);
9647 }
9648
9649 #else
9650
9651 static inline void perf_tp_register(void)
9652 {
9653 }
9654
9655 static void perf_event_free_filter(struct perf_event *event)
9656 {
9657 }
9658
9659 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9660 {
9661 return -ENOENT;
9662 }
9663
9664 static void perf_event_free_bpf_prog(struct perf_event *event)
9665 {
9666 }
9667 #endif /* CONFIG_EVENT_TRACING */
9668
9669 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9670 void perf_bp_event(struct perf_event *bp, void *data)
9671 {
9672 struct perf_sample_data sample;
9673 struct pt_regs *regs = data;
9674
9675 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9676
9677 if (!bp->hw.state && !perf_exclude_event(bp, regs))
9678 perf_swevent_event(bp, 1, &sample, regs);
9679 }
9680 #endif
9681
9682 /*
9683 * Allocate a new address filter
9684 */
9685 static struct perf_addr_filter *
9686 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9687 {
9688 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9689 struct perf_addr_filter *filter;
9690
9691 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9692 if (!filter)
9693 return NULL;
9694
9695 INIT_LIST_HEAD(&filter->entry);
9696 list_add_tail(&filter->entry, filters);
9697
9698 return filter;
9699 }
9700
9701 static void free_filters_list(struct list_head *filters)
9702 {
9703 struct perf_addr_filter *filter, *iter;
9704
9705 list_for_each_entry_safe(filter, iter, filters, entry) {
9706 path_put(&filter->path);
9707 list_del(&filter->entry);
9708 kfree(filter);
9709 }
9710 }
9711
9712 /*
9713 * Free existing address filters and optionally install new ones
9714 */
9715 static void perf_addr_filters_splice(struct perf_event *event,
9716 struct list_head *head)
9717 {
9718 unsigned long flags;
9719 LIST_HEAD(list);
9720
9721 if (!has_addr_filter(event))
9722 return;
9723
9724 /* don't bother with children, they don't have their own filters */
9725 if (event->parent)
9726 return;
9727
9728 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9729
9730 list_splice_init(&event->addr_filters.list, &list);
9731 if (head)
9732 list_splice(head, &event->addr_filters.list);
9733
9734 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9735
9736 free_filters_list(&list);
9737 }
9738
9739 /*
9740 * Scan through mm's vmas and see if one of them matches the
9741 * @filter; if so, adjust filter's address range.
9742 * Called with mm::mmap_sem down for reading.
9743 */
9744 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9745 struct mm_struct *mm,
9746 struct perf_addr_filter_range *fr)
9747 {
9748 struct vm_area_struct *vma;
9749
9750 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9751 if (!vma->vm_file)
9752 continue;
9753
9754 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9755 return;
9756 }
9757 }
9758
9759 /*
9760 * Update event's address range filters based on the
9761 * task's existing mappings, if any.
9762 */
9763 static void perf_event_addr_filters_apply(struct perf_event *event)
9764 {
9765 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9766 struct task_struct *task = READ_ONCE(event->ctx->task);
9767 struct perf_addr_filter *filter;
9768 struct mm_struct *mm = NULL;
9769 unsigned int count = 0;
9770 unsigned long flags;
9771
9772 /*
9773 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9774 * will stop on the parent's child_mutex that our caller is also holding
9775 */
9776 if (task == TASK_TOMBSTONE)
9777 return;
9778
9779 if (ifh->nr_file_filters) {
9780 mm = get_task_mm(event->ctx->task);
9781 if (!mm)
9782 goto restart;
9783
9784 down_read(&mm->mmap_sem);
9785 }
9786
9787 raw_spin_lock_irqsave(&ifh->lock, flags);
9788 list_for_each_entry(filter, &ifh->list, entry) {
9789 if (filter->path.dentry) {
9790 /*
9791 * Adjust base offset if the filter is associated to a
9792 * binary that needs to be mapped:
9793 */
9794 event->addr_filter_ranges[count].start = 0;
9795 event->addr_filter_ranges[count].size = 0;
9796
9797 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9798 } else {
9799 event->addr_filter_ranges[count].start = filter->offset;
9800 event->addr_filter_ranges[count].size = filter->size;
9801 }
9802
9803 count++;
9804 }
9805
9806 event->addr_filters_gen++;
9807 raw_spin_unlock_irqrestore(&ifh->lock, flags);
9808
9809 if (ifh->nr_file_filters) {
9810 up_read(&mm->mmap_sem);
9811
9812 mmput(mm);
9813 }
9814
9815 restart:
9816 perf_event_stop(event, 1);
9817 }
9818
9819 /*
9820 * Address range filtering: limiting the data to certain
9821 * instruction address ranges. Filters are ioctl()ed to us from
9822 * userspace as ascii strings.
9823 *
9824 * Filter string format:
9825 *
9826 * ACTION RANGE_SPEC
9827 * where ACTION is one of the
9828 * * "filter": limit the trace to this region
9829 * * "start": start tracing from this address
9830 * * "stop": stop tracing at this address/region;
9831 * RANGE_SPEC is
9832 * * for kernel addresses: <start address>[/<size>]
9833 * * for object files: <start address>[/<size>]@</path/to/object/file>
9834 *
9835 * if <size> is not specified or is zero, the range is treated as a single
9836 * address; not valid for ACTION=="filter".
9837 */
9838 enum {
9839 IF_ACT_NONE = -1,
9840 IF_ACT_FILTER,
9841 IF_ACT_START,
9842 IF_ACT_STOP,
9843 IF_SRC_FILE,
9844 IF_SRC_KERNEL,
9845 IF_SRC_FILEADDR,
9846 IF_SRC_KERNELADDR,
9847 };
9848
9849 enum {
9850 IF_STATE_ACTION = 0,
9851 IF_STATE_SOURCE,
9852 IF_STATE_END,
9853 };
9854
9855 static const match_table_t if_tokens = {
9856 { IF_ACT_FILTER, "filter" },
9857 { IF_ACT_START, "start" },
9858 { IF_ACT_STOP, "stop" },
9859 { IF_SRC_FILE, "%u/%u@%s" },
9860 { IF_SRC_KERNEL, "%u/%u" },
9861 { IF_SRC_FILEADDR, "%u@%s" },
9862 { IF_SRC_KERNELADDR, "%u" },
9863 { IF_ACT_NONE, NULL },
9864 };
9865
9866 /*
9867 * Address filter string parser
9868 */
9869 static int
9870 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9871 struct list_head *filters)
9872 {
9873 struct perf_addr_filter *filter = NULL;
9874 char *start, *orig, *filename = NULL;
9875 substring_t args[MAX_OPT_ARGS];
9876 int state = IF_STATE_ACTION, token;
9877 unsigned int kernel = 0;
9878 int ret = -EINVAL;
9879
9880 orig = fstr = kstrdup(fstr, GFP_KERNEL);
9881 if (!fstr)
9882 return -ENOMEM;
9883
9884 while ((start = strsep(&fstr, " ,\n")) != NULL) {
9885 static const enum perf_addr_filter_action_t actions[] = {
9886 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9887 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
9888 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
9889 };
9890 ret = -EINVAL;
9891
9892 if (!*start)
9893 continue;
9894
9895 /* filter definition begins */
9896 if (state == IF_STATE_ACTION) {
9897 filter = perf_addr_filter_new(event, filters);
9898 if (!filter)
9899 goto fail;
9900 }
9901
9902 token = match_token(start, if_tokens, args);
9903 switch (token) {
9904 case IF_ACT_FILTER:
9905 case IF_ACT_START:
9906 case IF_ACT_STOP:
9907 if (state != IF_STATE_ACTION)
9908 goto fail;
9909
9910 filter->action = actions[token];
9911 state = IF_STATE_SOURCE;
9912 break;
9913
9914 case IF_SRC_KERNELADDR:
9915 case IF_SRC_KERNEL:
9916 kernel = 1;
9917 /* fall through */
9918
9919 case IF_SRC_FILEADDR:
9920 case IF_SRC_FILE:
9921 if (state != IF_STATE_SOURCE)
9922 goto fail;
9923
9924 *args[0].to = 0;
9925 ret = kstrtoul(args[0].from, 0, &filter->offset);
9926 if (ret)
9927 goto fail;
9928
9929 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9930 *args[1].to = 0;
9931 ret = kstrtoul(args[1].from, 0, &filter->size);
9932 if (ret)
9933 goto fail;
9934 }
9935
9936 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9937 int fpos = token == IF_SRC_FILE ? 2 : 1;
9938
9939 filename = match_strdup(&args[fpos]);
9940 if (!filename) {
9941 ret = -ENOMEM;
9942 goto fail;
9943 }
9944 }
9945
9946 state = IF_STATE_END;
9947 break;
9948
9949 default:
9950 goto fail;
9951 }
9952
9953 /*
9954 * Filter definition is fully parsed, validate and install it.
9955 * Make sure that it doesn't contradict itself or the event's
9956 * attribute.
9957 */
9958 if (state == IF_STATE_END) {
9959 ret = -EINVAL;
9960 if (kernel && event->attr.exclude_kernel)
9961 goto fail;
9962
9963 /*
9964 * ACTION "filter" must have a non-zero length region
9965 * specified.
9966 */
9967 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9968 !filter->size)
9969 goto fail;
9970
9971 if (!kernel) {
9972 if (!filename)
9973 goto fail;
9974
9975 /*
9976 * For now, we only support file-based filters
9977 * in per-task events; doing so for CPU-wide
9978 * events requires additional context switching
9979 * trickery, since same object code will be
9980 * mapped at different virtual addresses in
9981 * different processes.
9982 */
9983 ret = -EOPNOTSUPP;
9984 if (!event->ctx->task)
9985 goto fail_free_name;
9986
9987 /* look up the path and grab its inode */
9988 ret = kern_path(filename, LOOKUP_FOLLOW,
9989 &filter->path);
9990 if (ret)
9991 goto fail_free_name;
9992
9993 kfree(filename);
9994 filename = NULL;
9995
9996 ret = -EINVAL;
9997 if (!filter->path.dentry ||
9998 !S_ISREG(d_inode(filter->path.dentry)
9999 ->i_mode))
10000 goto fail;
10001
10002 event->addr_filters.nr_file_filters++;
10003 }
10004
10005 /* ready to consume more filters */
10006 state = IF_STATE_ACTION;
10007 filter = NULL;
10008 }
10009 }
10010
10011 if (state != IF_STATE_ACTION)
10012 goto fail;
10013
10014 kfree(orig);
10015
10016 return 0;
10017
10018 fail_free_name:
10019 kfree(filename);
10020 fail:
10021 free_filters_list(filters);
10022 kfree(orig);
10023
10024 return ret;
10025 }
10026
10027 static int
10028 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10029 {
10030 LIST_HEAD(filters);
10031 int ret;
10032
10033 /*
10034 * Since this is called in perf_ioctl() path, we're already holding
10035 * ctx::mutex.
10036 */
10037 lockdep_assert_held(&event->ctx->mutex);
10038
10039 if (WARN_ON_ONCE(event->parent))
10040 return -EINVAL;
10041
10042 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10043 if (ret)
10044 goto fail_clear_files;
10045
10046 ret = event->pmu->addr_filters_validate(&filters);
10047 if (ret)
10048 goto fail_free_filters;
10049
10050 /* remove existing filters, if any */
10051 perf_addr_filters_splice(event, &filters);
10052
10053 /* install new filters */
10054 perf_event_for_each_child(event, perf_event_addr_filters_apply);
10055
10056 return ret;
10057
10058 fail_free_filters:
10059 free_filters_list(&filters);
10060
10061 fail_clear_files:
10062 event->addr_filters.nr_file_filters = 0;
10063
10064 return ret;
10065 }
10066
10067 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10068 {
10069 int ret = -EINVAL;
10070 char *filter_str;
10071
10072 filter_str = strndup_user(arg, PAGE_SIZE);
10073 if (IS_ERR(filter_str))
10074 return PTR_ERR(filter_str);
10075
10076 #ifdef CONFIG_EVENT_TRACING
10077 if (perf_event_is_tracing(event)) {
10078 struct perf_event_context *ctx = event->ctx;
10079
10080 /*
10081 * Beware, here be dragons!!
10082 *
10083 * the tracepoint muck will deadlock against ctx->mutex, but
10084 * the tracepoint stuff does not actually need it. So
10085 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10086 * already have a reference on ctx.
10087 *
10088 * This can result in event getting moved to a different ctx,
10089 * but that does not affect the tracepoint state.
10090 */
10091 mutex_unlock(&ctx->mutex);
10092 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10093 mutex_lock(&ctx->mutex);
10094 } else
10095 #endif
10096 if (has_addr_filter(event))
10097 ret = perf_event_set_addr_filter(event, filter_str);
10098
10099 kfree(filter_str);
10100 return ret;
10101 }
10102
10103 /*
10104 * hrtimer based swevent callback
10105 */
10106
10107 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10108 {
10109 enum hrtimer_restart ret = HRTIMER_RESTART;
10110 struct perf_sample_data data;
10111 struct pt_regs *regs;
10112 struct perf_event *event;
10113 u64 period;
10114
10115 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10116
10117 if (event->state != PERF_EVENT_STATE_ACTIVE)
10118 return HRTIMER_NORESTART;
10119
10120 event->pmu->read(event);
10121
10122 perf_sample_data_init(&data, 0, event->hw.last_period);
10123 regs = get_irq_regs();
10124
10125 if (regs && !perf_exclude_event(event, regs)) {
10126 if (!(event->attr.exclude_idle && is_idle_task(current)))
10127 if (__perf_event_overflow(event, 1, &data, regs))
10128 ret = HRTIMER_NORESTART;
10129 }
10130
10131 period = max_t(u64, 10000, event->hw.sample_period);
10132 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10133
10134 return ret;
10135 }
10136
10137 static void perf_swevent_start_hrtimer(struct perf_event *event)
10138 {
10139 struct hw_perf_event *hwc = &event->hw;
10140 s64 period;
10141
10142 if (!is_sampling_event(event))
10143 return;
10144
10145 period = local64_read(&hwc->period_left);
10146 if (period) {
10147 if (period < 0)
10148 period = 10000;
10149
10150 local64_set(&hwc->period_left, 0);
10151 } else {
10152 period = max_t(u64, 10000, hwc->sample_period);
10153 }
10154 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10155 HRTIMER_MODE_REL_PINNED_HARD);
10156 }
10157
10158 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10159 {
10160 struct hw_perf_event *hwc = &event->hw;
10161
10162 if (is_sampling_event(event)) {
10163 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10164 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10165
10166 hrtimer_cancel(&hwc->hrtimer);
10167 }
10168 }
10169
10170 static void perf_swevent_init_hrtimer(struct perf_event *event)
10171 {
10172 struct hw_perf_event *hwc = &event->hw;
10173
10174 if (!is_sampling_event(event))
10175 return;
10176
10177 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10178 hwc->hrtimer.function = perf_swevent_hrtimer;
10179
10180 /*
10181 * Since hrtimers have a fixed rate, we can do a static freq->period
10182 * mapping and avoid the whole period adjust feedback stuff.
10183 */
10184 if (event->attr.freq) {
10185 long freq = event->attr.sample_freq;
10186
10187 event->attr.sample_period = NSEC_PER_SEC / freq;
10188 hwc->sample_period = event->attr.sample_period;
10189 local64_set(&hwc->period_left, hwc->sample_period);
10190 hwc->last_period = hwc->sample_period;
10191 event->attr.freq = 0;
10192 }
10193 }
10194
10195 /*
10196 * Software event: cpu wall time clock
10197 */
10198
10199 static void cpu_clock_event_update(struct perf_event *event)
10200 {
10201 s64 prev;
10202 u64 now;
10203
10204 now = local_clock();
10205 prev = local64_xchg(&event->hw.prev_count, now);
10206 local64_add(now - prev, &event->count);
10207 }
10208
10209 static void cpu_clock_event_start(struct perf_event *event, int flags)
10210 {
10211 local64_set(&event->hw.prev_count, local_clock());
10212 perf_swevent_start_hrtimer(event);
10213 }
10214
10215 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10216 {
10217 perf_swevent_cancel_hrtimer(event);
10218 cpu_clock_event_update(event);
10219 }
10220
10221 static int cpu_clock_event_add(struct perf_event *event, int flags)
10222 {
10223 if (flags & PERF_EF_START)
10224 cpu_clock_event_start(event, flags);
10225 perf_event_update_userpage(event);
10226
10227 return 0;
10228 }
10229
10230 static void cpu_clock_event_del(struct perf_event *event, int flags)
10231 {
10232 cpu_clock_event_stop(event, flags);
10233 }
10234
10235 static void cpu_clock_event_read(struct perf_event *event)
10236 {
10237 cpu_clock_event_update(event);
10238 }
10239
10240 static int cpu_clock_event_init(struct perf_event *event)
10241 {
10242 if (event->attr.type != PERF_TYPE_SOFTWARE)
10243 return -ENOENT;
10244
10245 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10246 return -ENOENT;
10247
10248 /*
10249 * no branch sampling for software events
10250 */
10251 if (has_branch_stack(event))
10252 return -EOPNOTSUPP;
10253
10254 perf_swevent_init_hrtimer(event);
10255
10256 return 0;
10257 }
10258
10259 static struct pmu perf_cpu_clock = {
10260 .task_ctx_nr = perf_sw_context,
10261
10262 .capabilities = PERF_PMU_CAP_NO_NMI,
10263
10264 .event_init = cpu_clock_event_init,
10265 .add = cpu_clock_event_add,
10266 .del = cpu_clock_event_del,
10267 .start = cpu_clock_event_start,
10268 .stop = cpu_clock_event_stop,
10269 .read = cpu_clock_event_read,
10270 };
10271
10272 /*
10273 * Software event: task time clock
10274 */
10275
10276 static void task_clock_event_update(struct perf_event *event, u64 now)
10277 {
10278 u64 prev;
10279 s64 delta;
10280
10281 prev = local64_xchg(&event->hw.prev_count, now);
10282 delta = now - prev;
10283 local64_add(delta, &event->count);
10284 }
10285
10286 static void task_clock_event_start(struct perf_event *event, int flags)
10287 {
10288 local64_set(&event->hw.prev_count, event->ctx->time);
10289 perf_swevent_start_hrtimer(event);
10290 }
10291
10292 static void task_clock_event_stop(struct perf_event *event, int flags)
10293 {
10294 perf_swevent_cancel_hrtimer(event);
10295 task_clock_event_update(event, event->ctx->time);
10296 }
10297
10298 static int task_clock_event_add(struct perf_event *event, int flags)
10299 {
10300 if (flags & PERF_EF_START)
10301 task_clock_event_start(event, flags);
10302 perf_event_update_userpage(event);
10303
10304 return 0;
10305 }
10306
10307 static void task_clock_event_del(struct perf_event *event, int flags)
10308 {
10309 task_clock_event_stop(event, PERF_EF_UPDATE);
10310 }
10311
10312 static void task_clock_event_read(struct perf_event *event)
10313 {
10314 u64 now = perf_clock();
10315 u64 delta = now - event->ctx->timestamp;
10316 u64 time = event->ctx->time + delta;
10317
10318 task_clock_event_update(event, time);
10319 }
10320
10321 static int task_clock_event_init(struct perf_event *event)
10322 {
10323 if (event->attr.type != PERF_TYPE_SOFTWARE)
10324 return -ENOENT;
10325
10326 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10327 return -ENOENT;
10328
10329 /*
10330 * no branch sampling for software events
10331 */
10332 if (has_branch_stack(event))
10333 return -EOPNOTSUPP;
10334
10335 perf_swevent_init_hrtimer(event);
10336
10337 return 0;
10338 }
10339
10340 static struct pmu perf_task_clock = {
10341 .task_ctx_nr = perf_sw_context,
10342
10343 .capabilities = PERF_PMU_CAP_NO_NMI,
10344
10345 .event_init = task_clock_event_init,
10346 .add = task_clock_event_add,
10347 .del = task_clock_event_del,
10348 .start = task_clock_event_start,
10349 .stop = task_clock_event_stop,
10350 .read = task_clock_event_read,
10351 };
10352
10353 static void perf_pmu_nop_void(struct pmu *pmu)
10354 {
10355 }
10356
10357 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10358 {
10359 }
10360
10361 static int perf_pmu_nop_int(struct pmu *pmu)
10362 {
10363 return 0;
10364 }
10365
10366 static int perf_event_nop_int(struct perf_event *event, u64 value)
10367 {
10368 return 0;
10369 }
10370
10371 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10372
10373 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10374 {
10375 __this_cpu_write(nop_txn_flags, flags);
10376
10377 if (flags & ~PERF_PMU_TXN_ADD)
10378 return;
10379
10380 perf_pmu_disable(pmu);
10381 }
10382
10383 static int perf_pmu_commit_txn(struct pmu *pmu)
10384 {
10385 unsigned int flags = __this_cpu_read(nop_txn_flags);
10386
10387 __this_cpu_write(nop_txn_flags, 0);
10388
10389 if (flags & ~PERF_PMU_TXN_ADD)
10390 return 0;
10391
10392 perf_pmu_enable(pmu);
10393 return 0;
10394 }
10395
10396 static void perf_pmu_cancel_txn(struct pmu *pmu)
10397 {
10398 unsigned int flags = __this_cpu_read(nop_txn_flags);
10399
10400 __this_cpu_write(nop_txn_flags, 0);
10401
10402 if (flags & ~PERF_PMU_TXN_ADD)
10403 return;
10404
10405 perf_pmu_enable(pmu);
10406 }
10407
10408 static int perf_event_idx_default(struct perf_event *event)
10409 {
10410 return 0;
10411 }
10412
10413 /*
10414 * Ensures all contexts with the same task_ctx_nr have the same
10415 * pmu_cpu_context too.
10416 */
10417 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10418 {
10419 struct pmu *pmu;
10420
10421 if (ctxn < 0)
10422 return NULL;
10423
10424 list_for_each_entry(pmu, &pmus, entry) {
10425 if (pmu->task_ctx_nr == ctxn)
10426 return pmu->pmu_cpu_context;
10427 }
10428
10429 return NULL;
10430 }
10431
10432 static void free_pmu_context(struct pmu *pmu)
10433 {
10434 /*
10435 * Static contexts such as perf_sw_context have a global lifetime
10436 * and may be shared between different PMUs. Avoid freeing them
10437 * when a single PMU is going away.
10438 */
10439 if (pmu->task_ctx_nr > perf_invalid_context)
10440 return;
10441
10442 free_percpu(pmu->pmu_cpu_context);
10443 }
10444
10445 /*
10446 * Let userspace know that this PMU supports address range filtering:
10447 */
10448 static ssize_t nr_addr_filters_show(struct device *dev,
10449 struct device_attribute *attr,
10450 char *page)
10451 {
10452 struct pmu *pmu = dev_get_drvdata(dev);
10453
10454 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10455 }
10456 DEVICE_ATTR_RO(nr_addr_filters);
10457
10458 static struct idr pmu_idr;
10459
10460 static ssize_t
10461 type_show(struct device *dev, struct device_attribute *attr, char *page)
10462 {
10463 struct pmu *pmu = dev_get_drvdata(dev);
10464
10465 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10466 }
10467 static DEVICE_ATTR_RO(type);
10468
10469 static ssize_t
10470 perf_event_mux_interval_ms_show(struct device *dev,
10471 struct device_attribute *attr,
10472 char *page)
10473 {
10474 struct pmu *pmu = dev_get_drvdata(dev);
10475
10476 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10477 }
10478
10479 static DEFINE_MUTEX(mux_interval_mutex);
10480
10481 static ssize_t
10482 perf_event_mux_interval_ms_store(struct device *dev,
10483 struct device_attribute *attr,
10484 const char *buf, size_t count)
10485 {
10486 struct pmu *pmu = dev_get_drvdata(dev);
10487 int timer, cpu, ret;
10488
10489 ret = kstrtoint(buf, 0, &timer);
10490 if (ret)
10491 return ret;
10492
10493 if (timer < 1)
10494 return -EINVAL;
10495
10496 /* same value, noting to do */
10497 if (timer == pmu->hrtimer_interval_ms)
10498 return count;
10499
10500 mutex_lock(&mux_interval_mutex);
10501 pmu->hrtimer_interval_ms = timer;
10502
10503 /* update all cpuctx for this PMU */
10504 cpus_read_lock();
10505 for_each_online_cpu(cpu) {
10506 struct perf_cpu_context *cpuctx;
10507 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10508 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10509
10510 cpu_function_call(cpu,
10511 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10512 }
10513 cpus_read_unlock();
10514 mutex_unlock(&mux_interval_mutex);
10515
10516 return count;
10517 }
10518 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10519
10520 static struct attribute *pmu_dev_attrs[] = {
10521 &dev_attr_type.attr,
10522 &dev_attr_perf_event_mux_interval_ms.attr,
10523 NULL,
10524 };
10525 ATTRIBUTE_GROUPS(pmu_dev);
10526
10527 static int pmu_bus_running;
10528 static struct bus_type pmu_bus = {
10529 .name = "event_source",
10530 .dev_groups = pmu_dev_groups,
10531 };
10532
10533 static void pmu_dev_release(struct device *dev)
10534 {
10535 kfree(dev);
10536 }
10537
10538 static int pmu_dev_alloc(struct pmu *pmu)
10539 {
10540 int ret = -ENOMEM;
10541
10542 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10543 if (!pmu->dev)
10544 goto out;
10545
10546 pmu->dev->groups = pmu->attr_groups;
10547 device_initialize(pmu->dev);
10548 ret = dev_set_name(pmu->dev, "%s", pmu->name);
10549 if (ret)
10550 goto free_dev;
10551
10552 dev_set_drvdata(pmu->dev, pmu);
10553 pmu->dev->bus = &pmu_bus;
10554 pmu->dev->release = pmu_dev_release;
10555 ret = device_add(pmu->dev);
10556 if (ret)
10557 goto free_dev;
10558
10559 /* For PMUs with address filters, throw in an extra attribute: */
10560 if (pmu->nr_addr_filters)
10561 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10562
10563 if (ret)
10564 goto del_dev;
10565
10566 if (pmu->attr_update)
10567 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10568
10569 if (ret)
10570 goto del_dev;
10571
10572 out:
10573 return ret;
10574
10575 del_dev:
10576 device_del(pmu->dev);
10577
10578 free_dev:
10579 put_device(pmu->dev);
10580 goto out;
10581 }
10582
10583 static struct lock_class_key cpuctx_mutex;
10584 static struct lock_class_key cpuctx_lock;
10585
10586 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10587 {
10588 int cpu, ret, max = PERF_TYPE_MAX;
10589
10590 mutex_lock(&pmus_lock);
10591 ret = -ENOMEM;
10592 pmu->pmu_disable_count = alloc_percpu(int);
10593 if (!pmu->pmu_disable_count)
10594 goto unlock;
10595
10596 pmu->type = -1;
10597 if (!name)
10598 goto skip_type;
10599 pmu->name = name;
10600
10601 if (type != PERF_TYPE_SOFTWARE) {
10602 if (type >= 0)
10603 max = type;
10604
10605 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10606 if (ret < 0)
10607 goto free_pdc;
10608
10609 WARN_ON(type >= 0 && ret != type);
10610
10611 type = ret;
10612 }
10613 pmu->type = type;
10614
10615 if (pmu_bus_running) {
10616 ret = pmu_dev_alloc(pmu);
10617 if (ret)
10618 goto free_idr;
10619 }
10620
10621 skip_type:
10622 if (pmu->task_ctx_nr == perf_hw_context) {
10623 static int hw_context_taken = 0;
10624
10625 /*
10626 * Other than systems with heterogeneous CPUs, it never makes
10627 * sense for two PMUs to share perf_hw_context. PMUs which are
10628 * uncore must use perf_invalid_context.
10629 */
10630 if (WARN_ON_ONCE(hw_context_taken &&
10631 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10632 pmu->task_ctx_nr = perf_invalid_context;
10633
10634 hw_context_taken = 1;
10635 }
10636
10637 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10638 if (pmu->pmu_cpu_context)
10639 goto got_cpu_context;
10640
10641 ret = -ENOMEM;
10642 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10643 if (!pmu->pmu_cpu_context)
10644 goto free_dev;
10645
10646 for_each_possible_cpu(cpu) {
10647 struct perf_cpu_context *cpuctx;
10648
10649 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10650 __perf_event_init_context(&cpuctx->ctx);
10651 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10652 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10653 cpuctx->ctx.pmu = pmu;
10654 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10655
10656 __perf_mux_hrtimer_init(cpuctx, cpu);
10657
10658 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
10659 cpuctx->heap = cpuctx->heap_default;
10660 }
10661
10662 got_cpu_context:
10663 if (!pmu->start_txn) {
10664 if (pmu->pmu_enable) {
10665 /*
10666 * If we have pmu_enable/pmu_disable calls, install
10667 * transaction stubs that use that to try and batch
10668 * hardware accesses.
10669 */
10670 pmu->start_txn = perf_pmu_start_txn;
10671 pmu->commit_txn = perf_pmu_commit_txn;
10672 pmu->cancel_txn = perf_pmu_cancel_txn;
10673 } else {
10674 pmu->start_txn = perf_pmu_nop_txn;
10675 pmu->commit_txn = perf_pmu_nop_int;
10676 pmu->cancel_txn = perf_pmu_nop_void;
10677 }
10678 }
10679
10680 if (!pmu->pmu_enable) {
10681 pmu->pmu_enable = perf_pmu_nop_void;
10682 pmu->pmu_disable = perf_pmu_nop_void;
10683 }
10684
10685 if (!pmu->check_period)
10686 pmu->check_period = perf_event_nop_int;
10687
10688 if (!pmu->event_idx)
10689 pmu->event_idx = perf_event_idx_default;
10690
10691 /*
10692 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10693 * since these cannot be in the IDR. This way the linear search
10694 * is fast, provided a valid software event is provided.
10695 */
10696 if (type == PERF_TYPE_SOFTWARE || !name)
10697 list_add_rcu(&pmu->entry, &pmus);
10698 else
10699 list_add_tail_rcu(&pmu->entry, &pmus);
10700
10701 atomic_set(&pmu->exclusive_cnt, 0);
10702 ret = 0;
10703 unlock:
10704 mutex_unlock(&pmus_lock);
10705
10706 return ret;
10707
10708 free_dev:
10709 device_del(pmu->dev);
10710 put_device(pmu->dev);
10711
10712 free_idr:
10713 if (pmu->type != PERF_TYPE_SOFTWARE)
10714 idr_remove(&pmu_idr, pmu->type);
10715
10716 free_pdc:
10717 free_percpu(pmu->pmu_disable_count);
10718 goto unlock;
10719 }
10720 EXPORT_SYMBOL_GPL(perf_pmu_register);
10721
10722 void perf_pmu_unregister(struct pmu *pmu)
10723 {
10724 mutex_lock(&pmus_lock);
10725 list_del_rcu(&pmu->entry);
10726
10727 /*
10728 * We dereference the pmu list under both SRCU and regular RCU, so
10729 * synchronize against both of those.
10730 */
10731 synchronize_srcu(&pmus_srcu);
10732 synchronize_rcu();
10733
10734 free_percpu(pmu->pmu_disable_count);
10735 if (pmu->type != PERF_TYPE_SOFTWARE)
10736 idr_remove(&pmu_idr, pmu->type);
10737 if (pmu_bus_running) {
10738 if (pmu->nr_addr_filters)
10739 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10740 device_del(pmu->dev);
10741 put_device(pmu->dev);
10742 }
10743 free_pmu_context(pmu);
10744 mutex_unlock(&pmus_lock);
10745 }
10746 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10747
10748 static inline bool has_extended_regs(struct perf_event *event)
10749 {
10750 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10751 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10752 }
10753
10754 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10755 {
10756 struct perf_event_context *ctx = NULL;
10757 int ret;
10758
10759 if (!try_module_get(pmu->module))
10760 return -ENODEV;
10761
10762 /*
10763 * A number of pmu->event_init() methods iterate the sibling_list to,
10764 * for example, validate if the group fits on the PMU. Therefore,
10765 * if this is a sibling event, acquire the ctx->mutex to protect
10766 * the sibling_list.
10767 */
10768 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10769 /*
10770 * This ctx->mutex can nest when we're called through
10771 * inheritance. See the perf_event_ctx_lock_nested() comment.
10772 */
10773 ctx = perf_event_ctx_lock_nested(event->group_leader,
10774 SINGLE_DEPTH_NESTING);
10775 BUG_ON(!ctx);
10776 }
10777
10778 event->pmu = pmu;
10779 ret = pmu->event_init(event);
10780
10781 if (ctx)
10782 perf_event_ctx_unlock(event->group_leader, ctx);
10783
10784 if (!ret) {
10785 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10786 has_extended_regs(event))
10787 ret = -EOPNOTSUPP;
10788
10789 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10790 event_has_any_exclude_flag(event))
10791 ret = -EINVAL;
10792
10793 if (ret && event->destroy)
10794 event->destroy(event);
10795 }
10796
10797 if (ret)
10798 module_put(pmu->module);
10799
10800 return ret;
10801 }
10802
10803 static struct pmu *perf_init_event(struct perf_event *event)
10804 {
10805 int idx, type, ret;
10806 struct pmu *pmu;
10807
10808 idx = srcu_read_lock(&pmus_srcu);
10809
10810 /* Try parent's PMU first: */
10811 if (event->parent && event->parent->pmu) {
10812 pmu = event->parent->pmu;
10813 ret = perf_try_init_event(pmu, event);
10814 if (!ret)
10815 goto unlock;
10816 }
10817
10818 /*
10819 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
10820 * are often aliases for PERF_TYPE_RAW.
10821 */
10822 type = event->attr.type;
10823 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
10824 type = PERF_TYPE_RAW;
10825
10826 again:
10827 rcu_read_lock();
10828 pmu = idr_find(&pmu_idr, type);
10829 rcu_read_unlock();
10830 if (pmu) {
10831 ret = perf_try_init_event(pmu, event);
10832 if (ret == -ENOENT && event->attr.type != type) {
10833 type = event->attr.type;
10834 goto again;
10835 }
10836
10837 if (ret)
10838 pmu = ERR_PTR(ret);
10839
10840 goto unlock;
10841 }
10842
10843 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
10844 ret = perf_try_init_event(pmu, event);
10845 if (!ret)
10846 goto unlock;
10847
10848 if (ret != -ENOENT) {
10849 pmu = ERR_PTR(ret);
10850 goto unlock;
10851 }
10852 }
10853 pmu = ERR_PTR(-ENOENT);
10854 unlock:
10855 srcu_read_unlock(&pmus_srcu, idx);
10856
10857 return pmu;
10858 }
10859
10860 static void attach_sb_event(struct perf_event *event)
10861 {
10862 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10863
10864 raw_spin_lock(&pel->lock);
10865 list_add_rcu(&event->sb_list, &pel->list);
10866 raw_spin_unlock(&pel->lock);
10867 }
10868
10869 /*
10870 * We keep a list of all !task (and therefore per-cpu) events
10871 * that need to receive side-band records.
10872 *
10873 * This avoids having to scan all the various PMU per-cpu contexts
10874 * looking for them.
10875 */
10876 static void account_pmu_sb_event(struct perf_event *event)
10877 {
10878 if (is_sb_event(event))
10879 attach_sb_event(event);
10880 }
10881
10882 static void account_event_cpu(struct perf_event *event, int cpu)
10883 {
10884 if (event->parent)
10885 return;
10886
10887 if (is_cgroup_event(event))
10888 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10889 }
10890
10891 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10892 static void account_freq_event_nohz(void)
10893 {
10894 #ifdef CONFIG_NO_HZ_FULL
10895 /* Lock so we don't race with concurrent unaccount */
10896 spin_lock(&nr_freq_lock);
10897 if (atomic_inc_return(&nr_freq_events) == 1)
10898 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10899 spin_unlock(&nr_freq_lock);
10900 #endif
10901 }
10902
10903 static void account_freq_event(void)
10904 {
10905 if (tick_nohz_full_enabled())
10906 account_freq_event_nohz();
10907 else
10908 atomic_inc(&nr_freq_events);
10909 }
10910
10911
10912 static void account_event(struct perf_event *event)
10913 {
10914 bool inc = false;
10915
10916 if (event->parent)
10917 return;
10918
10919 if (event->attach_state & PERF_ATTACH_TASK)
10920 inc = true;
10921 if (event->attr.mmap || event->attr.mmap_data)
10922 atomic_inc(&nr_mmap_events);
10923 if (event->attr.comm)
10924 atomic_inc(&nr_comm_events);
10925 if (event->attr.namespaces)
10926 atomic_inc(&nr_namespaces_events);
10927 if (event->attr.cgroup)
10928 atomic_inc(&nr_cgroup_events);
10929 if (event->attr.task)
10930 atomic_inc(&nr_task_events);
10931 if (event->attr.freq)
10932 account_freq_event();
10933 if (event->attr.context_switch) {
10934 atomic_inc(&nr_switch_events);
10935 inc = true;
10936 }
10937 if (has_branch_stack(event))
10938 inc = true;
10939 if (is_cgroup_event(event))
10940 inc = true;
10941 if (event->attr.ksymbol)
10942 atomic_inc(&nr_ksymbol_events);
10943 if (event->attr.bpf_event)
10944 atomic_inc(&nr_bpf_events);
10945
10946 if (inc) {
10947 /*
10948 * We need the mutex here because static_branch_enable()
10949 * must complete *before* the perf_sched_count increment
10950 * becomes visible.
10951 */
10952 if (atomic_inc_not_zero(&perf_sched_count))
10953 goto enabled;
10954
10955 mutex_lock(&perf_sched_mutex);
10956 if (!atomic_read(&perf_sched_count)) {
10957 static_branch_enable(&perf_sched_events);
10958 /*
10959 * Guarantee that all CPUs observe they key change and
10960 * call the perf scheduling hooks before proceeding to
10961 * install events that need them.
10962 */
10963 synchronize_rcu();
10964 }
10965 /*
10966 * Now that we have waited for the sync_sched(), allow further
10967 * increments to by-pass the mutex.
10968 */
10969 atomic_inc(&perf_sched_count);
10970 mutex_unlock(&perf_sched_mutex);
10971 }
10972 enabled:
10973
10974 account_event_cpu(event, event->cpu);
10975
10976 account_pmu_sb_event(event);
10977 }
10978
10979 /*
10980 * Allocate and initialize an event structure
10981 */
10982 static struct perf_event *
10983 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10984 struct task_struct *task,
10985 struct perf_event *group_leader,
10986 struct perf_event *parent_event,
10987 perf_overflow_handler_t overflow_handler,
10988 void *context, int cgroup_fd)
10989 {
10990 struct pmu *pmu;
10991 struct perf_event *event;
10992 struct hw_perf_event *hwc;
10993 long err = -EINVAL;
10994
10995 if ((unsigned)cpu >= nr_cpu_ids) {
10996 if (!task || cpu != -1)
10997 return ERR_PTR(-EINVAL);
10998 }
10999
11000 event = kzalloc(sizeof(*event), GFP_KERNEL);
11001 if (!event)
11002 return ERR_PTR(-ENOMEM);
11003
11004 /*
11005 * Single events are their own group leaders, with an
11006 * empty sibling list:
11007 */
11008 if (!group_leader)
11009 group_leader = event;
11010
11011 mutex_init(&event->child_mutex);
11012 INIT_LIST_HEAD(&event->child_list);
11013
11014 INIT_LIST_HEAD(&event->event_entry);
11015 INIT_LIST_HEAD(&event->sibling_list);
11016 INIT_LIST_HEAD(&event->active_list);
11017 init_event_group(event);
11018 INIT_LIST_HEAD(&event->rb_entry);
11019 INIT_LIST_HEAD(&event->active_entry);
11020 INIT_LIST_HEAD(&event->addr_filters.list);
11021 INIT_HLIST_NODE(&event->hlist_entry);
11022
11023
11024 init_waitqueue_head(&event->waitq);
11025 event->pending_disable = -1;
11026 init_irq_work(&event->pending, perf_pending_event);
11027
11028 mutex_init(&event->mmap_mutex);
11029 raw_spin_lock_init(&event->addr_filters.lock);
11030
11031 atomic_long_set(&event->refcount, 1);
11032 event->cpu = cpu;
11033 event->attr = *attr;
11034 event->group_leader = group_leader;
11035 event->pmu = NULL;
11036 event->oncpu = -1;
11037
11038 event->parent = parent_event;
11039
11040 event->ns = get_pid_ns(task_active_pid_ns(current));
11041 event->id = atomic64_inc_return(&perf_event_id);
11042
11043 event->state = PERF_EVENT_STATE_INACTIVE;
11044
11045 if (task) {
11046 event->attach_state = PERF_ATTACH_TASK;
11047 /*
11048 * XXX pmu::event_init needs to know what task to account to
11049 * and we cannot use the ctx information because we need the
11050 * pmu before we get a ctx.
11051 */
11052 event->hw.target = get_task_struct(task);
11053 }
11054
11055 event->clock = &local_clock;
11056 if (parent_event)
11057 event->clock = parent_event->clock;
11058
11059 if (!overflow_handler && parent_event) {
11060 overflow_handler = parent_event->overflow_handler;
11061 context = parent_event->overflow_handler_context;
11062 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11063 if (overflow_handler == bpf_overflow_handler) {
11064 struct bpf_prog *prog = parent_event->prog;
11065
11066 bpf_prog_inc(prog);
11067 event->prog = prog;
11068 event->orig_overflow_handler =
11069 parent_event->orig_overflow_handler;
11070 }
11071 #endif
11072 }
11073
11074 if (overflow_handler) {
11075 event->overflow_handler = overflow_handler;
11076 event->overflow_handler_context = context;
11077 } else if (is_write_backward(event)){
11078 event->overflow_handler = perf_event_output_backward;
11079 event->overflow_handler_context = NULL;
11080 } else {
11081 event->overflow_handler = perf_event_output_forward;
11082 event->overflow_handler_context = NULL;
11083 }
11084
11085 perf_event__state_init(event);
11086
11087 pmu = NULL;
11088
11089 hwc = &event->hw;
11090 hwc->sample_period = attr->sample_period;
11091 if (attr->freq && attr->sample_freq)
11092 hwc->sample_period = 1;
11093 hwc->last_period = hwc->sample_period;
11094
11095 local64_set(&hwc->period_left, hwc->sample_period);
11096
11097 /*
11098 * We currently do not support PERF_SAMPLE_READ on inherited events.
11099 * See perf_output_read().
11100 */
11101 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11102 goto err_ns;
11103
11104 if (!has_branch_stack(event))
11105 event->attr.branch_sample_type = 0;
11106
11107 pmu = perf_init_event(event);
11108 if (IS_ERR(pmu)) {
11109 err = PTR_ERR(pmu);
11110 goto err_ns;
11111 }
11112
11113 /*
11114 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11115 * be different on other CPUs in the uncore mask.
11116 */
11117 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11118 err = -EINVAL;
11119 goto err_pmu;
11120 }
11121
11122 if (event->attr.aux_output &&
11123 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11124 err = -EOPNOTSUPP;
11125 goto err_pmu;
11126 }
11127
11128 if (cgroup_fd != -1) {
11129 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11130 if (err)
11131 goto err_pmu;
11132 }
11133
11134 err = exclusive_event_init(event);
11135 if (err)
11136 goto err_pmu;
11137
11138 if (has_addr_filter(event)) {
11139 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11140 sizeof(struct perf_addr_filter_range),
11141 GFP_KERNEL);
11142 if (!event->addr_filter_ranges) {
11143 err = -ENOMEM;
11144 goto err_per_task;
11145 }
11146
11147 /*
11148 * Clone the parent's vma offsets: they are valid until exec()
11149 * even if the mm is not shared with the parent.
11150 */
11151 if (event->parent) {
11152 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11153
11154 raw_spin_lock_irq(&ifh->lock);
11155 memcpy(event->addr_filter_ranges,
11156 event->parent->addr_filter_ranges,
11157 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11158 raw_spin_unlock_irq(&ifh->lock);
11159 }
11160
11161 /* force hw sync on the address filters */
11162 event->addr_filters_gen = 1;
11163 }
11164
11165 if (!event->parent) {
11166 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11167 err = get_callchain_buffers(attr->sample_max_stack);
11168 if (err)
11169 goto err_addr_filters;
11170 }
11171 }
11172
11173 err = security_perf_event_alloc(event);
11174 if (err)
11175 goto err_callchain_buffer;
11176
11177 /* symmetric to unaccount_event() in _free_event() */
11178 account_event(event);
11179
11180 return event;
11181
11182 err_callchain_buffer:
11183 if (!event->parent) {
11184 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11185 put_callchain_buffers();
11186 }
11187 err_addr_filters:
11188 kfree(event->addr_filter_ranges);
11189
11190 err_per_task:
11191 exclusive_event_destroy(event);
11192
11193 err_pmu:
11194 if (is_cgroup_event(event))
11195 perf_detach_cgroup(event);
11196 if (event->destroy)
11197 event->destroy(event);
11198 module_put(pmu->module);
11199 err_ns:
11200 if (event->ns)
11201 put_pid_ns(event->ns);
11202 if (event->hw.target)
11203 put_task_struct(event->hw.target);
11204 kfree(event);
11205
11206 return ERR_PTR(err);
11207 }
11208
11209 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11210 struct perf_event_attr *attr)
11211 {
11212 u32 size;
11213 int ret;
11214
11215 /* Zero the full structure, so that a short copy will be nice. */
11216 memset(attr, 0, sizeof(*attr));
11217
11218 ret = get_user(size, &uattr->size);
11219 if (ret)
11220 return ret;
11221
11222 /* ABI compatibility quirk: */
11223 if (!size)
11224 size = PERF_ATTR_SIZE_VER0;
11225 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11226 goto err_size;
11227
11228 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11229 if (ret) {
11230 if (ret == -E2BIG)
11231 goto err_size;
11232 return ret;
11233 }
11234
11235 attr->size = size;
11236
11237 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11238 return -EINVAL;
11239
11240 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11241 return -EINVAL;
11242
11243 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11244 return -EINVAL;
11245
11246 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11247 u64 mask = attr->branch_sample_type;
11248
11249 /* only using defined bits */
11250 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11251 return -EINVAL;
11252
11253 /* at least one branch bit must be set */
11254 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11255 return -EINVAL;
11256
11257 /* propagate priv level, when not set for branch */
11258 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11259
11260 /* exclude_kernel checked on syscall entry */
11261 if (!attr->exclude_kernel)
11262 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11263
11264 if (!attr->exclude_user)
11265 mask |= PERF_SAMPLE_BRANCH_USER;
11266
11267 if (!attr->exclude_hv)
11268 mask |= PERF_SAMPLE_BRANCH_HV;
11269 /*
11270 * adjust user setting (for HW filter setup)
11271 */
11272 attr->branch_sample_type = mask;
11273 }
11274 /* privileged levels capture (kernel, hv): check permissions */
11275 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11276 ret = perf_allow_kernel(attr);
11277 if (ret)
11278 return ret;
11279 }
11280 }
11281
11282 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11283 ret = perf_reg_validate(attr->sample_regs_user);
11284 if (ret)
11285 return ret;
11286 }
11287
11288 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11289 if (!arch_perf_have_user_stack_dump())
11290 return -ENOSYS;
11291
11292 /*
11293 * We have __u32 type for the size, but so far
11294 * we can only use __u16 as maximum due to the
11295 * __u16 sample size limit.
11296 */
11297 if (attr->sample_stack_user >= USHRT_MAX)
11298 return -EINVAL;
11299 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11300 return -EINVAL;
11301 }
11302
11303 if (!attr->sample_max_stack)
11304 attr->sample_max_stack = sysctl_perf_event_max_stack;
11305
11306 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11307 ret = perf_reg_validate(attr->sample_regs_intr);
11308
11309 #ifndef CONFIG_CGROUP_PERF
11310 if (attr->sample_type & PERF_SAMPLE_CGROUP)
11311 return -EINVAL;
11312 #endif
11313
11314 out:
11315 return ret;
11316
11317 err_size:
11318 put_user(sizeof(*attr), &uattr->size);
11319 ret = -E2BIG;
11320 goto out;
11321 }
11322
11323 static int
11324 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11325 {
11326 struct perf_buffer *rb = NULL;
11327 int ret = -EINVAL;
11328
11329 if (!output_event)
11330 goto set;
11331
11332 /* don't allow circular references */
11333 if (event == output_event)
11334 goto out;
11335
11336 /*
11337 * Don't allow cross-cpu buffers
11338 */
11339 if (output_event->cpu != event->cpu)
11340 goto out;
11341
11342 /*
11343 * If its not a per-cpu rb, it must be the same task.
11344 */
11345 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11346 goto out;
11347
11348 /*
11349 * Mixing clocks in the same buffer is trouble you don't need.
11350 */
11351 if (output_event->clock != event->clock)
11352 goto out;
11353
11354 /*
11355 * Either writing ring buffer from beginning or from end.
11356 * Mixing is not allowed.
11357 */
11358 if (is_write_backward(output_event) != is_write_backward(event))
11359 goto out;
11360
11361 /*
11362 * If both events generate aux data, they must be on the same PMU
11363 */
11364 if (has_aux(event) && has_aux(output_event) &&
11365 event->pmu != output_event->pmu)
11366 goto out;
11367
11368 set:
11369 mutex_lock(&event->mmap_mutex);
11370 /* Can't redirect output if we've got an active mmap() */
11371 if (atomic_read(&event->mmap_count))
11372 goto unlock;
11373
11374 if (output_event) {
11375 /* get the rb we want to redirect to */
11376 rb = ring_buffer_get(output_event);
11377 if (!rb)
11378 goto unlock;
11379 }
11380
11381 ring_buffer_attach(event, rb);
11382
11383 ret = 0;
11384 unlock:
11385 mutex_unlock(&event->mmap_mutex);
11386
11387 out:
11388 return ret;
11389 }
11390
11391 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11392 {
11393 if (b < a)
11394 swap(a, b);
11395
11396 mutex_lock(a);
11397 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11398 }
11399
11400 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11401 {
11402 bool nmi_safe = false;
11403
11404 switch (clk_id) {
11405 case CLOCK_MONOTONIC:
11406 event->clock = &ktime_get_mono_fast_ns;
11407 nmi_safe = true;
11408 break;
11409
11410 case CLOCK_MONOTONIC_RAW:
11411 event->clock = &ktime_get_raw_fast_ns;
11412 nmi_safe = true;
11413 break;
11414
11415 case CLOCK_REALTIME:
11416 event->clock = &ktime_get_real_ns;
11417 break;
11418
11419 case CLOCK_BOOTTIME:
11420 event->clock = &ktime_get_boottime_ns;
11421 break;
11422
11423 case CLOCK_TAI:
11424 event->clock = &ktime_get_clocktai_ns;
11425 break;
11426
11427 default:
11428 return -EINVAL;
11429 }
11430
11431 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11432 return -EINVAL;
11433
11434 return 0;
11435 }
11436
11437 /*
11438 * Variation on perf_event_ctx_lock_nested(), except we take two context
11439 * mutexes.
11440 */
11441 static struct perf_event_context *
11442 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11443 struct perf_event_context *ctx)
11444 {
11445 struct perf_event_context *gctx;
11446
11447 again:
11448 rcu_read_lock();
11449 gctx = READ_ONCE(group_leader->ctx);
11450 if (!refcount_inc_not_zero(&gctx->refcount)) {
11451 rcu_read_unlock();
11452 goto again;
11453 }
11454 rcu_read_unlock();
11455
11456 mutex_lock_double(&gctx->mutex, &ctx->mutex);
11457
11458 if (group_leader->ctx != gctx) {
11459 mutex_unlock(&ctx->mutex);
11460 mutex_unlock(&gctx->mutex);
11461 put_ctx(gctx);
11462 goto again;
11463 }
11464
11465 return gctx;
11466 }
11467
11468 /**
11469 * sys_perf_event_open - open a performance event, associate it to a task/cpu
11470 *
11471 * @attr_uptr: event_id type attributes for monitoring/sampling
11472 * @pid: target pid
11473 * @cpu: target cpu
11474 * @group_fd: group leader event fd
11475 */
11476 SYSCALL_DEFINE5(perf_event_open,
11477 struct perf_event_attr __user *, attr_uptr,
11478 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11479 {
11480 struct perf_event *group_leader = NULL, *output_event = NULL;
11481 struct perf_event *event, *sibling;
11482 struct perf_event_attr attr;
11483 struct perf_event_context *ctx, *uninitialized_var(gctx);
11484 struct file *event_file = NULL;
11485 struct fd group = {NULL, 0};
11486 struct task_struct *task = NULL;
11487 struct pmu *pmu;
11488 int event_fd;
11489 int move_group = 0;
11490 int err;
11491 int f_flags = O_RDWR;
11492 int cgroup_fd = -1;
11493
11494 /* for future expandability... */
11495 if (flags & ~PERF_FLAG_ALL)
11496 return -EINVAL;
11497
11498 /* Do we allow access to perf_event_open(2) ? */
11499 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11500 if (err)
11501 return err;
11502
11503 err = perf_copy_attr(attr_uptr, &attr);
11504 if (err)
11505 return err;
11506
11507 if (!attr.exclude_kernel) {
11508 err = perf_allow_kernel(&attr);
11509 if (err)
11510 return err;
11511 }
11512
11513 if (attr.namespaces) {
11514 if (!capable(CAP_SYS_ADMIN))
11515 return -EACCES;
11516 }
11517
11518 if (attr.freq) {
11519 if (attr.sample_freq > sysctl_perf_event_sample_rate)
11520 return -EINVAL;
11521 } else {
11522 if (attr.sample_period & (1ULL << 63))
11523 return -EINVAL;
11524 }
11525
11526 /* Only privileged users can get physical addresses */
11527 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11528 err = perf_allow_kernel(&attr);
11529 if (err)
11530 return err;
11531 }
11532
11533 err = security_locked_down(LOCKDOWN_PERF);
11534 if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11535 /* REGS_INTR can leak data, lockdown must prevent this */
11536 return err;
11537
11538 err = 0;
11539
11540 /*
11541 * In cgroup mode, the pid argument is used to pass the fd
11542 * opened to the cgroup directory in cgroupfs. The cpu argument
11543 * designates the cpu on which to monitor threads from that
11544 * cgroup.
11545 */
11546 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11547 return -EINVAL;
11548
11549 if (flags & PERF_FLAG_FD_CLOEXEC)
11550 f_flags |= O_CLOEXEC;
11551
11552 event_fd = get_unused_fd_flags(f_flags);
11553 if (event_fd < 0)
11554 return event_fd;
11555
11556 if (group_fd != -1) {
11557 err = perf_fget_light(group_fd, &group);
11558 if (err)
11559 goto err_fd;
11560 group_leader = group.file->private_data;
11561 if (flags & PERF_FLAG_FD_OUTPUT)
11562 output_event = group_leader;
11563 if (flags & PERF_FLAG_FD_NO_GROUP)
11564 group_leader = NULL;
11565 }
11566
11567 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
11568 task = find_lively_task_by_vpid(pid);
11569 if (IS_ERR(task)) {
11570 err = PTR_ERR(task);
11571 goto err_group_fd;
11572 }
11573 }
11574
11575 if (task && group_leader &&
11576 group_leader->attr.inherit != attr.inherit) {
11577 err = -EINVAL;
11578 goto err_task;
11579 }
11580
11581 if (task) {
11582 err = mutex_lock_interruptible(&task->signal->exec_update_mutex);
11583 if (err)
11584 goto err_task;
11585
11586 /*
11587 * Reuse ptrace permission checks for now.
11588 *
11589 * We must hold exec_update_mutex across this and any potential
11590 * perf_install_in_context() call for this new event to
11591 * serialize against exec() altering our credentials (and the
11592 * perf_event_exit_task() that could imply).
11593 */
11594 err = -EACCES;
11595 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11596 goto err_cred;
11597 }
11598
11599 if (flags & PERF_FLAG_PID_CGROUP)
11600 cgroup_fd = pid;
11601
11602 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11603 NULL, NULL, cgroup_fd);
11604 if (IS_ERR(event)) {
11605 err = PTR_ERR(event);
11606 goto err_cred;
11607 }
11608
11609 if (is_sampling_event(event)) {
11610 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11611 err = -EOPNOTSUPP;
11612 goto err_alloc;
11613 }
11614 }
11615
11616 /*
11617 * Special case software events and allow them to be part of
11618 * any hardware group.
11619 */
11620 pmu = event->pmu;
11621
11622 if (attr.use_clockid) {
11623 err = perf_event_set_clock(event, attr.clockid);
11624 if (err)
11625 goto err_alloc;
11626 }
11627
11628 if (pmu->task_ctx_nr == perf_sw_context)
11629 event->event_caps |= PERF_EV_CAP_SOFTWARE;
11630
11631 if (group_leader) {
11632 if (is_software_event(event) &&
11633 !in_software_context(group_leader)) {
11634 /*
11635 * If the event is a sw event, but the group_leader
11636 * is on hw context.
11637 *
11638 * Allow the addition of software events to hw
11639 * groups, this is safe because software events
11640 * never fail to schedule.
11641 */
11642 pmu = group_leader->ctx->pmu;
11643 } else if (!is_software_event(event) &&
11644 is_software_event(group_leader) &&
11645 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11646 /*
11647 * In case the group is a pure software group, and we
11648 * try to add a hardware event, move the whole group to
11649 * the hardware context.
11650 */
11651 move_group = 1;
11652 }
11653 }
11654
11655 /*
11656 * Get the target context (task or percpu):
11657 */
11658 ctx = find_get_context(pmu, task, event);
11659 if (IS_ERR(ctx)) {
11660 err = PTR_ERR(ctx);
11661 goto err_alloc;
11662 }
11663
11664 /*
11665 * Look up the group leader (we will attach this event to it):
11666 */
11667 if (group_leader) {
11668 err = -EINVAL;
11669
11670 /*
11671 * Do not allow a recursive hierarchy (this new sibling
11672 * becoming part of another group-sibling):
11673 */
11674 if (group_leader->group_leader != group_leader)
11675 goto err_context;
11676
11677 /* All events in a group should have the same clock */
11678 if (group_leader->clock != event->clock)
11679 goto err_context;
11680
11681 /*
11682 * Make sure we're both events for the same CPU;
11683 * grouping events for different CPUs is broken; since
11684 * you can never concurrently schedule them anyhow.
11685 */
11686 if (group_leader->cpu != event->cpu)
11687 goto err_context;
11688
11689 /*
11690 * Make sure we're both on the same task, or both
11691 * per-CPU events.
11692 */
11693 if (group_leader->ctx->task != ctx->task)
11694 goto err_context;
11695
11696 /*
11697 * Do not allow to attach to a group in a different task
11698 * or CPU context. If we're moving SW events, we'll fix
11699 * this up later, so allow that.
11700 */
11701 if (!move_group && group_leader->ctx != ctx)
11702 goto err_context;
11703
11704 /*
11705 * Only a group leader can be exclusive or pinned
11706 */
11707 if (attr.exclusive || attr.pinned)
11708 goto err_context;
11709 }
11710
11711 if (output_event) {
11712 err = perf_event_set_output(event, output_event);
11713 if (err)
11714 goto err_context;
11715 }
11716
11717 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11718 f_flags);
11719 if (IS_ERR(event_file)) {
11720 err = PTR_ERR(event_file);
11721 event_file = NULL;
11722 goto err_context;
11723 }
11724
11725 if (move_group) {
11726 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11727
11728 if (gctx->task == TASK_TOMBSTONE) {
11729 err = -ESRCH;
11730 goto err_locked;
11731 }
11732
11733 /*
11734 * Check if we raced against another sys_perf_event_open() call
11735 * moving the software group underneath us.
11736 */
11737 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11738 /*
11739 * If someone moved the group out from under us, check
11740 * if this new event wound up on the same ctx, if so
11741 * its the regular !move_group case, otherwise fail.
11742 */
11743 if (gctx != ctx) {
11744 err = -EINVAL;
11745 goto err_locked;
11746 } else {
11747 perf_event_ctx_unlock(group_leader, gctx);
11748 move_group = 0;
11749 }
11750 }
11751
11752 /*
11753 * Failure to create exclusive events returns -EBUSY.
11754 */
11755 err = -EBUSY;
11756 if (!exclusive_event_installable(group_leader, ctx))
11757 goto err_locked;
11758
11759 for_each_sibling_event(sibling, group_leader) {
11760 if (!exclusive_event_installable(sibling, ctx))
11761 goto err_locked;
11762 }
11763 } else {
11764 mutex_lock(&ctx->mutex);
11765 }
11766
11767 if (ctx->task == TASK_TOMBSTONE) {
11768 err = -ESRCH;
11769 goto err_locked;
11770 }
11771
11772 if (!perf_event_validate_size(event)) {
11773 err = -E2BIG;
11774 goto err_locked;
11775 }
11776
11777 if (!task) {
11778 /*
11779 * Check if the @cpu we're creating an event for is online.
11780 *
11781 * We use the perf_cpu_context::ctx::mutex to serialize against
11782 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11783 */
11784 struct perf_cpu_context *cpuctx =
11785 container_of(ctx, struct perf_cpu_context, ctx);
11786
11787 if (!cpuctx->online) {
11788 err = -ENODEV;
11789 goto err_locked;
11790 }
11791 }
11792
11793 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
11794 err = -EINVAL;
11795 goto err_locked;
11796 }
11797
11798 /*
11799 * Must be under the same ctx::mutex as perf_install_in_context(),
11800 * because we need to serialize with concurrent event creation.
11801 */
11802 if (!exclusive_event_installable(event, ctx)) {
11803 err = -EBUSY;
11804 goto err_locked;
11805 }
11806
11807 WARN_ON_ONCE(ctx->parent_ctx);
11808
11809 /*
11810 * This is the point on no return; we cannot fail hereafter. This is
11811 * where we start modifying current state.
11812 */
11813
11814 if (move_group) {
11815 /*
11816 * See perf_event_ctx_lock() for comments on the details
11817 * of swizzling perf_event::ctx.
11818 */
11819 perf_remove_from_context(group_leader, 0);
11820 put_ctx(gctx);
11821
11822 for_each_sibling_event(sibling, group_leader) {
11823 perf_remove_from_context(sibling, 0);
11824 put_ctx(gctx);
11825 }
11826
11827 /*
11828 * Wait for everybody to stop referencing the events through
11829 * the old lists, before installing it on new lists.
11830 */
11831 synchronize_rcu();
11832
11833 /*
11834 * Install the group siblings before the group leader.
11835 *
11836 * Because a group leader will try and install the entire group
11837 * (through the sibling list, which is still in-tact), we can
11838 * end up with siblings installed in the wrong context.
11839 *
11840 * By installing siblings first we NO-OP because they're not
11841 * reachable through the group lists.
11842 */
11843 for_each_sibling_event(sibling, group_leader) {
11844 perf_event__state_init(sibling);
11845 perf_install_in_context(ctx, sibling, sibling->cpu);
11846 get_ctx(ctx);
11847 }
11848
11849 /*
11850 * Removing from the context ends up with disabled
11851 * event. What we want here is event in the initial
11852 * startup state, ready to be add into new context.
11853 */
11854 perf_event__state_init(group_leader);
11855 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11856 get_ctx(ctx);
11857 }
11858
11859 /*
11860 * Precalculate sample_data sizes; do while holding ctx::mutex such
11861 * that we're serialized against further additions and before
11862 * perf_install_in_context() which is the point the event is active and
11863 * can use these values.
11864 */
11865 perf_event__header_size(event);
11866 perf_event__id_header_size(event);
11867
11868 event->owner = current;
11869
11870 perf_install_in_context(ctx, event, event->cpu);
11871 perf_unpin_context(ctx);
11872
11873 if (move_group)
11874 perf_event_ctx_unlock(group_leader, gctx);
11875 mutex_unlock(&ctx->mutex);
11876
11877 if (task) {
11878 mutex_unlock(&task->signal->exec_update_mutex);
11879 put_task_struct(task);
11880 }
11881
11882 mutex_lock(&current->perf_event_mutex);
11883 list_add_tail(&event->owner_entry, &current->perf_event_list);
11884 mutex_unlock(&current->perf_event_mutex);
11885
11886 /*
11887 * Drop the reference on the group_event after placing the
11888 * new event on the sibling_list. This ensures destruction
11889 * of the group leader will find the pointer to itself in
11890 * perf_group_detach().
11891 */
11892 fdput(group);
11893 fd_install(event_fd, event_file);
11894 return event_fd;
11895
11896 err_locked:
11897 if (move_group)
11898 perf_event_ctx_unlock(group_leader, gctx);
11899 mutex_unlock(&ctx->mutex);
11900 /* err_file: */
11901 fput(event_file);
11902 err_context:
11903 perf_unpin_context(ctx);
11904 put_ctx(ctx);
11905 err_alloc:
11906 /*
11907 * If event_file is set, the fput() above will have called ->release()
11908 * and that will take care of freeing the event.
11909 */
11910 if (!event_file)
11911 free_event(event);
11912 err_cred:
11913 if (task)
11914 mutex_unlock(&task->signal->exec_update_mutex);
11915 err_task:
11916 if (task)
11917 put_task_struct(task);
11918 err_group_fd:
11919 fdput(group);
11920 err_fd:
11921 put_unused_fd(event_fd);
11922 return err;
11923 }
11924
11925 /**
11926 * perf_event_create_kernel_counter
11927 *
11928 * @attr: attributes of the counter to create
11929 * @cpu: cpu in which the counter is bound
11930 * @task: task to profile (NULL for percpu)
11931 */
11932 struct perf_event *
11933 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11934 struct task_struct *task,
11935 perf_overflow_handler_t overflow_handler,
11936 void *context)
11937 {
11938 struct perf_event_context *ctx;
11939 struct perf_event *event;
11940 int err;
11941
11942 /*
11943 * Grouping is not supported for kernel events, neither is 'AUX',
11944 * make sure the caller's intentions are adjusted.
11945 */
11946 if (attr->aux_output)
11947 return ERR_PTR(-EINVAL);
11948
11949 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11950 overflow_handler, context, -1);
11951 if (IS_ERR(event)) {
11952 err = PTR_ERR(event);
11953 goto err;
11954 }
11955
11956 /* Mark owner so we could distinguish it from user events. */
11957 event->owner = TASK_TOMBSTONE;
11958
11959 /*
11960 * Get the target context (task or percpu):
11961 */
11962 ctx = find_get_context(event->pmu, task, event);
11963 if (IS_ERR(ctx)) {
11964 err = PTR_ERR(ctx);
11965 goto err_free;
11966 }
11967
11968 WARN_ON_ONCE(ctx->parent_ctx);
11969 mutex_lock(&ctx->mutex);
11970 if (ctx->task == TASK_TOMBSTONE) {
11971 err = -ESRCH;
11972 goto err_unlock;
11973 }
11974
11975 if (!task) {
11976 /*
11977 * Check if the @cpu we're creating an event for is online.
11978 *
11979 * We use the perf_cpu_context::ctx::mutex to serialize against
11980 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11981 */
11982 struct perf_cpu_context *cpuctx =
11983 container_of(ctx, struct perf_cpu_context, ctx);
11984 if (!cpuctx->online) {
11985 err = -ENODEV;
11986 goto err_unlock;
11987 }
11988 }
11989
11990 if (!exclusive_event_installable(event, ctx)) {
11991 err = -EBUSY;
11992 goto err_unlock;
11993 }
11994
11995 perf_install_in_context(ctx, event, event->cpu);
11996 perf_unpin_context(ctx);
11997 mutex_unlock(&ctx->mutex);
11998
11999 return event;
12000
12001 err_unlock:
12002 mutex_unlock(&ctx->mutex);
12003 perf_unpin_context(ctx);
12004 put_ctx(ctx);
12005 err_free:
12006 free_event(event);
12007 err:
12008 return ERR_PTR(err);
12009 }
12010 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12011
12012 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12013 {
12014 struct perf_event_context *src_ctx;
12015 struct perf_event_context *dst_ctx;
12016 struct perf_event *event, *tmp;
12017 LIST_HEAD(events);
12018
12019 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12020 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12021
12022 /*
12023 * See perf_event_ctx_lock() for comments on the details
12024 * of swizzling perf_event::ctx.
12025 */
12026 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12027 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12028 event_entry) {
12029 perf_remove_from_context(event, 0);
12030 unaccount_event_cpu(event, src_cpu);
12031 put_ctx(src_ctx);
12032 list_add(&event->migrate_entry, &events);
12033 }
12034
12035 /*
12036 * Wait for the events to quiesce before re-instating them.
12037 */
12038 synchronize_rcu();
12039
12040 /*
12041 * Re-instate events in 2 passes.
12042 *
12043 * Skip over group leaders and only install siblings on this first
12044 * pass, siblings will not get enabled without a leader, however a
12045 * leader will enable its siblings, even if those are still on the old
12046 * context.
12047 */
12048 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12049 if (event->group_leader == event)
12050 continue;
12051
12052 list_del(&event->migrate_entry);
12053 if (event->state >= PERF_EVENT_STATE_OFF)
12054 event->state = PERF_EVENT_STATE_INACTIVE;
12055 account_event_cpu(event, dst_cpu);
12056 perf_install_in_context(dst_ctx, event, dst_cpu);
12057 get_ctx(dst_ctx);
12058 }
12059
12060 /*
12061 * Once all the siblings are setup properly, install the group leaders
12062 * to make it go.
12063 */
12064 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12065 list_del(&event->migrate_entry);
12066 if (event->state >= PERF_EVENT_STATE_OFF)
12067 event->state = PERF_EVENT_STATE_INACTIVE;
12068 account_event_cpu(event, dst_cpu);
12069 perf_install_in_context(dst_ctx, event, dst_cpu);
12070 get_ctx(dst_ctx);
12071 }
12072 mutex_unlock(&dst_ctx->mutex);
12073 mutex_unlock(&src_ctx->mutex);
12074 }
12075 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12076
12077 static void sync_child_event(struct perf_event *child_event,
12078 struct task_struct *child)
12079 {
12080 struct perf_event *parent_event = child_event->parent;
12081 u64 child_val;
12082
12083 if (child_event->attr.inherit_stat)
12084 perf_event_read_event(child_event, child);
12085
12086 child_val = perf_event_count(child_event);
12087
12088 /*
12089 * Add back the child's count to the parent's count:
12090 */
12091 atomic64_add(child_val, &parent_event->child_count);
12092 atomic64_add(child_event->total_time_enabled,
12093 &parent_event->child_total_time_enabled);
12094 atomic64_add(child_event->total_time_running,
12095 &parent_event->child_total_time_running);
12096 }
12097
12098 static void
12099 perf_event_exit_event(struct perf_event *child_event,
12100 struct perf_event_context *child_ctx,
12101 struct task_struct *child)
12102 {
12103 struct perf_event *parent_event = child_event->parent;
12104
12105 /*
12106 * Do not destroy the 'original' grouping; because of the context
12107 * switch optimization the original events could've ended up in a
12108 * random child task.
12109 *
12110 * If we were to destroy the original group, all group related
12111 * operations would cease to function properly after this random
12112 * child dies.
12113 *
12114 * Do destroy all inherited groups, we don't care about those
12115 * and being thorough is better.
12116 */
12117 raw_spin_lock_irq(&child_ctx->lock);
12118 WARN_ON_ONCE(child_ctx->is_active);
12119
12120 if (parent_event)
12121 perf_group_detach(child_event);
12122 list_del_event(child_event, child_ctx);
12123 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
12124 raw_spin_unlock_irq(&child_ctx->lock);
12125
12126 /*
12127 * Parent events are governed by their filedesc, retain them.
12128 */
12129 if (!parent_event) {
12130 perf_event_wakeup(child_event);
12131 return;
12132 }
12133 /*
12134 * Child events can be cleaned up.
12135 */
12136
12137 sync_child_event(child_event, child);
12138
12139 /*
12140 * Remove this event from the parent's list
12141 */
12142 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
12143 mutex_lock(&parent_event->child_mutex);
12144 list_del_init(&child_event->child_list);
12145 mutex_unlock(&parent_event->child_mutex);
12146
12147 /*
12148 * Kick perf_poll() for is_event_hup().
12149 */
12150 perf_event_wakeup(parent_event);
12151 free_event(child_event);
12152 put_event(parent_event);
12153 }
12154
12155 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12156 {
12157 struct perf_event_context *child_ctx, *clone_ctx = NULL;
12158 struct perf_event *child_event, *next;
12159
12160 WARN_ON_ONCE(child != current);
12161
12162 child_ctx = perf_pin_task_context(child, ctxn);
12163 if (!child_ctx)
12164 return;
12165
12166 /*
12167 * In order to reduce the amount of tricky in ctx tear-down, we hold
12168 * ctx::mutex over the entire thing. This serializes against almost
12169 * everything that wants to access the ctx.
12170 *
12171 * The exception is sys_perf_event_open() /
12172 * perf_event_create_kernel_count() which does find_get_context()
12173 * without ctx::mutex (it cannot because of the move_group double mutex
12174 * lock thing). See the comments in perf_install_in_context().
12175 */
12176 mutex_lock(&child_ctx->mutex);
12177
12178 /*
12179 * In a single ctx::lock section, de-schedule the events and detach the
12180 * context from the task such that we cannot ever get it scheduled back
12181 * in.
12182 */
12183 raw_spin_lock_irq(&child_ctx->lock);
12184 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12185
12186 /*
12187 * Now that the context is inactive, destroy the task <-> ctx relation
12188 * and mark the context dead.
12189 */
12190 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12191 put_ctx(child_ctx); /* cannot be last */
12192 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12193 put_task_struct(current); /* cannot be last */
12194
12195 clone_ctx = unclone_ctx(child_ctx);
12196 raw_spin_unlock_irq(&child_ctx->lock);
12197
12198 if (clone_ctx)
12199 put_ctx(clone_ctx);
12200
12201 /*
12202 * Report the task dead after unscheduling the events so that we
12203 * won't get any samples after PERF_RECORD_EXIT. We can however still
12204 * get a few PERF_RECORD_READ events.
12205 */
12206 perf_event_task(child, child_ctx, 0);
12207
12208 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12209 perf_event_exit_event(child_event, child_ctx, child);
12210
12211 mutex_unlock(&child_ctx->mutex);
12212
12213 put_ctx(child_ctx);
12214 }
12215
12216 /*
12217 * When a child task exits, feed back event values to parent events.
12218 *
12219 * Can be called with exec_update_mutex held when called from
12220 * install_exec_creds().
12221 */
12222 void perf_event_exit_task(struct task_struct *child)
12223 {
12224 struct perf_event *event, *tmp;
12225 int ctxn;
12226
12227 mutex_lock(&child->perf_event_mutex);
12228 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12229 owner_entry) {
12230 list_del_init(&event->owner_entry);
12231
12232 /*
12233 * Ensure the list deletion is visible before we clear
12234 * the owner, closes a race against perf_release() where
12235 * we need to serialize on the owner->perf_event_mutex.
12236 */
12237 smp_store_release(&event->owner, NULL);
12238 }
12239 mutex_unlock(&child->perf_event_mutex);
12240
12241 for_each_task_context_nr(ctxn)
12242 perf_event_exit_task_context(child, ctxn);
12243
12244 /*
12245 * The perf_event_exit_task_context calls perf_event_task
12246 * with child's task_ctx, which generates EXIT events for
12247 * child contexts and sets child->perf_event_ctxp[] to NULL.
12248 * At this point we need to send EXIT events to cpu contexts.
12249 */
12250 perf_event_task(child, NULL, 0);
12251 }
12252
12253 static void perf_free_event(struct perf_event *event,
12254 struct perf_event_context *ctx)
12255 {
12256 struct perf_event *parent = event->parent;
12257
12258 if (WARN_ON_ONCE(!parent))
12259 return;
12260
12261 mutex_lock(&parent->child_mutex);
12262 list_del_init(&event->child_list);
12263 mutex_unlock(&parent->child_mutex);
12264
12265 put_event(parent);
12266
12267 raw_spin_lock_irq(&ctx->lock);
12268 perf_group_detach(event);
12269 list_del_event(event, ctx);
12270 raw_spin_unlock_irq(&ctx->lock);
12271 free_event(event);
12272 }
12273
12274 /*
12275 * Free a context as created by inheritance by perf_event_init_task() below,
12276 * used by fork() in case of fail.
12277 *
12278 * Even though the task has never lived, the context and events have been
12279 * exposed through the child_list, so we must take care tearing it all down.
12280 */
12281 void perf_event_free_task(struct task_struct *task)
12282 {
12283 struct perf_event_context *ctx;
12284 struct perf_event *event, *tmp;
12285 int ctxn;
12286
12287 for_each_task_context_nr(ctxn) {
12288 ctx = task->perf_event_ctxp[ctxn];
12289 if (!ctx)
12290 continue;
12291
12292 mutex_lock(&ctx->mutex);
12293 raw_spin_lock_irq(&ctx->lock);
12294 /*
12295 * Destroy the task <-> ctx relation and mark the context dead.
12296 *
12297 * This is important because even though the task hasn't been
12298 * exposed yet the context has been (through child_list).
12299 */
12300 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12301 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12302 put_task_struct(task); /* cannot be last */
12303 raw_spin_unlock_irq(&ctx->lock);
12304
12305 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12306 perf_free_event(event, ctx);
12307
12308 mutex_unlock(&ctx->mutex);
12309
12310 /*
12311 * perf_event_release_kernel() could've stolen some of our
12312 * child events and still have them on its free_list. In that
12313 * case we must wait for these events to have been freed (in
12314 * particular all their references to this task must've been
12315 * dropped).
12316 *
12317 * Without this copy_process() will unconditionally free this
12318 * task (irrespective of its reference count) and
12319 * _free_event()'s put_task_struct(event->hw.target) will be a
12320 * use-after-free.
12321 *
12322 * Wait for all events to drop their context reference.
12323 */
12324 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12325 put_ctx(ctx); /* must be last */
12326 }
12327 }
12328
12329 void perf_event_delayed_put(struct task_struct *task)
12330 {
12331 int ctxn;
12332
12333 for_each_task_context_nr(ctxn)
12334 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12335 }
12336
12337 struct file *perf_event_get(unsigned int fd)
12338 {
12339 struct file *file = fget(fd);
12340 if (!file)
12341 return ERR_PTR(-EBADF);
12342
12343 if (file->f_op != &perf_fops) {
12344 fput(file);
12345 return ERR_PTR(-EBADF);
12346 }
12347
12348 return file;
12349 }
12350
12351 const struct perf_event *perf_get_event(struct file *file)
12352 {
12353 if (file->f_op != &perf_fops)
12354 return ERR_PTR(-EINVAL);
12355
12356 return file->private_data;
12357 }
12358
12359 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12360 {
12361 if (!event)
12362 return ERR_PTR(-EINVAL);
12363
12364 return &event->attr;
12365 }
12366
12367 /*
12368 * Inherit an event from parent task to child task.
12369 *
12370 * Returns:
12371 * - valid pointer on success
12372 * - NULL for orphaned events
12373 * - IS_ERR() on error
12374 */
12375 static struct perf_event *
12376 inherit_event(struct perf_event *parent_event,
12377 struct task_struct *parent,
12378 struct perf_event_context *parent_ctx,
12379 struct task_struct *child,
12380 struct perf_event *group_leader,
12381 struct perf_event_context *child_ctx)
12382 {
12383 enum perf_event_state parent_state = parent_event->state;
12384 struct perf_event *child_event;
12385 unsigned long flags;
12386
12387 /*
12388 * Instead of creating recursive hierarchies of events,
12389 * we link inherited events back to the original parent,
12390 * which has a filp for sure, which we use as the reference
12391 * count:
12392 */
12393 if (parent_event->parent)
12394 parent_event = parent_event->parent;
12395
12396 child_event = perf_event_alloc(&parent_event->attr,
12397 parent_event->cpu,
12398 child,
12399 group_leader, parent_event,
12400 NULL, NULL, -1);
12401 if (IS_ERR(child_event))
12402 return child_event;
12403
12404
12405 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12406 !child_ctx->task_ctx_data) {
12407 struct pmu *pmu = child_event->pmu;
12408
12409 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
12410 GFP_KERNEL);
12411 if (!child_ctx->task_ctx_data) {
12412 free_event(child_event);
12413 return ERR_PTR(-ENOMEM);
12414 }
12415 }
12416
12417 /*
12418 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12419 * must be under the same lock in order to serialize against
12420 * perf_event_release_kernel(), such that either we must observe
12421 * is_orphaned_event() or they will observe us on the child_list.
12422 */
12423 mutex_lock(&parent_event->child_mutex);
12424 if (is_orphaned_event(parent_event) ||
12425 !atomic_long_inc_not_zero(&parent_event->refcount)) {
12426 mutex_unlock(&parent_event->child_mutex);
12427 /* task_ctx_data is freed with child_ctx */
12428 free_event(child_event);
12429 return NULL;
12430 }
12431
12432 get_ctx(child_ctx);
12433
12434 /*
12435 * Make the child state follow the state of the parent event,
12436 * not its attr.disabled bit. We hold the parent's mutex,
12437 * so we won't race with perf_event_{en, dis}able_family.
12438 */
12439 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12440 child_event->state = PERF_EVENT_STATE_INACTIVE;
12441 else
12442 child_event->state = PERF_EVENT_STATE_OFF;
12443
12444 if (parent_event->attr.freq) {
12445 u64 sample_period = parent_event->hw.sample_period;
12446 struct hw_perf_event *hwc = &child_event->hw;
12447
12448 hwc->sample_period = sample_period;
12449 hwc->last_period = sample_period;
12450
12451 local64_set(&hwc->period_left, sample_period);
12452 }
12453
12454 child_event->ctx = child_ctx;
12455 child_event->overflow_handler = parent_event->overflow_handler;
12456 child_event->overflow_handler_context
12457 = parent_event->overflow_handler_context;
12458
12459 /*
12460 * Precalculate sample_data sizes
12461 */
12462 perf_event__header_size(child_event);
12463 perf_event__id_header_size(child_event);
12464
12465 /*
12466 * Link it up in the child's context:
12467 */
12468 raw_spin_lock_irqsave(&child_ctx->lock, flags);
12469 add_event_to_ctx(child_event, child_ctx);
12470 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12471
12472 /*
12473 * Link this into the parent event's child list
12474 */
12475 list_add_tail(&child_event->child_list, &parent_event->child_list);
12476 mutex_unlock(&parent_event->child_mutex);
12477
12478 return child_event;
12479 }
12480
12481 /*
12482 * Inherits an event group.
12483 *
12484 * This will quietly suppress orphaned events; !inherit_event() is not an error.
12485 * This matches with perf_event_release_kernel() removing all child events.
12486 *
12487 * Returns:
12488 * - 0 on success
12489 * - <0 on error
12490 */
12491 static int inherit_group(struct perf_event *parent_event,
12492 struct task_struct *parent,
12493 struct perf_event_context *parent_ctx,
12494 struct task_struct *child,
12495 struct perf_event_context *child_ctx)
12496 {
12497 struct perf_event *leader;
12498 struct perf_event *sub;
12499 struct perf_event *child_ctr;
12500
12501 leader = inherit_event(parent_event, parent, parent_ctx,
12502 child, NULL, child_ctx);
12503 if (IS_ERR(leader))
12504 return PTR_ERR(leader);
12505 /*
12506 * @leader can be NULL here because of is_orphaned_event(). In this
12507 * case inherit_event() will create individual events, similar to what
12508 * perf_group_detach() would do anyway.
12509 */
12510 for_each_sibling_event(sub, parent_event) {
12511 child_ctr = inherit_event(sub, parent, parent_ctx,
12512 child, leader, child_ctx);
12513 if (IS_ERR(child_ctr))
12514 return PTR_ERR(child_ctr);
12515
12516 if (sub->aux_event == parent_event && child_ctr &&
12517 !perf_get_aux_event(child_ctr, leader))
12518 return -EINVAL;
12519 }
12520 return 0;
12521 }
12522
12523 /*
12524 * Creates the child task context and tries to inherit the event-group.
12525 *
12526 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12527 * inherited_all set when we 'fail' to inherit an orphaned event; this is
12528 * consistent with perf_event_release_kernel() removing all child events.
12529 *
12530 * Returns:
12531 * - 0 on success
12532 * - <0 on error
12533 */
12534 static int
12535 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12536 struct perf_event_context *parent_ctx,
12537 struct task_struct *child, int ctxn,
12538 int *inherited_all)
12539 {
12540 int ret;
12541 struct perf_event_context *child_ctx;
12542
12543 if (!event->attr.inherit) {
12544 *inherited_all = 0;
12545 return 0;
12546 }
12547
12548 child_ctx = child->perf_event_ctxp[ctxn];
12549 if (!child_ctx) {
12550 /*
12551 * This is executed from the parent task context, so
12552 * inherit events that have been marked for cloning.
12553 * First allocate and initialize a context for the
12554 * child.
12555 */
12556 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
12557 if (!child_ctx)
12558 return -ENOMEM;
12559
12560 child->perf_event_ctxp[ctxn] = child_ctx;
12561 }
12562
12563 ret = inherit_group(event, parent, parent_ctx,
12564 child, child_ctx);
12565
12566 if (ret)
12567 *inherited_all = 0;
12568
12569 return ret;
12570 }
12571
12572 /*
12573 * Initialize the perf_event context in task_struct
12574 */
12575 static int perf_event_init_context(struct task_struct *child, int ctxn)
12576 {
12577 struct perf_event_context *child_ctx, *parent_ctx;
12578 struct perf_event_context *cloned_ctx;
12579 struct perf_event *event;
12580 struct task_struct *parent = current;
12581 int inherited_all = 1;
12582 unsigned long flags;
12583 int ret = 0;
12584
12585 if (likely(!parent->perf_event_ctxp[ctxn]))
12586 return 0;
12587
12588 /*
12589 * If the parent's context is a clone, pin it so it won't get
12590 * swapped under us.
12591 */
12592 parent_ctx = perf_pin_task_context(parent, ctxn);
12593 if (!parent_ctx)
12594 return 0;
12595
12596 /*
12597 * No need to check if parent_ctx != NULL here; since we saw
12598 * it non-NULL earlier, the only reason for it to become NULL
12599 * is if we exit, and since we're currently in the middle of
12600 * a fork we can't be exiting at the same time.
12601 */
12602
12603 /*
12604 * Lock the parent list. No need to lock the child - not PID
12605 * hashed yet and not running, so nobody can access it.
12606 */
12607 mutex_lock(&parent_ctx->mutex);
12608
12609 /*
12610 * We dont have to disable NMIs - we are only looking at
12611 * the list, not manipulating it:
12612 */
12613 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12614 ret = inherit_task_group(event, parent, parent_ctx,
12615 child, ctxn, &inherited_all);
12616 if (ret)
12617 goto out_unlock;
12618 }
12619
12620 /*
12621 * We can't hold ctx->lock when iterating the ->flexible_group list due
12622 * to allocations, but we need to prevent rotation because
12623 * rotate_ctx() will change the list from interrupt context.
12624 */
12625 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12626 parent_ctx->rotate_disable = 1;
12627 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12628
12629 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12630 ret = inherit_task_group(event, parent, parent_ctx,
12631 child, ctxn, &inherited_all);
12632 if (ret)
12633 goto out_unlock;
12634 }
12635
12636 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12637 parent_ctx->rotate_disable = 0;
12638
12639 child_ctx = child->perf_event_ctxp[ctxn];
12640
12641 if (child_ctx && inherited_all) {
12642 /*
12643 * Mark the child context as a clone of the parent
12644 * context, or of whatever the parent is a clone of.
12645 *
12646 * Note that if the parent is a clone, the holding of
12647 * parent_ctx->lock avoids it from being uncloned.
12648 */
12649 cloned_ctx = parent_ctx->parent_ctx;
12650 if (cloned_ctx) {
12651 child_ctx->parent_ctx = cloned_ctx;
12652 child_ctx->parent_gen = parent_ctx->parent_gen;
12653 } else {
12654 child_ctx->parent_ctx = parent_ctx;
12655 child_ctx->parent_gen = parent_ctx->generation;
12656 }
12657 get_ctx(child_ctx->parent_ctx);
12658 }
12659
12660 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12661 out_unlock:
12662 mutex_unlock(&parent_ctx->mutex);
12663
12664 perf_unpin_context(parent_ctx);
12665 put_ctx(parent_ctx);
12666
12667 return ret;
12668 }
12669
12670 /*
12671 * Initialize the perf_event context in task_struct
12672 */
12673 int perf_event_init_task(struct task_struct *child)
12674 {
12675 int ctxn, ret;
12676
12677 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12678 mutex_init(&child->perf_event_mutex);
12679 INIT_LIST_HEAD(&child->perf_event_list);
12680
12681 for_each_task_context_nr(ctxn) {
12682 ret = perf_event_init_context(child, ctxn);
12683 if (ret) {
12684 perf_event_free_task(child);
12685 return ret;
12686 }
12687 }
12688
12689 return 0;
12690 }
12691
12692 static void __init perf_event_init_all_cpus(void)
12693 {
12694 struct swevent_htable *swhash;
12695 int cpu;
12696
12697 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12698
12699 for_each_possible_cpu(cpu) {
12700 swhash = &per_cpu(swevent_htable, cpu);
12701 mutex_init(&swhash->hlist_mutex);
12702 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12703
12704 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12705 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12706
12707 #ifdef CONFIG_CGROUP_PERF
12708 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12709 #endif
12710 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12711 }
12712 }
12713
12714 static void perf_swevent_init_cpu(unsigned int cpu)
12715 {
12716 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12717
12718 mutex_lock(&swhash->hlist_mutex);
12719 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12720 struct swevent_hlist *hlist;
12721
12722 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12723 WARN_ON(!hlist);
12724 rcu_assign_pointer(swhash->swevent_hlist, hlist);
12725 }
12726 mutex_unlock(&swhash->hlist_mutex);
12727 }
12728
12729 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12730 static void __perf_event_exit_context(void *__info)
12731 {
12732 struct perf_event_context *ctx = __info;
12733 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12734 struct perf_event *event;
12735
12736 raw_spin_lock(&ctx->lock);
12737 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12738 list_for_each_entry(event, &ctx->event_list, event_entry)
12739 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12740 raw_spin_unlock(&ctx->lock);
12741 }
12742
12743 static void perf_event_exit_cpu_context(int cpu)
12744 {
12745 struct perf_cpu_context *cpuctx;
12746 struct perf_event_context *ctx;
12747 struct pmu *pmu;
12748
12749 mutex_lock(&pmus_lock);
12750 list_for_each_entry(pmu, &pmus, entry) {
12751 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12752 ctx = &cpuctx->ctx;
12753
12754 mutex_lock(&ctx->mutex);
12755 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12756 cpuctx->online = 0;
12757 mutex_unlock(&ctx->mutex);
12758 }
12759 cpumask_clear_cpu(cpu, perf_online_mask);
12760 mutex_unlock(&pmus_lock);
12761 }
12762 #else
12763
12764 static void perf_event_exit_cpu_context(int cpu) { }
12765
12766 #endif
12767
12768 int perf_event_init_cpu(unsigned int cpu)
12769 {
12770 struct perf_cpu_context *cpuctx;
12771 struct perf_event_context *ctx;
12772 struct pmu *pmu;
12773
12774 perf_swevent_init_cpu(cpu);
12775
12776 mutex_lock(&pmus_lock);
12777 cpumask_set_cpu(cpu, perf_online_mask);
12778 list_for_each_entry(pmu, &pmus, entry) {
12779 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12780 ctx = &cpuctx->ctx;
12781
12782 mutex_lock(&ctx->mutex);
12783 cpuctx->online = 1;
12784 mutex_unlock(&ctx->mutex);
12785 }
12786 mutex_unlock(&pmus_lock);
12787
12788 return 0;
12789 }
12790
12791 int perf_event_exit_cpu(unsigned int cpu)
12792 {
12793 perf_event_exit_cpu_context(cpu);
12794 return 0;
12795 }
12796
12797 static int
12798 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12799 {
12800 int cpu;
12801
12802 for_each_online_cpu(cpu)
12803 perf_event_exit_cpu(cpu);
12804
12805 return NOTIFY_OK;
12806 }
12807
12808 /*
12809 * Run the perf reboot notifier at the very last possible moment so that
12810 * the generic watchdog code runs as long as possible.
12811 */
12812 static struct notifier_block perf_reboot_notifier = {
12813 .notifier_call = perf_reboot,
12814 .priority = INT_MIN,
12815 };
12816
12817 void __init perf_event_init(void)
12818 {
12819 int ret;
12820
12821 idr_init(&pmu_idr);
12822
12823 perf_event_init_all_cpus();
12824 init_srcu_struct(&pmus_srcu);
12825 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12826 perf_pmu_register(&perf_cpu_clock, NULL, -1);
12827 perf_pmu_register(&perf_task_clock, NULL, -1);
12828 perf_tp_register();
12829 perf_event_init_cpu(smp_processor_id());
12830 register_reboot_notifier(&perf_reboot_notifier);
12831
12832 ret = init_hw_breakpoint();
12833 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12834
12835 /*
12836 * Build time assertion that we keep the data_head at the intended
12837 * location. IOW, validation we got the __reserved[] size right.
12838 */
12839 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12840 != 1024);
12841 }
12842
12843 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12844 char *page)
12845 {
12846 struct perf_pmu_events_attr *pmu_attr =
12847 container_of(attr, struct perf_pmu_events_attr, attr);
12848
12849 if (pmu_attr->event_str)
12850 return sprintf(page, "%s\n", pmu_attr->event_str);
12851
12852 return 0;
12853 }
12854 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12855
12856 static int __init perf_event_sysfs_init(void)
12857 {
12858 struct pmu *pmu;
12859 int ret;
12860
12861 mutex_lock(&pmus_lock);
12862
12863 ret = bus_register(&pmu_bus);
12864 if (ret)
12865 goto unlock;
12866
12867 list_for_each_entry(pmu, &pmus, entry) {
12868 if (!pmu->name || pmu->type < 0)
12869 continue;
12870
12871 ret = pmu_dev_alloc(pmu);
12872 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12873 }
12874 pmu_bus_running = 1;
12875 ret = 0;
12876
12877 unlock:
12878 mutex_unlock(&pmus_lock);
12879
12880 return ret;
12881 }
12882 device_initcall(perf_event_sysfs_init);
12883
12884 #ifdef CONFIG_CGROUP_PERF
12885 static struct cgroup_subsys_state *
12886 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12887 {
12888 struct perf_cgroup *jc;
12889
12890 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12891 if (!jc)
12892 return ERR_PTR(-ENOMEM);
12893
12894 jc->info = alloc_percpu(struct perf_cgroup_info);
12895 if (!jc->info) {
12896 kfree(jc);
12897 return ERR_PTR(-ENOMEM);
12898 }
12899
12900 return &jc->css;
12901 }
12902
12903 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12904 {
12905 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12906
12907 free_percpu(jc->info);
12908 kfree(jc);
12909 }
12910
12911 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
12912 {
12913 perf_event_cgroup(css->cgroup);
12914 return 0;
12915 }
12916
12917 static int __perf_cgroup_move(void *info)
12918 {
12919 struct task_struct *task = info;
12920 rcu_read_lock();
12921 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12922 rcu_read_unlock();
12923 return 0;
12924 }
12925
12926 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12927 {
12928 struct task_struct *task;
12929 struct cgroup_subsys_state *css;
12930
12931 cgroup_taskset_for_each(task, css, tset)
12932 task_function_call(task, __perf_cgroup_move, task);
12933 }
12934
12935 struct cgroup_subsys perf_event_cgrp_subsys = {
12936 .css_alloc = perf_cgroup_css_alloc,
12937 .css_free = perf_cgroup_css_free,
12938 .css_online = perf_cgroup_css_online,
12939 .attach = perf_cgroup_attach,
12940 /*
12941 * Implicitly enable on dfl hierarchy so that perf events can
12942 * always be filtered by cgroup2 path as long as perf_event
12943 * controller is not mounted on a legacy hierarchy.
12944 */
12945 .implicit_on_dfl = true,
12946 .threaded = true,
12947 };
12948 #endif /* CONFIG_CGROUP_PERF */