]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - kernel/events/core.c
perf: Mark expected switch fall-through
[thirdparty/kernel/linux.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance events core code:
4 *
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
52
53 #include "internal.h"
54
55 #include <asm/irq_regs.h>
56
57 typedef int (*remote_function_f)(void *);
58
59 struct remote_function_call {
60 struct task_struct *p;
61 remote_function_f func;
62 void *info;
63 int ret;
64 };
65
66 static void remote_function(void *data)
67 {
68 struct remote_function_call *tfc = data;
69 struct task_struct *p = tfc->p;
70
71 if (p) {
72 /* -EAGAIN */
73 if (task_cpu(p) != smp_processor_id())
74 return;
75
76 /*
77 * Now that we're on right CPU with IRQs disabled, we can test
78 * if we hit the right task without races.
79 */
80
81 tfc->ret = -ESRCH; /* No such (running) process */
82 if (p != current)
83 return;
84 }
85
86 tfc->ret = tfc->func(tfc->info);
87 }
88
89 /**
90 * task_function_call - call a function on the cpu on which a task runs
91 * @p: the task to evaluate
92 * @func: the function to be called
93 * @info: the function call argument
94 *
95 * Calls the function @func when the task is currently running. This might
96 * be on the current CPU, which just calls the function directly
97 *
98 * returns: @func return value, or
99 * -ESRCH - when the process isn't running
100 * -EAGAIN - when the process moved away
101 */
102 static int
103 task_function_call(struct task_struct *p, remote_function_f func, void *info)
104 {
105 struct remote_function_call data = {
106 .p = p,
107 .func = func,
108 .info = info,
109 .ret = -EAGAIN,
110 };
111 int ret;
112
113 do {
114 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115 if (!ret)
116 ret = data.ret;
117 } while (ret == -EAGAIN);
118
119 return ret;
120 }
121
122 /**
123 * cpu_function_call - call a function on the cpu
124 * @func: the function to be called
125 * @info: the function call argument
126 *
127 * Calls the function @func on the remote cpu.
128 *
129 * returns: @func return value or -ENXIO when the cpu is offline
130 */
131 static int cpu_function_call(int cpu, remote_function_f func, void *info)
132 {
133 struct remote_function_call data = {
134 .p = NULL,
135 .func = func,
136 .info = info,
137 .ret = -ENXIO, /* No such CPU */
138 };
139
140 smp_call_function_single(cpu, remote_function, &data, 1);
141
142 return data.ret;
143 }
144
145 static inline struct perf_cpu_context *
146 __get_cpu_context(struct perf_event_context *ctx)
147 {
148 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149 }
150
151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152 struct perf_event_context *ctx)
153 {
154 raw_spin_lock(&cpuctx->ctx.lock);
155 if (ctx)
156 raw_spin_lock(&ctx->lock);
157 }
158
159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160 struct perf_event_context *ctx)
161 {
162 if (ctx)
163 raw_spin_unlock(&ctx->lock);
164 raw_spin_unlock(&cpuctx->ctx.lock);
165 }
166
167 #define TASK_TOMBSTONE ((void *)-1L)
168
169 static bool is_kernel_event(struct perf_event *event)
170 {
171 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
172 }
173
174 /*
175 * On task ctx scheduling...
176 *
177 * When !ctx->nr_events a task context will not be scheduled. This means
178 * we can disable the scheduler hooks (for performance) without leaving
179 * pending task ctx state.
180 *
181 * This however results in two special cases:
182 *
183 * - removing the last event from a task ctx; this is relatively straight
184 * forward and is done in __perf_remove_from_context.
185 *
186 * - adding the first event to a task ctx; this is tricky because we cannot
187 * rely on ctx->is_active and therefore cannot use event_function_call().
188 * See perf_install_in_context().
189 *
190 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191 */
192
193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194 struct perf_event_context *, void *);
195
196 struct event_function_struct {
197 struct perf_event *event;
198 event_f func;
199 void *data;
200 };
201
202 static int event_function(void *info)
203 {
204 struct event_function_struct *efs = info;
205 struct perf_event *event = efs->event;
206 struct perf_event_context *ctx = event->ctx;
207 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208 struct perf_event_context *task_ctx = cpuctx->task_ctx;
209 int ret = 0;
210
211 lockdep_assert_irqs_disabled();
212
213 perf_ctx_lock(cpuctx, task_ctx);
214 /*
215 * Since we do the IPI call without holding ctx->lock things can have
216 * changed, double check we hit the task we set out to hit.
217 */
218 if (ctx->task) {
219 if (ctx->task != current) {
220 ret = -ESRCH;
221 goto unlock;
222 }
223
224 /*
225 * We only use event_function_call() on established contexts,
226 * and event_function() is only ever called when active (or
227 * rather, we'll have bailed in task_function_call() or the
228 * above ctx->task != current test), therefore we must have
229 * ctx->is_active here.
230 */
231 WARN_ON_ONCE(!ctx->is_active);
232 /*
233 * And since we have ctx->is_active, cpuctx->task_ctx must
234 * match.
235 */
236 WARN_ON_ONCE(task_ctx != ctx);
237 } else {
238 WARN_ON_ONCE(&cpuctx->ctx != ctx);
239 }
240
241 efs->func(event, cpuctx, ctx, efs->data);
242 unlock:
243 perf_ctx_unlock(cpuctx, task_ctx);
244
245 return ret;
246 }
247
248 static void event_function_call(struct perf_event *event, event_f func, void *data)
249 {
250 struct perf_event_context *ctx = event->ctx;
251 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
252 struct event_function_struct efs = {
253 .event = event,
254 .func = func,
255 .data = data,
256 };
257
258 if (!event->parent) {
259 /*
260 * If this is a !child event, we must hold ctx::mutex to
261 * stabilize the the event->ctx relation. See
262 * perf_event_ctx_lock().
263 */
264 lockdep_assert_held(&ctx->mutex);
265 }
266
267 if (!task) {
268 cpu_function_call(event->cpu, event_function, &efs);
269 return;
270 }
271
272 if (task == TASK_TOMBSTONE)
273 return;
274
275 again:
276 if (!task_function_call(task, event_function, &efs))
277 return;
278
279 raw_spin_lock_irq(&ctx->lock);
280 /*
281 * Reload the task pointer, it might have been changed by
282 * a concurrent perf_event_context_sched_out().
283 */
284 task = ctx->task;
285 if (task == TASK_TOMBSTONE) {
286 raw_spin_unlock_irq(&ctx->lock);
287 return;
288 }
289 if (ctx->is_active) {
290 raw_spin_unlock_irq(&ctx->lock);
291 goto again;
292 }
293 func(event, NULL, ctx, data);
294 raw_spin_unlock_irq(&ctx->lock);
295 }
296
297 /*
298 * Similar to event_function_call() + event_function(), but hard assumes IRQs
299 * are already disabled and we're on the right CPU.
300 */
301 static void event_function_local(struct perf_event *event, event_f func, void *data)
302 {
303 struct perf_event_context *ctx = event->ctx;
304 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305 struct task_struct *task = READ_ONCE(ctx->task);
306 struct perf_event_context *task_ctx = NULL;
307
308 lockdep_assert_irqs_disabled();
309
310 if (task) {
311 if (task == TASK_TOMBSTONE)
312 return;
313
314 task_ctx = ctx;
315 }
316
317 perf_ctx_lock(cpuctx, task_ctx);
318
319 task = ctx->task;
320 if (task == TASK_TOMBSTONE)
321 goto unlock;
322
323 if (task) {
324 /*
325 * We must be either inactive or active and the right task,
326 * otherwise we're screwed, since we cannot IPI to somewhere
327 * else.
328 */
329 if (ctx->is_active) {
330 if (WARN_ON_ONCE(task != current))
331 goto unlock;
332
333 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334 goto unlock;
335 }
336 } else {
337 WARN_ON_ONCE(&cpuctx->ctx != ctx);
338 }
339
340 func(event, cpuctx, ctx, data);
341 unlock:
342 perf_ctx_unlock(cpuctx, task_ctx);
343 }
344
345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346 PERF_FLAG_FD_OUTPUT |\
347 PERF_FLAG_PID_CGROUP |\
348 PERF_FLAG_FD_CLOEXEC)
349
350 /*
351 * branch priv levels that need permission checks
352 */
353 #define PERF_SAMPLE_BRANCH_PERM_PLM \
354 (PERF_SAMPLE_BRANCH_KERNEL |\
355 PERF_SAMPLE_BRANCH_HV)
356
357 enum event_type_t {
358 EVENT_FLEXIBLE = 0x1,
359 EVENT_PINNED = 0x2,
360 EVENT_TIME = 0x4,
361 /* see ctx_resched() for details */
362 EVENT_CPU = 0x8,
363 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364 };
365
366 /*
367 * perf_sched_events : >0 events exist
368 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369 */
370
371 static void perf_sched_delayed(struct work_struct *work);
372 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374 static DEFINE_MUTEX(perf_sched_mutex);
375 static atomic_t perf_sched_count;
376
377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
378 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
380
381 static atomic_t nr_mmap_events __read_mostly;
382 static atomic_t nr_comm_events __read_mostly;
383 static atomic_t nr_namespaces_events __read_mostly;
384 static atomic_t nr_task_events __read_mostly;
385 static atomic_t nr_freq_events __read_mostly;
386 static atomic_t nr_switch_events __read_mostly;
387 static atomic_t nr_ksymbol_events __read_mostly;
388 static atomic_t nr_bpf_events __read_mostly;
389
390 static LIST_HEAD(pmus);
391 static DEFINE_MUTEX(pmus_lock);
392 static struct srcu_struct pmus_srcu;
393 static cpumask_var_t perf_online_mask;
394
395 /*
396 * perf event paranoia level:
397 * -1 - not paranoid at all
398 * 0 - disallow raw tracepoint access for unpriv
399 * 1 - disallow cpu events for unpriv
400 * 2 - disallow kernel profiling for unpriv
401 */
402 int sysctl_perf_event_paranoid __read_mostly = 2;
403
404 /* Minimum for 512 kiB + 1 user control page */
405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
406
407 /*
408 * max perf event sample rate
409 */
410 #define DEFAULT_MAX_SAMPLE_RATE 100000
411 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
413
414 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
415
416 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
418
419 static int perf_sample_allowed_ns __read_mostly =
420 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
421
422 static void update_perf_cpu_limits(void)
423 {
424 u64 tmp = perf_sample_period_ns;
425
426 tmp *= sysctl_perf_cpu_time_max_percent;
427 tmp = div_u64(tmp, 100);
428 if (!tmp)
429 tmp = 1;
430
431 WRITE_ONCE(perf_sample_allowed_ns, tmp);
432 }
433
434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
435
436 int perf_proc_update_handler(struct ctl_table *table, int write,
437 void __user *buffer, size_t *lenp,
438 loff_t *ppos)
439 {
440 int ret;
441 int perf_cpu = sysctl_perf_cpu_time_max_percent;
442 /*
443 * If throttling is disabled don't allow the write:
444 */
445 if (write && (perf_cpu == 100 || perf_cpu == 0))
446 return -EINVAL;
447
448 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449 if (ret || !write)
450 return ret;
451
452 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
453 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454 update_perf_cpu_limits();
455
456 return 0;
457 }
458
459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460
461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462 void __user *buffer, size_t *lenp,
463 loff_t *ppos)
464 {
465 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466
467 if (ret || !write)
468 return ret;
469
470 if (sysctl_perf_cpu_time_max_percent == 100 ||
471 sysctl_perf_cpu_time_max_percent == 0) {
472 printk(KERN_WARNING
473 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474 WRITE_ONCE(perf_sample_allowed_ns, 0);
475 } else {
476 update_perf_cpu_limits();
477 }
478
479 return 0;
480 }
481
482 /*
483 * perf samples are done in some very critical code paths (NMIs).
484 * If they take too much CPU time, the system can lock up and not
485 * get any real work done. This will drop the sample rate when
486 * we detect that events are taking too long.
487 */
488 #define NR_ACCUMULATED_SAMPLES 128
489 static DEFINE_PER_CPU(u64, running_sample_length);
490
491 static u64 __report_avg;
492 static u64 __report_allowed;
493
494 static void perf_duration_warn(struct irq_work *w)
495 {
496 printk_ratelimited(KERN_INFO
497 "perf: interrupt took too long (%lld > %lld), lowering "
498 "kernel.perf_event_max_sample_rate to %d\n",
499 __report_avg, __report_allowed,
500 sysctl_perf_event_sample_rate);
501 }
502
503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504
505 void perf_sample_event_took(u64 sample_len_ns)
506 {
507 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508 u64 running_len;
509 u64 avg_len;
510 u32 max;
511
512 if (max_len == 0)
513 return;
514
515 /* Decay the counter by 1 average sample. */
516 running_len = __this_cpu_read(running_sample_length);
517 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518 running_len += sample_len_ns;
519 __this_cpu_write(running_sample_length, running_len);
520
521 /*
522 * Note: this will be biased artifically low until we have
523 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
524 * from having to maintain a count.
525 */
526 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527 if (avg_len <= max_len)
528 return;
529
530 __report_avg = avg_len;
531 __report_allowed = max_len;
532
533 /*
534 * Compute a throttle threshold 25% below the current duration.
535 */
536 avg_len += avg_len / 4;
537 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538 if (avg_len < max)
539 max /= (u32)avg_len;
540 else
541 max = 1;
542
543 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544 WRITE_ONCE(max_samples_per_tick, max);
545
546 sysctl_perf_event_sample_rate = max * HZ;
547 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
548
549 if (!irq_work_queue(&perf_duration_work)) {
550 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
551 "kernel.perf_event_max_sample_rate to %d\n",
552 __report_avg, __report_allowed,
553 sysctl_perf_event_sample_rate);
554 }
555 }
556
557 static atomic64_t perf_event_id;
558
559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560 enum event_type_t event_type);
561
562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
563 enum event_type_t event_type,
564 struct task_struct *task);
565
566 static void update_context_time(struct perf_event_context *ctx);
567 static u64 perf_event_time(struct perf_event *event);
568
569 void __weak perf_event_print_debug(void) { }
570
571 extern __weak const char *perf_pmu_name(void)
572 {
573 return "pmu";
574 }
575
576 static inline u64 perf_clock(void)
577 {
578 return local_clock();
579 }
580
581 static inline u64 perf_event_clock(struct perf_event *event)
582 {
583 return event->clock();
584 }
585
586 /*
587 * State based event timekeeping...
588 *
589 * The basic idea is to use event->state to determine which (if any) time
590 * fields to increment with the current delta. This means we only need to
591 * update timestamps when we change state or when they are explicitly requested
592 * (read).
593 *
594 * Event groups make things a little more complicated, but not terribly so. The
595 * rules for a group are that if the group leader is OFF the entire group is
596 * OFF, irrespecive of what the group member states are. This results in
597 * __perf_effective_state().
598 *
599 * A futher ramification is that when a group leader flips between OFF and
600 * !OFF, we need to update all group member times.
601 *
602 *
603 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604 * need to make sure the relevant context time is updated before we try and
605 * update our timestamps.
606 */
607
608 static __always_inline enum perf_event_state
609 __perf_effective_state(struct perf_event *event)
610 {
611 struct perf_event *leader = event->group_leader;
612
613 if (leader->state <= PERF_EVENT_STATE_OFF)
614 return leader->state;
615
616 return event->state;
617 }
618
619 static __always_inline void
620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621 {
622 enum perf_event_state state = __perf_effective_state(event);
623 u64 delta = now - event->tstamp;
624
625 *enabled = event->total_time_enabled;
626 if (state >= PERF_EVENT_STATE_INACTIVE)
627 *enabled += delta;
628
629 *running = event->total_time_running;
630 if (state >= PERF_EVENT_STATE_ACTIVE)
631 *running += delta;
632 }
633
634 static void perf_event_update_time(struct perf_event *event)
635 {
636 u64 now = perf_event_time(event);
637
638 __perf_update_times(event, now, &event->total_time_enabled,
639 &event->total_time_running);
640 event->tstamp = now;
641 }
642
643 static void perf_event_update_sibling_time(struct perf_event *leader)
644 {
645 struct perf_event *sibling;
646
647 for_each_sibling_event(sibling, leader)
648 perf_event_update_time(sibling);
649 }
650
651 static void
652 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653 {
654 if (event->state == state)
655 return;
656
657 perf_event_update_time(event);
658 /*
659 * If a group leader gets enabled/disabled all its siblings
660 * are affected too.
661 */
662 if ((event->state < 0) ^ (state < 0))
663 perf_event_update_sibling_time(event);
664
665 WRITE_ONCE(event->state, state);
666 }
667
668 #ifdef CONFIG_CGROUP_PERF
669
670 static inline bool
671 perf_cgroup_match(struct perf_event *event)
672 {
673 struct perf_event_context *ctx = event->ctx;
674 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675
676 /* @event doesn't care about cgroup */
677 if (!event->cgrp)
678 return true;
679
680 /* wants specific cgroup scope but @cpuctx isn't associated with any */
681 if (!cpuctx->cgrp)
682 return false;
683
684 /*
685 * Cgroup scoping is recursive. An event enabled for a cgroup is
686 * also enabled for all its descendant cgroups. If @cpuctx's
687 * cgroup is a descendant of @event's (the test covers identity
688 * case), it's a match.
689 */
690 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691 event->cgrp->css.cgroup);
692 }
693
694 static inline void perf_detach_cgroup(struct perf_event *event)
695 {
696 css_put(&event->cgrp->css);
697 event->cgrp = NULL;
698 }
699
700 static inline int is_cgroup_event(struct perf_event *event)
701 {
702 return event->cgrp != NULL;
703 }
704
705 static inline u64 perf_cgroup_event_time(struct perf_event *event)
706 {
707 struct perf_cgroup_info *t;
708
709 t = per_cpu_ptr(event->cgrp->info, event->cpu);
710 return t->time;
711 }
712
713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714 {
715 struct perf_cgroup_info *info;
716 u64 now;
717
718 now = perf_clock();
719
720 info = this_cpu_ptr(cgrp->info);
721
722 info->time += now - info->timestamp;
723 info->timestamp = now;
724 }
725
726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727 {
728 struct perf_cgroup *cgrp = cpuctx->cgrp;
729 struct cgroup_subsys_state *css;
730
731 if (cgrp) {
732 for (css = &cgrp->css; css; css = css->parent) {
733 cgrp = container_of(css, struct perf_cgroup, css);
734 __update_cgrp_time(cgrp);
735 }
736 }
737 }
738
739 static inline void update_cgrp_time_from_event(struct perf_event *event)
740 {
741 struct perf_cgroup *cgrp;
742
743 /*
744 * ensure we access cgroup data only when needed and
745 * when we know the cgroup is pinned (css_get)
746 */
747 if (!is_cgroup_event(event))
748 return;
749
750 cgrp = perf_cgroup_from_task(current, event->ctx);
751 /*
752 * Do not update time when cgroup is not active
753 */
754 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
755 __update_cgrp_time(event->cgrp);
756 }
757
758 static inline void
759 perf_cgroup_set_timestamp(struct task_struct *task,
760 struct perf_event_context *ctx)
761 {
762 struct perf_cgroup *cgrp;
763 struct perf_cgroup_info *info;
764 struct cgroup_subsys_state *css;
765
766 /*
767 * ctx->lock held by caller
768 * ensure we do not access cgroup data
769 * unless we have the cgroup pinned (css_get)
770 */
771 if (!task || !ctx->nr_cgroups)
772 return;
773
774 cgrp = perf_cgroup_from_task(task, ctx);
775
776 for (css = &cgrp->css; css; css = css->parent) {
777 cgrp = container_of(css, struct perf_cgroup, css);
778 info = this_cpu_ptr(cgrp->info);
779 info->timestamp = ctx->timestamp;
780 }
781 }
782
783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784
785 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
786 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
787
788 /*
789 * reschedule events based on the cgroup constraint of task.
790 *
791 * mode SWOUT : schedule out everything
792 * mode SWIN : schedule in based on cgroup for next
793 */
794 static void perf_cgroup_switch(struct task_struct *task, int mode)
795 {
796 struct perf_cpu_context *cpuctx;
797 struct list_head *list;
798 unsigned long flags;
799
800 /*
801 * Disable interrupts and preemption to avoid this CPU's
802 * cgrp_cpuctx_entry to change under us.
803 */
804 local_irq_save(flags);
805
806 list = this_cpu_ptr(&cgrp_cpuctx_list);
807 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
809
810 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811 perf_pmu_disable(cpuctx->ctx.pmu);
812
813 if (mode & PERF_CGROUP_SWOUT) {
814 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815 /*
816 * must not be done before ctxswout due
817 * to event_filter_match() in event_sched_out()
818 */
819 cpuctx->cgrp = NULL;
820 }
821
822 if (mode & PERF_CGROUP_SWIN) {
823 WARN_ON_ONCE(cpuctx->cgrp);
824 /*
825 * set cgrp before ctxsw in to allow
826 * event_filter_match() to not have to pass
827 * task around
828 * we pass the cpuctx->ctx to perf_cgroup_from_task()
829 * because cgorup events are only per-cpu
830 */
831 cpuctx->cgrp = perf_cgroup_from_task(task,
832 &cpuctx->ctx);
833 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
834 }
835 perf_pmu_enable(cpuctx->ctx.pmu);
836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
837 }
838
839 local_irq_restore(flags);
840 }
841
842 static inline void perf_cgroup_sched_out(struct task_struct *task,
843 struct task_struct *next)
844 {
845 struct perf_cgroup *cgrp1;
846 struct perf_cgroup *cgrp2 = NULL;
847
848 rcu_read_lock();
849 /*
850 * we come here when we know perf_cgroup_events > 0
851 * we do not need to pass the ctx here because we know
852 * we are holding the rcu lock
853 */
854 cgrp1 = perf_cgroup_from_task(task, NULL);
855 cgrp2 = perf_cgroup_from_task(next, NULL);
856
857 /*
858 * only schedule out current cgroup events if we know
859 * that we are switching to a different cgroup. Otherwise,
860 * do no touch the cgroup events.
861 */
862 if (cgrp1 != cgrp2)
863 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
864
865 rcu_read_unlock();
866 }
867
868 static inline void perf_cgroup_sched_in(struct task_struct *prev,
869 struct task_struct *task)
870 {
871 struct perf_cgroup *cgrp1;
872 struct perf_cgroup *cgrp2 = NULL;
873
874 rcu_read_lock();
875 /*
876 * we come here when we know perf_cgroup_events > 0
877 * we do not need to pass the ctx here because we know
878 * we are holding the rcu lock
879 */
880 cgrp1 = perf_cgroup_from_task(task, NULL);
881 cgrp2 = perf_cgroup_from_task(prev, NULL);
882
883 /*
884 * only need to schedule in cgroup events if we are changing
885 * cgroup during ctxsw. Cgroup events were not scheduled
886 * out of ctxsw out if that was not the case.
887 */
888 if (cgrp1 != cgrp2)
889 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
890
891 rcu_read_unlock();
892 }
893
894 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895 struct perf_event_attr *attr,
896 struct perf_event *group_leader)
897 {
898 struct perf_cgroup *cgrp;
899 struct cgroup_subsys_state *css;
900 struct fd f = fdget(fd);
901 int ret = 0;
902
903 if (!f.file)
904 return -EBADF;
905
906 css = css_tryget_online_from_dir(f.file->f_path.dentry,
907 &perf_event_cgrp_subsys);
908 if (IS_ERR(css)) {
909 ret = PTR_ERR(css);
910 goto out;
911 }
912
913 cgrp = container_of(css, struct perf_cgroup, css);
914 event->cgrp = cgrp;
915
916 /*
917 * all events in a group must monitor
918 * the same cgroup because a task belongs
919 * to only one perf cgroup at a time
920 */
921 if (group_leader && group_leader->cgrp != cgrp) {
922 perf_detach_cgroup(event);
923 ret = -EINVAL;
924 }
925 out:
926 fdput(f);
927 return ret;
928 }
929
930 static inline void
931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932 {
933 struct perf_cgroup_info *t;
934 t = per_cpu_ptr(event->cgrp->info, event->cpu);
935 event->shadow_ctx_time = now - t->timestamp;
936 }
937
938 /*
939 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940 * cleared when last cgroup event is removed.
941 */
942 static inline void
943 list_update_cgroup_event(struct perf_event *event,
944 struct perf_event_context *ctx, bool add)
945 {
946 struct perf_cpu_context *cpuctx;
947 struct list_head *cpuctx_entry;
948
949 if (!is_cgroup_event(event))
950 return;
951
952 /*
953 * Because cgroup events are always per-cpu events,
954 * this will always be called from the right CPU.
955 */
956 cpuctx = __get_cpu_context(ctx);
957
958 /*
959 * Since setting cpuctx->cgrp is conditional on the current @cgrp
960 * matching the event's cgroup, we must do this for every new event,
961 * because if the first would mismatch, the second would not try again
962 * and we would leave cpuctx->cgrp unset.
963 */
964 if (add && !cpuctx->cgrp) {
965 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966
967 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968 cpuctx->cgrp = cgrp;
969 }
970
971 if (add && ctx->nr_cgroups++)
972 return;
973 else if (!add && --ctx->nr_cgroups)
974 return;
975
976 /* no cgroup running */
977 if (!add)
978 cpuctx->cgrp = NULL;
979
980 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981 if (add)
982 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983 else
984 list_del(cpuctx_entry);
985 }
986
987 #else /* !CONFIG_CGROUP_PERF */
988
989 static inline bool
990 perf_cgroup_match(struct perf_event *event)
991 {
992 return true;
993 }
994
995 static inline void perf_detach_cgroup(struct perf_event *event)
996 {}
997
998 static inline int is_cgroup_event(struct perf_event *event)
999 {
1000 return 0;
1001 }
1002
1003 static inline void update_cgrp_time_from_event(struct perf_event *event)
1004 {
1005 }
1006
1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008 {
1009 }
1010
1011 static inline void perf_cgroup_sched_out(struct task_struct *task,
1012 struct task_struct *next)
1013 {
1014 }
1015
1016 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017 struct task_struct *task)
1018 {
1019 }
1020
1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022 struct perf_event_attr *attr,
1023 struct perf_event *group_leader)
1024 {
1025 return -EINVAL;
1026 }
1027
1028 static inline void
1029 perf_cgroup_set_timestamp(struct task_struct *task,
1030 struct perf_event_context *ctx)
1031 {
1032 }
1033
1034 void
1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036 {
1037 }
1038
1039 static inline void
1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041 {
1042 }
1043
1044 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045 {
1046 return 0;
1047 }
1048
1049 static inline void
1050 list_update_cgroup_event(struct perf_event *event,
1051 struct perf_event_context *ctx, bool add)
1052 {
1053 }
1054
1055 #endif
1056
1057 /*
1058 * set default to be dependent on timer tick just
1059 * like original code
1060 */
1061 #define PERF_CPU_HRTIMER (1000 / HZ)
1062 /*
1063 * function must be called with interrupts disabled
1064 */
1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1066 {
1067 struct perf_cpu_context *cpuctx;
1068 bool rotations;
1069
1070 lockdep_assert_irqs_disabled();
1071
1072 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1073 rotations = perf_rotate_context(cpuctx);
1074
1075 raw_spin_lock(&cpuctx->hrtimer_lock);
1076 if (rotations)
1077 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1078 else
1079 cpuctx->hrtimer_active = 0;
1080 raw_spin_unlock(&cpuctx->hrtimer_lock);
1081
1082 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1083 }
1084
1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1086 {
1087 struct hrtimer *timer = &cpuctx->hrtimer;
1088 struct pmu *pmu = cpuctx->ctx.pmu;
1089 u64 interval;
1090
1091 /* no multiplexing needed for SW PMU */
1092 if (pmu->task_ctx_nr == perf_sw_context)
1093 return;
1094
1095 /*
1096 * check default is sane, if not set then force to
1097 * default interval (1/tick)
1098 */
1099 interval = pmu->hrtimer_interval_ms;
1100 if (interval < 1)
1101 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1102
1103 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1104
1105 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1106 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1107 timer->function = perf_mux_hrtimer_handler;
1108 }
1109
1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1111 {
1112 struct hrtimer *timer = &cpuctx->hrtimer;
1113 struct pmu *pmu = cpuctx->ctx.pmu;
1114 unsigned long flags;
1115
1116 /* not for SW PMU */
1117 if (pmu->task_ctx_nr == perf_sw_context)
1118 return 0;
1119
1120 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121 if (!cpuctx->hrtimer_active) {
1122 cpuctx->hrtimer_active = 1;
1123 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1124 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1125 }
1126 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1127
1128 return 0;
1129 }
1130
1131 void perf_pmu_disable(struct pmu *pmu)
1132 {
1133 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134 if (!(*count)++)
1135 pmu->pmu_disable(pmu);
1136 }
1137
1138 void perf_pmu_enable(struct pmu *pmu)
1139 {
1140 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141 if (!--(*count))
1142 pmu->pmu_enable(pmu);
1143 }
1144
1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1146
1147 /*
1148 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149 * perf_event_task_tick() are fully serialized because they're strictly cpu
1150 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151 * disabled, while perf_event_task_tick is called from IRQ context.
1152 */
1153 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1154 {
1155 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1156
1157 lockdep_assert_irqs_disabled();
1158
1159 WARN_ON(!list_empty(&ctx->active_ctx_list));
1160
1161 list_add(&ctx->active_ctx_list, head);
1162 }
1163
1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165 {
1166 lockdep_assert_irqs_disabled();
1167
1168 WARN_ON(list_empty(&ctx->active_ctx_list));
1169
1170 list_del_init(&ctx->active_ctx_list);
1171 }
1172
1173 static void get_ctx(struct perf_event_context *ctx)
1174 {
1175 refcount_inc(&ctx->refcount);
1176 }
1177
1178 static void free_ctx(struct rcu_head *head)
1179 {
1180 struct perf_event_context *ctx;
1181
1182 ctx = container_of(head, struct perf_event_context, rcu_head);
1183 kfree(ctx->task_ctx_data);
1184 kfree(ctx);
1185 }
1186
1187 static void put_ctx(struct perf_event_context *ctx)
1188 {
1189 if (refcount_dec_and_test(&ctx->refcount)) {
1190 if (ctx->parent_ctx)
1191 put_ctx(ctx->parent_ctx);
1192 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1193 put_task_struct(ctx->task);
1194 call_rcu(&ctx->rcu_head, free_ctx);
1195 }
1196 }
1197
1198 /*
1199 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200 * perf_pmu_migrate_context() we need some magic.
1201 *
1202 * Those places that change perf_event::ctx will hold both
1203 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204 *
1205 * Lock ordering is by mutex address. There are two other sites where
1206 * perf_event_context::mutex nests and those are:
1207 *
1208 * - perf_event_exit_task_context() [ child , 0 ]
1209 * perf_event_exit_event()
1210 * put_event() [ parent, 1 ]
1211 *
1212 * - perf_event_init_context() [ parent, 0 ]
1213 * inherit_task_group()
1214 * inherit_group()
1215 * inherit_event()
1216 * perf_event_alloc()
1217 * perf_init_event()
1218 * perf_try_init_event() [ child , 1 ]
1219 *
1220 * While it appears there is an obvious deadlock here -- the parent and child
1221 * nesting levels are inverted between the two. This is in fact safe because
1222 * life-time rules separate them. That is an exiting task cannot fork, and a
1223 * spawning task cannot (yet) exit.
1224 *
1225 * But remember that that these are parent<->child context relations, and
1226 * migration does not affect children, therefore these two orderings should not
1227 * interact.
1228 *
1229 * The change in perf_event::ctx does not affect children (as claimed above)
1230 * because the sys_perf_event_open() case will install a new event and break
1231 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232 * concerned with cpuctx and that doesn't have children.
1233 *
1234 * The places that change perf_event::ctx will issue:
1235 *
1236 * perf_remove_from_context();
1237 * synchronize_rcu();
1238 * perf_install_in_context();
1239 *
1240 * to affect the change. The remove_from_context() + synchronize_rcu() should
1241 * quiesce the event, after which we can install it in the new location. This
1242 * means that only external vectors (perf_fops, prctl) can perturb the event
1243 * while in transit. Therefore all such accessors should also acquire
1244 * perf_event_context::mutex to serialize against this.
1245 *
1246 * However; because event->ctx can change while we're waiting to acquire
1247 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248 * function.
1249 *
1250 * Lock order:
1251 * cred_guard_mutex
1252 * task_struct::perf_event_mutex
1253 * perf_event_context::mutex
1254 * perf_event::child_mutex;
1255 * perf_event_context::lock
1256 * perf_event::mmap_mutex
1257 * mmap_sem
1258 * perf_addr_filters_head::lock
1259 *
1260 * cpu_hotplug_lock
1261 * pmus_lock
1262 * cpuctx->mutex / perf_event_context::mutex
1263 */
1264 static struct perf_event_context *
1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1266 {
1267 struct perf_event_context *ctx;
1268
1269 again:
1270 rcu_read_lock();
1271 ctx = READ_ONCE(event->ctx);
1272 if (!refcount_inc_not_zero(&ctx->refcount)) {
1273 rcu_read_unlock();
1274 goto again;
1275 }
1276 rcu_read_unlock();
1277
1278 mutex_lock_nested(&ctx->mutex, nesting);
1279 if (event->ctx != ctx) {
1280 mutex_unlock(&ctx->mutex);
1281 put_ctx(ctx);
1282 goto again;
1283 }
1284
1285 return ctx;
1286 }
1287
1288 static inline struct perf_event_context *
1289 perf_event_ctx_lock(struct perf_event *event)
1290 {
1291 return perf_event_ctx_lock_nested(event, 0);
1292 }
1293
1294 static void perf_event_ctx_unlock(struct perf_event *event,
1295 struct perf_event_context *ctx)
1296 {
1297 mutex_unlock(&ctx->mutex);
1298 put_ctx(ctx);
1299 }
1300
1301 /*
1302 * This must be done under the ctx->lock, such as to serialize against
1303 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304 * calling scheduler related locks and ctx->lock nests inside those.
1305 */
1306 static __must_check struct perf_event_context *
1307 unclone_ctx(struct perf_event_context *ctx)
1308 {
1309 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310
1311 lockdep_assert_held(&ctx->lock);
1312
1313 if (parent_ctx)
1314 ctx->parent_ctx = NULL;
1315 ctx->generation++;
1316
1317 return parent_ctx;
1318 }
1319
1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321 enum pid_type type)
1322 {
1323 u32 nr;
1324 /*
1325 * only top level events have the pid namespace they were created in
1326 */
1327 if (event->parent)
1328 event = event->parent;
1329
1330 nr = __task_pid_nr_ns(p, type, event->ns);
1331 /* avoid -1 if it is idle thread or runs in another ns */
1332 if (!nr && !pid_alive(p))
1333 nr = -1;
1334 return nr;
1335 }
1336
1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1338 {
1339 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1340 }
1341
1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343 {
1344 return perf_event_pid_type(event, p, PIDTYPE_PID);
1345 }
1346
1347 /*
1348 * If we inherit events we want to return the parent event id
1349 * to userspace.
1350 */
1351 static u64 primary_event_id(struct perf_event *event)
1352 {
1353 u64 id = event->id;
1354
1355 if (event->parent)
1356 id = event->parent->id;
1357
1358 return id;
1359 }
1360
1361 /*
1362 * Get the perf_event_context for a task and lock it.
1363 *
1364 * This has to cope with with the fact that until it is locked,
1365 * the context could get moved to another task.
1366 */
1367 static struct perf_event_context *
1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1369 {
1370 struct perf_event_context *ctx;
1371
1372 retry:
1373 /*
1374 * One of the few rules of preemptible RCU is that one cannot do
1375 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1376 * part of the read side critical section was irqs-enabled -- see
1377 * rcu_read_unlock_special().
1378 *
1379 * Since ctx->lock nests under rq->lock we must ensure the entire read
1380 * side critical section has interrupts disabled.
1381 */
1382 local_irq_save(*flags);
1383 rcu_read_lock();
1384 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1385 if (ctx) {
1386 /*
1387 * If this context is a clone of another, it might
1388 * get swapped for another underneath us by
1389 * perf_event_task_sched_out, though the
1390 * rcu_read_lock() protects us from any context
1391 * getting freed. Lock the context and check if it
1392 * got swapped before we could get the lock, and retry
1393 * if so. If we locked the right context, then it
1394 * can't get swapped on us any more.
1395 */
1396 raw_spin_lock(&ctx->lock);
1397 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1398 raw_spin_unlock(&ctx->lock);
1399 rcu_read_unlock();
1400 local_irq_restore(*flags);
1401 goto retry;
1402 }
1403
1404 if (ctx->task == TASK_TOMBSTONE ||
1405 !refcount_inc_not_zero(&ctx->refcount)) {
1406 raw_spin_unlock(&ctx->lock);
1407 ctx = NULL;
1408 } else {
1409 WARN_ON_ONCE(ctx->task != task);
1410 }
1411 }
1412 rcu_read_unlock();
1413 if (!ctx)
1414 local_irq_restore(*flags);
1415 return ctx;
1416 }
1417
1418 /*
1419 * Get the context for a task and increment its pin_count so it
1420 * can't get swapped to another task. This also increments its
1421 * reference count so that the context can't get freed.
1422 */
1423 static struct perf_event_context *
1424 perf_pin_task_context(struct task_struct *task, int ctxn)
1425 {
1426 struct perf_event_context *ctx;
1427 unsigned long flags;
1428
1429 ctx = perf_lock_task_context(task, ctxn, &flags);
1430 if (ctx) {
1431 ++ctx->pin_count;
1432 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1433 }
1434 return ctx;
1435 }
1436
1437 static void perf_unpin_context(struct perf_event_context *ctx)
1438 {
1439 unsigned long flags;
1440
1441 raw_spin_lock_irqsave(&ctx->lock, flags);
1442 --ctx->pin_count;
1443 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1444 }
1445
1446 /*
1447 * Update the record of the current time in a context.
1448 */
1449 static void update_context_time(struct perf_event_context *ctx)
1450 {
1451 u64 now = perf_clock();
1452
1453 ctx->time += now - ctx->timestamp;
1454 ctx->timestamp = now;
1455 }
1456
1457 static u64 perf_event_time(struct perf_event *event)
1458 {
1459 struct perf_event_context *ctx = event->ctx;
1460
1461 if (is_cgroup_event(event))
1462 return perf_cgroup_event_time(event);
1463
1464 return ctx ? ctx->time : 0;
1465 }
1466
1467 static enum event_type_t get_event_type(struct perf_event *event)
1468 {
1469 struct perf_event_context *ctx = event->ctx;
1470 enum event_type_t event_type;
1471
1472 lockdep_assert_held(&ctx->lock);
1473
1474 /*
1475 * It's 'group type', really, because if our group leader is
1476 * pinned, so are we.
1477 */
1478 if (event->group_leader != event)
1479 event = event->group_leader;
1480
1481 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482 if (!ctx->task)
1483 event_type |= EVENT_CPU;
1484
1485 return event_type;
1486 }
1487
1488 /*
1489 * Helper function to initialize event group nodes.
1490 */
1491 static void init_event_group(struct perf_event *event)
1492 {
1493 RB_CLEAR_NODE(&event->group_node);
1494 event->group_index = 0;
1495 }
1496
1497 /*
1498 * Extract pinned or flexible groups from the context
1499 * based on event attrs bits.
1500 */
1501 static struct perf_event_groups *
1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1503 {
1504 if (event->attr.pinned)
1505 return &ctx->pinned_groups;
1506 else
1507 return &ctx->flexible_groups;
1508 }
1509
1510 /*
1511 * Helper function to initializes perf_event_group trees.
1512 */
1513 static void perf_event_groups_init(struct perf_event_groups *groups)
1514 {
1515 groups->tree = RB_ROOT;
1516 groups->index = 0;
1517 }
1518
1519 /*
1520 * Compare function for event groups;
1521 *
1522 * Implements complex key that first sorts by CPU and then by virtual index
1523 * which provides ordering when rotating groups for the same CPU.
1524 */
1525 static bool
1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1527 {
1528 if (left->cpu < right->cpu)
1529 return true;
1530 if (left->cpu > right->cpu)
1531 return false;
1532
1533 if (left->group_index < right->group_index)
1534 return true;
1535 if (left->group_index > right->group_index)
1536 return false;
1537
1538 return false;
1539 }
1540
1541 /*
1542 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543 * key (see perf_event_groups_less). This places it last inside the CPU
1544 * subtree.
1545 */
1546 static void
1547 perf_event_groups_insert(struct perf_event_groups *groups,
1548 struct perf_event *event)
1549 {
1550 struct perf_event *node_event;
1551 struct rb_node *parent;
1552 struct rb_node **node;
1553
1554 event->group_index = ++groups->index;
1555
1556 node = &groups->tree.rb_node;
1557 parent = *node;
1558
1559 while (*node) {
1560 parent = *node;
1561 node_event = container_of(*node, struct perf_event, group_node);
1562
1563 if (perf_event_groups_less(event, node_event))
1564 node = &parent->rb_left;
1565 else
1566 node = &parent->rb_right;
1567 }
1568
1569 rb_link_node(&event->group_node, parent, node);
1570 rb_insert_color(&event->group_node, &groups->tree);
1571 }
1572
1573 /*
1574 * Helper function to insert event into the pinned or flexible groups.
1575 */
1576 static void
1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578 {
1579 struct perf_event_groups *groups;
1580
1581 groups = get_event_groups(event, ctx);
1582 perf_event_groups_insert(groups, event);
1583 }
1584
1585 /*
1586 * Delete a group from a tree.
1587 */
1588 static void
1589 perf_event_groups_delete(struct perf_event_groups *groups,
1590 struct perf_event *event)
1591 {
1592 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593 RB_EMPTY_ROOT(&groups->tree));
1594
1595 rb_erase(&event->group_node, &groups->tree);
1596 init_event_group(event);
1597 }
1598
1599 /*
1600 * Helper function to delete event from its groups.
1601 */
1602 static void
1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604 {
1605 struct perf_event_groups *groups;
1606
1607 groups = get_event_groups(event, ctx);
1608 perf_event_groups_delete(groups, event);
1609 }
1610
1611 /*
1612 * Get the leftmost event in the @cpu subtree.
1613 */
1614 static struct perf_event *
1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616 {
1617 struct perf_event *node_event = NULL, *match = NULL;
1618 struct rb_node *node = groups->tree.rb_node;
1619
1620 while (node) {
1621 node_event = container_of(node, struct perf_event, group_node);
1622
1623 if (cpu < node_event->cpu) {
1624 node = node->rb_left;
1625 } else if (cpu > node_event->cpu) {
1626 node = node->rb_right;
1627 } else {
1628 match = node_event;
1629 node = node->rb_left;
1630 }
1631 }
1632
1633 return match;
1634 }
1635
1636 /*
1637 * Like rb_entry_next_safe() for the @cpu subtree.
1638 */
1639 static struct perf_event *
1640 perf_event_groups_next(struct perf_event *event)
1641 {
1642 struct perf_event *next;
1643
1644 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645 if (next && next->cpu == event->cpu)
1646 return next;
1647
1648 return NULL;
1649 }
1650
1651 /*
1652 * Iterate through the whole groups tree.
1653 */
1654 #define perf_event_groups_for_each(event, groups) \
1655 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1656 typeof(*event), group_node); event; \
1657 event = rb_entry_safe(rb_next(&event->group_node), \
1658 typeof(*event), group_node))
1659
1660 /*
1661 * Add an event from the lists for its context.
1662 * Must be called with ctx->mutex and ctx->lock held.
1663 */
1664 static void
1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1666 {
1667 lockdep_assert_held(&ctx->lock);
1668
1669 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670 event->attach_state |= PERF_ATTACH_CONTEXT;
1671
1672 event->tstamp = perf_event_time(event);
1673
1674 /*
1675 * If we're a stand alone event or group leader, we go to the context
1676 * list, group events are kept attached to the group so that
1677 * perf_group_detach can, at all times, locate all siblings.
1678 */
1679 if (event->group_leader == event) {
1680 event->group_caps = event->event_caps;
1681 add_event_to_groups(event, ctx);
1682 }
1683
1684 list_update_cgroup_event(event, ctx, true);
1685
1686 list_add_rcu(&event->event_entry, &ctx->event_list);
1687 ctx->nr_events++;
1688 if (event->attr.inherit_stat)
1689 ctx->nr_stat++;
1690
1691 ctx->generation++;
1692 }
1693
1694 /*
1695 * Initialize event state based on the perf_event_attr::disabled.
1696 */
1697 static inline void perf_event__state_init(struct perf_event *event)
1698 {
1699 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700 PERF_EVENT_STATE_INACTIVE;
1701 }
1702
1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1704 {
1705 int entry = sizeof(u64); /* value */
1706 int size = 0;
1707 int nr = 1;
1708
1709 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710 size += sizeof(u64);
1711
1712 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713 size += sizeof(u64);
1714
1715 if (event->attr.read_format & PERF_FORMAT_ID)
1716 entry += sizeof(u64);
1717
1718 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1719 nr += nr_siblings;
1720 size += sizeof(u64);
1721 }
1722
1723 size += entry * nr;
1724 event->read_size = size;
1725 }
1726
1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1728 {
1729 struct perf_sample_data *data;
1730 u16 size = 0;
1731
1732 if (sample_type & PERF_SAMPLE_IP)
1733 size += sizeof(data->ip);
1734
1735 if (sample_type & PERF_SAMPLE_ADDR)
1736 size += sizeof(data->addr);
1737
1738 if (sample_type & PERF_SAMPLE_PERIOD)
1739 size += sizeof(data->period);
1740
1741 if (sample_type & PERF_SAMPLE_WEIGHT)
1742 size += sizeof(data->weight);
1743
1744 if (sample_type & PERF_SAMPLE_READ)
1745 size += event->read_size;
1746
1747 if (sample_type & PERF_SAMPLE_DATA_SRC)
1748 size += sizeof(data->data_src.val);
1749
1750 if (sample_type & PERF_SAMPLE_TRANSACTION)
1751 size += sizeof(data->txn);
1752
1753 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754 size += sizeof(data->phys_addr);
1755
1756 event->header_size = size;
1757 }
1758
1759 /*
1760 * Called at perf_event creation and when events are attached/detached from a
1761 * group.
1762 */
1763 static void perf_event__header_size(struct perf_event *event)
1764 {
1765 __perf_event_read_size(event,
1766 event->group_leader->nr_siblings);
1767 __perf_event_header_size(event, event->attr.sample_type);
1768 }
1769
1770 static void perf_event__id_header_size(struct perf_event *event)
1771 {
1772 struct perf_sample_data *data;
1773 u64 sample_type = event->attr.sample_type;
1774 u16 size = 0;
1775
1776 if (sample_type & PERF_SAMPLE_TID)
1777 size += sizeof(data->tid_entry);
1778
1779 if (sample_type & PERF_SAMPLE_TIME)
1780 size += sizeof(data->time);
1781
1782 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783 size += sizeof(data->id);
1784
1785 if (sample_type & PERF_SAMPLE_ID)
1786 size += sizeof(data->id);
1787
1788 if (sample_type & PERF_SAMPLE_STREAM_ID)
1789 size += sizeof(data->stream_id);
1790
1791 if (sample_type & PERF_SAMPLE_CPU)
1792 size += sizeof(data->cpu_entry);
1793
1794 event->id_header_size = size;
1795 }
1796
1797 static bool perf_event_validate_size(struct perf_event *event)
1798 {
1799 /*
1800 * The values computed here will be over-written when we actually
1801 * attach the event.
1802 */
1803 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805 perf_event__id_header_size(event);
1806
1807 /*
1808 * Sum the lot; should not exceed the 64k limit we have on records.
1809 * Conservative limit to allow for callchains and other variable fields.
1810 */
1811 if (event->read_size + event->header_size +
1812 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813 return false;
1814
1815 return true;
1816 }
1817
1818 static void perf_group_attach(struct perf_event *event)
1819 {
1820 struct perf_event *group_leader = event->group_leader, *pos;
1821
1822 lockdep_assert_held(&event->ctx->lock);
1823
1824 /*
1825 * We can have double attach due to group movement in perf_event_open.
1826 */
1827 if (event->attach_state & PERF_ATTACH_GROUP)
1828 return;
1829
1830 event->attach_state |= PERF_ATTACH_GROUP;
1831
1832 if (group_leader == event)
1833 return;
1834
1835 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836
1837 group_leader->group_caps &= event->event_caps;
1838
1839 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1840 group_leader->nr_siblings++;
1841
1842 perf_event__header_size(group_leader);
1843
1844 for_each_sibling_event(pos, group_leader)
1845 perf_event__header_size(pos);
1846 }
1847
1848 /*
1849 * Remove an event from the lists for its context.
1850 * Must be called with ctx->mutex and ctx->lock held.
1851 */
1852 static void
1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1854 {
1855 WARN_ON_ONCE(event->ctx != ctx);
1856 lockdep_assert_held(&ctx->lock);
1857
1858 /*
1859 * We can have double detach due to exit/hot-unplug + close.
1860 */
1861 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1862 return;
1863
1864 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865
1866 list_update_cgroup_event(event, ctx, false);
1867
1868 ctx->nr_events--;
1869 if (event->attr.inherit_stat)
1870 ctx->nr_stat--;
1871
1872 list_del_rcu(&event->event_entry);
1873
1874 if (event->group_leader == event)
1875 del_event_from_groups(event, ctx);
1876
1877 /*
1878 * If event was in error state, then keep it
1879 * that way, otherwise bogus counts will be
1880 * returned on read(). The only way to get out
1881 * of error state is by explicit re-enabling
1882 * of the event
1883 */
1884 if (event->state > PERF_EVENT_STATE_OFF)
1885 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1886
1887 ctx->generation++;
1888 }
1889
1890 static void perf_group_detach(struct perf_event *event)
1891 {
1892 struct perf_event *sibling, *tmp;
1893 struct perf_event_context *ctx = event->ctx;
1894
1895 lockdep_assert_held(&ctx->lock);
1896
1897 /*
1898 * We can have double detach due to exit/hot-unplug + close.
1899 */
1900 if (!(event->attach_state & PERF_ATTACH_GROUP))
1901 return;
1902
1903 event->attach_state &= ~PERF_ATTACH_GROUP;
1904
1905 /*
1906 * If this is a sibling, remove it from its group.
1907 */
1908 if (event->group_leader != event) {
1909 list_del_init(&event->sibling_list);
1910 event->group_leader->nr_siblings--;
1911 goto out;
1912 }
1913
1914 /*
1915 * If this was a group event with sibling events then
1916 * upgrade the siblings to singleton events by adding them
1917 * to whatever list we are on.
1918 */
1919 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1920
1921 sibling->group_leader = sibling;
1922 list_del_init(&sibling->sibling_list);
1923
1924 /* Inherit group flags from the previous leader */
1925 sibling->group_caps = event->group_caps;
1926
1927 if (!RB_EMPTY_NODE(&event->group_node)) {
1928 add_event_to_groups(sibling, event->ctx);
1929
1930 if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1931 struct list_head *list = sibling->attr.pinned ?
1932 &ctx->pinned_active : &ctx->flexible_active;
1933
1934 list_add_tail(&sibling->active_list, list);
1935 }
1936 }
1937
1938 WARN_ON_ONCE(sibling->ctx != event->ctx);
1939 }
1940
1941 out:
1942 perf_event__header_size(event->group_leader);
1943
1944 for_each_sibling_event(tmp, event->group_leader)
1945 perf_event__header_size(tmp);
1946 }
1947
1948 static bool is_orphaned_event(struct perf_event *event)
1949 {
1950 return event->state == PERF_EVENT_STATE_DEAD;
1951 }
1952
1953 static inline int __pmu_filter_match(struct perf_event *event)
1954 {
1955 struct pmu *pmu = event->pmu;
1956 return pmu->filter_match ? pmu->filter_match(event) : 1;
1957 }
1958
1959 /*
1960 * Check whether we should attempt to schedule an event group based on
1961 * PMU-specific filtering. An event group can consist of HW and SW events,
1962 * potentially with a SW leader, so we must check all the filters, to
1963 * determine whether a group is schedulable:
1964 */
1965 static inline int pmu_filter_match(struct perf_event *event)
1966 {
1967 struct perf_event *sibling;
1968
1969 if (!__pmu_filter_match(event))
1970 return 0;
1971
1972 for_each_sibling_event(sibling, event) {
1973 if (!__pmu_filter_match(sibling))
1974 return 0;
1975 }
1976
1977 return 1;
1978 }
1979
1980 static inline int
1981 event_filter_match(struct perf_event *event)
1982 {
1983 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1984 perf_cgroup_match(event) && pmu_filter_match(event);
1985 }
1986
1987 static void
1988 event_sched_out(struct perf_event *event,
1989 struct perf_cpu_context *cpuctx,
1990 struct perf_event_context *ctx)
1991 {
1992 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1993
1994 WARN_ON_ONCE(event->ctx != ctx);
1995 lockdep_assert_held(&ctx->lock);
1996
1997 if (event->state != PERF_EVENT_STATE_ACTIVE)
1998 return;
1999
2000 /*
2001 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2002 * we can schedule events _OUT_ individually through things like
2003 * __perf_remove_from_context().
2004 */
2005 list_del_init(&event->active_list);
2006
2007 perf_pmu_disable(event->pmu);
2008
2009 event->pmu->del(event, 0);
2010 event->oncpu = -1;
2011
2012 if (event->pending_disable) {
2013 event->pending_disable = 0;
2014 state = PERF_EVENT_STATE_OFF;
2015 }
2016 perf_event_set_state(event, state);
2017
2018 if (!is_software_event(event))
2019 cpuctx->active_oncpu--;
2020 if (!--ctx->nr_active)
2021 perf_event_ctx_deactivate(ctx);
2022 if (event->attr.freq && event->attr.sample_freq)
2023 ctx->nr_freq--;
2024 if (event->attr.exclusive || !cpuctx->active_oncpu)
2025 cpuctx->exclusive = 0;
2026
2027 perf_pmu_enable(event->pmu);
2028 }
2029
2030 static void
2031 group_sched_out(struct perf_event *group_event,
2032 struct perf_cpu_context *cpuctx,
2033 struct perf_event_context *ctx)
2034 {
2035 struct perf_event *event;
2036
2037 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2038 return;
2039
2040 perf_pmu_disable(ctx->pmu);
2041
2042 event_sched_out(group_event, cpuctx, ctx);
2043
2044 /*
2045 * Schedule out siblings (if any):
2046 */
2047 for_each_sibling_event(event, group_event)
2048 event_sched_out(event, cpuctx, ctx);
2049
2050 perf_pmu_enable(ctx->pmu);
2051
2052 if (group_event->attr.exclusive)
2053 cpuctx->exclusive = 0;
2054 }
2055
2056 #define DETACH_GROUP 0x01UL
2057
2058 /*
2059 * Cross CPU call to remove a performance event
2060 *
2061 * We disable the event on the hardware level first. After that we
2062 * remove it from the context list.
2063 */
2064 static void
2065 __perf_remove_from_context(struct perf_event *event,
2066 struct perf_cpu_context *cpuctx,
2067 struct perf_event_context *ctx,
2068 void *info)
2069 {
2070 unsigned long flags = (unsigned long)info;
2071
2072 if (ctx->is_active & EVENT_TIME) {
2073 update_context_time(ctx);
2074 update_cgrp_time_from_cpuctx(cpuctx);
2075 }
2076
2077 event_sched_out(event, cpuctx, ctx);
2078 if (flags & DETACH_GROUP)
2079 perf_group_detach(event);
2080 list_del_event(event, ctx);
2081
2082 if (!ctx->nr_events && ctx->is_active) {
2083 ctx->is_active = 0;
2084 if (ctx->task) {
2085 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2086 cpuctx->task_ctx = NULL;
2087 }
2088 }
2089 }
2090
2091 /*
2092 * Remove the event from a task's (or a CPU's) list of events.
2093 *
2094 * If event->ctx is a cloned context, callers must make sure that
2095 * every task struct that event->ctx->task could possibly point to
2096 * remains valid. This is OK when called from perf_release since
2097 * that only calls us on the top-level context, which can't be a clone.
2098 * When called from perf_event_exit_task, it's OK because the
2099 * context has been detached from its task.
2100 */
2101 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2102 {
2103 struct perf_event_context *ctx = event->ctx;
2104
2105 lockdep_assert_held(&ctx->mutex);
2106
2107 event_function_call(event, __perf_remove_from_context, (void *)flags);
2108
2109 /*
2110 * The above event_function_call() can NO-OP when it hits
2111 * TASK_TOMBSTONE. In that case we must already have been detached
2112 * from the context (by perf_event_exit_event()) but the grouping
2113 * might still be in-tact.
2114 */
2115 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2116 if ((flags & DETACH_GROUP) &&
2117 (event->attach_state & PERF_ATTACH_GROUP)) {
2118 /*
2119 * Since in that case we cannot possibly be scheduled, simply
2120 * detach now.
2121 */
2122 raw_spin_lock_irq(&ctx->lock);
2123 perf_group_detach(event);
2124 raw_spin_unlock_irq(&ctx->lock);
2125 }
2126 }
2127
2128 /*
2129 * Cross CPU call to disable a performance event
2130 */
2131 static void __perf_event_disable(struct perf_event *event,
2132 struct perf_cpu_context *cpuctx,
2133 struct perf_event_context *ctx,
2134 void *info)
2135 {
2136 if (event->state < PERF_EVENT_STATE_INACTIVE)
2137 return;
2138
2139 if (ctx->is_active & EVENT_TIME) {
2140 update_context_time(ctx);
2141 update_cgrp_time_from_event(event);
2142 }
2143
2144 if (event == event->group_leader)
2145 group_sched_out(event, cpuctx, ctx);
2146 else
2147 event_sched_out(event, cpuctx, ctx);
2148
2149 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2150 }
2151
2152 /*
2153 * Disable an event.
2154 *
2155 * If event->ctx is a cloned context, callers must make sure that
2156 * every task struct that event->ctx->task could possibly point to
2157 * remains valid. This condition is satisifed when called through
2158 * perf_event_for_each_child or perf_event_for_each because they
2159 * hold the top-level event's child_mutex, so any descendant that
2160 * goes to exit will block in perf_event_exit_event().
2161 *
2162 * When called from perf_pending_event it's OK because event->ctx
2163 * is the current context on this CPU and preemption is disabled,
2164 * hence we can't get into perf_event_task_sched_out for this context.
2165 */
2166 static void _perf_event_disable(struct perf_event *event)
2167 {
2168 struct perf_event_context *ctx = event->ctx;
2169
2170 raw_spin_lock_irq(&ctx->lock);
2171 if (event->state <= PERF_EVENT_STATE_OFF) {
2172 raw_spin_unlock_irq(&ctx->lock);
2173 return;
2174 }
2175 raw_spin_unlock_irq(&ctx->lock);
2176
2177 event_function_call(event, __perf_event_disable, NULL);
2178 }
2179
2180 void perf_event_disable_local(struct perf_event *event)
2181 {
2182 event_function_local(event, __perf_event_disable, NULL);
2183 }
2184
2185 /*
2186 * Strictly speaking kernel users cannot create groups and therefore this
2187 * interface does not need the perf_event_ctx_lock() magic.
2188 */
2189 void perf_event_disable(struct perf_event *event)
2190 {
2191 struct perf_event_context *ctx;
2192
2193 ctx = perf_event_ctx_lock(event);
2194 _perf_event_disable(event);
2195 perf_event_ctx_unlock(event, ctx);
2196 }
2197 EXPORT_SYMBOL_GPL(perf_event_disable);
2198
2199 void perf_event_disable_inatomic(struct perf_event *event)
2200 {
2201 event->pending_disable = 1;
2202 irq_work_queue(&event->pending);
2203 }
2204
2205 static void perf_set_shadow_time(struct perf_event *event,
2206 struct perf_event_context *ctx)
2207 {
2208 /*
2209 * use the correct time source for the time snapshot
2210 *
2211 * We could get by without this by leveraging the
2212 * fact that to get to this function, the caller
2213 * has most likely already called update_context_time()
2214 * and update_cgrp_time_xx() and thus both timestamp
2215 * are identical (or very close). Given that tstamp is,
2216 * already adjusted for cgroup, we could say that:
2217 * tstamp - ctx->timestamp
2218 * is equivalent to
2219 * tstamp - cgrp->timestamp.
2220 *
2221 * Then, in perf_output_read(), the calculation would
2222 * work with no changes because:
2223 * - event is guaranteed scheduled in
2224 * - no scheduled out in between
2225 * - thus the timestamp would be the same
2226 *
2227 * But this is a bit hairy.
2228 *
2229 * So instead, we have an explicit cgroup call to remain
2230 * within the time time source all along. We believe it
2231 * is cleaner and simpler to understand.
2232 */
2233 if (is_cgroup_event(event))
2234 perf_cgroup_set_shadow_time(event, event->tstamp);
2235 else
2236 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2237 }
2238
2239 #define MAX_INTERRUPTS (~0ULL)
2240
2241 static void perf_log_throttle(struct perf_event *event, int enable);
2242 static void perf_log_itrace_start(struct perf_event *event);
2243
2244 static int
2245 event_sched_in(struct perf_event *event,
2246 struct perf_cpu_context *cpuctx,
2247 struct perf_event_context *ctx)
2248 {
2249 int ret = 0;
2250
2251 lockdep_assert_held(&ctx->lock);
2252
2253 if (event->state <= PERF_EVENT_STATE_OFF)
2254 return 0;
2255
2256 WRITE_ONCE(event->oncpu, smp_processor_id());
2257 /*
2258 * Order event::oncpu write to happen before the ACTIVE state is
2259 * visible. This allows perf_event_{stop,read}() to observe the correct
2260 * ->oncpu if it sees ACTIVE.
2261 */
2262 smp_wmb();
2263 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2264
2265 /*
2266 * Unthrottle events, since we scheduled we might have missed several
2267 * ticks already, also for a heavily scheduling task there is little
2268 * guarantee it'll get a tick in a timely manner.
2269 */
2270 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2271 perf_log_throttle(event, 1);
2272 event->hw.interrupts = 0;
2273 }
2274
2275 perf_pmu_disable(event->pmu);
2276
2277 perf_set_shadow_time(event, ctx);
2278
2279 perf_log_itrace_start(event);
2280
2281 if (event->pmu->add(event, PERF_EF_START)) {
2282 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2283 event->oncpu = -1;
2284 ret = -EAGAIN;
2285 goto out;
2286 }
2287
2288 if (!is_software_event(event))
2289 cpuctx->active_oncpu++;
2290 if (!ctx->nr_active++)
2291 perf_event_ctx_activate(ctx);
2292 if (event->attr.freq && event->attr.sample_freq)
2293 ctx->nr_freq++;
2294
2295 if (event->attr.exclusive)
2296 cpuctx->exclusive = 1;
2297
2298 out:
2299 perf_pmu_enable(event->pmu);
2300
2301 return ret;
2302 }
2303
2304 static int
2305 group_sched_in(struct perf_event *group_event,
2306 struct perf_cpu_context *cpuctx,
2307 struct perf_event_context *ctx)
2308 {
2309 struct perf_event *event, *partial_group = NULL;
2310 struct pmu *pmu = ctx->pmu;
2311
2312 if (group_event->state == PERF_EVENT_STATE_OFF)
2313 return 0;
2314
2315 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2316
2317 if (event_sched_in(group_event, cpuctx, ctx)) {
2318 pmu->cancel_txn(pmu);
2319 perf_mux_hrtimer_restart(cpuctx);
2320 return -EAGAIN;
2321 }
2322
2323 /*
2324 * Schedule in siblings as one group (if any):
2325 */
2326 for_each_sibling_event(event, group_event) {
2327 if (event_sched_in(event, cpuctx, ctx)) {
2328 partial_group = event;
2329 goto group_error;
2330 }
2331 }
2332
2333 if (!pmu->commit_txn(pmu))
2334 return 0;
2335
2336 group_error:
2337 /*
2338 * Groups can be scheduled in as one unit only, so undo any
2339 * partial group before returning:
2340 * The events up to the failed event are scheduled out normally.
2341 */
2342 for_each_sibling_event(event, group_event) {
2343 if (event == partial_group)
2344 break;
2345
2346 event_sched_out(event, cpuctx, ctx);
2347 }
2348 event_sched_out(group_event, cpuctx, ctx);
2349
2350 pmu->cancel_txn(pmu);
2351
2352 perf_mux_hrtimer_restart(cpuctx);
2353
2354 return -EAGAIN;
2355 }
2356
2357 /*
2358 * Work out whether we can put this event group on the CPU now.
2359 */
2360 static int group_can_go_on(struct perf_event *event,
2361 struct perf_cpu_context *cpuctx,
2362 int can_add_hw)
2363 {
2364 /*
2365 * Groups consisting entirely of software events can always go on.
2366 */
2367 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2368 return 1;
2369 /*
2370 * If an exclusive group is already on, no other hardware
2371 * events can go on.
2372 */
2373 if (cpuctx->exclusive)
2374 return 0;
2375 /*
2376 * If this group is exclusive and there are already
2377 * events on the CPU, it can't go on.
2378 */
2379 if (event->attr.exclusive && cpuctx->active_oncpu)
2380 return 0;
2381 /*
2382 * Otherwise, try to add it if all previous groups were able
2383 * to go on.
2384 */
2385 return can_add_hw;
2386 }
2387
2388 static void add_event_to_ctx(struct perf_event *event,
2389 struct perf_event_context *ctx)
2390 {
2391 list_add_event(event, ctx);
2392 perf_group_attach(event);
2393 }
2394
2395 static void ctx_sched_out(struct perf_event_context *ctx,
2396 struct perf_cpu_context *cpuctx,
2397 enum event_type_t event_type);
2398 static void
2399 ctx_sched_in(struct perf_event_context *ctx,
2400 struct perf_cpu_context *cpuctx,
2401 enum event_type_t event_type,
2402 struct task_struct *task);
2403
2404 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2405 struct perf_event_context *ctx,
2406 enum event_type_t event_type)
2407 {
2408 if (!cpuctx->task_ctx)
2409 return;
2410
2411 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2412 return;
2413
2414 ctx_sched_out(ctx, cpuctx, event_type);
2415 }
2416
2417 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2418 struct perf_event_context *ctx,
2419 struct task_struct *task)
2420 {
2421 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2422 if (ctx)
2423 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2424 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2425 if (ctx)
2426 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2427 }
2428
2429 /*
2430 * We want to maintain the following priority of scheduling:
2431 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2432 * - task pinned (EVENT_PINNED)
2433 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2434 * - task flexible (EVENT_FLEXIBLE).
2435 *
2436 * In order to avoid unscheduling and scheduling back in everything every
2437 * time an event is added, only do it for the groups of equal priority and
2438 * below.
2439 *
2440 * This can be called after a batch operation on task events, in which case
2441 * event_type is a bit mask of the types of events involved. For CPU events,
2442 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2443 */
2444 static void ctx_resched(struct perf_cpu_context *cpuctx,
2445 struct perf_event_context *task_ctx,
2446 enum event_type_t event_type)
2447 {
2448 enum event_type_t ctx_event_type;
2449 bool cpu_event = !!(event_type & EVENT_CPU);
2450
2451 /*
2452 * If pinned groups are involved, flexible groups also need to be
2453 * scheduled out.
2454 */
2455 if (event_type & EVENT_PINNED)
2456 event_type |= EVENT_FLEXIBLE;
2457
2458 ctx_event_type = event_type & EVENT_ALL;
2459
2460 perf_pmu_disable(cpuctx->ctx.pmu);
2461 if (task_ctx)
2462 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2463
2464 /*
2465 * Decide which cpu ctx groups to schedule out based on the types
2466 * of events that caused rescheduling:
2467 * - EVENT_CPU: schedule out corresponding groups;
2468 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2469 * - otherwise, do nothing more.
2470 */
2471 if (cpu_event)
2472 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2473 else if (ctx_event_type & EVENT_PINNED)
2474 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2475
2476 perf_event_sched_in(cpuctx, task_ctx, current);
2477 perf_pmu_enable(cpuctx->ctx.pmu);
2478 }
2479
2480 /*
2481 * Cross CPU call to install and enable a performance event
2482 *
2483 * Very similar to remote_function() + event_function() but cannot assume that
2484 * things like ctx->is_active and cpuctx->task_ctx are set.
2485 */
2486 static int __perf_install_in_context(void *info)
2487 {
2488 struct perf_event *event = info;
2489 struct perf_event_context *ctx = event->ctx;
2490 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2491 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2492 bool reprogram = true;
2493 int ret = 0;
2494
2495 raw_spin_lock(&cpuctx->ctx.lock);
2496 if (ctx->task) {
2497 raw_spin_lock(&ctx->lock);
2498 task_ctx = ctx;
2499
2500 reprogram = (ctx->task == current);
2501
2502 /*
2503 * If the task is running, it must be running on this CPU,
2504 * otherwise we cannot reprogram things.
2505 *
2506 * If its not running, we don't care, ctx->lock will
2507 * serialize against it becoming runnable.
2508 */
2509 if (task_curr(ctx->task) && !reprogram) {
2510 ret = -ESRCH;
2511 goto unlock;
2512 }
2513
2514 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2515 } else if (task_ctx) {
2516 raw_spin_lock(&task_ctx->lock);
2517 }
2518
2519 #ifdef CONFIG_CGROUP_PERF
2520 if (is_cgroup_event(event)) {
2521 /*
2522 * If the current cgroup doesn't match the event's
2523 * cgroup, we should not try to schedule it.
2524 */
2525 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2526 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2527 event->cgrp->css.cgroup);
2528 }
2529 #endif
2530
2531 if (reprogram) {
2532 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2533 add_event_to_ctx(event, ctx);
2534 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2535 } else {
2536 add_event_to_ctx(event, ctx);
2537 }
2538
2539 unlock:
2540 perf_ctx_unlock(cpuctx, task_ctx);
2541
2542 return ret;
2543 }
2544
2545 /*
2546 * Attach a performance event to a context.
2547 *
2548 * Very similar to event_function_call, see comment there.
2549 */
2550 static void
2551 perf_install_in_context(struct perf_event_context *ctx,
2552 struct perf_event *event,
2553 int cpu)
2554 {
2555 struct task_struct *task = READ_ONCE(ctx->task);
2556
2557 lockdep_assert_held(&ctx->mutex);
2558
2559 if (event->cpu != -1)
2560 event->cpu = cpu;
2561
2562 /*
2563 * Ensures that if we can observe event->ctx, both the event and ctx
2564 * will be 'complete'. See perf_iterate_sb_cpu().
2565 */
2566 smp_store_release(&event->ctx, ctx);
2567
2568 if (!task) {
2569 cpu_function_call(cpu, __perf_install_in_context, event);
2570 return;
2571 }
2572
2573 /*
2574 * Should not happen, we validate the ctx is still alive before calling.
2575 */
2576 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2577 return;
2578
2579 /*
2580 * Installing events is tricky because we cannot rely on ctx->is_active
2581 * to be set in case this is the nr_events 0 -> 1 transition.
2582 *
2583 * Instead we use task_curr(), which tells us if the task is running.
2584 * However, since we use task_curr() outside of rq::lock, we can race
2585 * against the actual state. This means the result can be wrong.
2586 *
2587 * If we get a false positive, we retry, this is harmless.
2588 *
2589 * If we get a false negative, things are complicated. If we are after
2590 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2591 * value must be correct. If we're before, it doesn't matter since
2592 * perf_event_context_sched_in() will program the counter.
2593 *
2594 * However, this hinges on the remote context switch having observed
2595 * our task->perf_event_ctxp[] store, such that it will in fact take
2596 * ctx::lock in perf_event_context_sched_in().
2597 *
2598 * We do this by task_function_call(), if the IPI fails to hit the task
2599 * we know any future context switch of task must see the
2600 * perf_event_ctpx[] store.
2601 */
2602
2603 /*
2604 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2605 * task_cpu() load, such that if the IPI then does not find the task
2606 * running, a future context switch of that task must observe the
2607 * store.
2608 */
2609 smp_mb();
2610 again:
2611 if (!task_function_call(task, __perf_install_in_context, event))
2612 return;
2613
2614 raw_spin_lock_irq(&ctx->lock);
2615 task = ctx->task;
2616 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2617 /*
2618 * Cannot happen because we already checked above (which also
2619 * cannot happen), and we hold ctx->mutex, which serializes us
2620 * against perf_event_exit_task_context().
2621 */
2622 raw_spin_unlock_irq(&ctx->lock);
2623 return;
2624 }
2625 /*
2626 * If the task is not running, ctx->lock will avoid it becoming so,
2627 * thus we can safely install the event.
2628 */
2629 if (task_curr(task)) {
2630 raw_spin_unlock_irq(&ctx->lock);
2631 goto again;
2632 }
2633 add_event_to_ctx(event, ctx);
2634 raw_spin_unlock_irq(&ctx->lock);
2635 }
2636
2637 /*
2638 * Cross CPU call to enable a performance event
2639 */
2640 static void __perf_event_enable(struct perf_event *event,
2641 struct perf_cpu_context *cpuctx,
2642 struct perf_event_context *ctx,
2643 void *info)
2644 {
2645 struct perf_event *leader = event->group_leader;
2646 struct perf_event_context *task_ctx;
2647
2648 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2649 event->state <= PERF_EVENT_STATE_ERROR)
2650 return;
2651
2652 if (ctx->is_active)
2653 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2654
2655 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2656
2657 if (!ctx->is_active)
2658 return;
2659
2660 if (!event_filter_match(event)) {
2661 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2662 return;
2663 }
2664
2665 /*
2666 * If the event is in a group and isn't the group leader,
2667 * then don't put it on unless the group is on.
2668 */
2669 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2670 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2671 return;
2672 }
2673
2674 task_ctx = cpuctx->task_ctx;
2675 if (ctx->task)
2676 WARN_ON_ONCE(task_ctx != ctx);
2677
2678 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2679 }
2680
2681 /*
2682 * Enable an event.
2683 *
2684 * If event->ctx is a cloned context, callers must make sure that
2685 * every task struct that event->ctx->task could possibly point to
2686 * remains valid. This condition is satisfied when called through
2687 * perf_event_for_each_child or perf_event_for_each as described
2688 * for perf_event_disable.
2689 */
2690 static void _perf_event_enable(struct perf_event *event)
2691 {
2692 struct perf_event_context *ctx = event->ctx;
2693
2694 raw_spin_lock_irq(&ctx->lock);
2695 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2696 event->state < PERF_EVENT_STATE_ERROR) {
2697 raw_spin_unlock_irq(&ctx->lock);
2698 return;
2699 }
2700
2701 /*
2702 * If the event is in error state, clear that first.
2703 *
2704 * That way, if we see the event in error state below, we know that it
2705 * has gone back into error state, as distinct from the task having
2706 * been scheduled away before the cross-call arrived.
2707 */
2708 if (event->state == PERF_EVENT_STATE_ERROR)
2709 event->state = PERF_EVENT_STATE_OFF;
2710 raw_spin_unlock_irq(&ctx->lock);
2711
2712 event_function_call(event, __perf_event_enable, NULL);
2713 }
2714
2715 /*
2716 * See perf_event_disable();
2717 */
2718 void perf_event_enable(struct perf_event *event)
2719 {
2720 struct perf_event_context *ctx;
2721
2722 ctx = perf_event_ctx_lock(event);
2723 _perf_event_enable(event);
2724 perf_event_ctx_unlock(event, ctx);
2725 }
2726 EXPORT_SYMBOL_GPL(perf_event_enable);
2727
2728 struct stop_event_data {
2729 struct perf_event *event;
2730 unsigned int restart;
2731 };
2732
2733 static int __perf_event_stop(void *info)
2734 {
2735 struct stop_event_data *sd = info;
2736 struct perf_event *event = sd->event;
2737
2738 /* if it's already INACTIVE, do nothing */
2739 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2740 return 0;
2741
2742 /* matches smp_wmb() in event_sched_in() */
2743 smp_rmb();
2744
2745 /*
2746 * There is a window with interrupts enabled before we get here,
2747 * so we need to check again lest we try to stop another CPU's event.
2748 */
2749 if (READ_ONCE(event->oncpu) != smp_processor_id())
2750 return -EAGAIN;
2751
2752 event->pmu->stop(event, PERF_EF_UPDATE);
2753
2754 /*
2755 * May race with the actual stop (through perf_pmu_output_stop()),
2756 * but it is only used for events with AUX ring buffer, and such
2757 * events will refuse to restart because of rb::aux_mmap_count==0,
2758 * see comments in perf_aux_output_begin().
2759 *
2760 * Since this is happening on an event-local CPU, no trace is lost
2761 * while restarting.
2762 */
2763 if (sd->restart)
2764 event->pmu->start(event, 0);
2765
2766 return 0;
2767 }
2768
2769 static int perf_event_stop(struct perf_event *event, int restart)
2770 {
2771 struct stop_event_data sd = {
2772 .event = event,
2773 .restart = restart,
2774 };
2775 int ret = 0;
2776
2777 do {
2778 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2779 return 0;
2780
2781 /* matches smp_wmb() in event_sched_in() */
2782 smp_rmb();
2783
2784 /*
2785 * We only want to restart ACTIVE events, so if the event goes
2786 * inactive here (event->oncpu==-1), there's nothing more to do;
2787 * fall through with ret==-ENXIO.
2788 */
2789 ret = cpu_function_call(READ_ONCE(event->oncpu),
2790 __perf_event_stop, &sd);
2791 } while (ret == -EAGAIN);
2792
2793 return ret;
2794 }
2795
2796 /*
2797 * In order to contain the amount of racy and tricky in the address filter
2798 * configuration management, it is a two part process:
2799 *
2800 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2801 * we update the addresses of corresponding vmas in
2802 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
2803 * (p2) when an event is scheduled in (pmu::add), it calls
2804 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2805 * if the generation has changed since the previous call.
2806 *
2807 * If (p1) happens while the event is active, we restart it to force (p2).
2808 *
2809 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2810 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2811 * ioctl;
2812 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2813 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2814 * for reading;
2815 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2816 * of exec.
2817 */
2818 void perf_event_addr_filters_sync(struct perf_event *event)
2819 {
2820 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2821
2822 if (!has_addr_filter(event))
2823 return;
2824
2825 raw_spin_lock(&ifh->lock);
2826 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2827 event->pmu->addr_filters_sync(event);
2828 event->hw.addr_filters_gen = event->addr_filters_gen;
2829 }
2830 raw_spin_unlock(&ifh->lock);
2831 }
2832 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2833
2834 static int _perf_event_refresh(struct perf_event *event, int refresh)
2835 {
2836 /*
2837 * not supported on inherited events
2838 */
2839 if (event->attr.inherit || !is_sampling_event(event))
2840 return -EINVAL;
2841
2842 atomic_add(refresh, &event->event_limit);
2843 _perf_event_enable(event);
2844
2845 return 0;
2846 }
2847
2848 /*
2849 * See perf_event_disable()
2850 */
2851 int perf_event_refresh(struct perf_event *event, int refresh)
2852 {
2853 struct perf_event_context *ctx;
2854 int ret;
2855
2856 ctx = perf_event_ctx_lock(event);
2857 ret = _perf_event_refresh(event, refresh);
2858 perf_event_ctx_unlock(event, ctx);
2859
2860 return ret;
2861 }
2862 EXPORT_SYMBOL_GPL(perf_event_refresh);
2863
2864 static int perf_event_modify_breakpoint(struct perf_event *bp,
2865 struct perf_event_attr *attr)
2866 {
2867 int err;
2868
2869 _perf_event_disable(bp);
2870
2871 err = modify_user_hw_breakpoint_check(bp, attr, true);
2872
2873 if (!bp->attr.disabled)
2874 _perf_event_enable(bp);
2875
2876 return err;
2877 }
2878
2879 static int perf_event_modify_attr(struct perf_event *event,
2880 struct perf_event_attr *attr)
2881 {
2882 if (event->attr.type != attr->type)
2883 return -EINVAL;
2884
2885 switch (event->attr.type) {
2886 case PERF_TYPE_BREAKPOINT:
2887 return perf_event_modify_breakpoint(event, attr);
2888 default:
2889 /* Place holder for future additions. */
2890 return -EOPNOTSUPP;
2891 }
2892 }
2893
2894 static void ctx_sched_out(struct perf_event_context *ctx,
2895 struct perf_cpu_context *cpuctx,
2896 enum event_type_t event_type)
2897 {
2898 struct perf_event *event, *tmp;
2899 int is_active = ctx->is_active;
2900
2901 lockdep_assert_held(&ctx->lock);
2902
2903 if (likely(!ctx->nr_events)) {
2904 /*
2905 * See __perf_remove_from_context().
2906 */
2907 WARN_ON_ONCE(ctx->is_active);
2908 if (ctx->task)
2909 WARN_ON_ONCE(cpuctx->task_ctx);
2910 return;
2911 }
2912
2913 ctx->is_active &= ~event_type;
2914 if (!(ctx->is_active & EVENT_ALL))
2915 ctx->is_active = 0;
2916
2917 if (ctx->task) {
2918 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2919 if (!ctx->is_active)
2920 cpuctx->task_ctx = NULL;
2921 }
2922
2923 /*
2924 * Always update time if it was set; not only when it changes.
2925 * Otherwise we can 'forget' to update time for any but the last
2926 * context we sched out. For example:
2927 *
2928 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2929 * ctx_sched_out(.event_type = EVENT_PINNED)
2930 *
2931 * would only update time for the pinned events.
2932 */
2933 if (is_active & EVENT_TIME) {
2934 /* update (and stop) ctx time */
2935 update_context_time(ctx);
2936 update_cgrp_time_from_cpuctx(cpuctx);
2937 }
2938
2939 is_active ^= ctx->is_active; /* changed bits */
2940
2941 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2942 return;
2943
2944 perf_pmu_disable(ctx->pmu);
2945 if (is_active & EVENT_PINNED) {
2946 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2947 group_sched_out(event, cpuctx, ctx);
2948 }
2949
2950 if (is_active & EVENT_FLEXIBLE) {
2951 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2952 group_sched_out(event, cpuctx, ctx);
2953 }
2954 perf_pmu_enable(ctx->pmu);
2955 }
2956
2957 /*
2958 * Test whether two contexts are equivalent, i.e. whether they have both been
2959 * cloned from the same version of the same context.
2960 *
2961 * Equivalence is measured using a generation number in the context that is
2962 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2963 * and list_del_event().
2964 */
2965 static int context_equiv(struct perf_event_context *ctx1,
2966 struct perf_event_context *ctx2)
2967 {
2968 lockdep_assert_held(&ctx1->lock);
2969 lockdep_assert_held(&ctx2->lock);
2970
2971 /* Pinning disables the swap optimization */
2972 if (ctx1->pin_count || ctx2->pin_count)
2973 return 0;
2974
2975 /* If ctx1 is the parent of ctx2 */
2976 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2977 return 1;
2978
2979 /* If ctx2 is the parent of ctx1 */
2980 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2981 return 1;
2982
2983 /*
2984 * If ctx1 and ctx2 have the same parent; we flatten the parent
2985 * hierarchy, see perf_event_init_context().
2986 */
2987 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2988 ctx1->parent_gen == ctx2->parent_gen)
2989 return 1;
2990
2991 /* Unmatched */
2992 return 0;
2993 }
2994
2995 static void __perf_event_sync_stat(struct perf_event *event,
2996 struct perf_event *next_event)
2997 {
2998 u64 value;
2999
3000 if (!event->attr.inherit_stat)
3001 return;
3002
3003 /*
3004 * Update the event value, we cannot use perf_event_read()
3005 * because we're in the middle of a context switch and have IRQs
3006 * disabled, which upsets smp_call_function_single(), however
3007 * we know the event must be on the current CPU, therefore we
3008 * don't need to use it.
3009 */
3010 if (event->state == PERF_EVENT_STATE_ACTIVE)
3011 event->pmu->read(event);
3012
3013 perf_event_update_time(event);
3014
3015 /*
3016 * In order to keep per-task stats reliable we need to flip the event
3017 * values when we flip the contexts.
3018 */
3019 value = local64_read(&next_event->count);
3020 value = local64_xchg(&event->count, value);
3021 local64_set(&next_event->count, value);
3022
3023 swap(event->total_time_enabled, next_event->total_time_enabled);
3024 swap(event->total_time_running, next_event->total_time_running);
3025
3026 /*
3027 * Since we swizzled the values, update the user visible data too.
3028 */
3029 perf_event_update_userpage(event);
3030 perf_event_update_userpage(next_event);
3031 }
3032
3033 static void perf_event_sync_stat(struct perf_event_context *ctx,
3034 struct perf_event_context *next_ctx)
3035 {
3036 struct perf_event *event, *next_event;
3037
3038 if (!ctx->nr_stat)
3039 return;
3040
3041 update_context_time(ctx);
3042
3043 event = list_first_entry(&ctx->event_list,
3044 struct perf_event, event_entry);
3045
3046 next_event = list_first_entry(&next_ctx->event_list,
3047 struct perf_event, event_entry);
3048
3049 while (&event->event_entry != &ctx->event_list &&
3050 &next_event->event_entry != &next_ctx->event_list) {
3051
3052 __perf_event_sync_stat(event, next_event);
3053
3054 event = list_next_entry(event, event_entry);
3055 next_event = list_next_entry(next_event, event_entry);
3056 }
3057 }
3058
3059 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3060 struct task_struct *next)
3061 {
3062 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3063 struct perf_event_context *next_ctx;
3064 struct perf_event_context *parent, *next_parent;
3065 struct perf_cpu_context *cpuctx;
3066 int do_switch = 1;
3067
3068 if (likely(!ctx))
3069 return;
3070
3071 cpuctx = __get_cpu_context(ctx);
3072 if (!cpuctx->task_ctx)
3073 return;
3074
3075 rcu_read_lock();
3076 next_ctx = next->perf_event_ctxp[ctxn];
3077 if (!next_ctx)
3078 goto unlock;
3079
3080 parent = rcu_dereference(ctx->parent_ctx);
3081 next_parent = rcu_dereference(next_ctx->parent_ctx);
3082
3083 /* If neither context have a parent context; they cannot be clones. */
3084 if (!parent && !next_parent)
3085 goto unlock;
3086
3087 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3088 /*
3089 * Looks like the two contexts are clones, so we might be
3090 * able to optimize the context switch. We lock both
3091 * contexts and check that they are clones under the
3092 * lock (including re-checking that neither has been
3093 * uncloned in the meantime). It doesn't matter which
3094 * order we take the locks because no other cpu could
3095 * be trying to lock both of these tasks.
3096 */
3097 raw_spin_lock(&ctx->lock);
3098 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3099 if (context_equiv(ctx, next_ctx)) {
3100 WRITE_ONCE(ctx->task, next);
3101 WRITE_ONCE(next_ctx->task, task);
3102
3103 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3104
3105 /*
3106 * RCU_INIT_POINTER here is safe because we've not
3107 * modified the ctx and the above modification of
3108 * ctx->task and ctx->task_ctx_data are immaterial
3109 * since those values are always verified under
3110 * ctx->lock which we're now holding.
3111 */
3112 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3113 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3114
3115 do_switch = 0;
3116
3117 perf_event_sync_stat(ctx, next_ctx);
3118 }
3119 raw_spin_unlock(&next_ctx->lock);
3120 raw_spin_unlock(&ctx->lock);
3121 }
3122 unlock:
3123 rcu_read_unlock();
3124
3125 if (do_switch) {
3126 raw_spin_lock(&ctx->lock);
3127 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3128 raw_spin_unlock(&ctx->lock);
3129 }
3130 }
3131
3132 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3133
3134 void perf_sched_cb_dec(struct pmu *pmu)
3135 {
3136 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3137
3138 this_cpu_dec(perf_sched_cb_usages);
3139
3140 if (!--cpuctx->sched_cb_usage)
3141 list_del(&cpuctx->sched_cb_entry);
3142 }
3143
3144
3145 void perf_sched_cb_inc(struct pmu *pmu)
3146 {
3147 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3148
3149 if (!cpuctx->sched_cb_usage++)
3150 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3151
3152 this_cpu_inc(perf_sched_cb_usages);
3153 }
3154
3155 /*
3156 * This function provides the context switch callback to the lower code
3157 * layer. It is invoked ONLY when the context switch callback is enabled.
3158 *
3159 * This callback is relevant even to per-cpu events; for example multi event
3160 * PEBS requires this to provide PID/TID information. This requires we flush
3161 * all queued PEBS records before we context switch to a new task.
3162 */
3163 static void perf_pmu_sched_task(struct task_struct *prev,
3164 struct task_struct *next,
3165 bool sched_in)
3166 {
3167 struct perf_cpu_context *cpuctx;
3168 struct pmu *pmu;
3169
3170 if (prev == next)
3171 return;
3172
3173 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3174 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3175
3176 if (WARN_ON_ONCE(!pmu->sched_task))
3177 continue;
3178
3179 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3180 perf_pmu_disable(pmu);
3181
3182 pmu->sched_task(cpuctx->task_ctx, sched_in);
3183
3184 perf_pmu_enable(pmu);
3185 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3186 }
3187 }
3188
3189 static void perf_event_switch(struct task_struct *task,
3190 struct task_struct *next_prev, bool sched_in);
3191
3192 #define for_each_task_context_nr(ctxn) \
3193 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3194
3195 /*
3196 * Called from scheduler to remove the events of the current task,
3197 * with interrupts disabled.
3198 *
3199 * We stop each event and update the event value in event->count.
3200 *
3201 * This does not protect us against NMI, but disable()
3202 * sets the disabled bit in the control field of event _before_
3203 * accessing the event control register. If a NMI hits, then it will
3204 * not restart the event.
3205 */
3206 void __perf_event_task_sched_out(struct task_struct *task,
3207 struct task_struct *next)
3208 {
3209 int ctxn;
3210
3211 if (__this_cpu_read(perf_sched_cb_usages))
3212 perf_pmu_sched_task(task, next, false);
3213
3214 if (atomic_read(&nr_switch_events))
3215 perf_event_switch(task, next, false);
3216
3217 for_each_task_context_nr(ctxn)
3218 perf_event_context_sched_out(task, ctxn, next);
3219
3220 /*
3221 * if cgroup events exist on this CPU, then we need
3222 * to check if we have to switch out PMU state.
3223 * cgroup event are system-wide mode only
3224 */
3225 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3226 perf_cgroup_sched_out(task, next);
3227 }
3228
3229 /*
3230 * Called with IRQs disabled
3231 */
3232 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3233 enum event_type_t event_type)
3234 {
3235 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3236 }
3237
3238 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3239 int (*func)(struct perf_event *, void *), void *data)
3240 {
3241 struct perf_event **evt, *evt1, *evt2;
3242 int ret;
3243
3244 evt1 = perf_event_groups_first(groups, -1);
3245 evt2 = perf_event_groups_first(groups, cpu);
3246
3247 while (evt1 || evt2) {
3248 if (evt1 && evt2) {
3249 if (evt1->group_index < evt2->group_index)
3250 evt = &evt1;
3251 else
3252 evt = &evt2;
3253 } else if (evt1) {
3254 evt = &evt1;
3255 } else {
3256 evt = &evt2;
3257 }
3258
3259 ret = func(*evt, data);
3260 if (ret)
3261 return ret;
3262
3263 *evt = perf_event_groups_next(*evt);
3264 }
3265
3266 return 0;
3267 }
3268
3269 struct sched_in_data {
3270 struct perf_event_context *ctx;
3271 struct perf_cpu_context *cpuctx;
3272 int can_add_hw;
3273 };
3274
3275 static int pinned_sched_in(struct perf_event *event, void *data)
3276 {
3277 struct sched_in_data *sid = data;
3278
3279 if (event->state <= PERF_EVENT_STATE_OFF)
3280 return 0;
3281
3282 if (!event_filter_match(event))
3283 return 0;
3284
3285 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3286 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3287 list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3288 }
3289
3290 /*
3291 * If this pinned group hasn't been scheduled,
3292 * put it in error state.
3293 */
3294 if (event->state == PERF_EVENT_STATE_INACTIVE)
3295 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3296
3297 return 0;
3298 }
3299
3300 static int flexible_sched_in(struct perf_event *event, void *data)
3301 {
3302 struct sched_in_data *sid = data;
3303
3304 if (event->state <= PERF_EVENT_STATE_OFF)
3305 return 0;
3306
3307 if (!event_filter_match(event))
3308 return 0;
3309
3310 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3311 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3312 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3313 else
3314 sid->can_add_hw = 0;
3315 }
3316
3317 return 0;
3318 }
3319
3320 static void
3321 ctx_pinned_sched_in(struct perf_event_context *ctx,
3322 struct perf_cpu_context *cpuctx)
3323 {
3324 struct sched_in_data sid = {
3325 .ctx = ctx,
3326 .cpuctx = cpuctx,
3327 .can_add_hw = 1,
3328 };
3329
3330 visit_groups_merge(&ctx->pinned_groups,
3331 smp_processor_id(),
3332 pinned_sched_in, &sid);
3333 }
3334
3335 static void
3336 ctx_flexible_sched_in(struct perf_event_context *ctx,
3337 struct perf_cpu_context *cpuctx)
3338 {
3339 struct sched_in_data sid = {
3340 .ctx = ctx,
3341 .cpuctx = cpuctx,
3342 .can_add_hw = 1,
3343 };
3344
3345 visit_groups_merge(&ctx->flexible_groups,
3346 smp_processor_id(),
3347 flexible_sched_in, &sid);
3348 }
3349
3350 static void
3351 ctx_sched_in(struct perf_event_context *ctx,
3352 struct perf_cpu_context *cpuctx,
3353 enum event_type_t event_type,
3354 struct task_struct *task)
3355 {
3356 int is_active = ctx->is_active;
3357 u64 now;
3358
3359 lockdep_assert_held(&ctx->lock);
3360
3361 if (likely(!ctx->nr_events))
3362 return;
3363
3364 ctx->is_active |= (event_type | EVENT_TIME);
3365 if (ctx->task) {
3366 if (!is_active)
3367 cpuctx->task_ctx = ctx;
3368 else
3369 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3370 }
3371
3372 is_active ^= ctx->is_active; /* changed bits */
3373
3374 if (is_active & EVENT_TIME) {
3375 /* start ctx time */
3376 now = perf_clock();
3377 ctx->timestamp = now;
3378 perf_cgroup_set_timestamp(task, ctx);
3379 }
3380
3381 /*
3382 * First go through the list and put on any pinned groups
3383 * in order to give them the best chance of going on.
3384 */
3385 if (is_active & EVENT_PINNED)
3386 ctx_pinned_sched_in(ctx, cpuctx);
3387
3388 /* Then walk through the lower prio flexible groups */
3389 if (is_active & EVENT_FLEXIBLE)
3390 ctx_flexible_sched_in(ctx, cpuctx);
3391 }
3392
3393 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3394 enum event_type_t event_type,
3395 struct task_struct *task)
3396 {
3397 struct perf_event_context *ctx = &cpuctx->ctx;
3398
3399 ctx_sched_in(ctx, cpuctx, event_type, task);
3400 }
3401
3402 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3403 struct task_struct *task)
3404 {
3405 struct perf_cpu_context *cpuctx;
3406
3407 cpuctx = __get_cpu_context(ctx);
3408 if (cpuctx->task_ctx == ctx)
3409 return;
3410
3411 perf_ctx_lock(cpuctx, ctx);
3412 /*
3413 * We must check ctx->nr_events while holding ctx->lock, such
3414 * that we serialize against perf_install_in_context().
3415 */
3416 if (!ctx->nr_events)
3417 goto unlock;
3418
3419 perf_pmu_disable(ctx->pmu);
3420 /*
3421 * We want to keep the following priority order:
3422 * cpu pinned (that don't need to move), task pinned,
3423 * cpu flexible, task flexible.
3424 *
3425 * However, if task's ctx is not carrying any pinned
3426 * events, no need to flip the cpuctx's events around.
3427 */
3428 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3429 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3430 perf_event_sched_in(cpuctx, ctx, task);
3431 perf_pmu_enable(ctx->pmu);
3432
3433 unlock:
3434 perf_ctx_unlock(cpuctx, ctx);
3435 }
3436
3437 /*
3438 * Called from scheduler to add the events of the current task
3439 * with interrupts disabled.
3440 *
3441 * We restore the event value and then enable it.
3442 *
3443 * This does not protect us against NMI, but enable()
3444 * sets the enabled bit in the control field of event _before_
3445 * accessing the event control register. If a NMI hits, then it will
3446 * keep the event running.
3447 */
3448 void __perf_event_task_sched_in(struct task_struct *prev,
3449 struct task_struct *task)
3450 {
3451 struct perf_event_context *ctx;
3452 int ctxn;
3453
3454 /*
3455 * If cgroup events exist on this CPU, then we need to check if we have
3456 * to switch in PMU state; cgroup event are system-wide mode only.
3457 *
3458 * Since cgroup events are CPU events, we must schedule these in before
3459 * we schedule in the task events.
3460 */
3461 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3462 perf_cgroup_sched_in(prev, task);
3463
3464 for_each_task_context_nr(ctxn) {
3465 ctx = task->perf_event_ctxp[ctxn];
3466 if (likely(!ctx))
3467 continue;
3468
3469 perf_event_context_sched_in(ctx, task);
3470 }
3471
3472 if (atomic_read(&nr_switch_events))
3473 perf_event_switch(task, prev, true);
3474
3475 if (__this_cpu_read(perf_sched_cb_usages))
3476 perf_pmu_sched_task(prev, task, true);
3477 }
3478
3479 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3480 {
3481 u64 frequency = event->attr.sample_freq;
3482 u64 sec = NSEC_PER_SEC;
3483 u64 divisor, dividend;
3484
3485 int count_fls, nsec_fls, frequency_fls, sec_fls;
3486
3487 count_fls = fls64(count);
3488 nsec_fls = fls64(nsec);
3489 frequency_fls = fls64(frequency);
3490 sec_fls = 30;
3491
3492 /*
3493 * We got @count in @nsec, with a target of sample_freq HZ
3494 * the target period becomes:
3495 *
3496 * @count * 10^9
3497 * period = -------------------
3498 * @nsec * sample_freq
3499 *
3500 */
3501
3502 /*
3503 * Reduce accuracy by one bit such that @a and @b converge
3504 * to a similar magnitude.
3505 */
3506 #define REDUCE_FLS(a, b) \
3507 do { \
3508 if (a##_fls > b##_fls) { \
3509 a >>= 1; \
3510 a##_fls--; \
3511 } else { \
3512 b >>= 1; \
3513 b##_fls--; \
3514 } \
3515 } while (0)
3516
3517 /*
3518 * Reduce accuracy until either term fits in a u64, then proceed with
3519 * the other, so that finally we can do a u64/u64 division.
3520 */
3521 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3522 REDUCE_FLS(nsec, frequency);
3523 REDUCE_FLS(sec, count);
3524 }
3525
3526 if (count_fls + sec_fls > 64) {
3527 divisor = nsec * frequency;
3528
3529 while (count_fls + sec_fls > 64) {
3530 REDUCE_FLS(count, sec);
3531 divisor >>= 1;
3532 }
3533
3534 dividend = count * sec;
3535 } else {
3536 dividend = count * sec;
3537
3538 while (nsec_fls + frequency_fls > 64) {
3539 REDUCE_FLS(nsec, frequency);
3540 dividend >>= 1;
3541 }
3542
3543 divisor = nsec * frequency;
3544 }
3545
3546 if (!divisor)
3547 return dividend;
3548
3549 return div64_u64(dividend, divisor);
3550 }
3551
3552 static DEFINE_PER_CPU(int, perf_throttled_count);
3553 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3554
3555 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3556 {
3557 struct hw_perf_event *hwc = &event->hw;
3558 s64 period, sample_period;
3559 s64 delta;
3560
3561 period = perf_calculate_period(event, nsec, count);
3562
3563 delta = (s64)(period - hwc->sample_period);
3564 delta = (delta + 7) / 8; /* low pass filter */
3565
3566 sample_period = hwc->sample_period + delta;
3567
3568 if (!sample_period)
3569 sample_period = 1;
3570
3571 hwc->sample_period = sample_period;
3572
3573 if (local64_read(&hwc->period_left) > 8*sample_period) {
3574 if (disable)
3575 event->pmu->stop(event, PERF_EF_UPDATE);
3576
3577 local64_set(&hwc->period_left, 0);
3578
3579 if (disable)
3580 event->pmu->start(event, PERF_EF_RELOAD);
3581 }
3582 }
3583
3584 /*
3585 * combine freq adjustment with unthrottling to avoid two passes over the
3586 * events. At the same time, make sure, having freq events does not change
3587 * the rate of unthrottling as that would introduce bias.
3588 */
3589 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3590 int needs_unthr)
3591 {
3592 struct perf_event *event;
3593 struct hw_perf_event *hwc;
3594 u64 now, period = TICK_NSEC;
3595 s64 delta;
3596
3597 /*
3598 * only need to iterate over all events iff:
3599 * - context have events in frequency mode (needs freq adjust)
3600 * - there are events to unthrottle on this cpu
3601 */
3602 if (!(ctx->nr_freq || needs_unthr))
3603 return;
3604
3605 raw_spin_lock(&ctx->lock);
3606 perf_pmu_disable(ctx->pmu);
3607
3608 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3609 if (event->state != PERF_EVENT_STATE_ACTIVE)
3610 continue;
3611
3612 if (!event_filter_match(event))
3613 continue;
3614
3615 perf_pmu_disable(event->pmu);
3616
3617 hwc = &event->hw;
3618
3619 if (hwc->interrupts == MAX_INTERRUPTS) {
3620 hwc->interrupts = 0;
3621 perf_log_throttle(event, 1);
3622 event->pmu->start(event, 0);
3623 }
3624
3625 if (!event->attr.freq || !event->attr.sample_freq)
3626 goto next;
3627
3628 /*
3629 * stop the event and update event->count
3630 */
3631 event->pmu->stop(event, PERF_EF_UPDATE);
3632
3633 now = local64_read(&event->count);
3634 delta = now - hwc->freq_count_stamp;
3635 hwc->freq_count_stamp = now;
3636
3637 /*
3638 * restart the event
3639 * reload only if value has changed
3640 * we have stopped the event so tell that
3641 * to perf_adjust_period() to avoid stopping it
3642 * twice.
3643 */
3644 if (delta > 0)
3645 perf_adjust_period(event, period, delta, false);
3646
3647 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3648 next:
3649 perf_pmu_enable(event->pmu);
3650 }
3651
3652 perf_pmu_enable(ctx->pmu);
3653 raw_spin_unlock(&ctx->lock);
3654 }
3655
3656 /*
3657 * Move @event to the tail of the @ctx's elegible events.
3658 */
3659 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3660 {
3661 /*
3662 * Rotate the first entry last of non-pinned groups. Rotation might be
3663 * disabled by the inheritance code.
3664 */
3665 if (ctx->rotate_disable)
3666 return;
3667
3668 perf_event_groups_delete(&ctx->flexible_groups, event);
3669 perf_event_groups_insert(&ctx->flexible_groups, event);
3670 }
3671
3672 static inline struct perf_event *
3673 ctx_first_active(struct perf_event_context *ctx)
3674 {
3675 return list_first_entry_or_null(&ctx->flexible_active,
3676 struct perf_event, active_list);
3677 }
3678
3679 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3680 {
3681 struct perf_event *cpu_event = NULL, *task_event = NULL;
3682 bool cpu_rotate = false, task_rotate = false;
3683 struct perf_event_context *ctx = NULL;
3684
3685 /*
3686 * Since we run this from IRQ context, nobody can install new
3687 * events, thus the event count values are stable.
3688 */
3689
3690 if (cpuctx->ctx.nr_events) {
3691 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3692 cpu_rotate = true;
3693 }
3694
3695 ctx = cpuctx->task_ctx;
3696 if (ctx && ctx->nr_events) {
3697 if (ctx->nr_events != ctx->nr_active)
3698 task_rotate = true;
3699 }
3700
3701 if (!(cpu_rotate || task_rotate))
3702 return false;
3703
3704 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3705 perf_pmu_disable(cpuctx->ctx.pmu);
3706
3707 if (task_rotate)
3708 task_event = ctx_first_active(ctx);
3709 if (cpu_rotate)
3710 cpu_event = ctx_first_active(&cpuctx->ctx);
3711
3712 /*
3713 * As per the order given at ctx_resched() first 'pop' task flexible
3714 * and then, if needed CPU flexible.
3715 */
3716 if (task_event || (ctx && cpu_event))
3717 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3718 if (cpu_event)
3719 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3720
3721 if (task_event)
3722 rotate_ctx(ctx, task_event);
3723 if (cpu_event)
3724 rotate_ctx(&cpuctx->ctx, cpu_event);
3725
3726 perf_event_sched_in(cpuctx, ctx, current);
3727
3728 perf_pmu_enable(cpuctx->ctx.pmu);
3729 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3730
3731 return true;
3732 }
3733
3734 void perf_event_task_tick(void)
3735 {
3736 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3737 struct perf_event_context *ctx, *tmp;
3738 int throttled;
3739
3740 lockdep_assert_irqs_disabled();
3741
3742 __this_cpu_inc(perf_throttled_seq);
3743 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3744 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3745
3746 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3747 perf_adjust_freq_unthr_context(ctx, throttled);
3748 }
3749
3750 static int event_enable_on_exec(struct perf_event *event,
3751 struct perf_event_context *ctx)
3752 {
3753 if (!event->attr.enable_on_exec)
3754 return 0;
3755
3756 event->attr.enable_on_exec = 0;
3757 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3758 return 0;
3759
3760 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3761
3762 return 1;
3763 }
3764
3765 /*
3766 * Enable all of a task's events that have been marked enable-on-exec.
3767 * This expects task == current.
3768 */
3769 static void perf_event_enable_on_exec(int ctxn)
3770 {
3771 struct perf_event_context *ctx, *clone_ctx = NULL;
3772 enum event_type_t event_type = 0;
3773 struct perf_cpu_context *cpuctx;
3774 struct perf_event *event;
3775 unsigned long flags;
3776 int enabled = 0;
3777
3778 local_irq_save(flags);
3779 ctx = current->perf_event_ctxp[ctxn];
3780 if (!ctx || !ctx->nr_events)
3781 goto out;
3782
3783 cpuctx = __get_cpu_context(ctx);
3784 perf_ctx_lock(cpuctx, ctx);
3785 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3786 list_for_each_entry(event, &ctx->event_list, event_entry) {
3787 enabled |= event_enable_on_exec(event, ctx);
3788 event_type |= get_event_type(event);
3789 }
3790
3791 /*
3792 * Unclone and reschedule this context if we enabled any event.
3793 */
3794 if (enabled) {
3795 clone_ctx = unclone_ctx(ctx);
3796 ctx_resched(cpuctx, ctx, event_type);
3797 } else {
3798 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3799 }
3800 perf_ctx_unlock(cpuctx, ctx);
3801
3802 out:
3803 local_irq_restore(flags);
3804
3805 if (clone_ctx)
3806 put_ctx(clone_ctx);
3807 }
3808
3809 struct perf_read_data {
3810 struct perf_event *event;
3811 bool group;
3812 int ret;
3813 };
3814
3815 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3816 {
3817 u16 local_pkg, event_pkg;
3818
3819 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3820 int local_cpu = smp_processor_id();
3821
3822 event_pkg = topology_physical_package_id(event_cpu);
3823 local_pkg = topology_physical_package_id(local_cpu);
3824
3825 if (event_pkg == local_pkg)
3826 return local_cpu;
3827 }
3828
3829 return event_cpu;
3830 }
3831
3832 /*
3833 * Cross CPU call to read the hardware event
3834 */
3835 static void __perf_event_read(void *info)
3836 {
3837 struct perf_read_data *data = info;
3838 struct perf_event *sub, *event = data->event;
3839 struct perf_event_context *ctx = event->ctx;
3840 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3841 struct pmu *pmu = event->pmu;
3842
3843 /*
3844 * If this is a task context, we need to check whether it is
3845 * the current task context of this cpu. If not it has been
3846 * scheduled out before the smp call arrived. In that case
3847 * event->count would have been updated to a recent sample
3848 * when the event was scheduled out.
3849 */
3850 if (ctx->task && cpuctx->task_ctx != ctx)
3851 return;
3852
3853 raw_spin_lock(&ctx->lock);
3854 if (ctx->is_active & EVENT_TIME) {
3855 update_context_time(ctx);
3856 update_cgrp_time_from_event(event);
3857 }
3858
3859 perf_event_update_time(event);
3860 if (data->group)
3861 perf_event_update_sibling_time(event);
3862
3863 if (event->state != PERF_EVENT_STATE_ACTIVE)
3864 goto unlock;
3865
3866 if (!data->group) {
3867 pmu->read(event);
3868 data->ret = 0;
3869 goto unlock;
3870 }
3871
3872 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3873
3874 pmu->read(event);
3875
3876 for_each_sibling_event(sub, event) {
3877 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3878 /*
3879 * Use sibling's PMU rather than @event's since
3880 * sibling could be on different (eg: software) PMU.
3881 */
3882 sub->pmu->read(sub);
3883 }
3884 }
3885
3886 data->ret = pmu->commit_txn(pmu);
3887
3888 unlock:
3889 raw_spin_unlock(&ctx->lock);
3890 }
3891
3892 static inline u64 perf_event_count(struct perf_event *event)
3893 {
3894 return local64_read(&event->count) + atomic64_read(&event->child_count);
3895 }
3896
3897 /*
3898 * NMI-safe method to read a local event, that is an event that
3899 * is:
3900 * - either for the current task, or for this CPU
3901 * - does not have inherit set, for inherited task events
3902 * will not be local and we cannot read them atomically
3903 * - must not have a pmu::count method
3904 */
3905 int perf_event_read_local(struct perf_event *event, u64 *value,
3906 u64 *enabled, u64 *running)
3907 {
3908 unsigned long flags;
3909 int ret = 0;
3910
3911 /*
3912 * Disabling interrupts avoids all counter scheduling (context
3913 * switches, timer based rotation and IPIs).
3914 */
3915 local_irq_save(flags);
3916
3917 /*
3918 * It must not be an event with inherit set, we cannot read
3919 * all child counters from atomic context.
3920 */
3921 if (event->attr.inherit) {
3922 ret = -EOPNOTSUPP;
3923 goto out;
3924 }
3925
3926 /* If this is a per-task event, it must be for current */
3927 if ((event->attach_state & PERF_ATTACH_TASK) &&
3928 event->hw.target != current) {
3929 ret = -EINVAL;
3930 goto out;
3931 }
3932
3933 /* If this is a per-CPU event, it must be for this CPU */
3934 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3935 event->cpu != smp_processor_id()) {
3936 ret = -EINVAL;
3937 goto out;
3938 }
3939
3940 /* If this is a pinned event it must be running on this CPU */
3941 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3942 ret = -EBUSY;
3943 goto out;
3944 }
3945
3946 /*
3947 * If the event is currently on this CPU, its either a per-task event,
3948 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3949 * oncpu == -1).
3950 */
3951 if (event->oncpu == smp_processor_id())
3952 event->pmu->read(event);
3953
3954 *value = local64_read(&event->count);
3955 if (enabled || running) {
3956 u64 now = event->shadow_ctx_time + perf_clock();
3957 u64 __enabled, __running;
3958
3959 __perf_update_times(event, now, &__enabled, &__running);
3960 if (enabled)
3961 *enabled = __enabled;
3962 if (running)
3963 *running = __running;
3964 }
3965 out:
3966 local_irq_restore(flags);
3967
3968 return ret;
3969 }
3970
3971 static int perf_event_read(struct perf_event *event, bool group)
3972 {
3973 enum perf_event_state state = READ_ONCE(event->state);
3974 int event_cpu, ret = 0;
3975
3976 /*
3977 * If event is enabled and currently active on a CPU, update the
3978 * value in the event structure:
3979 */
3980 again:
3981 if (state == PERF_EVENT_STATE_ACTIVE) {
3982 struct perf_read_data data;
3983
3984 /*
3985 * Orders the ->state and ->oncpu loads such that if we see
3986 * ACTIVE we must also see the right ->oncpu.
3987 *
3988 * Matches the smp_wmb() from event_sched_in().
3989 */
3990 smp_rmb();
3991
3992 event_cpu = READ_ONCE(event->oncpu);
3993 if ((unsigned)event_cpu >= nr_cpu_ids)
3994 return 0;
3995
3996 data = (struct perf_read_data){
3997 .event = event,
3998 .group = group,
3999 .ret = 0,
4000 };
4001
4002 preempt_disable();
4003 event_cpu = __perf_event_read_cpu(event, event_cpu);
4004
4005 /*
4006 * Purposely ignore the smp_call_function_single() return
4007 * value.
4008 *
4009 * If event_cpu isn't a valid CPU it means the event got
4010 * scheduled out and that will have updated the event count.
4011 *
4012 * Therefore, either way, we'll have an up-to-date event count
4013 * after this.
4014 */
4015 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4016 preempt_enable();
4017 ret = data.ret;
4018
4019 } else if (state == PERF_EVENT_STATE_INACTIVE) {
4020 struct perf_event_context *ctx = event->ctx;
4021 unsigned long flags;
4022
4023 raw_spin_lock_irqsave(&ctx->lock, flags);
4024 state = event->state;
4025 if (state != PERF_EVENT_STATE_INACTIVE) {
4026 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4027 goto again;
4028 }
4029
4030 /*
4031 * May read while context is not active (e.g., thread is
4032 * blocked), in that case we cannot update context time
4033 */
4034 if (ctx->is_active & EVENT_TIME) {
4035 update_context_time(ctx);
4036 update_cgrp_time_from_event(event);
4037 }
4038
4039 perf_event_update_time(event);
4040 if (group)
4041 perf_event_update_sibling_time(event);
4042 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4043 }
4044
4045 return ret;
4046 }
4047
4048 /*
4049 * Initialize the perf_event context in a task_struct:
4050 */
4051 static void __perf_event_init_context(struct perf_event_context *ctx)
4052 {
4053 raw_spin_lock_init(&ctx->lock);
4054 mutex_init(&ctx->mutex);
4055 INIT_LIST_HEAD(&ctx->active_ctx_list);
4056 perf_event_groups_init(&ctx->pinned_groups);
4057 perf_event_groups_init(&ctx->flexible_groups);
4058 INIT_LIST_HEAD(&ctx->event_list);
4059 INIT_LIST_HEAD(&ctx->pinned_active);
4060 INIT_LIST_HEAD(&ctx->flexible_active);
4061 refcount_set(&ctx->refcount, 1);
4062 }
4063
4064 static struct perf_event_context *
4065 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4066 {
4067 struct perf_event_context *ctx;
4068
4069 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4070 if (!ctx)
4071 return NULL;
4072
4073 __perf_event_init_context(ctx);
4074 if (task) {
4075 ctx->task = task;
4076 get_task_struct(task);
4077 }
4078 ctx->pmu = pmu;
4079
4080 return ctx;
4081 }
4082
4083 static struct task_struct *
4084 find_lively_task_by_vpid(pid_t vpid)
4085 {
4086 struct task_struct *task;
4087
4088 rcu_read_lock();
4089 if (!vpid)
4090 task = current;
4091 else
4092 task = find_task_by_vpid(vpid);
4093 if (task)
4094 get_task_struct(task);
4095 rcu_read_unlock();
4096
4097 if (!task)
4098 return ERR_PTR(-ESRCH);
4099
4100 return task;
4101 }
4102
4103 /*
4104 * Returns a matching context with refcount and pincount.
4105 */
4106 static struct perf_event_context *
4107 find_get_context(struct pmu *pmu, struct task_struct *task,
4108 struct perf_event *event)
4109 {
4110 struct perf_event_context *ctx, *clone_ctx = NULL;
4111 struct perf_cpu_context *cpuctx;
4112 void *task_ctx_data = NULL;
4113 unsigned long flags;
4114 int ctxn, err;
4115 int cpu = event->cpu;
4116
4117 if (!task) {
4118 /* Must be root to operate on a CPU event: */
4119 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4120 return ERR_PTR(-EACCES);
4121
4122 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4123 ctx = &cpuctx->ctx;
4124 get_ctx(ctx);
4125 ++ctx->pin_count;
4126
4127 return ctx;
4128 }
4129
4130 err = -EINVAL;
4131 ctxn = pmu->task_ctx_nr;
4132 if (ctxn < 0)
4133 goto errout;
4134
4135 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4136 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4137 if (!task_ctx_data) {
4138 err = -ENOMEM;
4139 goto errout;
4140 }
4141 }
4142
4143 retry:
4144 ctx = perf_lock_task_context(task, ctxn, &flags);
4145 if (ctx) {
4146 clone_ctx = unclone_ctx(ctx);
4147 ++ctx->pin_count;
4148
4149 if (task_ctx_data && !ctx->task_ctx_data) {
4150 ctx->task_ctx_data = task_ctx_data;
4151 task_ctx_data = NULL;
4152 }
4153 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4154
4155 if (clone_ctx)
4156 put_ctx(clone_ctx);
4157 } else {
4158 ctx = alloc_perf_context(pmu, task);
4159 err = -ENOMEM;
4160 if (!ctx)
4161 goto errout;
4162
4163 if (task_ctx_data) {
4164 ctx->task_ctx_data = task_ctx_data;
4165 task_ctx_data = NULL;
4166 }
4167
4168 err = 0;
4169 mutex_lock(&task->perf_event_mutex);
4170 /*
4171 * If it has already passed perf_event_exit_task().
4172 * we must see PF_EXITING, it takes this mutex too.
4173 */
4174 if (task->flags & PF_EXITING)
4175 err = -ESRCH;
4176 else if (task->perf_event_ctxp[ctxn])
4177 err = -EAGAIN;
4178 else {
4179 get_ctx(ctx);
4180 ++ctx->pin_count;
4181 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4182 }
4183 mutex_unlock(&task->perf_event_mutex);
4184
4185 if (unlikely(err)) {
4186 put_ctx(ctx);
4187
4188 if (err == -EAGAIN)
4189 goto retry;
4190 goto errout;
4191 }
4192 }
4193
4194 kfree(task_ctx_data);
4195 return ctx;
4196
4197 errout:
4198 kfree(task_ctx_data);
4199 return ERR_PTR(err);
4200 }
4201
4202 static void perf_event_free_filter(struct perf_event *event);
4203 static void perf_event_free_bpf_prog(struct perf_event *event);
4204
4205 static void free_event_rcu(struct rcu_head *head)
4206 {
4207 struct perf_event *event;
4208
4209 event = container_of(head, struct perf_event, rcu_head);
4210 if (event->ns)
4211 put_pid_ns(event->ns);
4212 perf_event_free_filter(event);
4213 kfree(event);
4214 }
4215
4216 static void ring_buffer_attach(struct perf_event *event,
4217 struct ring_buffer *rb);
4218
4219 static void detach_sb_event(struct perf_event *event)
4220 {
4221 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4222
4223 raw_spin_lock(&pel->lock);
4224 list_del_rcu(&event->sb_list);
4225 raw_spin_unlock(&pel->lock);
4226 }
4227
4228 static bool is_sb_event(struct perf_event *event)
4229 {
4230 struct perf_event_attr *attr = &event->attr;
4231
4232 if (event->parent)
4233 return false;
4234
4235 if (event->attach_state & PERF_ATTACH_TASK)
4236 return false;
4237
4238 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4239 attr->comm || attr->comm_exec ||
4240 attr->task || attr->ksymbol ||
4241 attr->context_switch ||
4242 attr->bpf_event)
4243 return true;
4244 return false;
4245 }
4246
4247 static void unaccount_pmu_sb_event(struct perf_event *event)
4248 {
4249 if (is_sb_event(event))
4250 detach_sb_event(event);
4251 }
4252
4253 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4254 {
4255 if (event->parent)
4256 return;
4257
4258 if (is_cgroup_event(event))
4259 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4260 }
4261
4262 #ifdef CONFIG_NO_HZ_FULL
4263 static DEFINE_SPINLOCK(nr_freq_lock);
4264 #endif
4265
4266 static void unaccount_freq_event_nohz(void)
4267 {
4268 #ifdef CONFIG_NO_HZ_FULL
4269 spin_lock(&nr_freq_lock);
4270 if (atomic_dec_and_test(&nr_freq_events))
4271 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4272 spin_unlock(&nr_freq_lock);
4273 #endif
4274 }
4275
4276 static void unaccount_freq_event(void)
4277 {
4278 if (tick_nohz_full_enabled())
4279 unaccount_freq_event_nohz();
4280 else
4281 atomic_dec(&nr_freq_events);
4282 }
4283
4284 static void unaccount_event(struct perf_event *event)
4285 {
4286 bool dec = false;
4287
4288 if (event->parent)
4289 return;
4290
4291 if (event->attach_state & PERF_ATTACH_TASK)
4292 dec = true;
4293 if (event->attr.mmap || event->attr.mmap_data)
4294 atomic_dec(&nr_mmap_events);
4295 if (event->attr.comm)
4296 atomic_dec(&nr_comm_events);
4297 if (event->attr.namespaces)
4298 atomic_dec(&nr_namespaces_events);
4299 if (event->attr.task)
4300 atomic_dec(&nr_task_events);
4301 if (event->attr.freq)
4302 unaccount_freq_event();
4303 if (event->attr.context_switch) {
4304 dec = true;
4305 atomic_dec(&nr_switch_events);
4306 }
4307 if (is_cgroup_event(event))
4308 dec = true;
4309 if (has_branch_stack(event))
4310 dec = true;
4311 if (event->attr.ksymbol)
4312 atomic_dec(&nr_ksymbol_events);
4313 if (event->attr.bpf_event)
4314 atomic_dec(&nr_bpf_events);
4315
4316 if (dec) {
4317 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4318 schedule_delayed_work(&perf_sched_work, HZ);
4319 }
4320
4321 unaccount_event_cpu(event, event->cpu);
4322
4323 unaccount_pmu_sb_event(event);
4324 }
4325
4326 static void perf_sched_delayed(struct work_struct *work)
4327 {
4328 mutex_lock(&perf_sched_mutex);
4329 if (atomic_dec_and_test(&perf_sched_count))
4330 static_branch_disable(&perf_sched_events);
4331 mutex_unlock(&perf_sched_mutex);
4332 }
4333
4334 /*
4335 * The following implement mutual exclusion of events on "exclusive" pmus
4336 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4337 * at a time, so we disallow creating events that might conflict, namely:
4338 *
4339 * 1) cpu-wide events in the presence of per-task events,
4340 * 2) per-task events in the presence of cpu-wide events,
4341 * 3) two matching events on the same context.
4342 *
4343 * The former two cases are handled in the allocation path (perf_event_alloc(),
4344 * _free_event()), the latter -- before the first perf_install_in_context().
4345 */
4346 static int exclusive_event_init(struct perf_event *event)
4347 {
4348 struct pmu *pmu = event->pmu;
4349
4350 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4351 return 0;
4352
4353 /*
4354 * Prevent co-existence of per-task and cpu-wide events on the
4355 * same exclusive pmu.
4356 *
4357 * Negative pmu::exclusive_cnt means there are cpu-wide
4358 * events on this "exclusive" pmu, positive means there are
4359 * per-task events.
4360 *
4361 * Since this is called in perf_event_alloc() path, event::ctx
4362 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4363 * to mean "per-task event", because unlike other attach states it
4364 * never gets cleared.
4365 */
4366 if (event->attach_state & PERF_ATTACH_TASK) {
4367 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4368 return -EBUSY;
4369 } else {
4370 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4371 return -EBUSY;
4372 }
4373
4374 return 0;
4375 }
4376
4377 static void exclusive_event_destroy(struct perf_event *event)
4378 {
4379 struct pmu *pmu = event->pmu;
4380
4381 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4382 return;
4383
4384 /* see comment in exclusive_event_init() */
4385 if (event->attach_state & PERF_ATTACH_TASK)
4386 atomic_dec(&pmu->exclusive_cnt);
4387 else
4388 atomic_inc(&pmu->exclusive_cnt);
4389 }
4390
4391 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4392 {
4393 if ((e1->pmu == e2->pmu) &&
4394 (e1->cpu == e2->cpu ||
4395 e1->cpu == -1 ||
4396 e2->cpu == -1))
4397 return true;
4398 return false;
4399 }
4400
4401 /* Called under the same ctx::mutex as perf_install_in_context() */
4402 static bool exclusive_event_installable(struct perf_event *event,
4403 struct perf_event_context *ctx)
4404 {
4405 struct perf_event *iter_event;
4406 struct pmu *pmu = event->pmu;
4407
4408 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4409 return true;
4410
4411 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4412 if (exclusive_event_match(iter_event, event))
4413 return false;
4414 }
4415
4416 return true;
4417 }
4418
4419 static void perf_addr_filters_splice(struct perf_event *event,
4420 struct list_head *head);
4421
4422 static void _free_event(struct perf_event *event)
4423 {
4424 irq_work_sync(&event->pending);
4425
4426 unaccount_event(event);
4427
4428 if (event->rb) {
4429 /*
4430 * Can happen when we close an event with re-directed output.
4431 *
4432 * Since we have a 0 refcount, perf_mmap_close() will skip
4433 * over us; possibly making our ring_buffer_put() the last.
4434 */
4435 mutex_lock(&event->mmap_mutex);
4436 ring_buffer_attach(event, NULL);
4437 mutex_unlock(&event->mmap_mutex);
4438 }
4439
4440 if (is_cgroup_event(event))
4441 perf_detach_cgroup(event);
4442
4443 if (!event->parent) {
4444 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4445 put_callchain_buffers();
4446 }
4447
4448 perf_event_free_bpf_prog(event);
4449 perf_addr_filters_splice(event, NULL);
4450 kfree(event->addr_filter_ranges);
4451
4452 if (event->destroy)
4453 event->destroy(event);
4454
4455 if (event->ctx)
4456 put_ctx(event->ctx);
4457
4458 if (event->hw.target)
4459 put_task_struct(event->hw.target);
4460
4461 exclusive_event_destroy(event);
4462 module_put(event->pmu->module);
4463
4464 call_rcu(&event->rcu_head, free_event_rcu);
4465 }
4466
4467 /*
4468 * Used to free events which have a known refcount of 1, such as in error paths
4469 * where the event isn't exposed yet and inherited events.
4470 */
4471 static void free_event(struct perf_event *event)
4472 {
4473 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4474 "unexpected event refcount: %ld; ptr=%p\n",
4475 atomic_long_read(&event->refcount), event)) {
4476 /* leak to avoid use-after-free */
4477 return;
4478 }
4479
4480 _free_event(event);
4481 }
4482
4483 /*
4484 * Remove user event from the owner task.
4485 */
4486 static void perf_remove_from_owner(struct perf_event *event)
4487 {
4488 struct task_struct *owner;
4489
4490 rcu_read_lock();
4491 /*
4492 * Matches the smp_store_release() in perf_event_exit_task(). If we
4493 * observe !owner it means the list deletion is complete and we can
4494 * indeed free this event, otherwise we need to serialize on
4495 * owner->perf_event_mutex.
4496 */
4497 owner = READ_ONCE(event->owner);
4498 if (owner) {
4499 /*
4500 * Since delayed_put_task_struct() also drops the last
4501 * task reference we can safely take a new reference
4502 * while holding the rcu_read_lock().
4503 */
4504 get_task_struct(owner);
4505 }
4506 rcu_read_unlock();
4507
4508 if (owner) {
4509 /*
4510 * If we're here through perf_event_exit_task() we're already
4511 * holding ctx->mutex which would be an inversion wrt. the
4512 * normal lock order.
4513 *
4514 * However we can safely take this lock because its the child
4515 * ctx->mutex.
4516 */
4517 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4518
4519 /*
4520 * We have to re-check the event->owner field, if it is cleared
4521 * we raced with perf_event_exit_task(), acquiring the mutex
4522 * ensured they're done, and we can proceed with freeing the
4523 * event.
4524 */
4525 if (event->owner) {
4526 list_del_init(&event->owner_entry);
4527 smp_store_release(&event->owner, NULL);
4528 }
4529 mutex_unlock(&owner->perf_event_mutex);
4530 put_task_struct(owner);
4531 }
4532 }
4533
4534 static void put_event(struct perf_event *event)
4535 {
4536 if (!atomic_long_dec_and_test(&event->refcount))
4537 return;
4538
4539 _free_event(event);
4540 }
4541
4542 /*
4543 * Kill an event dead; while event:refcount will preserve the event
4544 * object, it will not preserve its functionality. Once the last 'user'
4545 * gives up the object, we'll destroy the thing.
4546 */
4547 int perf_event_release_kernel(struct perf_event *event)
4548 {
4549 struct perf_event_context *ctx = event->ctx;
4550 struct perf_event *child, *tmp;
4551 LIST_HEAD(free_list);
4552
4553 /*
4554 * If we got here through err_file: fput(event_file); we will not have
4555 * attached to a context yet.
4556 */
4557 if (!ctx) {
4558 WARN_ON_ONCE(event->attach_state &
4559 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4560 goto no_ctx;
4561 }
4562
4563 if (!is_kernel_event(event))
4564 perf_remove_from_owner(event);
4565
4566 ctx = perf_event_ctx_lock(event);
4567 WARN_ON_ONCE(ctx->parent_ctx);
4568 perf_remove_from_context(event, DETACH_GROUP);
4569
4570 raw_spin_lock_irq(&ctx->lock);
4571 /*
4572 * Mark this event as STATE_DEAD, there is no external reference to it
4573 * anymore.
4574 *
4575 * Anybody acquiring event->child_mutex after the below loop _must_
4576 * also see this, most importantly inherit_event() which will avoid
4577 * placing more children on the list.
4578 *
4579 * Thus this guarantees that we will in fact observe and kill _ALL_
4580 * child events.
4581 */
4582 event->state = PERF_EVENT_STATE_DEAD;
4583 raw_spin_unlock_irq(&ctx->lock);
4584
4585 perf_event_ctx_unlock(event, ctx);
4586
4587 again:
4588 mutex_lock(&event->child_mutex);
4589 list_for_each_entry(child, &event->child_list, child_list) {
4590
4591 /*
4592 * Cannot change, child events are not migrated, see the
4593 * comment with perf_event_ctx_lock_nested().
4594 */
4595 ctx = READ_ONCE(child->ctx);
4596 /*
4597 * Since child_mutex nests inside ctx::mutex, we must jump
4598 * through hoops. We start by grabbing a reference on the ctx.
4599 *
4600 * Since the event cannot get freed while we hold the
4601 * child_mutex, the context must also exist and have a !0
4602 * reference count.
4603 */
4604 get_ctx(ctx);
4605
4606 /*
4607 * Now that we have a ctx ref, we can drop child_mutex, and
4608 * acquire ctx::mutex without fear of it going away. Then we
4609 * can re-acquire child_mutex.
4610 */
4611 mutex_unlock(&event->child_mutex);
4612 mutex_lock(&ctx->mutex);
4613 mutex_lock(&event->child_mutex);
4614
4615 /*
4616 * Now that we hold ctx::mutex and child_mutex, revalidate our
4617 * state, if child is still the first entry, it didn't get freed
4618 * and we can continue doing so.
4619 */
4620 tmp = list_first_entry_or_null(&event->child_list,
4621 struct perf_event, child_list);
4622 if (tmp == child) {
4623 perf_remove_from_context(child, DETACH_GROUP);
4624 list_move(&child->child_list, &free_list);
4625 /*
4626 * This matches the refcount bump in inherit_event();
4627 * this can't be the last reference.
4628 */
4629 put_event(event);
4630 }
4631
4632 mutex_unlock(&event->child_mutex);
4633 mutex_unlock(&ctx->mutex);
4634 put_ctx(ctx);
4635 goto again;
4636 }
4637 mutex_unlock(&event->child_mutex);
4638
4639 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4640 list_del(&child->child_list);
4641 free_event(child);
4642 }
4643
4644 no_ctx:
4645 put_event(event); /* Must be the 'last' reference */
4646 return 0;
4647 }
4648 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4649
4650 /*
4651 * Called when the last reference to the file is gone.
4652 */
4653 static int perf_release(struct inode *inode, struct file *file)
4654 {
4655 perf_event_release_kernel(file->private_data);
4656 return 0;
4657 }
4658
4659 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4660 {
4661 struct perf_event *child;
4662 u64 total = 0;
4663
4664 *enabled = 0;
4665 *running = 0;
4666
4667 mutex_lock(&event->child_mutex);
4668
4669 (void)perf_event_read(event, false);
4670 total += perf_event_count(event);
4671
4672 *enabled += event->total_time_enabled +
4673 atomic64_read(&event->child_total_time_enabled);
4674 *running += event->total_time_running +
4675 atomic64_read(&event->child_total_time_running);
4676
4677 list_for_each_entry(child, &event->child_list, child_list) {
4678 (void)perf_event_read(child, false);
4679 total += perf_event_count(child);
4680 *enabled += child->total_time_enabled;
4681 *running += child->total_time_running;
4682 }
4683 mutex_unlock(&event->child_mutex);
4684
4685 return total;
4686 }
4687
4688 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4689 {
4690 struct perf_event_context *ctx;
4691 u64 count;
4692
4693 ctx = perf_event_ctx_lock(event);
4694 count = __perf_event_read_value(event, enabled, running);
4695 perf_event_ctx_unlock(event, ctx);
4696
4697 return count;
4698 }
4699 EXPORT_SYMBOL_GPL(perf_event_read_value);
4700
4701 static int __perf_read_group_add(struct perf_event *leader,
4702 u64 read_format, u64 *values)
4703 {
4704 struct perf_event_context *ctx = leader->ctx;
4705 struct perf_event *sub;
4706 unsigned long flags;
4707 int n = 1; /* skip @nr */
4708 int ret;
4709
4710 ret = perf_event_read(leader, true);
4711 if (ret)
4712 return ret;
4713
4714 raw_spin_lock_irqsave(&ctx->lock, flags);
4715
4716 /*
4717 * Since we co-schedule groups, {enabled,running} times of siblings
4718 * will be identical to those of the leader, so we only publish one
4719 * set.
4720 */
4721 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4722 values[n++] += leader->total_time_enabled +
4723 atomic64_read(&leader->child_total_time_enabled);
4724 }
4725
4726 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4727 values[n++] += leader->total_time_running +
4728 atomic64_read(&leader->child_total_time_running);
4729 }
4730
4731 /*
4732 * Write {count,id} tuples for every sibling.
4733 */
4734 values[n++] += perf_event_count(leader);
4735 if (read_format & PERF_FORMAT_ID)
4736 values[n++] = primary_event_id(leader);
4737
4738 for_each_sibling_event(sub, leader) {
4739 values[n++] += perf_event_count(sub);
4740 if (read_format & PERF_FORMAT_ID)
4741 values[n++] = primary_event_id(sub);
4742 }
4743
4744 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4745 return 0;
4746 }
4747
4748 static int perf_read_group(struct perf_event *event,
4749 u64 read_format, char __user *buf)
4750 {
4751 struct perf_event *leader = event->group_leader, *child;
4752 struct perf_event_context *ctx = leader->ctx;
4753 int ret;
4754 u64 *values;
4755
4756 lockdep_assert_held(&ctx->mutex);
4757
4758 values = kzalloc(event->read_size, GFP_KERNEL);
4759 if (!values)
4760 return -ENOMEM;
4761
4762 values[0] = 1 + leader->nr_siblings;
4763
4764 /*
4765 * By locking the child_mutex of the leader we effectively
4766 * lock the child list of all siblings.. XXX explain how.
4767 */
4768 mutex_lock(&leader->child_mutex);
4769
4770 ret = __perf_read_group_add(leader, read_format, values);
4771 if (ret)
4772 goto unlock;
4773
4774 list_for_each_entry(child, &leader->child_list, child_list) {
4775 ret = __perf_read_group_add(child, read_format, values);
4776 if (ret)
4777 goto unlock;
4778 }
4779
4780 mutex_unlock(&leader->child_mutex);
4781
4782 ret = event->read_size;
4783 if (copy_to_user(buf, values, event->read_size))
4784 ret = -EFAULT;
4785 goto out;
4786
4787 unlock:
4788 mutex_unlock(&leader->child_mutex);
4789 out:
4790 kfree(values);
4791 return ret;
4792 }
4793
4794 static int perf_read_one(struct perf_event *event,
4795 u64 read_format, char __user *buf)
4796 {
4797 u64 enabled, running;
4798 u64 values[4];
4799 int n = 0;
4800
4801 values[n++] = __perf_event_read_value(event, &enabled, &running);
4802 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4803 values[n++] = enabled;
4804 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4805 values[n++] = running;
4806 if (read_format & PERF_FORMAT_ID)
4807 values[n++] = primary_event_id(event);
4808
4809 if (copy_to_user(buf, values, n * sizeof(u64)))
4810 return -EFAULT;
4811
4812 return n * sizeof(u64);
4813 }
4814
4815 static bool is_event_hup(struct perf_event *event)
4816 {
4817 bool no_children;
4818
4819 if (event->state > PERF_EVENT_STATE_EXIT)
4820 return false;
4821
4822 mutex_lock(&event->child_mutex);
4823 no_children = list_empty(&event->child_list);
4824 mutex_unlock(&event->child_mutex);
4825 return no_children;
4826 }
4827
4828 /*
4829 * Read the performance event - simple non blocking version for now
4830 */
4831 static ssize_t
4832 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4833 {
4834 u64 read_format = event->attr.read_format;
4835 int ret;
4836
4837 /*
4838 * Return end-of-file for a read on an event that is in
4839 * error state (i.e. because it was pinned but it couldn't be
4840 * scheduled on to the CPU at some point).
4841 */
4842 if (event->state == PERF_EVENT_STATE_ERROR)
4843 return 0;
4844
4845 if (count < event->read_size)
4846 return -ENOSPC;
4847
4848 WARN_ON_ONCE(event->ctx->parent_ctx);
4849 if (read_format & PERF_FORMAT_GROUP)
4850 ret = perf_read_group(event, read_format, buf);
4851 else
4852 ret = perf_read_one(event, read_format, buf);
4853
4854 return ret;
4855 }
4856
4857 static ssize_t
4858 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4859 {
4860 struct perf_event *event = file->private_data;
4861 struct perf_event_context *ctx;
4862 int ret;
4863
4864 ctx = perf_event_ctx_lock(event);
4865 ret = __perf_read(event, buf, count);
4866 perf_event_ctx_unlock(event, ctx);
4867
4868 return ret;
4869 }
4870
4871 static __poll_t perf_poll(struct file *file, poll_table *wait)
4872 {
4873 struct perf_event *event = file->private_data;
4874 struct ring_buffer *rb;
4875 __poll_t events = EPOLLHUP;
4876
4877 poll_wait(file, &event->waitq, wait);
4878
4879 if (is_event_hup(event))
4880 return events;
4881
4882 /*
4883 * Pin the event->rb by taking event->mmap_mutex; otherwise
4884 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4885 */
4886 mutex_lock(&event->mmap_mutex);
4887 rb = event->rb;
4888 if (rb)
4889 events = atomic_xchg(&rb->poll, 0);
4890 mutex_unlock(&event->mmap_mutex);
4891 return events;
4892 }
4893
4894 static void _perf_event_reset(struct perf_event *event)
4895 {
4896 (void)perf_event_read(event, false);
4897 local64_set(&event->count, 0);
4898 perf_event_update_userpage(event);
4899 }
4900
4901 /*
4902 * Holding the top-level event's child_mutex means that any
4903 * descendant process that has inherited this event will block
4904 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4905 * task existence requirements of perf_event_enable/disable.
4906 */
4907 static void perf_event_for_each_child(struct perf_event *event,
4908 void (*func)(struct perf_event *))
4909 {
4910 struct perf_event *child;
4911
4912 WARN_ON_ONCE(event->ctx->parent_ctx);
4913
4914 mutex_lock(&event->child_mutex);
4915 func(event);
4916 list_for_each_entry(child, &event->child_list, child_list)
4917 func(child);
4918 mutex_unlock(&event->child_mutex);
4919 }
4920
4921 static void perf_event_for_each(struct perf_event *event,
4922 void (*func)(struct perf_event *))
4923 {
4924 struct perf_event_context *ctx = event->ctx;
4925 struct perf_event *sibling;
4926
4927 lockdep_assert_held(&ctx->mutex);
4928
4929 event = event->group_leader;
4930
4931 perf_event_for_each_child(event, func);
4932 for_each_sibling_event(sibling, event)
4933 perf_event_for_each_child(sibling, func);
4934 }
4935
4936 static void __perf_event_period(struct perf_event *event,
4937 struct perf_cpu_context *cpuctx,
4938 struct perf_event_context *ctx,
4939 void *info)
4940 {
4941 u64 value = *((u64 *)info);
4942 bool active;
4943
4944 if (event->attr.freq) {
4945 event->attr.sample_freq = value;
4946 } else {
4947 event->attr.sample_period = value;
4948 event->hw.sample_period = value;
4949 }
4950
4951 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4952 if (active) {
4953 perf_pmu_disable(ctx->pmu);
4954 /*
4955 * We could be throttled; unthrottle now to avoid the tick
4956 * trying to unthrottle while we already re-started the event.
4957 */
4958 if (event->hw.interrupts == MAX_INTERRUPTS) {
4959 event->hw.interrupts = 0;
4960 perf_log_throttle(event, 1);
4961 }
4962 event->pmu->stop(event, PERF_EF_UPDATE);
4963 }
4964
4965 local64_set(&event->hw.period_left, 0);
4966
4967 if (active) {
4968 event->pmu->start(event, PERF_EF_RELOAD);
4969 perf_pmu_enable(ctx->pmu);
4970 }
4971 }
4972
4973 static int perf_event_check_period(struct perf_event *event, u64 value)
4974 {
4975 return event->pmu->check_period(event, value);
4976 }
4977
4978 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4979 {
4980 u64 value;
4981
4982 if (!is_sampling_event(event))
4983 return -EINVAL;
4984
4985 if (copy_from_user(&value, arg, sizeof(value)))
4986 return -EFAULT;
4987
4988 if (!value)
4989 return -EINVAL;
4990
4991 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4992 return -EINVAL;
4993
4994 if (perf_event_check_period(event, value))
4995 return -EINVAL;
4996
4997 event_function_call(event, __perf_event_period, &value);
4998
4999 return 0;
5000 }
5001
5002 static const struct file_operations perf_fops;
5003
5004 static inline int perf_fget_light(int fd, struct fd *p)
5005 {
5006 struct fd f = fdget(fd);
5007 if (!f.file)
5008 return -EBADF;
5009
5010 if (f.file->f_op != &perf_fops) {
5011 fdput(f);
5012 return -EBADF;
5013 }
5014 *p = f;
5015 return 0;
5016 }
5017
5018 static int perf_event_set_output(struct perf_event *event,
5019 struct perf_event *output_event);
5020 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5021 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5022 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5023 struct perf_event_attr *attr);
5024
5025 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5026 {
5027 void (*func)(struct perf_event *);
5028 u32 flags = arg;
5029
5030 switch (cmd) {
5031 case PERF_EVENT_IOC_ENABLE:
5032 func = _perf_event_enable;
5033 break;
5034 case PERF_EVENT_IOC_DISABLE:
5035 func = _perf_event_disable;
5036 break;
5037 case PERF_EVENT_IOC_RESET:
5038 func = _perf_event_reset;
5039 break;
5040
5041 case PERF_EVENT_IOC_REFRESH:
5042 return _perf_event_refresh(event, arg);
5043
5044 case PERF_EVENT_IOC_PERIOD:
5045 return perf_event_period(event, (u64 __user *)arg);
5046
5047 case PERF_EVENT_IOC_ID:
5048 {
5049 u64 id = primary_event_id(event);
5050
5051 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5052 return -EFAULT;
5053 return 0;
5054 }
5055
5056 case PERF_EVENT_IOC_SET_OUTPUT:
5057 {
5058 int ret;
5059 if (arg != -1) {
5060 struct perf_event *output_event;
5061 struct fd output;
5062 ret = perf_fget_light(arg, &output);
5063 if (ret)
5064 return ret;
5065 output_event = output.file->private_data;
5066 ret = perf_event_set_output(event, output_event);
5067 fdput(output);
5068 } else {
5069 ret = perf_event_set_output(event, NULL);
5070 }
5071 return ret;
5072 }
5073
5074 case PERF_EVENT_IOC_SET_FILTER:
5075 return perf_event_set_filter(event, (void __user *)arg);
5076
5077 case PERF_EVENT_IOC_SET_BPF:
5078 return perf_event_set_bpf_prog(event, arg);
5079
5080 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5081 struct ring_buffer *rb;
5082
5083 rcu_read_lock();
5084 rb = rcu_dereference(event->rb);
5085 if (!rb || !rb->nr_pages) {
5086 rcu_read_unlock();
5087 return -EINVAL;
5088 }
5089 rb_toggle_paused(rb, !!arg);
5090 rcu_read_unlock();
5091 return 0;
5092 }
5093
5094 case PERF_EVENT_IOC_QUERY_BPF:
5095 return perf_event_query_prog_array(event, (void __user *)arg);
5096
5097 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5098 struct perf_event_attr new_attr;
5099 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5100 &new_attr);
5101
5102 if (err)
5103 return err;
5104
5105 return perf_event_modify_attr(event, &new_attr);
5106 }
5107 default:
5108 return -ENOTTY;
5109 }
5110
5111 if (flags & PERF_IOC_FLAG_GROUP)
5112 perf_event_for_each(event, func);
5113 else
5114 perf_event_for_each_child(event, func);
5115
5116 return 0;
5117 }
5118
5119 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5120 {
5121 struct perf_event *event = file->private_data;
5122 struct perf_event_context *ctx;
5123 long ret;
5124
5125 ctx = perf_event_ctx_lock(event);
5126 ret = _perf_ioctl(event, cmd, arg);
5127 perf_event_ctx_unlock(event, ctx);
5128
5129 return ret;
5130 }
5131
5132 #ifdef CONFIG_COMPAT
5133 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5134 unsigned long arg)
5135 {
5136 switch (_IOC_NR(cmd)) {
5137 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5138 case _IOC_NR(PERF_EVENT_IOC_ID):
5139 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5140 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5141 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5142 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5143 cmd &= ~IOCSIZE_MASK;
5144 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5145 }
5146 break;
5147 }
5148 return perf_ioctl(file, cmd, arg);
5149 }
5150 #else
5151 # define perf_compat_ioctl NULL
5152 #endif
5153
5154 int perf_event_task_enable(void)
5155 {
5156 struct perf_event_context *ctx;
5157 struct perf_event *event;
5158
5159 mutex_lock(&current->perf_event_mutex);
5160 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5161 ctx = perf_event_ctx_lock(event);
5162 perf_event_for_each_child(event, _perf_event_enable);
5163 perf_event_ctx_unlock(event, ctx);
5164 }
5165 mutex_unlock(&current->perf_event_mutex);
5166
5167 return 0;
5168 }
5169
5170 int perf_event_task_disable(void)
5171 {
5172 struct perf_event_context *ctx;
5173 struct perf_event *event;
5174
5175 mutex_lock(&current->perf_event_mutex);
5176 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5177 ctx = perf_event_ctx_lock(event);
5178 perf_event_for_each_child(event, _perf_event_disable);
5179 perf_event_ctx_unlock(event, ctx);
5180 }
5181 mutex_unlock(&current->perf_event_mutex);
5182
5183 return 0;
5184 }
5185
5186 static int perf_event_index(struct perf_event *event)
5187 {
5188 if (event->hw.state & PERF_HES_STOPPED)
5189 return 0;
5190
5191 if (event->state != PERF_EVENT_STATE_ACTIVE)
5192 return 0;
5193
5194 return event->pmu->event_idx(event);
5195 }
5196
5197 static void calc_timer_values(struct perf_event *event,
5198 u64 *now,
5199 u64 *enabled,
5200 u64 *running)
5201 {
5202 u64 ctx_time;
5203
5204 *now = perf_clock();
5205 ctx_time = event->shadow_ctx_time + *now;
5206 __perf_update_times(event, ctx_time, enabled, running);
5207 }
5208
5209 static void perf_event_init_userpage(struct perf_event *event)
5210 {
5211 struct perf_event_mmap_page *userpg;
5212 struct ring_buffer *rb;
5213
5214 rcu_read_lock();
5215 rb = rcu_dereference(event->rb);
5216 if (!rb)
5217 goto unlock;
5218
5219 userpg = rb->user_page;
5220
5221 /* Allow new userspace to detect that bit 0 is deprecated */
5222 userpg->cap_bit0_is_deprecated = 1;
5223 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5224 userpg->data_offset = PAGE_SIZE;
5225 userpg->data_size = perf_data_size(rb);
5226
5227 unlock:
5228 rcu_read_unlock();
5229 }
5230
5231 void __weak arch_perf_update_userpage(
5232 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5233 {
5234 }
5235
5236 /*
5237 * Callers need to ensure there can be no nesting of this function, otherwise
5238 * the seqlock logic goes bad. We can not serialize this because the arch
5239 * code calls this from NMI context.
5240 */
5241 void perf_event_update_userpage(struct perf_event *event)
5242 {
5243 struct perf_event_mmap_page *userpg;
5244 struct ring_buffer *rb;
5245 u64 enabled, running, now;
5246
5247 rcu_read_lock();
5248 rb = rcu_dereference(event->rb);
5249 if (!rb)
5250 goto unlock;
5251
5252 /*
5253 * compute total_time_enabled, total_time_running
5254 * based on snapshot values taken when the event
5255 * was last scheduled in.
5256 *
5257 * we cannot simply called update_context_time()
5258 * because of locking issue as we can be called in
5259 * NMI context
5260 */
5261 calc_timer_values(event, &now, &enabled, &running);
5262
5263 userpg = rb->user_page;
5264 /*
5265 * Disable preemption to guarantee consistent time stamps are stored to
5266 * the user page.
5267 */
5268 preempt_disable();
5269 ++userpg->lock;
5270 barrier();
5271 userpg->index = perf_event_index(event);
5272 userpg->offset = perf_event_count(event);
5273 if (userpg->index)
5274 userpg->offset -= local64_read(&event->hw.prev_count);
5275
5276 userpg->time_enabled = enabled +
5277 atomic64_read(&event->child_total_time_enabled);
5278
5279 userpg->time_running = running +
5280 atomic64_read(&event->child_total_time_running);
5281
5282 arch_perf_update_userpage(event, userpg, now);
5283
5284 barrier();
5285 ++userpg->lock;
5286 preempt_enable();
5287 unlock:
5288 rcu_read_unlock();
5289 }
5290 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5291
5292 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5293 {
5294 struct perf_event *event = vmf->vma->vm_file->private_data;
5295 struct ring_buffer *rb;
5296 vm_fault_t ret = VM_FAULT_SIGBUS;
5297
5298 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5299 if (vmf->pgoff == 0)
5300 ret = 0;
5301 return ret;
5302 }
5303
5304 rcu_read_lock();
5305 rb = rcu_dereference(event->rb);
5306 if (!rb)
5307 goto unlock;
5308
5309 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5310 goto unlock;
5311
5312 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5313 if (!vmf->page)
5314 goto unlock;
5315
5316 get_page(vmf->page);
5317 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5318 vmf->page->index = vmf->pgoff;
5319
5320 ret = 0;
5321 unlock:
5322 rcu_read_unlock();
5323
5324 return ret;
5325 }
5326
5327 static void ring_buffer_attach(struct perf_event *event,
5328 struct ring_buffer *rb)
5329 {
5330 struct ring_buffer *old_rb = NULL;
5331 unsigned long flags;
5332
5333 if (event->rb) {
5334 /*
5335 * Should be impossible, we set this when removing
5336 * event->rb_entry and wait/clear when adding event->rb_entry.
5337 */
5338 WARN_ON_ONCE(event->rcu_pending);
5339
5340 old_rb = event->rb;
5341 spin_lock_irqsave(&old_rb->event_lock, flags);
5342 list_del_rcu(&event->rb_entry);
5343 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5344
5345 event->rcu_batches = get_state_synchronize_rcu();
5346 event->rcu_pending = 1;
5347 }
5348
5349 if (rb) {
5350 if (event->rcu_pending) {
5351 cond_synchronize_rcu(event->rcu_batches);
5352 event->rcu_pending = 0;
5353 }
5354
5355 spin_lock_irqsave(&rb->event_lock, flags);
5356 list_add_rcu(&event->rb_entry, &rb->event_list);
5357 spin_unlock_irqrestore(&rb->event_lock, flags);
5358 }
5359
5360 /*
5361 * Avoid racing with perf_mmap_close(AUX): stop the event
5362 * before swizzling the event::rb pointer; if it's getting
5363 * unmapped, its aux_mmap_count will be 0 and it won't
5364 * restart. See the comment in __perf_pmu_output_stop().
5365 *
5366 * Data will inevitably be lost when set_output is done in
5367 * mid-air, but then again, whoever does it like this is
5368 * not in for the data anyway.
5369 */
5370 if (has_aux(event))
5371 perf_event_stop(event, 0);
5372
5373 rcu_assign_pointer(event->rb, rb);
5374
5375 if (old_rb) {
5376 ring_buffer_put(old_rb);
5377 /*
5378 * Since we detached before setting the new rb, so that we
5379 * could attach the new rb, we could have missed a wakeup.
5380 * Provide it now.
5381 */
5382 wake_up_all(&event->waitq);
5383 }
5384 }
5385
5386 static void ring_buffer_wakeup(struct perf_event *event)
5387 {
5388 struct ring_buffer *rb;
5389
5390 rcu_read_lock();
5391 rb = rcu_dereference(event->rb);
5392 if (rb) {
5393 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5394 wake_up_all(&event->waitq);
5395 }
5396 rcu_read_unlock();
5397 }
5398
5399 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5400 {
5401 struct ring_buffer *rb;
5402
5403 rcu_read_lock();
5404 rb = rcu_dereference(event->rb);
5405 if (rb) {
5406 if (!refcount_inc_not_zero(&rb->refcount))
5407 rb = NULL;
5408 }
5409 rcu_read_unlock();
5410
5411 return rb;
5412 }
5413
5414 void ring_buffer_put(struct ring_buffer *rb)
5415 {
5416 if (!refcount_dec_and_test(&rb->refcount))
5417 return;
5418
5419 WARN_ON_ONCE(!list_empty(&rb->event_list));
5420
5421 call_rcu(&rb->rcu_head, rb_free_rcu);
5422 }
5423
5424 static void perf_mmap_open(struct vm_area_struct *vma)
5425 {
5426 struct perf_event *event = vma->vm_file->private_data;
5427
5428 atomic_inc(&event->mmap_count);
5429 atomic_inc(&event->rb->mmap_count);
5430
5431 if (vma->vm_pgoff)
5432 atomic_inc(&event->rb->aux_mmap_count);
5433
5434 if (event->pmu->event_mapped)
5435 event->pmu->event_mapped(event, vma->vm_mm);
5436 }
5437
5438 static void perf_pmu_output_stop(struct perf_event *event);
5439
5440 /*
5441 * A buffer can be mmap()ed multiple times; either directly through the same
5442 * event, or through other events by use of perf_event_set_output().
5443 *
5444 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5445 * the buffer here, where we still have a VM context. This means we need
5446 * to detach all events redirecting to us.
5447 */
5448 static void perf_mmap_close(struct vm_area_struct *vma)
5449 {
5450 struct perf_event *event = vma->vm_file->private_data;
5451
5452 struct ring_buffer *rb = ring_buffer_get(event);
5453 struct user_struct *mmap_user = rb->mmap_user;
5454 int mmap_locked = rb->mmap_locked;
5455 unsigned long size = perf_data_size(rb);
5456
5457 if (event->pmu->event_unmapped)
5458 event->pmu->event_unmapped(event, vma->vm_mm);
5459
5460 /*
5461 * rb->aux_mmap_count will always drop before rb->mmap_count and
5462 * event->mmap_count, so it is ok to use event->mmap_mutex to
5463 * serialize with perf_mmap here.
5464 */
5465 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5466 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5467 /*
5468 * Stop all AUX events that are writing to this buffer,
5469 * so that we can free its AUX pages and corresponding PMU
5470 * data. Note that after rb::aux_mmap_count dropped to zero,
5471 * they won't start any more (see perf_aux_output_begin()).
5472 */
5473 perf_pmu_output_stop(event);
5474
5475 /* now it's safe to free the pages */
5476 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5477 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5478
5479 /* this has to be the last one */
5480 rb_free_aux(rb);
5481 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5482
5483 mutex_unlock(&event->mmap_mutex);
5484 }
5485
5486 atomic_dec(&rb->mmap_count);
5487
5488 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5489 goto out_put;
5490
5491 ring_buffer_attach(event, NULL);
5492 mutex_unlock(&event->mmap_mutex);
5493
5494 /* If there's still other mmap()s of this buffer, we're done. */
5495 if (atomic_read(&rb->mmap_count))
5496 goto out_put;
5497
5498 /*
5499 * No other mmap()s, detach from all other events that might redirect
5500 * into the now unreachable buffer. Somewhat complicated by the
5501 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5502 */
5503 again:
5504 rcu_read_lock();
5505 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5506 if (!atomic_long_inc_not_zero(&event->refcount)) {
5507 /*
5508 * This event is en-route to free_event() which will
5509 * detach it and remove it from the list.
5510 */
5511 continue;
5512 }
5513 rcu_read_unlock();
5514
5515 mutex_lock(&event->mmap_mutex);
5516 /*
5517 * Check we didn't race with perf_event_set_output() which can
5518 * swizzle the rb from under us while we were waiting to
5519 * acquire mmap_mutex.
5520 *
5521 * If we find a different rb; ignore this event, a next
5522 * iteration will no longer find it on the list. We have to
5523 * still restart the iteration to make sure we're not now
5524 * iterating the wrong list.
5525 */
5526 if (event->rb == rb)
5527 ring_buffer_attach(event, NULL);
5528
5529 mutex_unlock(&event->mmap_mutex);
5530 put_event(event);
5531
5532 /*
5533 * Restart the iteration; either we're on the wrong list or
5534 * destroyed its integrity by doing a deletion.
5535 */
5536 goto again;
5537 }
5538 rcu_read_unlock();
5539
5540 /*
5541 * It could be there's still a few 0-ref events on the list; they'll
5542 * get cleaned up by free_event() -- they'll also still have their
5543 * ref on the rb and will free it whenever they are done with it.
5544 *
5545 * Aside from that, this buffer is 'fully' detached and unmapped,
5546 * undo the VM accounting.
5547 */
5548
5549 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5550 vma->vm_mm->pinned_vm -= mmap_locked;
5551 free_uid(mmap_user);
5552
5553 out_put:
5554 ring_buffer_put(rb); /* could be last */
5555 }
5556
5557 static const struct vm_operations_struct perf_mmap_vmops = {
5558 .open = perf_mmap_open,
5559 .close = perf_mmap_close, /* non mergeable */
5560 .fault = perf_mmap_fault,
5561 .page_mkwrite = perf_mmap_fault,
5562 };
5563
5564 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5565 {
5566 struct perf_event *event = file->private_data;
5567 unsigned long user_locked, user_lock_limit;
5568 struct user_struct *user = current_user();
5569 unsigned long locked, lock_limit;
5570 struct ring_buffer *rb = NULL;
5571 unsigned long vma_size;
5572 unsigned long nr_pages;
5573 long user_extra = 0, extra = 0;
5574 int ret = 0, flags = 0;
5575
5576 /*
5577 * Don't allow mmap() of inherited per-task counters. This would
5578 * create a performance issue due to all children writing to the
5579 * same rb.
5580 */
5581 if (event->cpu == -1 && event->attr.inherit)
5582 return -EINVAL;
5583
5584 if (!(vma->vm_flags & VM_SHARED))
5585 return -EINVAL;
5586
5587 vma_size = vma->vm_end - vma->vm_start;
5588
5589 if (vma->vm_pgoff == 0) {
5590 nr_pages = (vma_size / PAGE_SIZE) - 1;
5591 } else {
5592 /*
5593 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5594 * mapped, all subsequent mappings should have the same size
5595 * and offset. Must be above the normal perf buffer.
5596 */
5597 u64 aux_offset, aux_size;
5598
5599 if (!event->rb)
5600 return -EINVAL;
5601
5602 nr_pages = vma_size / PAGE_SIZE;
5603
5604 mutex_lock(&event->mmap_mutex);
5605 ret = -EINVAL;
5606
5607 rb = event->rb;
5608 if (!rb)
5609 goto aux_unlock;
5610
5611 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5612 aux_size = READ_ONCE(rb->user_page->aux_size);
5613
5614 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5615 goto aux_unlock;
5616
5617 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5618 goto aux_unlock;
5619
5620 /* already mapped with a different offset */
5621 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5622 goto aux_unlock;
5623
5624 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5625 goto aux_unlock;
5626
5627 /* already mapped with a different size */
5628 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5629 goto aux_unlock;
5630
5631 if (!is_power_of_2(nr_pages))
5632 goto aux_unlock;
5633
5634 if (!atomic_inc_not_zero(&rb->mmap_count))
5635 goto aux_unlock;
5636
5637 if (rb_has_aux(rb)) {
5638 atomic_inc(&rb->aux_mmap_count);
5639 ret = 0;
5640 goto unlock;
5641 }
5642
5643 atomic_set(&rb->aux_mmap_count, 1);
5644 user_extra = nr_pages;
5645
5646 goto accounting;
5647 }
5648
5649 /*
5650 * If we have rb pages ensure they're a power-of-two number, so we
5651 * can do bitmasks instead of modulo.
5652 */
5653 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5654 return -EINVAL;
5655
5656 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5657 return -EINVAL;
5658
5659 WARN_ON_ONCE(event->ctx->parent_ctx);
5660 again:
5661 mutex_lock(&event->mmap_mutex);
5662 if (event->rb) {
5663 if (event->rb->nr_pages != nr_pages) {
5664 ret = -EINVAL;
5665 goto unlock;
5666 }
5667
5668 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5669 /*
5670 * Raced against perf_mmap_close() through
5671 * perf_event_set_output(). Try again, hope for better
5672 * luck.
5673 */
5674 mutex_unlock(&event->mmap_mutex);
5675 goto again;
5676 }
5677
5678 goto unlock;
5679 }
5680
5681 user_extra = nr_pages + 1;
5682
5683 accounting:
5684 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5685
5686 /*
5687 * Increase the limit linearly with more CPUs:
5688 */
5689 user_lock_limit *= num_online_cpus();
5690
5691 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5692
5693 if (user_locked > user_lock_limit)
5694 extra = user_locked - user_lock_limit;
5695
5696 lock_limit = rlimit(RLIMIT_MEMLOCK);
5697 lock_limit >>= PAGE_SHIFT;
5698 locked = vma->vm_mm->pinned_vm + extra;
5699
5700 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5701 !capable(CAP_IPC_LOCK)) {
5702 ret = -EPERM;
5703 goto unlock;
5704 }
5705
5706 WARN_ON(!rb && event->rb);
5707
5708 if (vma->vm_flags & VM_WRITE)
5709 flags |= RING_BUFFER_WRITABLE;
5710
5711 if (!rb) {
5712 rb = rb_alloc(nr_pages,
5713 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5714 event->cpu, flags);
5715
5716 if (!rb) {
5717 ret = -ENOMEM;
5718 goto unlock;
5719 }
5720
5721 atomic_set(&rb->mmap_count, 1);
5722 rb->mmap_user = get_current_user();
5723 rb->mmap_locked = extra;
5724
5725 ring_buffer_attach(event, rb);
5726
5727 perf_event_init_userpage(event);
5728 perf_event_update_userpage(event);
5729 } else {
5730 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5731 event->attr.aux_watermark, flags);
5732 if (!ret)
5733 rb->aux_mmap_locked = extra;
5734 }
5735
5736 unlock:
5737 if (!ret) {
5738 atomic_long_add(user_extra, &user->locked_vm);
5739 vma->vm_mm->pinned_vm += extra;
5740
5741 atomic_inc(&event->mmap_count);
5742 } else if (rb) {
5743 atomic_dec(&rb->mmap_count);
5744 }
5745 aux_unlock:
5746 mutex_unlock(&event->mmap_mutex);
5747
5748 /*
5749 * Since pinned accounting is per vm we cannot allow fork() to copy our
5750 * vma.
5751 */
5752 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5753 vma->vm_ops = &perf_mmap_vmops;
5754
5755 if (event->pmu->event_mapped)
5756 event->pmu->event_mapped(event, vma->vm_mm);
5757
5758 return ret;
5759 }
5760
5761 static int perf_fasync(int fd, struct file *filp, int on)
5762 {
5763 struct inode *inode = file_inode(filp);
5764 struct perf_event *event = filp->private_data;
5765 int retval;
5766
5767 inode_lock(inode);
5768 retval = fasync_helper(fd, filp, on, &event->fasync);
5769 inode_unlock(inode);
5770
5771 if (retval < 0)
5772 return retval;
5773
5774 return 0;
5775 }
5776
5777 static const struct file_operations perf_fops = {
5778 .llseek = no_llseek,
5779 .release = perf_release,
5780 .read = perf_read,
5781 .poll = perf_poll,
5782 .unlocked_ioctl = perf_ioctl,
5783 .compat_ioctl = perf_compat_ioctl,
5784 .mmap = perf_mmap,
5785 .fasync = perf_fasync,
5786 };
5787
5788 /*
5789 * Perf event wakeup
5790 *
5791 * If there's data, ensure we set the poll() state and publish everything
5792 * to user-space before waking everybody up.
5793 */
5794
5795 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5796 {
5797 /* only the parent has fasync state */
5798 if (event->parent)
5799 event = event->parent;
5800 return &event->fasync;
5801 }
5802
5803 void perf_event_wakeup(struct perf_event *event)
5804 {
5805 ring_buffer_wakeup(event);
5806
5807 if (event->pending_kill) {
5808 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5809 event->pending_kill = 0;
5810 }
5811 }
5812
5813 static void perf_pending_event(struct irq_work *entry)
5814 {
5815 struct perf_event *event = container_of(entry,
5816 struct perf_event, pending);
5817 int rctx;
5818
5819 rctx = perf_swevent_get_recursion_context();
5820 /*
5821 * If we 'fail' here, that's OK, it means recursion is already disabled
5822 * and we won't recurse 'further'.
5823 */
5824
5825 if (event->pending_disable) {
5826 event->pending_disable = 0;
5827 perf_event_disable_local(event);
5828 }
5829
5830 if (event->pending_wakeup) {
5831 event->pending_wakeup = 0;
5832 perf_event_wakeup(event);
5833 }
5834
5835 if (rctx >= 0)
5836 perf_swevent_put_recursion_context(rctx);
5837 }
5838
5839 /*
5840 * We assume there is only KVM supporting the callbacks.
5841 * Later on, we might change it to a list if there is
5842 * another virtualization implementation supporting the callbacks.
5843 */
5844 struct perf_guest_info_callbacks *perf_guest_cbs;
5845
5846 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5847 {
5848 perf_guest_cbs = cbs;
5849 return 0;
5850 }
5851 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5852
5853 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5854 {
5855 perf_guest_cbs = NULL;
5856 return 0;
5857 }
5858 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5859
5860 static void
5861 perf_output_sample_regs(struct perf_output_handle *handle,
5862 struct pt_regs *regs, u64 mask)
5863 {
5864 int bit;
5865 DECLARE_BITMAP(_mask, 64);
5866
5867 bitmap_from_u64(_mask, mask);
5868 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5869 u64 val;
5870
5871 val = perf_reg_value(regs, bit);
5872 perf_output_put(handle, val);
5873 }
5874 }
5875
5876 static void perf_sample_regs_user(struct perf_regs *regs_user,
5877 struct pt_regs *regs,
5878 struct pt_regs *regs_user_copy)
5879 {
5880 if (user_mode(regs)) {
5881 regs_user->abi = perf_reg_abi(current);
5882 regs_user->regs = regs;
5883 } else if (current->mm) {
5884 perf_get_regs_user(regs_user, regs, regs_user_copy);
5885 } else {
5886 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5887 regs_user->regs = NULL;
5888 }
5889 }
5890
5891 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5892 struct pt_regs *regs)
5893 {
5894 regs_intr->regs = regs;
5895 regs_intr->abi = perf_reg_abi(current);
5896 }
5897
5898
5899 /*
5900 * Get remaining task size from user stack pointer.
5901 *
5902 * It'd be better to take stack vma map and limit this more
5903 * precisly, but there's no way to get it safely under interrupt,
5904 * so using TASK_SIZE as limit.
5905 */
5906 static u64 perf_ustack_task_size(struct pt_regs *regs)
5907 {
5908 unsigned long addr = perf_user_stack_pointer(regs);
5909
5910 if (!addr || addr >= TASK_SIZE)
5911 return 0;
5912
5913 return TASK_SIZE - addr;
5914 }
5915
5916 static u16
5917 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5918 struct pt_regs *regs)
5919 {
5920 u64 task_size;
5921
5922 /* No regs, no stack pointer, no dump. */
5923 if (!regs)
5924 return 0;
5925
5926 /*
5927 * Check if we fit in with the requested stack size into the:
5928 * - TASK_SIZE
5929 * If we don't, we limit the size to the TASK_SIZE.
5930 *
5931 * - remaining sample size
5932 * If we don't, we customize the stack size to
5933 * fit in to the remaining sample size.
5934 */
5935
5936 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5937 stack_size = min(stack_size, (u16) task_size);
5938
5939 /* Current header size plus static size and dynamic size. */
5940 header_size += 2 * sizeof(u64);
5941
5942 /* Do we fit in with the current stack dump size? */
5943 if ((u16) (header_size + stack_size) < header_size) {
5944 /*
5945 * If we overflow the maximum size for the sample,
5946 * we customize the stack dump size to fit in.
5947 */
5948 stack_size = USHRT_MAX - header_size - sizeof(u64);
5949 stack_size = round_up(stack_size, sizeof(u64));
5950 }
5951
5952 return stack_size;
5953 }
5954
5955 static void
5956 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5957 struct pt_regs *regs)
5958 {
5959 /* Case of a kernel thread, nothing to dump */
5960 if (!regs) {
5961 u64 size = 0;
5962 perf_output_put(handle, size);
5963 } else {
5964 unsigned long sp;
5965 unsigned int rem;
5966 u64 dyn_size;
5967 mm_segment_t fs;
5968
5969 /*
5970 * We dump:
5971 * static size
5972 * - the size requested by user or the best one we can fit
5973 * in to the sample max size
5974 * data
5975 * - user stack dump data
5976 * dynamic size
5977 * - the actual dumped size
5978 */
5979
5980 /* Static size. */
5981 perf_output_put(handle, dump_size);
5982
5983 /* Data. */
5984 sp = perf_user_stack_pointer(regs);
5985 fs = get_fs();
5986 set_fs(USER_DS);
5987 rem = __output_copy_user(handle, (void *) sp, dump_size);
5988 set_fs(fs);
5989 dyn_size = dump_size - rem;
5990
5991 perf_output_skip(handle, rem);
5992
5993 /* Dynamic size. */
5994 perf_output_put(handle, dyn_size);
5995 }
5996 }
5997
5998 static void __perf_event_header__init_id(struct perf_event_header *header,
5999 struct perf_sample_data *data,
6000 struct perf_event *event)
6001 {
6002 u64 sample_type = event->attr.sample_type;
6003
6004 data->type = sample_type;
6005 header->size += event->id_header_size;
6006
6007 if (sample_type & PERF_SAMPLE_TID) {
6008 /* namespace issues */
6009 data->tid_entry.pid = perf_event_pid(event, current);
6010 data->tid_entry.tid = perf_event_tid(event, current);
6011 }
6012
6013 if (sample_type & PERF_SAMPLE_TIME)
6014 data->time = perf_event_clock(event);
6015
6016 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6017 data->id = primary_event_id(event);
6018
6019 if (sample_type & PERF_SAMPLE_STREAM_ID)
6020 data->stream_id = event->id;
6021
6022 if (sample_type & PERF_SAMPLE_CPU) {
6023 data->cpu_entry.cpu = raw_smp_processor_id();
6024 data->cpu_entry.reserved = 0;
6025 }
6026 }
6027
6028 void perf_event_header__init_id(struct perf_event_header *header,
6029 struct perf_sample_data *data,
6030 struct perf_event *event)
6031 {
6032 if (event->attr.sample_id_all)
6033 __perf_event_header__init_id(header, data, event);
6034 }
6035
6036 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6037 struct perf_sample_data *data)
6038 {
6039 u64 sample_type = data->type;
6040
6041 if (sample_type & PERF_SAMPLE_TID)
6042 perf_output_put(handle, data->tid_entry);
6043
6044 if (sample_type & PERF_SAMPLE_TIME)
6045 perf_output_put(handle, data->time);
6046
6047 if (sample_type & PERF_SAMPLE_ID)
6048 perf_output_put(handle, data->id);
6049
6050 if (sample_type & PERF_SAMPLE_STREAM_ID)
6051 perf_output_put(handle, data->stream_id);
6052
6053 if (sample_type & PERF_SAMPLE_CPU)
6054 perf_output_put(handle, data->cpu_entry);
6055
6056 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6057 perf_output_put(handle, data->id);
6058 }
6059
6060 void perf_event__output_id_sample(struct perf_event *event,
6061 struct perf_output_handle *handle,
6062 struct perf_sample_data *sample)
6063 {
6064 if (event->attr.sample_id_all)
6065 __perf_event__output_id_sample(handle, sample);
6066 }
6067
6068 static void perf_output_read_one(struct perf_output_handle *handle,
6069 struct perf_event *event,
6070 u64 enabled, u64 running)
6071 {
6072 u64 read_format = event->attr.read_format;
6073 u64 values[4];
6074 int n = 0;
6075
6076 values[n++] = perf_event_count(event);
6077 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6078 values[n++] = enabled +
6079 atomic64_read(&event->child_total_time_enabled);
6080 }
6081 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6082 values[n++] = running +
6083 atomic64_read(&event->child_total_time_running);
6084 }
6085 if (read_format & PERF_FORMAT_ID)
6086 values[n++] = primary_event_id(event);
6087
6088 __output_copy(handle, values, n * sizeof(u64));
6089 }
6090
6091 static void perf_output_read_group(struct perf_output_handle *handle,
6092 struct perf_event *event,
6093 u64 enabled, u64 running)
6094 {
6095 struct perf_event *leader = event->group_leader, *sub;
6096 u64 read_format = event->attr.read_format;
6097 u64 values[5];
6098 int n = 0;
6099
6100 values[n++] = 1 + leader->nr_siblings;
6101
6102 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6103 values[n++] = enabled;
6104
6105 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6106 values[n++] = running;
6107
6108 if ((leader != event) &&
6109 (leader->state == PERF_EVENT_STATE_ACTIVE))
6110 leader->pmu->read(leader);
6111
6112 values[n++] = perf_event_count(leader);
6113 if (read_format & PERF_FORMAT_ID)
6114 values[n++] = primary_event_id(leader);
6115
6116 __output_copy(handle, values, n * sizeof(u64));
6117
6118 for_each_sibling_event(sub, leader) {
6119 n = 0;
6120
6121 if ((sub != event) &&
6122 (sub->state == PERF_EVENT_STATE_ACTIVE))
6123 sub->pmu->read(sub);
6124
6125 values[n++] = perf_event_count(sub);
6126 if (read_format & PERF_FORMAT_ID)
6127 values[n++] = primary_event_id(sub);
6128
6129 __output_copy(handle, values, n * sizeof(u64));
6130 }
6131 }
6132
6133 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6134 PERF_FORMAT_TOTAL_TIME_RUNNING)
6135
6136 /*
6137 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6138 *
6139 * The problem is that its both hard and excessively expensive to iterate the
6140 * child list, not to mention that its impossible to IPI the children running
6141 * on another CPU, from interrupt/NMI context.
6142 */
6143 static void perf_output_read(struct perf_output_handle *handle,
6144 struct perf_event *event)
6145 {
6146 u64 enabled = 0, running = 0, now;
6147 u64 read_format = event->attr.read_format;
6148
6149 /*
6150 * compute total_time_enabled, total_time_running
6151 * based on snapshot values taken when the event
6152 * was last scheduled in.
6153 *
6154 * we cannot simply called update_context_time()
6155 * because of locking issue as we are called in
6156 * NMI context
6157 */
6158 if (read_format & PERF_FORMAT_TOTAL_TIMES)
6159 calc_timer_values(event, &now, &enabled, &running);
6160
6161 if (event->attr.read_format & PERF_FORMAT_GROUP)
6162 perf_output_read_group(handle, event, enabled, running);
6163 else
6164 perf_output_read_one(handle, event, enabled, running);
6165 }
6166
6167 void perf_output_sample(struct perf_output_handle *handle,
6168 struct perf_event_header *header,
6169 struct perf_sample_data *data,
6170 struct perf_event *event)
6171 {
6172 u64 sample_type = data->type;
6173
6174 perf_output_put(handle, *header);
6175
6176 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6177 perf_output_put(handle, data->id);
6178
6179 if (sample_type & PERF_SAMPLE_IP)
6180 perf_output_put(handle, data->ip);
6181
6182 if (sample_type & PERF_SAMPLE_TID)
6183 perf_output_put(handle, data->tid_entry);
6184
6185 if (sample_type & PERF_SAMPLE_TIME)
6186 perf_output_put(handle, data->time);
6187
6188 if (sample_type & PERF_SAMPLE_ADDR)
6189 perf_output_put(handle, data->addr);
6190
6191 if (sample_type & PERF_SAMPLE_ID)
6192 perf_output_put(handle, data->id);
6193
6194 if (sample_type & PERF_SAMPLE_STREAM_ID)
6195 perf_output_put(handle, data->stream_id);
6196
6197 if (sample_type & PERF_SAMPLE_CPU)
6198 perf_output_put(handle, data->cpu_entry);
6199
6200 if (sample_type & PERF_SAMPLE_PERIOD)
6201 perf_output_put(handle, data->period);
6202
6203 if (sample_type & PERF_SAMPLE_READ)
6204 perf_output_read(handle, event);
6205
6206 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6207 int size = 1;
6208
6209 size += data->callchain->nr;
6210 size *= sizeof(u64);
6211 __output_copy(handle, data->callchain, size);
6212 }
6213
6214 if (sample_type & PERF_SAMPLE_RAW) {
6215 struct perf_raw_record *raw = data->raw;
6216
6217 if (raw) {
6218 struct perf_raw_frag *frag = &raw->frag;
6219
6220 perf_output_put(handle, raw->size);
6221 do {
6222 if (frag->copy) {
6223 __output_custom(handle, frag->copy,
6224 frag->data, frag->size);
6225 } else {
6226 __output_copy(handle, frag->data,
6227 frag->size);
6228 }
6229 if (perf_raw_frag_last(frag))
6230 break;
6231 frag = frag->next;
6232 } while (1);
6233 if (frag->pad)
6234 __output_skip(handle, NULL, frag->pad);
6235 } else {
6236 struct {
6237 u32 size;
6238 u32 data;
6239 } raw = {
6240 .size = sizeof(u32),
6241 .data = 0,
6242 };
6243 perf_output_put(handle, raw);
6244 }
6245 }
6246
6247 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6248 if (data->br_stack) {
6249 size_t size;
6250
6251 size = data->br_stack->nr
6252 * sizeof(struct perf_branch_entry);
6253
6254 perf_output_put(handle, data->br_stack->nr);
6255 perf_output_copy(handle, data->br_stack->entries, size);
6256 } else {
6257 /*
6258 * we always store at least the value of nr
6259 */
6260 u64 nr = 0;
6261 perf_output_put(handle, nr);
6262 }
6263 }
6264
6265 if (sample_type & PERF_SAMPLE_REGS_USER) {
6266 u64 abi = data->regs_user.abi;
6267
6268 /*
6269 * If there are no regs to dump, notice it through
6270 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6271 */
6272 perf_output_put(handle, abi);
6273
6274 if (abi) {
6275 u64 mask = event->attr.sample_regs_user;
6276 perf_output_sample_regs(handle,
6277 data->regs_user.regs,
6278 mask);
6279 }
6280 }
6281
6282 if (sample_type & PERF_SAMPLE_STACK_USER) {
6283 perf_output_sample_ustack(handle,
6284 data->stack_user_size,
6285 data->regs_user.regs);
6286 }
6287
6288 if (sample_type & PERF_SAMPLE_WEIGHT)
6289 perf_output_put(handle, data->weight);
6290
6291 if (sample_type & PERF_SAMPLE_DATA_SRC)
6292 perf_output_put(handle, data->data_src.val);
6293
6294 if (sample_type & PERF_SAMPLE_TRANSACTION)
6295 perf_output_put(handle, data->txn);
6296
6297 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6298 u64 abi = data->regs_intr.abi;
6299 /*
6300 * If there are no regs to dump, notice it through
6301 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6302 */
6303 perf_output_put(handle, abi);
6304
6305 if (abi) {
6306 u64 mask = event->attr.sample_regs_intr;
6307
6308 perf_output_sample_regs(handle,
6309 data->regs_intr.regs,
6310 mask);
6311 }
6312 }
6313
6314 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6315 perf_output_put(handle, data->phys_addr);
6316
6317 if (!event->attr.watermark) {
6318 int wakeup_events = event->attr.wakeup_events;
6319
6320 if (wakeup_events) {
6321 struct ring_buffer *rb = handle->rb;
6322 int events = local_inc_return(&rb->events);
6323
6324 if (events >= wakeup_events) {
6325 local_sub(wakeup_events, &rb->events);
6326 local_inc(&rb->wakeup);
6327 }
6328 }
6329 }
6330 }
6331
6332 static u64 perf_virt_to_phys(u64 virt)
6333 {
6334 u64 phys_addr = 0;
6335 struct page *p = NULL;
6336
6337 if (!virt)
6338 return 0;
6339
6340 if (virt >= TASK_SIZE) {
6341 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6342 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6343 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6344 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6345 } else {
6346 /*
6347 * Walking the pages tables for user address.
6348 * Interrupts are disabled, so it prevents any tear down
6349 * of the page tables.
6350 * Try IRQ-safe __get_user_pages_fast first.
6351 * If failed, leave phys_addr as 0.
6352 */
6353 if ((current->mm != NULL) &&
6354 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6355 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6356
6357 if (p)
6358 put_page(p);
6359 }
6360
6361 return phys_addr;
6362 }
6363
6364 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6365
6366 struct perf_callchain_entry *
6367 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6368 {
6369 bool kernel = !event->attr.exclude_callchain_kernel;
6370 bool user = !event->attr.exclude_callchain_user;
6371 /* Disallow cross-task user callchains. */
6372 bool crosstask = event->ctx->task && event->ctx->task != current;
6373 const u32 max_stack = event->attr.sample_max_stack;
6374 struct perf_callchain_entry *callchain;
6375
6376 if (!kernel && !user)
6377 return &__empty_callchain;
6378
6379 callchain = get_perf_callchain(regs, 0, kernel, user,
6380 max_stack, crosstask, true);
6381 return callchain ?: &__empty_callchain;
6382 }
6383
6384 void perf_prepare_sample(struct perf_event_header *header,
6385 struct perf_sample_data *data,
6386 struct perf_event *event,
6387 struct pt_regs *regs)
6388 {
6389 u64 sample_type = event->attr.sample_type;
6390
6391 header->type = PERF_RECORD_SAMPLE;
6392 header->size = sizeof(*header) + event->header_size;
6393
6394 header->misc = 0;
6395 header->misc |= perf_misc_flags(regs);
6396
6397 __perf_event_header__init_id(header, data, event);
6398
6399 if (sample_type & PERF_SAMPLE_IP)
6400 data->ip = perf_instruction_pointer(regs);
6401
6402 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6403 int size = 1;
6404
6405 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6406 data->callchain = perf_callchain(event, regs);
6407
6408 size += data->callchain->nr;
6409
6410 header->size += size * sizeof(u64);
6411 }
6412
6413 if (sample_type & PERF_SAMPLE_RAW) {
6414 struct perf_raw_record *raw = data->raw;
6415 int size;
6416
6417 if (raw) {
6418 struct perf_raw_frag *frag = &raw->frag;
6419 u32 sum = 0;
6420
6421 do {
6422 sum += frag->size;
6423 if (perf_raw_frag_last(frag))
6424 break;
6425 frag = frag->next;
6426 } while (1);
6427
6428 size = round_up(sum + sizeof(u32), sizeof(u64));
6429 raw->size = size - sizeof(u32);
6430 frag->pad = raw->size - sum;
6431 } else {
6432 size = sizeof(u64);
6433 }
6434
6435 header->size += size;
6436 }
6437
6438 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6439 int size = sizeof(u64); /* nr */
6440 if (data->br_stack) {
6441 size += data->br_stack->nr
6442 * sizeof(struct perf_branch_entry);
6443 }
6444 header->size += size;
6445 }
6446
6447 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6448 perf_sample_regs_user(&data->regs_user, regs,
6449 &data->regs_user_copy);
6450
6451 if (sample_type & PERF_SAMPLE_REGS_USER) {
6452 /* regs dump ABI info */
6453 int size = sizeof(u64);
6454
6455 if (data->regs_user.regs) {
6456 u64 mask = event->attr.sample_regs_user;
6457 size += hweight64(mask) * sizeof(u64);
6458 }
6459
6460 header->size += size;
6461 }
6462
6463 if (sample_type & PERF_SAMPLE_STACK_USER) {
6464 /*
6465 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6466 * processed as the last one or have additional check added
6467 * in case new sample type is added, because we could eat
6468 * up the rest of the sample size.
6469 */
6470 u16 stack_size = event->attr.sample_stack_user;
6471 u16 size = sizeof(u64);
6472
6473 stack_size = perf_sample_ustack_size(stack_size, header->size,
6474 data->regs_user.regs);
6475
6476 /*
6477 * If there is something to dump, add space for the dump
6478 * itself and for the field that tells the dynamic size,
6479 * which is how many have been actually dumped.
6480 */
6481 if (stack_size)
6482 size += sizeof(u64) + stack_size;
6483
6484 data->stack_user_size = stack_size;
6485 header->size += size;
6486 }
6487
6488 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6489 /* regs dump ABI info */
6490 int size = sizeof(u64);
6491
6492 perf_sample_regs_intr(&data->regs_intr, regs);
6493
6494 if (data->regs_intr.regs) {
6495 u64 mask = event->attr.sample_regs_intr;
6496
6497 size += hweight64(mask) * sizeof(u64);
6498 }
6499
6500 header->size += size;
6501 }
6502
6503 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6504 data->phys_addr = perf_virt_to_phys(data->addr);
6505 }
6506
6507 static __always_inline int
6508 __perf_event_output(struct perf_event *event,
6509 struct perf_sample_data *data,
6510 struct pt_regs *regs,
6511 int (*output_begin)(struct perf_output_handle *,
6512 struct perf_event *,
6513 unsigned int))
6514 {
6515 struct perf_output_handle handle;
6516 struct perf_event_header header;
6517 int err;
6518
6519 /* protect the callchain buffers */
6520 rcu_read_lock();
6521
6522 perf_prepare_sample(&header, data, event, regs);
6523
6524 err = output_begin(&handle, event, header.size);
6525 if (err)
6526 goto exit;
6527
6528 perf_output_sample(&handle, &header, data, event);
6529
6530 perf_output_end(&handle);
6531
6532 exit:
6533 rcu_read_unlock();
6534 return err;
6535 }
6536
6537 void
6538 perf_event_output_forward(struct perf_event *event,
6539 struct perf_sample_data *data,
6540 struct pt_regs *regs)
6541 {
6542 __perf_event_output(event, data, regs, perf_output_begin_forward);
6543 }
6544
6545 void
6546 perf_event_output_backward(struct perf_event *event,
6547 struct perf_sample_data *data,
6548 struct pt_regs *regs)
6549 {
6550 __perf_event_output(event, data, regs, perf_output_begin_backward);
6551 }
6552
6553 int
6554 perf_event_output(struct perf_event *event,
6555 struct perf_sample_data *data,
6556 struct pt_regs *regs)
6557 {
6558 return __perf_event_output(event, data, regs, perf_output_begin);
6559 }
6560
6561 /*
6562 * read event_id
6563 */
6564
6565 struct perf_read_event {
6566 struct perf_event_header header;
6567
6568 u32 pid;
6569 u32 tid;
6570 };
6571
6572 static void
6573 perf_event_read_event(struct perf_event *event,
6574 struct task_struct *task)
6575 {
6576 struct perf_output_handle handle;
6577 struct perf_sample_data sample;
6578 struct perf_read_event read_event = {
6579 .header = {
6580 .type = PERF_RECORD_READ,
6581 .misc = 0,
6582 .size = sizeof(read_event) + event->read_size,
6583 },
6584 .pid = perf_event_pid(event, task),
6585 .tid = perf_event_tid(event, task),
6586 };
6587 int ret;
6588
6589 perf_event_header__init_id(&read_event.header, &sample, event);
6590 ret = perf_output_begin(&handle, event, read_event.header.size);
6591 if (ret)
6592 return;
6593
6594 perf_output_put(&handle, read_event);
6595 perf_output_read(&handle, event);
6596 perf_event__output_id_sample(event, &handle, &sample);
6597
6598 perf_output_end(&handle);
6599 }
6600
6601 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6602
6603 static void
6604 perf_iterate_ctx(struct perf_event_context *ctx,
6605 perf_iterate_f output,
6606 void *data, bool all)
6607 {
6608 struct perf_event *event;
6609
6610 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6611 if (!all) {
6612 if (event->state < PERF_EVENT_STATE_INACTIVE)
6613 continue;
6614 if (!event_filter_match(event))
6615 continue;
6616 }
6617
6618 output(event, data);
6619 }
6620 }
6621
6622 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6623 {
6624 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6625 struct perf_event *event;
6626
6627 list_for_each_entry_rcu(event, &pel->list, sb_list) {
6628 /*
6629 * Skip events that are not fully formed yet; ensure that
6630 * if we observe event->ctx, both event and ctx will be
6631 * complete enough. See perf_install_in_context().
6632 */
6633 if (!smp_load_acquire(&event->ctx))
6634 continue;
6635
6636 if (event->state < PERF_EVENT_STATE_INACTIVE)
6637 continue;
6638 if (!event_filter_match(event))
6639 continue;
6640 output(event, data);
6641 }
6642 }
6643
6644 /*
6645 * Iterate all events that need to receive side-band events.
6646 *
6647 * For new callers; ensure that account_pmu_sb_event() includes
6648 * your event, otherwise it might not get delivered.
6649 */
6650 static void
6651 perf_iterate_sb(perf_iterate_f output, void *data,
6652 struct perf_event_context *task_ctx)
6653 {
6654 struct perf_event_context *ctx;
6655 int ctxn;
6656
6657 rcu_read_lock();
6658 preempt_disable();
6659
6660 /*
6661 * If we have task_ctx != NULL we only notify the task context itself.
6662 * The task_ctx is set only for EXIT events before releasing task
6663 * context.
6664 */
6665 if (task_ctx) {
6666 perf_iterate_ctx(task_ctx, output, data, false);
6667 goto done;
6668 }
6669
6670 perf_iterate_sb_cpu(output, data);
6671
6672 for_each_task_context_nr(ctxn) {
6673 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6674 if (ctx)
6675 perf_iterate_ctx(ctx, output, data, false);
6676 }
6677 done:
6678 preempt_enable();
6679 rcu_read_unlock();
6680 }
6681
6682 /*
6683 * Clear all file-based filters at exec, they'll have to be
6684 * re-instated when/if these objects are mmapped again.
6685 */
6686 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6687 {
6688 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6689 struct perf_addr_filter *filter;
6690 unsigned int restart = 0, count = 0;
6691 unsigned long flags;
6692
6693 if (!has_addr_filter(event))
6694 return;
6695
6696 raw_spin_lock_irqsave(&ifh->lock, flags);
6697 list_for_each_entry(filter, &ifh->list, entry) {
6698 if (filter->path.dentry) {
6699 event->addr_filter_ranges[count].start = 0;
6700 event->addr_filter_ranges[count].size = 0;
6701 restart++;
6702 }
6703
6704 count++;
6705 }
6706
6707 if (restart)
6708 event->addr_filters_gen++;
6709 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6710
6711 if (restart)
6712 perf_event_stop(event, 1);
6713 }
6714
6715 void perf_event_exec(void)
6716 {
6717 struct perf_event_context *ctx;
6718 int ctxn;
6719
6720 rcu_read_lock();
6721 for_each_task_context_nr(ctxn) {
6722 ctx = current->perf_event_ctxp[ctxn];
6723 if (!ctx)
6724 continue;
6725
6726 perf_event_enable_on_exec(ctxn);
6727
6728 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6729 true);
6730 }
6731 rcu_read_unlock();
6732 }
6733
6734 struct remote_output {
6735 struct ring_buffer *rb;
6736 int err;
6737 };
6738
6739 static void __perf_event_output_stop(struct perf_event *event, void *data)
6740 {
6741 struct perf_event *parent = event->parent;
6742 struct remote_output *ro = data;
6743 struct ring_buffer *rb = ro->rb;
6744 struct stop_event_data sd = {
6745 .event = event,
6746 };
6747
6748 if (!has_aux(event))
6749 return;
6750
6751 if (!parent)
6752 parent = event;
6753
6754 /*
6755 * In case of inheritance, it will be the parent that links to the
6756 * ring-buffer, but it will be the child that's actually using it.
6757 *
6758 * We are using event::rb to determine if the event should be stopped,
6759 * however this may race with ring_buffer_attach() (through set_output),
6760 * which will make us skip the event that actually needs to be stopped.
6761 * So ring_buffer_attach() has to stop an aux event before re-assigning
6762 * its rb pointer.
6763 */
6764 if (rcu_dereference(parent->rb) == rb)
6765 ro->err = __perf_event_stop(&sd);
6766 }
6767
6768 static int __perf_pmu_output_stop(void *info)
6769 {
6770 struct perf_event *event = info;
6771 struct pmu *pmu = event->pmu;
6772 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6773 struct remote_output ro = {
6774 .rb = event->rb,
6775 };
6776
6777 rcu_read_lock();
6778 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6779 if (cpuctx->task_ctx)
6780 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6781 &ro, false);
6782 rcu_read_unlock();
6783
6784 return ro.err;
6785 }
6786
6787 static void perf_pmu_output_stop(struct perf_event *event)
6788 {
6789 struct perf_event *iter;
6790 int err, cpu;
6791
6792 restart:
6793 rcu_read_lock();
6794 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6795 /*
6796 * For per-CPU events, we need to make sure that neither they
6797 * nor their children are running; for cpu==-1 events it's
6798 * sufficient to stop the event itself if it's active, since
6799 * it can't have children.
6800 */
6801 cpu = iter->cpu;
6802 if (cpu == -1)
6803 cpu = READ_ONCE(iter->oncpu);
6804
6805 if (cpu == -1)
6806 continue;
6807
6808 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6809 if (err == -EAGAIN) {
6810 rcu_read_unlock();
6811 goto restart;
6812 }
6813 }
6814 rcu_read_unlock();
6815 }
6816
6817 /*
6818 * task tracking -- fork/exit
6819 *
6820 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6821 */
6822
6823 struct perf_task_event {
6824 struct task_struct *task;
6825 struct perf_event_context *task_ctx;
6826
6827 struct {
6828 struct perf_event_header header;
6829
6830 u32 pid;
6831 u32 ppid;
6832 u32 tid;
6833 u32 ptid;
6834 u64 time;
6835 } event_id;
6836 };
6837
6838 static int perf_event_task_match(struct perf_event *event)
6839 {
6840 return event->attr.comm || event->attr.mmap ||
6841 event->attr.mmap2 || event->attr.mmap_data ||
6842 event->attr.task;
6843 }
6844
6845 static void perf_event_task_output(struct perf_event *event,
6846 void *data)
6847 {
6848 struct perf_task_event *task_event = data;
6849 struct perf_output_handle handle;
6850 struct perf_sample_data sample;
6851 struct task_struct *task = task_event->task;
6852 int ret, size = task_event->event_id.header.size;
6853
6854 if (!perf_event_task_match(event))
6855 return;
6856
6857 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6858
6859 ret = perf_output_begin(&handle, event,
6860 task_event->event_id.header.size);
6861 if (ret)
6862 goto out;
6863
6864 task_event->event_id.pid = perf_event_pid(event, task);
6865 task_event->event_id.ppid = perf_event_pid(event, current);
6866
6867 task_event->event_id.tid = perf_event_tid(event, task);
6868 task_event->event_id.ptid = perf_event_tid(event, current);
6869
6870 task_event->event_id.time = perf_event_clock(event);
6871
6872 perf_output_put(&handle, task_event->event_id);
6873
6874 perf_event__output_id_sample(event, &handle, &sample);
6875
6876 perf_output_end(&handle);
6877 out:
6878 task_event->event_id.header.size = size;
6879 }
6880
6881 static void perf_event_task(struct task_struct *task,
6882 struct perf_event_context *task_ctx,
6883 int new)
6884 {
6885 struct perf_task_event task_event;
6886
6887 if (!atomic_read(&nr_comm_events) &&
6888 !atomic_read(&nr_mmap_events) &&
6889 !atomic_read(&nr_task_events))
6890 return;
6891
6892 task_event = (struct perf_task_event){
6893 .task = task,
6894 .task_ctx = task_ctx,
6895 .event_id = {
6896 .header = {
6897 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6898 .misc = 0,
6899 .size = sizeof(task_event.event_id),
6900 },
6901 /* .pid */
6902 /* .ppid */
6903 /* .tid */
6904 /* .ptid */
6905 /* .time */
6906 },
6907 };
6908
6909 perf_iterate_sb(perf_event_task_output,
6910 &task_event,
6911 task_ctx);
6912 }
6913
6914 void perf_event_fork(struct task_struct *task)
6915 {
6916 perf_event_task(task, NULL, 1);
6917 perf_event_namespaces(task);
6918 }
6919
6920 /*
6921 * comm tracking
6922 */
6923
6924 struct perf_comm_event {
6925 struct task_struct *task;
6926 char *comm;
6927 int comm_size;
6928
6929 struct {
6930 struct perf_event_header header;
6931
6932 u32 pid;
6933 u32 tid;
6934 } event_id;
6935 };
6936
6937 static int perf_event_comm_match(struct perf_event *event)
6938 {
6939 return event->attr.comm;
6940 }
6941
6942 static void perf_event_comm_output(struct perf_event *event,
6943 void *data)
6944 {
6945 struct perf_comm_event *comm_event = data;
6946 struct perf_output_handle handle;
6947 struct perf_sample_data sample;
6948 int size = comm_event->event_id.header.size;
6949 int ret;
6950
6951 if (!perf_event_comm_match(event))
6952 return;
6953
6954 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6955 ret = perf_output_begin(&handle, event,
6956 comm_event->event_id.header.size);
6957
6958 if (ret)
6959 goto out;
6960
6961 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6962 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6963
6964 perf_output_put(&handle, comm_event->event_id);
6965 __output_copy(&handle, comm_event->comm,
6966 comm_event->comm_size);
6967
6968 perf_event__output_id_sample(event, &handle, &sample);
6969
6970 perf_output_end(&handle);
6971 out:
6972 comm_event->event_id.header.size = size;
6973 }
6974
6975 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6976 {
6977 char comm[TASK_COMM_LEN];
6978 unsigned int size;
6979
6980 memset(comm, 0, sizeof(comm));
6981 strlcpy(comm, comm_event->task->comm, sizeof(comm));
6982 size = ALIGN(strlen(comm)+1, sizeof(u64));
6983
6984 comm_event->comm = comm;
6985 comm_event->comm_size = size;
6986
6987 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6988
6989 perf_iterate_sb(perf_event_comm_output,
6990 comm_event,
6991 NULL);
6992 }
6993
6994 void perf_event_comm(struct task_struct *task, bool exec)
6995 {
6996 struct perf_comm_event comm_event;
6997
6998 if (!atomic_read(&nr_comm_events))
6999 return;
7000
7001 comm_event = (struct perf_comm_event){
7002 .task = task,
7003 /* .comm */
7004 /* .comm_size */
7005 .event_id = {
7006 .header = {
7007 .type = PERF_RECORD_COMM,
7008 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7009 /* .size */
7010 },
7011 /* .pid */
7012 /* .tid */
7013 },
7014 };
7015
7016 perf_event_comm_event(&comm_event);
7017 }
7018
7019 /*
7020 * namespaces tracking
7021 */
7022
7023 struct perf_namespaces_event {
7024 struct task_struct *task;
7025
7026 struct {
7027 struct perf_event_header header;
7028
7029 u32 pid;
7030 u32 tid;
7031 u64 nr_namespaces;
7032 struct perf_ns_link_info link_info[NR_NAMESPACES];
7033 } event_id;
7034 };
7035
7036 static int perf_event_namespaces_match(struct perf_event *event)
7037 {
7038 return event->attr.namespaces;
7039 }
7040
7041 static void perf_event_namespaces_output(struct perf_event *event,
7042 void *data)
7043 {
7044 struct perf_namespaces_event *namespaces_event = data;
7045 struct perf_output_handle handle;
7046 struct perf_sample_data sample;
7047 u16 header_size = namespaces_event->event_id.header.size;
7048 int ret;
7049
7050 if (!perf_event_namespaces_match(event))
7051 return;
7052
7053 perf_event_header__init_id(&namespaces_event->event_id.header,
7054 &sample, event);
7055 ret = perf_output_begin(&handle, event,
7056 namespaces_event->event_id.header.size);
7057 if (ret)
7058 goto out;
7059
7060 namespaces_event->event_id.pid = perf_event_pid(event,
7061 namespaces_event->task);
7062 namespaces_event->event_id.tid = perf_event_tid(event,
7063 namespaces_event->task);
7064
7065 perf_output_put(&handle, namespaces_event->event_id);
7066
7067 perf_event__output_id_sample(event, &handle, &sample);
7068
7069 perf_output_end(&handle);
7070 out:
7071 namespaces_event->event_id.header.size = header_size;
7072 }
7073
7074 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7075 struct task_struct *task,
7076 const struct proc_ns_operations *ns_ops)
7077 {
7078 struct path ns_path;
7079 struct inode *ns_inode;
7080 void *error;
7081
7082 error = ns_get_path(&ns_path, task, ns_ops);
7083 if (!error) {
7084 ns_inode = ns_path.dentry->d_inode;
7085 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7086 ns_link_info->ino = ns_inode->i_ino;
7087 path_put(&ns_path);
7088 }
7089 }
7090
7091 void perf_event_namespaces(struct task_struct *task)
7092 {
7093 struct perf_namespaces_event namespaces_event;
7094 struct perf_ns_link_info *ns_link_info;
7095
7096 if (!atomic_read(&nr_namespaces_events))
7097 return;
7098
7099 namespaces_event = (struct perf_namespaces_event){
7100 .task = task,
7101 .event_id = {
7102 .header = {
7103 .type = PERF_RECORD_NAMESPACES,
7104 .misc = 0,
7105 .size = sizeof(namespaces_event.event_id),
7106 },
7107 /* .pid */
7108 /* .tid */
7109 .nr_namespaces = NR_NAMESPACES,
7110 /* .link_info[NR_NAMESPACES] */
7111 },
7112 };
7113
7114 ns_link_info = namespaces_event.event_id.link_info;
7115
7116 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7117 task, &mntns_operations);
7118
7119 #ifdef CONFIG_USER_NS
7120 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7121 task, &userns_operations);
7122 #endif
7123 #ifdef CONFIG_NET_NS
7124 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7125 task, &netns_operations);
7126 #endif
7127 #ifdef CONFIG_UTS_NS
7128 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7129 task, &utsns_operations);
7130 #endif
7131 #ifdef CONFIG_IPC_NS
7132 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7133 task, &ipcns_operations);
7134 #endif
7135 #ifdef CONFIG_PID_NS
7136 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7137 task, &pidns_operations);
7138 #endif
7139 #ifdef CONFIG_CGROUPS
7140 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7141 task, &cgroupns_operations);
7142 #endif
7143
7144 perf_iterate_sb(perf_event_namespaces_output,
7145 &namespaces_event,
7146 NULL);
7147 }
7148
7149 /*
7150 * mmap tracking
7151 */
7152
7153 struct perf_mmap_event {
7154 struct vm_area_struct *vma;
7155
7156 const char *file_name;
7157 int file_size;
7158 int maj, min;
7159 u64 ino;
7160 u64 ino_generation;
7161 u32 prot, flags;
7162
7163 struct {
7164 struct perf_event_header header;
7165
7166 u32 pid;
7167 u32 tid;
7168 u64 start;
7169 u64 len;
7170 u64 pgoff;
7171 } event_id;
7172 };
7173
7174 static int perf_event_mmap_match(struct perf_event *event,
7175 void *data)
7176 {
7177 struct perf_mmap_event *mmap_event = data;
7178 struct vm_area_struct *vma = mmap_event->vma;
7179 int executable = vma->vm_flags & VM_EXEC;
7180
7181 return (!executable && event->attr.mmap_data) ||
7182 (executable && (event->attr.mmap || event->attr.mmap2));
7183 }
7184
7185 static void perf_event_mmap_output(struct perf_event *event,
7186 void *data)
7187 {
7188 struct perf_mmap_event *mmap_event = data;
7189 struct perf_output_handle handle;
7190 struct perf_sample_data sample;
7191 int size = mmap_event->event_id.header.size;
7192 int ret;
7193
7194 if (!perf_event_mmap_match(event, data))
7195 return;
7196
7197 if (event->attr.mmap2) {
7198 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7199 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7200 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7201 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7202 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7203 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7204 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7205 }
7206
7207 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7208 ret = perf_output_begin(&handle, event,
7209 mmap_event->event_id.header.size);
7210 if (ret)
7211 goto out;
7212
7213 mmap_event->event_id.pid = perf_event_pid(event, current);
7214 mmap_event->event_id.tid = perf_event_tid(event, current);
7215
7216 perf_output_put(&handle, mmap_event->event_id);
7217
7218 if (event->attr.mmap2) {
7219 perf_output_put(&handle, mmap_event->maj);
7220 perf_output_put(&handle, mmap_event->min);
7221 perf_output_put(&handle, mmap_event->ino);
7222 perf_output_put(&handle, mmap_event->ino_generation);
7223 perf_output_put(&handle, mmap_event->prot);
7224 perf_output_put(&handle, mmap_event->flags);
7225 }
7226
7227 __output_copy(&handle, mmap_event->file_name,
7228 mmap_event->file_size);
7229
7230 perf_event__output_id_sample(event, &handle, &sample);
7231
7232 perf_output_end(&handle);
7233 out:
7234 mmap_event->event_id.header.size = size;
7235 }
7236
7237 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7238 {
7239 struct vm_area_struct *vma = mmap_event->vma;
7240 struct file *file = vma->vm_file;
7241 int maj = 0, min = 0;
7242 u64 ino = 0, gen = 0;
7243 u32 prot = 0, flags = 0;
7244 unsigned int size;
7245 char tmp[16];
7246 char *buf = NULL;
7247 char *name;
7248
7249 if (vma->vm_flags & VM_READ)
7250 prot |= PROT_READ;
7251 if (vma->vm_flags & VM_WRITE)
7252 prot |= PROT_WRITE;
7253 if (vma->vm_flags & VM_EXEC)
7254 prot |= PROT_EXEC;
7255
7256 if (vma->vm_flags & VM_MAYSHARE)
7257 flags = MAP_SHARED;
7258 else
7259 flags = MAP_PRIVATE;
7260
7261 if (vma->vm_flags & VM_DENYWRITE)
7262 flags |= MAP_DENYWRITE;
7263 if (vma->vm_flags & VM_MAYEXEC)
7264 flags |= MAP_EXECUTABLE;
7265 if (vma->vm_flags & VM_LOCKED)
7266 flags |= MAP_LOCKED;
7267 if (vma->vm_flags & VM_HUGETLB)
7268 flags |= MAP_HUGETLB;
7269
7270 if (file) {
7271 struct inode *inode;
7272 dev_t dev;
7273
7274 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7275 if (!buf) {
7276 name = "//enomem";
7277 goto cpy_name;
7278 }
7279 /*
7280 * d_path() works from the end of the rb backwards, so we
7281 * need to add enough zero bytes after the string to handle
7282 * the 64bit alignment we do later.
7283 */
7284 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7285 if (IS_ERR(name)) {
7286 name = "//toolong";
7287 goto cpy_name;
7288 }
7289 inode = file_inode(vma->vm_file);
7290 dev = inode->i_sb->s_dev;
7291 ino = inode->i_ino;
7292 gen = inode->i_generation;
7293 maj = MAJOR(dev);
7294 min = MINOR(dev);
7295
7296 goto got_name;
7297 } else {
7298 if (vma->vm_ops && vma->vm_ops->name) {
7299 name = (char *) vma->vm_ops->name(vma);
7300 if (name)
7301 goto cpy_name;
7302 }
7303
7304 name = (char *)arch_vma_name(vma);
7305 if (name)
7306 goto cpy_name;
7307
7308 if (vma->vm_start <= vma->vm_mm->start_brk &&
7309 vma->vm_end >= vma->vm_mm->brk) {
7310 name = "[heap]";
7311 goto cpy_name;
7312 }
7313 if (vma->vm_start <= vma->vm_mm->start_stack &&
7314 vma->vm_end >= vma->vm_mm->start_stack) {
7315 name = "[stack]";
7316 goto cpy_name;
7317 }
7318
7319 name = "//anon";
7320 goto cpy_name;
7321 }
7322
7323 cpy_name:
7324 strlcpy(tmp, name, sizeof(tmp));
7325 name = tmp;
7326 got_name:
7327 /*
7328 * Since our buffer works in 8 byte units we need to align our string
7329 * size to a multiple of 8. However, we must guarantee the tail end is
7330 * zero'd out to avoid leaking random bits to userspace.
7331 */
7332 size = strlen(name)+1;
7333 while (!IS_ALIGNED(size, sizeof(u64)))
7334 name[size++] = '\0';
7335
7336 mmap_event->file_name = name;
7337 mmap_event->file_size = size;
7338 mmap_event->maj = maj;
7339 mmap_event->min = min;
7340 mmap_event->ino = ino;
7341 mmap_event->ino_generation = gen;
7342 mmap_event->prot = prot;
7343 mmap_event->flags = flags;
7344
7345 if (!(vma->vm_flags & VM_EXEC))
7346 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7347
7348 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7349
7350 perf_iterate_sb(perf_event_mmap_output,
7351 mmap_event,
7352 NULL);
7353
7354 kfree(buf);
7355 }
7356
7357 /*
7358 * Check whether inode and address range match filter criteria.
7359 */
7360 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7361 struct file *file, unsigned long offset,
7362 unsigned long size)
7363 {
7364 /* d_inode(NULL) won't be equal to any mapped user-space file */
7365 if (!filter->path.dentry)
7366 return false;
7367
7368 if (d_inode(filter->path.dentry) != file_inode(file))
7369 return false;
7370
7371 if (filter->offset > offset + size)
7372 return false;
7373
7374 if (filter->offset + filter->size < offset)
7375 return false;
7376
7377 return true;
7378 }
7379
7380 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7381 struct vm_area_struct *vma,
7382 struct perf_addr_filter_range *fr)
7383 {
7384 unsigned long vma_size = vma->vm_end - vma->vm_start;
7385 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7386 struct file *file = vma->vm_file;
7387
7388 if (!perf_addr_filter_match(filter, file, off, vma_size))
7389 return false;
7390
7391 if (filter->offset < off) {
7392 fr->start = vma->vm_start;
7393 fr->size = min(vma_size, filter->size - (off - filter->offset));
7394 } else {
7395 fr->start = vma->vm_start + filter->offset - off;
7396 fr->size = min(vma->vm_end - fr->start, filter->size);
7397 }
7398
7399 return true;
7400 }
7401
7402 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7403 {
7404 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7405 struct vm_area_struct *vma = data;
7406 struct perf_addr_filter *filter;
7407 unsigned int restart = 0, count = 0;
7408 unsigned long flags;
7409
7410 if (!has_addr_filter(event))
7411 return;
7412
7413 if (!vma->vm_file)
7414 return;
7415
7416 raw_spin_lock_irqsave(&ifh->lock, flags);
7417 list_for_each_entry(filter, &ifh->list, entry) {
7418 if (perf_addr_filter_vma_adjust(filter, vma,
7419 &event->addr_filter_ranges[count]))
7420 restart++;
7421
7422 count++;
7423 }
7424
7425 if (restart)
7426 event->addr_filters_gen++;
7427 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7428
7429 if (restart)
7430 perf_event_stop(event, 1);
7431 }
7432
7433 /*
7434 * Adjust all task's events' filters to the new vma
7435 */
7436 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7437 {
7438 struct perf_event_context *ctx;
7439 int ctxn;
7440
7441 /*
7442 * Data tracing isn't supported yet and as such there is no need
7443 * to keep track of anything that isn't related to executable code:
7444 */
7445 if (!(vma->vm_flags & VM_EXEC))
7446 return;
7447
7448 rcu_read_lock();
7449 for_each_task_context_nr(ctxn) {
7450 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7451 if (!ctx)
7452 continue;
7453
7454 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7455 }
7456 rcu_read_unlock();
7457 }
7458
7459 void perf_event_mmap(struct vm_area_struct *vma)
7460 {
7461 struct perf_mmap_event mmap_event;
7462
7463 if (!atomic_read(&nr_mmap_events))
7464 return;
7465
7466 mmap_event = (struct perf_mmap_event){
7467 .vma = vma,
7468 /* .file_name */
7469 /* .file_size */
7470 .event_id = {
7471 .header = {
7472 .type = PERF_RECORD_MMAP,
7473 .misc = PERF_RECORD_MISC_USER,
7474 /* .size */
7475 },
7476 /* .pid */
7477 /* .tid */
7478 .start = vma->vm_start,
7479 .len = vma->vm_end - vma->vm_start,
7480 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
7481 },
7482 /* .maj (attr_mmap2 only) */
7483 /* .min (attr_mmap2 only) */
7484 /* .ino (attr_mmap2 only) */
7485 /* .ino_generation (attr_mmap2 only) */
7486 /* .prot (attr_mmap2 only) */
7487 /* .flags (attr_mmap2 only) */
7488 };
7489
7490 perf_addr_filters_adjust(vma);
7491 perf_event_mmap_event(&mmap_event);
7492 }
7493
7494 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7495 unsigned long size, u64 flags)
7496 {
7497 struct perf_output_handle handle;
7498 struct perf_sample_data sample;
7499 struct perf_aux_event {
7500 struct perf_event_header header;
7501 u64 offset;
7502 u64 size;
7503 u64 flags;
7504 } rec = {
7505 .header = {
7506 .type = PERF_RECORD_AUX,
7507 .misc = 0,
7508 .size = sizeof(rec),
7509 },
7510 .offset = head,
7511 .size = size,
7512 .flags = flags,
7513 };
7514 int ret;
7515
7516 perf_event_header__init_id(&rec.header, &sample, event);
7517 ret = perf_output_begin(&handle, event, rec.header.size);
7518
7519 if (ret)
7520 return;
7521
7522 perf_output_put(&handle, rec);
7523 perf_event__output_id_sample(event, &handle, &sample);
7524
7525 perf_output_end(&handle);
7526 }
7527
7528 /*
7529 * Lost/dropped samples logging
7530 */
7531 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7532 {
7533 struct perf_output_handle handle;
7534 struct perf_sample_data sample;
7535 int ret;
7536
7537 struct {
7538 struct perf_event_header header;
7539 u64 lost;
7540 } lost_samples_event = {
7541 .header = {
7542 .type = PERF_RECORD_LOST_SAMPLES,
7543 .misc = 0,
7544 .size = sizeof(lost_samples_event),
7545 },
7546 .lost = lost,
7547 };
7548
7549 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7550
7551 ret = perf_output_begin(&handle, event,
7552 lost_samples_event.header.size);
7553 if (ret)
7554 return;
7555
7556 perf_output_put(&handle, lost_samples_event);
7557 perf_event__output_id_sample(event, &handle, &sample);
7558 perf_output_end(&handle);
7559 }
7560
7561 /*
7562 * context_switch tracking
7563 */
7564
7565 struct perf_switch_event {
7566 struct task_struct *task;
7567 struct task_struct *next_prev;
7568
7569 struct {
7570 struct perf_event_header header;
7571 u32 next_prev_pid;
7572 u32 next_prev_tid;
7573 } event_id;
7574 };
7575
7576 static int perf_event_switch_match(struct perf_event *event)
7577 {
7578 return event->attr.context_switch;
7579 }
7580
7581 static void perf_event_switch_output(struct perf_event *event, void *data)
7582 {
7583 struct perf_switch_event *se = data;
7584 struct perf_output_handle handle;
7585 struct perf_sample_data sample;
7586 int ret;
7587
7588 if (!perf_event_switch_match(event))
7589 return;
7590
7591 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7592 if (event->ctx->task) {
7593 se->event_id.header.type = PERF_RECORD_SWITCH;
7594 se->event_id.header.size = sizeof(se->event_id.header);
7595 } else {
7596 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7597 se->event_id.header.size = sizeof(se->event_id);
7598 se->event_id.next_prev_pid =
7599 perf_event_pid(event, se->next_prev);
7600 se->event_id.next_prev_tid =
7601 perf_event_tid(event, se->next_prev);
7602 }
7603
7604 perf_event_header__init_id(&se->event_id.header, &sample, event);
7605
7606 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7607 if (ret)
7608 return;
7609
7610 if (event->ctx->task)
7611 perf_output_put(&handle, se->event_id.header);
7612 else
7613 perf_output_put(&handle, se->event_id);
7614
7615 perf_event__output_id_sample(event, &handle, &sample);
7616
7617 perf_output_end(&handle);
7618 }
7619
7620 static void perf_event_switch(struct task_struct *task,
7621 struct task_struct *next_prev, bool sched_in)
7622 {
7623 struct perf_switch_event switch_event;
7624
7625 /* N.B. caller checks nr_switch_events != 0 */
7626
7627 switch_event = (struct perf_switch_event){
7628 .task = task,
7629 .next_prev = next_prev,
7630 .event_id = {
7631 .header = {
7632 /* .type */
7633 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7634 /* .size */
7635 },
7636 /* .next_prev_pid */
7637 /* .next_prev_tid */
7638 },
7639 };
7640
7641 if (!sched_in && task->state == TASK_RUNNING)
7642 switch_event.event_id.header.misc |=
7643 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7644
7645 perf_iterate_sb(perf_event_switch_output,
7646 &switch_event,
7647 NULL);
7648 }
7649
7650 /*
7651 * IRQ throttle logging
7652 */
7653
7654 static void perf_log_throttle(struct perf_event *event, int enable)
7655 {
7656 struct perf_output_handle handle;
7657 struct perf_sample_data sample;
7658 int ret;
7659
7660 struct {
7661 struct perf_event_header header;
7662 u64 time;
7663 u64 id;
7664 u64 stream_id;
7665 } throttle_event = {
7666 .header = {
7667 .type = PERF_RECORD_THROTTLE,
7668 .misc = 0,
7669 .size = sizeof(throttle_event),
7670 },
7671 .time = perf_event_clock(event),
7672 .id = primary_event_id(event),
7673 .stream_id = event->id,
7674 };
7675
7676 if (enable)
7677 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7678
7679 perf_event_header__init_id(&throttle_event.header, &sample, event);
7680
7681 ret = perf_output_begin(&handle, event,
7682 throttle_event.header.size);
7683 if (ret)
7684 return;
7685
7686 perf_output_put(&handle, throttle_event);
7687 perf_event__output_id_sample(event, &handle, &sample);
7688 perf_output_end(&handle);
7689 }
7690
7691 /*
7692 * ksymbol register/unregister tracking
7693 */
7694
7695 struct perf_ksymbol_event {
7696 const char *name;
7697 int name_len;
7698 struct {
7699 struct perf_event_header header;
7700 u64 addr;
7701 u32 len;
7702 u16 ksym_type;
7703 u16 flags;
7704 } event_id;
7705 };
7706
7707 static int perf_event_ksymbol_match(struct perf_event *event)
7708 {
7709 return event->attr.ksymbol;
7710 }
7711
7712 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7713 {
7714 struct perf_ksymbol_event *ksymbol_event = data;
7715 struct perf_output_handle handle;
7716 struct perf_sample_data sample;
7717 int ret;
7718
7719 if (!perf_event_ksymbol_match(event))
7720 return;
7721
7722 perf_event_header__init_id(&ksymbol_event->event_id.header,
7723 &sample, event);
7724 ret = perf_output_begin(&handle, event,
7725 ksymbol_event->event_id.header.size);
7726 if (ret)
7727 return;
7728
7729 perf_output_put(&handle, ksymbol_event->event_id);
7730 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7731 perf_event__output_id_sample(event, &handle, &sample);
7732
7733 perf_output_end(&handle);
7734 }
7735
7736 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7737 const char *sym)
7738 {
7739 struct perf_ksymbol_event ksymbol_event;
7740 char name[KSYM_NAME_LEN];
7741 u16 flags = 0;
7742 int name_len;
7743
7744 if (!atomic_read(&nr_ksymbol_events))
7745 return;
7746
7747 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7748 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7749 goto err;
7750
7751 strlcpy(name, sym, KSYM_NAME_LEN);
7752 name_len = strlen(name) + 1;
7753 while (!IS_ALIGNED(name_len, sizeof(u64)))
7754 name[name_len++] = '\0';
7755 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7756
7757 if (unregister)
7758 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7759
7760 ksymbol_event = (struct perf_ksymbol_event){
7761 .name = name,
7762 .name_len = name_len,
7763 .event_id = {
7764 .header = {
7765 .type = PERF_RECORD_KSYMBOL,
7766 .size = sizeof(ksymbol_event.event_id) +
7767 name_len,
7768 },
7769 .addr = addr,
7770 .len = len,
7771 .ksym_type = ksym_type,
7772 .flags = flags,
7773 },
7774 };
7775
7776 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
7777 return;
7778 err:
7779 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
7780 }
7781
7782 /*
7783 * bpf program load/unload tracking
7784 */
7785
7786 struct perf_bpf_event {
7787 struct bpf_prog *prog;
7788 struct {
7789 struct perf_event_header header;
7790 u16 type;
7791 u16 flags;
7792 u32 id;
7793 u8 tag[BPF_TAG_SIZE];
7794 } event_id;
7795 };
7796
7797 static int perf_event_bpf_match(struct perf_event *event)
7798 {
7799 return event->attr.bpf_event;
7800 }
7801
7802 static void perf_event_bpf_output(struct perf_event *event, void *data)
7803 {
7804 struct perf_bpf_event *bpf_event = data;
7805 struct perf_output_handle handle;
7806 struct perf_sample_data sample;
7807 int ret;
7808
7809 if (!perf_event_bpf_match(event))
7810 return;
7811
7812 perf_event_header__init_id(&bpf_event->event_id.header,
7813 &sample, event);
7814 ret = perf_output_begin(&handle, event,
7815 bpf_event->event_id.header.size);
7816 if (ret)
7817 return;
7818
7819 perf_output_put(&handle, bpf_event->event_id);
7820 perf_event__output_id_sample(event, &handle, &sample);
7821
7822 perf_output_end(&handle);
7823 }
7824
7825 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
7826 enum perf_bpf_event_type type)
7827 {
7828 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
7829 char sym[KSYM_NAME_LEN];
7830 int i;
7831
7832 if (prog->aux->func_cnt == 0) {
7833 bpf_get_prog_name(prog, sym);
7834 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
7835 (u64)(unsigned long)prog->bpf_func,
7836 prog->jited_len, unregister, sym);
7837 } else {
7838 for (i = 0; i < prog->aux->func_cnt; i++) {
7839 struct bpf_prog *subprog = prog->aux->func[i];
7840
7841 bpf_get_prog_name(subprog, sym);
7842 perf_event_ksymbol(
7843 PERF_RECORD_KSYMBOL_TYPE_BPF,
7844 (u64)(unsigned long)subprog->bpf_func,
7845 subprog->jited_len, unregister, sym);
7846 }
7847 }
7848 }
7849
7850 void perf_event_bpf_event(struct bpf_prog *prog,
7851 enum perf_bpf_event_type type,
7852 u16 flags)
7853 {
7854 struct perf_bpf_event bpf_event;
7855
7856 if (type <= PERF_BPF_EVENT_UNKNOWN ||
7857 type >= PERF_BPF_EVENT_MAX)
7858 return;
7859
7860 switch (type) {
7861 case PERF_BPF_EVENT_PROG_LOAD:
7862 case PERF_BPF_EVENT_PROG_UNLOAD:
7863 if (atomic_read(&nr_ksymbol_events))
7864 perf_event_bpf_emit_ksymbols(prog, type);
7865 break;
7866 default:
7867 break;
7868 }
7869
7870 if (!atomic_read(&nr_bpf_events))
7871 return;
7872
7873 bpf_event = (struct perf_bpf_event){
7874 .prog = prog,
7875 .event_id = {
7876 .header = {
7877 .type = PERF_RECORD_BPF_EVENT,
7878 .size = sizeof(bpf_event.event_id),
7879 },
7880 .type = type,
7881 .flags = flags,
7882 .id = prog->aux->id,
7883 },
7884 };
7885
7886 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
7887
7888 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
7889 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
7890 }
7891
7892 void perf_event_itrace_started(struct perf_event *event)
7893 {
7894 event->attach_state |= PERF_ATTACH_ITRACE;
7895 }
7896
7897 static void perf_log_itrace_start(struct perf_event *event)
7898 {
7899 struct perf_output_handle handle;
7900 struct perf_sample_data sample;
7901 struct perf_aux_event {
7902 struct perf_event_header header;
7903 u32 pid;
7904 u32 tid;
7905 } rec;
7906 int ret;
7907
7908 if (event->parent)
7909 event = event->parent;
7910
7911 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7912 event->attach_state & PERF_ATTACH_ITRACE)
7913 return;
7914
7915 rec.header.type = PERF_RECORD_ITRACE_START;
7916 rec.header.misc = 0;
7917 rec.header.size = sizeof(rec);
7918 rec.pid = perf_event_pid(event, current);
7919 rec.tid = perf_event_tid(event, current);
7920
7921 perf_event_header__init_id(&rec.header, &sample, event);
7922 ret = perf_output_begin(&handle, event, rec.header.size);
7923
7924 if (ret)
7925 return;
7926
7927 perf_output_put(&handle, rec);
7928 perf_event__output_id_sample(event, &handle, &sample);
7929
7930 perf_output_end(&handle);
7931 }
7932
7933 static int
7934 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7935 {
7936 struct hw_perf_event *hwc = &event->hw;
7937 int ret = 0;
7938 u64 seq;
7939
7940 seq = __this_cpu_read(perf_throttled_seq);
7941 if (seq != hwc->interrupts_seq) {
7942 hwc->interrupts_seq = seq;
7943 hwc->interrupts = 1;
7944 } else {
7945 hwc->interrupts++;
7946 if (unlikely(throttle
7947 && hwc->interrupts >= max_samples_per_tick)) {
7948 __this_cpu_inc(perf_throttled_count);
7949 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7950 hwc->interrupts = MAX_INTERRUPTS;
7951 perf_log_throttle(event, 0);
7952 ret = 1;
7953 }
7954 }
7955
7956 if (event->attr.freq) {
7957 u64 now = perf_clock();
7958 s64 delta = now - hwc->freq_time_stamp;
7959
7960 hwc->freq_time_stamp = now;
7961
7962 if (delta > 0 && delta < 2*TICK_NSEC)
7963 perf_adjust_period(event, delta, hwc->last_period, true);
7964 }
7965
7966 return ret;
7967 }
7968
7969 int perf_event_account_interrupt(struct perf_event *event)
7970 {
7971 return __perf_event_account_interrupt(event, 1);
7972 }
7973
7974 /*
7975 * Generic event overflow handling, sampling.
7976 */
7977
7978 static int __perf_event_overflow(struct perf_event *event,
7979 int throttle, struct perf_sample_data *data,
7980 struct pt_regs *regs)
7981 {
7982 int events = atomic_read(&event->event_limit);
7983 int ret = 0;
7984
7985 /*
7986 * Non-sampling counters might still use the PMI to fold short
7987 * hardware counters, ignore those.
7988 */
7989 if (unlikely(!is_sampling_event(event)))
7990 return 0;
7991
7992 ret = __perf_event_account_interrupt(event, throttle);
7993
7994 /*
7995 * XXX event_limit might not quite work as expected on inherited
7996 * events
7997 */
7998
7999 event->pending_kill = POLL_IN;
8000 if (events && atomic_dec_and_test(&event->event_limit)) {
8001 ret = 1;
8002 event->pending_kill = POLL_HUP;
8003
8004 perf_event_disable_inatomic(event);
8005 }
8006
8007 READ_ONCE(event->overflow_handler)(event, data, regs);
8008
8009 if (*perf_event_fasync(event) && event->pending_kill) {
8010 event->pending_wakeup = 1;
8011 irq_work_queue(&event->pending);
8012 }
8013
8014 return ret;
8015 }
8016
8017 int perf_event_overflow(struct perf_event *event,
8018 struct perf_sample_data *data,
8019 struct pt_regs *regs)
8020 {
8021 return __perf_event_overflow(event, 1, data, regs);
8022 }
8023
8024 /*
8025 * Generic software event infrastructure
8026 */
8027
8028 struct swevent_htable {
8029 struct swevent_hlist *swevent_hlist;
8030 struct mutex hlist_mutex;
8031 int hlist_refcount;
8032
8033 /* Recursion avoidance in each contexts */
8034 int recursion[PERF_NR_CONTEXTS];
8035 };
8036
8037 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8038
8039 /*
8040 * We directly increment event->count and keep a second value in
8041 * event->hw.period_left to count intervals. This period event
8042 * is kept in the range [-sample_period, 0] so that we can use the
8043 * sign as trigger.
8044 */
8045
8046 u64 perf_swevent_set_period(struct perf_event *event)
8047 {
8048 struct hw_perf_event *hwc = &event->hw;
8049 u64 period = hwc->last_period;
8050 u64 nr, offset;
8051 s64 old, val;
8052
8053 hwc->last_period = hwc->sample_period;
8054
8055 again:
8056 old = val = local64_read(&hwc->period_left);
8057 if (val < 0)
8058 return 0;
8059
8060 nr = div64_u64(period + val, period);
8061 offset = nr * period;
8062 val -= offset;
8063 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8064 goto again;
8065
8066 return nr;
8067 }
8068
8069 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8070 struct perf_sample_data *data,
8071 struct pt_regs *regs)
8072 {
8073 struct hw_perf_event *hwc = &event->hw;
8074 int throttle = 0;
8075
8076 if (!overflow)
8077 overflow = perf_swevent_set_period(event);
8078
8079 if (hwc->interrupts == MAX_INTERRUPTS)
8080 return;
8081
8082 for (; overflow; overflow--) {
8083 if (__perf_event_overflow(event, throttle,
8084 data, regs)) {
8085 /*
8086 * We inhibit the overflow from happening when
8087 * hwc->interrupts == MAX_INTERRUPTS.
8088 */
8089 break;
8090 }
8091 throttle = 1;
8092 }
8093 }
8094
8095 static void perf_swevent_event(struct perf_event *event, u64 nr,
8096 struct perf_sample_data *data,
8097 struct pt_regs *regs)
8098 {
8099 struct hw_perf_event *hwc = &event->hw;
8100
8101 local64_add(nr, &event->count);
8102
8103 if (!regs)
8104 return;
8105
8106 if (!is_sampling_event(event))
8107 return;
8108
8109 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8110 data->period = nr;
8111 return perf_swevent_overflow(event, 1, data, regs);
8112 } else
8113 data->period = event->hw.last_period;
8114
8115 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8116 return perf_swevent_overflow(event, 1, data, regs);
8117
8118 if (local64_add_negative(nr, &hwc->period_left))
8119 return;
8120
8121 perf_swevent_overflow(event, 0, data, regs);
8122 }
8123
8124 static int perf_exclude_event(struct perf_event *event,
8125 struct pt_regs *regs)
8126 {
8127 if (event->hw.state & PERF_HES_STOPPED)
8128 return 1;
8129
8130 if (regs) {
8131 if (event->attr.exclude_user && user_mode(regs))
8132 return 1;
8133
8134 if (event->attr.exclude_kernel && !user_mode(regs))
8135 return 1;
8136 }
8137
8138 return 0;
8139 }
8140
8141 static int perf_swevent_match(struct perf_event *event,
8142 enum perf_type_id type,
8143 u32 event_id,
8144 struct perf_sample_data *data,
8145 struct pt_regs *regs)
8146 {
8147 if (event->attr.type != type)
8148 return 0;
8149
8150 if (event->attr.config != event_id)
8151 return 0;
8152
8153 if (perf_exclude_event(event, regs))
8154 return 0;
8155
8156 return 1;
8157 }
8158
8159 static inline u64 swevent_hash(u64 type, u32 event_id)
8160 {
8161 u64 val = event_id | (type << 32);
8162
8163 return hash_64(val, SWEVENT_HLIST_BITS);
8164 }
8165
8166 static inline struct hlist_head *
8167 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8168 {
8169 u64 hash = swevent_hash(type, event_id);
8170
8171 return &hlist->heads[hash];
8172 }
8173
8174 /* For the read side: events when they trigger */
8175 static inline struct hlist_head *
8176 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8177 {
8178 struct swevent_hlist *hlist;
8179
8180 hlist = rcu_dereference(swhash->swevent_hlist);
8181 if (!hlist)
8182 return NULL;
8183
8184 return __find_swevent_head(hlist, type, event_id);
8185 }
8186
8187 /* For the event head insertion and removal in the hlist */
8188 static inline struct hlist_head *
8189 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8190 {
8191 struct swevent_hlist *hlist;
8192 u32 event_id = event->attr.config;
8193 u64 type = event->attr.type;
8194
8195 /*
8196 * Event scheduling is always serialized against hlist allocation
8197 * and release. Which makes the protected version suitable here.
8198 * The context lock guarantees that.
8199 */
8200 hlist = rcu_dereference_protected(swhash->swevent_hlist,
8201 lockdep_is_held(&event->ctx->lock));
8202 if (!hlist)
8203 return NULL;
8204
8205 return __find_swevent_head(hlist, type, event_id);
8206 }
8207
8208 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8209 u64 nr,
8210 struct perf_sample_data *data,
8211 struct pt_regs *regs)
8212 {
8213 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8214 struct perf_event *event;
8215 struct hlist_head *head;
8216
8217 rcu_read_lock();
8218 head = find_swevent_head_rcu(swhash, type, event_id);
8219 if (!head)
8220 goto end;
8221
8222 hlist_for_each_entry_rcu(event, head, hlist_entry) {
8223 if (perf_swevent_match(event, type, event_id, data, regs))
8224 perf_swevent_event(event, nr, data, regs);
8225 }
8226 end:
8227 rcu_read_unlock();
8228 }
8229
8230 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8231
8232 int perf_swevent_get_recursion_context(void)
8233 {
8234 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8235
8236 return get_recursion_context(swhash->recursion);
8237 }
8238 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8239
8240 void perf_swevent_put_recursion_context(int rctx)
8241 {
8242 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8243
8244 put_recursion_context(swhash->recursion, rctx);
8245 }
8246
8247 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8248 {
8249 struct perf_sample_data data;
8250
8251 if (WARN_ON_ONCE(!regs))
8252 return;
8253
8254 perf_sample_data_init(&data, addr, 0);
8255 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8256 }
8257
8258 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8259 {
8260 int rctx;
8261
8262 preempt_disable_notrace();
8263 rctx = perf_swevent_get_recursion_context();
8264 if (unlikely(rctx < 0))
8265 goto fail;
8266
8267 ___perf_sw_event(event_id, nr, regs, addr);
8268
8269 perf_swevent_put_recursion_context(rctx);
8270 fail:
8271 preempt_enable_notrace();
8272 }
8273
8274 static void perf_swevent_read(struct perf_event *event)
8275 {
8276 }
8277
8278 static int perf_swevent_add(struct perf_event *event, int flags)
8279 {
8280 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8281 struct hw_perf_event *hwc = &event->hw;
8282 struct hlist_head *head;
8283
8284 if (is_sampling_event(event)) {
8285 hwc->last_period = hwc->sample_period;
8286 perf_swevent_set_period(event);
8287 }
8288
8289 hwc->state = !(flags & PERF_EF_START);
8290
8291 head = find_swevent_head(swhash, event);
8292 if (WARN_ON_ONCE(!head))
8293 return -EINVAL;
8294
8295 hlist_add_head_rcu(&event->hlist_entry, head);
8296 perf_event_update_userpage(event);
8297
8298 return 0;
8299 }
8300
8301 static void perf_swevent_del(struct perf_event *event, int flags)
8302 {
8303 hlist_del_rcu(&event->hlist_entry);
8304 }
8305
8306 static void perf_swevent_start(struct perf_event *event, int flags)
8307 {
8308 event->hw.state = 0;
8309 }
8310
8311 static void perf_swevent_stop(struct perf_event *event, int flags)
8312 {
8313 event->hw.state = PERF_HES_STOPPED;
8314 }
8315
8316 /* Deref the hlist from the update side */
8317 static inline struct swevent_hlist *
8318 swevent_hlist_deref(struct swevent_htable *swhash)
8319 {
8320 return rcu_dereference_protected(swhash->swevent_hlist,
8321 lockdep_is_held(&swhash->hlist_mutex));
8322 }
8323
8324 static void swevent_hlist_release(struct swevent_htable *swhash)
8325 {
8326 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8327
8328 if (!hlist)
8329 return;
8330
8331 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8332 kfree_rcu(hlist, rcu_head);
8333 }
8334
8335 static void swevent_hlist_put_cpu(int cpu)
8336 {
8337 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8338
8339 mutex_lock(&swhash->hlist_mutex);
8340
8341 if (!--swhash->hlist_refcount)
8342 swevent_hlist_release(swhash);
8343
8344 mutex_unlock(&swhash->hlist_mutex);
8345 }
8346
8347 static void swevent_hlist_put(void)
8348 {
8349 int cpu;
8350
8351 for_each_possible_cpu(cpu)
8352 swevent_hlist_put_cpu(cpu);
8353 }
8354
8355 static int swevent_hlist_get_cpu(int cpu)
8356 {
8357 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8358 int err = 0;
8359
8360 mutex_lock(&swhash->hlist_mutex);
8361 if (!swevent_hlist_deref(swhash) &&
8362 cpumask_test_cpu(cpu, perf_online_mask)) {
8363 struct swevent_hlist *hlist;
8364
8365 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8366 if (!hlist) {
8367 err = -ENOMEM;
8368 goto exit;
8369 }
8370 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8371 }
8372 swhash->hlist_refcount++;
8373 exit:
8374 mutex_unlock(&swhash->hlist_mutex);
8375
8376 return err;
8377 }
8378
8379 static int swevent_hlist_get(void)
8380 {
8381 int err, cpu, failed_cpu;
8382
8383 mutex_lock(&pmus_lock);
8384 for_each_possible_cpu(cpu) {
8385 err = swevent_hlist_get_cpu(cpu);
8386 if (err) {
8387 failed_cpu = cpu;
8388 goto fail;
8389 }
8390 }
8391 mutex_unlock(&pmus_lock);
8392 return 0;
8393 fail:
8394 for_each_possible_cpu(cpu) {
8395 if (cpu == failed_cpu)
8396 break;
8397 swevent_hlist_put_cpu(cpu);
8398 }
8399 mutex_unlock(&pmus_lock);
8400 return err;
8401 }
8402
8403 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8404
8405 static void sw_perf_event_destroy(struct perf_event *event)
8406 {
8407 u64 event_id = event->attr.config;
8408
8409 WARN_ON(event->parent);
8410
8411 static_key_slow_dec(&perf_swevent_enabled[event_id]);
8412 swevent_hlist_put();
8413 }
8414
8415 static int perf_swevent_init(struct perf_event *event)
8416 {
8417 u64 event_id = event->attr.config;
8418
8419 if (event->attr.type != PERF_TYPE_SOFTWARE)
8420 return -ENOENT;
8421
8422 /*
8423 * no branch sampling for software events
8424 */
8425 if (has_branch_stack(event))
8426 return -EOPNOTSUPP;
8427
8428 switch (event_id) {
8429 case PERF_COUNT_SW_CPU_CLOCK:
8430 case PERF_COUNT_SW_TASK_CLOCK:
8431 return -ENOENT;
8432
8433 default:
8434 break;
8435 }
8436
8437 if (event_id >= PERF_COUNT_SW_MAX)
8438 return -ENOENT;
8439
8440 if (!event->parent) {
8441 int err;
8442
8443 err = swevent_hlist_get();
8444 if (err)
8445 return err;
8446
8447 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8448 event->destroy = sw_perf_event_destroy;
8449 }
8450
8451 return 0;
8452 }
8453
8454 static struct pmu perf_swevent = {
8455 .task_ctx_nr = perf_sw_context,
8456
8457 .capabilities = PERF_PMU_CAP_NO_NMI,
8458
8459 .event_init = perf_swevent_init,
8460 .add = perf_swevent_add,
8461 .del = perf_swevent_del,
8462 .start = perf_swevent_start,
8463 .stop = perf_swevent_stop,
8464 .read = perf_swevent_read,
8465 };
8466
8467 #ifdef CONFIG_EVENT_TRACING
8468
8469 static int perf_tp_filter_match(struct perf_event *event,
8470 struct perf_sample_data *data)
8471 {
8472 void *record = data->raw->frag.data;
8473
8474 /* only top level events have filters set */
8475 if (event->parent)
8476 event = event->parent;
8477
8478 if (likely(!event->filter) || filter_match_preds(event->filter, record))
8479 return 1;
8480 return 0;
8481 }
8482
8483 static int perf_tp_event_match(struct perf_event *event,
8484 struct perf_sample_data *data,
8485 struct pt_regs *regs)
8486 {
8487 if (event->hw.state & PERF_HES_STOPPED)
8488 return 0;
8489 /*
8490 * All tracepoints are from kernel-space.
8491 */
8492 if (event->attr.exclude_kernel)
8493 return 0;
8494
8495 if (!perf_tp_filter_match(event, data))
8496 return 0;
8497
8498 return 1;
8499 }
8500
8501 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8502 struct trace_event_call *call, u64 count,
8503 struct pt_regs *regs, struct hlist_head *head,
8504 struct task_struct *task)
8505 {
8506 if (bpf_prog_array_valid(call)) {
8507 *(struct pt_regs **)raw_data = regs;
8508 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8509 perf_swevent_put_recursion_context(rctx);
8510 return;
8511 }
8512 }
8513 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8514 rctx, task);
8515 }
8516 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8517
8518 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8519 struct pt_regs *regs, struct hlist_head *head, int rctx,
8520 struct task_struct *task)
8521 {
8522 struct perf_sample_data data;
8523 struct perf_event *event;
8524
8525 struct perf_raw_record raw = {
8526 .frag = {
8527 .size = entry_size,
8528 .data = record,
8529 },
8530 };
8531
8532 perf_sample_data_init(&data, 0, 0);
8533 data.raw = &raw;
8534
8535 perf_trace_buf_update(record, event_type);
8536
8537 hlist_for_each_entry_rcu(event, head, hlist_entry) {
8538 if (perf_tp_event_match(event, &data, regs))
8539 perf_swevent_event(event, count, &data, regs);
8540 }
8541
8542 /*
8543 * If we got specified a target task, also iterate its context and
8544 * deliver this event there too.
8545 */
8546 if (task && task != current) {
8547 struct perf_event_context *ctx;
8548 struct trace_entry *entry = record;
8549
8550 rcu_read_lock();
8551 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8552 if (!ctx)
8553 goto unlock;
8554
8555 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8556 if (event->cpu != smp_processor_id())
8557 continue;
8558 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8559 continue;
8560 if (event->attr.config != entry->type)
8561 continue;
8562 if (perf_tp_event_match(event, &data, regs))
8563 perf_swevent_event(event, count, &data, regs);
8564 }
8565 unlock:
8566 rcu_read_unlock();
8567 }
8568
8569 perf_swevent_put_recursion_context(rctx);
8570 }
8571 EXPORT_SYMBOL_GPL(perf_tp_event);
8572
8573 static void tp_perf_event_destroy(struct perf_event *event)
8574 {
8575 perf_trace_destroy(event);
8576 }
8577
8578 static int perf_tp_event_init(struct perf_event *event)
8579 {
8580 int err;
8581
8582 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8583 return -ENOENT;
8584
8585 /*
8586 * no branch sampling for tracepoint events
8587 */
8588 if (has_branch_stack(event))
8589 return -EOPNOTSUPP;
8590
8591 err = perf_trace_init(event);
8592 if (err)
8593 return err;
8594
8595 event->destroy = tp_perf_event_destroy;
8596
8597 return 0;
8598 }
8599
8600 static struct pmu perf_tracepoint = {
8601 .task_ctx_nr = perf_sw_context,
8602
8603 .event_init = perf_tp_event_init,
8604 .add = perf_trace_add,
8605 .del = perf_trace_del,
8606 .start = perf_swevent_start,
8607 .stop = perf_swevent_stop,
8608 .read = perf_swevent_read,
8609 };
8610
8611 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8612 /*
8613 * Flags in config, used by dynamic PMU kprobe and uprobe
8614 * The flags should match following PMU_FORMAT_ATTR().
8615 *
8616 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8617 * if not set, create kprobe/uprobe
8618 *
8619 * The following values specify a reference counter (or semaphore in the
8620 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8621 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8622 *
8623 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
8624 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
8625 */
8626 enum perf_probe_config {
8627 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
8628 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8629 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
8630 };
8631
8632 PMU_FORMAT_ATTR(retprobe, "config:0");
8633 #endif
8634
8635 #ifdef CONFIG_KPROBE_EVENTS
8636 static struct attribute *kprobe_attrs[] = {
8637 &format_attr_retprobe.attr,
8638 NULL,
8639 };
8640
8641 static struct attribute_group kprobe_format_group = {
8642 .name = "format",
8643 .attrs = kprobe_attrs,
8644 };
8645
8646 static const struct attribute_group *kprobe_attr_groups[] = {
8647 &kprobe_format_group,
8648 NULL,
8649 };
8650
8651 static int perf_kprobe_event_init(struct perf_event *event);
8652 static struct pmu perf_kprobe = {
8653 .task_ctx_nr = perf_sw_context,
8654 .event_init = perf_kprobe_event_init,
8655 .add = perf_trace_add,
8656 .del = perf_trace_del,
8657 .start = perf_swevent_start,
8658 .stop = perf_swevent_stop,
8659 .read = perf_swevent_read,
8660 .attr_groups = kprobe_attr_groups,
8661 };
8662
8663 static int perf_kprobe_event_init(struct perf_event *event)
8664 {
8665 int err;
8666 bool is_retprobe;
8667
8668 if (event->attr.type != perf_kprobe.type)
8669 return -ENOENT;
8670
8671 if (!capable(CAP_SYS_ADMIN))
8672 return -EACCES;
8673
8674 /*
8675 * no branch sampling for probe events
8676 */
8677 if (has_branch_stack(event))
8678 return -EOPNOTSUPP;
8679
8680 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8681 err = perf_kprobe_init(event, is_retprobe);
8682 if (err)
8683 return err;
8684
8685 event->destroy = perf_kprobe_destroy;
8686
8687 return 0;
8688 }
8689 #endif /* CONFIG_KPROBE_EVENTS */
8690
8691 #ifdef CONFIG_UPROBE_EVENTS
8692 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8693
8694 static struct attribute *uprobe_attrs[] = {
8695 &format_attr_retprobe.attr,
8696 &format_attr_ref_ctr_offset.attr,
8697 NULL,
8698 };
8699
8700 static struct attribute_group uprobe_format_group = {
8701 .name = "format",
8702 .attrs = uprobe_attrs,
8703 };
8704
8705 static const struct attribute_group *uprobe_attr_groups[] = {
8706 &uprobe_format_group,
8707 NULL,
8708 };
8709
8710 static int perf_uprobe_event_init(struct perf_event *event);
8711 static struct pmu perf_uprobe = {
8712 .task_ctx_nr = perf_sw_context,
8713 .event_init = perf_uprobe_event_init,
8714 .add = perf_trace_add,
8715 .del = perf_trace_del,
8716 .start = perf_swevent_start,
8717 .stop = perf_swevent_stop,
8718 .read = perf_swevent_read,
8719 .attr_groups = uprobe_attr_groups,
8720 };
8721
8722 static int perf_uprobe_event_init(struct perf_event *event)
8723 {
8724 int err;
8725 unsigned long ref_ctr_offset;
8726 bool is_retprobe;
8727
8728 if (event->attr.type != perf_uprobe.type)
8729 return -ENOENT;
8730
8731 if (!capable(CAP_SYS_ADMIN))
8732 return -EACCES;
8733
8734 /*
8735 * no branch sampling for probe events
8736 */
8737 if (has_branch_stack(event))
8738 return -EOPNOTSUPP;
8739
8740 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8741 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8742 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
8743 if (err)
8744 return err;
8745
8746 event->destroy = perf_uprobe_destroy;
8747
8748 return 0;
8749 }
8750 #endif /* CONFIG_UPROBE_EVENTS */
8751
8752 static inline void perf_tp_register(void)
8753 {
8754 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8755 #ifdef CONFIG_KPROBE_EVENTS
8756 perf_pmu_register(&perf_kprobe, "kprobe", -1);
8757 #endif
8758 #ifdef CONFIG_UPROBE_EVENTS
8759 perf_pmu_register(&perf_uprobe, "uprobe", -1);
8760 #endif
8761 }
8762
8763 static void perf_event_free_filter(struct perf_event *event)
8764 {
8765 ftrace_profile_free_filter(event);
8766 }
8767
8768 #ifdef CONFIG_BPF_SYSCALL
8769 static void bpf_overflow_handler(struct perf_event *event,
8770 struct perf_sample_data *data,
8771 struct pt_regs *regs)
8772 {
8773 struct bpf_perf_event_data_kern ctx = {
8774 .data = data,
8775 .event = event,
8776 };
8777 int ret = 0;
8778
8779 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8780 preempt_disable();
8781 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8782 goto out;
8783 rcu_read_lock();
8784 ret = BPF_PROG_RUN(event->prog, &ctx);
8785 rcu_read_unlock();
8786 out:
8787 __this_cpu_dec(bpf_prog_active);
8788 preempt_enable();
8789 if (!ret)
8790 return;
8791
8792 event->orig_overflow_handler(event, data, regs);
8793 }
8794
8795 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8796 {
8797 struct bpf_prog *prog;
8798
8799 if (event->overflow_handler_context)
8800 /* hw breakpoint or kernel counter */
8801 return -EINVAL;
8802
8803 if (event->prog)
8804 return -EEXIST;
8805
8806 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8807 if (IS_ERR(prog))
8808 return PTR_ERR(prog);
8809
8810 event->prog = prog;
8811 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8812 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8813 return 0;
8814 }
8815
8816 static void perf_event_free_bpf_handler(struct perf_event *event)
8817 {
8818 struct bpf_prog *prog = event->prog;
8819
8820 if (!prog)
8821 return;
8822
8823 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8824 event->prog = NULL;
8825 bpf_prog_put(prog);
8826 }
8827 #else
8828 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8829 {
8830 return -EOPNOTSUPP;
8831 }
8832 static void perf_event_free_bpf_handler(struct perf_event *event)
8833 {
8834 }
8835 #endif
8836
8837 /*
8838 * returns true if the event is a tracepoint, or a kprobe/upprobe created
8839 * with perf_event_open()
8840 */
8841 static inline bool perf_event_is_tracing(struct perf_event *event)
8842 {
8843 if (event->pmu == &perf_tracepoint)
8844 return true;
8845 #ifdef CONFIG_KPROBE_EVENTS
8846 if (event->pmu == &perf_kprobe)
8847 return true;
8848 #endif
8849 #ifdef CONFIG_UPROBE_EVENTS
8850 if (event->pmu == &perf_uprobe)
8851 return true;
8852 #endif
8853 return false;
8854 }
8855
8856 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8857 {
8858 bool is_kprobe, is_tracepoint, is_syscall_tp;
8859 struct bpf_prog *prog;
8860 int ret;
8861
8862 if (!perf_event_is_tracing(event))
8863 return perf_event_set_bpf_handler(event, prog_fd);
8864
8865 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8866 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8867 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8868 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8869 /* bpf programs can only be attached to u/kprobe or tracepoint */
8870 return -EINVAL;
8871
8872 prog = bpf_prog_get(prog_fd);
8873 if (IS_ERR(prog))
8874 return PTR_ERR(prog);
8875
8876 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8877 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8878 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8879 /* valid fd, but invalid bpf program type */
8880 bpf_prog_put(prog);
8881 return -EINVAL;
8882 }
8883
8884 /* Kprobe override only works for kprobes, not uprobes. */
8885 if (prog->kprobe_override &&
8886 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8887 bpf_prog_put(prog);
8888 return -EINVAL;
8889 }
8890
8891 if (is_tracepoint || is_syscall_tp) {
8892 int off = trace_event_get_offsets(event->tp_event);
8893
8894 if (prog->aux->max_ctx_offset > off) {
8895 bpf_prog_put(prog);
8896 return -EACCES;
8897 }
8898 }
8899
8900 ret = perf_event_attach_bpf_prog(event, prog);
8901 if (ret)
8902 bpf_prog_put(prog);
8903 return ret;
8904 }
8905
8906 static void perf_event_free_bpf_prog(struct perf_event *event)
8907 {
8908 if (!perf_event_is_tracing(event)) {
8909 perf_event_free_bpf_handler(event);
8910 return;
8911 }
8912 perf_event_detach_bpf_prog(event);
8913 }
8914
8915 #else
8916
8917 static inline void perf_tp_register(void)
8918 {
8919 }
8920
8921 static void perf_event_free_filter(struct perf_event *event)
8922 {
8923 }
8924
8925 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8926 {
8927 return -ENOENT;
8928 }
8929
8930 static void perf_event_free_bpf_prog(struct perf_event *event)
8931 {
8932 }
8933 #endif /* CONFIG_EVENT_TRACING */
8934
8935 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8936 void perf_bp_event(struct perf_event *bp, void *data)
8937 {
8938 struct perf_sample_data sample;
8939 struct pt_regs *regs = data;
8940
8941 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8942
8943 if (!bp->hw.state && !perf_exclude_event(bp, regs))
8944 perf_swevent_event(bp, 1, &sample, regs);
8945 }
8946 #endif
8947
8948 /*
8949 * Allocate a new address filter
8950 */
8951 static struct perf_addr_filter *
8952 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8953 {
8954 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8955 struct perf_addr_filter *filter;
8956
8957 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8958 if (!filter)
8959 return NULL;
8960
8961 INIT_LIST_HEAD(&filter->entry);
8962 list_add_tail(&filter->entry, filters);
8963
8964 return filter;
8965 }
8966
8967 static void free_filters_list(struct list_head *filters)
8968 {
8969 struct perf_addr_filter *filter, *iter;
8970
8971 list_for_each_entry_safe(filter, iter, filters, entry) {
8972 path_put(&filter->path);
8973 list_del(&filter->entry);
8974 kfree(filter);
8975 }
8976 }
8977
8978 /*
8979 * Free existing address filters and optionally install new ones
8980 */
8981 static void perf_addr_filters_splice(struct perf_event *event,
8982 struct list_head *head)
8983 {
8984 unsigned long flags;
8985 LIST_HEAD(list);
8986
8987 if (!has_addr_filter(event))
8988 return;
8989
8990 /* don't bother with children, they don't have their own filters */
8991 if (event->parent)
8992 return;
8993
8994 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8995
8996 list_splice_init(&event->addr_filters.list, &list);
8997 if (head)
8998 list_splice(head, &event->addr_filters.list);
8999
9000 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9001
9002 free_filters_list(&list);
9003 }
9004
9005 /*
9006 * Scan through mm's vmas and see if one of them matches the
9007 * @filter; if so, adjust filter's address range.
9008 * Called with mm::mmap_sem down for reading.
9009 */
9010 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9011 struct mm_struct *mm,
9012 struct perf_addr_filter_range *fr)
9013 {
9014 struct vm_area_struct *vma;
9015
9016 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9017 if (!vma->vm_file)
9018 continue;
9019
9020 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9021 return;
9022 }
9023 }
9024
9025 /*
9026 * Update event's address range filters based on the
9027 * task's existing mappings, if any.
9028 */
9029 static void perf_event_addr_filters_apply(struct perf_event *event)
9030 {
9031 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9032 struct task_struct *task = READ_ONCE(event->ctx->task);
9033 struct perf_addr_filter *filter;
9034 struct mm_struct *mm = NULL;
9035 unsigned int count = 0;
9036 unsigned long flags;
9037
9038 /*
9039 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9040 * will stop on the parent's child_mutex that our caller is also holding
9041 */
9042 if (task == TASK_TOMBSTONE)
9043 return;
9044
9045 if (!ifh->nr_file_filters)
9046 return;
9047
9048 mm = get_task_mm(event->ctx->task);
9049 if (!mm)
9050 goto restart;
9051
9052 down_read(&mm->mmap_sem);
9053
9054 raw_spin_lock_irqsave(&ifh->lock, flags);
9055 list_for_each_entry(filter, &ifh->list, entry) {
9056 event->addr_filter_ranges[count].start = 0;
9057 event->addr_filter_ranges[count].size = 0;
9058
9059 /*
9060 * Adjust base offset if the filter is associated to a binary
9061 * that needs to be mapped:
9062 */
9063 if (filter->path.dentry)
9064 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9065
9066 count++;
9067 }
9068
9069 event->addr_filters_gen++;
9070 raw_spin_unlock_irqrestore(&ifh->lock, flags);
9071
9072 up_read(&mm->mmap_sem);
9073
9074 mmput(mm);
9075
9076 restart:
9077 perf_event_stop(event, 1);
9078 }
9079
9080 /*
9081 * Address range filtering: limiting the data to certain
9082 * instruction address ranges. Filters are ioctl()ed to us from
9083 * userspace as ascii strings.
9084 *
9085 * Filter string format:
9086 *
9087 * ACTION RANGE_SPEC
9088 * where ACTION is one of the
9089 * * "filter": limit the trace to this region
9090 * * "start": start tracing from this address
9091 * * "stop": stop tracing at this address/region;
9092 * RANGE_SPEC is
9093 * * for kernel addresses: <start address>[/<size>]
9094 * * for object files: <start address>[/<size>]@</path/to/object/file>
9095 *
9096 * if <size> is not specified or is zero, the range is treated as a single
9097 * address; not valid for ACTION=="filter".
9098 */
9099 enum {
9100 IF_ACT_NONE = -1,
9101 IF_ACT_FILTER,
9102 IF_ACT_START,
9103 IF_ACT_STOP,
9104 IF_SRC_FILE,
9105 IF_SRC_KERNEL,
9106 IF_SRC_FILEADDR,
9107 IF_SRC_KERNELADDR,
9108 };
9109
9110 enum {
9111 IF_STATE_ACTION = 0,
9112 IF_STATE_SOURCE,
9113 IF_STATE_END,
9114 };
9115
9116 static const match_table_t if_tokens = {
9117 { IF_ACT_FILTER, "filter" },
9118 { IF_ACT_START, "start" },
9119 { IF_ACT_STOP, "stop" },
9120 { IF_SRC_FILE, "%u/%u@%s" },
9121 { IF_SRC_KERNEL, "%u/%u" },
9122 { IF_SRC_FILEADDR, "%u@%s" },
9123 { IF_SRC_KERNELADDR, "%u" },
9124 { IF_ACT_NONE, NULL },
9125 };
9126
9127 /*
9128 * Address filter string parser
9129 */
9130 static int
9131 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9132 struct list_head *filters)
9133 {
9134 struct perf_addr_filter *filter = NULL;
9135 char *start, *orig, *filename = NULL;
9136 substring_t args[MAX_OPT_ARGS];
9137 int state = IF_STATE_ACTION, token;
9138 unsigned int kernel = 0;
9139 int ret = -EINVAL;
9140
9141 orig = fstr = kstrdup(fstr, GFP_KERNEL);
9142 if (!fstr)
9143 return -ENOMEM;
9144
9145 while ((start = strsep(&fstr, " ,\n")) != NULL) {
9146 static const enum perf_addr_filter_action_t actions[] = {
9147 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9148 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
9149 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
9150 };
9151 ret = -EINVAL;
9152
9153 if (!*start)
9154 continue;
9155
9156 /* filter definition begins */
9157 if (state == IF_STATE_ACTION) {
9158 filter = perf_addr_filter_new(event, filters);
9159 if (!filter)
9160 goto fail;
9161 }
9162
9163 token = match_token(start, if_tokens, args);
9164 switch (token) {
9165 case IF_ACT_FILTER:
9166 case IF_ACT_START:
9167 case IF_ACT_STOP:
9168 if (state != IF_STATE_ACTION)
9169 goto fail;
9170
9171 filter->action = actions[token];
9172 state = IF_STATE_SOURCE;
9173 break;
9174
9175 case IF_SRC_KERNELADDR:
9176 case IF_SRC_KERNEL:
9177 kernel = 1;
9178 /* fall through */
9179
9180 case IF_SRC_FILEADDR:
9181 case IF_SRC_FILE:
9182 if (state != IF_STATE_SOURCE)
9183 goto fail;
9184
9185 *args[0].to = 0;
9186 ret = kstrtoul(args[0].from, 0, &filter->offset);
9187 if (ret)
9188 goto fail;
9189
9190 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9191 *args[1].to = 0;
9192 ret = kstrtoul(args[1].from, 0, &filter->size);
9193 if (ret)
9194 goto fail;
9195 }
9196
9197 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9198 int fpos = token == IF_SRC_FILE ? 2 : 1;
9199
9200 filename = match_strdup(&args[fpos]);
9201 if (!filename) {
9202 ret = -ENOMEM;
9203 goto fail;
9204 }
9205 }
9206
9207 state = IF_STATE_END;
9208 break;
9209
9210 default:
9211 goto fail;
9212 }
9213
9214 /*
9215 * Filter definition is fully parsed, validate and install it.
9216 * Make sure that it doesn't contradict itself or the event's
9217 * attribute.
9218 */
9219 if (state == IF_STATE_END) {
9220 ret = -EINVAL;
9221 if (kernel && event->attr.exclude_kernel)
9222 goto fail;
9223
9224 /*
9225 * ACTION "filter" must have a non-zero length region
9226 * specified.
9227 */
9228 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9229 !filter->size)
9230 goto fail;
9231
9232 if (!kernel) {
9233 if (!filename)
9234 goto fail;
9235
9236 /*
9237 * For now, we only support file-based filters
9238 * in per-task events; doing so for CPU-wide
9239 * events requires additional context switching
9240 * trickery, since same object code will be
9241 * mapped at different virtual addresses in
9242 * different processes.
9243 */
9244 ret = -EOPNOTSUPP;
9245 if (!event->ctx->task)
9246 goto fail_free_name;
9247
9248 /* look up the path and grab its inode */
9249 ret = kern_path(filename, LOOKUP_FOLLOW,
9250 &filter->path);
9251 if (ret)
9252 goto fail_free_name;
9253
9254 kfree(filename);
9255 filename = NULL;
9256
9257 ret = -EINVAL;
9258 if (!filter->path.dentry ||
9259 !S_ISREG(d_inode(filter->path.dentry)
9260 ->i_mode))
9261 goto fail;
9262
9263 event->addr_filters.nr_file_filters++;
9264 }
9265
9266 /* ready to consume more filters */
9267 state = IF_STATE_ACTION;
9268 filter = NULL;
9269 }
9270 }
9271
9272 if (state != IF_STATE_ACTION)
9273 goto fail;
9274
9275 kfree(orig);
9276
9277 return 0;
9278
9279 fail_free_name:
9280 kfree(filename);
9281 fail:
9282 free_filters_list(filters);
9283 kfree(orig);
9284
9285 return ret;
9286 }
9287
9288 static int
9289 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9290 {
9291 LIST_HEAD(filters);
9292 int ret;
9293
9294 /*
9295 * Since this is called in perf_ioctl() path, we're already holding
9296 * ctx::mutex.
9297 */
9298 lockdep_assert_held(&event->ctx->mutex);
9299
9300 if (WARN_ON_ONCE(event->parent))
9301 return -EINVAL;
9302
9303 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9304 if (ret)
9305 goto fail_clear_files;
9306
9307 ret = event->pmu->addr_filters_validate(&filters);
9308 if (ret)
9309 goto fail_free_filters;
9310
9311 /* remove existing filters, if any */
9312 perf_addr_filters_splice(event, &filters);
9313
9314 /* install new filters */
9315 perf_event_for_each_child(event, perf_event_addr_filters_apply);
9316
9317 return ret;
9318
9319 fail_free_filters:
9320 free_filters_list(&filters);
9321
9322 fail_clear_files:
9323 event->addr_filters.nr_file_filters = 0;
9324
9325 return ret;
9326 }
9327
9328 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9329 {
9330 int ret = -EINVAL;
9331 char *filter_str;
9332
9333 filter_str = strndup_user(arg, PAGE_SIZE);
9334 if (IS_ERR(filter_str))
9335 return PTR_ERR(filter_str);
9336
9337 #ifdef CONFIG_EVENT_TRACING
9338 if (perf_event_is_tracing(event)) {
9339 struct perf_event_context *ctx = event->ctx;
9340
9341 /*
9342 * Beware, here be dragons!!
9343 *
9344 * the tracepoint muck will deadlock against ctx->mutex, but
9345 * the tracepoint stuff does not actually need it. So
9346 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9347 * already have a reference on ctx.
9348 *
9349 * This can result in event getting moved to a different ctx,
9350 * but that does not affect the tracepoint state.
9351 */
9352 mutex_unlock(&ctx->mutex);
9353 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9354 mutex_lock(&ctx->mutex);
9355 } else
9356 #endif
9357 if (has_addr_filter(event))
9358 ret = perf_event_set_addr_filter(event, filter_str);
9359
9360 kfree(filter_str);
9361 return ret;
9362 }
9363
9364 /*
9365 * hrtimer based swevent callback
9366 */
9367
9368 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9369 {
9370 enum hrtimer_restart ret = HRTIMER_RESTART;
9371 struct perf_sample_data data;
9372 struct pt_regs *regs;
9373 struct perf_event *event;
9374 u64 period;
9375
9376 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9377
9378 if (event->state != PERF_EVENT_STATE_ACTIVE)
9379 return HRTIMER_NORESTART;
9380
9381 event->pmu->read(event);
9382
9383 perf_sample_data_init(&data, 0, event->hw.last_period);
9384 regs = get_irq_regs();
9385
9386 if (regs && !perf_exclude_event(event, regs)) {
9387 if (!(event->attr.exclude_idle && is_idle_task(current)))
9388 if (__perf_event_overflow(event, 1, &data, regs))
9389 ret = HRTIMER_NORESTART;
9390 }
9391
9392 period = max_t(u64, 10000, event->hw.sample_period);
9393 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9394
9395 return ret;
9396 }
9397
9398 static void perf_swevent_start_hrtimer(struct perf_event *event)
9399 {
9400 struct hw_perf_event *hwc = &event->hw;
9401 s64 period;
9402
9403 if (!is_sampling_event(event))
9404 return;
9405
9406 period = local64_read(&hwc->period_left);
9407 if (period) {
9408 if (period < 0)
9409 period = 10000;
9410
9411 local64_set(&hwc->period_left, 0);
9412 } else {
9413 period = max_t(u64, 10000, hwc->sample_period);
9414 }
9415 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9416 HRTIMER_MODE_REL_PINNED);
9417 }
9418
9419 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9420 {
9421 struct hw_perf_event *hwc = &event->hw;
9422
9423 if (is_sampling_event(event)) {
9424 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9425 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9426
9427 hrtimer_cancel(&hwc->hrtimer);
9428 }
9429 }
9430
9431 static void perf_swevent_init_hrtimer(struct perf_event *event)
9432 {
9433 struct hw_perf_event *hwc = &event->hw;
9434
9435 if (!is_sampling_event(event))
9436 return;
9437
9438 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9439 hwc->hrtimer.function = perf_swevent_hrtimer;
9440
9441 /*
9442 * Since hrtimers have a fixed rate, we can do a static freq->period
9443 * mapping and avoid the whole period adjust feedback stuff.
9444 */
9445 if (event->attr.freq) {
9446 long freq = event->attr.sample_freq;
9447
9448 event->attr.sample_period = NSEC_PER_SEC / freq;
9449 hwc->sample_period = event->attr.sample_period;
9450 local64_set(&hwc->period_left, hwc->sample_period);
9451 hwc->last_period = hwc->sample_period;
9452 event->attr.freq = 0;
9453 }
9454 }
9455
9456 /*
9457 * Software event: cpu wall time clock
9458 */
9459
9460 static void cpu_clock_event_update(struct perf_event *event)
9461 {
9462 s64 prev;
9463 u64 now;
9464
9465 now = local_clock();
9466 prev = local64_xchg(&event->hw.prev_count, now);
9467 local64_add(now - prev, &event->count);
9468 }
9469
9470 static void cpu_clock_event_start(struct perf_event *event, int flags)
9471 {
9472 local64_set(&event->hw.prev_count, local_clock());
9473 perf_swevent_start_hrtimer(event);
9474 }
9475
9476 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9477 {
9478 perf_swevent_cancel_hrtimer(event);
9479 cpu_clock_event_update(event);
9480 }
9481
9482 static int cpu_clock_event_add(struct perf_event *event, int flags)
9483 {
9484 if (flags & PERF_EF_START)
9485 cpu_clock_event_start(event, flags);
9486 perf_event_update_userpage(event);
9487
9488 return 0;
9489 }
9490
9491 static void cpu_clock_event_del(struct perf_event *event, int flags)
9492 {
9493 cpu_clock_event_stop(event, flags);
9494 }
9495
9496 static void cpu_clock_event_read(struct perf_event *event)
9497 {
9498 cpu_clock_event_update(event);
9499 }
9500
9501 static int cpu_clock_event_init(struct perf_event *event)
9502 {
9503 if (event->attr.type != PERF_TYPE_SOFTWARE)
9504 return -ENOENT;
9505
9506 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9507 return -ENOENT;
9508
9509 /*
9510 * no branch sampling for software events
9511 */
9512 if (has_branch_stack(event))
9513 return -EOPNOTSUPP;
9514
9515 perf_swevent_init_hrtimer(event);
9516
9517 return 0;
9518 }
9519
9520 static struct pmu perf_cpu_clock = {
9521 .task_ctx_nr = perf_sw_context,
9522
9523 .capabilities = PERF_PMU_CAP_NO_NMI,
9524
9525 .event_init = cpu_clock_event_init,
9526 .add = cpu_clock_event_add,
9527 .del = cpu_clock_event_del,
9528 .start = cpu_clock_event_start,
9529 .stop = cpu_clock_event_stop,
9530 .read = cpu_clock_event_read,
9531 };
9532
9533 /*
9534 * Software event: task time clock
9535 */
9536
9537 static void task_clock_event_update(struct perf_event *event, u64 now)
9538 {
9539 u64 prev;
9540 s64 delta;
9541
9542 prev = local64_xchg(&event->hw.prev_count, now);
9543 delta = now - prev;
9544 local64_add(delta, &event->count);
9545 }
9546
9547 static void task_clock_event_start(struct perf_event *event, int flags)
9548 {
9549 local64_set(&event->hw.prev_count, event->ctx->time);
9550 perf_swevent_start_hrtimer(event);
9551 }
9552
9553 static void task_clock_event_stop(struct perf_event *event, int flags)
9554 {
9555 perf_swevent_cancel_hrtimer(event);
9556 task_clock_event_update(event, event->ctx->time);
9557 }
9558
9559 static int task_clock_event_add(struct perf_event *event, int flags)
9560 {
9561 if (flags & PERF_EF_START)
9562 task_clock_event_start(event, flags);
9563 perf_event_update_userpage(event);
9564
9565 return 0;
9566 }
9567
9568 static void task_clock_event_del(struct perf_event *event, int flags)
9569 {
9570 task_clock_event_stop(event, PERF_EF_UPDATE);
9571 }
9572
9573 static void task_clock_event_read(struct perf_event *event)
9574 {
9575 u64 now = perf_clock();
9576 u64 delta = now - event->ctx->timestamp;
9577 u64 time = event->ctx->time + delta;
9578
9579 task_clock_event_update(event, time);
9580 }
9581
9582 static int task_clock_event_init(struct perf_event *event)
9583 {
9584 if (event->attr.type != PERF_TYPE_SOFTWARE)
9585 return -ENOENT;
9586
9587 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9588 return -ENOENT;
9589
9590 /*
9591 * no branch sampling for software events
9592 */
9593 if (has_branch_stack(event))
9594 return -EOPNOTSUPP;
9595
9596 perf_swevent_init_hrtimer(event);
9597
9598 return 0;
9599 }
9600
9601 static struct pmu perf_task_clock = {
9602 .task_ctx_nr = perf_sw_context,
9603
9604 .capabilities = PERF_PMU_CAP_NO_NMI,
9605
9606 .event_init = task_clock_event_init,
9607 .add = task_clock_event_add,
9608 .del = task_clock_event_del,
9609 .start = task_clock_event_start,
9610 .stop = task_clock_event_stop,
9611 .read = task_clock_event_read,
9612 };
9613
9614 static void perf_pmu_nop_void(struct pmu *pmu)
9615 {
9616 }
9617
9618 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9619 {
9620 }
9621
9622 static int perf_pmu_nop_int(struct pmu *pmu)
9623 {
9624 return 0;
9625 }
9626
9627 static int perf_event_nop_int(struct perf_event *event, u64 value)
9628 {
9629 return 0;
9630 }
9631
9632 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9633
9634 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9635 {
9636 __this_cpu_write(nop_txn_flags, flags);
9637
9638 if (flags & ~PERF_PMU_TXN_ADD)
9639 return;
9640
9641 perf_pmu_disable(pmu);
9642 }
9643
9644 static int perf_pmu_commit_txn(struct pmu *pmu)
9645 {
9646 unsigned int flags = __this_cpu_read(nop_txn_flags);
9647
9648 __this_cpu_write(nop_txn_flags, 0);
9649
9650 if (flags & ~PERF_PMU_TXN_ADD)
9651 return 0;
9652
9653 perf_pmu_enable(pmu);
9654 return 0;
9655 }
9656
9657 static void perf_pmu_cancel_txn(struct pmu *pmu)
9658 {
9659 unsigned int flags = __this_cpu_read(nop_txn_flags);
9660
9661 __this_cpu_write(nop_txn_flags, 0);
9662
9663 if (flags & ~PERF_PMU_TXN_ADD)
9664 return;
9665
9666 perf_pmu_enable(pmu);
9667 }
9668
9669 static int perf_event_idx_default(struct perf_event *event)
9670 {
9671 return 0;
9672 }
9673
9674 /*
9675 * Ensures all contexts with the same task_ctx_nr have the same
9676 * pmu_cpu_context too.
9677 */
9678 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9679 {
9680 struct pmu *pmu;
9681
9682 if (ctxn < 0)
9683 return NULL;
9684
9685 list_for_each_entry(pmu, &pmus, entry) {
9686 if (pmu->task_ctx_nr == ctxn)
9687 return pmu->pmu_cpu_context;
9688 }
9689
9690 return NULL;
9691 }
9692
9693 static void free_pmu_context(struct pmu *pmu)
9694 {
9695 /*
9696 * Static contexts such as perf_sw_context have a global lifetime
9697 * and may be shared between different PMUs. Avoid freeing them
9698 * when a single PMU is going away.
9699 */
9700 if (pmu->task_ctx_nr > perf_invalid_context)
9701 return;
9702
9703 free_percpu(pmu->pmu_cpu_context);
9704 }
9705
9706 /*
9707 * Let userspace know that this PMU supports address range filtering:
9708 */
9709 static ssize_t nr_addr_filters_show(struct device *dev,
9710 struct device_attribute *attr,
9711 char *page)
9712 {
9713 struct pmu *pmu = dev_get_drvdata(dev);
9714
9715 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9716 }
9717 DEVICE_ATTR_RO(nr_addr_filters);
9718
9719 static struct idr pmu_idr;
9720
9721 static ssize_t
9722 type_show(struct device *dev, struct device_attribute *attr, char *page)
9723 {
9724 struct pmu *pmu = dev_get_drvdata(dev);
9725
9726 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9727 }
9728 static DEVICE_ATTR_RO(type);
9729
9730 static ssize_t
9731 perf_event_mux_interval_ms_show(struct device *dev,
9732 struct device_attribute *attr,
9733 char *page)
9734 {
9735 struct pmu *pmu = dev_get_drvdata(dev);
9736
9737 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9738 }
9739
9740 static DEFINE_MUTEX(mux_interval_mutex);
9741
9742 static ssize_t
9743 perf_event_mux_interval_ms_store(struct device *dev,
9744 struct device_attribute *attr,
9745 const char *buf, size_t count)
9746 {
9747 struct pmu *pmu = dev_get_drvdata(dev);
9748 int timer, cpu, ret;
9749
9750 ret = kstrtoint(buf, 0, &timer);
9751 if (ret)
9752 return ret;
9753
9754 if (timer < 1)
9755 return -EINVAL;
9756
9757 /* same value, noting to do */
9758 if (timer == pmu->hrtimer_interval_ms)
9759 return count;
9760
9761 mutex_lock(&mux_interval_mutex);
9762 pmu->hrtimer_interval_ms = timer;
9763
9764 /* update all cpuctx for this PMU */
9765 cpus_read_lock();
9766 for_each_online_cpu(cpu) {
9767 struct perf_cpu_context *cpuctx;
9768 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9769 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9770
9771 cpu_function_call(cpu,
9772 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9773 }
9774 cpus_read_unlock();
9775 mutex_unlock(&mux_interval_mutex);
9776
9777 return count;
9778 }
9779 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9780
9781 static struct attribute *pmu_dev_attrs[] = {
9782 &dev_attr_type.attr,
9783 &dev_attr_perf_event_mux_interval_ms.attr,
9784 NULL,
9785 };
9786 ATTRIBUTE_GROUPS(pmu_dev);
9787
9788 static int pmu_bus_running;
9789 static struct bus_type pmu_bus = {
9790 .name = "event_source",
9791 .dev_groups = pmu_dev_groups,
9792 };
9793
9794 static void pmu_dev_release(struct device *dev)
9795 {
9796 kfree(dev);
9797 }
9798
9799 static int pmu_dev_alloc(struct pmu *pmu)
9800 {
9801 int ret = -ENOMEM;
9802
9803 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9804 if (!pmu->dev)
9805 goto out;
9806
9807 pmu->dev->groups = pmu->attr_groups;
9808 device_initialize(pmu->dev);
9809 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9810 if (ret)
9811 goto free_dev;
9812
9813 dev_set_drvdata(pmu->dev, pmu);
9814 pmu->dev->bus = &pmu_bus;
9815 pmu->dev->release = pmu_dev_release;
9816 ret = device_add(pmu->dev);
9817 if (ret)
9818 goto free_dev;
9819
9820 /* For PMUs with address filters, throw in an extra attribute: */
9821 if (pmu->nr_addr_filters)
9822 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9823
9824 if (ret)
9825 goto del_dev;
9826
9827 out:
9828 return ret;
9829
9830 del_dev:
9831 device_del(pmu->dev);
9832
9833 free_dev:
9834 put_device(pmu->dev);
9835 goto out;
9836 }
9837
9838 static struct lock_class_key cpuctx_mutex;
9839 static struct lock_class_key cpuctx_lock;
9840
9841 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9842 {
9843 int cpu, ret;
9844
9845 mutex_lock(&pmus_lock);
9846 ret = -ENOMEM;
9847 pmu->pmu_disable_count = alloc_percpu(int);
9848 if (!pmu->pmu_disable_count)
9849 goto unlock;
9850
9851 pmu->type = -1;
9852 if (!name)
9853 goto skip_type;
9854 pmu->name = name;
9855
9856 if (type < 0) {
9857 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9858 if (type < 0) {
9859 ret = type;
9860 goto free_pdc;
9861 }
9862 }
9863 pmu->type = type;
9864
9865 if (pmu_bus_running) {
9866 ret = pmu_dev_alloc(pmu);
9867 if (ret)
9868 goto free_idr;
9869 }
9870
9871 skip_type:
9872 if (pmu->task_ctx_nr == perf_hw_context) {
9873 static int hw_context_taken = 0;
9874
9875 /*
9876 * Other than systems with heterogeneous CPUs, it never makes
9877 * sense for two PMUs to share perf_hw_context. PMUs which are
9878 * uncore must use perf_invalid_context.
9879 */
9880 if (WARN_ON_ONCE(hw_context_taken &&
9881 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9882 pmu->task_ctx_nr = perf_invalid_context;
9883
9884 hw_context_taken = 1;
9885 }
9886
9887 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9888 if (pmu->pmu_cpu_context)
9889 goto got_cpu_context;
9890
9891 ret = -ENOMEM;
9892 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9893 if (!pmu->pmu_cpu_context)
9894 goto free_dev;
9895
9896 for_each_possible_cpu(cpu) {
9897 struct perf_cpu_context *cpuctx;
9898
9899 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9900 __perf_event_init_context(&cpuctx->ctx);
9901 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9902 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9903 cpuctx->ctx.pmu = pmu;
9904 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9905
9906 __perf_mux_hrtimer_init(cpuctx, cpu);
9907 }
9908
9909 got_cpu_context:
9910 if (!pmu->start_txn) {
9911 if (pmu->pmu_enable) {
9912 /*
9913 * If we have pmu_enable/pmu_disable calls, install
9914 * transaction stubs that use that to try and batch
9915 * hardware accesses.
9916 */
9917 pmu->start_txn = perf_pmu_start_txn;
9918 pmu->commit_txn = perf_pmu_commit_txn;
9919 pmu->cancel_txn = perf_pmu_cancel_txn;
9920 } else {
9921 pmu->start_txn = perf_pmu_nop_txn;
9922 pmu->commit_txn = perf_pmu_nop_int;
9923 pmu->cancel_txn = perf_pmu_nop_void;
9924 }
9925 }
9926
9927 if (!pmu->pmu_enable) {
9928 pmu->pmu_enable = perf_pmu_nop_void;
9929 pmu->pmu_disable = perf_pmu_nop_void;
9930 }
9931
9932 if (!pmu->check_period)
9933 pmu->check_period = perf_event_nop_int;
9934
9935 if (!pmu->event_idx)
9936 pmu->event_idx = perf_event_idx_default;
9937
9938 list_add_rcu(&pmu->entry, &pmus);
9939 atomic_set(&pmu->exclusive_cnt, 0);
9940 ret = 0;
9941 unlock:
9942 mutex_unlock(&pmus_lock);
9943
9944 return ret;
9945
9946 free_dev:
9947 device_del(pmu->dev);
9948 put_device(pmu->dev);
9949
9950 free_idr:
9951 if (pmu->type >= PERF_TYPE_MAX)
9952 idr_remove(&pmu_idr, pmu->type);
9953
9954 free_pdc:
9955 free_percpu(pmu->pmu_disable_count);
9956 goto unlock;
9957 }
9958 EXPORT_SYMBOL_GPL(perf_pmu_register);
9959
9960 void perf_pmu_unregister(struct pmu *pmu)
9961 {
9962 mutex_lock(&pmus_lock);
9963 list_del_rcu(&pmu->entry);
9964
9965 /*
9966 * We dereference the pmu list under both SRCU and regular RCU, so
9967 * synchronize against both of those.
9968 */
9969 synchronize_srcu(&pmus_srcu);
9970 synchronize_rcu();
9971
9972 free_percpu(pmu->pmu_disable_count);
9973 if (pmu->type >= PERF_TYPE_MAX)
9974 idr_remove(&pmu_idr, pmu->type);
9975 if (pmu_bus_running) {
9976 if (pmu->nr_addr_filters)
9977 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9978 device_del(pmu->dev);
9979 put_device(pmu->dev);
9980 }
9981 free_pmu_context(pmu);
9982 mutex_unlock(&pmus_lock);
9983 }
9984 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9985
9986 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9987 {
9988 struct perf_event_context *ctx = NULL;
9989 int ret;
9990
9991 if (!try_module_get(pmu->module))
9992 return -ENODEV;
9993
9994 /*
9995 * A number of pmu->event_init() methods iterate the sibling_list to,
9996 * for example, validate if the group fits on the PMU. Therefore,
9997 * if this is a sibling event, acquire the ctx->mutex to protect
9998 * the sibling_list.
9999 */
10000 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10001 /*
10002 * This ctx->mutex can nest when we're called through
10003 * inheritance. See the perf_event_ctx_lock_nested() comment.
10004 */
10005 ctx = perf_event_ctx_lock_nested(event->group_leader,
10006 SINGLE_DEPTH_NESTING);
10007 BUG_ON(!ctx);
10008 }
10009
10010 event->pmu = pmu;
10011 ret = pmu->event_init(event);
10012
10013 if (ctx)
10014 perf_event_ctx_unlock(event->group_leader, ctx);
10015
10016 if (!ret) {
10017 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10018 event_has_any_exclude_flag(event)) {
10019 if (event->destroy)
10020 event->destroy(event);
10021 ret = -EINVAL;
10022 }
10023 }
10024
10025 if (ret)
10026 module_put(pmu->module);
10027
10028 return ret;
10029 }
10030
10031 static struct pmu *perf_init_event(struct perf_event *event)
10032 {
10033 struct pmu *pmu;
10034 int idx;
10035 int ret;
10036
10037 idx = srcu_read_lock(&pmus_srcu);
10038
10039 /* Try parent's PMU first: */
10040 if (event->parent && event->parent->pmu) {
10041 pmu = event->parent->pmu;
10042 ret = perf_try_init_event(pmu, event);
10043 if (!ret)
10044 goto unlock;
10045 }
10046
10047 rcu_read_lock();
10048 pmu = idr_find(&pmu_idr, event->attr.type);
10049 rcu_read_unlock();
10050 if (pmu) {
10051 ret = perf_try_init_event(pmu, event);
10052 if (ret)
10053 pmu = ERR_PTR(ret);
10054 goto unlock;
10055 }
10056
10057 list_for_each_entry_rcu(pmu, &pmus, entry) {
10058 ret = perf_try_init_event(pmu, event);
10059 if (!ret)
10060 goto unlock;
10061
10062 if (ret != -ENOENT) {
10063 pmu = ERR_PTR(ret);
10064 goto unlock;
10065 }
10066 }
10067 pmu = ERR_PTR(-ENOENT);
10068 unlock:
10069 srcu_read_unlock(&pmus_srcu, idx);
10070
10071 return pmu;
10072 }
10073
10074 static void attach_sb_event(struct perf_event *event)
10075 {
10076 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10077
10078 raw_spin_lock(&pel->lock);
10079 list_add_rcu(&event->sb_list, &pel->list);
10080 raw_spin_unlock(&pel->lock);
10081 }
10082
10083 /*
10084 * We keep a list of all !task (and therefore per-cpu) events
10085 * that need to receive side-band records.
10086 *
10087 * This avoids having to scan all the various PMU per-cpu contexts
10088 * looking for them.
10089 */
10090 static void account_pmu_sb_event(struct perf_event *event)
10091 {
10092 if (is_sb_event(event))
10093 attach_sb_event(event);
10094 }
10095
10096 static void account_event_cpu(struct perf_event *event, int cpu)
10097 {
10098 if (event->parent)
10099 return;
10100
10101 if (is_cgroup_event(event))
10102 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10103 }
10104
10105 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10106 static void account_freq_event_nohz(void)
10107 {
10108 #ifdef CONFIG_NO_HZ_FULL
10109 /* Lock so we don't race with concurrent unaccount */
10110 spin_lock(&nr_freq_lock);
10111 if (atomic_inc_return(&nr_freq_events) == 1)
10112 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10113 spin_unlock(&nr_freq_lock);
10114 #endif
10115 }
10116
10117 static void account_freq_event(void)
10118 {
10119 if (tick_nohz_full_enabled())
10120 account_freq_event_nohz();
10121 else
10122 atomic_inc(&nr_freq_events);
10123 }
10124
10125
10126 static void account_event(struct perf_event *event)
10127 {
10128 bool inc = false;
10129
10130 if (event->parent)
10131 return;
10132
10133 if (event->attach_state & PERF_ATTACH_TASK)
10134 inc = true;
10135 if (event->attr.mmap || event->attr.mmap_data)
10136 atomic_inc(&nr_mmap_events);
10137 if (event->attr.comm)
10138 atomic_inc(&nr_comm_events);
10139 if (event->attr.namespaces)
10140 atomic_inc(&nr_namespaces_events);
10141 if (event->attr.task)
10142 atomic_inc(&nr_task_events);
10143 if (event->attr.freq)
10144 account_freq_event();
10145 if (event->attr.context_switch) {
10146 atomic_inc(&nr_switch_events);
10147 inc = true;
10148 }
10149 if (has_branch_stack(event))
10150 inc = true;
10151 if (is_cgroup_event(event))
10152 inc = true;
10153 if (event->attr.ksymbol)
10154 atomic_inc(&nr_ksymbol_events);
10155 if (event->attr.bpf_event)
10156 atomic_inc(&nr_bpf_events);
10157
10158 if (inc) {
10159 /*
10160 * We need the mutex here because static_branch_enable()
10161 * must complete *before* the perf_sched_count increment
10162 * becomes visible.
10163 */
10164 if (atomic_inc_not_zero(&perf_sched_count))
10165 goto enabled;
10166
10167 mutex_lock(&perf_sched_mutex);
10168 if (!atomic_read(&perf_sched_count)) {
10169 static_branch_enable(&perf_sched_events);
10170 /*
10171 * Guarantee that all CPUs observe they key change and
10172 * call the perf scheduling hooks before proceeding to
10173 * install events that need them.
10174 */
10175 synchronize_rcu();
10176 }
10177 /*
10178 * Now that we have waited for the sync_sched(), allow further
10179 * increments to by-pass the mutex.
10180 */
10181 atomic_inc(&perf_sched_count);
10182 mutex_unlock(&perf_sched_mutex);
10183 }
10184 enabled:
10185
10186 account_event_cpu(event, event->cpu);
10187
10188 account_pmu_sb_event(event);
10189 }
10190
10191 /*
10192 * Allocate and initialize an event structure
10193 */
10194 static struct perf_event *
10195 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10196 struct task_struct *task,
10197 struct perf_event *group_leader,
10198 struct perf_event *parent_event,
10199 perf_overflow_handler_t overflow_handler,
10200 void *context, int cgroup_fd)
10201 {
10202 struct pmu *pmu;
10203 struct perf_event *event;
10204 struct hw_perf_event *hwc;
10205 long err = -EINVAL;
10206
10207 if ((unsigned)cpu >= nr_cpu_ids) {
10208 if (!task || cpu != -1)
10209 return ERR_PTR(-EINVAL);
10210 }
10211
10212 event = kzalloc(sizeof(*event), GFP_KERNEL);
10213 if (!event)
10214 return ERR_PTR(-ENOMEM);
10215
10216 /*
10217 * Single events are their own group leaders, with an
10218 * empty sibling list:
10219 */
10220 if (!group_leader)
10221 group_leader = event;
10222
10223 mutex_init(&event->child_mutex);
10224 INIT_LIST_HEAD(&event->child_list);
10225
10226 INIT_LIST_HEAD(&event->event_entry);
10227 INIT_LIST_HEAD(&event->sibling_list);
10228 INIT_LIST_HEAD(&event->active_list);
10229 init_event_group(event);
10230 INIT_LIST_HEAD(&event->rb_entry);
10231 INIT_LIST_HEAD(&event->active_entry);
10232 INIT_LIST_HEAD(&event->addr_filters.list);
10233 INIT_HLIST_NODE(&event->hlist_entry);
10234
10235
10236 init_waitqueue_head(&event->waitq);
10237 init_irq_work(&event->pending, perf_pending_event);
10238
10239 mutex_init(&event->mmap_mutex);
10240 raw_spin_lock_init(&event->addr_filters.lock);
10241
10242 atomic_long_set(&event->refcount, 1);
10243 event->cpu = cpu;
10244 event->attr = *attr;
10245 event->group_leader = group_leader;
10246 event->pmu = NULL;
10247 event->oncpu = -1;
10248
10249 event->parent = parent_event;
10250
10251 event->ns = get_pid_ns(task_active_pid_ns(current));
10252 event->id = atomic64_inc_return(&perf_event_id);
10253
10254 event->state = PERF_EVENT_STATE_INACTIVE;
10255
10256 if (task) {
10257 event->attach_state = PERF_ATTACH_TASK;
10258 /*
10259 * XXX pmu::event_init needs to know what task to account to
10260 * and we cannot use the ctx information because we need the
10261 * pmu before we get a ctx.
10262 */
10263 get_task_struct(task);
10264 event->hw.target = task;
10265 }
10266
10267 event->clock = &local_clock;
10268 if (parent_event)
10269 event->clock = parent_event->clock;
10270
10271 if (!overflow_handler && parent_event) {
10272 overflow_handler = parent_event->overflow_handler;
10273 context = parent_event->overflow_handler_context;
10274 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10275 if (overflow_handler == bpf_overflow_handler) {
10276 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10277
10278 if (IS_ERR(prog)) {
10279 err = PTR_ERR(prog);
10280 goto err_ns;
10281 }
10282 event->prog = prog;
10283 event->orig_overflow_handler =
10284 parent_event->orig_overflow_handler;
10285 }
10286 #endif
10287 }
10288
10289 if (overflow_handler) {
10290 event->overflow_handler = overflow_handler;
10291 event->overflow_handler_context = context;
10292 } else if (is_write_backward(event)){
10293 event->overflow_handler = perf_event_output_backward;
10294 event->overflow_handler_context = NULL;
10295 } else {
10296 event->overflow_handler = perf_event_output_forward;
10297 event->overflow_handler_context = NULL;
10298 }
10299
10300 perf_event__state_init(event);
10301
10302 pmu = NULL;
10303
10304 hwc = &event->hw;
10305 hwc->sample_period = attr->sample_period;
10306 if (attr->freq && attr->sample_freq)
10307 hwc->sample_period = 1;
10308 hwc->last_period = hwc->sample_period;
10309
10310 local64_set(&hwc->period_left, hwc->sample_period);
10311
10312 /*
10313 * We currently do not support PERF_SAMPLE_READ on inherited events.
10314 * See perf_output_read().
10315 */
10316 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10317 goto err_ns;
10318
10319 if (!has_branch_stack(event))
10320 event->attr.branch_sample_type = 0;
10321
10322 if (cgroup_fd != -1) {
10323 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10324 if (err)
10325 goto err_ns;
10326 }
10327
10328 pmu = perf_init_event(event);
10329 if (IS_ERR(pmu)) {
10330 err = PTR_ERR(pmu);
10331 goto err_ns;
10332 }
10333
10334 err = exclusive_event_init(event);
10335 if (err)
10336 goto err_pmu;
10337
10338 if (has_addr_filter(event)) {
10339 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10340 sizeof(struct perf_addr_filter_range),
10341 GFP_KERNEL);
10342 if (!event->addr_filter_ranges) {
10343 err = -ENOMEM;
10344 goto err_per_task;
10345 }
10346
10347 /*
10348 * Clone the parent's vma offsets: they are valid until exec()
10349 * even if the mm is not shared with the parent.
10350 */
10351 if (event->parent) {
10352 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10353
10354 raw_spin_lock_irq(&ifh->lock);
10355 memcpy(event->addr_filter_ranges,
10356 event->parent->addr_filter_ranges,
10357 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10358 raw_spin_unlock_irq(&ifh->lock);
10359 }
10360
10361 /* force hw sync on the address filters */
10362 event->addr_filters_gen = 1;
10363 }
10364
10365 if (!event->parent) {
10366 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10367 err = get_callchain_buffers(attr->sample_max_stack);
10368 if (err)
10369 goto err_addr_filters;
10370 }
10371 }
10372
10373 /* symmetric to unaccount_event() in _free_event() */
10374 account_event(event);
10375
10376 return event;
10377
10378 err_addr_filters:
10379 kfree(event->addr_filter_ranges);
10380
10381 err_per_task:
10382 exclusive_event_destroy(event);
10383
10384 err_pmu:
10385 if (event->destroy)
10386 event->destroy(event);
10387 module_put(pmu->module);
10388 err_ns:
10389 if (is_cgroup_event(event))
10390 perf_detach_cgroup(event);
10391 if (event->ns)
10392 put_pid_ns(event->ns);
10393 if (event->hw.target)
10394 put_task_struct(event->hw.target);
10395 kfree(event);
10396
10397 return ERR_PTR(err);
10398 }
10399
10400 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10401 struct perf_event_attr *attr)
10402 {
10403 u32 size;
10404 int ret;
10405
10406 if (!access_ok(uattr, PERF_ATTR_SIZE_VER0))
10407 return -EFAULT;
10408
10409 /*
10410 * zero the full structure, so that a short copy will be nice.
10411 */
10412 memset(attr, 0, sizeof(*attr));
10413
10414 ret = get_user(size, &uattr->size);
10415 if (ret)
10416 return ret;
10417
10418 if (size > PAGE_SIZE) /* silly large */
10419 goto err_size;
10420
10421 if (!size) /* abi compat */
10422 size = PERF_ATTR_SIZE_VER0;
10423
10424 if (size < PERF_ATTR_SIZE_VER0)
10425 goto err_size;
10426
10427 /*
10428 * If we're handed a bigger struct than we know of,
10429 * ensure all the unknown bits are 0 - i.e. new
10430 * user-space does not rely on any kernel feature
10431 * extensions we dont know about yet.
10432 */
10433 if (size > sizeof(*attr)) {
10434 unsigned char __user *addr;
10435 unsigned char __user *end;
10436 unsigned char val;
10437
10438 addr = (void __user *)uattr + sizeof(*attr);
10439 end = (void __user *)uattr + size;
10440
10441 for (; addr < end; addr++) {
10442 ret = get_user(val, addr);
10443 if (ret)
10444 return ret;
10445 if (val)
10446 goto err_size;
10447 }
10448 size = sizeof(*attr);
10449 }
10450
10451 ret = copy_from_user(attr, uattr, size);
10452 if (ret)
10453 return -EFAULT;
10454
10455 attr->size = size;
10456
10457 if (attr->__reserved_1)
10458 return -EINVAL;
10459
10460 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10461 return -EINVAL;
10462
10463 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10464 return -EINVAL;
10465
10466 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10467 u64 mask = attr->branch_sample_type;
10468
10469 /* only using defined bits */
10470 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10471 return -EINVAL;
10472
10473 /* at least one branch bit must be set */
10474 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10475 return -EINVAL;
10476
10477 /* propagate priv level, when not set for branch */
10478 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10479
10480 /* exclude_kernel checked on syscall entry */
10481 if (!attr->exclude_kernel)
10482 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10483
10484 if (!attr->exclude_user)
10485 mask |= PERF_SAMPLE_BRANCH_USER;
10486
10487 if (!attr->exclude_hv)
10488 mask |= PERF_SAMPLE_BRANCH_HV;
10489 /*
10490 * adjust user setting (for HW filter setup)
10491 */
10492 attr->branch_sample_type = mask;
10493 }
10494 /* privileged levels capture (kernel, hv): check permissions */
10495 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10496 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10497 return -EACCES;
10498 }
10499
10500 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10501 ret = perf_reg_validate(attr->sample_regs_user);
10502 if (ret)
10503 return ret;
10504 }
10505
10506 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10507 if (!arch_perf_have_user_stack_dump())
10508 return -ENOSYS;
10509
10510 /*
10511 * We have __u32 type for the size, but so far
10512 * we can only use __u16 as maximum due to the
10513 * __u16 sample size limit.
10514 */
10515 if (attr->sample_stack_user >= USHRT_MAX)
10516 return -EINVAL;
10517 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10518 return -EINVAL;
10519 }
10520
10521 if (!attr->sample_max_stack)
10522 attr->sample_max_stack = sysctl_perf_event_max_stack;
10523
10524 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10525 ret = perf_reg_validate(attr->sample_regs_intr);
10526 out:
10527 return ret;
10528
10529 err_size:
10530 put_user(sizeof(*attr), &uattr->size);
10531 ret = -E2BIG;
10532 goto out;
10533 }
10534
10535 static int
10536 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10537 {
10538 struct ring_buffer *rb = NULL;
10539 int ret = -EINVAL;
10540
10541 if (!output_event)
10542 goto set;
10543
10544 /* don't allow circular references */
10545 if (event == output_event)
10546 goto out;
10547
10548 /*
10549 * Don't allow cross-cpu buffers
10550 */
10551 if (output_event->cpu != event->cpu)
10552 goto out;
10553
10554 /*
10555 * If its not a per-cpu rb, it must be the same task.
10556 */
10557 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10558 goto out;
10559
10560 /*
10561 * Mixing clocks in the same buffer is trouble you don't need.
10562 */
10563 if (output_event->clock != event->clock)
10564 goto out;
10565
10566 /*
10567 * Either writing ring buffer from beginning or from end.
10568 * Mixing is not allowed.
10569 */
10570 if (is_write_backward(output_event) != is_write_backward(event))
10571 goto out;
10572
10573 /*
10574 * If both events generate aux data, they must be on the same PMU
10575 */
10576 if (has_aux(event) && has_aux(output_event) &&
10577 event->pmu != output_event->pmu)
10578 goto out;
10579
10580 set:
10581 mutex_lock(&event->mmap_mutex);
10582 /* Can't redirect output if we've got an active mmap() */
10583 if (atomic_read(&event->mmap_count))
10584 goto unlock;
10585
10586 if (output_event) {
10587 /* get the rb we want to redirect to */
10588 rb = ring_buffer_get(output_event);
10589 if (!rb)
10590 goto unlock;
10591 }
10592
10593 ring_buffer_attach(event, rb);
10594
10595 ret = 0;
10596 unlock:
10597 mutex_unlock(&event->mmap_mutex);
10598
10599 out:
10600 return ret;
10601 }
10602
10603 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10604 {
10605 if (b < a)
10606 swap(a, b);
10607
10608 mutex_lock(a);
10609 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10610 }
10611
10612 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10613 {
10614 bool nmi_safe = false;
10615
10616 switch (clk_id) {
10617 case CLOCK_MONOTONIC:
10618 event->clock = &ktime_get_mono_fast_ns;
10619 nmi_safe = true;
10620 break;
10621
10622 case CLOCK_MONOTONIC_RAW:
10623 event->clock = &ktime_get_raw_fast_ns;
10624 nmi_safe = true;
10625 break;
10626
10627 case CLOCK_REALTIME:
10628 event->clock = &ktime_get_real_ns;
10629 break;
10630
10631 case CLOCK_BOOTTIME:
10632 event->clock = &ktime_get_boot_ns;
10633 break;
10634
10635 case CLOCK_TAI:
10636 event->clock = &ktime_get_tai_ns;
10637 break;
10638
10639 default:
10640 return -EINVAL;
10641 }
10642
10643 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10644 return -EINVAL;
10645
10646 return 0;
10647 }
10648
10649 /*
10650 * Variation on perf_event_ctx_lock_nested(), except we take two context
10651 * mutexes.
10652 */
10653 static struct perf_event_context *
10654 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10655 struct perf_event_context *ctx)
10656 {
10657 struct perf_event_context *gctx;
10658
10659 again:
10660 rcu_read_lock();
10661 gctx = READ_ONCE(group_leader->ctx);
10662 if (!refcount_inc_not_zero(&gctx->refcount)) {
10663 rcu_read_unlock();
10664 goto again;
10665 }
10666 rcu_read_unlock();
10667
10668 mutex_lock_double(&gctx->mutex, &ctx->mutex);
10669
10670 if (group_leader->ctx != gctx) {
10671 mutex_unlock(&ctx->mutex);
10672 mutex_unlock(&gctx->mutex);
10673 put_ctx(gctx);
10674 goto again;
10675 }
10676
10677 return gctx;
10678 }
10679
10680 /**
10681 * sys_perf_event_open - open a performance event, associate it to a task/cpu
10682 *
10683 * @attr_uptr: event_id type attributes for monitoring/sampling
10684 * @pid: target pid
10685 * @cpu: target cpu
10686 * @group_fd: group leader event fd
10687 */
10688 SYSCALL_DEFINE5(perf_event_open,
10689 struct perf_event_attr __user *, attr_uptr,
10690 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10691 {
10692 struct perf_event *group_leader = NULL, *output_event = NULL;
10693 struct perf_event *event, *sibling;
10694 struct perf_event_attr attr;
10695 struct perf_event_context *ctx, *uninitialized_var(gctx);
10696 struct file *event_file = NULL;
10697 struct fd group = {NULL, 0};
10698 struct task_struct *task = NULL;
10699 struct pmu *pmu;
10700 int event_fd;
10701 int move_group = 0;
10702 int err;
10703 int f_flags = O_RDWR;
10704 int cgroup_fd = -1;
10705
10706 /* for future expandability... */
10707 if (flags & ~PERF_FLAG_ALL)
10708 return -EINVAL;
10709
10710 err = perf_copy_attr(attr_uptr, &attr);
10711 if (err)
10712 return err;
10713
10714 if (!attr.exclude_kernel) {
10715 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10716 return -EACCES;
10717 }
10718
10719 if (attr.namespaces) {
10720 if (!capable(CAP_SYS_ADMIN))
10721 return -EACCES;
10722 }
10723
10724 if (attr.freq) {
10725 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10726 return -EINVAL;
10727 } else {
10728 if (attr.sample_period & (1ULL << 63))
10729 return -EINVAL;
10730 }
10731
10732 /* Only privileged users can get physical addresses */
10733 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10734 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10735 return -EACCES;
10736
10737 /*
10738 * In cgroup mode, the pid argument is used to pass the fd
10739 * opened to the cgroup directory in cgroupfs. The cpu argument
10740 * designates the cpu on which to monitor threads from that
10741 * cgroup.
10742 */
10743 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10744 return -EINVAL;
10745
10746 if (flags & PERF_FLAG_FD_CLOEXEC)
10747 f_flags |= O_CLOEXEC;
10748
10749 event_fd = get_unused_fd_flags(f_flags);
10750 if (event_fd < 0)
10751 return event_fd;
10752
10753 if (group_fd != -1) {
10754 err = perf_fget_light(group_fd, &group);
10755 if (err)
10756 goto err_fd;
10757 group_leader = group.file->private_data;
10758 if (flags & PERF_FLAG_FD_OUTPUT)
10759 output_event = group_leader;
10760 if (flags & PERF_FLAG_FD_NO_GROUP)
10761 group_leader = NULL;
10762 }
10763
10764 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10765 task = find_lively_task_by_vpid(pid);
10766 if (IS_ERR(task)) {
10767 err = PTR_ERR(task);
10768 goto err_group_fd;
10769 }
10770 }
10771
10772 if (task && group_leader &&
10773 group_leader->attr.inherit != attr.inherit) {
10774 err = -EINVAL;
10775 goto err_task;
10776 }
10777
10778 if (task) {
10779 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10780 if (err)
10781 goto err_task;
10782
10783 /*
10784 * Reuse ptrace permission checks for now.
10785 *
10786 * We must hold cred_guard_mutex across this and any potential
10787 * perf_install_in_context() call for this new event to
10788 * serialize against exec() altering our credentials (and the
10789 * perf_event_exit_task() that could imply).
10790 */
10791 err = -EACCES;
10792 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10793 goto err_cred;
10794 }
10795
10796 if (flags & PERF_FLAG_PID_CGROUP)
10797 cgroup_fd = pid;
10798
10799 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10800 NULL, NULL, cgroup_fd);
10801 if (IS_ERR(event)) {
10802 err = PTR_ERR(event);
10803 goto err_cred;
10804 }
10805
10806 if (is_sampling_event(event)) {
10807 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10808 err = -EOPNOTSUPP;
10809 goto err_alloc;
10810 }
10811 }
10812
10813 /*
10814 * Special case software events and allow them to be part of
10815 * any hardware group.
10816 */
10817 pmu = event->pmu;
10818
10819 if (attr.use_clockid) {
10820 err = perf_event_set_clock(event, attr.clockid);
10821 if (err)
10822 goto err_alloc;
10823 }
10824
10825 if (pmu->task_ctx_nr == perf_sw_context)
10826 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10827
10828 if (group_leader) {
10829 if (is_software_event(event) &&
10830 !in_software_context(group_leader)) {
10831 /*
10832 * If the event is a sw event, but the group_leader
10833 * is on hw context.
10834 *
10835 * Allow the addition of software events to hw
10836 * groups, this is safe because software events
10837 * never fail to schedule.
10838 */
10839 pmu = group_leader->ctx->pmu;
10840 } else if (!is_software_event(event) &&
10841 is_software_event(group_leader) &&
10842 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10843 /*
10844 * In case the group is a pure software group, and we
10845 * try to add a hardware event, move the whole group to
10846 * the hardware context.
10847 */
10848 move_group = 1;
10849 }
10850 }
10851
10852 /*
10853 * Get the target context (task or percpu):
10854 */
10855 ctx = find_get_context(pmu, task, event);
10856 if (IS_ERR(ctx)) {
10857 err = PTR_ERR(ctx);
10858 goto err_alloc;
10859 }
10860
10861 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10862 err = -EBUSY;
10863 goto err_context;
10864 }
10865
10866 /*
10867 * Look up the group leader (we will attach this event to it):
10868 */
10869 if (group_leader) {
10870 err = -EINVAL;
10871
10872 /*
10873 * Do not allow a recursive hierarchy (this new sibling
10874 * becoming part of another group-sibling):
10875 */
10876 if (group_leader->group_leader != group_leader)
10877 goto err_context;
10878
10879 /* All events in a group should have the same clock */
10880 if (group_leader->clock != event->clock)
10881 goto err_context;
10882
10883 /*
10884 * Make sure we're both events for the same CPU;
10885 * grouping events for different CPUs is broken; since
10886 * you can never concurrently schedule them anyhow.
10887 */
10888 if (group_leader->cpu != event->cpu)
10889 goto err_context;
10890
10891 /*
10892 * Make sure we're both on the same task, or both
10893 * per-CPU events.
10894 */
10895 if (group_leader->ctx->task != ctx->task)
10896 goto err_context;
10897
10898 /*
10899 * Do not allow to attach to a group in a different task
10900 * or CPU context. If we're moving SW events, we'll fix
10901 * this up later, so allow that.
10902 */
10903 if (!move_group && group_leader->ctx != ctx)
10904 goto err_context;
10905
10906 /*
10907 * Only a group leader can be exclusive or pinned
10908 */
10909 if (attr.exclusive || attr.pinned)
10910 goto err_context;
10911 }
10912
10913 if (output_event) {
10914 err = perf_event_set_output(event, output_event);
10915 if (err)
10916 goto err_context;
10917 }
10918
10919 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10920 f_flags);
10921 if (IS_ERR(event_file)) {
10922 err = PTR_ERR(event_file);
10923 event_file = NULL;
10924 goto err_context;
10925 }
10926
10927 if (move_group) {
10928 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10929
10930 if (gctx->task == TASK_TOMBSTONE) {
10931 err = -ESRCH;
10932 goto err_locked;
10933 }
10934
10935 /*
10936 * Check if we raced against another sys_perf_event_open() call
10937 * moving the software group underneath us.
10938 */
10939 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10940 /*
10941 * If someone moved the group out from under us, check
10942 * if this new event wound up on the same ctx, if so
10943 * its the regular !move_group case, otherwise fail.
10944 */
10945 if (gctx != ctx) {
10946 err = -EINVAL;
10947 goto err_locked;
10948 } else {
10949 perf_event_ctx_unlock(group_leader, gctx);
10950 move_group = 0;
10951 }
10952 }
10953 } else {
10954 mutex_lock(&ctx->mutex);
10955 }
10956
10957 if (ctx->task == TASK_TOMBSTONE) {
10958 err = -ESRCH;
10959 goto err_locked;
10960 }
10961
10962 if (!perf_event_validate_size(event)) {
10963 err = -E2BIG;
10964 goto err_locked;
10965 }
10966
10967 if (!task) {
10968 /*
10969 * Check if the @cpu we're creating an event for is online.
10970 *
10971 * We use the perf_cpu_context::ctx::mutex to serialize against
10972 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10973 */
10974 struct perf_cpu_context *cpuctx =
10975 container_of(ctx, struct perf_cpu_context, ctx);
10976
10977 if (!cpuctx->online) {
10978 err = -ENODEV;
10979 goto err_locked;
10980 }
10981 }
10982
10983
10984 /*
10985 * Must be under the same ctx::mutex as perf_install_in_context(),
10986 * because we need to serialize with concurrent event creation.
10987 */
10988 if (!exclusive_event_installable(event, ctx)) {
10989 /* exclusive and group stuff are assumed mutually exclusive */
10990 WARN_ON_ONCE(move_group);
10991
10992 err = -EBUSY;
10993 goto err_locked;
10994 }
10995
10996 WARN_ON_ONCE(ctx->parent_ctx);
10997
10998 /*
10999 * This is the point on no return; we cannot fail hereafter. This is
11000 * where we start modifying current state.
11001 */
11002
11003 if (move_group) {
11004 /*
11005 * See perf_event_ctx_lock() for comments on the details
11006 * of swizzling perf_event::ctx.
11007 */
11008 perf_remove_from_context(group_leader, 0);
11009 put_ctx(gctx);
11010
11011 for_each_sibling_event(sibling, group_leader) {
11012 perf_remove_from_context(sibling, 0);
11013 put_ctx(gctx);
11014 }
11015
11016 /*
11017 * Wait for everybody to stop referencing the events through
11018 * the old lists, before installing it on new lists.
11019 */
11020 synchronize_rcu();
11021
11022 /*
11023 * Install the group siblings before the group leader.
11024 *
11025 * Because a group leader will try and install the entire group
11026 * (through the sibling list, which is still in-tact), we can
11027 * end up with siblings installed in the wrong context.
11028 *
11029 * By installing siblings first we NO-OP because they're not
11030 * reachable through the group lists.
11031 */
11032 for_each_sibling_event(sibling, group_leader) {
11033 perf_event__state_init(sibling);
11034 perf_install_in_context(ctx, sibling, sibling->cpu);
11035 get_ctx(ctx);
11036 }
11037
11038 /*
11039 * Removing from the context ends up with disabled
11040 * event. What we want here is event in the initial
11041 * startup state, ready to be add into new context.
11042 */
11043 perf_event__state_init(group_leader);
11044 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11045 get_ctx(ctx);
11046 }
11047
11048 /*
11049 * Precalculate sample_data sizes; do while holding ctx::mutex such
11050 * that we're serialized against further additions and before
11051 * perf_install_in_context() which is the point the event is active and
11052 * can use these values.
11053 */
11054 perf_event__header_size(event);
11055 perf_event__id_header_size(event);
11056
11057 event->owner = current;
11058
11059 perf_install_in_context(ctx, event, event->cpu);
11060 perf_unpin_context(ctx);
11061
11062 if (move_group)
11063 perf_event_ctx_unlock(group_leader, gctx);
11064 mutex_unlock(&ctx->mutex);
11065
11066 if (task) {
11067 mutex_unlock(&task->signal->cred_guard_mutex);
11068 put_task_struct(task);
11069 }
11070
11071 mutex_lock(&current->perf_event_mutex);
11072 list_add_tail(&event->owner_entry, &current->perf_event_list);
11073 mutex_unlock(&current->perf_event_mutex);
11074
11075 /*
11076 * Drop the reference on the group_event after placing the
11077 * new event on the sibling_list. This ensures destruction
11078 * of the group leader will find the pointer to itself in
11079 * perf_group_detach().
11080 */
11081 fdput(group);
11082 fd_install(event_fd, event_file);
11083 return event_fd;
11084
11085 err_locked:
11086 if (move_group)
11087 perf_event_ctx_unlock(group_leader, gctx);
11088 mutex_unlock(&ctx->mutex);
11089 /* err_file: */
11090 fput(event_file);
11091 err_context:
11092 perf_unpin_context(ctx);
11093 put_ctx(ctx);
11094 err_alloc:
11095 /*
11096 * If event_file is set, the fput() above will have called ->release()
11097 * and that will take care of freeing the event.
11098 */
11099 if (!event_file)
11100 free_event(event);
11101 err_cred:
11102 if (task)
11103 mutex_unlock(&task->signal->cred_guard_mutex);
11104 err_task:
11105 if (task)
11106 put_task_struct(task);
11107 err_group_fd:
11108 fdput(group);
11109 err_fd:
11110 put_unused_fd(event_fd);
11111 return err;
11112 }
11113
11114 /**
11115 * perf_event_create_kernel_counter
11116 *
11117 * @attr: attributes of the counter to create
11118 * @cpu: cpu in which the counter is bound
11119 * @task: task to profile (NULL for percpu)
11120 */
11121 struct perf_event *
11122 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11123 struct task_struct *task,
11124 perf_overflow_handler_t overflow_handler,
11125 void *context)
11126 {
11127 struct perf_event_context *ctx;
11128 struct perf_event *event;
11129 int err;
11130
11131 /*
11132 * Get the target context (task or percpu):
11133 */
11134
11135 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11136 overflow_handler, context, -1);
11137 if (IS_ERR(event)) {
11138 err = PTR_ERR(event);
11139 goto err;
11140 }
11141
11142 /* Mark owner so we could distinguish it from user events. */
11143 event->owner = TASK_TOMBSTONE;
11144
11145 ctx = find_get_context(event->pmu, task, event);
11146 if (IS_ERR(ctx)) {
11147 err = PTR_ERR(ctx);
11148 goto err_free;
11149 }
11150
11151 WARN_ON_ONCE(ctx->parent_ctx);
11152 mutex_lock(&ctx->mutex);
11153 if (ctx->task == TASK_TOMBSTONE) {
11154 err = -ESRCH;
11155 goto err_unlock;
11156 }
11157
11158 if (!task) {
11159 /*
11160 * Check if the @cpu we're creating an event for is online.
11161 *
11162 * We use the perf_cpu_context::ctx::mutex to serialize against
11163 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11164 */
11165 struct perf_cpu_context *cpuctx =
11166 container_of(ctx, struct perf_cpu_context, ctx);
11167 if (!cpuctx->online) {
11168 err = -ENODEV;
11169 goto err_unlock;
11170 }
11171 }
11172
11173 if (!exclusive_event_installable(event, ctx)) {
11174 err = -EBUSY;
11175 goto err_unlock;
11176 }
11177
11178 perf_install_in_context(ctx, event, cpu);
11179 perf_unpin_context(ctx);
11180 mutex_unlock(&ctx->mutex);
11181
11182 return event;
11183
11184 err_unlock:
11185 mutex_unlock(&ctx->mutex);
11186 perf_unpin_context(ctx);
11187 put_ctx(ctx);
11188 err_free:
11189 free_event(event);
11190 err:
11191 return ERR_PTR(err);
11192 }
11193 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11194
11195 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11196 {
11197 struct perf_event_context *src_ctx;
11198 struct perf_event_context *dst_ctx;
11199 struct perf_event *event, *tmp;
11200 LIST_HEAD(events);
11201
11202 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11203 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11204
11205 /*
11206 * See perf_event_ctx_lock() for comments on the details
11207 * of swizzling perf_event::ctx.
11208 */
11209 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11210 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11211 event_entry) {
11212 perf_remove_from_context(event, 0);
11213 unaccount_event_cpu(event, src_cpu);
11214 put_ctx(src_ctx);
11215 list_add(&event->migrate_entry, &events);
11216 }
11217
11218 /*
11219 * Wait for the events to quiesce before re-instating them.
11220 */
11221 synchronize_rcu();
11222
11223 /*
11224 * Re-instate events in 2 passes.
11225 *
11226 * Skip over group leaders and only install siblings on this first
11227 * pass, siblings will not get enabled without a leader, however a
11228 * leader will enable its siblings, even if those are still on the old
11229 * context.
11230 */
11231 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11232 if (event->group_leader == event)
11233 continue;
11234
11235 list_del(&event->migrate_entry);
11236 if (event->state >= PERF_EVENT_STATE_OFF)
11237 event->state = PERF_EVENT_STATE_INACTIVE;
11238 account_event_cpu(event, dst_cpu);
11239 perf_install_in_context(dst_ctx, event, dst_cpu);
11240 get_ctx(dst_ctx);
11241 }
11242
11243 /*
11244 * Once all the siblings are setup properly, install the group leaders
11245 * to make it go.
11246 */
11247 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11248 list_del(&event->migrate_entry);
11249 if (event->state >= PERF_EVENT_STATE_OFF)
11250 event->state = PERF_EVENT_STATE_INACTIVE;
11251 account_event_cpu(event, dst_cpu);
11252 perf_install_in_context(dst_ctx, event, dst_cpu);
11253 get_ctx(dst_ctx);
11254 }
11255 mutex_unlock(&dst_ctx->mutex);
11256 mutex_unlock(&src_ctx->mutex);
11257 }
11258 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11259
11260 static void sync_child_event(struct perf_event *child_event,
11261 struct task_struct *child)
11262 {
11263 struct perf_event *parent_event = child_event->parent;
11264 u64 child_val;
11265
11266 if (child_event->attr.inherit_stat)
11267 perf_event_read_event(child_event, child);
11268
11269 child_val = perf_event_count(child_event);
11270
11271 /*
11272 * Add back the child's count to the parent's count:
11273 */
11274 atomic64_add(child_val, &parent_event->child_count);
11275 atomic64_add(child_event->total_time_enabled,
11276 &parent_event->child_total_time_enabled);
11277 atomic64_add(child_event->total_time_running,
11278 &parent_event->child_total_time_running);
11279 }
11280
11281 static void
11282 perf_event_exit_event(struct perf_event *child_event,
11283 struct perf_event_context *child_ctx,
11284 struct task_struct *child)
11285 {
11286 struct perf_event *parent_event = child_event->parent;
11287
11288 /*
11289 * Do not destroy the 'original' grouping; because of the context
11290 * switch optimization the original events could've ended up in a
11291 * random child task.
11292 *
11293 * If we were to destroy the original group, all group related
11294 * operations would cease to function properly after this random
11295 * child dies.
11296 *
11297 * Do destroy all inherited groups, we don't care about those
11298 * and being thorough is better.
11299 */
11300 raw_spin_lock_irq(&child_ctx->lock);
11301 WARN_ON_ONCE(child_ctx->is_active);
11302
11303 if (parent_event)
11304 perf_group_detach(child_event);
11305 list_del_event(child_event, child_ctx);
11306 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11307 raw_spin_unlock_irq(&child_ctx->lock);
11308
11309 /*
11310 * Parent events are governed by their filedesc, retain them.
11311 */
11312 if (!parent_event) {
11313 perf_event_wakeup(child_event);
11314 return;
11315 }
11316 /*
11317 * Child events can be cleaned up.
11318 */
11319
11320 sync_child_event(child_event, child);
11321
11322 /*
11323 * Remove this event from the parent's list
11324 */
11325 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11326 mutex_lock(&parent_event->child_mutex);
11327 list_del_init(&child_event->child_list);
11328 mutex_unlock(&parent_event->child_mutex);
11329
11330 /*
11331 * Kick perf_poll() for is_event_hup().
11332 */
11333 perf_event_wakeup(parent_event);
11334 free_event(child_event);
11335 put_event(parent_event);
11336 }
11337
11338 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11339 {
11340 struct perf_event_context *child_ctx, *clone_ctx = NULL;
11341 struct perf_event *child_event, *next;
11342
11343 WARN_ON_ONCE(child != current);
11344
11345 child_ctx = perf_pin_task_context(child, ctxn);
11346 if (!child_ctx)
11347 return;
11348
11349 /*
11350 * In order to reduce the amount of tricky in ctx tear-down, we hold
11351 * ctx::mutex over the entire thing. This serializes against almost
11352 * everything that wants to access the ctx.
11353 *
11354 * The exception is sys_perf_event_open() /
11355 * perf_event_create_kernel_count() which does find_get_context()
11356 * without ctx::mutex (it cannot because of the move_group double mutex
11357 * lock thing). See the comments in perf_install_in_context().
11358 */
11359 mutex_lock(&child_ctx->mutex);
11360
11361 /*
11362 * In a single ctx::lock section, de-schedule the events and detach the
11363 * context from the task such that we cannot ever get it scheduled back
11364 * in.
11365 */
11366 raw_spin_lock_irq(&child_ctx->lock);
11367 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11368
11369 /*
11370 * Now that the context is inactive, destroy the task <-> ctx relation
11371 * and mark the context dead.
11372 */
11373 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11374 put_ctx(child_ctx); /* cannot be last */
11375 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11376 put_task_struct(current); /* cannot be last */
11377
11378 clone_ctx = unclone_ctx(child_ctx);
11379 raw_spin_unlock_irq(&child_ctx->lock);
11380
11381 if (clone_ctx)
11382 put_ctx(clone_ctx);
11383
11384 /*
11385 * Report the task dead after unscheduling the events so that we
11386 * won't get any samples after PERF_RECORD_EXIT. We can however still
11387 * get a few PERF_RECORD_READ events.
11388 */
11389 perf_event_task(child, child_ctx, 0);
11390
11391 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11392 perf_event_exit_event(child_event, child_ctx, child);
11393
11394 mutex_unlock(&child_ctx->mutex);
11395
11396 put_ctx(child_ctx);
11397 }
11398
11399 /*
11400 * When a child task exits, feed back event values to parent events.
11401 *
11402 * Can be called with cred_guard_mutex held when called from
11403 * install_exec_creds().
11404 */
11405 void perf_event_exit_task(struct task_struct *child)
11406 {
11407 struct perf_event *event, *tmp;
11408 int ctxn;
11409
11410 mutex_lock(&child->perf_event_mutex);
11411 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11412 owner_entry) {
11413 list_del_init(&event->owner_entry);
11414
11415 /*
11416 * Ensure the list deletion is visible before we clear
11417 * the owner, closes a race against perf_release() where
11418 * we need to serialize on the owner->perf_event_mutex.
11419 */
11420 smp_store_release(&event->owner, NULL);
11421 }
11422 mutex_unlock(&child->perf_event_mutex);
11423
11424 for_each_task_context_nr(ctxn)
11425 perf_event_exit_task_context(child, ctxn);
11426
11427 /*
11428 * The perf_event_exit_task_context calls perf_event_task
11429 * with child's task_ctx, which generates EXIT events for
11430 * child contexts and sets child->perf_event_ctxp[] to NULL.
11431 * At this point we need to send EXIT events to cpu contexts.
11432 */
11433 perf_event_task(child, NULL, 0);
11434 }
11435
11436 static void perf_free_event(struct perf_event *event,
11437 struct perf_event_context *ctx)
11438 {
11439 struct perf_event *parent = event->parent;
11440
11441 if (WARN_ON_ONCE(!parent))
11442 return;
11443
11444 mutex_lock(&parent->child_mutex);
11445 list_del_init(&event->child_list);
11446 mutex_unlock(&parent->child_mutex);
11447
11448 put_event(parent);
11449
11450 raw_spin_lock_irq(&ctx->lock);
11451 perf_group_detach(event);
11452 list_del_event(event, ctx);
11453 raw_spin_unlock_irq(&ctx->lock);
11454 free_event(event);
11455 }
11456
11457 /*
11458 * Free an unexposed, unused context as created by inheritance by
11459 * perf_event_init_task below, used by fork() in case of fail.
11460 *
11461 * Not all locks are strictly required, but take them anyway to be nice and
11462 * help out with the lockdep assertions.
11463 */
11464 void perf_event_free_task(struct task_struct *task)
11465 {
11466 struct perf_event_context *ctx;
11467 struct perf_event *event, *tmp;
11468 int ctxn;
11469
11470 for_each_task_context_nr(ctxn) {
11471 ctx = task->perf_event_ctxp[ctxn];
11472 if (!ctx)
11473 continue;
11474
11475 mutex_lock(&ctx->mutex);
11476 raw_spin_lock_irq(&ctx->lock);
11477 /*
11478 * Destroy the task <-> ctx relation and mark the context dead.
11479 *
11480 * This is important because even though the task hasn't been
11481 * exposed yet the context has been (through child_list).
11482 */
11483 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11484 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11485 put_task_struct(task); /* cannot be last */
11486 raw_spin_unlock_irq(&ctx->lock);
11487
11488 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11489 perf_free_event(event, ctx);
11490
11491 mutex_unlock(&ctx->mutex);
11492 put_ctx(ctx);
11493 }
11494 }
11495
11496 void perf_event_delayed_put(struct task_struct *task)
11497 {
11498 int ctxn;
11499
11500 for_each_task_context_nr(ctxn)
11501 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11502 }
11503
11504 struct file *perf_event_get(unsigned int fd)
11505 {
11506 struct file *file;
11507
11508 file = fget_raw(fd);
11509 if (!file)
11510 return ERR_PTR(-EBADF);
11511
11512 if (file->f_op != &perf_fops) {
11513 fput(file);
11514 return ERR_PTR(-EBADF);
11515 }
11516
11517 return file;
11518 }
11519
11520 const struct perf_event *perf_get_event(struct file *file)
11521 {
11522 if (file->f_op != &perf_fops)
11523 return ERR_PTR(-EINVAL);
11524
11525 return file->private_data;
11526 }
11527
11528 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11529 {
11530 if (!event)
11531 return ERR_PTR(-EINVAL);
11532
11533 return &event->attr;
11534 }
11535
11536 /*
11537 * Inherit an event from parent task to child task.
11538 *
11539 * Returns:
11540 * - valid pointer on success
11541 * - NULL for orphaned events
11542 * - IS_ERR() on error
11543 */
11544 static struct perf_event *
11545 inherit_event(struct perf_event *parent_event,
11546 struct task_struct *parent,
11547 struct perf_event_context *parent_ctx,
11548 struct task_struct *child,
11549 struct perf_event *group_leader,
11550 struct perf_event_context *child_ctx)
11551 {
11552 enum perf_event_state parent_state = parent_event->state;
11553 struct perf_event *child_event;
11554 unsigned long flags;
11555
11556 /*
11557 * Instead of creating recursive hierarchies of events,
11558 * we link inherited events back to the original parent,
11559 * which has a filp for sure, which we use as the reference
11560 * count:
11561 */
11562 if (parent_event->parent)
11563 parent_event = parent_event->parent;
11564
11565 child_event = perf_event_alloc(&parent_event->attr,
11566 parent_event->cpu,
11567 child,
11568 group_leader, parent_event,
11569 NULL, NULL, -1);
11570 if (IS_ERR(child_event))
11571 return child_event;
11572
11573
11574 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11575 !child_ctx->task_ctx_data) {
11576 struct pmu *pmu = child_event->pmu;
11577
11578 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11579 GFP_KERNEL);
11580 if (!child_ctx->task_ctx_data) {
11581 free_event(child_event);
11582 return NULL;
11583 }
11584 }
11585
11586 /*
11587 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11588 * must be under the same lock in order to serialize against
11589 * perf_event_release_kernel(), such that either we must observe
11590 * is_orphaned_event() or they will observe us on the child_list.
11591 */
11592 mutex_lock(&parent_event->child_mutex);
11593 if (is_orphaned_event(parent_event) ||
11594 !atomic_long_inc_not_zero(&parent_event->refcount)) {
11595 mutex_unlock(&parent_event->child_mutex);
11596 /* task_ctx_data is freed with child_ctx */
11597 free_event(child_event);
11598 return NULL;
11599 }
11600
11601 get_ctx(child_ctx);
11602
11603 /*
11604 * Make the child state follow the state of the parent event,
11605 * not its attr.disabled bit. We hold the parent's mutex,
11606 * so we won't race with perf_event_{en, dis}able_family.
11607 */
11608 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11609 child_event->state = PERF_EVENT_STATE_INACTIVE;
11610 else
11611 child_event->state = PERF_EVENT_STATE_OFF;
11612
11613 if (parent_event->attr.freq) {
11614 u64 sample_period = parent_event->hw.sample_period;
11615 struct hw_perf_event *hwc = &child_event->hw;
11616
11617 hwc->sample_period = sample_period;
11618 hwc->last_period = sample_period;
11619
11620 local64_set(&hwc->period_left, sample_period);
11621 }
11622
11623 child_event->ctx = child_ctx;
11624 child_event->overflow_handler = parent_event->overflow_handler;
11625 child_event->overflow_handler_context
11626 = parent_event->overflow_handler_context;
11627
11628 /*
11629 * Precalculate sample_data sizes
11630 */
11631 perf_event__header_size(child_event);
11632 perf_event__id_header_size(child_event);
11633
11634 /*
11635 * Link it up in the child's context:
11636 */
11637 raw_spin_lock_irqsave(&child_ctx->lock, flags);
11638 add_event_to_ctx(child_event, child_ctx);
11639 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11640
11641 /*
11642 * Link this into the parent event's child list
11643 */
11644 list_add_tail(&child_event->child_list, &parent_event->child_list);
11645 mutex_unlock(&parent_event->child_mutex);
11646
11647 return child_event;
11648 }
11649
11650 /*
11651 * Inherits an event group.
11652 *
11653 * This will quietly suppress orphaned events; !inherit_event() is not an error.
11654 * This matches with perf_event_release_kernel() removing all child events.
11655 *
11656 * Returns:
11657 * - 0 on success
11658 * - <0 on error
11659 */
11660 static int inherit_group(struct perf_event *parent_event,
11661 struct task_struct *parent,
11662 struct perf_event_context *parent_ctx,
11663 struct task_struct *child,
11664 struct perf_event_context *child_ctx)
11665 {
11666 struct perf_event *leader;
11667 struct perf_event *sub;
11668 struct perf_event *child_ctr;
11669
11670 leader = inherit_event(parent_event, parent, parent_ctx,
11671 child, NULL, child_ctx);
11672 if (IS_ERR(leader))
11673 return PTR_ERR(leader);
11674 /*
11675 * @leader can be NULL here because of is_orphaned_event(). In this
11676 * case inherit_event() will create individual events, similar to what
11677 * perf_group_detach() would do anyway.
11678 */
11679 for_each_sibling_event(sub, parent_event) {
11680 child_ctr = inherit_event(sub, parent, parent_ctx,
11681 child, leader, child_ctx);
11682 if (IS_ERR(child_ctr))
11683 return PTR_ERR(child_ctr);
11684 }
11685 return 0;
11686 }
11687
11688 /*
11689 * Creates the child task context and tries to inherit the event-group.
11690 *
11691 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11692 * inherited_all set when we 'fail' to inherit an orphaned event; this is
11693 * consistent with perf_event_release_kernel() removing all child events.
11694 *
11695 * Returns:
11696 * - 0 on success
11697 * - <0 on error
11698 */
11699 static int
11700 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11701 struct perf_event_context *parent_ctx,
11702 struct task_struct *child, int ctxn,
11703 int *inherited_all)
11704 {
11705 int ret;
11706 struct perf_event_context *child_ctx;
11707
11708 if (!event->attr.inherit) {
11709 *inherited_all = 0;
11710 return 0;
11711 }
11712
11713 child_ctx = child->perf_event_ctxp[ctxn];
11714 if (!child_ctx) {
11715 /*
11716 * This is executed from the parent task context, so
11717 * inherit events that have been marked for cloning.
11718 * First allocate and initialize a context for the
11719 * child.
11720 */
11721 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11722 if (!child_ctx)
11723 return -ENOMEM;
11724
11725 child->perf_event_ctxp[ctxn] = child_ctx;
11726 }
11727
11728 ret = inherit_group(event, parent, parent_ctx,
11729 child, child_ctx);
11730
11731 if (ret)
11732 *inherited_all = 0;
11733
11734 return ret;
11735 }
11736
11737 /*
11738 * Initialize the perf_event context in task_struct
11739 */
11740 static int perf_event_init_context(struct task_struct *child, int ctxn)
11741 {
11742 struct perf_event_context *child_ctx, *parent_ctx;
11743 struct perf_event_context *cloned_ctx;
11744 struct perf_event *event;
11745 struct task_struct *parent = current;
11746 int inherited_all = 1;
11747 unsigned long flags;
11748 int ret = 0;
11749
11750 if (likely(!parent->perf_event_ctxp[ctxn]))
11751 return 0;
11752
11753 /*
11754 * If the parent's context is a clone, pin it so it won't get
11755 * swapped under us.
11756 */
11757 parent_ctx = perf_pin_task_context(parent, ctxn);
11758 if (!parent_ctx)
11759 return 0;
11760
11761 /*
11762 * No need to check if parent_ctx != NULL here; since we saw
11763 * it non-NULL earlier, the only reason for it to become NULL
11764 * is if we exit, and since we're currently in the middle of
11765 * a fork we can't be exiting at the same time.
11766 */
11767
11768 /*
11769 * Lock the parent list. No need to lock the child - not PID
11770 * hashed yet and not running, so nobody can access it.
11771 */
11772 mutex_lock(&parent_ctx->mutex);
11773
11774 /*
11775 * We dont have to disable NMIs - we are only looking at
11776 * the list, not manipulating it:
11777 */
11778 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11779 ret = inherit_task_group(event, parent, parent_ctx,
11780 child, ctxn, &inherited_all);
11781 if (ret)
11782 goto out_unlock;
11783 }
11784
11785 /*
11786 * We can't hold ctx->lock when iterating the ->flexible_group list due
11787 * to allocations, but we need to prevent rotation because
11788 * rotate_ctx() will change the list from interrupt context.
11789 */
11790 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11791 parent_ctx->rotate_disable = 1;
11792 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11793
11794 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11795 ret = inherit_task_group(event, parent, parent_ctx,
11796 child, ctxn, &inherited_all);
11797 if (ret)
11798 goto out_unlock;
11799 }
11800
11801 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11802 parent_ctx->rotate_disable = 0;
11803
11804 child_ctx = child->perf_event_ctxp[ctxn];
11805
11806 if (child_ctx && inherited_all) {
11807 /*
11808 * Mark the child context as a clone of the parent
11809 * context, or of whatever the parent is a clone of.
11810 *
11811 * Note that if the parent is a clone, the holding of
11812 * parent_ctx->lock avoids it from being uncloned.
11813 */
11814 cloned_ctx = parent_ctx->parent_ctx;
11815 if (cloned_ctx) {
11816 child_ctx->parent_ctx = cloned_ctx;
11817 child_ctx->parent_gen = parent_ctx->parent_gen;
11818 } else {
11819 child_ctx->parent_ctx = parent_ctx;
11820 child_ctx->parent_gen = parent_ctx->generation;
11821 }
11822 get_ctx(child_ctx->parent_ctx);
11823 }
11824
11825 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11826 out_unlock:
11827 mutex_unlock(&parent_ctx->mutex);
11828
11829 perf_unpin_context(parent_ctx);
11830 put_ctx(parent_ctx);
11831
11832 return ret;
11833 }
11834
11835 /*
11836 * Initialize the perf_event context in task_struct
11837 */
11838 int perf_event_init_task(struct task_struct *child)
11839 {
11840 int ctxn, ret;
11841
11842 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11843 mutex_init(&child->perf_event_mutex);
11844 INIT_LIST_HEAD(&child->perf_event_list);
11845
11846 for_each_task_context_nr(ctxn) {
11847 ret = perf_event_init_context(child, ctxn);
11848 if (ret) {
11849 perf_event_free_task(child);
11850 return ret;
11851 }
11852 }
11853
11854 return 0;
11855 }
11856
11857 static void __init perf_event_init_all_cpus(void)
11858 {
11859 struct swevent_htable *swhash;
11860 int cpu;
11861
11862 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11863
11864 for_each_possible_cpu(cpu) {
11865 swhash = &per_cpu(swevent_htable, cpu);
11866 mutex_init(&swhash->hlist_mutex);
11867 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11868
11869 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11870 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11871
11872 #ifdef CONFIG_CGROUP_PERF
11873 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11874 #endif
11875 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11876 }
11877 }
11878
11879 void perf_swevent_init_cpu(unsigned int cpu)
11880 {
11881 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11882
11883 mutex_lock(&swhash->hlist_mutex);
11884 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11885 struct swevent_hlist *hlist;
11886
11887 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11888 WARN_ON(!hlist);
11889 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11890 }
11891 mutex_unlock(&swhash->hlist_mutex);
11892 }
11893
11894 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11895 static void __perf_event_exit_context(void *__info)
11896 {
11897 struct perf_event_context *ctx = __info;
11898 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11899 struct perf_event *event;
11900
11901 raw_spin_lock(&ctx->lock);
11902 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11903 list_for_each_entry(event, &ctx->event_list, event_entry)
11904 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11905 raw_spin_unlock(&ctx->lock);
11906 }
11907
11908 static void perf_event_exit_cpu_context(int cpu)
11909 {
11910 struct perf_cpu_context *cpuctx;
11911 struct perf_event_context *ctx;
11912 struct pmu *pmu;
11913
11914 mutex_lock(&pmus_lock);
11915 list_for_each_entry(pmu, &pmus, entry) {
11916 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11917 ctx = &cpuctx->ctx;
11918
11919 mutex_lock(&ctx->mutex);
11920 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11921 cpuctx->online = 0;
11922 mutex_unlock(&ctx->mutex);
11923 }
11924 cpumask_clear_cpu(cpu, perf_online_mask);
11925 mutex_unlock(&pmus_lock);
11926 }
11927 #else
11928
11929 static void perf_event_exit_cpu_context(int cpu) { }
11930
11931 #endif
11932
11933 int perf_event_init_cpu(unsigned int cpu)
11934 {
11935 struct perf_cpu_context *cpuctx;
11936 struct perf_event_context *ctx;
11937 struct pmu *pmu;
11938
11939 perf_swevent_init_cpu(cpu);
11940
11941 mutex_lock(&pmus_lock);
11942 cpumask_set_cpu(cpu, perf_online_mask);
11943 list_for_each_entry(pmu, &pmus, entry) {
11944 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11945 ctx = &cpuctx->ctx;
11946
11947 mutex_lock(&ctx->mutex);
11948 cpuctx->online = 1;
11949 mutex_unlock(&ctx->mutex);
11950 }
11951 mutex_unlock(&pmus_lock);
11952
11953 return 0;
11954 }
11955
11956 int perf_event_exit_cpu(unsigned int cpu)
11957 {
11958 perf_event_exit_cpu_context(cpu);
11959 return 0;
11960 }
11961
11962 static int
11963 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11964 {
11965 int cpu;
11966
11967 for_each_online_cpu(cpu)
11968 perf_event_exit_cpu(cpu);
11969
11970 return NOTIFY_OK;
11971 }
11972
11973 /*
11974 * Run the perf reboot notifier at the very last possible moment so that
11975 * the generic watchdog code runs as long as possible.
11976 */
11977 static struct notifier_block perf_reboot_notifier = {
11978 .notifier_call = perf_reboot,
11979 .priority = INT_MIN,
11980 };
11981
11982 void __init perf_event_init(void)
11983 {
11984 int ret;
11985
11986 idr_init(&pmu_idr);
11987
11988 perf_event_init_all_cpus();
11989 init_srcu_struct(&pmus_srcu);
11990 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11991 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11992 perf_pmu_register(&perf_task_clock, NULL, -1);
11993 perf_tp_register();
11994 perf_event_init_cpu(smp_processor_id());
11995 register_reboot_notifier(&perf_reboot_notifier);
11996
11997 ret = init_hw_breakpoint();
11998 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11999
12000 /*
12001 * Build time assertion that we keep the data_head at the intended
12002 * location. IOW, validation we got the __reserved[] size right.
12003 */
12004 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12005 != 1024);
12006 }
12007
12008 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12009 char *page)
12010 {
12011 struct perf_pmu_events_attr *pmu_attr =
12012 container_of(attr, struct perf_pmu_events_attr, attr);
12013
12014 if (pmu_attr->event_str)
12015 return sprintf(page, "%s\n", pmu_attr->event_str);
12016
12017 return 0;
12018 }
12019 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12020
12021 static int __init perf_event_sysfs_init(void)
12022 {
12023 struct pmu *pmu;
12024 int ret;
12025
12026 mutex_lock(&pmus_lock);
12027
12028 ret = bus_register(&pmu_bus);
12029 if (ret)
12030 goto unlock;
12031
12032 list_for_each_entry(pmu, &pmus, entry) {
12033 if (!pmu->name || pmu->type < 0)
12034 continue;
12035
12036 ret = pmu_dev_alloc(pmu);
12037 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12038 }
12039 pmu_bus_running = 1;
12040 ret = 0;
12041
12042 unlock:
12043 mutex_unlock(&pmus_lock);
12044
12045 return ret;
12046 }
12047 device_initcall(perf_event_sysfs_init);
12048
12049 #ifdef CONFIG_CGROUP_PERF
12050 static struct cgroup_subsys_state *
12051 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12052 {
12053 struct perf_cgroup *jc;
12054
12055 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12056 if (!jc)
12057 return ERR_PTR(-ENOMEM);
12058
12059 jc->info = alloc_percpu(struct perf_cgroup_info);
12060 if (!jc->info) {
12061 kfree(jc);
12062 return ERR_PTR(-ENOMEM);
12063 }
12064
12065 return &jc->css;
12066 }
12067
12068 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12069 {
12070 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12071
12072 free_percpu(jc->info);
12073 kfree(jc);
12074 }
12075
12076 static int __perf_cgroup_move(void *info)
12077 {
12078 struct task_struct *task = info;
12079 rcu_read_lock();
12080 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12081 rcu_read_unlock();
12082 return 0;
12083 }
12084
12085 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12086 {
12087 struct task_struct *task;
12088 struct cgroup_subsys_state *css;
12089
12090 cgroup_taskset_for_each(task, css, tset)
12091 task_function_call(task, __perf_cgroup_move, task);
12092 }
12093
12094 struct cgroup_subsys perf_event_cgrp_subsys = {
12095 .css_alloc = perf_cgroup_css_alloc,
12096 .css_free = perf_cgroup_css_free,
12097 .attach = perf_cgroup_attach,
12098 /*
12099 * Implicitly enable on dfl hierarchy so that perf events can
12100 * always be filtered by cgroup2 path as long as perf_event
12101 * controller is not mounted on a legacy hierarchy.
12102 */
12103 .implicit_on_dfl = true,
12104 .threaded = true,
12105 };
12106 #endif /* CONFIG_CGROUP_PERF */