]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - kernel/events/core.c
objtool: Add do_task_dead() to global noreturn list
[thirdparty/kernel/linux.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49
50 #include "internal.h"
51
52 #include <asm/irq_regs.h>
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57 struct task_struct *p;
58 remote_function_f func;
59 void *info;
60 int ret;
61 };
62
63 static void remote_function(void *data)
64 {
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 /* -EAGAIN */
70 if (task_cpu(p) != smp_processor_id())
71 return;
72
73 /*
74 * Now that we're on right CPU with IRQs disabled, we can test
75 * if we hit the right task without races.
76 */
77
78 tfc->ret = -ESRCH; /* No such (running) process */
79 if (p != current)
80 return;
81 }
82
83 tfc->ret = tfc->func(tfc->info);
84 }
85
86 /**
87 * task_function_call - call a function on the cpu on which a task runs
88 * @p: the task to evaluate
89 * @func: the function to be called
90 * @info: the function call argument
91 *
92 * Calls the function @func when the task is currently running. This might
93 * be on the current CPU, which just calls the function directly
94 *
95 * returns: @func return value, or
96 * -ESRCH - when the process isn't running
97 * -EAGAIN - when the process moved away
98 */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102 struct remote_function_call data = {
103 .p = p,
104 .func = func,
105 .info = info,
106 .ret = -EAGAIN,
107 };
108 int ret;
109
110 do {
111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 if (!ret)
113 ret = data.ret;
114 } while (ret == -EAGAIN);
115
116 return ret;
117 }
118
119 /**
120 * cpu_function_call - call a function on the cpu
121 * @func: the function to be called
122 * @info: the function call argument
123 *
124 * Calls the function @func on the remote cpu.
125 *
126 * returns: @func return value or -ENXIO when the cpu is offline
127 */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130 struct remote_function_call data = {
131 .p = NULL,
132 .func = func,
133 .info = info,
134 .ret = -ENXIO, /* No such CPU */
135 };
136
137 smp_call_function_single(cpu, remote_function, &data, 1);
138
139 return data.ret;
140 }
141
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 struct perf_event_context *ctx)
150 {
151 raw_spin_lock(&cpuctx->ctx.lock);
152 if (ctx)
153 raw_spin_lock(&ctx->lock);
154 }
155
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 struct perf_event_context *ctx)
158 {
159 if (ctx)
160 raw_spin_unlock(&ctx->lock);
161 raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163
164 #define TASK_TOMBSTONE ((void *)-1L)
165
166 static bool is_kernel_event(struct perf_event *event)
167 {
168 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170
171 /*
172 * On task ctx scheduling...
173 *
174 * When !ctx->nr_events a task context will not be scheduled. This means
175 * we can disable the scheduler hooks (for performance) without leaving
176 * pending task ctx state.
177 *
178 * This however results in two special cases:
179 *
180 * - removing the last event from a task ctx; this is relatively straight
181 * forward and is done in __perf_remove_from_context.
182 *
183 * - adding the first event to a task ctx; this is tricky because we cannot
184 * rely on ctx->is_active and therefore cannot use event_function_call().
185 * See perf_install_in_context().
186 *
187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188 */
189
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 struct perf_event_context *, void *);
192
193 struct event_function_struct {
194 struct perf_event *event;
195 event_f func;
196 void *data;
197 };
198
199 static int event_function(void *info)
200 {
201 struct event_function_struct *efs = info;
202 struct perf_event *event = efs->event;
203 struct perf_event_context *ctx = event->ctx;
204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 struct perf_event_context *task_ctx = cpuctx->task_ctx;
206 int ret = 0;
207
208 WARN_ON_ONCE(!irqs_disabled());
209
210 perf_ctx_lock(cpuctx, task_ctx);
211 /*
212 * Since we do the IPI call without holding ctx->lock things can have
213 * changed, double check we hit the task we set out to hit.
214 */
215 if (ctx->task) {
216 if (ctx->task != current) {
217 ret = -ESRCH;
218 goto unlock;
219 }
220
221 /*
222 * We only use event_function_call() on established contexts,
223 * and event_function() is only ever called when active (or
224 * rather, we'll have bailed in task_function_call() or the
225 * above ctx->task != current test), therefore we must have
226 * ctx->is_active here.
227 */
228 WARN_ON_ONCE(!ctx->is_active);
229 /*
230 * And since we have ctx->is_active, cpuctx->task_ctx must
231 * match.
232 */
233 WARN_ON_ONCE(task_ctx != ctx);
234 } else {
235 WARN_ON_ONCE(&cpuctx->ctx != ctx);
236 }
237
238 efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240 perf_ctx_unlock(cpuctx, task_ctx);
241
242 return ret;
243 }
244
245 static void event_function_call(struct perf_event *event, event_f func, void *data)
246 {
247 struct perf_event_context *ctx = event->ctx;
248 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249 struct event_function_struct efs = {
250 .event = event,
251 .func = func,
252 .data = data,
253 };
254
255 if (!event->parent) {
256 /*
257 * If this is a !child event, we must hold ctx::mutex to
258 * stabilize the the event->ctx relation. See
259 * perf_event_ctx_lock().
260 */
261 lockdep_assert_held(&ctx->mutex);
262 }
263
264 if (!task) {
265 cpu_function_call(event->cpu, event_function, &efs);
266 return;
267 }
268
269 if (task == TASK_TOMBSTONE)
270 return;
271
272 again:
273 if (!task_function_call(task, event_function, &efs))
274 return;
275
276 raw_spin_lock_irq(&ctx->lock);
277 /*
278 * Reload the task pointer, it might have been changed by
279 * a concurrent perf_event_context_sched_out().
280 */
281 task = ctx->task;
282 if (task == TASK_TOMBSTONE) {
283 raw_spin_unlock_irq(&ctx->lock);
284 return;
285 }
286 if (ctx->is_active) {
287 raw_spin_unlock_irq(&ctx->lock);
288 goto again;
289 }
290 func(event, NULL, ctx, data);
291 raw_spin_unlock_irq(&ctx->lock);
292 }
293
294 /*
295 * Similar to event_function_call() + event_function(), but hard assumes IRQs
296 * are already disabled and we're on the right CPU.
297 */
298 static void event_function_local(struct perf_event *event, event_f func, void *data)
299 {
300 struct perf_event_context *ctx = event->ctx;
301 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302 struct task_struct *task = READ_ONCE(ctx->task);
303 struct perf_event_context *task_ctx = NULL;
304
305 WARN_ON_ONCE(!irqs_disabled());
306
307 if (task) {
308 if (task == TASK_TOMBSTONE)
309 return;
310
311 task_ctx = ctx;
312 }
313
314 perf_ctx_lock(cpuctx, task_ctx);
315
316 task = ctx->task;
317 if (task == TASK_TOMBSTONE)
318 goto unlock;
319
320 if (task) {
321 /*
322 * We must be either inactive or active and the right task,
323 * otherwise we're screwed, since we cannot IPI to somewhere
324 * else.
325 */
326 if (ctx->is_active) {
327 if (WARN_ON_ONCE(task != current))
328 goto unlock;
329
330 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331 goto unlock;
332 }
333 } else {
334 WARN_ON_ONCE(&cpuctx->ctx != ctx);
335 }
336
337 func(event, cpuctx, ctx, data);
338 unlock:
339 perf_ctx_unlock(cpuctx, task_ctx);
340 }
341
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343 PERF_FLAG_FD_OUTPUT |\
344 PERF_FLAG_PID_CGROUP |\
345 PERF_FLAG_FD_CLOEXEC)
346
347 /*
348 * branch priv levels that need permission checks
349 */
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351 (PERF_SAMPLE_BRANCH_KERNEL |\
352 PERF_SAMPLE_BRANCH_HV)
353
354 enum event_type_t {
355 EVENT_FLEXIBLE = 0x1,
356 EVENT_PINNED = 0x2,
357 EVENT_TIME = 0x4,
358 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
359 };
360
361 /*
362 * perf_sched_events : >0 events exist
363 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
364 */
365
366 static void perf_sched_delayed(struct work_struct *work);
367 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369 static DEFINE_MUTEX(perf_sched_mutex);
370 static atomic_t perf_sched_count;
371
372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
375
376 static atomic_t nr_mmap_events __read_mostly;
377 static atomic_t nr_comm_events __read_mostly;
378 static atomic_t nr_task_events __read_mostly;
379 static atomic_t nr_freq_events __read_mostly;
380 static atomic_t nr_switch_events __read_mostly;
381
382 static LIST_HEAD(pmus);
383 static DEFINE_MUTEX(pmus_lock);
384 static struct srcu_struct pmus_srcu;
385
386 /*
387 * perf event paranoia level:
388 * -1 - not paranoid at all
389 * 0 - disallow raw tracepoint access for unpriv
390 * 1 - disallow cpu events for unpriv
391 * 2 - disallow kernel profiling for unpriv
392 */
393 int sysctl_perf_event_paranoid __read_mostly = 2;
394
395 /* Minimum for 512 kiB + 1 user control page */
396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
397
398 /*
399 * max perf event sample rate
400 */
401 #define DEFAULT_MAX_SAMPLE_RATE 100000
402 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
404
405 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
406
407 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
408 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
409
410 static int perf_sample_allowed_ns __read_mostly =
411 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
412
413 static void update_perf_cpu_limits(void)
414 {
415 u64 tmp = perf_sample_period_ns;
416
417 tmp *= sysctl_perf_cpu_time_max_percent;
418 tmp = div_u64(tmp, 100);
419 if (!tmp)
420 tmp = 1;
421
422 WRITE_ONCE(perf_sample_allowed_ns, tmp);
423 }
424
425 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
426
427 int perf_proc_update_handler(struct ctl_table *table, int write,
428 void __user *buffer, size_t *lenp,
429 loff_t *ppos)
430 {
431 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
432
433 if (ret || !write)
434 return ret;
435
436 /*
437 * If throttling is disabled don't allow the write:
438 */
439 if (sysctl_perf_cpu_time_max_percent == 100 ||
440 sysctl_perf_cpu_time_max_percent == 0)
441 return -EINVAL;
442
443 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
444 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
445 update_perf_cpu_limits();
446
447 return 0;
448 }
449
450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
451
452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
453 void __user *buffer, size_t *lenp,
454 loff_t *ppos)
455 {
456 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
457
458 if (ret || !write)
459 return ret;
460
461 if (sysctl_perf_cpu_time_max_percent == 100 ||
462 sysctl_perf_cpu_time_max_percent == 0) {
463 printk(KERN_WARNING
464 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465 WRITE_ONCE(perf_sample_allowed_ns, 0);
466 } else {
467 update_perf_cpu_limits();
468 }
469
470 return 0;
471 }
472
473 /*
474 * perf samples are done in some very critical code paths (NMIs).
475 * If they take too much CPU time, the system can lock up and not
476 * get any real work done. This will drop the sample rate when
477 * we detect that events are taking too long.
478 */
479 #define NR_ACCUMULATED_SAMPLES 128
480 static DEFINE_PER_CPU(u64, running_sample_length);
481
482 static u64 __report_avg;
483 static u64 __report_allowed;
484
485 static void perf_duration_warn(struct irq_work *w)
486 {
487 printk_ratelimited(KERN_INFO
488 "perf: interrupt took too long (%lld > %lld), lowering "
489 "kernel.perf_event_max_sample_rate to %d\n",
490 __report_avg, __report_allowed,
491 sysctl_perf_event_sample_rate);
492 }
493
494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
495
496 void perf_sample_event_took(u64 sample_len_ns)
497 {
498 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
499 u64 running_len;
500 u64 avg_len;
501 u32 max;
502
503 if (max_len == 0)
504 return;
505
506 /* Decay the counter by 1 average sample. */
507 running_len = __this_cpu_read(running_sample_length);
508 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
509 running_len += sample_len_ns;
510 __this_cpu_write(running_sample_length, running_len);
511
512 /*
513 * Note: this will be biased artifically low until we have
514 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515 * from having to maintain a count.
516 */
517 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
518 if (avg_len <= max_len)
519 return;
520
521 __report_avg = avg_len;
522 __report_allowed = max_len;
523
524 /*
525 * Compute a throttle threshold 25% below the current duration.
526 */
527 avg_len += avg_len / 4;
528 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
529 if (avg_len < max)
530 max /= (u32)avg_len;
531 else
532 max = 1;
533
534 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
535 WRITE_ONCE(max_samples_per_tick, max);
536
537 sysctl_perf_event_sample_rate = max * HZ;
538 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
539
540 if (!irq_work_queue(&perf_duration_work)) {
541 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542 "kernel.perf_event_max_sample_rate to %d\n",
543 __report_avg, __report_allowed,
544 sysctl_perf_event_sample_rate);
545 }
546 }
547
548 static atomic64_t perf_event_id;
549
550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
551 enum event_type_t event_type);
552
553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
554 enum event_type_t event_type,
555 struct task_struct *task);
556
557 static void update_context_time(struct perf_event_context *ctx);
558 static u64 perf_event_time(struct perf_event *event);
559
560 void __weak perf_event_print_debug(void) { }
561
562 extern __weak const char *perf_pmu_name(void)
563 {
564 return "pmu";
565 }
566
567 static inline u64 perf_clock(void)
568 {
569 return local_clock();
570 }
571
572 static inline u64 perf_event_clock(struct perf_event *event)
573 {
574 return event->clock();
575 }
576
577 #ifdef CONFIG_CGROUP_PERF
578
579 static inline bool
580 perf_cgroup_match(struct perf_event *event)
581 {
582 struct perf_event_context *ctx = event->ctx;
583 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
584
585 /* @event doesn't care about cgroup */
586 if (!event->cgrp)
587 return true;
588
589 /* wants specific cgroup scope but @cpuctx isn't associated with any */
590 if (!cpuctx->cgrp)
591 return false;
592
593 /*
594 * Cgroup scoping is recursive. An event enabled for a cgroup is
595 * also enabled for all its descendant cgroups. If @cpuctx's
596 * cgroup is a descendant of @event's (the test covers identity
597 * case), it's a match.
598 */
599 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
600 event->cgrp->css.cgroup);
601 }
602
603 static inline void perf_detach_cgroup(struct perf_event *event)
604 {
605 css_put(&event->cgrp->css);
606 event->cgrp = NULL;
607 }
608
609 static inline int is_cgroup_event(struct perf_event *event)
610 {
611 return event->cgrp != NULL;
612 }
613
614 static inline u64 perf_cgroup_event_time(struct perf_event *event)
615 {
616 struct perf_cgroup_info *t;
617
618 t = per_cpu_ptr(event->cgrp->info, event->cpu);
619 return t->time;
620 }
621
622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
623 {
624 struct perf_cgroup_info *info;
625 u64 now;
626
627 now = perf_clock();
628
629 info = this_cpu_ptr(cgrp->info);
630
631 info->time += now - info->timestamp;
632 info->timestamp = now;
633 }
634
635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
636 {
637 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
638 if (cgrp_out)
639 __update_cgrp_time(cgrp_out);
640 }
641
642 static inline void update_cgrp_time_from_event(struct perf_event *event)
643 {
644 struct perf_cgroup *cgrp;
645
646 /*
647 * ensure we access cgroup data only when needed and
648 * when we know the cgroup is pinned (css_get)
649 */
650 if (!is_cgroup_event(event))
651 return;
652
653 cgrp = perf_cgroup_from_task(current, event->ctx);
654 /*
655 * Do not update time when cgroup is not active
656 */
657 if (cgrp == event->cgrp)
658 __update_cgrp_time(event->cgrp);
659 }
660
661 static inline void
662 perf_cgroup_set_timestamp(struct task_struct *task,
663 struct perf_event_context *ctx)
664 {
665 struct perf_cgroup *cgrp;
666 struct perf_cgroup_info *info;
667
668 /*
669 * ctx->lock held by caller
670 * ensure we do not access cgroup data
671 * unless we have the cgroup pinned (css_get)
672 */
673 if (!task || !ctx->nr_cgroups)
674 return;
675
676 cgrp = perf_cgroup_from_task(task, ctx);
677 info = this_cpu_ptr(cgrp->info);
678 info->timestamp = ctx->timestamp;
679 }
680
681 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
682 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
683
684 /*
685 * reschedule events based on the cgroup constraint of task.
686 *
687 * mode SWOUT : schedule out everything
688 * mode SWIN : schedule in based on cgroup for next
689 */
690 static void perf_cgroup_switch(struct task_struct *task, int mode)
691 {
692 struct perf_cpu_context *cpuctx;
693 struct pmu *pmu;
694 unsigned long flags;
695
696 /*
697 * disable interrupts to avoid geting nr_cgroup
698 * changes via __perf_event_disable(). Also
699 * avoids preemption.
700 */
701 local_irq_save(flags);
702
703 /*
704 * we reschedule only in the presence of cgroup
705 * constrained events.
706 */
707
708 list_for_each_entry_rcu(pmu, &pmus, entry) {
709 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
710 if (cpuctx->unique_pmu != pmu)
711 continue; /* ensure we process each cpuctx once */
712
713 /*
714 * perf_cgroup_events says at least one
715 * context on this CPU has cgroup events.
716 *
717 * ctx->nr_cgroups reports the number of cgroup
718 * events for a context.
719 */
720 if (cpuctx->ctx.nr_cgroups > 0) {
721 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
722 perf_pmu_disable(cpuctx->ctx.pmu);
723
724 if (mode & PERF_CGROUP_SWOUT) {
725 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
726 /*
727 * must not be done before ctxswout due
728 * to event_filter_match() in event_sched_out()
729 */
730 cpuctx->cgrp = NULL;
731 }
732
733 if (mode & PERF_CGROUP_SWIN) {
734 WARN_ON_ONCE(cpuctx->cgrp);
735 /*
736 * set cgrp before ctxsw in to allow
737 * event_filter_match() to not have to pass
738 * task around
739 * we pass the cpuctx->ctx to perf_cgroup_from_task()
740 * because cgorup events are only per-cpu
741 */
742 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
743 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
744 }
745 perf_pmu_enable(cpuctx->ctx.pmu);
746 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
747 }
748 }
749
750 local_irq_restore(flags);
751 }
752
753 static inline void perf_cgroup_sched_out(struct task_struct *task,
754 struct task_struct *next)
755 {
756 struct perf_cgroup *cgrp1;
757 struct perf_cgroup *cgrp2 = NULL;
758
759 rcu_read_lock();
760 /*
761 * we come here when we know perf_cgroup_events > 0
762 * we do not need to pass the ctx here because we know
763 * we are holding the rcu lock
764 */
765 cgrp1 = perf_cgroup_from_task(task, NULL);
766 cgrp2 = perf_cgroup_from_task(next, NULL);
767
768 /*
769 * only schedule out current cgroup events if we know
770 * that we are switching to a different cgroup. Otherwise,
771 * do no touch the cgroup events.
772 */
773 if (cgrp1 != cgrp2)
774 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
775
776 rcu_read_unlock();
777 }
778
779 static inline void perf_cgroup_sched_in(struct task_struct *prev,
780 struct task_struct *task)
781 {
782 struct perf_cgroup *cgrp1;
783 struct perf_cgroup *cgrp2 = NULL;
784
785 rcu_read_lock();
786 /*
787 * we come here when we know perf_cgroup_events > 0
788 * we do not need to pass the ctx here because we know
789 * we are holding the rcu lock
790 */
791 cgrp1 = perf_cgroup_from_task(task, NULL);
792 cgrp2 = perf_cgroup_from_task(prev, NULL);
793
794 /*
795 * only need to schedule in cgroup events if we are changing
796 * cgroup during ctxsw. Cgroup events were not scheduled
797 * out of ctxsw out if that was not the case.
798 */
799 if (cgrp1 != cgrp2)
800 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
801
802 rcu_read_unlock();
803 }
804
805 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
806 struct perf_event_attr *attr,
807 struct perf_event *group_leader)
808 {
809 struct perf_cgroup *cgrp;
810 struct cgroup_subsys_state *css;
811 struct fd f = fdget(fd);
812 int ret = 0;
813
814 if (!f.file)
815 return -EBADF;
816
817 css = css_tryget_online_from_dir(f.file->f_path.dentry,
818 &perf_event_cgrp_subsys);
819 if (IS_ERR(css)) {
820 ret = PTR_ERR(css);
821 goto out;
822 }
823
824 cgrp = container_of(css, struct perf_cgroup, css);
825 event->cgrp = cgrp;
826
827 /*
828 * all events in a group must monitor
829 * the same cgroup because a task belongs
830 * to only one perf cgroup at a time
831 */
832 if (group_leader && group_leader->cgrp != cgrp) {
833 perf_detach_cgroup(event);
834 ret = -EINVAL;
835 }
836 out:
837 fdput(f);
838 return ret;
839 }
840
841 static inline void
842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
843 {
844 struct perf_cgroup_info *t;
845 t = per_cpu_ptr(event->cgrp->info, event->cpu);
846 event->shadow_ctx_time = now - t->timestamp;
847 }
848
849 static inline void
850 perf_cgroup_defer_enabled(struct perf_event *event)
851 {
852 /*
853 * when the current task's perf cgroup does not match
854 * the event's, we need to remember to call the
855 * perf_mark_enable() function the first time a task with
856 * a matching perf cgroup is scheduled in.
857 */
858 if (is_cgroup_event(event) && !perf_cgroup_match(event))
859 event->cgrp_defer_enabled = 1;
860 }
861
862 static inline void
863 perf_cgroup_mark_enabled(struct perf_event *event,
864 struct perf_event_context *ctx)
865 {
866 struct perf_event *sub;
867 u64 tstamp = perf_event_time(event);
868
869 if (!event->cgrp_defer_enabled)
870 return;
871
872 event->cgrp_defer_enabled = 0;
873
874 event->tstamp_enabled = tstamp - event->total_time_enabled;
875 list_for_each_entry(sub, &event->sibling_list, group_entry) {
876 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
877 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
878 sub->cgrp_defer_enabled = 0;
879 }
880 }
881 }
882
883 /*
884 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885 * cleared when last cgroup event is removed.
886 */
887 static inline void
888 list_update_cgroup_event(struct perf_event *event,
889 struct perf_event_context *ctx, bool add)
890 {
891 struct perf_cpu_context *cpuctx;
892
893 if (!is_cgroup_event(event))
894 return;
895
896 if (add && ctx->nr_cgroups++)
897 return;
898 else if (!add && --ctx->nr_cgroups)
899 return;
900 /*
901 * Because cgroup events are always per-cpu events,
902 * this will always be called from the right CPU.
903 */
904 cpuctx = __get_cpu_context(ctx);
905 cpuctx->cgrp = add ? event->cgrp : NULL;
906 }
907
908 #else /* !CONFIG_CGROUP_PERF */
909
910 static inline bool
911 perf_cgroup_match(struct perf_event *event)
912 {
913 return true;
914 }
915
916 static inline void perf_detach_cgroup(struct perf_event *event)
917 {}
918
919 static inline int is_cgroup_event(struct perf_event *event)
920 {
921 return 0;
922 }
923
924 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
925 {
926 return 0;
927 }
928
929 static inline void update_cgrp_time_from_event(struct perf_event *event)
930 {
931 }
932
933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934 {
935 }
936
937 static inline void perf_cgroup_sched_out(struct task_struct *task,
938 struct task_struct *next)
939 {
940 }
941
942 static inline void perf_cgroup_sched_in(struct task_struct *prev,
943 struct task_struct *task)
944 {
945 }
946
947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948 struct perf_event_attr *attr,
949 struct perf_event *group_leader)
950 {
951 return -EINVAL;
952 }
953
954 static inline void
955 perf_cgroup_set_timestamp(struct task_struct *task,
956 struct perf_event_context *ctx)
957 {
958 }
959
960 void
961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962 {
963 }
964
965 static inline void
966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967 {
968 }
969
970 static inline u64 perf_cgroup_event_time(struct perf_event *event)
971 {
972 return 0;
973 }
974
975 static inline void
976 perf_cgroup_defer_enabled(struct perf_event *event)
977 {
978 }
979
980 static inline void
981 perf_cgroup_mark_enabled(struct perf_event *event,
982 struct perf_event_context *ctx)
983 {
984 }
985
986 static inline void
987 list_update_cgroup_event(struct perf_event *event,
988 struct perf_event_context *ctx, bool add)
989 {
990 }
991
992 #endif
993
994 /*
995 * set default to be dependent on timer tick just
996 * like original code
997 */
998 #define PERF_CPU_HRTIMER (1000 / HZ)
999 /*
1000 * function must be called with interrupts disbled
1001 */
1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1003 {
1004 struct perf_cpu_context *cpuctx;
1005 int rotations = 0;
1006
1007 WARN_ON(!irqs_disabled());
1008
1009 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1010 rotations = perf_rotate_context(cpuctx);
1011
1012 raw_spin_lock(&cpuctx->hrtimer_lock);
1013 if (rotations)
1014 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1015 else
1016 cpuctx->hrtimer_active = 0;
1017 raw_spin_unlock(&cpuctx->hrtimer_lock);
1018
1019 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1020 }
1021
1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1023 {
1024 struct hrtimer *timer = &cpuctx->hrtimer;
1025 struct pmu *pmu = cpuctx->ctx.pmu;
1026 u64 interval;
1027
1028 /* no multiplexing needed for SW PMU */
1029 if (pmu->task_ctx_nr == perf_sw_context)
1030 return;
1031
1032 /*
1033 * check default is sane, if not set then force to
1034 * default interval (1/tick)
1035 */
1036 interval = pmu->hrtimer_interval_ms;
1037 if (interval < 1)
1038 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1039
1040 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1041
1042 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1044 timer->function = perf_mux_hrtimer_handler;
1045 }
1046
1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1048 {
1049 struct hrtimer *timer = &cpuctx->hrtimer;
1050 struct pmu *pmu = cpuctx->ctx.pmu;
1051 unsigned long flags;
1052
1053 /* not for SW PMU */
1054 if (pmu->task_ctx_nr == perf_sw_context)
1055 return 0;
1056
1057 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058 if (!cpuctx->hrtimer_active) {
1059 cpuctx->hrtimer_active = 1;
1060 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062 }
1063 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1064
1065 return 0;
1066 }
1067
1068 void perf_pmu_disable(struct pmu *pmu)
1069 {
1070 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071 if (!(*count)++)
1072 pmu->pmu_disable(pmu);
1073 }
1074
1075 void perf_pmu_enable(struct pmu *pmu)
1076 {
1077 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078 if (!--(*count))
1079 pmu->pmu_enable(pmu);
1080 }
1081
1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1083
1084 /*
1085 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086 * perf_event_task_tick() are fully serialized because they're strictly cpu
1087 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088 * disabled, while perf_event_task_tick is called from IRQ context.
1089 */
1090 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1091 {
1092 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1093
1094 WARN_ON(!irqs_disabled());
1095
1096 WARN_ON(!list_empty(&ctx->active_ctx_list));
1097
1098 list_add(&ctx->active_ctx_list, head);
1099 }
1100
1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102 {
1103 WARN_ON(!irqs_disabled());
1104
1105 WARN_ON(list_empty(&ctx->active_ctx_list));
1106
1107 list_del_init(&ctx->active_ctx_list);
1108 }
1109
1110 static void get_ctx(struct perf_event_context *ctx)
1111 {
1112 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1113 }
1114
1115 static void free_ctx(struct rcu_head *head)
1116 {
1117 struct perf_event_context *ctx;
1118
1119 ctx = container_of(head, struct perf_event_context, rcu_head);
1120 kfree(ctx->task_ctx_data);
1121 kfree(ctx);
1122 }
1123
1124 static void put_ctx(struct perf_event_context *ctx)
1125 {
1126 if (atomic_dec_and_test(&ctx->refcount)) {
1127 if (ctx->parent_ctx)
1128 put_ctx(ctx->parent_ctx);
1129 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1130 put_task_struct(ctx->task);
1131 call_rcu(&ctx->rcu_head, free_ctx);
1132 }
1133 }
1134
1135 /*
1136 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137 * perf_pmu_migrate_context() we need some magic.
1138 *
1139 * Those places that change perf_event::ctx will hold both
1140 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141 *
1142 * Lock ordering is by mutex address. There are two other sites where
1143 * perf_event_context::mutex nests and those are:
1144 *
1145 * - perf_event_exit_task_context() [ child , 0 ]
1146 * perf_event_exit_event()
1147 * put_event() [ parent, 1 ]
1148 *
1149 * - perf_event_init_context() [ parent, 0 ]
1150 * inherit_task_group()
1151 * inherit_group()
1152 * inherit_event()
1153 * perf_event_alloc()
1154 * perf_init_event()
1155 * perf_try_init_event() [ child , 1 ]
1156 *
1157 * While it appears there is an obvious deadlock here -- the parent and child
1158 * nesting levels are inverted between the two. This is in fact safe because
1159 * life-time rules separate them. That is an exiting task cannot fork, and a
1160 * spawning task cannot (yet) exit.
1161 *
1162 * But remember that that these are parent<->child context relations, and
1163 * migration does not affect children, therefore these two orderings should not
1164 * interact.
1165 *
1166 * The change in perf_event::ctx does not affect children (as claimed above)
1167 * because the sys_perf_event_open() case will install a new event and break
1168 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169 * concerned with cpuctx and that doesn't have children.
1170 *
1171 * The places that change perf_event::ctx will issue:
1172 *
1173 * perf_remove_from_context();
1174 * synchronize_rcu();
1175 * perf_install_in_context();
1176 *
1177 * to affect the change. The remove_from_context() + synchronize_rcu() should
1178 * quiesce the event, after which we can install it in the new location. This
1179 * means that only external vectors (perf_fops, prctl) can perturb the event
1180 * while in transit. Therefore all such accessors should also acquire
1181 * perf_event_context::mutex to serialize against this.
1182 *
1183 * However; because event->ctx can change while we're waiting to acquire
1184 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185 * function.
1186 *
1187 * Lock order:
1188 * cred_guard_mutex
1189 * task_struct::perf_event_mutex
1190 * perf_event_context::mutex
1191 * perf_event::child_mutex;
1192 * perf_event_context::lock
1193 * perf_event::mmap_mutex
1194 * mmap_sem
1195 */
1196 static struct perf_event_context *
1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1198 {
1199 struct perf_event_context *ctx;
1200
1201 again:
1202 rcu_read_lock();
1203 ctx = ACCESS_ONCE(event->ctx);
1204 if (!atomic_inc_not_zero(&ctx->refcount)) {
1205 rcu_read_unlock();
1206 goto again;
1207 }
1208 rcu_read_unlock();
1209
1210 mutex_lock_nested(&ctx->mutex, nesting);
1211 if (event->ctx != ctx) {
1212 mutex_unlock(&ctx->mutex);
1213 put_ctx(ctx);
1214 goto again;
1215 }
1216
1217 return ctx;
1218 }
1219
1220 static inline struct perf_event_context *
1221 perf_event_ctx_lock(struct perf_event *event)
1222 {
1223 return perf_event_ctx_lock_nested(event, 0);
1224 }
1225
1226 static void perf_event_ctx_unlock(struct perf_event *event,
1227 struct perf_event_context *ctx)
1228 {
1229 mutex_unlock(&ctx->mutex);
1230 put_ctx(ctx);
1231 }
1232
1233 /*
1234 * This must be done under the ctx->lock, such as to serialize against
1235 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236 * calling scheduler related locks and ctx->lock nests inside those.
1237 */
1238 static __must_check struct perf_event_context *
1239 unclone_ctx(struct perf_event_context *ctx)
1240 {
1241 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242
1243 lockdep_assert_held(&ctx->lock);
1244
1245 if (parent_ctx)
1246 ctx->parent_ctx = NULL;
1247 ctx->generation++;
1248
1249 return parent_ctx;
1250 }
1251
1252 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1253 {
1254 /*
1255 * only top level events have the pid namespace they were created in
1256 */
1257 if (event->parent)
1258 event = event->parent;
1259
1260 return task_tgid_nr_ns(p, event->ns);
1261 }
1262
1263 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1264 {
1265 /*
1266 * only top level events have the pid namespace they were created in
1267 */
1268 if (event->parent)
1269 event = event->parent;
1270
1271 return task_pid_nr_ns(p, event->ns);
1272 }
1273
1274 /*
1275 * If we inherit events we want to return the parent event id
1276 * to userspace.
1277 */
1278 static u64 primary_event_id(struct perf_event *event)
1279 {
1280 u64 id = event->id;
1281
1282 if (event->parent)
1283 id = event->parent->id;
1284
1285 return id;
1286 }
1287
1288 /*
1289 * Get the perf_event_context for a task and lock it.
1290 *
1291 * This has to cope with with the fact that until it is locked,
1292 * the context could get moved to another task.
1293 */
1294 static struct perf_event_context *
1295 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1296 {
1297 struct perf_event_context *ctx;
1298
1299 retry:
1300 /*
1301 * One of the few rules of preemptible RCU is that one cannot do
1302 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1303 * part of the read side critical section was irqs-enabled -- see
1304 * rcu_read_unlock_special().
1305 *
1306 * Since ctx->lock nests under rq->lock we must ensure the entire read
1307 * side critical section has interrupts disabled.
1308 */
1309 local_irq_save(*flags);
1310 rcu_read_lock();
1311 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1312 if (ctx) {
1313 /*
1314 * If this context is a clone of another, it might
1315 * get swapped for another underneath us by
1316 * perf_event_task_sched_out, though the
1317 * rcu_read_lock() protects us from any context
1318 * getting freed. Lock the context and check if it
1319 * got swapped before we could get the lock, and retry
1320 * if so. If we locked the right context, then it
1321 * can't get swapped on us any more.
1322 */
1323 raw_spin_lock(&ctx->lock);
1324 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1325 raw_spin_unlock(&ctx->lock);
1326 rcu_read_unlock();
1327 local_irq_restore(*flags);
1328 goto retry;
1329 }
1330
1331 if (ctx->task == TASK_TOMBSTONE ||
1332 !atomic_inc_not_zero(&ctx->refcount)) {
1333 raw_spin_unlock(&ctx->lock);
1334 ctx = NULL;
1335 } else {
1336 WARN_ON_ONCE(ctx->task != task);
1337 }
1338 }
1339 rcu_read_unlock();
1340 if (!ctx)
1341 local_irq_restore(*flags);
1342 return ctx;
1343 }
1344
1345 /*
1346 * Get the context for a task and increment its pin_count so it
1347 * can't get swapped to another task. This also increments its
1348 * reference count so that the context can't get freed.
1349 */
1350 static struct perf_event_context *
1351 perf_pin_task_context(struct task_struct *task, int ctxn)
1352 {
1353 struct perf_event_context *ctx;
1354 unsigned long flags;
1355
1356 ctx = perf_lock_task_context(task, ctxn, &flags);
1357 if (ctx) {
1358 ++ctx->pin_count;
1359 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1360 }
1361 return ctx;
1362 }
1363
1364 static void perf_unpin_context(struct perf_event_context *ctx)
1365 {
1366 unsigned long flags;
1367
1368 raw_spin_lock_irqsave(&ctx->lock, flags);
1369 --ctx->pin_count;
1370 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1371 }
1372
1373 /*
1374 * Update the record of the current time in a context.
1375 */
1376 static void update_context_time(struct perf_event_context *ctx)
1377 {
1378 u64 now = perf_clock();
1379
1380 ctx->time += now - ctx->timestamp;
1381 ctx->timestamp = now;
1382 }
1383
1384 static u64 perf_event_time(struct perf_event *event)
1385 {
1386 struct perf_event_context *ctx = event->ctx;
1387
1388 if (is_cgroup_event(event))
1389 return perf_cgroup_event_time(event);
1390
1391 return ctx ? ctx->time : 0;
1392 }
1393
1394 /*
1395 * Update the total_time_enabled and total_time_running fields for a event.
1396 */
1397 static void update_event_times(struct perf_event *event)
1398 {
1399 struct perf_event_context *ctx = event->ctx;
1400 u64 run_end;
1401
1402 lockdep_assert_held(&ctx->lock);
1403
1404 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1405 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1406 return;
1407
1408 /*
1409 * in cgroup mode, time_enabled represents
1410 * the time the event was enabled AND active
1411 * tasks were in the monitored cgroup. This is
1412 * independent of the activity of the context as
1413 * there may be a mix of cgroup and non-cgroup events.
1414 *
1415 * That is why we treat cgroup events differently
1416 * here.
1417 */
1418 if (is_cgroup_event(event))
1419 run_end = perf_cgroup_event_time(event);
1420 else if (ctx->is_active)
1421 run_end = ctx->time;
1422 else
1423 run_end = event->tstamp_stopped;
1424
1425 event->total_time_enabled = run_end - event->tstamp_enabled;
1426
1427 if (event->state == PERF_EVENT_STATE_INACTIVE)
1428 run_end = event->tstamp_stopped;
1429 else
1430 run_end = perf_event_time(event);
1431
1432 event->total_time_running = run_end - event->tstamp_running;
1433
1434 }
1435
1436 /*
1437 * Update total_time_enabled and total_time_running for all events in a group.
1438 */
1439 static void update_group_times(struct perf_event *leader)
1440 {
1441 struct perf_event *event;
1442
1443 update_event_times(leader);
1444 list_for_each_entry(event, &leader->sibling_list, group_entry)
1445 update_event_times(event);
1446 }
1447
1448 static struct list_head *
1449 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1450 {
1451 if (event->attr.pinned)
1452 return &ctx->pinned_groups;
1453 else
1454 return &ctx->flexible_groups;
1455 }
1456
1457 /*
1458 * Add a event from the lists for its context.
1459 * Must be called with ctx->mutex and ctx->lock held.
1460 */
1461 static void
1462 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1463 {
1464
1465 lockdep_assert_held(&ctx->lock);
1466
1467 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1468 event->attach_state |= PERF_ATTACH_CONTEXT;
1469
1470 /*
1471 * If we're a stand alone event or group leader, we go to the context
1472 * list, group events are kept attached to the group so that
1473 * perf_group_detach can, at all times, locate all siblings.
1474 */
1475 if (event->group_leader == event) {
1476 struct list_head *list;
1477
1478 if (is_software_event(event))
1479 event->group_flags |= PERF_GROUP_SOFTWARE;
1480
1481 list = ctx_group_list(event, ctx);
1482 list_add_tail(&event->group_entry, list);
1483 }
1484
1485 list_update_cgroup_event(event, ctx, true);
1486
1487 list_add_rcu(&event->event_entry, &ctx->event_list);
1488 ctx->nr_events++;
1489 if (event->attr.inherit_stat)
1490 ctx->nr_stat++;
1491
1492 ctx->generation++;
1493 }
1494
1495 /*
1496 * Initialize event state based on the perf_event_attr::disabled.
1497 */
1498 static inline void perf_event__state_init(struct perf_event *event)
1499 {
1500 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1501 PERF_EVENT_STATE_INACTIVE;
1502 }
1503
1504 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1505 {
1506 int entry = sizeof(u64); /* value */
1507 int size = 0;
1508 int nr = 1;
1509
1510 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1511 size += sizeof(u64);
1512
1513 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1514 size += sizeof(u64);
1515
1516 if (event->attr.read_format & PERF_FORMAT_ID)
1517 entry += sizeof(u64);
1518
1519 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1520 nr += nr_siblings;
1521 size += sizeof(u64);
1522 }
1523
1524 size += entry * nr;
1525 event->read_size = size;
1526 }
1527
1528 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1529 {
1530 struct perf_sample_data *data;
1531 u16 size = 0;
1532
1533 if (sample_type & PERF_SAMPLE_IP)
1534 size += sizeof(data->ip);
1535
1536 if (sample_type & PERF_SAMPLE_ADDR)
1537 size += sizeof(data->addr);
1538
1539 if (sample_type & PERF_SAMPLE_PERIOD)
1540 size += sizeof(data->period);
1541
1542 if (sample_type & PERF_SAMPLE_WEIGHT)
1543 size += sizeof(data->weight);
1544
1545 if (sample_type & PERF_SAMPLE_READ)
1546 size += event->read_size;
1547
1548 if (sample_type & PERF_SAMPLE_DATA_SRC)
1549 size += sizeof(data->data_src.val);
1550
1551 if (sample_type & PERF_SAMPLE_TRANSACTION)
1552 size += sizeof(data->txn);
1553
1554 event->header_size = size;
1555 }
1556
1557 /*
1558 * Called at perf_event creation and when events are attached/detached from a
1559 * group.
1560 */
1561 static void perf_event__header_size(struct perf_event *event)
1562 {
1563 __perf_event_read_size(event,
1564 event->group_leader->nr_siblings);
1565 __perf_event_header_size(event, event->attr.sample_type);
1566 }
1567
1568 static void perf_event__id_header_size(struct perf_event *event)
1569 {
1570 struct perf_sample_data *data;
1571 u64 sample_type = event->attr.sample_type;
1572 u16 size = 0;
1573
1574 if (sample_type & PERF_SAMPLE_TID)
1575 size += sizeof(data->tid_entry);
1576
1577 if (sample_type & PERF_SAMPLE_TIME)
1578 size += sizeof(data->time);
1579
1580 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1581 size += sizeof(data->id);
1582
1583 if (sample_type & PERF_SAMPLE_ID)
1584 size += sizeof(data->id);
1585
1586 if (sample_type & PERF_SAMPLE_STREAM_ID)
1587 size += sizeof(data->stream_id);
1588
1589 if (sample_type & PERF_SAMPLE_CPU)
1590 size += sizeof(data->cpu_entry);
1591
1592 event->id_header_size = size;
1593 }
1594
1595 static bool perf_event_validate_size(struct perf_event *event)
1596 {
1597 /*
1598 * The values computed here will be over-written when we actually
1599 * attach the event.
1600 */
1601 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1602 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1603 perf_event__id_header_size(event);
1604
1605 /*
1606 * Sum the lot; should not exceed the 64k limit we have on records.
1607 * Conservative limit to allow for callchains and other variable fields.
1608 */
1609 if (event->read_size + event->header_size +
1610 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1611 return false;
1612
1613 return true;
1614 }
1615
1616 static void perf_group_attach(struct perf_event *event)
1617 {
1618 struct perf_event *group_leader = event->group_leader, *pos;
1619
1620 /*
1621 * We can have double attach due to group movement in perf_event_open.
1622 */
1623 if (event->attach_state & PERF_ATTACH_GROUP)
1624 return;
1625
1626 event->attach_state |= PERF_ATTACH_GROUP;
1627
1628 if (group_leader == event)
1629 return;
1630
1631 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1632
1633 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1634 !is_software_event(event))
1635 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1636
1637 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1638 group_leader->nr_siblings++;
1639
1640 perf_event__header_size(group_leader);
1641
1642 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1643 perf_event__header_size(pos);
1644 }
1645
1646 /*
1647 * Remove a event from the lists for its context.
1648 * Must be called with ctx->mutex and ctx->lock held.
1649 */
1650 static void
1651 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1652 {
1653 WARN_ON_ONCE(event->ctx != ctx);
1654 lockdep_assert_held(&ctx->lock);
1655
1656 /*
1657 * We can have double detach due to exit/hot-unplug + close.
1658 */
1659 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1660 return;
1661
1662 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1663
1664 list_update_cgroup_event(event, ctx, false);
1665
1666 ctx->nr_events--;
1667 if (event->attr.inherit_stat)
1668 ctx->nr_stat--;
1669
1670 list_del_rcu(&event->event_entry);
1671
1672 if (event->group_leader == event)
1673 list_del_init(&event->group_entry);
1674
1675 update_group_times(event);
1676
1677 /*
1678 * If event was in error state, then keep it
1679 * that way, otherwise bogus counts will be
1680 * returned on read(). The only way to get out
1681 * of error state is by explicit re-enabling
1682 * of the event
1683 */
1684 if (event->state > PERF_EVENT_STATE_OFF)
1685 event->state = PERF_EVENT_STATE_OFF;
1686
1687 ctx->generation++;
1688 }
1689
1690 static void perf_group_detach(struct perf_event *event)
1691 {
1692 struct perf_event *sibling, *tmp;
1693 struct list_head *list = NULL;
1694
1695 /*
1696 * We can have double detach due to exit/hot-unplug + close.
1697 */
1698 if (!(event->attach_state & PERF_ATTACH_GROUP))
1699 return;
1700
1701 event->attach_state &= ~PERF_ATTACH_GROUP;
1702
1703 /*
1704 * If this is a sibling, remove it from its group.
1705 */
1706 if (event->group_leader != event) {
1707 list_del_init(&event->group_entry);
1708 event->group_leader->nr_siblings--;
1709 goto out;
1710 }
1711
1712 if (!list_empty(&event->group_entry))
1713 list = &event->group_entry;
1714
1715 /*
1716 * If this was a group event with sibling events then
1717 * upgrade the siblings to singleton events by adding them
1718 * to whatever list we are on.
1719 */
1720 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1721 if (list)
1722 list_move_tail(&sibling->group_entry, list);
1723 sibling->group_leader = sibling;
1724
1725 /* Inherit group flags from the previous leader */
1726 sibling->group_flags = event->group_flags;
1727
1728 WARN_ON_ONCE(sibling->ctx != event->ctx);
1729 }
1730
1731 out:
1732 perf_event__header_size(event->group_leader);
1733
1734 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1735 perf_event__header_size(tmp);
1736 }
1737
1738 static bool is_orphaned_event(struct perf_event *event)
1739 {
1740 return event->state == PERF_EVENT_STATE_DEAD;
1741 }
1742
1743 static inline int __pmu_filter_match(struct perf_event *event)
1744 {
1745 struct pmu *pmu = event->pmu;
1746 return pmu->filter_match ? pmu->filter_match(event) : 1;
1747 }
1748
1749 /*
1750 * Check whether we should attempt to schedule an event group based on
1751 * PMU-specific filtering. An event group can consist of HW and SW events,
1752 * potentially with a SW leader, so we must check all the filters, to
1753 * determine whether a group is schedulable:
1754 */
1755 static inline int pmu_filter_match(struct perf_event *event)
1756 {
1757 struct perf_event *child;
1758
1759 if (!__pmu_filter_match(event))
1760 return 0;
1761
1762 list_for_each_entry(child, &event->sibling_list, group_entry) {
1763 if (!__pmu_filter_match(child))
1764 return 0;
1765 }
1766
1767 return 1;
1768 }
1769
1770 static inline int
1771 event_filter_match(struct perf_event *event)
1772 {
1773 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1774 perf_cgroup_match(event) && pmu_filter_match(event);
1775 }
1776
1777 static void
1778 event_sched_out(struct perf_event *event,
1779 struct perf_cpu_context *cpuctx,
1780 struct perf_event_context *ctx)
1781 {
1782 u64 tstamp = perf_event_time(event);
1783 u64 delta;
1784
1785 WARN_ON_ONCE(event->ctx != ctx);
1786 lockdep_assert_held(&ctx->lock);
1787
1788 /*
1789 * An event which could not be activated because of
1790 * filter mismatch still needs to have its timings
1791 * maintained, otherwise bogus information is return
1792 * via read() for time_enabled, time_running:
1793 */
1794 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1795 !event_filter_match(event)) {
1796 delta = tstamp - event->tstamp_stopped;
1797 event->tstamp_running += delta;
1798 event->tstamp_stopped = tstamp;
1799 }
1800
1801 if (event->state != PERF_EVENT_STATE_ACTIVE)
1802 return;
1803
1804 perf_pmu_disable(event->pmu);
1805
1806 event->tstamp_stopped = tstamp;
1807 event->pmu->del(event, 0);
1808 event->oncpu = -1;
1809 event->state = PERF_EVENT_STATE_INACTIVE;
1810 if (event->pending_disable) {
1811 event->pending_disable = 0;
1812 event->state = PERF_EVENT_STATE_OFF;
1813 }
1814
1815 if (!is_software_event(event))
1816 cpuctx->active_oncpu--;
1817 if (!--ctx->nr_active)
1818 perf_event_ctx_deactivate(ctx);
1819 if (event->attr.freq && event->attr.sample_freq)
1820 ctx->nr_freq--;
1821 if (event->attr.exclusive || !cpuctx->active_oncpu)
1822 cpuctx->exclusive = 0;
1823
1824 perf_pmu_enable(event->pmu);
1825 }
1826
1827 static void
1828 group_sched_out(struct perf_event *group_event,
1829 struct perf_cpu_context *cpuctx,
1830 struct perf_event_context *ctx)
1831 {
1832 struct perf_event *event;
1833 int state = group_event->state;
1834
1835 event_sched_out(group_event, cpuctx, ctx);
1836
1837 /*
1838 * Schedule out siblings (if any):
1839 */
1840 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1841 event_sched_out(event, cpuctx, ctx);
1842
1843 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1844 cpuctx->exclusive = 0;
1845 }
1846
1847 #define DETACH_GROUP 0x01UL
1848
1849 /*
1850 * Cross CPU call to remove a performance event
1851 *
1852 * We disable the event on the hardware level first. After that we
1853 * remove it from the context list.
1854 */
1855 static void
1856 __perf_remove_from_context(struct perf_event *event,
1857 struct perf_cpu_context *cpuctx,
1858 struct perf_event_context *ctx,
1859 void *info)
1860 {
1861 unsigned long flags = (unsigned long)info;
1862
1863 event_sched_out(event, cpuctx, ctx);
1864 if (flags & DETACH_GROUP)
1865 perf_group_detach(event);
1866 list_del_event(event, ctx);
1867
1868 if (!ctx->nr_events && ctx->is_active) {
1869 ctx->is_active = 0;
1870 if (ctx->task) {
1871 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1872 cpuctx->task_ctx = NULL;
1873 }
1874 }
1875 }
1876
1877 /*
1878 * Remove the event from a task's (or a CPU's) list of events.
1879 *
1880 * If event->ctx is a cloned context, callers must make sure that
1881 * every task struct that event->ctx->task could possibly point to
1882 * remains valid. This is OK when called from perf_release since
1883 * that only calls us on the top-level context, which can't be a clone.
1884 * When called from perf_event_exit_task, it's OK because the
1885 * context has been detached from its task.
1886 */
1887 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1888 {
1889 lockdep_assert_held(&event->ctx->mutex);
1890
1891 event_function_call(event, __perf_remove_from_context, (void *)flags);
1892 }
1893
1894 /*
1895 * Cross CPU call to disable a performance event
1896 */
1897 static void __perf_event_disable(struct perf_event *event,
1898 struct perf_cpu_context *cpuctx,
1899 struct perf_event_context *ctx,
1900 void *info)
1901 {
1902 if (event->state < PERF_EVENT_STATE_INACTIVE)
1903 return;
1904
1905 update_context_time(ctx);
1906 update_cgrp_time_from_event(event);
1907 update_group_times(event);
1908 if (event == event->group_leader)
1909 group_sched_out(event, cpuctx, ctx);
1910 else
1911 event_sched_out(event, cpuctx, ctx);
1912 event->state = PERF_EVENT_STATE_OFF;
1913 }
1914
1915 /*
1916 * Disable a event.
1917 *
1918 * If event->ctx is a cloned context, callers must make sure that
1919 * every task struct that event->ctx->task could possibly point to
1920 * remains valid. This condition is satisifed when called through
1921 * perf_event_for_each_child or perf_event_for_each because they
1922 * hold the top-level event's child_mutex, so any descendant that
1923 * goes to exit will block in perf_event_exit_event().
1924 *
1925 * When called from perf_pending_event it's OK because event->ctx
1926 * is the current context on this CPU and preemption is disabled,
1927 * hence we can't get into perf_event_task_sched_out for this context.
1928 */
1929 static void _perf_event_disable(struct perf_event *event)
1930 {
1931 struct perf_event_context *ctx = event->ctx;
1932
1933 raw_spin_lock_irq(&ctx->lock);
1934 if (event->state <= PERF_EVENT_STATE_OFF) {
1935 raw_spin_unlock_irq(&ctx->lock);
1936 return;
1937 }
1938 raw_spin_unlock_irq(&ctx->lock);
1939
1940 event_function_call(event, __perf_event_disable, NULL);
1941 }
1942
1943 void perf_event_disable_local(struct perf_event *event)
1944 {
1945 event_function_local(event, __perf_event_disable, NULL);
1946 }
1947
1948 /*
1949 * Strictly speaking kernel users cannot create groups and therefore this
1950 * interface does not need the perf_event_ctx_lock() magic.
1951 */
1952 void perf_event_disable(struct perf_event *event)
1953 {
1954 struct perf_event_context *ctx;
1955
1956 ctx = perf_event_ctx_lock(event);
1957 _perf_event_disable(event);
1958 perf_event_ctx_unlock(event, ctx);
1959 }
1960 EXPORT_SYMBOL_GPL(perf_event_disable);
1961
1962 static void perf_set_shadow_time(struct perf_event *event,
1963 struct perf_event_context *ctx,
1964 u64 tstamp)
1965 {
1966 /*
1967 * use the correct time source for the time snapshot
1968 *
1969 * We could get by without this by leveraging the
1970 * fact that to get to this function, the caller
1971 * has most likely already called update_context_time()
1972 * and update_cgrp_time_xx() and thus both timestamp
1973 * are identical (or very close). Given that tstamp is,
1974 * already adjusted for cgroup, we could say that:
1975 * tstamp - ctx->timestamp
1976 * is equivalent to
1977 * tstamp - cgrp->timestamp.
1978 *
1979 * Then, in perf_output_read(), the calculation would
1980 * work with no changes because:
1981 * - event is guaranteed scheduled in
1982 * - no scheduled out in between
1983 * - thus the timestamp would be the same
1984 *
1985 * But this is a bit hairy.
1986 *
1987 * So instead, we have an explicit cgroup call to remain
1988 * within the time time source all along. We believe it
1989 * is cleaner and simpler to understand.
1990 */
1991 if (is_cgroup_event(event))
1992 perf_cgroup_set_shadow_time(event, tstamp);
1993 else
1994 event->shadow_ctx_time = tstamp - ctx->timestamp;
1995 }
1996
1997 #define MAX_INTERRUPTS (~0ULL)
1998
1999 static void perf_log_throttle(struct perf_event *event, int enable);
2000 static void perf_log_itrace_start(struct perf_event *event);
2001
2002 static int
2003 event_sched_in(struct perf_event *event,
2004 struct perf_cpu_context *cpuctx,
2005 struct perf_event_context *ctx)
2006 {
2007 u64 tstamp = perf_event_time(event);
2008 int ret = 0;
2009
2010 lockdep_assert_held(&ctx->lock);
2011
2012 if (event->state <= PERF_EVENT_STATE_OFF)
2013 return 0;
2014
2015 WRITE_ONCE(event->oncpu, smp_processor_id());
2016 /*
2017 * Order event::oncpu write to happen before the ACTIVE state
2018 * is visible.
2019 */
2020 smp_wmb();
2021 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2022
2023 /*
2024 * Unthrottle events, since we scheduled we might have missed several
2025 * ticks already, also for a heavily scheduling task there is little
2026 * guarantee it'll get a tick in a timely manner.
2027 */
2028 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2029 perf_log_throttle(event, 1);
2030 event->hw.interrupts = 0;
2031 }
2032
2033 /*
2034 * The new state must be visible before we turn it on in the hardware:
2035 */
2036 smp_wmb();
2037
2038 perf_pmu_disable(event->pmu);
2039
2040 perf_set_shadow_time(event, ctx, tstamp);
2041
2042 perf_log_itrace_start(event);
2043
2044 if (event->pmu->add(event, PERF_EF_START)) {
2045 event->state = PERF_EVENT_STATE_INACTIVE;
2046 event->oncpu = -1;
2047 ret = -EAGAIN;
2048 goto out;
2049 }
2050
2051 event->tstamp_running += tstamp - event->tstamp_stopped;
2052
2053 if (!is_software_event(event))
2054 cpuctx->active_oncpu++;
2055 if (!ctx->nr_active++)
2056 perf_event_ctx_activate(ctx);
2057 if (event->attr.freq && event->attr.sample_freq)
2058 ctx->nr_freq++;
2059
2060 if (event->attr.exclusive)
2061 cpuctx->exclusive = 1;
2062
2063 out:
2064 perf_pmu_enable(event->pmu);
2065
2066 return ret;
2067 }
2068
2069 static int
2070 group_sched_in(struct perf_event *group_event,
2071 struct perf_cpu_context *cpuctx,
2072 struct perf_event_context *ctx)
2073 {
2074 struct perf_event *event, *partial_group = NULL;
2075 struct pmu *pmu = ctx->pmu;
2076 u64 now = ctx->time;
2077 bool simulate = false;
2078
2079 if (group_event->state == PERF_EVENT_STATE_OFF)
2080 return 0;
2081
2082 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2083
2084 if (event_sched_in(group_event, cpuctx, ctx)) {
2085 pmu->cancel_txn(pmu);
2086 perf_mux_hrtimer_restart(cpuctx);
2087 return -EAGAIN;
2088 }
2089
2090 /*
2091 * Schedule in siblings as one group (if any):
2092 */
2093 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2094 if (event_sched_in(event, cpuctx, ctx)) {
2095 partial_group = event;
2096 goto group_error;
2097 }
2098 }
2099
2100 if (!pmu->commit_txn(pmu))
2101 return 0;
2102
2103 group_error:
2104 /*
2105 * Groups can be scheduled in as one unit only, so undo any
2106 * partial group before returning:
2107 * The events up to the failed event are scheduled out normally,
2108 * tstamp_stopped will be updated.
2109 *
2110 * The failed events and the remaining siblings need to have
2111 * their timings updated as if they had gone thru event_sched_in()
2112 * and event_sched_out(). This is required to get consistent timings
2113 * across the group. This also takes care of the case where the group
2114 * could never be scheduled by ensuring tstamp_stopped is set to mark
2115 * the time the event was actually stopped, such that time delta
2116 * calculation in update_event_times() is correct.
2117 */
2118 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2119 if (event == partial_group)
2120 simulate = true;
2121
2122 if (simulate) {
2123 event->tstamp_running += now - event->tstamp_stopped;
2124 event->tstamp_stopped = now;
2125 } else {
2126 event_sched_out(event, cpuctx, ctx);
2127 }
2128 }
2129 event_sched_out(group_event, cpuctx, ctx);
2130
2131 pmu->cancel_txn(pmu);
2132
2133 perf_mux_hrtimer_restart(cpuctx);
2134
2135 return -EAGAIN;
2136 }
2137
2138 /*
2139 * Work out whether we can put this event group on the CPU now.
2140 */
2141 static int group_can_go_on(struct perf_event *event,
2142 struct perf_cpu_context *cpuctx,
2143 int can_add_hw)
2144 {
2145 /*
2146 * Groups consisting entirely of software events can always go on.
2147 */
2148 if (event->group_flags & PERF_GROUP_SOFTWARE)
2149 return 1;
2150 /*
2151 * If an exclusive group is already on, no other hardware
2152 * events can go on.
2153 */
2154 if (cpuctx->exclusive)
2155 return 0;
2156 /*
2157 * If this group is exclusive and there are already
2158 * events on the CPU, it can't go on.
2159 */
2160 if (event->attr.exclusive && cpuctx->active_oncpu)
2161 return 0;
2162 /*
2163 * Otherwise, try to add it if all previous groups were able
2164 * to go on.
2165 */
2166 return can_add_hw;
2167 }
2168
2169 static void add_event_to_ctx(struct perf_event *event,
2170 struct perf_event_context *ctx)
2171 {
2172 u64 tstamp = perf_event_time(event);
2173
2174 list_add_event(event, ctx);
2175 perf_group_attach(event);
2176 event->tstamp_enabled = tstamp;
2177 event->tstamp_running = tstamp;
2178 event->tstamp_stopped = tstamp;
2179 }
2180
2181 static void ctx_sched_out(struct perf_event_context *ctx,
2182 struct perf_cpu_context *cpuctx,
2183 enum event_type_t event_type);
2184 static void
2185 ctx_sched_in(struct perf_event_context *ctx,
2186 struct perf_cpu_context *cpuctx,
2187 enum event_type_t event_type,
2188 struct task_struct *task);
2189
2190 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2191 struct perf_event_context *ctx)
2192 {
2193 if (!cpuctx->task_ctx)
2194 return;
2195
2196 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2197 return;
2198
2199 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2200 }
2201
2202 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2203 struct perf_event_context *ctx,
2204 struct task_struct *task)
2205 {
2206 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2207 if (ctx)
2208 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2209 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2210 if (ctx)
2211 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2212 }
2213
2214 static void ctx_resched(struct perf_cpu_context *cpuctx,
2215 struct perf_event_context *task_ctx)
2216 {
2217 perf_pmu_disable(cpuctx->ctx.pmu);
2218 if (task_ctx)
2219 task_ctx_sched_out(cpuctx, task_ctx);
2220 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2221 perf_event_sched_in(cpuctx, task_ctx, current);
2222 perf_pmu_enable(cpuctx->ctx.pmu);
2223 }
2224
2225 /*
2226 * Cross CPU call to install and enable a performance event
2227 *
2228 * Very similar to remote_function() + event_function() but cannot assume that
2229 * things like ctx->is_active and cpuctx->task_ctx are set.
2230 */
2231 static int __perf_install_in_context(void *info)
2232 {
2233 struct perf_event *event = info;
2234 struct perf_event_context *ctx = event->ctx;
2235 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2236 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2237 bool activate = true;
2238 int ret = 0;
2239
2240 raw_spin_lock(&cpuctx->ctx.lock);
2241 if (ctx->task) {
2242 raw_spin_lock(&ctx->lock);
2243 task_ctx = ctx;
2244
2245 /* If we're on the wrong CPU, try again */
2246 if (task_cpu(ctx->task) != smp_processor_id()) {
2247 ret = -ESRCH;
2248 goto unlock;
2249 }
2250
2251 /*
2252 * If we're on the right CPU, see if the task we target is
2253 * current, if not we don't have to activate the ctx, a future
2254 * context switch will do that for us.
2255 */
2256 if (ctx->task != current)
2257 activate = false;
2258 else
2259 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2260
2261 } else if (task_ctx) {
2262 raw_spin_lock(&task_ctx->lock);
2263 }
2264
2265 if (activate) {
2266 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2267 add_event_to_ctx(event, ctx);
2268 ctx_resched(cpuctx, task_ctx);
2269 } else {
2270 add_event_to_ctx(event, ctx);
2271 }
2272
2273 unlock:
2274 perf_ctx_unlock(cpuctx, task_ctx);
2275
2276 return ret;
2277 }
2278
2279 /*
2280 * Attach a performance event to a context.
2281 *
2282 * Very similar to event_function_call, see comment there.
2283 */
2284 static void
2285 perf_install_in_context(struct perf_event_context *ctx,
2286 struct perf_event *event,
2287 int cpu)
2288 {
2289 struct task_struct *task = READ_ONCE(ctx->task);
2290
2291 lockdep_assert_held(&ctx->mutex);
2292
2293 if (event->cpu != -1)
2294 event->cpu = cpu;
2295
2296 /*
2297 * Ensures that if we can observe event->ctx, both the event and ctx
2298 * will be 'complete'. See perf_iterate_sb_cpu().
2299 */
2300 smp_store_release(&event->ctx, ctx);
2301
2302 if (!task) {
2303 cpu_function_call(cpu, __perf_install_in_context, event);
2304 return;
2305 }
2306
2307 /*
2308 * Should not happen, we validate the ctx is still alive before calling.
2309 */
2310 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2311 return;
2312
2313 /*
2314 * Installing events is tricky because we cannot rely on ctx->is_active
2315 * to be set in case this is the nr_events 0 -> 1 transition.
2316 */
2317 again:
2318 /*
2319 * Cannot use task_function_call() because we need to run on the task's
2320 * CPU regardless of whether its current or not.
2321 */
2322 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2323 return;
2324
2325 raw_spin_lock_irq(&ctx->lock);
2326 task = ctx->task;
2327 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2328 /*
2329 * Cannot happen because we already checked above (which also
2330 * cannot happen), and we hold ctx->mutex, which serializes us
2331 * against perf_event_exit_task_context().
2332 */
2333 raw_spin_unlock_irq(&ctx->lock);
2334 return;
2335 }
2336 raw_spin_unlock_irq(&ctx->lock);
2337 /*
2338 * Since !ctx->is_active doesn't mean anything, we must IPI
2339 * unconditionally.
2340 */
2341 goto again;
2342 }
2343
2344 /*
2345 * Put a event into inactive state and update time fields.
2346 * Enabling the leader of a group effectively enables all
2347 * the group members that aren't explicitly disabled, so we
2348 * have to update their ->tstamp_enabled also.
2349 * Note: this works for group members as well as group leaders
2350 * since the non-leader members' sibling_lists will be empty.
2351 */
2352 static void __perf_event_mark_enabled(struct perf_event *event)
2353 {
2354 struct perf_event *sub;
2355 u64 tstamp = perf_event_time(event);
2356
2357 event->state = PERF_EVENT_STATE_INACTIVE;
2358 event->tstamp_enabled = tstamp - event->total_time_enabled;
2359 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2360 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2361 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2362 }
2363 }
2364
2365 /*
2366 * Cross CPU call to enable a performance event
2367 */
2368 static void __perf_event_enable(struct perf_event *event,
2369 struct perf_cpu_context *cpuctx,
2370 struct perf_event_context *ctx,
2371 void *info)
2372 {
2373 struct perf_event *leader = event->group_leader;
2374 struct perf_event_context *task_ctx;
2375
2376 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2377 event->state <= PERF_EVENT_STATE_ERROR)
2378 return;
2379
2380 if (ctx->is_active)
2381 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2382
2383 __perf_event_mark_enabled(event);
2384
2385 if (!ctx->is_active)
2386 return;
2387
2388 if (!event_filter_match(event)) {
2389 if (is_cgroup_event(event))
2390 perf_cgroup_defer_enabled(event);
2391 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2392 return;
2393 }
2394
2395 /*
2396 * If the event is in a group and isn't the group leader,
2397 * then don't put it on unless the group is on.
2398 */
2399 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2400 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2401 return;
2402 }
2403
2404 task_ctx = cpuctx->task_ctx;
2405 if (ctx->task)
2406 WARN_ON_ONCE(task_ctx != ctx);
2407
2408 ctx_resched(cpuctx, task_ctx);
2409 }
2410
2411 /*
2412 * Enable a event.
2413 *
2414 * If event->ctx is a cloned context, callers must make sure that
2415 * every task struct that event->ctx->task could possibly point to
2416 * remains valid. This condition is satisfied when called through
2417 * perf_event_for_each_child or perf_event_for_each as described
2418 * for perf_event_disable.
2419 */
2420 static void _perf_event_enable(struct perf_event *event)
2421 {
2422 struct perf_event_context *ctx = event->ctx;
2423
2424 raw_spin_lock_irq(&ctx->lock);
2425 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2426 event->state < PERF_EVENT_STATE_ERROR) {
2427 raw_spin_unlock_irq(&ctx->lock);
2428 return;
2429 }
2430
2431 /*
2432 * If the event is in error state, clear that first.
2433 *
2434 * That way, if we see the event in error state below, we know that it
2435 * has gone back into error state, as distinct from the task having
2436 * been scheduled away before the cross-call arrived.
2437 */
2438 if (event->state == PERF_EVENT_STATE_ERROR)
2439 event->state = PERF_EVENT_STATE_OFF;
2440 raw_spin_unlock_irq(&ctx->lock);
2441
2442 event_function_call(event, __perf_event_enable, NULL);
2443 }
2444
2445 /*
2446 * See perf_event_disable();
2447 */
2448 void perf_event_enable(struct perf_event *event)
2449 {
2450 struct perf_event_context *ctx;
2451
2452 ctx = perf_event_ctx_lock(event);
2453 _perf_event_enable(event);
2454 perf_event_ctx_unlock(event, ctx);
2455 }
2456 EXPORT_SYMBOL_GPL(perf_event_enable);
2457
2458 struct stop_event_data {
2459 struct perf_event *event;
2460 unsigned int restart;
2461 };
2462
2463 static int __perf_event_stop(void *info)
2464 {
2465 struct stop_event_data *sd = info;
2466 struct perf_event *event = sd->event;
2467
2468 /* if it's already INACTIVE, do nothing */
2469 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2470 return 0;
2471
2472 /* matches smp_wmb() in event_sched_in() */
2473 smp_rmb();
2474
2475 /*
2476 * There is a window with interrupts enabled before we get here,
2477 * so we need to check again lest we try to stop another CPU's event.
2478 */
2479 if (READ_ONCE(event->oncpu) != smp_processor_id())
2480 return -EAGAIN;
2481
2482 event->pmu->stop(event, PERF_EF_UPDATE);
2483
2484 /*
2485 * May race with the actual stop (through perf_pmu_output_stop()),
2486 * but it is only used for events with AUX ring buffer, and such
2487 * events will refuse to restart because of rb::aux_mmap_count==0,
2488 * see comments in perf_aux_output_begin().
2489 *
2490 * Since this is happening on a event-local CPU, no trace is lost
2491 * while restarting.
2492 */
2493 if (sd->restart)
2494 event->pmu->start(event, PERF_EF_START);
2495
2496 return 0;
2497 }
2498
2499 static int perf_event_stop(struct perf_event *event, int restart)
2500 {
2501 struct stop_event_data sd = {
2502 .event = event,
2503 .restart = restart,
2504 };
2505 int ret = 0;
2506
2507 do {
2508 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2509 return 0;
2510
2511 /* matches smp_wmb() in event_sched_in() */
2512 smp_rmb();
2513
2514 /*
2515 * We only want to restart ACTIVE events, so if the event goes
2516 * inactive here (event->oncpu==-1), there's nothing more to do;
2517 * fall through with ret==-ENXIO.
2518 */
2519 ret = cpu_function_call(READ_ONCE(event->oncpu),
2520 __perf_event_stop, &sd);
2521 } while (ret == -EAGAIN);
2522
2523 return ret;
2524 }
2525
2526 /*
2527 * In order to contain the amount of racy and tricky in the address filter
2528 * configuration management, it is a two part process:
2529 *
2530 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2531 * we update the addresses of corresponding vmas in
2532 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2533 * (p2) when an event is scheduled in (pmu::add), it calls
2534 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2535 * if the generation has changed since the previous call.
2536 *
2537 * If (p1) happens while the event is active, we restart it to force (p2).
2538 *
2539 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2540 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2541 * ioctl;
2542 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2543 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2544 * for reading;
2545 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2546 * of exec.
2547 */
2548 void perf_event_addr_filters_sync(struct perf_event *event)
2549 {
2550 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2551
2552 if (!has_addr_filter(event))
2553 return;
2554
2555 raw_spin_lock(&ifh->lock);
2556 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2557 event->pmu->addr_filters_sync(event);
2558 event->hw.addr_filters_gen = event->addr_filters_gen;
2559 }
2560 raw_spin_unlock(&ifh->lock);
2561 }
2562 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2563
2564 static int _perf_event_refresh(struct perf_event *event, int refresh)
2565 {
2566 /*
2567 * not supported on inherited events
2568 */
2569 if (event->attr.inherit || !is_sampling_event(event))
2570 return -EINVAL;
2571
2572 atomic_add(refresh, &event->event_limit);
2573 _perf_event_enable(event);
2574
2575 return 0;
2576 }
2577
2578 /*
2579 * See perf_event_disable()
2580 */
2581 int perf_event_refresh(struct perf_event *event, int refresh)
2582 {
2583 struct perf_event_context *ctx;
2584 int ret;
2585
2586 ctx = perf_event_ctx_lock(event);
2587 ret = _perf_event_refresh(event, refresh);
2588 perf_event_ctx_unlock(event, ctx);
2589
2590 return ret;
2591 }
2592 EXPORT_SYMBOL_GPL(perf_event_refresh);
2593
2594 static void ctx_sched_out(struct perf_event_context *ctx,
2595 struct perf_cpu_context *cpuctx,
2596 enum event_type_t event_type)
2597 {
2598 int is_active = ctx->is_active;
2599 struct perf_event *event;
2600
2601 lockdep_assert_held(&ctx->lock);
2602
2603 if (likely(!ctx->nr_events)) {
2604 /*
2605 * See __perf_remove_from_context().
2606 */
2607 WARN_ON_ONCE(ctx->is_active);
2608 if (ctx->task)
2609 WARN_ON_ONCE(cpuctx->task_ctx);
2610 return;
2611 }
2612
2613 ctx->is_active &= ~event_type;
2614 if (!(ctx->is_active & EVENT_ALL))
2615 ctx->is_active = 0;
2616
2617 if (ctx->task) {
2618 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2619 if (!ctx->is_active)
2620 cpuctx->task_ctx = NULL;
2621 }
2622
2623 /*
2624 * Always update time if it was set; not only when it changes.
2625 * Otherwise we can 'forget' to update time for any but the last
2626 * context we sched out. For example:
2627 *
2628 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2629 * ctx_sched_out(.event_type = EVENT_PINNED)
2630 *
2631 * would only update time for the pinned events.
2632 */
2633 if (is_active & EVENT_TIME) {
2634 /* update (and stop) ctx time */
2635 update_context_time(ctx);
2636 update_cgrp_time_from_cpuctx(cpuctx);
2637 }
2638
2639 is_active ^= ctx->is_active; /* changed bits */
2640
2641 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2642 return;
2643
2644 perf_pmu_disable(ctx->pmu);
2645 if (is_active & EVENT_PINNED) {
2646 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2647 group_sched_out(event, cpuctx, ctx);
2648 }
2649
2650 if (is_active & EVENT_FLEXIBLE) {
2651 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2652 group_sched_out(event, cpuctx, ctx);
2653 }
2654 perf_pmu_enable(ctx->pmu);
2655 }
2656
2657 /*
2658 * Test whether two contexts are equivalent, i.e. whether they have both been
2659 * cloned from the same version of the same context.
2660 *
2661 * Equivalence is measured using a generation number in the context that is
2662 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2663 * and list_del_event().
2664 */
2665 static int context_equiv(struct perf_event_context *ctx1,
2666 struct perf_event_context *ctx2)
2667 {
2668 lockdep_assert_held(&ctx1->lock);
2669 lockdep_assert_held(&ctx2->lock);
2670
2671 /* Pinning disables the swap optimization */
2672 if (ctx1->pin_count || ctx2->pin_count)
2673 return 0;
2674
2675 /* If ctx1 is the parent of ctx2 */
2676 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2677 return 1;
2678
2679 /* If ctx2 is the parent of ctx1 */
2680 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2681 return 1;
2682
2683 /*
2684 * If ctx1 and ctx2 have the same parent; we flatten the parent
2685 * hierarchy, see perf_event_init_context().
2686 */
2687 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2688 ctx1->parent_gen == ctx2->parent_gen)
2689 return 1;
2690
2691 /* Unmatched */
2692 return 0;
2693 }
2694
2695 static void __perf_event_sync_stat(struct perf_event *event,
2696 struct perf_event *next_event)
2697 {
2698 u64 value;
2699
2700 if (!event->attr.inherit_stat)
2701 return;
2702
2703 /*
2704 * Update the event value, we cannot use perf_event_read()
2705 * because we're in the middle of a context switch and have IRQs
2706 * disabled, which upsets smp_call_function_single(), however
2707 * we know the event must be on the current CPU, therefore we
2708 * don't need to use it.
2709 */
2710 switch (event->state) {
2711 case PERF_EVENT_STATE_ACTIVE:
2712 event->pmu->read(event);
2713 /* fall-through */
2714
2715 case PERF_EVENT_STATE_INACTIVE:
2716 update_event_times(event);
2717 break;
2718
2719 default:
2720 break;
2721 }
2722
2723 /*
2724 * In order to keep per-task stats reliable we need to flip the event
2725 * values when we flip the contexts.
2726 */
2727 value = local64_read(&next_event->count);
2728 value = local64_xchg(&event->count, value);
2729 local64_set(&next_event->count, value);
2730
2731 swap(event->total_time_enabled, next_event->total_time_enabled);
2732 swap(event->total_time_running, next_event->total_time_running);
2733
2734 /*
2735 * Since we swizzled the values, update the user visible data too.
2736 */
2737 perf_event_update_userpage(event);
2738 perf_event_update_userpage(next_event);
2739 }
2740
2741 static void perf_event_sync_stat(struct perf_event_context *ctx,
2742 struct perf_event_context *next_ctx)
2743 {
2744 struct perf_event *event, *next_event;
2745
2746 if (!ctx->nr_stat)
2747 return;
2748
2749 update_context_time(ctx);
2750
2751 event = list_first_entry(&ctx->event_list,
2752 struct perf_event, event_entry);
2753
2754 next_event = list_first_entry(&next_ctx->event_list,
2755 struct perf_event, event_entry);
2756
2757 while (&event->event_entry != &ctx->event_list &&
2758 &next_event->event_entry != &next_ctx->event_list) {
2759
2760 __perf_event_sync_stat(event, next_event);
2761
2762 event = list_next_entry(event, event_entry);
2763 next_event = list_next_entry(next_event, event_entry);
2764 }
2765 }
2766
2767 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2768 struct task_struct *next)
2769 {
2770 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2771 struct perf_event_context *next_ctx;
2772 struct perf_event_context *parent, *next_parent;
2773 struct perf_cpu_context *cpuctx;
2774 int do_switch = 1;
2775
2776 if (likely(!ctx))
2777 return;
2778
2779 cpuctx = __get_cpu_context(ctx);
2780 if (!cpuctx->task_ctx)
2781 return;
2782
2783 rcu_read_lock();
2784 next_ctx = next->perf_event_ctxp[ctxn];
2785 if (!next_ctx)
2786 goto unlock;
2787
2788 parent = rcu_dereference(ctx->parent_ctx);
2789 next_parent = rcu_dereference(next_ctx->parent_ctx);
2790
2791 /* If neither context have a parent context; they cannot be clones. */
2792 if (!parent && !next_parent)
2793 goto unlock;
2794
2795 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2796 /*
2797 * Looks like the two contexts are clones, so we might be
2798 * able to optimize the context switch. We lock both
2799 * contexts and check that they are clones under the
2800 * lock (including re-checking that neither has been
2801 * uncloned in the meantime). It doesn't matter which
2802 * order we take the locks because no other cpu could
2803 * be trying to lock both of these tasks.
2804 */
2805 raw_spin_lock(&ctx->lock);
2806 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2807 if (context_equiv(ctx, next_ctx)) {
2808 WRITE_ONCE(ctx->task, next);
2809 WRITE_ONCE(next_ctx->task, task);
2810
2811 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2812
2813 /*
2814 * RCU_INIT_POINTER here is safe because we've not
2815 * modified the ctx and the above modification of
2816 * ctx->task and ctx->task_ctx_data are immaterial
2817 * since those values are always verified under
2818 * ctx->lock which we're now holding.
2819 */
2820 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2821 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2822
2823 do_switch = 0;
2824
2825 perf_event_sync_stat(ctx, next_ctx);
2826 }
2827 raw_spin_unlock(&next_ctx->lock);
2828 raw_spin_unlock(&ctx->lock);
2829 }
2830 unlock:
2831 rcu_read_unlock();
2832
2833 if (do_switch) {
2834 raw_spin_lock(&ctx->lock);
2835 task_ctx_sched_out(cpuctx, ctx);
2836 raw_spin_unlock(&ctx->lock);
2837 }
2838 }
2839
2840 void perf_sched_cb_dec(struct pmu *pmu)
2841 {
2842 this_cpu_dec(perf_sched_cb_usages);
2843 }
2844
2845 void perf_sched_cb_inc(struct pmu *pmu)
2846 {
2847 this_cpu_inc(perf_sched_cb_usages);
2848 }
2849
2850 /*
2851 * This function provides the context switch callback to the lower code
2852 * layer. It is invoked ONLY when the context switch callback is enabled.
2853 */
2854 static void perf_pmu_sched_task(struct task_struct *prev,
2855 struct task_struct *next,
2856 bool sched_in)
2857 {
2858 struct perf_cpu_context *cpuctx;
2859 struct pmu *pmu;
2860 unsigned long flags;
2861
2862 if (prev == next)
2863 return;
2864
2865 local_irq_save(flags);
2866
2867 rcu_read_lock();
2868
2869 list_for_each_entry_rcu(pmu, &pmus, entry) {
2870 if (pmu->sched_task) {
2871 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2872
2873 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2874
2875 perf_pmu_disable(pmu);
2876
2877 pmu->sched_task(cpuctx->task_ctx, sched_in);
2878
2879 perf_pmu_enable(pmu);
2880
2881 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2882 }
2883 }
2884
2885 rcu_read_unlock();
2886
2887 local_irq_restore(flags);
2888 }
2889
2890 static void perf_event_switch(struct task_struct *task,
2891 struct task_struct *next_prev, bool sched_in);
2892
2893 #define for_each_task_context_nr(ctxn) \
2894 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2895
2896 /*
2897 * Called from scheduler to remove the events of the current task,
2898 * with interrupts disabled.
2899 *
2900 * We stop each event and update the event value in event->count.
2901 *
2902 * This does not protect us against NMI, but disable()
2903 * sets the disabled bit in the control field of event _before_
2904 * accessing the event control register. If a NMI hits, then it will
2905 * not restart the event.
2906 */
2907 void __perf_event_task_sched_out(struct task_struct *task,
2908 struct task_struct *next)
2909 {
2910 int ctxn;
2911
2912 if (__this_cpu_read(perf_sched_cb_usages))
2913 perf_pmu_sched_task(task, next, false);
2914
2915 if (atomic_read(&nr_switch_events))
2916 perf_event_switch(task, next, false);
2917
2918 for_each_task_context_nr(ctxn)
2919 perf_event_context_sched_out(task, ctxn, next);
2920
2921 /*
2922 * if cgroup events exist on this CPU, then we need
2923 * to check if we have to switch out PMU state.
2924 * cgroup event are system-wide mode only
2925 */
2926 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2927 perf_cgroup_sched_out(task, next);
2928 }
2929
2930 /*
2931 * Called with IRQs disabled
2932 */
2933 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2934 enum event_type_t event_type)
2935 {
2936 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2937 }
2938
2939 static void
2940 ctx_pinned_sched_in(struct perf_event_context *ctx,
2941 struct perf_cpu_context *cpuctx)
2942 {
2943 struct perf_event *event;
2944
2945 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2946 if (event->state <= PERF_EVENT_STATE_OFF)
2947 continue;
2948 if (!event_filter_match(event))
2949 continue;
2950
2951 /* may need to reset tstamp_enabled */
2952 if (is_cgroup_event(event))
2953 perf_cgroup_mark_enabled(event, ctx);
2954
2955 if (group_can_go_on(event, cpuctx, 1))
2956 group_sched_in(event, cpuctx, ctx);
2957
2958 /*
2959 * If this pinned group hasn't been scheduled,
2960 * put it in error state.
2961 */
2962 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2963 update_group_times(event);
2964 event->state = PERF_EVENT_STATE_ERROR;
2965 }
2966 }
2967 }
2968
2969 static void
2970 ctx_flexible_sched_in(struct perf_event_context *ctx,
2971 struct perf_cpu_context *cpuctx)
2972 {
2973 struct perf_event *event;
2974 int can_add_hw = 1;
2975
2976 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2977 /* Ignore events in OFF or ERROR state */
2978 if (event->state <= PERF_EVENT_STATE_OFF)
2979 continue;
2980 /*
2981 * Listen to the 'cpu' scheduling filter constraint
2982 * of events:
2983 */
2984 if (!event_filter_match(event))
2985 continue;
2986
2987 /* may need to reset tstamp_enabled */
2988 if (is_cgroup_event(event))
2989 perf_cgroup_mark_enabled(event, ctx);
2990
2991 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2992 if (group_sched_in(event, cpuctx, ctx))
2993 can_add_hw = 0;
2994 }
2995 }
2996 }
2997
2998 static void
2999 ctx_sched_in(struct perf_event_context *ctx,
3000 struct perf_cpu_context *cpuctx,
3001 enum event_type_t event_type,
3002 struct task_struct *task)
3003 {
3004 int is_active = ctx->is_active;
3005 u64 now;
3006
3007 lockdep_assert_held(&ctx->lock);
3008
3009 if (likely(!ctx->nr_events))
3010 return;
3011
3012 ctx->is_active |= (event_type | EVENT_TIME);
3013 if (ctx->task) {
3014 if (!is_active)
3015 cpuctx->task_ctx = ctx;
3016 else
3017 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3018 }
3019
3020 is_active ^= ctx->is_active; /* changed bits */
3021
3022 if (is_active & EVENT_TIME) {
3023 /* start ctx time */
3024 now = perf_clock();
3025 ctx->timestamp = now;
3026 perf_cgroup_set_timestamp(task, ctx);
3027 }
3028
3029 /*
3030 * First go through the list and put on any pinned groups
3031 * in order to give them the best chance of going on.
3032 */
3033 if (is_active & EVENT_PINNED)
3034 ctx_pinned_sched_in(ctx, cpuctx);
3035
3036 /* Then walk through the lower prio flexible groups */
3037 if (is_active & EVENT_FLEXIBLE)
3038 ctx_flexible_sched_in(ctx, cpuctx);
3039 }
3040
3041 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3042 enum event_type_t event_type,
3043 struct task_struct *task)
3044 {
3045 struct perf_event_context *ctx = &cpuctx->ctx;
3046
3047 ctx_sched_in(ctx, cpuctx, event_type, task);
3048 }
3049
3050 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3051 struct task_struct *task)
3052 {
3053 struct perf_cpu_context *cpuctx;
3054
3055 cpuctx = __get_cpu_context(ctx);
3056 if (cpuctx->task_ctx == ctx)
3057 return;
3058
3059 perf_ctx_lock(cpuctx, ctx);
3060 perf_pmu_disable(ctx->pmu);
3061 /*
3062 * We want to keep the following priority order:
3063 * cpu pinned (that don't need to move), task pinned,
3064 * cpu flexible, task flexible.
3065 */
3066 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3067 perf_event_sched_in(cpuctx, ctx, task);
3068 perf_pmu_enable(ctx->pmu);
3069 perf_ctx_unlock(cpuctx, ctx);
3070 }
3071
3072 /*
3073 * Called from scheduler to add the events of the current task
3074 * with interrupts disabled.
3075 *
3076 * We restore the event value and then enable it.
3077 *
3078 * This does not protect us against NMI, but enable()
3079 * sets the enabled bit in the control field of event _before_
3080 * accessing the event control register. If a NMI hits, then it will
3081 * keep the event running.
3082 */
3083 void __perf_event_task_sched_in(struct task_struct *prev,
3084 struct task_struct *task)
3085 {
3086 struct perf_event_context *ctx;
3087 int ctxn;
3088
3089 /*
3090 * If cgroup events exist on this CPU, then we need to check if we have
3091 * to switch in PMU state; cgroup event are system-wide mode only.
3092 *
3093 * Since cgroup events are CPU events, we must schedule these in before
3094 * we schedule in the task events.
3095 */
3096 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3097 perf_cgroup_sched_in(prev, task);
3098
3099 for_each_task_context_nr(ctxn) {
3100 ctx = task->perf_event_ctxp[ctxn];
3101 if (likely(!ctx))
3102 continue;
3103
3104 perf_event_context_sched_in(ctx, task);
3105 }
3106
3107 if (atomic_read(&nr_switch_events))
3108 perf_event_switch(task, prev, true);
3109
3110 if (__this_cpu_read(perf_sched_cb_usages))
3111 perf_pmu_sched_task(prev, task, true);
3112 }
3113
3114 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3115 {
3116 u64 frequency = event->attr.sample_freq;
3117 u64 sec = NSEC_PER_SEC;
3118 u64 divisor, dividend;
3119
3120 int count_fls, nsec_fls, frequency_fls, sec_fls;
3121
3122 count_fls = fls64(count);
3123 nsec_fls = fls64(nsec);
3124 frequency_fls = fls64(frequency);
3125 sec_fls = 30;
3126
3127 /*
3128 * We got @count in @nsec, with a target of sample_freq HZ
3129 * the target period becomes:
3130 *
3131 * @count * 10^9
3132 * period = -------------------
3133 * @nsec * sample_freq
3134 *
3135 */
3136
3137 /*
3138 * Reduce accuracy by one bit such that @a and @b converge
3139 * to a similar magnitude.
3140 */
3141 #define REDUCE_FLS(a, b) \
3142 do { \
3143 if (a##_fls > b##_fls) { \
3144 a >>= 1; \
3145 a##_fls--; \
3146 } else { \
3147 b >>= 1; \
3148 b##_fls--; \
3149 } \
3150 } while (0)
3151
3152 /*
3153 * Reduce accuracy until either term fits in a u64, then proceed with
3154 * the other, so that finally we can do a u64/u64 division.
3155 */
3156 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3157 REDUCE_FLS(nsec, frequency);
3158 REDUCE_FLS(sec, count);
3159 }
3160
3161 if (count_fls + sec_fls > 64) {
3162 divisor = nsec * frequency;
3163
3164 while (count_fls + sec_fls > 64) {
3165 REDUCE_FLS(count, sec);
3166 divisor >>= 1;
3167 }
3168
3169 dividend = count * sec;
3170 } else {
3171 dividend = count * sec;
3172
3173 while (nsec_fls + frequency_fls > 64) {
3174 REDUCE_FLS(nsec, frequency);
3175 dividend >>= 1;
3176 }
3177
3178 divisor = nsec * frequency;
3179 }
3180
3181 if (!divisor)
3182 return dividend;
3183
3184 return div64_u64(dividend, divisor);
3185 }
3186
3187 static DEFINE_PER_CPU(int, perf_throttled_count);
3188 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3189
3190 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3191 {
3192 struct hw_perf_event *hwc = &event->hw;
3193 s64 period, sample_period;
3194 s64 delta;
3195
3196 period = perf_calculate_period(event, nsec, count);
3197
3198 delta = (s64)(period - hwc->sample_period);
3199 delta = (delta + 7) / 8; /* low pass filter */
3200
3201 sample_period = hwc->sample_period + delta;
3202
3203 if (!sample_period)
3204 sample_period = 1;
3205
3206 hwc->sample_period = sample_period;
3207
3208 if (local64_read(&hwc->period_left) > 8*sample_period) {
3209 if (disable)
3210 event->pmu->stop(event, PERF_EF_UPDATE);
3211
3212 local64_set(&hwc->period_left, 0);
3213
3214 if (disable)
3215 event->pmu->start(event, PERF_EF_RELOAD);
3216 }
3217 }
3218
3219 /*
3220 * combine freq adjustment with unthrottling to avoid two passes over the
3221 * events. At the same time, make sure, having freq events does not change
3222 * the rate of unthrottling as that would introduce bias.
3223 */
3224 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3225 int needs_unthr)
3226 {
3227 struct perf_event *event;
3228 struct hw_perf_event *hwc;
3229 u64 now, period = TICK_NSEC;
3230 s64 delta;
3231
3232 /*
3233 * only need to iterate over all events iff:
3234 * - context have events in frequency mode (needs freq adjust)
3235 * - there are events to unthrottle on this cpu
3236 */
3237 if (!(ctx->nr_freq || needs_unthr))
3238 return;
3239
3240 raw_spin_lock(&ctx->lock);
3241 perf_pmu_disable(ctx->pmu);
3242
3243 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3244 if (event->state != PERF_EVENT_STATE_ACTIVE)
3245 continue;
3246
3247 if (!event_filter_match(event))
3248 continue;
3249
3250 perf_pmu_disable(event->pmu);
3251
3252 hwc = &event->hw;
3253
3254 if (hwc->interrupts == MAX_INTERRUPTS) {
3255 hwc->interrupts = 0;
3256 perf_log_throttle(event, 1);
3257 event->pmu->start(event, 0);
3258 }
3259
3260 if (!event->attr.freq || !event->attr.sample_freq)
3261 goto next;
3262
3263 /*
3264 * stop the event and update event->count
3265 */
3266 event->pmu->stop(event, PERF_EF_UPDATE);
3267
3268 now = local64_read(&event->count);
3269 delta = now - hwc->freq_count_stamp;
3270 hwc->freq_count_stamp = now;
3271
3272 /*
3273 * restart the event
3274 * reload only if value has changed
3275 * we have stopped the event so tell that
3276 * to perf_adjust_period() to avoid stopping it
3277 * twice.
3278 */
3279 if (delta > 0)
3280 perf_adjust_period(event, period, delta, false);
3281
3282 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3283 next:
3284 perf_pmu_enable(event->pmu);
3285 }
3286
3287 perf_pmu_enable(ctx->pmu);
3288 raw_spin_unlock(&ctx->lock);
3289 }
3290
3291 /*
3292 * Round-robin a context's events:
3293 */
3294 static void rotate_ctx(struct perf_event_context *ctx)
3295 {
3296 /*
3297 * Rotate the first entry last of non-pinned groups. Rotation might be
3298 * disabled by the inheritance code.
3299 */
3300 if (!ctx->rotate_disable)
3301 list_rotate_left(&ctx->flexible_groups);
3302 }
3303
3304 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3305 {
3306 struct perf_event_context *ctx = NULL;
3307 int rotate = 0;
3308
3309 if (cpuctx->ctx.nr_events) {
3310 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3311 rotate = 1;
3312 }
3313
3314 ctx = cpuctx->task_ctx;
3315 if (ctx && ctx->nr_events) {
3316 if (ctx->nr_events != ctx->nr_active)
3317 rotate = 1;
3318 }
3319
3320 if (!rotate)
3321 goto done;
3322
3323 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3324 perf_pmu_disable(cpuctx->ctx.pmu);
3325
3326 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3327 if (ctx)
3328 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3329
3330 rotate_ctx(&cpuctx->ctx);
3331 if (ctx)
3332 rotate_ctx(ctx);
3333
3334 perf_event_sched_in(cpuctx, ctx, current);
3335
3336 perf_pmu_enable(cpuctx->ctx.pmu);
3337 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3338 done:
3339
3340 return rotate;
3341 }
3342
3343 void perf_event_task_tick(void)
3344 {
3345 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3346 struct perf_event_context *ctx, *tmp;
3347 int throttled;
3348
3349 WARN_ON(!irqs_disabled());
3350
3351 __this_cpu_inc(perf_throttled_seq);
3352 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3353 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3354
3355 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3356 perf_adjust_freq_unthr_context(ctx, throttled);
3357 }
3358
3359 static int event_enable_on_exec(struct perf_event *event,
3360 struct perf_event_context *ctx)
3361 {
3362 if (!event->attr.enable_on_exec)
3363 return 0;
3364
3365 event->attr.enable_on_exec = 0;
3366 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3367 return 0;
3368
3369 __perf_event_mark_enabled(event);
3370
3371 return 1;
3372 }
3373
3374 /*
3375 * Enable all of a task's events that have been marked enable-on-exec.
3376 * This expects task == current.
3377 */
3378 static void perf_event_enable_on_exec(int ctxn)
3379 {
3380 struct perf_event_context *ctx, *clone_ctx = NULL;
3381 struct perf_cpu_context *cpuctx;
3382 struct perf_event *event;
3383 unsigned long flags;
3384 int enabled = 0;
3385
3386 local_irq_save(flags);
3387 ctx = current->perf_event_ctxp[ctxn];
3388 if (!ctx || !ctx->nr_events)
3389 goto out;
3390
3391 cpuctx = __get_cpu_context(ctx);
3392 perf_ctx_lock(cpuctx, ctx);
3393 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3394 list_for_each_entry(event, &ctx->event_list, event_entry)
3395 enabled |= event_enable_on_exec(event, ctx);
3396
3397 /*
3398 * Unclone and reschedule this context if we enabled any event.
3399 */
3400 if (enabled) {
3401 clone_ctx = unclone_ctx(ctx);
3402 ctx_resched(cpuctx, ctx);
3403 }
3404 perf_ctx_unlock(cpuctx, ctx);
3405
3406 out:
3407 local_irq_restore(flags);
3408
3409 if (clone_ctx)
3410 put_ctx(clone_ctx);
3411 }
3412
3413 struct perf_read_data {
3414 struct perf_event *event;
3415 bool group;
3416 int ret;
3417 };
3418
3419 /*
3420 * Cross CPU call to read the hardware event
3421 */
3422 static void __perf_event_read(void *info)
3423 {
3424 struct perf_read_data *data = info;
3425 struct perf_event *sub, *event = data->event;
3426 struct perf_event_context *ctx = event->ctx;
3427 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3428 struct pmu *pmu = event->pmu;
3429
3430 /*
3431 * If this is a task context, we need to check whether it is
3432 * the current task context of this cpu. If not it has been
3433 * scheduled out before the smp call arrived. In that case
3434 * event->count would have been updated to a recent sample
3435 * when the event was scheduled out.
3436 */
3437 if (ctx->task && cpuctx->task_ctx != ctx)
3438 return;
3439
3440 raw_spin_lock(&ctx->lock);
3441 if (ctx->is_active) {
3442 update_context_time(ctx);
3443 update_cgrp_time_from_event(event);
3444 }
3445
3446 update_event_times(event);
3447 if (event->state != PERF_EVENT_STATE_ACTIVE)
3448 goto unlock;
3449
3450 if (!data->group) {
3451 pmu->read(event);
3452 data->ret = 0;
3453 goto unlock;
3454 }
3455
3456 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3457
3458 pmu->read(event);
3459
3460 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3461 update_event_times(sub);
3462 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3463 /*
3464 * Use sibling's PMU rather than @event's since
3465 * sibling could be on different (eg: software) PMU.
3466 */
3467 sub->pmu->read(sub);
3468 }
3469 }
3470
3471 data->ret = pmu->commit_txn(pmu);
3472
3473 unlock:
3474 raw_spin_unlock(&ctx->lock);
3475 }
3476
3477 static inline u64 perf_event_count(struct perf_event *event)
3478 {
3479 if (event->pmu->count)
3480 return event->pmu->count(event);
3481
3482 return __perf_event_count(event);
3483 }
3484
3485 /*
3486 * NMI-safe method to read a local event, that is an event that
3487 * is:
3488 * - either for the current task, or for this CPU
3489 * - does not have inherit set, for inherited task events
3490 * will not be local and we cannot read them atomically
3491 * - must not have a pmu::count method
3492 */
3493 u64 perf_event_read_local(struct perf_event *event)
3494 {
3495 unsigned long flags;
3496 u64 val;
3497
3498 /*
3499 * Disabling interrupts avoids all counter scheduling (context
3500 * switches, timer based rotation and IPIs).
3501 */
3502 local_irq_save(flags);
3503
3504 /* If this is a per-task event, it must be for current */
3505 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3506 event->hw.target != current);
3507
3508 /* If this is a per-CPU event, it must be for this CPU */
3509 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3510 event->cpu != smp_processor_id());
3511
3512 /*
3513 * It must not be an event with inherit set, we cannot read
3514 * all child counters from atomic context.
3515 */
3516 WARN_ON_ONCE(event->attr.inherit);
3517
3518 /*
3519 * It must not have a pmu::count method, those are not
3520 * NMI safe.
3521 */
3522 WARN_ON_ONCE(event->pmu->count);
3523
3524 /*
3525 * If the event is currently on this CPU, its either a per-task event,
3526 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3527 * oncpu == -1).
3528 */
3529 if (event->oncpu == smp_processor_id())
3530 event->pmu->read(event);
3531
3532 val = local64_read(&event->count);
3533 local_irq_restore(flags);
3534
3535 return val;
3536 }
3537
3538 static int perf_event_read(struct perf_event *event, bool group)
3539 {
3540 int ret = 0;
3541
3542 /*
3543 * If event is enabled and currently active on a CPU, update the
3544 * value in the event structure:
3545 */
3546 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3547 struct perf_read_data data = {
3548 .event = event,
3549 .group = group,
3550 .ret = 0,
3551 };
3552 /*
3553 * Purposely ignore the smp_call_function_single() return
3554 * value.
3555 *
3556 * If event->oncpu isn't a valid CPU it means the event got
3557 * scheduled out and that will have updated the event count.
3558 *
3559 * Therefore, either way, we'll have an up-to-date event count
3560 * after this.
3561 */
3562 (void)smp_call_function_single(event->oncpu, __perf_event_read, &data, 1);
3563 ret = data.ret;
3564 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3565 struct perf_event_context *ctx = event->ctx;
3566 unsigned long flags;
3567
3568 raw_spin_lock_irqsave(&ctx->lock, flags);
3569 /*
3570 * may read while context is not active
3571 * (e.g., thread is blocked), in that case
3572 * we cannot update context time
3573 */
3574 if (ctx->is_active) {
3575 update_context_time(ctx);
3576 update_cgrp_time_from_event(event);
3577 }
3578 if (group)
3579 update_group_times(event);
3580 else
3581 update_event_times(event);
3582 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3583 }
3584
3585 return ret;
3586 }
3587
3588 /*
3589 * Initialize the perf_event context in a task_struct:
3590 */
3591 static void __perf_event_init_context(struct perf_event_context *ctx)
3592 {
3593 raw_spin_lock_init(&ctx->lock);
3594 mutex_init(&ctx->mutex);
3595 INIT_LIST_HEAD(&ctx->active_ctx_list);
3596 INIT_LIST_HEAD(&ctx->pinned_groups);
3597 INIT_LIST_HEAD(&ctx->flexible_groups);
3598 INIT_LIST_HEAD(&ctx->event_list);
3599 atomic_set(&ctx->refcount, 1);
3600 }
3601
3602 static struct perf_event_context *
3603 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3604 {
3605 struct perf_event_context *ctx;
3606
3607 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3608 if (!ctx)
3609 return NULL;
3610
3611 __perf_event_init_context(ctx);
3612 if (task) {
3613 ctx->task = task;
3614 get_task_struct(task);
3615 }
3616 ctx->pmu = pmu;
3617
3618 return ctx;
3619 }
3620
3621 static struct task_struct *
3622 find_lively_task_by_vpid(pid_t vpid)
3623 {
3624 struct task_struct *task;
3625
3626 rcu_read_lock();
3627 if (!vpid)
3628 task = current;
3629 else
3630 task = find_task_by_vpid(vpid);
3631 if (task)
3632 get_task_struct(task);
3633 rcu_read_unlock();
3634
3635 if (!task)
3636 return ERR_PTR(-ESRCH);
3637
3638 return task;
3639 }
3640
3641 /*
3642 * Returns a matching context with refcount and pincount.
3643 */
3644 static struct perf_event_context *
3645 find_get_context(struct pmu *pmu, struct task_struct *task,
3646 struct perf_event *event)
3647 {
3648 struct perf_event_context *ctx, *clone_ctx = NULL;
3649 struct perf_cpu_context *cpuctx;
3650 void *task_ctx_data = NULL;
3651 unsigned long flags;
3652 int ctxn, err;
3653 int cpu = event->cpu;
3654
3655 if (!task) {
3656 /* Must be root to operate on a CPU event: */
3657 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3658 return ERR_PTR(-EACCES);
3659
3660 /*
3661 * We could be clever and allow to attach a event to an
3662 * offline CPU and activate it when the CPU comes up, but
3663 * that's for later.
3664 */
3665 if (!cpu_online(cpu))
3666 return ERR_PTR(-ENODEV);
3667
3668 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3669 ctx = &cpuctx->ctx;
3670 get_ctx(ctx);
3671 ++ctx->pin_count;
3672
3673 return ctx;
3674 }
3675
3676 err = -EINVAL;
3677 ctxn = pmu->task_ctx_nr;
3678 if (ctxn < 0)
3679 goto errout;
3680
3681 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3682 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3683 if (!task_ctx_data) {
3684 err = -ENOMEM;
3685 goto errout;
3686 }
3687 }
3688
3689 retry:
3690 ctx = perf_lock_task_context(task, ctxn, &flags);
3691 if (ctx) {
3692 clone_ctx = unclone_ctx(ctx);
3693 ++ctx->pin_count;
3694
3695 if (task_ctx_data && !ctx->task_ctx_data) {
3696 ctx->task_ctx_data = task_ctx_data;
3697 task_ctx_data = NULL;
3698 }
3699 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3700
3701 if (clone_ctx)
3702 put_ctx(clone_ctx);
3703 } else {
3704 ctx = alloc_perf_context(pmu, task);
3705 err = -ENOMEM;
3706 if (!ctx)
3707 goto errout;
3708
3709 if (task_ctx_data) {
3710 ctx->task_ctx_data = task_ctx_data;
3711 task_ctx_data = NULL;
3712 }
3713
3714 err = 0;
3715 mutex_lock(&task->perf_event_mutex);
3716 /*
3717 * If it has already passed perf_event_exit_task().
3718 * we must see PF_EXITING, it takes this mutex too.
3719 */
3720 if (task->flags & PF_EXITING)
3721 err = -ESRCH;
3722 else if (task->perf_event_ctxp[ctxn])
3723 err = -EAGAIN;
3724 else {
3725 get_ctx(ctx);
3726 ++ctx->pin_count;
3727 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3728 }
3729 mutex_unlock(&task->perf_event_mutex);
3730
3731 if (unlikely(err)) {
3732 put_ctx(ctx);
3733
3734 if (err == -EAGAIN)
3735 goto retry;
3736 goto errout;
3737 }
3738 }
3739
3740 kfree(task_ctx_data);
3741 return ctx;
3742
3743 errout:
3744 kfree(task_ctx_data);
3745 return ERR_PTR(err);
3746 }
3747
3748 static void perf_event_free_filter(struct perf_event *event);
3749 static void perf_event_free_bpf_prog(struct perf_event *event);
3750
3751 static void free_event_rcu(struct rcu_head *head)
3752 {
3753 struct perf_event *event;
3754
3755 event = container_of(head, struct perf_event, rcu_head);
3756 if (event->ns)
3757 put_pid_ns(event->ns);
3758 perf_event_free_filter(event);
3759 kfree(event);
3760 }
3761
3762 static void ring_buffer_attach(struct perf_event *event,
3763 struct ring_buffer *rb);
3764
3765 static void detach_sb_event(struct perf_event *event)
3766 {
3767 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3768
3769 raw_spin_lock(&pel->lock);
3770 list_del_rcu(&event->sb_list);
3771 raw_spin_unlock(&pel->lock);
3772 }
3773
3774 static bool is_sb_event(struct perf_event *event)
3775 {
3776 struct perf_event_attr *attr = &event->attr;
3777
3778 if (event->parent)
3779 return false;
3780
3781 if (event->attach_state & PERF_ATTACH_TASK)
3782 return false;
3783
3784 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3785 attr->comm || attr->comm_exec ||
3786 attr->task ||
3787 attr->context_switch)
3788 return true;
3789 return false;
3790 }
3791
3792 static void unaccount_pmu_sb_event(struct perf_event *event)
3793 {
3794 if (is_sb_event(event))
3795 detach_sb_event(event);
3796 }
3797
3798 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3799 {
3800 if (event->parent)
3801 return;
3802
3803 if (is_cgroup_event(event))
3804 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3805 }
3806
3807 #ifdef CONFIG_NO_HZ_FULL
3808 static DEFINE_SPINLOCK(nr_freq_lock);
3809 #endif
3810
3811 static void unaccount_freq_event_nohz(void)
3812 {
3813 #ifdef CONFIG_NO_HZ_FULL
3814 spin_lock(&nr_freq_lock);
3815 if (atomic_dec_and_test(&nr_freq_events))
3816 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3817 spin_unlock(&nr_freq_lock);
3818 #endif
3819 }
3820
3821 static void unaccount_freq_event(void)
3822 {
3823 if (tick_nohz_full_enabled())
3824 unaccount_freq_event_nohz();
3825 else
3826 atomic_dec(&nr_freq_events);
3827 }
3828
3829 static void unaccount_event(struct perf_event *event)
3830 {
3831 bool dec = false;
3832
3833 if (event->parent)
3834 return;
3835
3836 if (event->attach_state & PERF_ATTACH_TASK)
3837 dec = true;
3838 if (event->attr.mmap || event->attr.mmap_data)
3839 atomic_dec(&nr_mmap_events);
3840 if (event->attr.comm)
3841 atomic_dec(&nr_comm_events);
3842 if (event->attr.task)
3843 atomic_dec(&nr_task_events);
3844 if (event->attr.freq)
3845 unaccount_freq_event();
3846 if (event->attr.context_switch) {
3847 dec = true;
3848 atomic_dec(&nr_switch_events);
3849 }
3850 if (is_cgroup_event(event))
3851 dec = true;
3852 if (has_branch_stack(event))
3853 dec = true;
3854
3855 if (dec) {
3856 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3857 schedule_delayed_work(&perf_sched_work, HZ);
3858 }
3859
3860 unaccount_event_cpu(event, event->cpu);
3861
3862 unaccount_pmu_sb_event(event);
3863 }
3864
3865 static void perf_sched_delayed(struct work_struct *work)
3866 {
3867 mutex_lock(&perf_sched_mutex);
3868 if (atomic_dec_and_test(&perf_sched_count))
3869 static_branch_disable(&perf_sched_events);
3870 mutex_unlock(&perf_sched_mutex);
3871 }
3872
3873 /*
3874 * The following implement mutual exclusion of events on "exclusive" pmus
3875 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3876 * at a time, so we disallow creating events that might conflict, namely:
3877 *
3878 * 1) cpu-wide events in the presence of per-task events,
3879 * 2) per-task events in the presence of cpu-wide events,
3880 * 3) two matching events on the same context.
3881 *
3882 * The former two cases are handled in the allocation path (perf_event_alloc(),
3883 * _free_event()), the latter -- before the first perf_install_in_context().
3884 */
3885 static int exclusive_event_init(struct perf_event *event)
3886 {
3887 struct pmu *pmu = event->pmu;
3888
3889 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3890 return 0;
3891
3892 /*
3893 * Prevent co-existence of per-task and cpu-wide events on the
3894 * same exclusive pmu.
3895 *
3896 * Negative pmu::exclusive_cnt means there are cpu-wide
3897 * events on this "exclusive" pmu, positive means there are
3898 * per-task events.
3899 *
3900 * Since this is called in perf_event_alloc() path, event::ctx
3901 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3902 * to mean "per-task event", because unlike other attach states it
3903 * never gets cleared.
3904 */
3905 if (event->attach_state & PERF_ATTACH_TASK) {
3906 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3907 return -EBUSY;
3908 } else {
3909 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3910 return -EBUSY;
3911 }
3912
3913 return 0;
3914 }
3915
3916 static void exclusive_event_destroy(struct perf_event *event)
3917 {
3918 struct pmu *pmu = event->pmu;
3919
3920 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3921 return;
3922
3923 /* see comment in exclusive_event_init() */
3924 if (event->attach_state & PERF_ATTACH_TASK)
3925 atomic_dec(&pmu->exclusive_cnt);
3926 else
3927 atomic_inc(&pmu->exclusive_cnt);
3928 }
3929
3930 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3931 {
3932 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3933 (e1->cpu == e2->cpu ||
3934 e1->cpu == -1 ||
3935 e2->cpu == -1))
3936 return true;
3937 return false;
3938 }
3939
3940 /* Called under the same ctx::mutex as perf_install_in_context() */
3941 static bool exclusive_event_installable(struct perf_event *event,
3942 struct perf_event_context *ctx)
3943 {
3944 struct perf_event *iter_event;
3945 struct pmu *pmu = event->pmu;
3946
3947 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3948 return true;
3949
3950 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3951 if (exclusive_event_match(iter_event, event))
3952 return false;
3953 }
3954
3955 return true;
3956 }
3957
3958 static void perf_addr_filters_splice(struct perf_event *event,
3959 struct list_head *head);
3960
3961 static void _free_event(struct perf_event *event)
3962 {
3963 irq_work_sync(&event->pending);
3964
3965 unaccount_event(event);
3966
3967 if (event->rb) {
3968 /*
3969 * Can happen when we close an event with re-directed output.
3970 *
3971 * Since we have a 0 refcount, perf_mmap_close() will skip
3972 * over us; possibly making our ring_buffer_put() the last.
3973 */
3974 mutex_lock(&event->mmap_mutex);
3975 ring_buffer_attach(event, NULL);
3976 mutex_unlock(&event->mmap_mutex);
3977 }
3978
3979 if (is_cgroup_event(event))
3980 perf_detach_cgroup(event);
3981
3982 if (!event->parent) {
3983 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3984 put_callchain_buffers();
3985 }
3986
3987 perf_event_free_bpf_prog(event);
3988 perf_addr_filters_splice(event, NULL);
3989 kfree(event->addr_filters_offs);
3990
3991 if (event->destroy)
3992 event->destroy(event);
3993
3994 if (event->ctx)
3995 put_ctx(event->ctx);
3996
3997 exclusive_event_destroy(event);
3998 module_put(event->pmu->module);
3999
4000 call_rcu(&event->rcu_head, free_event_rcu);
4001 }
4002
4003 /*
4004 * Used to free events which have a known refcount of 1, such as in error paths
4005 * where the event isn't exposed yet and inherited events.
4006 */
4007 static void free_event(struct perf_event *event)
4008 {
4009 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4010 "unexpected event refcount: %ld; ptr=%p\n",
4011 atomic_long_read(&event->refcount), event)) {
4012 /* leak to avoid use-after-free */
4013 return;
4014 }
4015
4016 _free_event(event);
4017 }
4018
4019 /*
4020 * Remove user event from the owner task.
4021 */
4022 static void perf_remove_from_owner(struct perf_event *event)
4023 {
4024 struct task_struct *owner;
4025
4026 rcu_read_lock();
4027 /*
4028 * Matches the smp_store_release() in perf_event_exit_task(). If we
4029 * observe !owner it means the list deletion is complete and we can
4030 * indeed free this event, otherwise we need to serialize on
4031 * owner->perf_event_mutex.
4032 */
4033 owner = lockless_dereference(event->owner);
4034 if (owner) {
4035 /*
4036 * Since delayed_put_task_struct() also drops the last
4037 * task reference we can safely take a new reference
4038 * while holding the rcu_read_lock().
4039 */
4040 get_task_struct(owner);
4041 }
4042 rcu_read_unlock();
4043
4044 if (owner) {
4045 /*
4046 * If we're here through perf_event_exit_task() we're already
4047 * holding ctx->mutex which would be an inversion wrt. the
4048 * normal lock order.
4049 *
4050 * However we can safely take this lock because its the child
4051 * ctx->mutex.
4052 */
4053 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4054
4055 /*
4056 * We have to re-check the event->owner field, if it is cleared
4057 * we raced with perf_event_exit_task(), acquiring the mutex
4058 * ensured they're done, and we can proceed with freeing the
4059 * event.
4060 */
4061 if (event->owner) {
4062 list_del_init(&event->owner_entry);
4063 smp_store_release(&event->owner, NULL);
4064 }
4065 mutex_unlock(&owner->perf_event_mutex);
4066 put_task_struct(owner);
4067 }
4068 }
4069
4070 static void put_event(struct perf_event *event)
4071 {
4072 if (!atomic_long_dec_and_test(&event->refcount))
4073 return;
4074
4075 _free_event(event);
4076 }
4077
4078 /*
4079 * Kill an event dead; while event:refcount will preserve the event
4080 * object, it will not preserve its functionality. Once the last 'user'
4081 * gives up the object, we'll destroy the thing.
4082 */
4083 int perf_event_release_kernel(struct perf_event *event)
4084 {
4085 struct perf_event_context *ctx = event->ctx;
4086 struct perf_event *child, *tmp;
4087
4088 /*
4089 * If we got here through err_file: fput(event_file); we will not have
4090 * attached to a context yet.
4091 */
4092 if (!ctx) {
4093 WARN_ON_ONCE(event->attach_state &
4094 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4095 goto no_ctx;
4096 }
4097
4098 if (!is_kernel_event(event))
4099 perf_remove_from_owner(event);
4100
4101 ctx = perf_event_ctx_lock(event);
4102 WARN_ON_ONCE(ctx->parent_ctx);
4103 perf_remove_from_context(event, DETACH_GROUP);
4104
4105 raw_spin_lock_irq(&ctx->lock);
4106 /*
4107 * Mark this even as STATE_DEAD, there is no external reference to it
4108 * anymore.
4109 *
4110 * Anybody acquiring event->child_mutex after the below loop _must_
4111 * also see this, most importantly inherit_event() which will avoid
4112 * placing more children on the list.
4113 *
4114 * Thus this guarantees that we will in fact observe and kill _ALL_
4115 * child events.
4116 */
4117 event->state = PERF_EVENT_STATE_DEAD;
4118 raw_spin_unlock_irq(&ctx->lock);
4119
4120 perf_event_ctx_unlock(event, ctx);
4121
4122 again:
4123 mutex_lock(&event->child_mutex);
4124 list_for_each_entry(child, &event->child_list, child_list) {
4125
4126 /*
4127 * Cannot change, child events are not migrated, see the
4128 * comment with perf_event_ctx_lock_nested().
4129 */
4130 ctx = lockless_dereference(child->ctx);
4131 /*
4132 * Since child_mutex nests inside ctx::mutex, we must jump
4133 * through hoops. We start by grabbing a reference on the ctx.
4134 *
4135 * Since the event cannot get freed while we hold the
4136 * child_mutex, the context must also exist and have a !0
4137 * reference count.
4138 */
4139 get_ctx(ctx);
4140
4141 /*
4142 * Now that we have a ctx ref, we can drop child_mutex, and
4143 * acquire ctx::mutex without fear of it going away. Then we
4144 * can re-acquire child_mutex.
4145 */
4146 mutex_unlock(&event->child_mutex);
4147 mutex_lock(&ctx->mutex);
4148 mutex_lock(&event->child_mutex);
4149
4150 /*
4151 * Now that we hold ctx::mutex and child_mutex, revalidate our
4152 * state, if child is still the first entry, it didn't get freed
4153 * and we can continue doing so.
4154 */
4155 tmp = list_first_entry_or_null(&event->child_list,
4156 struct perf_event, child_list);
4157 if (tmp == child) {
4158 perf_remove_from_context(child, DETACH_GROUP);
4159 list_del(&child->child_list);
4160 free_event(child);
4161 /*
4162 * This matches the refcount bump in inherit_event();
4163 * this can't be the last reference.
4164 */
4165 put_event(event);
4166 }
4167
4168 mutex_unlock(&event->child_mutex);
4169 mutex_unlock(&ctx->mutex);
4170 put_ctx(ctx);
4171 goto again;
4172 }
4173 mutex_unlock(&event->child_mutex);
4174
4175 no_ctx:
4176 put_event(event); /* Must be the 'last' reference */
4177 return 0;
4178 }
4179 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4180
4181 /*
4182 * Called when the last reference to the file is gone.
4183 */
4184 static int perf_release(struct inode *inode, struct file *file)
4185 {
4186 perf_event_release_kernel(file->private_data);
4187 return 0;
4188 }
4189
4190 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4191 {
4192 struct perf_event *child;
4193 u64 total = 0;
4194
4195 *enabled = 0;
4196 *running = 0;
4197
4198 mutex_lock(&event->child_mutex);
4199
4200 (void)perf_event_read(event, false);
4201 total += perf_event_count(event);
4202
4203 *enabled += event->total_time_enabled +
4204 atomic64_read(&event->child_total_time_enabled);
4205 *running += event->total_time_running +
4206 atomic64_read(&event->child_total_time_running);
4207
4208 list_for_each_entry(child, &event->child_list, child_list) {
4209 (void)perf_event_read(child, false);
4210 total += perf_event_count(child);
4211 *enabled += child->total_time_enabled;
4212 *running += child->total_time_running;
4213 }
4214 mutex_unlock(&event->child_mutex);
4215
4216 return total;
4217 }
4218 EXPORT_SYMBOL_GPL(perf_event_read_value);
4219
4220 static int __perf_read_group_add(struct perf_event *leader,
4221 u64 read_format, u64 *values)
4222 {
4223 struct perf_event *sub;
4224 int n = 1; /* skip @nr */
4225 int ret;
4226
4227 ret = perf_event_read(leader, true);
4228 if (ret)
4229 return ret;
4230
4231 /*
4232 * Since we co-schedule groups, {enabled,running} times of siblings
4233 * will be identical to those of the leader, so we only publish one
4234 * set.
4235 */
4236 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4237 values[n++] += leader->total_time_enabled +
4238 atomic64_read(&leader->child_total_time_enabled);
4239 }
4240
4241 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4242 values[n++] += leader->total_time_running +
4243 atomic64_read(&leader->child_total_time_running);
4244 }
4245
4246 /*
4247 * Write {count,id} tuples for every sibling.
4248 */
4249 values[n++] += perf_event_count(leader);
4250 if (read_format & PERF_FORMAT_ID)
4251 values[n++] = primary_event_id(leader);
4252
4253 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4254 values[n++] += perf_event_count(sub);
4255 if (read_format & PERF_FORMAT_ID)
4256 values[n++] = primary_event_id(sub);
4257 }
4258
4259 return 0;
4260 }
4261
4262 static int perf_read_group(struct perf_event *event,
4263 u64 read_format, char __user *buf)
4264 {
4265 struct perf_event *leader = event->group_leader, *child;
4266 struct perf_event_context *ctx = leader->ctx;
4267 int ret;
4268 u64 *values;
4269
4270 lockdep_assert_held(&ctx->mutex);
4271
4272 values = kzalloc(event->read_size, GFP_KERNEL);
4273 if (!values)
4274 return -ENOMEM;
4275
4276 values[0] = 1 + leader->nr_siblings;
4277
4278 /*
4279 * By locking the child_mutex of the leader we effectively
4280 * lock the child list of all siblings.. XXX explain how.
4281 */
4282 mutex_lock(&leader->child_mutex);
4283
4284 ret = __perf_read_group_add(leader, read_format, values);
4285 if (ret)
4286 goto unlock;
4287
4288 list_for_each_entry(child, &leader->child_list, child_list) {
4289 ret = __perf_read_group_add(child, read_format, values);
4290 if (ret)
4291 goto unlock;
4292 }
4293
4294 mutex_unlock(&leader->child_mutex);
4295
4296 ret = event->read_size;
4297 if (copy_to_user(buf, values, event->read_size))
4298 ret = -EFAULT;
4299 goto out;
4300
4301 unlock:
4302 mutex_unlock(&leader->child_mutex);
4303 out:
4304 kfree(values);
4305 return ret;
4306 }
4307
4308 static int perf_read_one(struct perf_event *event,
4309 u64 read_format, char __user *buf)
4310 {
4311 u64 enabled, running;
4312 u64 values[4];
4313 int n = 0;
4314
4315 values[n++] = perf_event_read_value(event, &enabled, &running);
4316 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4317 values[n++] = enabled;
4318 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4319 values[n++] = running;
4320 if (read_format & PERF_FORMAT_ID)
4321 values[n++] = primary_event_id(event);
4322
4323 if (copy_to_user(buf, values, n * sizeof(u64)))
4324 return -EFAULT;
4325
4326 return n * sizeof(u64);
4327 }
4328
4329 static bool is_event_hup(struct perf_event *event)
4330 {
4331 bool no_children;
4332
4333 if (event->state > PERF_EVENT_STATE_EXIT)
4334 return false;
4335
4336 mutex_lock(&event->child_mutex);
4337 no_children = list_empty(&event->child_list);
4338 mutex_unlock(&event->child_mutex);
4339 return no_children;
4340 }
4341
4342 /*
4343 * Read the performance event - simple non blocking version for now
4344 */
4345 static ssize_t
4346 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4347 {
4348 u64 read_format = event->attr.read_format;
4349 int ret;
4350
4351 /*
4352 * Return end-of-file for a read on a event that is in
4353 * error state (i.e. because it was pinned but it couldn't be
4354 * scheduled on to the CPU at some point).
4355 */
4356 if (event->state == PERF_EVENT_STATE_ERROR)
4357 return 0;
4358
4359 if (count < event->read_size)
4360 return -ENOSPC;
4361
4362 WARN_ON_ONCE(event->ctx->parent_ctx);
4363 if (read_format & PERF_FORMAT_GROUP)
4364 ret = perf_read_group(event, read_format, buf);
4365 else
4366 ret = perf_read_one(event, read_format, buf);
4367
4368 return ret;
4369 }
4370
4371 static ssize_t
4372 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4373 {
4374 struct perf_event *event = file->private_data;
4375 struct perf_event_context *ctx;
4376 int ret;
4377
4378 ctx = perf_event_ctx_lock(event);
4379 ret = __perf_read(event, buf, count);
4380 perf_event_ctx_unlock(event, ctx);
4381
4382 return ret;
4383 }
4384
4385 static unsigned int perf_poll(struct file *file, poll_table *wait)
4386 {
4387 struct perf_event *event = file->private_data;
4388 struct ring_buffer *rb;
4389 unsigned int events = POLLHUP;
4390
4391 poll_wait(file, &event->waitq, wait);
4392
4393 if (is_event_hup(event))
4394 return events;
4395
4396 /*
4397 * Pin the event->rb by taking event->mmap_mutex; otherwise
4398 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4399 */
4400 mutex_lock(&event->mmap_mutex);
4401 rb = event->rb;
4402 if (rb)
4403 events = atomic_xchg(&rb->poll, 0);
4404 mutex_unlock(&event->mmap_mutex);
4405 return events;
4406 }
4407
4408 static void _perf_event_reset(struct perf_event *event)
4409 {
4410 (void)perf_event_read(event, false);
4411 local64_set(&event->count, 0);
4412 perf_event_update_userpage(event);
4413 }
4414
4415 /*
4416 * Holding the top-level event's child_mutex means that any
4417 * descendant process that has inherited this event will block
4418 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4419 * task existence requirements of perf_event_enable/disable.
4420 */
4421 static void perf_event_for_each_child(struct perf_event *event,
4422 void (*func)(struct perf_event *))
4423 {
4424 struct perf_event *child;
4425
4426 WARN_ON_ONCE(event->ctx->parent_ctx);
4427
4428 mutex_lock(&event->child_mutex);
4429 func(event);
4430 list_for_each_entry(child, &event->child_list, child_list)
4431 func(child);
4432 mutex_unlock(&event->child_mutex);
4433 }
4434
4435 static void perf_event_for_each(struct perf_event *event,
4436 void (*func)(struct perf_event *))
4437 {
4438 struct perf_event_context *ctx = event->ctx;
4439 struct perf_event *sibling;
4440
4441 lockdep_assert_held(&ctx->mutex);
4442
4443 event = event->group_leader;
4444
4445 perf_event_for_each_child(event, func);
4446 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4447 perf_event_for_each_child(sibling, func);
4448 }
4449
4450 static void __perf_event_period(struct perf_event *event,
4451 struct perf_cpu_context *cpuctx,
4452 struct perf_event_context *ctx,
4453 void *info)
4454 {
4455 u64 value = *((u64 *)info);
4456 bool active;
4457
4458 if (event->attr.freq) {
4459 event->attr.sample_freq = value;
4460 } else {
4461 event->attr.sample_period = value;
4462 event->hw.sample_period = value;
4463 }
4464
4465 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4466 if (active) {
4467 perf_pmu_disable(ctx->pmu);
4468 /*
4469 * We could be throttled; unthrottle now to avoid the tick
4470 * trying to unthrottle while we already re-started the event.
4471 */
4472 if (event->hw.interrupts == MAX_INTERRUPTS) {
4473 event->hw.interrupts = 0;
4474 perf_log_throttle(event, 1);
4475 }
4476 event->pmu->stop(event, PERF_EF_UPDATE);
4477 }
4478
4479 local64_set(&event->hw.period_left, 0);
4480
4481 if (active) {
4482 event->pmu->start(event, PERF_EF_RELOAD);
4483 perf_pmu_enable(ctx->pmu);
4484 }
4485 }
4486
4487 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4488 {
4489 u64 value;
4490
4491 if (!is_sampling_event(event))
4492 return -EINVAL;
4493
4494 if (copy_from_user(&value, arg, sizeof(value)))
4495 return -EFAULT;
4496
4497 if (!value)
4498 return -EINVAL;
4499
4500 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4501 return -EINVAL;
4502
4503 event_function_call(event, __perf_event_period, &value);
4504
4505 return 0;
4506 }
4507
4508 static const struct file_operations perf_fops;
4509
4510 static inline int perf_fget_light(int fd, struct fd *p)
4511 {
4512 struct fd f = fdget(fd);
4513 if (!f.file)
4514 return -EBADF;
4515
4516 if (f.file->f_op != &perf_fops) {
4517 fdput(f);
4518 return -EBADF;
4519 }
4520 *p = f;
4521 return 0;
4522 }
4523
4524 static int perf_event_set_output(struct perf_event *event,
4525 struct perf_event *output_event);
4526 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4527 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4528
4529 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4530 {
4531 void (*func)(struct perf_event *);
4532 u32 flags = arg;
4533
4534 switch (cmd) {
4535 case PERF_EVENT_IOC_ENABLE:
4536 func = _perf_event_enable;
4537 break;
4538 case PERF_EVENT_IOC_DISABLE:
4539 func = _perf_event_disable;
4540 break;
4541 case PERF_EVENT_IOC_RESET:
4542 func = _perf_event_reset;
4543 break;
4544
4545 case PERF_EVENT_IOC_REFRESH:
4546 return _perf_event_refresh(event, arg);
4547
4548 case PERF_EVENT_IOC_PERIOD:
4549 return perf_event_period(event, (u64 __user *)arg);
4550
4551 case PERF_EVENT_IOC_ID:
4552 {
4553 u64 id = primary_event_id(event);
4554
4555 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4556 return -EFAULT;
4557 return 0;
4558 }
4559
4560 case PERF_EVENT_IOC_SET_OUTPUT:
4561 {
4562 int ret;
4563 if (arg != -1) {
4564 struct perf_event *output_event;
4565 struct fd output;
4566 ret = perf_fget_light(arg, &output);
4567 if (ret)
4568 return ret;
4569 output_event = output.file->private_data;
4570 ret = perf_event_set_output(event, output_event);
4571 fdput(output);
4572 } else {
4573 ret = perf_event_set_output(event, NULL);
4574 }
4575 return ret;
4576 }
4577
4578 case PERF_EVENT_IOC_SET_FILTER:
4579 return perf_event_set_filter(event, (void __user *)arg);
4580
4581 case PERF_EVENT_IOC_SET_BPF:
4582 return perf_event_set_bpf_prog(event, arg);
4583
4584 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4585 struct ring_buffer *rb;
4586
4587 rcu_read_lock();
4588 rb = rcu_dereference(event->rb);
4589 if (!rb || !rb->nr_pages) {
4590 rcu_read_unlock();
4591 return -EINVAL;
4592 }
4593 rb_toggle_paused(rb, !!arg);
4594 rcu_read_unlock();
4595 return 0;
4596 }
4597 default:
4598 return -ENOTTY;
4599 }
4600
4601 if (flags & PERF_IOC_FLAG_GROUP)
4602 perf_event_for_each(event, func);
4603 else
4604 perf_event_for_each_child(event, func);
4605
4606 return 0;
4607 }
4608
4609 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4610 {
4611 struct perf_event *event = file->private_data;
4612 struct perf_event_context *ctx;
4613 long ret;
4614
4615 ctx = perf_event_ctx_lock(event);
4616 ret = _perf_ioctl(event, cmd, arg);
4617 perf_event_ctx_unlock(event, ctx);
4618
4619 return ret;
4620 }
4621
4622 #ifdef CONFIG_COMPAT
4623 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4624 unsigned long arg)
4625 {
4626 switch (_IOC_NR(cmd)) {
4627 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4628 case _IOC_NR(PERF_EVENT_IOC_ID):
4629 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4630 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4631 cmd &= ~IOCSIZE_MASK;
4632 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4633 }
4634 break;
4635 }
4636 return perf_ioctl(file, cmd, arg);
4637 }
4638 #else
4639 # define perf_compat_ioctl NULL
4640 #endif
4641
4642 int perf_event_task_enable(void)
4643 {
4644 struct perf_event_context *ctx;
4645 struct perf_event *event;
4646
4647 mutex_lock(&current->perf_event_mutex);
4648 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4649 ctx = perf_event_ctx_lock(event);
4650 perf_event_for_each_child(event, _perf_event_enable);
4651 perf_event_ctx_unlock(event, ctx);
4652 }
4653 mutex_unlock(&current->perf_event_mutex);
4654
4655 return 0;
4656 }
4657
4658 int perf_event_task_disable(void)
4659 {
4660 struct perf_event_context *ctx;
4661 struct perf_event *event;
4662
4663 mutex_lock(&current->perf_event_mutex);
4664 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4665 ctx = perf_event_ctx_lock(event);
4666 perf_event_for_each_child(event, _perf_event_disable);
4667 perf_event_ctx_unlock(event, ctx);
4668 }
4669 mutex_unlock(&current->perf_event_mutex);
4670
4671 return 0;
4672 }
4673
4674 static int perf_event_index(struct perf_event *event)
4675 {
4676 if (event->hw.state & PERF_HES_STOPPED)
4677 return 0;
4678
4679 if (event->state != PERF_EVENT_STATE_ACTIVE)
4680 return 0;
4681
4682 return event->pmu->event_idx(event);
4683 }
4684
4685 static void calc_timer_values(struct perf_event *event,
4686 u64 *now,
4687 u64 *enabled,
4688 u64 *running)
4689 {
4690 u64 ctx_time;
4691
4692 *now = perf_clock();
4693 ctx_time = event->shadow_ctx_time + *now;
4694 *enabled = ctx_time - event->tstamp_enabled;
4695 *running = ctx_time - event->tstamp_running;
4696 }
4697
4698 static void perf_event_init_userpage(struct perf_event *event)
4699 {
4700 struct perf_event_mmap_page *userpg;
4701 struct ring_buffer *rb;
4702
4703 rcu_read_lock();
4704 rb = rcu_dereference(event->rb);
4705 if (!rb)
4706 goto unlock;
4707
4708 userpg = rb->user_page;
4709
4710 /* Allow new userspace to detect that bit 0 is deprecated */
4711 userpg->cap_bit0_is_deprecated = 1;
4712 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4713 userpg->data_offset = PAGE_SIZE;
4714 userpg->data_size = perf_data_size(rb);
4715
4716 unlock:
4717 rcu_read_unlock();
4718 }
4719
4720 void __weak arch_perf_update_userpage(
4721 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4722 {
4723 }
4724
4725 /*
4726 * Callers need to ensure there can be no nesting of this function, otherwise
4727 * the seqlock logic goes bad. We can not serialize this because the arch
4728 * code calls this from NMI context.
4729 */
4730 void perf_event_update_userpage(struct perf_event *event)
4731 {
4732 struct perf_event_mmap_page *userpg;
4733 struct ring_buffer *rb;
4734 u64 enabled, running, now;
4735
4736 rcu_read_lock();
4737 rb = rcu_dereference(event->rb);
4738 if (!rb)
4739 goto unlock;
4740
4741 /*
4742 * compute total_time_enabled, total_time_running
4743 * based on snapshot values taken when the event
4744 * was last scheduled in.
4745 *
4746 * we cannot simply called update_context_time()
4747 * because of locking issue as we can be called in
4748 * NMI context
4749 */
4750 calc_timer_values(event, &now, &enabled, &running);
4751
4752 userpg = rb->user_page;
4753 /*
4754 * Disable preemption so as to not let the corresponding user-space
4755 * spin too long if we get preempted.
4756 */
4757 preempt_disable();
4758 ++userpg->lock;
4759 barrier();
4760 userpg->index = perf_event_index(event);
4761 userpg->offset = perf_event_count(event);
4762 if (userpg->index)
4763 userpg->offset -= local64_read(&event->hw.prev_count);
4764
4765 userpg->time_enabled = enabled +
4766 atomic64_read(&event->child_total_time_enabled);
4767
4768 userpg->time_running = running +
4769 atomic64_read(&event->child_total_time_running);
4770
4771 arch_perf_update_userpage(event, userpg, now);
4772
4773 barrier();
4774 ++userpg->lock;
4775 preempt_enable();
4776 unlock:
4777 rcu_read_unlock();
4778 }
4779
4780 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4781 {
4782 struct perf_event *event = vma->vm_file->private_data;
4783 struct ring_buffer *rb;
4784 int ret = VM_FAULT_SIGBUS;
4785
4786 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4787 if (vmf->pgoff == 0)
4788 ret = 0;
4789 return ret;
4790 }
4791
4792 rcu_read_lock();
4793 rb = rcu_dereference(event->rb);
4794 if (!rb)
4795 goto unlock;
4796
4797 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4798 goto unlock;
4799
4800 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4801 if (!vmf->page)
4802 goto unlock;
4803
4804 get_page(vmf->page);
4805 vmf->page->mapping = vma->vm_file->f_mapping;
4806 vmf->page->index = vmf->pgoff;
4807
4808 ret = 0;
4809 unlock:
4810 rcu_read_unlock();
4811
4812 return ret;
4813 }
4814
4815 static void ring_buffer_attach(struct perf_event *event,
4816 struct ring_buffer *rb)
4817 {
4818 struct ring_buffer *old_rb = NULL;
4819 unsigned long flags;
4820
4821 if (event->rb) {
4822 /*
4823 * Should be impossible, we set this when removing
4824 * event->rb_entry and wait/clear when adding event->rb_entry.
4825 */
4826 WARN_ON_ONCE(event->rcu_pending);
4827
4828 old_rb = event->rb;
4829 spin_lock_irqsave(&old_rb->event_lock, flags);
4830 list_del_rcu(&event->rb_entry);
4831 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4832
4833 event->rcu_batches = get_state_synchronize_rcu();
4834 event->rcu_pending = 1;
4835 }
4836
4837 if (rb) {
4838 if (event->rcu_pending) {
4839 cond_synchronize_rcu(event->rcu_batches);
4840 event->rcu_pending = 0;
4841 }
4842
4843 spin_lock_irqsave(&rb->event_lock, flags);
4844 list_add_rcu(&event->rb_entry, &rb->event_list);
4845 spin_unlock_irqrestore(&rb->event_lock, flags);
4846 }
4847
4848 /*
4849 * Avoid racing with perf_mmap_close(AUX): stop the event
4850 * before swizzling the event::rb pointer; if it's getting
4851 * unmapped, its aux_mmap_count will be 0 and it won't
4852 * restart. See the comment in __perf_pmu_output_stop().
4853 *
4854 * Data will inevitably be lost when set_output is done in
4855 * mid-air, but then again, whoever does it like this is
4856 * not in for the data anyway.
4857 */
4858 if (has_aux(event))
4859 perf_event_stop(event, 0);
4860
4861 rcu_assign_pointer(event->rb, rb);
4862
4863 if (old_rb) {
4864 ring_buffer_put(old_rb);
4865 /*
4866 * Since we detached before setting the new rb, so that we
4867 * could attach the new rb, we could have missed a wakeup.
4868 * Provide it now.
4869 */
4870 wake_up_all(&event->waitq);
4871 }
4872 }
4873
4874 static void ring_buffer_wakeup(struct perf_event *event)
4875 {
4876 struct ring_buffer *rb;
4877
4878 rcu_read_lock();
4879 rb = rcu_dereference(event->rb);
4880 if (rb) {
4881 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4882 wake_up_all(&event->waitq);
4883 }
4884 rcu_read_unlock();
4885 }
4886
4887 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4888 {
4889 struct ring_buffer *rb;
4890
4891 rcu_read_lock();
4892 rb = rcu_dereference(event->rb);
4893 if (rb) {
4894 if (!atomic_inc_not_zero(&rb->refcount))
4895 rb = NULL;
4896 }
4897 rcu_read_unlock();
4898
4899 return rb;
4900 }
4901
4902 void ring_buffer_put(struct ring_buffer *rb)
4903 {
4904 if (!atomic_dec_and_test(&rb->refcount))
4905 return;
4906
4907 WARN_ON_ONCE(!list_empty(&rb->event_list));
4908
4909 call_rcu(&rb->rcu_head, rb_free_rcu);
4910 }
4911
4912 static void perf_mmap_open(struct vm_area_struct *vma)
4913 {
4914 struct perf_event *event = vma->vm_file->private_data;
4915
4916 atomic_inc(&event->mmap_count);
4917 atomic_inc(&event->rb->mmap_count);
4918
4919 if (vma->vm_pgoff)
4920 atomic_inc(&event->rb->aux_mmap_count);
4921
4922 if (event->pmu->event_mapped)
4923 event->pmu->event_mapped(event);
4924 }
4925
4926 static void perf_pmu_output_stop(struct perf_event *event);
4927
4928 /*
4929 * A buffer can be mmap()ed multiple times; either directly through the same
4930 * event, or through other events by use of perf_event_set_output().
4931 *
4932 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4933 * the buffer here, where we still have a VM context. This means we need
4934 * to detach all events redirecting to us.
4935 */
4936 static void perf_mmap_close(struct vm_area_struct *vma)
4937 {
4938 struct perf_event *event = vma->vm_file->private_data;
4939
4940 struct ring_buffer *rb = ring_buffer_get(event);
4941 struct user_struct *mmap_user = rb->mmap_user;
4942 int mmap_locked = rb->mmap_locked;
4943 unsigned long size = perf_data_size(rb);
4944
4945 if (event->pmu->event_unmapped)
4946 event->pmu->event_unmapped(event);
4947
4948 /*
4949 * rb->aux_mmap_count will always drop before rb->mmap_count and
4950 * event->mmap_count, so it is ok to use event->mmap_mutex to
4951 * serialize with perf_mmap here.
4952 */
4953 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4954 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4955 /*
4956 * Stop all AUX events that are writing to this buffer,
4957 * so that we can free its AUX pages and corresponding PMU
4958 * data. Note that after rb::aux_mmap_count dropped to zero,
4959 * they won't start any more (see perf_aux_output_begin()).
4960 */
4961 perf_pmu_output_stop(event);
4962
4963 /* now it's safe to free the pages */
4964 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4965 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4966
4967 /* this has to be the last one */
4968 rb_free_aux(rb);
4969 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4970
4971 mutex_unlock(&event->mmap_mutex);
4972 }
4973
4974 atomic_dec(&rb->mmap_count);
4975
4976 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4977 goto out_put;
4978
4979 ring_buffer_attach(event, NULL);
4980 mutex_unlock(&event->mmap_mutex);
4981
4982 /* If there's still other mmap()s of this buffer, we're done. */
4983 if (atomic_read(&rb->mmap_count))
4984 goto out_put;
4985
4986 /*
4987 * No other mmap()s, detach from all other events that might redirect
4988 * into the now unreachable buffer. Somewhat complicated by the
4989 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4990 */
4991 again:
4992 rcu_read_lock();
4993 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4994 if (!atomic_long_inc_not_zero(&event->refcount)) {
4995 /*
4996 * This event is en-route to free_event() which will
4997 * detach it and remove it from the list.
4998 */
4999 continue;
5000 }
5001 rcu_read_unlock();
5002
5003 mutex_lock(&event->mmap_mutex);
5004 /*
5005 * Check we didn't race with perf_event_set_output() which can
5006 * swizzle the rb from under us while we were waiting to
5007 * acquire mmap_mutex.
5008 *
5009 * If we find a different rb; ignore this event, a next
5010 * iteration will no longer find it on the list. We have to
5011 * still restart the iteration to make sure we're not now
5012 * iterating the wrong list.
5013 */
5014 if (event->rb == rb)
5015 ring_buffer_attach(event, NULL);
5016
5017 mutex_unlock(&event->mmap_mutex);
5018 put_event(event);
5019
5020 /*
5021 * Restart the iteration; either we're on the wrong list or
5022 * destroyed its integrity by doing a deletion.
5023 */
5024 goto again;
5025 }
5026 rcu_read_unlock();
5027
5028 /*
5029 * It could be there's still a few 0-ref events on the list; they'll
5030 * get cleaned up by free_event() -- they'll also still have their
5031 * ref on the rb and will free it whenever they are done with it.
5032 *
5033 * Aside from that, this buffer is 'fully' detached and unmapped,
5034 * undo the VM accounting.
5035 */
5036
5037 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5038 vma->vm_mm->pinned_vm -= mmap_locked;
5039 free_uid(mmap_user);
5040
5041 out_put:
5042 ring_buffer_put(rb); /* could be last */
5043 }
5044
5045 static const struct vm_operations_struct perf_mmap_vmops = {
5046 .open = perf_mmap_open,
5047 .close = perf_mmap_close, /* non mergable */
5048 .fault = perf_mmap_fault,
5049 .page_mkwrite = perf_mmap_fault,
5050 };
5051
5052 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5053 {
5054 struct perf_event *event = file->private_data;
5055 unsigned long user_locked, user_lock_limit;
5056 struct user_struct *user = current_user();
5057 unsigned long locked, lock_limit;
5058 struct ring_buffer *rb = NULL;
5059 unsigned long vma_size;
5060 unsigned long nr_pages;
5061 long user_extra = 0, extra = 0;
5062 int ret = 0, flags = 0;
5063
5064 /*
5065 * Don't allow mmap() of inherited per-task counters. This would
5066 * create a performance issue due to all children writing to the
5067 * same rb.
5068 */
5069 if (event->cpu == -1 && event->attr.inherit)
5070 return -EINVAL;
5071
5072 if (!(vma->vm_flags & VM_SHARED))
5073 return -EINVAL;
5074
5075 vma_size = vma->vm_end - vma->vm_start;
5076
5077 if (vma->vm_pgoff == 0) {
5078 nr_pages = (vma_size / PAGE_SIZE) - 1;
5079 } else {
5080 /*
5081 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5082 * mapped, all subsequent mappings should have the same size
5083 * and offset. Must be above the normal perf buffer.
5084 */
5085 u64 aux_offset, aux_size;
5086
5087 if (!event->rb)
5088 return -EINVAL;
5089
5090 nr_pages = vma_size / PAGE_SIZE;
5091
5092 mutex_lock(&event->mmap_mutex);
5093 ret = -EINVAL;
5094
5095 rb = event->rb;
5096 if (!rb)
5097 goto aux_unlock;
5098
5099 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5100 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5101
5102 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5103 goto aux_unlock;
5104
5105 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5106 goto aux_unlock;
5107
5108 /* already mapped with a different offset */
5109 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5110 goto aux_unlock;
5111
5112 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5113 goto aux_unlock;
5114
5115 /* already mapped with a different size */
5116 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5117 goto aux_unlock;
5118
5119 if (!is_power_of_2(nr_pages))
5120 goto aux_unlock;
5121
5122 if (!atomic_inc_not_zero(&rb->mmap_count))
5123 goto aux_unlock;
5124
5125 if (rb_has_aux(rb)) {
5126 atomic_inc(&rb->aux_mmap_count);
5127 ret = 0;
5128 goto unlock;
5129 }
5130
5131 atomic_set(&rb->aux_mmap_count, 1);
5132 user_extra = nr_pages;
5133
5134 goto accounting;
5135 }
5136
5137 /*
5138 * If we have rb pages ensure they're a power-of-two number, so we
5139 * can do bitmasks instead of modulo.
5140 */
5141 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5142 return -EINVAL;
5143
5144 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5145 return -EINVAL;
5146
5147 WARN_ON_ONCE(event->ctx->parent_ctx);
5148 again:
5149 mutex_lock(&event->mmap_mutex);
5150 if (event->rb) {
5151 if (event->rb->nr_pages != nr_pages) {
5152 ret = -EINVAL;
5153 goto unlock;
5154 }
5155
5156 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5157 /*
5158 * Raced against perf_mmap_close() through
5159 * perf_event_set_output(). Try again, hope for better
5160 * luck.
5161 */
5162 mutex_unlock(&event->mmap_mutex);
5163 goto again;
5164 }
5165
5166 goto unlock;
5167 }
5168
5169 user_extra = nr_pages + 1;
5170
5171 accounting:
5172 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5173
5174 /*
5175 * Increase the limit linearly with more CPUs:
5176 */
5177 user_lock_limit *= num_online_cpus();
5178
5179 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5180
5181 if (user_locked > user_lock_limit)
5182 extra = user_locked - user_lock_limit;
5183
5184 lock_limit = rlimit(RLIMIT_MEMLOCK);
5185 lock_limit >>= PAGE_SHIFT;
5186 locked = vma->vm_mm->pinned_vm + extra;
5187
5188 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5189 !capable(CAP_IPC_LOCK)) {
5190 ret = -EPERM;
5191 goto unlock;
5192 }
5193
5194 WARN_ON(!rb && event->rb);
5195
5196 if (vma->vm_flags & VM_WRITE)
5197 flags |= RING_BUFFER_WRITABLE;
5198
5199 if (!rb) {
5200 rb = rb_alloc(nr_pages,
5201 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5202 event->cpu, flags);
5203
5204 if (!rb) {
5205 ret = -ENOMEM;
5206 goto unlock;
5207 }
5208
5209 atomic_set(&rb->mmap_count, 1);
5210 rb->mmap_user = get_current_user();
5211 rb->mmap_locked = extra;
5212
5213 ring_buffer_attach(event, rb);
5214
5215 perf_event_init_userpage(event);
5216 perf_event_update_userpage(event);
5217 } else {
5218 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5219 event->attr.aux_watermark, flags);
5220 if (!ret)
5221 rb->aux_mmap_locked = extra;
5222 }
5223
5224 unlock:
5225 if (!ret) {
5226 atomic_long_add(user_extra, &user->locked_vm);
5227 vma->vm_mm->pinned_vm += extra;
5228
5229 atomic_inc(&event->mmap_count);
5230 } else if (rb) {
5231 atomic_dec(&rb->mmap_count);
5232 }
5233 aux_unlock:
5234 mutex_unlock(&event->mmap_mutex);
5235
5236 /*
5237 * Since pinned accounting is per vm we cannot allow fork() to copy our
5238 * vma.
5239 */
5240 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5241 vma->vm_ops = &perf_mmap_vmops;
5242
5243 if (event->pmu->event_mapped)
5244 event->pmu->event_mapped(event);
5245
5246 return ret;
5247 }
5248
5249 static int perf_fasync(int fd, struct file *filp, int on)
5250 {
5251 struct inode *inode = file_inode(filp);
5252 struct perf_event *event = filp->private_data;
5253 int retval;
5254
5255 inode_lock(inode);
5256 retval = fasync_helper(fd, filp, on, &event->fasync);
5257 inode_unlock(inode);
5258
5259 if (retval < 0)
5260 return retval;
5261
5262 return 0;
5263 }
5264
5265 static const struct file_operations perf_fops = {
5266 .llseek = no_llseek,
5267 .release = perf_release,
5268 .read = perf_read,
5269 .poll = perf_poll,
5270 .unlocked_ioctl = perf_ioctl,
5271 .compat_ioctl = perf_compat_ioctl,
5272 .mmap = perf_mmap,
5273 .fasync = perf_fasync,
5274 };
5275
5276 /*
5277 * Perf event wakeup
5278 *
5279 * If there's data, ensure we set the poll() state and publish everything
5280 * to user-space before waking everybody up.
5281 */
5282
5283 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5284 {
5285 /* only the parent has fasync state */
5286 if (event->parent)
5287 event = event->parent;
5288 return &event->fasync;
5289 }
5290
5291 void perf_event_wakeup(struct perf_event *event)
5292 {
5293 ring_buffer_wakeup(event);
5294
5295 if (event->pending_kill) {
5296 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5297 event->pending_kill = 0;
5298 }
5299 }
5300
5301 static void perf_pending_event(struct irq_work *entry)
5302 {
5303 struct perf_event *event = container_of(entry,
5304 struct perf_event, pending);
5305 int rctx;
5306
5307 rctx = perf_swevent_get_recursion_context();
5308 /*
5309 * If we 'fail' here, that's OK, it means recursion is already disabled
5310 * and we won't recurse 'further'.
5311 */
5312
5313 if (event->pending_disable) {
5314 event->pending_disable = 0;
5315 perf_event_disable_local(event);
5316 }
5317
5318 if (event->pending_wakeup) {
5319 event->pending_wakeup = 0;
5320 perf_event_wakeup(event);
5321 }
5322
5323 if (rctx >= 0)
5324 perf_swevent_put_recursion_context(rctx);
5325 }
5326
5327 /*
5328 * We assume there is only KVM supporting the callbacks.
5329 * Later on, we might change it to a list if there is
5330 * another virtualization implementation supporting the callbacks.
5331 */
5332 struct perf_guest_info_callbacks *perf_guest_cbs;
5333
5334 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5335 {
5336 perf_guest_cbs = cbs;
5337 return 0;
5338 }
5339 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5340
5341 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5342 {
5343 perf_guest_cbs = NULL;
5344 return 0;
5345 }
5346 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5347
5348 static void
5349 perf_output_sample_regs(struct perf_output_handle *handle,
5350 struct pt_regs *regs, u64 mask)
5351 {
5352 int bit;
5353
5354 for_each_set_bit(bit, (const unsigned long *) &mask,
5355 sizeof(mask) * BITS_PER_BYTE) {
5356 u64 val;
5357
5358 val = perf_reg_value(regs, bit);
5359 perf_output_put(handle, val);
5360 }
5361 }
5362
5363 static void perf_sample_regs_user(struct perf_regs *regs_user,
5364 struct pt_regs *regs,
5365 struct pt_regs *regs_user_copy)
5366 {
5367 if (user_mode(regs)) {
5368 regs_user->abi = perf_reg_abi(current);
5369 regs_user->regs = regs;
5370 } else if (current->mm) {
5371 perf_get_regs_user(regs_user, regs, regs_user_copy);
5372 } else {
5373 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5374 regs_user->regs = NULL;
5375 }
5376 }
5377
5378 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5379 struct pt_regs *regs)
5380 {
5381 regs_intr->regs = regs;
5382 regs_intr->abi = perf_reg_abi(current);
5383 }
5384
5385
5386 /*
5387 * Get remaining task size from user stack pointer.
5388 *
5389 * It'd be better to take stack vma map and limit this more
5390 * precisly, but there's no way to get it safely under interrupt,
5391 * so using TASK_SIZE as limit.
5392 */
5393 static u64 perf_ustack_task_size(struct pt_regs *regs)
5394 {
5395 unsigned long addr = perf_user_stack_pointer(regs);
5396
5397 if (!addr || addr >= TASK_SIZE)
5398 return 0;
5399
5400 return TASK_SIZE - addr;
5401 }
5402
5403 static u16
5404 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5405 struct pt_regs *regs)
5406 {
5407 u64 task_size;
5408
5409 /* No regs, no stack pointer, no dump. */
5410 if (!regs)
5411 return 0;
5412
5413 /*
5414 * Check if we fit in with the requested stack size into the:
5415 * - TASK_SIZE
5416 * If we don't, we limit the size to the TASK_SIZE.
5417 *
5418 * - remaining sample size
5419 * If we don't, we customize the stack size to
5420 * fit in to the remaining sample size.
5421 */
5422
5423 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5424 stack_size = min(stack_size, (u16) task_size);
5425
5426 /* Current header size plus static size and dynamic size. */
5427 header_size += 2 * sizeof(u64);
5428
5429 /* Do we fit in with the current stack dump size? */
5430 if ((u16) (header_size + stack_size) < header_size) {
5431 /*
5432 * If we overflow the maximum size for the sample,
5433 * we customize the stack dump size to fit in.
5434 */
5435 stack_size = USHRT_MAX - header_size - sizeof(u64);
5436 stack_size = round_up(stack_size, sizeof(u64));
5437 }
5438
5439 return stack_size;
5440 }
5441
5442 static void
5443 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5444 struct pt_regs *regs)
5445 {
5446 /* Case of a kernel thread, nothing to dump */
5447 if (!regs) {
5448 u64 size = 0;
5449 perf_output_put(handle, size);
5450 } else {
5451 unsigned long sp;
5452 unsigned int rem;
5453 u64 dyn_size;
5454
5455 /*
5456 * We dump:
5457 * static size
5458 * - the size requested by user or the best one we can fit
5459 * in to the sample max size
5460 * data
5461 * - user stack dump data
5462 * dynamic size
5463 * - the actual dumped size
5464 */
5465
5466 /* Static size. */
5467 perf_output_put(handle, dump_size);
5468
5469 /* Data. */
5470 sp = perf_user_stack_pointer(regs);
5471 rem = __output_copy_user(handle, (void *) sp, dump_size);
5472 dyn_size = dump_size - rem;
5473
5474 perf_output_skip(handle, rem);
5475
5476 /* Dynamic size. */
5477 perf_output_put(handle, dyn_size);
5478 }
5479 }
5480
5481 static void __perf_event_header__init_id(struct perf_event_header *header,
5482 struct perf_sample_data *data,
5483 struct perf_event *event)
5484 {
5485 u64 sample_type = event->attr.sample_type;
5486
5487 data->type = sample_type;
5488 header->size += event->id_header_size;
5489
5490 if (sample_type & PERF_SAMPLE_TID) {
5491 /* namespace issues */
5492 data->tid_entry.pid = perf_event_pid(event, current);
5493 data->tid_entry.tid = perf_event_tid(event, current);
5494 }
5495
5496 if (sample_type & PERF_SAMPLE_TIME)
5497 data->time = perf_event_clock(event);
5498
5499 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5500 data->id = primary_event_id(event);
5501
5502 if (sample_type & PERF_SAMPLE_STREAM_ID)
5503 data->stream_id = event->id;
5504
5505 if (sample_type & PERF_SAMPLE_CPU) {
5506 data->cpu_entry.cpu = raw_smp_processor_id();
5507 data->cpu_entry.reserved = 0;
5508 }
5509 }
5510
5511 void perf_event_header__init_id(struct perf_event_header *header,
5512 struct perf_sample_data *data,
5513 struct perf_event *event)
5514 {
5515 if (event->attr.sample_id_all)
5516 __perf_event_header__init_id(header, data, event);
5517 }
5518
5519 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5520 struct perf_sample_data *data)
5521 {
5522 u64 sample_type = data->type;
5523
5524 if (sample_type & PERF_SAMPLE_TID)
5525 perf_output_put(handle, data->tid_entry);
5526
5527 if (sample_type & PERF_SAMPLE_TIME)
5528 perf_output_put(handle, data->time);
5529
5530 if (sample_type & PERF_SAMPLE_ID)
5531 perf_output_put(handle, data->id);
5532
5533 if (sample_type & PERF_SAMPLE_STREAM_ID)
5534 perf_output_put(handle, data->stream_id);
5535
5536 if (sample_type & PERF_SAMPLE_CPU)
5537 perf_output_put(handle, data->cpu_entry);
5538
5539 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5540 perf_output_put(handle, data->id);
5541 }
5542
5543 void perf_event__output_id_sample(struct perf_event *event,
5544 struct perf_output_handle *handle,
5545 struct perf_sample_data *sample)
5546 {
5547 if (event->attr.sample_id_all)
5548 __perf_event__output_id_sample(handle, sample);
5549 }
5550
5551 static void perf_output_read_one(struct perf_output_handle *handle,
5552 struct perf_event *event,
5553 u64 enabled, u64 running)
5554 {
5555 u64 read_format = event->attr.read_format;
5556 u64 values[4];
5557 int n = 0;
5558
5559 values[n++] = perf_event_count(event);
5560 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5561 values[n++] = enabled +
5562 atomic64_read(&event->child_total_time_enabled);
5563 }
5564 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5565 values[n++] = running +
5566 atomic64_read(&event->child_total_time_running);
5567 }
5568 if (read_format & PERF_FORMAT_ID)
5569 values[n++] = primary_event_id(event);
5570
5571 __output_copy(handle, values, n * sizeof(u64));
5572 }
5573
5574 /*
5575 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5576 */
5577 static void perf_output_read_group(struct perf_output_handle *handle,
5578 struct perf_event *event,
5579 u64 enabled, u64 running)
5580 {
5581 struct perf_event *leader = event->group_leader, *sub;
5582 u64 read_format = event->attr.read_format;
5583 u64 values[5];
5584 int n = 0;
5585
5586 values[n++] = 1 + leader->nr_siblings;
5587
5588 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5589 values[n++] = enabled;
5590
5591 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5592 values[n++] = running;
5593
5594 if (leader != event)
5595 leader->pmu->read(leader);
5596
5597 values[n++] = perf_event_count(leader);
5598 if (read_format & PERF_FORMAT_ID)
5599 values[n++] = primary_event_id(leader);
5600
5601 __output_copy(handle, values, n * sizeof(u64));
5602
5603 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5604 n = 0;
5605
5606 if ((sub != event) &&
5607 (sub->state == PERF_EVENT_STATE_ACTIVE))
5608 sub->pmu->read(sub);
5609
5610 values[n++] = perf_event_count(sub);
5611 if (read_format & PERF_FORMAT_ID)
5612 values[n++] = primary_event_id(sub);
5613
5614 __output_copy(handle, values, n * sizeof(u64));
5615 }
5616 }
5617
5618 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5619 PERF_FORMAT_TOTAL_TIME_RUNNING)
5620
5621 static void perf_output_read(struct perf_output_handle *handle,
5622 struct perf_event *event)
5623 {
5624 u64 enabled = 0, running = 0, now;
5625 u64 read_format = event->attr.read_format;
5626
5627 /*
5628 * compute total_time_enabled, total_time_running
5629 * based on snapshot values taken when the event
5630 * was last scheduled in.
5631 *
5632 * we cannot simply called update_context_time()
5633 * because of locking issue as we are called in
5634 * NMI context
5635 */
5636 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5637 calc_timer_values(event, &now, &enabled, &running);
5638
5639 if (event->attr.read_format & PERF_FORMAT_GROUP)
5640 perf_output_read_group(handle, event, enabled, running);
5641 else
5642 perf_output_read_one(handle, event, enabled, running);
5643 }
5644
5645 void perf_output_sample(struct perf_output_handle *handle,
5646 struct perf_event_header *header,
5647 struct perf_sample_data *data,
5648 struct perf_event *event)
5649 {
5650 u64 sample_type = data->type;
5651
5652 perf_output_put(handle, *header);
5653
5654 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5655 perf_output_put(handle, data->id);
5656
5657 if (sample_type & PERF_SAMPLE_IP)
5658 perf_output_put(handle, data->ip);
5659
5660 if (sample_type & PERF_SAMPLE_TID)
5661 perf_output_put(handle, data->tid_entry);
5662
5663 if (sample_type & PERF_SAMPLE_TIME)
5664 perf_output_put(handle, data->time);
5665
5666 if (sample_type & PERF_SAMPLE_ADDR)
5667 perf_output_put(handle, data->addr);
5668
5669 if (sample_type & PERF_SAMPLE_ID)
5670 perf_output_put(handle, data->id);
5671
5672 if (sample_type & PERF_SAMPLE_STREAM_ID)
5673 perf_output_put(handle, data->stream_id);
5674
5675 if (sample_type & PERF_SAMPLE_CPU)
5676 perf_output_put(handle, data->cpu_entry);
5677
5678 if (sample_type & PERF_SAMPLE_PERIOD)
5679 perf_output_put(handle, data->period);
5680
5681 if (sample_type & PERF_SAMPLE_READ)
5682 perf_output_read(handle, event);
5683
5684 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5685 if (data->callchain) {
5686 int size = 1;
5687
5688 if (data->callchain)
5689 size += data->callchain->nr;
5690
5691 size *= sizeof(u64);
5692
5693 __output_copy(handle, data->callchain, size);
5694 } else {
5695 u64 nr = 0;
5696 perf_output_put(handle, nr);
5697 }
5698 }
5699
5700 if (sample_type & PERF_SAMPLE_RAW) {
5701 struct perf_raw_record *raw = data->raw;
5702
5703 if (raw) {
5704 struct perf_raw_frag *frag = &raw->frag;
5705
5706 perf_output_put(handle, raw->size);
5707 do {
5708 if (frag->copy) {
5709 __output_custom(handle, frag->copy,
5710 frag->data, frag->size);
5711 } else {
5712 __output_copy(handle, frag->data,
5713 frag->size);
5714 }
5715 if (perf_raw_frag_last(frag))
5716 break;
5717 frag = frag->next;
5718 } while (1);
5719 if (frag->pad)
5720 __output_skip(handle, NULL, frag->pad);
5721 } else {
5722 struct {
5723 u32 size;
5724 u32 data;
5725 } raw = {
5726 .size = sizeof(u32),
5727 .data = 0,
5728 };
5729 perf_output_put(handle, raw);
5730 }
5731 }
5732
5733 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5734 if (data->br_stack) {
5735 size_t size;
5736
5737 size = data->br_stack->nr
5738 * sizeof(struct perf_branch_entry);
5739
5740 perf_output_put(handle, data->br_stack->nr);
5741 perf_output_copy(handle, data->br_stack->entries, size);
5742 } else {
5743 /*
5744 * we always store at least the value of nr
5745 */
5746 u64 nr = 0;
5747 perf_output_put(handle, nr);
5748 }
5749 }
5750
5751 if (sample_type & PERF_SAMPLE_REGS_USER) {
5752 u64 abi = data->regs_user.abi;
5753
5754 /*
5755 * If there are no regs to dump, notice it through
5756 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5757 */
5758 perf_output_put(handle, abi);
5759
5760 if (abi) {
5761 u64 mask = event->attr.sample_regs_user;
5762 perf_output_sample_regs(handle,
5763 data->regs_user.regs,
5764 mask);
5765 }
5766 }
5767
5768 if (sample_type & PERF_SAMPLE_STACK_USER) {
5769 perf_output_sample_ustack(handle,
5770 data->stack_user_size,
5771 data->regs_user.regs);
5772 }
5773
5774 if (sample_type & PERF_SAMPLE_WEIGHT)
5775 perf_output_put(handle, data->weight);
5776
5777 if (sample_type & PERF_SAMPLE_DATA_SRC)
5778 perf_output_put(handle, data->data_src.val);
5779
5780 if (sample_type & PERF_SAMPLE_TRANSACTION)
5781 perf_output_put(handle, data->txn);
5782
5783 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5784 u64 abi = data->regs_intr.abi;
5785 /*
5786 * If there are no regs to dump, notice it through
5787 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5788 */
5789 perf_output_put(handle, abi);
5790
5791 if (abi) {
5792 u64 mask = event->attr.sample_regs_intr;
5793
5794 perf_output_sample_regs(handle,
5795 data->regs_intr.regs,
5796 mask);
5797 }
5798 }
5799
5800 if (!event->attr.watermark) {
5801 int wakeup_events = event->attr.wakeup_events;
5802
5803 if (wakeup_events) {
5804 struct ring_buffer *rb = handle->rb;
5805 int events = local_inc_return(&rb->events);
5806
5807 if (events >= wakeup_events) {
5808 local_sub(wakeup_events, &rb->events);
5809 local_inc(&rb->wakeup);
5810 }
5811 }
5812 }
5813 }
5814
5815 void perf_prepare_sample(struct perf_event_header *header,
5816 struct perf_sample_data *data,
5817 struct perf_event *event,
5818 struct pt_regs *regs)
5819 {
5820 u64 sample_type = event->attr.sample_type;
5821
5822 header->type = PERF_RECORD_SAMPLE;
5823 header->size = sizeof(*header) + event->header_size;
5824
5825 header->misc = 0;
5826 header->misc |= perf_misc_flags(regs);
5827
5828 __perf_event_header__init_id(header, data, event);
5829
5830 if (sample_type & PERF_SAMPLE_IP)
5831 data->ip = perf_instruction_pointer(regs);
5832
5833 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5834 int size = 1;
5835
5836 data->callchain = perf_callchain(event, regs);
5837
5838 if (data->callchain)
5839 size += data->callchain->nr;
5840
5841 header->size += size * sizeof(u64);
5842 }
5843
5844 if (sample_type & PERF_SAMPLE_RAW) {
5845 struct perf_raw_record *raw = data->raw;
5846 int size;
5847
5848 if (raw) {
5849 struct perf_raw_frag *frag = &raw->frag;
5850 u32 sum = 0;
5851
5852 do {
5853 sum += frag->size;
5854 if (perf_raw_frag_last(frag))
5855 break;
5856 frag = frag->next;
5857 } while (1);
5858
5859 size = round_up(sum + sizeof(u32), sizeof(u64));
5860 raw->size = size - sizeof(u32);
5861 frag->pad = raw->size - sum;
5862 } else {
5863 size = sizeof(u64);
5864 }
5865
5866 header->size += size;
5867 }
5868
5869 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5870 int size = sizeof(u64); /* nr */
5871 if (data->br_stack) {
5872 size += data->br_stack->nr
5873 * sizeof(struct perf_branch_entry);
5874 }
5875 header->size += size;
5876 }
5877
5878 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5879 perf_sample_regs_user(&data->regs_user, regs,
5880 &data->regs_user_copy);
5881
5882 if (sample_type & PERF_SAMPLE_REGS_USER) {
5883 /* regs dump ABI info */
5884 int size = sizeof(u64);
5885
5886 if (data->regs_user.regs) {
5887 u64 mask = event->attr.sample_regs_user;
5888 size += hweight64(mask) * sizeof(u64);
5889 }
5890
5891 header->size += size;
5892 }
5893
5894 if (sample_type & PERF_SAMPLE_STACK_USER) {
5895 /*
5896 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5897 * processed as the last one or have additional check added
5898 * in case new sample type is added, because we could eat
5899 * up the rest of the sample size.
5900 */
5901 u16 stack_size = event->attr.sample_stack_user;
5902 u16 size = sizeof(u64);
5903
5904 stack_size = perf_sample_ustack_size(stack_size, header->size,
5905 data->regs_user.regs);
5906
5907 /*
5908 * If there is something to dump, add space for the dump
5909 * itself and for the field that tells the dynamic size,
5910 * which is how many have been actually dumped.
5911 */
5912 if (stack_size)
5913 size += sizeof(u64) + stack_size;
5914
5915 data->stack_user_size = stack_size;
5916 header->size += size;
5917 }
5918
5919 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5920 /* regs dump ABI info */
5921 int size = sizeof(u64);
5922
5923 perf_sample_regs_intr(&data->regs_intr, regs);
5924
5925 if (data->regs_intr.regs) {
5926 u64 mask = event->attr.sample_regs_intr;
5927
5928 size += hweight64(mask) * sizeof(u64);
5929 }
5930
5931 header->size += size;
5932 }
5933 }
5934
5935 static void __always_inline
5936 __perf_event_output(struct perf_event *event,
5937 struct perf_sample_data *data,
5938 struct pt_regs *regs,
5939 int (*output_begin)(struct perf_output_handle *,
5940 struct perf_event *,
5941 unsigned int))
5942 {
5943 struct perf_output_handle handle;
5944 struct perf_event_header header;
5945
5946 /* protect the callchain buffers */
5947 rcu_read_lock();
5948
5949 perf_prepare_sample(&header, data, event, regs);
5950
5951 if (output_begin(&handle, event, header.size))
5952 goto exit;
5953
5954 perf_output_sample(&handle, &header, data, event);
5955
5956 perf_output_end(&handle);
5957
5958 exit:
5959 rcu_read_unlock();
5960 }
5961
5962 void
5963 perf_event_output_forward(struct perf_event *event,
5964 struct perf_sample_data *data,
5965 struct pt_regs *regs)
5966 {
5967 __perf_event_output(event, data, regs, perf_output_begin_forward);
5968 }
5969
5970 void
5971 perf_event_output_backward(struct perf_event *event,
5972 struct perf_sample_data *data,
5973 struct pt_regs *regs)
5974 {
5975 __perf_event_output(event, data, regs, perf_output_begin_backward);
5976 }
5977
5978 void
5979 perf_event_output(struct perf_event *event,
5980 struct perf_sample_data *data,
5981 struct pt_regs *regs)
5982 {
5983 __perf_event_output(event, data, regs, perf_output_begin);
5984 }
5985
5986 /*
5987 * read event_id
5988 */
5989
5990 struct perf_read_event {
5991 struct perf_event_header header;
5992
5993 u32 pid;
5994 u32 tid;
5995 };
5996
5997 static void
5998 perf_event_read_event(struct perf_event *event,
5999 struct task_struct *task)
6000 {
6001 struct perf_output_handle handle;
6002 struct perf_sample_data sample;
6003 struct perf_read_event read_event = {
6004 .header = {
6005 .type = PERF_RECORD_READ,
6006 .misc = 0,
6007 .size = sizeof(read_event) + event->read_size,
6008 },
6009 .pid = perf_event_pid(event, task),
6010 .tid = perf_event_tid(event, task),
6011 };
6012 int ret;
6013
6014 perf_event_header__init_id(&read_event.header, &sample, event);
6015 ret = perf_output_begin(&handle, event, read_event.header.size);
6016 if (ret)
6017 return;
6018
6019 perf_output_put(&handle, read_event);
6020 perf_output_read(&handle, event);
6021 perf_event__output_id_sample(event, &handle, &sample);
6022
6023 perf_output_end(&handle);
6024 }
6025
6026 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6027
6028 static void
6029 perf_iterate_ctx(struct perf_event_context *ctx,
6030 perf_iterate_f output,
6031 void *data, bool all)
6032 {
6033 struct perf_event *event;
6034
6035 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6036 if (!all) {
6037 if (event->state < PERF_EVENT_STATE_INACTIVE)
6038 continue;
6039 if (!event_filter_match(event))
6040 continue;
6041 }
6042
6043 output(event, data);
6044 }
6045 }
6046
6047 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6048 {
6049 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6050 struct perf_event *event;
6051
6052 list_for_each_entry_rcu(event, &pel->list, sb_list) {
6053 /*
6054 * Skip events that are not fully formed yet; ensure that
6055 * if we observe event->ctx, both event and ctx will be
6056 * complete enough. See perf_install_in_context().
6057 */
6058 if (!smp_load_acquire(&event->ctx))
6059 continue;
6060
6061 if (event->state < PERF_EVENT_STATE_INACTIVE)
6062 continue;
6063 if (!event_filter_match(event))
6064 continue;
6065 output(event, data);
6066 }
6067 }
6068
6069 /*
6070 * Iterate all events that need to receive side-band events.
6071 *
6072 * For new callers; ensure that account_pmu_sb_event() includes
6073 * your event, otherwise it might not get delivered.
6074 */
6075 static void
6076 perf_iterate_sb(perf_iterate_f output, void *data,
6077 struct perf_event_context *task_ctx)
6078 {
6079 struct perf_event_context *ctx;
6080 int ctxn;
6081
6082 rcu_read_lock();
6083 preempt_disable();
6084
6085 /*
6086 * If we have task_ctx != NULL we only notify the task context itself.
6087 * The task_ctx is set only for EXIT events before releasing task
6088 * context.
6089 */
6090 if (task_ctx) {
6091 perf_iterate_ctx(task_ctx, output, data, false);
6092 goto done;
6093 }
6094
6095 perf_iterate_sb_cpu(output, data);
6096
6097 for_each_task_context_nr(ctxn) {
6098 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6099 if (ctx)
6100 perf_iterate_ctx(ctx, output, data, false);
6101 }
6102 done:
6103 preempt_enable();
6104 rcu_read_unlock();
6105 }
6106
6107 /*
6108 * Clear all file-based filters at exec, they'll have to be
6109 * re-instated when/if these objects are mmapped again.
6110 */
6111 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6112 {
6113 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6114 struct perf_addr_filter *filter;
6115 unsigned int restart = 0, count = 0;
6116 unsigned long flags;
6117
6118 if (!has_addr_filter(event))
6119 return;
6120
6121 raw_spin_lock_irqsave(&ifh->lock, flags);
6122 list_for_each_entry(filter, &ifh->list, entry) {
6123 if (filter->inode) {
6124 event->addr_filters_offs[count] = 0;
6125 restart++;
6126 }
6127
6128 count++;
6129 }
6130
6131 if (restart)
6132 event->addr_filters_gen++;
6133 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6134
6135 if (restart)
6136 perf_event_stop(event, 1);
6137 }
6138
6139 void perf_event_exec(void)
6140 {
6141 struct perf_event_context *ctx;
6142 int ctxn;
6143
6144 rcu_read_lock();
6145 for_each_task_context_nr(ctxn) {
6146 ctx = current->perf_event_ctxp[ctxn];
6147 if (!ctx)
6148 continue;
6149
6150 perf_event_enable_on_exec(ctxn);
6151
6152 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6153 true);
6154 }
6155 rcu_read_unlock();
6156 }
6157
6158 struct remote_output {
6159 struct ring_buffer *rb;
6160 int err;
6161 };
6162
6163 static void __perf_event_output_stop(struct perf_event *event, void *data)
6164 {
6165 struct perf_event *parent = event->parent;
6166 struct remote_output *ro = data;
6167 struct ring_buffer *rb = ro->rb;
6168 struct stop_event_data sd = {
6169 .event = event,
6170 };
6171
6172 if (!has_aux(event))
6173 return;
6174
6175 if (!parent)
6176 parent = event;
6177
6178 /*
6179 * In case of inheritance, it will be the parent that links to the
6180 * ring-buffer, but it will be the child that's actually using it.
6181 *
6182 * We are using event::rb to determine if the event should be stopped,
6183 * however this may race with ring_buffer_attach() (through set_output),
6184 * which will make us skip the event that actually needs to be stopped.
6185 * So ring_buffer_attach() has to stop an aux event before re-assigning
6186 * its rb pointer.
6187 */
6188 if (rcu_dereference(parent->rb) == rb)
6189 ro->err = __perf_event_stop(&sd);
6190 }
6191
6192 static int __perf_pmu_output_stop(void *info)
6193 {
6194 struct perf_event *event = info;
6195 struct pmu *pmu = event->pmu;
6196 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6197 struct remote_output ro = {
6198 .rb = event->rb,
6199 };
6200
6201 rcu_read_lock();
6202 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6203 if (cpuctx->task_ctx)
6204 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6205 &ro, false);
6206 rcu_read_unlock();
6207
6208 return ro.err;
6209 }
6210
6211 static void perf_pmu_output_stop(struct perf_event *event)
6212 {
6213 struct perf_event *iter;
6214 int err, cpu;
6215
6216 restart:
6217 rcu_read_lock();
6218 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6219 /*
6220 * For per-CPU events, we need to make sure that neither they
6221 * nor their children are running; for cpu==-1 events it's
6222 * sufficient to stop the event itself if it's active, since
6223 * it can't have children.
6224 */
6225 cpu = iter->cpu;
6226 if (cpu == -1)
6227 cpu = READ_ONCE(iter->oncpu);
6228
6229 if (cpu == -1)
6230 continue;
6231
6232 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6233 if (err == -EAGAIN) {
6234 rcu_read_unlock();
6235 goto restart;
6236 }
6237 }
6238 rcu_read_unlock();
6239 }
6240
6241 /*
6242 * task tracking -- fork/exit
6243 *
6244 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6245 */
6246
6247 struct perf_task_event {
6248 struct task_struct *task;
6249 struct perf_event_context *task_ctx;
6250
6251 struct {
6252 struct perf_event_header header;
6253
6254 u32 pid;
6255 u32 ppid;
6256 u32 tid;
6257 u32 ptid;
6258 u64 time;
6259 } event_id;
6260 };
6261
6262 static int perf_event_task_match(struct perf_event *event)
6263 {
6264 return event->attr.comm || event->attr.mmap ||
6265 event->attr.mmap2 || event->attr.mmap_data ||
6266 event->attr.task;
6267 }
6268
6269 static void perf_event_task_output(struct perf_event *event,
6270 void *data)
6271 {
6272 struct perf_task_event *task_event = data;
6273 struct perf_output_handle handle;
6274 struct perf_sample_data sample;
6275 struct task_struct *task = task_event->task;
6276 int ret, size = task_event->event_id.header.size;
6277
6278 if (!perf_event_task_match(event))
6279 return;
6280
6281 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6282
6283 ret = perf_output_begin(&handle, event,
6284 task_event->event_id.header.size);
6285 if (ret)
6286 goto out;
6287
6288 task_event->event_id.pid = perf_event_pid(event, task);
6289 task_event->event_id.ppid = perf_event_pid(event, current);
6290
6291 task_event->event_id.tid = perf_event_tid(event, task);
6292 task_event->event_id.ptid = perf_event_tid(event, current);
6293
6294 task_event->event_id.time = perf_event_clock(event);
6295
6296 perf_output_put(&handle, task_event->event_id);
6297
6298 perf_event__output_id_sample(event, &handle, &sample);
6299
6300 perf_output_end(&handle);
6301 out:
6302 task_event->event_id.header.size = size;
6303 }
6304
6305 static void perf_event_task(struct task_struct *task,
6306 struct perf_event_context *task_ctx,
6307 int new)
6308 {
6309 struct perf_task_event task_event;
6310
6311 if (!atomic_read(&nr_comm_events) &&
6312 !atomic_read(&nr_mmap_events) &&
6313 !atomic_read(&nr_task_events))
6314 return;
6315
6316 task_event = (struct perf_task_event){
6317 .task = task,
6318 .task_ctx = task_ctx,
6319 .event_id = {
6320 .header = {
6321 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6322 .misc = 0,
6323 .size = sizeof(task_event.event_id),
6324 },
6325 /* .pid */
6326 /* .ppid */
6327 /* .tid */
6328 /* .ptid */
6329 /* .time */
6330 },
6331 };
6332
6333 perf_iterate_sb(perf_event_task_output,
6334 &task_event,
6335 task_ctx);
6336 }
6337
6338 void perf_event_fork(struct task_struct *task)
6339 {
6340 perf_event_task(task, NULL, 1);
6341 }
6342
6343 /*
6344 * comm tracking
6345 */
6346
6347 struct perf_comm_event {
6348 struct task_struct *task;
6349 char *comm;
6350 int comm_size;
6351
6352 struct {
6353 struct perf_event_header header;
6354
6355 u32 pid;
6356 u32 tid;
6357 } event_id;
6358 };
6359
6360 static int perf_event_comm_match(struct perf_event *event)
6361 {
6362 return event->attr.comm;
6363 }
6364
6365 static void perf_event_comm_output(struct perf_event *event,
6366 void *data)
6367 {
6368 struct perf_comm_event *comm_event = data;
6369 struct perf_output_handle handle;
6370 struct perf_sample_data sample;
6371 int size = comm_event->event_id.header.size;
6372 int ret;
6373
6374 if (!perf_event_comm_match(event))
6375 return;
6376
6377 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6378 ret = perf_output_begin(&handle, event,
6379 comm_event->event_id.header.size);
6380
6381 if (ret)
6382 goto out;
6383
6384 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6385 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6386
6387 perf_output_put(&handle, comm_event->event_id);
6388 __output_copy(&handle, comm_event->comm,
6389 comm_event->comm_size);
6390
6391 perf_event__output_id_sample(event, &handle, &sample);
6392
6393 perf_output_end(&handle);
6394 out:
6395 comm_event->event_id.header.size = size;
6396 }
6397
6398 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6399 {
6400 char comm[TASK_COMM_LEN];
6401 unsigned int size;
6402
6403 memset(comm, 0, sizeof(comm));
6404 strlcpy(comm, comm_event->task->comm, sizeof(comm));
6405 size = ALIGN(strlen(comm)+1, sizeof(u64));
6406
6407 comm_event->comm = comm;
6408 comm_event->comm_size = size;
6409
6410 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6411
6412 perf_iterate_sb(perf_event_comm_output,
6413 comm_event,
6414 NULL);
6415 }
6416
6417 void perf_event_comm(struct task_struct *task, bool exec)
6418 {
6419 struct perf_comm_event comm_event;
6420
6421 if (!atomic_read(&nr_comm_events))
6422 return;
6423
6424 comm_event = (struct perf_comm_event){
6425 .task = task,
6426 /* .comm */
6427 /* .comm_size */
6428 .event_id = {
6429 .header = {
6430 .type = PERF_RECORD_COMM,
6431 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6432 /* .size */
6433 },
6434 /* .pid */
6435 /* .tid */
6436 },
6437 };
6438
6439 perf_event_comm_event(&comm_event);
6440 }
6441
6442 /*
6443 * mmap tracking
6444 */
6445
6446 struct perf_mmap_event {
6447 struct vm_area_struct *vma;
6448
6449 const char *file_name;
6450 int file_size;
6451 int maj, min;
6452 u64 ino;
6453 u64 ino_generation;
6454 u32 prot, flags;
6455
6456 struct {
6457 struct perf_event_header header;
6458
6459 u32 pid;
6460 u32 tid;
6461 u64 start;
6462 u64 len;
6463 u64 pgoff;
6464 } event_id;
6465 };
6466
6467 static int perf_event_mmap_match(struct perf_event *event,
6468 void *data)
6469 {
6470 struct perf_mmap_event *mmap_event = data;
6471 struct vm_area_struct *vma = mmap_event->vma;
6472 int executable = vma->vm_flags & VM_EXEC;
6473
6474 return (!executable && event->attr.mmap_data) ||
6475 (executable && (event->attr.mmap || event->attr.mmap2));
6476 }
6477
6478 static void perf_event_mmap_output(struct perf_event *event,
6479 void *data)
6480 {
6481 struct perf_mmap_event *mmap_event = data;
6482 struct perf_output_handle handle;
6483 struct perf_sample_data sample;
6484 int size = mmap_event->event_id.header.size;
6485 int ret;
6486
6487 if (!perf_event_mmap_match(event, data))
6488 return;
6489
6490 if (event->attr.mmap2) {
6491 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6492 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6493 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6494 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6495 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6496 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6497 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6498 }
6499
6500 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6501 ret = perf_output_begin(&handle, event,
6502 mmap_event->event_id.header.size);
6503 if (ret)
6504 goto out;
6505
6506 mmap_event->event_id.pid = perf_event_pid(event, current);
6507 mmap_event->event_id.tid = perf_event_tid(event, current);
6508
6509 perf_output_put(&handle, mmap_event->event_id);
6510
6511 if (event->attr.mmap2) {
6512 perf_output_put(&handle, mmap_event->maj);
6513 perf_output_put(&handle, mmap_event->min);
6514 perf_output_put(&handle, mmap_event->ino);
6515 perf_output_put(&handle, mmap_event->ino_generation);
6516 perf_output_put(&handle, mmap_event->prot);
6517 perf_output_put(&handle, mmap_event->flags);
6518 }
6519
6520 __output_copy(&handle, mmap_event->file_name,
6521 mmap_event->file_size);
6522
6523 perf_event__output_id_sample(event, &handle, &sample);
6524
6525 perf_output_end(&handle);
6526 out:
6527 mmap_event->event_id.header.size = size;
6528 }
6529
6530 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6531 {
6532 struct vm_area_struct *vma = mmap_event->vma;
6533 struct file *file = vma->vm_file;
6534 int maj = 0, min = 0;
6535 u64 ino = 0, gen = 0;
6536 u32 prot = 0, flags = 0;
6537 unsigned int size;
6538 char tmp[16];
6539 char *buf = NULL;
6540 char *name;
6541
6542 if (file) {
6543 struct inode *inode;
6544 dev_t dev;
6545
6546 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6547 if (!buf) {
6548 name = "//enomem";
6549 goto cpy_name;
6550 }
6551 /*
6552 * d_path() works from the end of the rb backwards, so we
6553 * need to add enough zero bytes after the string to handle
6554 * the 64bit alignment we do later.
6555 */
6556 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6557 if (IS_ERR(name)) {
6558 name = "//toolong";
6559 goto cpy_name;
6560 }
6561 inode = file_inode(vma->vm_file);
6562 dev = inode->i_sb->s_dev;
6563 ino = inode->i_ino;
6564 gen = inode->i_generation;
6565 maj = MAJOR(dev);
6566 min = MINOR(dev);
6567
6568 if (vma->vm_flags & VM_READ)
6569 prot |= PROT_READ;
6570 if (vma->vm_flags & VM_WRITE)
6571 prot |= PROT_WRITE;
6572 if (vma->vm_flags & VM_EXEC)
6573 prot |= PROT_EXEC;
6574
6575 if (vma->vm_flags & VM_MAYSHARE)
6576 flags = MAP_SHARED;
6577 else
6578 flags = MAP_PRIVATE;
6579
6580 if (vma->vm_flags & VM_DENYWRITE)
6581 flags |= MAP_DENYWRITE;
6582 if (vma->vm_flags & VM_MAYEXEC)
6583 flags |= MAP_EXECUTABLE;
6584 if (vma->vm_flags & VM_LOCKED)
6585 flags |= MAP_LOCKED;
6586 if (vma->vm_flags & VM_HUGETLB)
6587 flags |= MAP_HUGETLB;
6588
6589 goto got_name;
6590 } else {
6591 if (vma->vm_ops && vma->vm_ops->name) {
6592 name = (char *) vma->vm_ops->name(vma);
6593 if (name)
6594 goto cpy_name;
6595 }
6596
6597 name = (char *)arch_vma_name(vma);
6598 if (name)
6599 goto cpy_name;
6600
6601 if (vma->vm_start <= vma->vm_mm->start_brk &&
6602 vma->vm_end >= vma->vm_mm->brk) {
6603 name = "[heap]";
6604 goto cpy_name;
6605 }
6606 if (vma->vm_start <= vma->vm_mm->start_stack &&
6607 vma->vm_end >= vma->vm_mm->start_stack) {
6608 name = "[stack]";
6609 goto cpy_name;
6610 }
6611
6612 name = "//anon";
6613 goto cpy_name;
6614 }
6615
6616 cpy_name:
6617 strlcpy(tmp, name, sizeof(tmp));
6618 name = tmp;
6619 got_name:
6620 /*
6621 * Since our buffer works in 8 byte units we need to align our string
6622 * size to a multiple of 8. However, we must guarantee the tail end is
6623 * zero'd out to avoid leaking random bits to userspace.
6624 */
6625 size = strlen(name)+1;
6626 while (!IS_ALIGNED(size, sizeof(u64)))
6627 name[size++] = '\0';
6628
6629 mmap_event->file_name = name;
6630 mmap_event->file_size = size;
6631 mmap_event->maj = maj;
6632 mmap_event->min = min;
6633 mmap_event->ino = ino;
6634 mmap_event->ino_generation = gen;
6635 mmap_event->prot = prot;
6636 mmap_event->flags = flags;
6637
6638 if (!(vma->vm_flags & VM_EXEC))
6639 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6640
6641 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6642
6643 perf_iterate_sb(perf_event_mmap_output,
6644 mmap_event,
6645 NULL);
6646
6647 kfree(buf);
6648 }
6649
6650 /*
6651 * Check whether inode and address range match filter criteria.
6652 */
6653 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6654 struct file *file, unsigned long offset,
6655 unsigned long size)
6656 {
6657 if (filter->inode != file->f_inode)
6658 return false;
6659
6660 if (filter->offset > offset + size)
6661 return false;
6662
6663 if (filter->offset + filter->size < offset)
6664 return false;
6665
6666 return true;
6667 }
6668
6669 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6670 {
6671 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6672 struct vm_area_struct *vma = data;
6673 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6674 struct file *file = vma->vm_file;
6675 struct perf_addr_filter *filter;
6676 unsigned int restart = 0, count = 0;
6677
6678 if (!has_addr_filter(event))
6679 return;
6680
6681 if (!file)
6682 return;
6683
6684 raw_spin_lock_irqsave(&ifh->lock, flags);
6685 list_for_each_entry(filter, &ifh->list, entry) {
6686 if (perf_addr_filter_match(filter, file, off,
6687 vma->vm_end - vma->vm_start)) {
6688 event->addr_filters_offs[count] = vma->vm_start;
6689 restart++;
6690 }
6691
6692 count++;
6693 }
6694
6695 if (restart)
6696 event->addr_filters_gen++;
6697 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6698
6699 if (restart)
6700 perf_event_stop(event, 1);
6701 }
6702
6703 /*
6704 * Adjust all task's events' filters to the new vma
6705 */
6706 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6707 {
6708 struct perf_event_context *ctx;
6709 int ctxn;
6710
6711 /*
6712 * Data tracing isn't supported yet and as such there is no need
6713 * to keep track of anything that isn't related to executable code:
6714 */
6715 if (!(vma->vm_flags & VM_EXEC))
6716 return;
6717
6718 rcu_read_lock();
6719 for_each_task_context_nr(ctxn) {
6720 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6721 if (!ctx)
6722 continue;
6723
6724 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6725 }
6726 rcu_read_unlock();
6727 }
6728
6729 void perf_event_mmap(struct vm_area_struct *vma)
6730 {
6731 struct perf_mmap_event mmap_event;
6732
6733 if (!atomic_read(&nr_mmap_events))
6734 return;
6735
6736 mmap_event = (struct perf_mmap_event){
6737 .vma = vma,
6738 /* .file_name */
6739 /* .file_size */
6740 .event_id = {
6741 .header = {
6742 .type = PERF_RECORD_MMAP,
6743 .misc = PERF_RECORD_MISC_USER,
6744 /* .size */
6745 },
6746 /* .pid */
6747 /* .tid */
6748 .start = vma->vm_start,
6749 .len = vma->vm_end - vma->vm_start,
6750 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
6751 },
6752 /* .maj (attr_mmap2 only) */
6753 /* .min (attr_mmap2 only) */
6754 /* .ino (attr_mmap2 only) */
6755 /* .ino_generation (attr_mmap2 only) */
6756 /* .prot (attr_mmap2 only) */
6757 /* .flags (attr_mmap2 only) */
6758 };
6759
6760 perf_addr_filters_adjust(vma);
6761 perf_event_mmap_event(&mmap_event);
6762 }
6763
6764 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6765 unsigned long size, u64 flags)
6766 {
6767 struct perf_output_handle handle;
6768 struct perf_sample_data sample;
6769 struct perf_aux_event {
6770 struct perf_event_header header;
6771 u64 offset;
6772 u64 size;
6773 u64 flags;
6774 } rec = {
6775 .header = {
6776 .type = PERF_RECORD_AUX,
6777 .misc = 0,
6778 .size = sizeof(rec),
6779 },
6780 .offset = head,
6781 .size = size,
6782 .flags = flags,
6783 };
6784 int ret;
6785
6786 perf_event_header__init_id(&rec.header, &sample, event);
6787 ret = perf_output_begin(&handle, event, rec.header.size);
6788
6789 if (ret)
6790 return;
6791
6792 perf_output_put(&handle, rec);
6793 perf_event__output_id_sample(event, &handle, &sample);
6794
6795 perf_output_end(&handle);
6796 }
6797
6798 /*
6799 * Lost/dropped samples logging
6800 */
6801 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6802 {
6803 struct perf_output_handle handle;
6804 struct perf_sample_data sample;
6805 int ret;
6806
6807 struct {
6808 struct perf_event_header header;
6809 u64 lost;
6810 } lost_samples_event = {
6811 .header = {
6812 .type = PERF_RECORD_LOST_SAMPLES,
6813 .misc = 0,
6814 .size = sizeof(lost_samples_event),
6815 },
6816 .lost = lost,
6817 };
6818
6819 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6820
6821 ret = perf_output_begin(&handle, event,
6822 lost_samples_event.header.size);
6823 if (ret)
6824 return;
6825
6826 perf_output_put(&handle, lost_samples_event);
6827 perf_event__output_id_sample(event, &handle, &sample);
6828 perf_output_end(&handle);
6829 }
6830
6831 /*
6832 * context_switch tracking
6833 */
6834
6835 struct perf_switch_event {
6836 struct task_struct *task;
6837 struct task_struct *next_prev;
6838
6839 struct {
6840 struct perf_event_header header;
6841 u32 next_prev_pid;
6842 u32 next_prev_tid;
6843 } event_id;
6844 };
6845
6846 static int perf_event_switch_match(struct perf_event *event)
6847 {
6848 return event->attr.context_switch;
6849 }
6850
6851 static void perf_event_switch_output(struct perf_event *event, void *data)
6852 {
6853 struct perf_switch_event *se = data;
6854 struct perf_output_handle handle;
6855 struct perf_sample_data sample;
6856 int ret;
6857
6858 if (!perf_event_switch_match(event))
6859 return;
6860
6861 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6862 if (event->ctx->task) {
6863 se->event_id.header.type = PERF_RECORD_SWITCH;
6864 se->event_id.header.size = sizeof(se->event_id.header);
6865 } else {
6866 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6867 se->event_id.header.size = sizeof(se->event_id);
6868 se->event_id.next_prev_pid =
6869 perf_event_pid(event, se->next_prev);
6870 se->event_id.next_prev_tid =
6871 perf_event_tid(event, se->next_prev);
6872 }
6873
6874 perf_event_header__init_id(&se->event_id.header, &sample, event);
6875
6876 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6877 if (ret)
6878 return;
6879
6880 if (event->ctx->task)
6881 perf_output_put(&handle, se->event_id.header);
6882 else
6883 perf_output_put(&handle, se->event_id);
6884
6885 perf_event__output_id_sample(event, &handle, &sample);
6886
6887 perf_output_end(&handle);
6888 }
6889
6890 static void perf_event_switch(struct task_struct *task,
6891 struct task_struct *next_prev, bool sched_in)
6892 {
6893 struct perf_switch_event switch_event;
6894
6895 /* N.B. caller checks nr_switch_events != 0 */
6896
6897 switch_event = (struct perf_switch_event){
6898 .task = task,
6899 .next_prev = next_prev,
6900 .event_id = {
6901 .header = {
6902 /* .type */
6903 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6904 /* .size */
6905 },
6906 /* .next_prev_pid */
6907 /* .next_prev_tid */
6908 },
6909 };
6910
6911 perf_iterate_sb(perf_event_switch_output,
6912 &switch_event,
6913 NULL);
6914 }
6915
6916 /*
6917 * IRQ throttle logging
6918 */
6919
6920 static void perf_log_throttle(struct perf_event *event, int enable)
6921 {
6922 struct perf_output_handle handle;
6923 struct perf_sample_data sample;
6924 int ret;
6925
6926 struct {
6927 struct perf_event_header header;
6928 u64 time;
6929 u64 id;
6930 u64 stream_id;
6931 } throttle_event = {
6932 .header = {
6933 .type = PERF_RECORD_THROTTLE,
6934 .misc = 0,
6935 .size = sizeof(throttle_event),
6936 },
6937 .time = perf_event_clock(event),
6938 .id = primary_event_id(event),
6939 .stream_id = event->id,
6940 };
6941
6942 if (enable)
6943 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6944
6945 perf_event_header__init_id(&throttle_event.header, &sample, event);
6946
6947 ret = perf_output_begin(&handle, event,
6948 throttle_event.header.size);
6949 if (ret)
6950 return;
6951
6952 perf_output_put(&handle, throttle_event);
6953 perf_event__output_id_sample(event, &handle, &sample);
6954 perf_output_end(&handle);
6955 }
6956
6957 static void perf_log_itrace_start(struct perf_event *event)
6958 {
6959 struct perf_output_handle handle;
6960 struct perf_sample_data sample;
6961 struct perf_aux_event {
6962 struct perf_event_header header;
6963 u32 pid;
6964 u32 tid;
6965 } rec;
6966 int ret;
6967
6968 if (event->parent)
6969 event = event->parent;
6970
6971 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6972 event->hw.itrace_started)
6973 return;
6974
6975 rec.header.type = PERF_RECORD_ITRACE_START;
6976 rec.header.misc = 0;
6977 rec.header.size = sizeof(rec);
6978 rec.pid = perf_event_pid(event, current);
6979 rec.tid = perf_event_tid(event, current);
6980
6981 perf_event_header__init_id(&rec.header, &sample, event);
6982 ret = perf_output_begin(&handle, event, rec.header.size);
6983
6984 if (ret)
6985 return;
6986
6987 perf_output_put(&handle, rec);
6988 perf_event__output_id_sample(event, &handle, &sample);
6989
6990 perf_output_end(&handle);
6991 }
6992
6993 /*
6994 * Generic event overflow handling, sampling.
6995 */
6996
6997 static int __perf_event_overflow(struct perf_event *event,
6998 int throttle, struct perf_sample_data *data,
6999 struct pt_regs *regs)
7000 {
7001 int events = atomic_read(&event->event_limit);
7002 struct hw_perf_event *hwc = &event->hw;
7003 u64 seq;
7004 int ret = 0;
7005
7006 /*
7007 * Non-sampling counters might still use the PMI to fold short
7008 * hardware counters, ignore those.
7009 */
7010 if (unlikely(!is_sampling_event(event)))
7011 return 0;
7012
7013 seq = __this_cpu_read(perf_throttled_seq);
7014 if (seq != hwc->interrupts_seq) {
7015 hwc->interrupts_seq = seq;
7016 hwc->interrupts = 1;
7017 } else {
7018 hwc->interrupts++;
7019 if (unlikely(throttle
7020 && hwc->interrupts >= max_samples_per_tick)) {
7021 __this_cpu_inc(perf_throttled_count);
7022 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7023 hwc->interrupts = MAX_INTERRUPTS;
7024 perf_log_throttle(event, 0);
7025 ret = 1;
7026 }
7027 }
7028
7029 if (event->attr.freq) {
7030 u64 now = perf_clock();
7031 s64 delta = now - hwc->freq_time_stamp;
7032
7033 hwc->freq_time_stamp = now;
7034
7035 if (delta > 0 && delta < 2*TICK_NSEC)
7036 perf_adjust_period(event, delta, hwc->last_period, true);
7037 }
7038
7039 /*
7040 * XXX event_limit might not quite work as expected on inherited
7041 * events
7042 */
7043
7044 event->pending_kill = POLL_IN;
7045 if (events && atomic_dec_and_test(&event->event_limit)) {
7046 ret = 1;
7047 event->pending_kill = POLL_HUP;
7048 event->pending_disable = 1;
7049 irq_work_queue(&event->pending);
7050 }
7051
7052 event->overflow_handler(event, data, regs);
7053
7054 if (*perf_event_fasync(event) && event->pending_kill) {
7055 event->pending_wakeup = 1;
7056 irq_work_queue(&event->pending);
7057 }
7058
7059 return ret;
7060 }
7061
7062 int perf_event_overflow(struct perf_event *event,
7063 struct perf_sample_data *data,
7064 struct pt_regs *regs)
7065 {
7066 return __perf_event_overflow(event, 1, data, regs);
7067 }
7068
7069 /*
7070 * Generic software event infrastructure
7071 */
7072
7073 struct swevent_htable {
7074 struct swevent_hlist *swevent_hlist;
7075 struct mutex hlist_mutex;
7076 int hlist_refcount;
7077
7078 /* Recursion avoidance in each contexts */
7079 int recursion[PERF_NR_CONTEXTS];
7080 };
7081
7082 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7083
7084 /*
7085 * We directly increment event->count and keep a second value in
7086 * event->hw.period_left to count intervals. This period event
7087 * is kept in the range [-sample_period, 0] so that we can use the
7088 * sign as trigger.
7089 */
7090
7091 u64 perf_swevent_set_period(struct perf_event *event)
7092 {
7093 struct hw_perf_event *hwc = &event->hw;
7094 u64 period = hwc->last_period;
7095 u64 nr, offset;
7096 s64 old, val;
7097
7098 hwc->last_period = hwc->sample_period;
7099
7100 again:
7101 old = val = local64_read(&hwc->period_left);
7102 if (val < 0)
7103 return 0;
7104
7105 nr = div64_u64(period + val, period);
7106 offset = nr * period;
7107 val -= offset;
7108 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7109 goto again;
7110
7111 return nr;
7112 }
7113
7114 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7115 struct perf_sample_data *data,
7116 struct pt_regs *regs)
7117 {
7118 struct hw_perf_event *hwc = &event->hw;
7119 int throttle = 0;
7120
7121 if (!overflow)
7122 overflow = perf_swevent_set_period(event);
7123
7124 if (hwc->interrupts == MAX_INTERRUPTS)
7125 return;
7126
7127 for (; overflow; overflow--) {
7128 if (__perf_event_overflow(event, throttle,
7129 data, regs)) {
7130 /*
7131 * We inhibit the overflow from happening when
7132 * hwc->interrupts == MAX_INTERRUPTS.
7133 */
7134 break;
7135 }
7136 throttle = 1;
7137 }
7138 }
7139
7140 static void perf_swevent_event(struct perf_event *event, u64 nr,
7141 struct perf_sample_data *data,
7142 struct pt_regs *regs)
7143 {
7144 struct hw_perf_event *hwc = &event->hw;
7145
7146 local64_add(nr, &event->count);
7147
7148 if (!regs)
7149 return;
7150
7151 if (!is_sampling_event(event))
7152 return;
7153
7154 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7155 data->period = nr;
7156 return perf_swevent_overflow(event, 1, data, regs);
7157 } else
7158 data->period = event->hw.last_period;
7159
7160 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7161 return perf_swevent_overflow(event, 1, data, regs);
7162
7163 if (local64_add_negative(nr, &hwc->period_left))
7164 return;
7165
7166 perf_swevent_overflow(event, 0, data, regs);
7167 }
7168
7169 static int perf_exclude_event(struct perf_event *event,
7170 struct pt_regs *regs)
7171 {
7172 if (event->hw.state & PERF_HES_STOPPED)
7173 return 1;
7174
7175 if (regs) {
7176 if (event->attr.exclude_user && user_mode(regs))
7177 return 1;
7178
7179 if (event->attr.exclude_kernel && !user_mode(regs))
7180 return 1;
7181 }
7182
7183 return 0;
7184 }
7185
7186 static int perf_swevent_match(struct perf_event *event,
7187 enum perf_type_id type,
7188 u32 event_id,
7189 struct perf_sample_data *data,
7190 struct pt_regs *regs)
7191 {
7192 if (event->attr.type != type)
7193 return 0;
7194
7195 if (event->attr.config != event_id)
7196 return 0;
7197
7198 if (perf_exclude_event(event, regs))
7199 return 0;
7200
7201 return 1;
7202 }
7203
7204 static inline u64 swevent_hash(u64 type, u32 event_id)
7205 {
7206 u64 val = event_id | (type << 32);
7207
7208 return hash_64(val, SWEVENT_HLIST_BITS);
7209 }
7210
7211 static inline struct hlist_head *
7212 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7213 {
7214 u64 hash = swevent_hash(type, event_id);
7215
7216 return &hlist->heads[hash];
7217 }
7218
7219 /* For the read side: events when they trigger */
7220 static inline struct hlist_head *
7221 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7222 {
7223 struct swevent_hlist *hlist;
7224
7225 hlist = rcu_dereference(swhash->swevent_hlist);
7226 if (!hlist)
7227 return NULL;
7228
7229 return __find_swevent_head(hlist, type, event_id);
7230 }
7231
7232 /* For the event head insertion and removal in the hlist */
7233 static inline struct hlist_head *
7234 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7235 {
7236 struct swevent_hlist *hlist;
7237 u32 event_id = event->attr.config;
7238 u64 type = event->attr.type;
7239
7240 /*
7241 * Event scheduling is always serialized against hlist allocation
7242 * and release. Which makes the protected version suitable here.
7243 * The context lock guarantees that.
7244 */
7245 hlist = rcu_dereference_protected(swhash->swevent_hlist,
7246 lockdep_is_held(&event->ctx->lock));
7247 if (!hlist)
7248 return NULL;
7249
7250 return __find_swevent_head(hlist, type, event_id);
7251 }
7252
7253 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7254 u64 nr,
7255 struct perf_sample_data *data,
7256 struct pt_regs *regs)
7257 {
7258 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7259 struct perf_event *event;
7260 struct hlist_head *head;
7261
7262 rcu_read_lock();
7263 head = find_swevent_head_rcu(swhash, type, event_id);
7264 if (!head)
7265 goto end;
7266
7267 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7268 if (perf_swevent_match(event, type, event_id, data, regs))
7269 perf_swevent_event(event, nr, data, regs);
7270 }
7271 end:
7272 rcu_read_unlock();
7273 }
7274
7275 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7276
7277 int perf_swevent_get_recursion_context(void)
7278 {
7279 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7280
7281 return get_recursion_context(swhash->recursion);
7282 }
7283 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7284
7285 void perf_swevent_put_recursion_context(int rctx)
7286 {
7287 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7288
7289 put_recursion_context(swhash->recursion, rctx);
7290 }
7291
7292 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7293 {
7294 struct perf_sample_data data;
7295
7296 if (WARN_ON_ONCE(!regs))
7297 return;
7298
7299 perf_sample_data_init(&data, addr, 0);
7300 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7301 }
7302
7303 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7304 {
7305 int rctx;
7306
7307 preempt_disable_notrace();
7308 rctx = perf_swevent_get_recursion_context();
7309 if (unlikely(rctx < 0))
7310 goto fail;
7311
7312 ___perf_sw_event(event_id, nr, regs, addr);
7313
7314 perf_swevent_put_recursion_context(rctx);
7315 fail:
7316 preempt_enable_notrace();
7317 }
7318
7319 static void perf_swevent_read(struct perf_event *event)
7320 {
7321 }
7322
7323 static int perf_swevent_add(struct perf_event *event, int flags)
7324 {
7325 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7326 struct hw_perf_event *hwc = &event->hw;
7327 struct hlist_head *head;
7328
7329 if (is_sampling_event(event)) {
7330 hwc->last_period = hwc->sample_period;
7331 perf_swevent_set_period(event);
7332 }
7333
7334 hwc->state = !(flags & PERF_EF_START);
7335
7336 head = find_swevent_head(swhash, event);
7337 if (WARN_ON_ONCE(!head))
7338 return -EINVAL;
7339
7340 hlist_add_head_rcu(&event->hlist_entry, head);
7341 perf_event_update_userpage(event);
7342
7343 return 0;
7344 }
7345
7346 static void perf_swevent_del(struct perf_event *event, int flags)
7347 {
7348 hlist_del_rcu(&event->hlist_entry);
7349 }
7350
7351 static void perf_swevent_start(struct perf_event *event, int flags)
7352 {
7353 event->hw.state = 0;
7354 }
7355
7356 static void perf_swevent_stop(struct perf_event *event, int flags)
7357 {
7358 event->hw.state = PERF_HES_STOPPED;
7359 }
7360
7361 /* Deref the hlist from the update side */
7362 static inline struct swevent_hlist *
7363 swevent_hlist_deref(struct swevent_htable *swhash)
7364 {
7365 return rcu_dereference_protected(swhash->swevent_hlist,
7366 lockdep_is_held(&swhash->hlist_mutex));
7367 }
7368
7369 static void swevent_hlist_release(struct swevent_htable *swhash)
7370 {
7371 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7372
7373 if (!hlist)
7374 return;
7375
7376 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7377 kfree_rcu(hlist, rcu_head);
7378 }
7379
7380 static void swevent_hlist_put_cpu(int cpu)
7381 {
7382 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7383
7384 mutex_lock(&swhash->hlist_mutex);
7385
7386 if (!--swhash->hlist_refcount)
7387 swevent_hlist_release(swhash);
7388
7389 mutex_unlock(&swhash->hlist_mutex);
7390 }
7391
7392 static void swevent_hlist_put(void)
7393 {
7394 int cpu;
7395
7396 for_each_possible_cpu(cpu)
7397 swevent_hlist_put_cpu(cpu);
7398 }
7399
7400 static int swevent_hlist_get_cpu(int cpu)
7401 {
7402 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7403 int err = 0;
7404
7405 mutex_lock(&swhash->hlist_mutex);
7406 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7407 struct swevent_hlist *hlist;
7408
7409 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7410 if (!hlist) {
7411 err = -ENOMEM;
7412 goto exit;
7413 }
7414 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7415 }
7416 swhash->hlist_refcount++;
7417 exit:
7418 mutex_unlock(&swhash->hlist_mutex);
7419
7420 return err;
7421 }
7422
7423 static int swevent_hlist_get(void)
7424 {
7425 int err, cpu, failed_cpu;
7426
7427 get_online_cpus();
7428 for_each_possible_cpu(cpu) {
7429 err = swevent_hlist_get_cpu(cpu);
7430 if (err) {
7431 failed_cpu = cpu;
7432 goto fail;
7433 }
7434 }
7435 put_online_cpus();
7436
7437 return 0;
7438 fail:
7439 for_each_possible_cpu(cpu) {
7440 if (cpu == failed_cpu)
7441 break;
7442 swevent_hlist_put_cpu(cpu);
7443 }
7444
7445 put_online_cpus();
7446 return err;
7447 }
7448
7449 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7450
7451 static void sw_perf_event_destroy(struct perf_event *event)
7452 {
7453 u64 event_id = event->attr.config;
7454
7455 WARN_ON(event->parent);
7456
7457 static_key_slow_dec(&perf_swevent_enabled[event_id]);
7458 swevent_hlist_put();
7459 }
7460
7461 static int perf_swevent_init(struct perf_event *event)
7462 {
7463 u64 event_id = event->attr.config;
7464
7465 if (event->attr.type != PERF_TYPE_SOFTWARE)
7466 return -ENOENT;
7467
7468 /*
7469 * no branch sampling for software events
7470 */
7471 if (has_branch_stack(event))
7472 return -EOPNOTSUPP;
7473
7474 switch (event_id) {
7475 case PERF_COUNT_SW_CPU_CLOCK:
7476 case PERF_COUNT_SW_TASK_CLOCK:
7477 return -ENOENT;
7478
7479 default:
7480 break;
7481 }
7482
7483 if (event_id >= PERF_COUNT_SW_MAX)
7484 return -ENOENT;
7485
7486 if (!event->parent) {
7487 int err;
7488
7489 err = swevent_hlist_get();
7490 if (err)
7491 return err;
7492
7493 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7494 event->destroy = sw_perf_event_destroy;
7495 }
7496
7497 return 0;
7498 }
7499
7500 static struct pmu perf_swevent = {
7501 .task_ctx_nr = perf_sw_context,
7502
7503 .capabilities = PERF_PMU_CAP_NO_NMI,
7504
7505 .event_init = perf_swevent_init,
7506 .add = perf_swevent_add,
7507 .del = perf_swevent_del,
7508 .start = perf_swevent_start,
7509 .stop = perf_swevent_stop,
7510 .read = perf_swevent_read,
7511 };
7512
7513 #ifdef CONFIG_EVENT_TRACING
7514
7515 static int perf_tp_filter_match(struct perf_event *event,
7516 struct perf_sample_data *data)
7517 {
7518 void *record = data->raw->frag.data;
7519
7520 /* only top level events have filters set */
7521 if (event->parent)
7522 event = event->parent;
7523
7524 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7525 return 1;
7526 return 0;
7527 }
7528
7529 static int perf_tp_event_match(struct perf_event *event,
7530 struct perf_sample_data *data,
7531 struct pt_regs *regs)
7532 {
7533 if (event->hw.state & PERF_HES_STOPPED)
7534 return 0;
7535 /*
7536 * All tracepoints are from kernel-space.
7537 */
7538 if (event->attr.exclude_kernel)
7539 return 0;
7540
7541 if (!perf_tp_filter_match(event, data))
7542 return 0;
7543
7544 return 1;
7545 }
7546
7547 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7548 struct trace_event_call *call, u64 count,
7549 struct pt_regs *regs, struct hlist_head *head,
7550 struct task_struct *task)
7551 {
7552 struct bpf_prog *prog = call->prog;
7553
7554 if (prog) {
7555 *(struct pt_regs **)raw_data = regs;
7556 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7557 perf_swevent_put_recursion_context(rctx);
7558 return;
7559 }
7560 }
7561 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7562 rctx, task);
7563 }
7564 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7565
7566 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7567 struct pt_regs *regs, struct hlist_head *head, int rctx,
7568 struct task_struct *task)
7569 {
7570 struct perf_sample_data data;
7571 struct perf_event *event;
7572
7573 struct perf_raw_record raw = {
7574 .frag = {
7575 .size = entry_size,
7576 .data = record,
7577 },
7578 };
7579
7580 perf_sample_data_init(&data, 0, 0);
7581 data.raw = &raw;
7582
7583 perf_trace_buf_update(record, event_type);
7584
7585 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7586 if (perf_tp_event_match(event, &data, regs))
7587 perf_swevent_event(event, count, &data, regs);
7588 }
7589
7590 /*
7591 * If we got specified a target task, also iterate its context and
7592 * deliver this event there too.
7593 */
7594 if (task && task != current) {
7595 struct perf_event_context *ctx;
7596 struct trace_entry *entry = record;
7597
7598 rcu_read_lock();
7599 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7600 if (!ctx)
7601 goto unlock;
7602
7603 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7604 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7605 continue;
7606 if (event->attr.config != entry->type)
7607 continue;
7608 if (perf_tp_event_match(event, &data, regs))
7609 perf_swevent_event(event, count, &data, regs);
7610 }
7611 unlock:
7612 rcu_read_unlock();
7613 }
7614
7615 perf_swevent_put_recursion_context(rctx);
7616 }
7617 EXPORT_SYMBOL_GPL(perf_tp_event);
7618
7619 static void tp_perf_event_destroy(struct perf_event *event)
7620 {
7621 perf_trace_destroy(event);
7622 }
7623
7624 static int perf_tp_event_init(struct perf_event *event)
7625 {
7626 int err;
7627
7628 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7629 return -ENOENT;
7630
7631 /*
7632 * no branch sampling for tracepoint events
7633 */
7634 if (has_branch_stack(event))
7635 return -EOPNOTSUPP;
7636
7637 err = perf_trace_init(event);
7638 if (err)
7639 return err;
7640
7641 event->destroy = tp_perf_event_destroy;
7642
7643 return 0;
7644 }
7645
7646 static struct pmu perf_tracepoint = {
7647 .task_ctx_nr = perf_sw_context,
7648
7649 .event_init = perf_tp_event_init,
7650 .add = perf_trace_add,
7651 .del = perf_trace_del,
7652 .start = perf_swevent_start,
7653 .stop = perf_swevent_stop,
7654 .read = perf_swevent_read,
7655 };
7656
7657 static inline void perf_tp_register(void)
7658 {
7659 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7660 }
7661
7662 static void perf_event_free_filter(struct perf_event *event)
7663 {
7664 ftrace_profile_free_filter(event);
7665 }
7666
7667 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7668 {
7669 bool is_kprobe, is_tracepoint;
7670 struct bpf_prog *prog;
7671
7672 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7673 return -EINVAL;
7674
7675 if (event->tp_event->prog)
7676 return -EEXIST;
7677
7678 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7679 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7680 if (!is_kprobe && !is_tracepoint)
7681 /* bpf programs can only be attached to u/kprobe or tracepoint */
7682 return -EINVAL;
7683
7684 prog = bpf_prog_get(prog_fd);
7685 if (IS_ERR(prog))
7686 return PTR_ERR(prog);
7687
7688 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7689 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7690 /* valid fd, but invalid bpf program type */
7691 bpf_prog_put(prog);
7692 return -EINVAL;
7693 }
7694
7695 if (is_tracepoint) {
7696 int off = trace_event_get_offsets(event->tp_event);
7697
7698 if (prog->aux->max_ctx_offset > off) {
7699 bpf_prog_put(prog);
7700 return -EACCES;
7701 }
7702 }
7703 event->tp_event->prog = prog;
7704
7705 return 0;
7706 }
7707
7708 static void perf_event_free_bpf_prog(struct perf_event *event)
7709 {
7710 struct bpf_prog *prog;
7711
7712 if (!event->tp_event)
7713 return;
7714
7715 prog = event->tp_event->prog;
7716 if (prog) {
7717 event->tp_event->prog = NULL;
7718 bpf_prog_put(prog);
7719 }
7720 }
7721
7722 #else
7723
7724 static inline void perf_tp_register(void)
7725 {
7726 }
7727
7728 static void perf_event_free_filter(struct perf_event *event)
7729 {
7730 }
7731
7732 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7733 {
7734 return -ENOENT;
7735 }
7736
7737 static void perf_event_free_bpf_prog(struct perf_event *event)
7738 {
7739 }
7740 #endif /* CONFIG_EVENT_TRACING */
7741
7742 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7743 void perf_bp_event(struct perf_event *bp, void *data)
7744 {
7745 struct perf_sample_data sample;
7746 struct pt_regs *regs = data;
7747
7748 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7749
7750 if (!bp->hw.state && !perf_exclude_event(bp, regs))
7751 perf_swevent_event(bp, 1, &sample, regs);
7752 }
7753 #endif
7754
7755 /*
7756 * Allocate a new address filter
7757 */
7758 static struct perf_addr_filter *
7759 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7760 {
7761 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7762 struct perf_addr_filter *filter;
7763
7764 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7765 if (!filter)
7766 return NULL;
7767
7768 INIT_LIST_HEAD(&filter->entry);
7769 list_add_tail(&filter->entry, filters);
7770
7771 return filter;
7772 }
7773
7774 static void free_filters_list(struct list_head *filters)
7775 {
7776 struct perf_addr_filter *filter, *iter;
7777
7778 list_for_each_entry_safe(filter, iter, filters, entry) {
7779 if (filter->inode)
7780 iput(filter->inode);
7781 list_del(&filter->entry);
7782 kfree(filter);
7783 }
7784 }
7785
7786 /*
7787 * Free existing address filters and optionally install new ones
7788 */
7789 static void perf_addr_filters_splice(struct perf_event *event,
7790 struct list_head *head)
7791 {
7792 unsigned long flags;
7793 LIST_HEAD(list);
7794
7795 if (!has_addr_filter(event))
7796 return;
7797
7798 /* don't bother with children, they don't have their own filters */
7799 if (event->parent)
7800 return;
7801
7802 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7803
7804 list_splice_init(&event->addr_filters.list, &list);
7805 if (head)
7806 list_splice(head, &event->addr_filters.list);
7807
7808 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7809
7810 free_filters_list(&list);
7811 }
7812
7813 /*
7814 * Scan through mm's vmas and see if one of them matches the
7815 * @filter; if so, adjust filter's address range.
7816 * Called with mm::mmap_sem down for reading.
7817 */
7818 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7819 struct mm_struct *mm)
7820 {
7821 struct vm_area_struct *vma;
7822
7823 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7824 struct file *file = vma->vm_file;
7825 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7826 unsigned long vma_size = vma->vm_end - vma->vm_start;
7827
7828 if (!file)
7829 continue;
7830
7831 if (!perf_addr_filter_match(filter, file, off, vma_size))
7832 continue;
7833
7834 return vma->vm_start;
7835 }
7836
7837 return 0;
7838 }
7839
7840 /*
7841 * Update event's address range filters based on the
7842 * task's existing mappings, if any.
7843 */
7844 static void perf_event_addr_filters_apply(struct perf_event *event)
7845 {
7846 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7847 struct task_struct *task = READ_ONCE(event->ctx->task);
7848 struct perf_addr_filter *filter;
7849 struct mm_struct *mm = NULL;
7850 unsigned int count = 0;
7851 unsigned long flags;
7852
7853 /*
7854 * We may observe TASK_TOMBSTONE, which means that the event tear-down
7855 * will stop on the parent's child_mutex that our caller is also holding
7856 */
7857 if (task == TASK_TOMBSTONE)
7858 return;
7859
7860 mm = get_task_mm(event->ctx->task);
7861 if (!mm)
7862 goto restart;
7863
7864 down_read(&mm->mmap_sem);
7865
7866 raw_spin_lock_irqsave(&ifh->lock, flags);
7867 list_for_each_entry(filter, &ifh->list, entry) {
7868 event->addr_filters_offs[count] = 0;
7869
7870 /*
7871 * Adjust base offset if the filter is associated to a binary
7872 * that needs to be mapped:
7873 */
7874 if (filter->inode)
7875 event->addr_filters_offs[count] =
7876 perf_addr_filter_apply(filter, mm);
7877
7878 count++;
7879 }
7880
7881 event->addr_filters_gen++;
7882 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7883
7884 up_read(&mm->mmap_sem);
7885
7886 mmput(mm);
7887
7888 restart:
7889 perf_event_stop(event, 1);
7890 }
7891
7892 /*
7893 * Address range filtering: limiting the data to certain
7894 * instruction address ranges. Filters are ioctl()ed to us from
7895 * userspace as ascii strings.
7896 *
7897 * Filter string format:
7898 *
7899 * ACTION RANGE_SPEC
7900 * where ACTION is one of the
7901 * * "filter": limit the trace to this region
7902 * * "start": start tracing from this address
7903 * * "stop": stop tracing at this address/region;
7904 * RANGE_SPEC is
7905 * * for kernel addresses: <start address>[/<size>]
7906 * * for object files: <start address>[/<size>]@</path/to/object/file>
7907 *
7908 * if <size> is not specified, the range is treated as a single address.
7909 */
7910 enum {
7911 IF_ACT_FILTER,
7912 IF_ACT_START,
7913 IF_ACT_STOP,
7914 IF_SRC_FILE,
7915 IF_SRC_KERNEL,
7916 IF_SRC_FILEADDR,
7917 IF_SRC_KERNELADDR,
7918 };
7919
7920 enum {
7921 IF_STATE_ACTION = 0,
7922 IF_STATE_SOURCE,
7923 IF_STATE_END,
7924 };
7925
7926 static const match_table_t if_tokens = {
7927 { IF_ACT_FILTER, "filter" },
7928 { IF_ACT_START, "start" },
7929 { IF_ACT_STOP, "stop" },
7930 { IF_SRC_FILE, "%u/%u@%s" },
7931 { IF_SRC_KERNEL, "%u/%u" },
7932 { IF_SRC_FILEADDR, "%u@%s" },
7933 { IF_SRC_KERNELADDR, "%u" },
7934 };
7935
7936 /*
7937 * Address filter string parser
7938 */
7939 static int
7940 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
7941 struct list_head *filters)
7942 {
7943 struct perf_addr_filter *filter = NULL;
7944 char *start, *orig, *filename = NULL;
7945 struct path path;
7946 substring_t args[MAX_OPT_ARGS];
7947 int state = IF_STATE_ACTION, token;
7948 unsigned int kernel = 0;
7949 int ret = -EINVAL;
7950
7951 orig = fstr = kstrdup(fstr, GFP_KERNEL);
7952 if (!fstr)
7953 return -ENOMEM;
7954
7955 while ((start = strsep(&fstr, " ,\n")) != NULL) {
7956 ret = -EINVAL;
7957
7958 if (!*start)
7959 continue;
7960
7961 /* filter definition begins */
7962 if (state == IF_STATE_ACTION) {
7963 filter = perf_addr_filter_new(event, filters);
7964 if (!filter)
7965 goto fail;
7966 }
7967
7968 token = match_token(start, if_tokens, args);
7969 switch (token) {
7970 case IF_ACT_FILTER:
7971 case IF_ACT_START:
7972 filter->filter = 1;
7973
7974 case IF_ACT_STOP:
7975 if (state != IF_STATE_ACTION)
7976 goto fail;
7977
7978 state = IF_STATE_SOURCE;
7979 break;
7980
7981 case IF_SRC_KERNELADDR:
7982 case IF_SRC_KERNEL:
7983 kernel = 1;
7984
7985 case IF_SRC_FILEADDR:
7986 case IF_SRC_FILE:
7987 if (state != IF_STATE_SOURCE)
7988 goto fail;
7989
7990 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
7991 filter->range = 1;
7992
7993 *args[0].to = 0;
7994 ret = kstrtoul(args[0].from, 0, &filter->offset);
7995 if (ret)
7996 goto fail;
7997
7998 if (filter->range) {
7999 *args[1].to = 0;
8000 ret = kstrtoul(args[1].from, 0, &filter->size);
8001 if (ret)
8002 goto fail;
8003 }
8004
8005 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8006 int fpos = filter->range ? 2 : 1;
8007
8008 filename = match_strdup(&args[fpos]);
8009 if (!filename) {
8010 ret = -ENOMEM;
8011 goto fail;
8012 }
8013 }
8014
8015 state = IF_STATE_END;
8016 break;
8017
8018 default:
8019 goto fail;
8020 }
8021
8022 /*
8023 * Filter definition is fully parsed, validate and install it.
8024 * Make sure that it doesn't contradict itself or the event's
8025 * attribute.
8026 */
8027 if (state == IF_STATE_END) {
8028 if (kernel && event->attr.exclude_kernel)
8029 goto fail;
8030
8031 if (!kernel) {
8032 if (!filename)
8033 goto fail;
8034
8035 /* look up the path and grab its inode */
8036 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8037 if (ret)
8038 goto fail_free_name;
8039
8040 filter->inode = igrab(d_inode(path.dentry));
8041 path_put(&path);
8042 kfree(filename);
8043 filename = NULL;
8044
8045 ret = -EINVAL;
8046 if (!filter->inode ||
8047 !S_ISREG(filter->inode->i_mode))
8048 /* free_filters_list() will iput() */
8049 goto fail;
8050 }
8051
8052 /* ready to consume more filters */
8053 state = IF_STATE_ACTION;
8054 filter = NULL;
8055 }
8056 }
8057
8058 if (state != IF_STATE_ACTION)
8059 goto fail;
8060
8061 kfree(orig);
8062
8063 return 0;
8064
8065 fail_free_name:
8066 kfree(filename);
8067 fail:
8068 free_filters_list(filters);
8069 kfree(orig);
8070
8071 return ret;
8072 }
8073
8074 static int
8075 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8076 {
8077 LIST_HEAD(filters);
8078 int ret;
8079
8080 /*
8081 * Since this is called in perf_ioctl() path, we're already holding
8082 * ctx::mutex.
8083 */
8084 lockdep_assert_held(&event->ctx->mutex);
8085
8086 if (WARN_ON_ONCE(event->parent))
8087 return -EINVAL;
8088
8089 /*
8090 * For now, we only support filtering in per-task events; doing so
8091 * for CPU-wide events requires additional context switching trickery,
8092 * since same object code will be mapped at different virtual
8093 * addresses in different processes.
8094 */
8095 if (!event->ctx->task)
8096 return -EOPNOTSUPP;
8097
8098 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8099 if (ret)
8100 return ret;
8101
8102 ret = event->pmu->addr_filters_validate(&filters);
8103 if (ret) {
8104 free_filters_list(&filters);
8105 return ret;
8106 }
8107
8108 /* remove existing filters, if any */
8109 perf_addr_filters_splice(event, &filters);
8110
8111 /* install new filters */
8112 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8113
8114 return ret;
8115 }
8116
8117 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8118 {
8119 char *filter_str;
8120 int ret = -EINVAL;
8121
8122 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8123 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8124 !has_addr_filter(event))
8125 return -EINVAL;
8126
8127 filter_str = strndup_user(arg, PAGE_SIZE);
8128 if (IS_ERR(filter_str))
8129 return PTR_ERR(filter_str);
8130
8131 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8132 event->attr.type == PERF_TYPE_TRACEPOINT)
8133 ret = ftrace_profile_set_filter(event, event->attr.config,
8134 filter_str);
8135 else if (has_addr_filter(event))
8136 ret = perf_event_set_addr_filter(event, filter_str);
8137
8138 kfree(filter_str);
8139 return ret;
8140 }
8141
8142 /*
8143 * hrtimer based swevent callback
8144 */
8145
8146 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8147 {
8148 enum hrtimer_restart ret = HRTIMER_RESTART;
8149 struct perf_sample_data data;
8150 struct pt_regs *regs;
8151 struct perf_event *event;
8152 u64 period;
8153
8154 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8155
8156 if (event->state != PERF_EVENT_STATE_ACTIVE)
8157 return HRTIMER_NORESTART;
8158
8159 event->pmu->read(event);
8160
8161 perf_sample_data_init(&data, 0, event->hw.last_period);
8162 regs = get_irq_regs();
8163
8164 if (regs && !perf_exclude_event(event, regs)) {
8165 if (!(event->attr.exclude_idle && is_idle_task(current)))
8166 if (__perf_event_overflow(event, 1, &data, regs))
8167 ret = HRTIMER_NORESTART;
8168 }
8169
8170 period = max_t(u64, 10000, event->hw.sample_period);
8171 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8172
8173 return ret;
8174 }
8175
8176 static void perf_swevent_start_hrtimer(struct perf_event *event)
8177 {
8178 struct hw_perf_event *hwc = &event->hw;
8179 s64 period;
8180
8181 if (!is_sampling_event(event))
8182 return;
8183
8184 period = local64_read(&hwc->period_left);
8185 if (period) {
8186 if (period < 0)
8187 period = 10000;
8188
8189 local64_set(&hwc->period_left, 0);
8190 } else {
8191 period = max_t(u64, 10000, hwc->sample_period);
8192 }
8193 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8194 HRTIMER_MODE_REL_PINNED);
8195 }
8196
8197 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8198 {
8199 struct hw_perf_event *hwc = &event->hw;
8200
8201 if (is_sampling_event(event)) {
8202 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8203 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8204
8205 hrtimer_cancel(&hwc->hrtimer);
8206 }
8207 }
8208
8209 static void perf_swevent_init_hrtimer(struct perf_event *event)
8210 {
8211 struct hw_perf_event *hwc = &event->hw;
8212
8213 if (!is_sampling_event(event))
8214 return;
8215
8216 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8217 hwc->hrtimer.function = perf_swevent_hrtimer;
8218
8219 /*
8220 * Since hrtimers have a fixed rate, we can do a static freq->period
8221 * mapping and avoid the whole period adjust feedback stuff.
8222 */
8223 if (event->attr.freq) {
8224 long freq = event->attr.sample_freq;
8225
8226 event->attr.sample_period = NSEC_PER_SEC / freq;
8227 hwc->sample_period = event->attr.sample_period;
8228 local64_set(&hwc->period_left, hwc->sample_period);
8229 hwc->last_period = hwc->sample_period;
8230 event->attr.freq = 0;
8231 }
8232 }
8233
8234 /*
8235 * Software event: cpu wall time clock
8236 */
8237
8238 static void cpu_clock_event_update(struct perf_event *event)
8239 {
8240 s64 prev;
8241 u64 now;
8242
8243 now = local_clock();
8244 prev = local64_xchg(&event->hw.prev_count, now);
8245 local64_add(now - prev, &event->count);
8246 }
8247
8248 static void cpu_clock_event_start(struct perf_event *event, int flags)
8249 {
8250 local64_set(&event->hw.prev_count, local_clock());
8251 perf_swevent_start_hrtimer(event);
8252 }
8253
8254 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8255 {
8256 perf_swevent_cancel_hrtimer(event);
8257 cpu_clock_event_update(event);
8258 }
8259
8260 static int cpu_clock_event_add(struct perf_event *event, int flags)
8261 {
8262 if (flags & PERF_EF_START)
8263 cpu_clock_event_start(event, flags);
8264 perf_event_update_userpage(event);
8265
8266 return 0;
8267 }
8268
8269 static void cpu_clock_event_del(struct perf_event *event, int flags)
8270 {
8271 cpu_clock_event_stop(event, flags);
8272 }
8273
8274 static void cpu_clock_event_read(struct perf_event *event)
8275 {
8276 cpu_clock_event_update(event);
8277 }
8278
8279 static int cpu_clock_event_init(struct perf_event *event)
8280 {
8281 if (event->attr.type != PERF_TYPE_SOFTWARE)
8282 return -ENOENT;
8283
8284 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8285 return -ENOENT;
8286
8287 /*
8288 * no branch sampling for software events
8289 */
8290 if (has_branch_stack(event))
8291 return -EOPNOTSUPP;
8292
8293 perf_swevent_init_hrtimer(event);
8294
8295 return 0;
8296 }
8297
8298 static struct pmu perf_cpu_clock = {
8299 .task_ctx_nr = perf_sw_context,
8300
8301 .capabilities = PERF_PMU_CAP_NO_NMI,
8302
8303 .event_init = cpu_clock_event_init,
8304 .add = cpu_clock_event_add,
8305 .del = cpu_clock_event_del,
8306 .start = cpu_clock_event_start,
8307 .stop = cpu_clock_event_stop,
8308 .read = cpu_clock_event_read,
8309 };
8310
8311 /*
8312 * Software event: task time clock
8313 */
8314
8315 static void task_clock_event_update(struct perf_event *event, u64 now)
8316 {
8317 u64 prev;
8318 s64 delta;
8319
8320 prev = local64_xchg(&event->hw.prev_count, now);
8321 delta = now - prev;
8322 local64_add(delta, &event->count);
8323 }
8324
8325 static void task_clock_event_start(struct perf_event *event, int flags)
8326 {
8327 local64_set(&event->hw.prev_count, event->ctx->time);
8328 perf_swevent_start_hrtimer(event);
8329 }
8330
8331 static void task_clock_event_stop(struct perf_event *event, int flags)
8332 {
8333 perf_swevent_cancel_hrtimer(event);
8334 task_clock_event_update(event, event->ctx->time);
8335 }
8336
8337 static int task_clock_event_add(struct perf_event *event, int flags)
8338 {
8339 if (flags & PERF_EF_START)
8340 task_clock_event_start(event, flags);
8341 perf_event_update_userpage(event);
8342
8343 return 0;
8344 }
8345
8346 static void task_clock_event_del(struct perf_event *event, int flags)
8347 {
8348 task_clock_event_stop(event, PERF_EF_UPDATE);
8349 }
8350
8351 static void task_clock_event_read(struct perf_event *event)
8352 {
8353 u64 now = perf_clock();
8354 u64 delta = now - event->ctx->timestamp;
8355 u64 time = event->ctx->time + delta;
8356
8357 task_clock_event_update(event, time);
8358 }
8359
8360 static int task_clock_event_init(struct perf_event *event)
8361 {
8362 if (event->attr.type != PERF_TYPE_SOFTWARE)
8363 return -ENOENT;
8364
8365 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8366 return -ENOENT;
8367
8368 /*
8369 * no branch sampling for software events
8370 */
8371 if (has_branch_stack(event))
8372 return -EOPNOTSUPP;
8373
8374 perf_swevent_init_hrtimer(event);
8375
8376 return 0;
8377 }
8378
8379 static struct pmu perf_task_clock = {
8380 .task_ctx_nr = perf_sw_context,
8381
8382 .capabilities = PERF_PMU_CAP_NO_NMI,
8383
8384 .event_init = task_clock_event_init,
8385 .add = task_clock_event_add,
8386 .del = task_clock_event_del,
8387 .start = task_clock_event_start,
8388 .stop = task_clock_event_stop,
8389 .read = task_clock_event_read,
8390 };
8391
8392 static void perf_pmu_nop_void(struct pmu *pmu)
8393 {
8394 }
8395
8396 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8397 {
8398 }
8399
8400 static int perf_pmu_nop_int(struct pmu *pmu)
8401 {
8402 return 0;
8403 }
8404
8405 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8406
8407 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8408 {
8409 __this_cpu_write(nop_txn_flags, flags);
8410
8411 if (flags & ~PERF_PMU_TXN_ADD)
8412 return;
8413
8414 perf_pmu_disable(pmu);
8415 }
8416
8417 static int perf_pmu_commit_txn(struct pmu *pmu)
8418 {
8419 unsigned int flags = __this_cpu_read(nop_txn_flags);
8420
8421 __this_cpu_write(nop_txn_flags, 0);
8422
8423 if (flags & ~PERF_PMU_TXN_ADD)
8424 return 0;
8425
8426 perf_pmu_enable(pmu);
8427 return 0;
8428 }
8429
8430 static void perf_pmu_cancel_txn(struct pmu *pmu)
8431 {
8432 unsigned int flags = __this_cpu_read(nop_txn_flags);
8433
8434 __this_cpu_write(nop_txn_flags, 0);
8435
8436 if (flags & ~PERF_PMU_TXN_ADD)
8437 return;
8438
8439 perf_pmu_enable(pmu);
8440 }
8441
8442 static int perf_event_idx_default(struct perf_event *event)
8443 {
8444 return 0;
8445 }
8446
8447 /*
8448 * Ensures all contexts with the same task_ctx_nr have the same
8449 * pmu_cpu_context too.
8450 */
8451 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8452 {
8453 struct pmu *pmu;
8454
8455 if (ctxn < 0)
8456 return NULL;
8457
8458 list_for_each_entry(pmu, &pmus, entry) {
8459 if (pmu->task_ctx_nr == ctxn)
8460 return pmu->pmu_cpu_context;
8461 }
8462
8463 return NULL;
8464 }
8465
8466 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8467 {
8468 int cpu;
8469
8470 for_each_possible_cpu(cpu) {
8471 struct perf_cpu_context *cpuctx;
8472
8473 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8474
8475 if (cpuctx->unique_pmu == old_pmu)
8476 cpuctx->unique_pmu = pmu;
8477 }
8478 }
8479
8480 static void free_pmu_context(struct pmu *pmu)
8481 {
8482 struct pmu *i;
8483
8484 mutex_lock(&pmus_lock);
8485 /*
8486 * Like a real lame refcount.
8487 */
8488 list_for_each_entry(i, &pmus, entry) {
8489 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8490 update_pmu_context(i, pmu);
8491 goto out;
8492 }
8493 }
8494
8495 free_percpu(pmu->pmu_cpu_context);
8496 out:
8497 mutex_unlock(&pmus_lock);
8498 }
8499
8500 /*
8501 * Let userspace know that this PMU supports address range filtering:
8502 */
8503 static ssize_t nr_addr_filters_show(struct device *dev,
8504 struct device_attribute *attr,
8505 char *page)
8506 {
8507 struct pmu *pmu = dev_get_drvdata(dev);
8508
8509 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8510 }
8511 DEVICE_ATTR_RO(nr_addr_filters);
8512
8513 static struct idr pmu_idr;
8514
8515 static ssize_t
8516 type_show(struct device *dev, struct device_attribute *attr, char *page)
8517 {
8518 struct pmu *pmu = dev_get_drvdata(dev);
8519
8520 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8521 }
8522 static DEVICE_ATTR_RO(type);
8523
8524 static ssize_t
8525 perf_event_mux_interval_ms_show(struct device *dev,
8526 struct device_attribute *attr,
8527 char *page)
8528 {
8529 struct pmu *pmu = dev_get_drvdata(dev);
8530
8531 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8532 }
8533
8534 static DEFINE_MUTEX(mux_interval_mutex);
8535
8536 static ssize_t
8537 perf_event_mux_interval_ms_store(struct device *dev,
8538 struct device_attribute *attr,
8539 const char *buf, size_t count)
8540 {
8541 struct pmu *pmu = dev_get_drvdata(dev);
8542 int timer, cpu, ret;
8543
8544 ret = kstrtoint(buf, 0, &timer);
8545 if (ret)
8546 return ret;
8547
8548 if (timer < 1)
8549 return -EINVAL;
8550
8551 /* same value, noting to do */
8552 if (timer == pmu->hrtimer_interval_ms)
8553 return count;
8554
8555 mutex_lock(&mux_interval_mutex);
8556 pmu->hrtimer_interval_ms = timer;
8557
8558 /* update all cpuctx for this PMU */
8559 get_online_cpus();
8560 for_each_online_cpu(cpu) {
8561 struct perf_cpu_context *cpuctx;
8562 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8563 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8564
8565 cpu_function_call(cpu,
8566 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8567 }
8568 put_online_cpus();
8569 mutex_unlock(&mux_interval_mutex);
8570
8571 return count;
8572 }
8573 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8574
8575 static struct attribute *pmu_dev_attrs[] = {
8576 &dev_attr_type.attr,
8577 &dev_attr_perf_event_mux_interval_ms.attr,
8578 NULL,
8579 };
8580 ATTRIBUTE_GROUPS(pmu_dev);
8581
8582 static int pmu_bus_running;
8583 static struct bus_type pmu_bus = {
8584 .name = "event_source",
8585 .dev_groups = pmu_dev_groups,
8586 };
8587
8588 static void pmu_dev_release(struct device *dev)
8589 {
8590 kfree(dev);
8591 }
8592
8593 static int pmu_dev_alloc(struct pmu *pmu)
8594 {
8595 int ret = -ENOMEM;
8596
8597 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8598 if (!pmu->dev)
8599 goto out;
8600
8601 pmu->dev->groups = pmu->attr_groups;
8602 device_initialize(pmu->dev);
8603 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8604 if (ret)
8605 goto free_dev;
8606
8607 dev_set_drvdata(pmu->dev, pmu);
8608 pmu->dev->bus = &pmu_bus;
8609 pmu->dev->release = pmu_dev_release;
8610 ret = device_add(pmu->dev);
8611 if (ret)
8612 goto free_dev;
8613
8614 /* For PMUs with address filters, throw in an extra attribute: */
8615 if (pmu->nr_addr_filters)
8616 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8617
8618 if (ret)
8619 goto del_dev;
8620
8621 out:
8622 return ret;
8623
8624 del_dev:
8625 device_del(pmu->dev);
8626
8627 free_dev:
8628 put_device(pmu->dev);
8629 goto out;
8630 }
8631
8632 static struct lock_class_key cpuctx_mutex;
8633 static struct lock_class_key cpuctx_lock;
8634
8635 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8636 {
8637 int cpu, ret;
8638
8639 mutex_lock(&pmus_lock);
8640 ret = -ENOMEM;
8641 pmu->pmu_disable_count = alloc_percpu(int);
8642 if (!pmu->pmu_disable_count)
8643 goto unlock;
8644
8645 pmu->type = -1;
8646 if (!name)
8647 goto skip_type;
8648 pmu->name = name;
8649
8650 if (type < 0) {
8651 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8652 if (type < 0) {
8653 ret = type;
8654 goto free_pdc;
8655 }
8656 }
8657 pmu->type = type;
8658
8659 if (pmu_bus_running) {
8660 ret = pmu_dev_alloc(pmu);
8661 if (ret)
8662 goto free_idr;
8663 }
8664
8665 skip_type:
8666 if (pmu->task_ctx_nr == perf_hw_context) {
8667 static int hw_context_taken = 0;
8668
8669 /*
8670 * Other than systems with heterogeneous CPUs, it never makes
8671 * sense for two PMUs to share perf_hw_context. PMUs which are
8672 * uncore must use perf_invalid_context.
8673 */
8674 if (WARN_ON_ONCE(hw_context_taken &&
8675 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8676 pmu->task_ctx_nr = perf_invalid_context;
8677
8678 hw_context_taken = 1;
8679 }
8680
8681 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8682 if (pmu->pmu_cpu_context)
8683 goto got_cpu_context;
8684
8685 ret = -ENOMEM;
8686 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8687 if (!pmu->pmu_cpu_context)
8688 goto free_dev;
8689
8690 for_each_possible_cpu(cpu) {
8691 struct perf_cpu_context *cpuctx;
8692
8693 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8694 __perf_event_init_context(&cpuctx->ctx);
8695 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8696 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8697 cpuctx->ctx.pmu = pmu;
8698
8699 __perf_mux_hrtimer_init(cpuctx, cpu);
8700
8701 cpuctx->unique_pmu = pmu;
8702 }
8703
8704 got_cpu_context:
8705 if (!pmu->start_txn) {
8706 if (pmu->pmu_enable) {
8707 /*
8708 * If we have pmu_enable/pmu_disable calls, install
8709 * transaction stubs that use that to try and batch
8710 * hardware accesses.
8711 */
8712 pmu->start_txn = perf_pmu_start_txn;
8713 pmu->commit_txn = perf_pmu_commit_txn;
8714 pmu->cancel_txn = perf_pmu_cancel_txn;
8715 } else {
8716 pmu->start_txn = perf_pmu_nop_txn;
8717 pmu->commit_txn = perf_pmu_nop_int;
8718 pmu->cancel_txn = perf_pmu_nop_void;
8719 }
8720 }
8721
8722 if (!pmu->pmu_enable) {
8723 pmu->pmu_enable = perf_pmu_nop_void;
8724 pmu->pmu_disable = perf_pmu_nop_void;
8725 }
8726
8727 if (!pmu->event_idx)
8728 pmu->event_idx = perf_event_idx_default;
8729
8730 list_add_rcu(&pmu->entry, &pmus);
8731 atomic_set(&pmu->exclusive_cnt, 0);
8732 ret = 0;
8733 unlock:
8734 mutex_unlock(&pmus_lock);
8735
8736 return ret;
8737
8738 free_dev:
8739 device_del(pmu->dev);
8740 put_device(pmu->dev);
8741
8742 free_idr:
8743 if (pmu->type >= PERF_TYPE_MAX)
8744 idr_remove(&pmu_idr, pmu->type);
8745
8746 free_pdc:
8747 free_percpu(pmu->pmu_disable_count);
8748 goto unlock;
8749 }
8750 EXPORT_SYMBOL_GPL(perf_pmu_register);
8751
8752 void perf_pmu_unregister(struct pmu *pmu)
8753 {
8754 mutex_lock(&pmus_lock);
8755 list_del_rcu(&pmu->entry);
8756 mutex_unlock(&pmus_lock);
8757
8758 /*
8759 * We dereference the pmu list under both SRCU and regular RCU, so
8760 * synchronize against both of those.
8761 */
8762 synchronize_srcu(&pmus_srcu);
8763 synchronize_rcu();
8764
8765 free_percpu(pmu->pmu_disable_count);
8766 if (pmu->type >= PERF_TYPE_MAX)
8767 idr_remove(&pmu_idr, pmu->type);
8768 if (pmu->nr_addr_filters)
8769 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8770 device_del(pmu->dev);
8771 put_device(pmu->dev);
8772 free_pmu_context(pmu);
8773 }
8774 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8775
8776 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8777 {
8778 struct perf_event_context *ctx = NULL;
8779 int ret;
8780
8781 if (!try_module_get(pmu->module))
8782 return -ENODEV;
8783
8784 if (event->group_leader != event) {
8785 /*
8786 * This ctx->mutex can nest when we're called through
8787 * inheritance. See the perf_event_ctx_lock_nested() comment.
8788 */
8789 ctx = perf_event_ctx_lock_nested(event->group_leader,
8790 SINGLE_DEPTH_NESTING);
8791 BUG_ON(!ctx);
8792 }
8793
8794 event->pmu = pmu;
8795 ret = pmu->event_init(event);
8796
8797 if (ctx)
8798 perf_event_ctx_unlock(event->group_leader, ctx);
8799
8800 if (ret)
8801 module_put(pmu->module);
8802
8803 return ret;
8804 }
8805
8806 static struct pmu *perf_init_event(struct perf_event *event)
8807 {
8808 struct pmu *pmu = NULL;
8809 int idx;
8810 int ret;
8811
8812 idx = srcu_read_lock(&pmus_srcu);
8813
8814 rcu_read_lock();
8815 pmu = idr_find(&pmu_idr, event->attr.type);
8816 rcu_read_unlock();
8817 if (pmu) {
8818 ret = perf_try_init_event(pmu, event);
8819 if (ret)
8820 pmu = ERR_PTR(ret);
8821 goto unlock;
8822 }
8823
8824 list_for_each_entry_rcu(pmu, &pmus, entry) {
8825 ret = perf_try_init_event(pmu, event);
8826 if (!ret)
8827 goto unlock;
8828
8829 if (ret != -ENOENT) {
8830 pmu = ERR_PTR(ret);
8831 goto unlock;
8832 }
8833 }
8834 pmu = ERR_PTR(-ENOENT);
8835 unlock:
8836 srcu_read_unlock(&pmus_srcu, idx);
8837
8838 return pmu;
8839 }
8840
8841 static void attach_sb_event(struct perf_event *event)
8842 {
8843 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8844
8845 raw_spin_lock(&pel->lock);
8846 list_add_rcu(&event->sb_list, &pel->list);
8847 raw_spin_unlock(&pel->lock);
8848 }
8849
8850 /*
8851 * We keep a list of all !task (and therefore per-cpu) events
8852 * that need to receive side-band records.
8853 *
8854 * This avoids having to scan all the various PMU per-cpu contexts
8855 * looking for them.
8856 */
8857 static void account_pmu_sb_event(struct perf_event *event)
8858 {
8859 if (is_sb_event(event))
8860 attach_sb_event(event);
8861 }
8862
8863 static void account_event_cpu(struct perf_event *event, int cpu)
8864 {
8865 if (event->parent)
8866 return;
8867
8868 if (is_cgroup_event(event))
8869 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8870 }
8871
8872 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8873 static void account_freq_event_nohz(void)
8874 {
8875 #ifdef CONFIG_NO_HZ_FULL
8876 /* Lock so we don't race with concurrent unaccount */
8877 spin_lock(&nr_freq_lock);
8878 if (atomic_inc_return(&nr_freq_events) == 1)
8879 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8880 spin_unlock(&nr_freq_lock);
8881 #endif
8882 }
8883
8884 static void account_freq_event(void)
8885 {
8886 if (tick_nohz_full_enabled())
8887 account_freq_event_nohz();
8888 else
8889 atomic_inc(&nr_freq_events);
8890 }
8891
8892
8893 static void account_event(struct perf_event *event)
8894 {
8895 bool inc = false;
8896
8897 if (event->parent)
8898 return;
8899
8900 if (event->attach_state & PERF_ATTACH_TASK)
8901 inc = true;
8902 if (event->attr.mmap || event->attr.mmap_data)
8903 atomic_inc(&nr_mmap_events);
8904 if (event->attr.comm)
8905 atomic_inc(&nr_comm_events);
8906 if (event->attr.task)
8907 atomic_inc(&nr_task_events);
8908 if (event->attr.freq)
8909 account_freq_event();
8910 if (event->attr.context_switch) {
8911 atomic_inc(&nr_switch_events);
8912 inc = true;
8913 }
8914 if (has_branch_stack(event))
8915 inc = true;
8916 if (is_cgroup_event(event))
8917 inc = true;
8918
8919 if (inc) {
8920 if (atomic_inc_not_zero(&perf_sched_count))
8921 goto enabled;
8922
8923 mutex_lock(&perf_sched_mutex);
8924 if (!atomic_read(&perf_sched_count)) {
8925 static_branch_enable(&perf_sched_events);
8926 /*
8927 * Guarantee that all CPUs observe they key change and
8928 * call the perf scheduling hooks before proceeding to
8929 * install events that need them.
8930 */
8931 synchronize_sched();
8932 }
8933 /*
8934 * Now that we have waited for the sync_sched(), allow further
8935 * increments to by-pass the mutex.
8936 */
8937 atomic_inc(&perf_sched_count);
8938 mutex_unlock(&perf_sched_mutex);
8939 }
8940 enabled:
8941
8942 account_event_cpu(event, event->cpu);
8943
8944 account_pmu_sb_event(event);
8945 }
8946
8947 /*
8948 * Allocate and initialize a event structure
8949 */
8950 static struct perf_event *
8951 perf_event_alloc(struct perf_event_attr *attr, int cpu,
8952 struct task_struct *task,
8953 struct perf_event *group_leader,
8954 struct perf_event *parent_event,
8955 perf_overflow_handler_t overflow_handler,
8956 void *context, int cgroup_fd)
8957 {
8958 struct pmu *pmu;
8959 struct perf_event *event;
8960 struct hw_perf_event *hwc;
8961 long err = -EINVAL;
8962
8963 if ((unsigned)cpu >= nr_cpu_ids) {
8964 if (!task || cpu != -1)
8965 return ERR_PTR(-EINVAL);
8966 }
8967
8968 event = kzalloc(sizeof(*event), GFP_KERNEL);
8969 if (!event)
8970 return ERR_PTR(-ENOMEM);
8971
8972 /*
8973 * Single events are their own group leaders, with an
8974 * empty sibling list:
8975 */
8976 if (!group_leader)
8977 group_leader = event;
8978
8979 mutex_init(&event->child_mutex);
8980 INIT_LIST_HEAD(&event->child_list);
8981
8982 INIT_LIST_HEAD(&event->group_entry);
8983 INIT_LIST_HEAD(&event->event_entry);
8984 INIT_LIST_HEAD(&event->sibling_list);
8985 INIT_LIST_HEAD(&event->rb_entry);
8986 INIT_LIST_HEAD(&event->active_entry);
8987 INIT_LIST_HEAD(&event->addr_filters.list);
8988 INIT_HLIST_NODE(&event->hlist_entry);
8989
8990
8991 init_waitqueue_head(&event->waitq);
8992 init_irq_work(&event->pending, perf_pending_event);
8993
8994 mutex_init(&event->mmap_mutex);
8995 raw_spin_lock_init(&event->addr_filters.lock);
8996
8997 atomic_long_set(&event->refcount, 1);
8998 event->cpu = cpu;
8999 event->attr = *attr;
9000 event->group_leader = group_leader;
9001 event->pmu = NULL;
9002 event->oncpu = -1;
9003
9004 event->parent = parent_event;
9005
9006 event->ns = get_pid_ns(task_active_pid_ns(current));
9007 event->id = atomic64_inc_return(&perf_event_id);
9008
9009 event->state = PERF_EVENT_STATE_INACTIVE;
9010
9011 if (task) {
9012 event->attach_state = PERF_ATTACH_TASK;
9013 /*
9014 * XXX pmu::event_init needs to know what task to account to
9015 * and we cannot use the ctx information because we need the
9016 * pmu before we get a ctx.
9017 */
9018 event->hw.target = task;
9019 }
9020
9021 event->clock = &local_clock;
9022 if (parent_event)
9023 event->clock = parent_event->clock;
9024
9025 if (!overflow_handler && parent_event) {
9026 overflow_handler = parent_event->overflow_handler;
9027 context = parent_event->overflow_handler_context;
9028 }
9029
9030 if (overflow_handler) {
9031 event->overflow_handler = overflow_handler;
9032 event->overflow_handler_context = context;
9033 } else if (is_write_backward(event)){
9034 event->overflow_handler = perf_event_output_backward;
9035 event->overflow_handler_context = NULL;
9036 } else {
9037 event->overflow_handler = perf_event_output_forward;
9038 event->overflow_handler_context = NULL;
9039 }
9040
9041 perf_event__state_init(event);
9042
9043 pmu = NULL;
9044
9045 hwc = &event->hw;
9046 hwc->sample_period = attr->sample_period;
9047 if (attr->freq && attr->sample_freq)
9048 hwc->sample_period = 1;
9049 hwc->last_period = hwc->sample_period;
9050
9051 local64_set(&hwc->period_left, hwc->sample_period);
9052
9053 /*
9054 * we currently do not support PERF_FORMAT_GROUP on inherited events
9055 */
9056 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9057 goto err_ns;
9058
9059 if (!has_branch_stack(event))
9060 event->attr.branch_sample_type = 0;
9061
9062 if (cgroup_fd != -1) {
9063 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9064 if (err)
9065 goto err_ns;
9066 }
9067
9068 pmu = perf_init_event(event);
9069 if (!pmu)
9070 goto err_ns;
9071 else if (IS_ERR(pmu)) {
9072 err = PTR_ERR(pmu);
9073 goto err_ns;
9074 }
9075
9076 err = exclusive_event_init(event);
9077 if (err)
9078 goto err_pmu;
9079
9080 if (has_addr_filter(event)) {
9081 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9082 sizeof(unsigned long),
9083 GFP_KERNEL);
9084 if (!event->addr_filters_offs)
9085 goto err_per_task;
9086
9087 /* force hw sync on the address filters */
9088 event->addr_filters_gen = 1;
9089 }
9090
9091 if (!event->parent) {
9092 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9093 err = get_callchain_buffers(attr->sample_max_stack);
9094 if (err)
9095 goto err_addr_filters;
9096 }
9097 }
9098
9099 /* symmetric to unaccount_event() in _free_event() */
9100 account_event(event);
9101
9102 return event;
9103
9104 err_addr_filters:
9105 kfree(event->addr_filters_offs);
9106
9107 err_per_task:
9108 exclusive_event_destroy(event);
9109
9110 err_pmu:
9111 if (event->destroy)
9112 event->destroy(event);
9113 module_put(pmu->module);
9114 err_ns:
9115 if (is_cgroup_event(event))
9116 perf_detach_cgroup(event);
9117 if (event->ns)
9118 put_pid_ns(event->ns);
9119 kfree(event);
9120
9121 return ERR_PTR(err);
9122 }
9123
9124 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9125 struct perf_event_attr *attr)
9126 {
9127 u32 size;
9128 int ret;
9129
9130 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9131 return -EFAULT;
9132
9133 /*
9134 * zero the full structure, so that a short copy will be nice.
9135 */
9136 memset(attr, 0, sizeof(*attr));
9137
9138 ret = get_user(size, &uattr->size);
9139 if (ret)
9140 return ret;
9141
9142 if (size > PAGE_SIZE) /* silly large */
9143 goto err_size;
9144
9145 if (!size) /* abi compat */
9146 size = PERF_ATTR_SIZE_VER0;
9147
9148 if (size < PERF_ATTR_SIZE_VER0)
9149 goto err_size;
9150
9151 /*
9152 * If we're handed a bigger struct than we know of,
9153 * ensure all the unknown bits are 0 - i.e. new
9154 * user-space does not rely on any kernel feature
9155 * extensions we dont know about yet.
9156 */
9157 if (size > sizeof(*attr)) {
9158 unsigned char __user *addr;
9159 unsigned char __user *end;
9160 unsigned char val;
9161
9162 addr = (void __user *)uattr + sizeof(*attr);
9163 end = (void __user *)uattr + size;
9164
9165 for (; addr < end; addr++) {
9166 ret = get_user(val, addr);
9167 if (ret)
9168 return ret;
9169 if (val)
9170 goto err_size;
9171 }
9172 size = sizeof(*attr);
9173 }
9174
9175 ret = copy_from_user(attr, uattr, size);
9176 if (ret)
9177 return -EFAULT;
9178
9179 if (attr->__reserved_1)
9180 return -EINVAL;
9181
9182 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9183 return -EINVAL;
9184
9185 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9186 return -EINVAL;
9187
9188 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9189 u64 mask = attr->branch_sample_type;
9190
9191 /* only using defined bits */
9192 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9193 return -EINVAL;
9194
9195 /* at least one branch bit must be set */
9196 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9197 return -EINVAL;
9198
9199 /* propagate priv level, when not set for branch */
9200 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9201
9202 /* exclude_kernel checked on syscall entry */
9203 if (!attr->exclude_kernel)
9204 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9205
9206 if (!attr->exclude_user)
9207 mask |= PERF_SAMPLE_BRANCH_USER;
9208
9209 if (!attr->exclude_hv)
9210 mask |= PERF_SAMPLE_BRANCH_HV;
9211 /*
9212 * adjust user setting (for HW filter setup)
9213 */
9214 attr->branch_sample_type = mask;
9215 }
9216 /* privileged levels capture (kernel, hv): check permissions */
9217 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9218 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9219 return -EACCES;
9220 }
9221
9222 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9223 ret = perf_reg_validate(attr->sample_regs_user);
9224 if (ret)
9225 return ret;
9226 }
9227
9228 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9229 if (!arch_perf_have_user_stack_dump())
9230 return -ENOSYS;
9231
9232 /*
9233 * We have __u32 type for the size, but so far
9234 * we can only use __u16 as maximum due to the
9235 * __u16 sample size limit.
9236 */
9237 if (attr->sample_stack_user >= USHRT_MAX)
9238 ret = -EINVAL;
9239 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9240 ret = -EINVAL;
9241 }
9242
9243 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9244 ret = perf_reg_validate(attr->sample_regs_intr);
9245 out:
9246 return ret;
9247
9248 err_size:
9249 put_user(sizeof(*attr), &uattr->size);
9250 ret = -E2BIG;
9251 goto out;
9252 }
9253
9254 static int
9255 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9256 {
9257 struct ring_buffer *rb = NULL;
9258 int ret = -EINVAL;
9259
9260 if (!output_event)
9261 goto set;
9262
9263 /* don't allow circular references */
9264 if (event == output_event)
9265 goto out;
9266
9267 /*
9268 * Don't allow cross-cpu buffers
9269 */
9270 if (output_event->cpu != event->cpu)
9271 goto out;
9272
9273 /*
9274 * If its not a per-cpu rb, it must be the same task.
9275 */
9276 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9277 goto out;
9278
9279 /*
9280 * Mixing clocks in the same buffer is trouble you don't need.
9281 */
9282 if (output_event->clock != event->clock)
9283 goto out;
9284
9285 /*
9286 * Either writing ring buffer from beginning or from end.
9287 * Mixing is not allowed.
9288 */
9289 if (is_write_backward(output_event) != is_write_backward(event))
9290 goto out;
9291
9292 /*
9293 * If both events generate aux data, they must be on the same PMU
9294 */
9295 if (has_aux(event) && has_aux(output_event) &&
9296 event->pmu != output_event->pmu)
9297 goto out;
9298
9299 set:
9300 mutex_lock(&event->mmap_mutex);
9301 /* Can't redirect output if we've got an active mmap() */
9302 if (atomic_read(&event->mmap_count))
9303 goto unlock;
9304
9305 if (output_event) {
9306 /* get the rb we want to redirect to */
9307 rb = ring_buffer_get(output_event);
9308 if (!rb)
9309 goto unlock;
9310 }
9311
9312 ring_buffer_attach(event, rb);
9313
9314 ret = 0;
9315 unlock:
9316 mutex_unlock(&event->mmap_mutex);
9317
9318 out:
9319 return ret;
9320 }
9321
9322 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9323 {
9324 if (b < a)
9325 swap(a, b);
9326
9327 mutex_lock(a);
9328 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9329 }
9330
9331 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9332 {
9333 bool nmi_safe = false;
9334
9335 switch (clk_id) {
9336 case CLOCK_MONOTONIC:
9337 event->clock = &ktime_get_mono_fast_ns;
9338 nmi_safe = true;
9339 break;
9340
9341 case CLOCK_MONOTONIC_RAW:
9342 event->clock = &ktime_get_raw_fast_ns;
9343 nmi_safe = true;
9344 break;
9345
9346 case CLOCK_REALTIME:
9347 event->clock = &ktime_get_real_ns;
9348 break;
9349
9350 case CLOCK_BOOTTIME:
9351 event->clock = &ktime_get_boot_ns;
9352 break;
9353
9354 case CLOCK_TAI:
9355 event->clock = &ktime_get_tai_ns;
9356 break;
9357
9358 default:
9359 return -EINVAL;
9360 }
9361
9362 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9363 return -EINVAL;
9364
9365 return 0;
9366 }
9367
9368 /**
9369 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9370 *
9371 * @attr_uptr: event_id type attributes for monitoring/sampling
9372 * @pid: target pid
9373 * @cpu: target cpu
9374 * @group_fd: group leader event fd
9375 */
9376 SYSCALL_DEFINE5(perf_event_open,
9377 struct perf_event_attr __user *, attr_uptr,
9378 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9379 {
9380 struct perf_event *group_leader = NULL, *output_event = NULL;
9381 struct perf_event *event, *sibling;
9382 struct perf_event_attr attr;
9383 struct perf_event_context *ctx, *uninitialized_var(gctx);
9384 struct file *event_file = NULL;
9385 struct fd group = {NULL, 0};
9386 struct task_struct *task = NULL;
9387 struct pmu *pmu;
9388 int event_fd;
9389 int move_group = 0;
9390 int err;
9391 int f_flags = O_RDWR;
9392 int cgroup_fd = -1;
9393
9394 /* for future expandability... */
9395 if (flags & ~PERF_FLAG_ALL)
9396 return -EINVAL;
9397
9398 err = perf_copy_attr(attr_uptr, &attr);
9399 if (err)
9400 return err;
9401
9402 if (!attr.exclude_kernel) {
9403 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9404 return -EACCES;
9405 }
9406
9407 if (attr.freq) {
9408 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9409 return -EINVAL;
9410 } else {
9411 if (attr.sample_period & (1ULL << 63))
9412 return -EINVAL;
9413 }
9414
9415 if (!attr.sample_max_stack)
9416 attr.sample_max_stack = sysctl_perf_event_max_stack;
9417
9418 /*
9419 * In cgroup mode, the pid argument is used to pass the fd
9420 * opened to the cgroup directory in cgroupfs. The cpu argument
9421 * designates the cpu on which to monitor threads from that
9422 * cgroup.
9423 */
9424 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9425 return -EINVAL;
9426
9427 if (flags & PERF_FLAG_FD_CLOEXEC)
9428 f_flags |= O_CLOEXEC;
9429
9430 event_fd = get_unused_fd_flags(f_flags);
9431 if (event_fd < 0)
9432 return event_fd;
9433
9434 if (group_fd != -1) {
9435 err = perf_fget_light(group_fd, &group);
9436 if (err)
9437 goto err_fd;
9438 group_leader = group.file->private_data;
9439 if (flags & PERF_FLAG_FD_OUTPUT)
9440 output_event = group_leader;
9441 if (flags & PERF_FLAG_FD_NO_GROUP)
9442 group_leader = NULL;
9443 }
9444
9445 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9446 task = find_lively_task_by_vpid(pid);
9447 if (IS_ERR(task)) {
9448 err = PTR_ERR(task);
9449 goto err_group_fd;
9450 }
9451 }
9452
9453 if (task && group_leader &&
9454 group_leader->attr.inherit != attr.inherit) {
9455 err = -EINVAL;
9456 goto err_task;
9457 }
9458
9459 get_online_cpus();
9460
9461 if (task) {
9462 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9463 if (err)
9464 goto err_cpus;
9465
9466 /*
9467 * Reuse ptrace permission checks for now.
9468 *
9469 * We must hold cred_guard_mutex across this and any potential
9470 * perf_install_in_context() call for this new event to
9471 * serialize against exec() altering our credentials (and the
9472 * perf_event_exit_task() that could imply).
9473 */
9474 err = -EACCES;
9475 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9476 goto err_cred;
9477 }
9478
9479 if (flags & PERF_FLAG_PID_CGROUP)
9480 cgroup_fd = pid;
9481
9482 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9483 NULL, NULL, cgroup_fd);
9484 if (IS_ERR(event)) {
9485 err = PTR_ERR(event);
9486 goto err_cred;
9487 }
9488
9489 if (is_sampling_event(event)) {
9490 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9491 err = -EOPNOTSUPP;
9492 goto err_alloc;
9493 }
9494 }
9495
9496 /*
9497 * Special case software events and allow them to be part of
9498 * any hardware group.
9499 */
9500 pmu = event->pmu;
9501
9502 if (attr.use_clockid) {
9503 err = perf_event_set_clock(event, attr.clockid);
9504 if (err)
9505 goto err_alloc;
9506 }
9507
9508 if (group_leader &&
9509 (is_software_event(event) != is_software_event(group_leader))) {
9510 if (is_software_event(event)) {
9511 /*
9512 * If event and group_leader are not both a software
9513 * event, and event is, then group leader is not.
9514 *
9515 * Allow the addition of software events to !software
9516 * groups, this is safe because software events never
9517 * fail to schedule.
9518 */
9519 pmu = group_leader->pmu;
9520 } else if (is_software_event(group_leader) &&
9521 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
9522 /*
9523 * In case the group is a pure software group, and we
9524 * try to add a hardware event, move the whole group to
9525 * the hardware context.
9526 */
9527 move_group = 1;
9528 }
9529 }
9530
9531 /*
9532 * Get the target context (task or percpu):
9533 */
9534 ctx = find_get_context(pmu, task, event);
9535 if (IS_ERR(ctx)) {
9536 err = PTR_ERR(ctx);
9537 goto err_alloc;
9538 }
9539
9540 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9541 err = -EBUSY;
9542 goto err_context;
9543 }
9544
9545 /*
9546 * Look up the group leader (we will attach this event to it):
9547 */
9548 if (group_leader) {
9549 err = -EINVAL;
9550
9551 /*
9552 * Do not allow a recursive hierarchy (this new sibling
9553 * becoming part of another group-sibling):
9554 */
9555 if (group_leader->group_leader != group_leader)
9556 goto err_context;
9557
9558 /* All events in a group should have the same clock */
9559 if (group_leader->clock != event->clock)
9560 goto err_context;
9561
9562 /*
9563 * Do not allow to attach to a group in a different
9564 * task or CPU context:
9565 */
9566 if (move_group) {
9567 /*
9568 * Make sure we're both on the same task, or both
9569 * per-cpu events.
9570 */
9571 if (group_leader->ctx->task != ctx->task)
9572 goto err_context;
9573
9574 /*
9575 * Make sure we're both events for the same CPU;
9576 * grouping events for different CPUs is broken; since
9577 * you can never concurrently schedule them anyhow.
9578 */
9579 if (group_leader->cpu != event->cpu)
9580 goto err_context;
9581 } else {
9582 if (group_leader->ctx != ctx)
9583 goto err_context;
9584 }
9585
9586 /*
9587 * Only a group leader can be exclusive or pinned
9588 */
9589 if (attr.exclusive || attr.pinned)
9590 goto err_context;
9591 }
9592
9593 if (output_event) {
9594 err = perf_event_set_output(event, output_event);
9595 if (err)
9596 goto err_context;
9597 }
9598
9599 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9600 f_flags);
9601 if (IS_ERR(event_file)) {
9602 err = PTR_ERR(event_file);
9603 event_file = NULL;
9604 goto err_context;
9605 }
9606
9607 if (move_group) {
9608 gctx = group_leader->ctx;
9609 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9610 if (gctx->task == TASK_TOMBSTONE) {
9611 err = -ESRCH;
9612 goto err_locked;
9613 }
9614 } else {
9615 mutex_lock(&ctx->mutex);
9616 }
9617
9618 if (ctx->task == TASK_TOMBSTONE) {
9619 err = -ESRCH;
9620 goto err_locked;
9621 }
9622
9623 if (!perf_event_validate_size(event)) {
9624 err = -E2BIG;
9625 goto err_locked;
9626 }
9627
9628 /*
9629 * Must be under the same ctx::mutex as perf_install_in_context(),
9630 * because we need to serialize with concurrent event creation.
9631 */
9632 if (!exclusive_event_installable(event, ctx)) {
9633 /* exclusive and group stuff are assumed mutually exclusive */
9634 WARN_ON_ONCE(move_group);
9635
9636 err = -EBUSY;
9637 goto err_locked;
9638 }
9639
9640 WARN_ON_ONCE(ctx->parent_ctx);
9641
9642 /*
9643 * This is the point on no return; we cannot fail hereafter. This is
9644 * where we start modifying current state.
9645 */
9646
9647 if (move_group) {
9648 /*
9649 * See perf_event_ctx_lock() for comments on the details
9650 * of swizzling perf_event::ctx.
9651 */
9652 perf_remove_from_context(group_leader, 0);
9653
9654 list_for_each_entry(sibling, &group_leader->sibling_list,
9655 group_entry) {
9656 perf_remove_from_context(sibling, 0);
9657 put_ctx(gctx);
9658 }
9659
9660 /*
9661 * Wait for everybody to stop referencing the events through
9662 * the old lists, before installing it on new lists.
9663 */
9664 synchronize_rcu();
9665
9666 /*
9667 * Install the group siblings before the group leader.
9668 *
9669 * Because a group leader will try and install the entire group
9670 * (through the sibling list, which is still in-tact), we can
9671 * end up with siblings installed in the wrong context.
9672 *
9673 * By installing siblings first we NO-OP because they're not
9674 * reachable through the group lists.
9675 */
9676 list_for_each_entry(sibling, &group_leader->sibling_list,
9677 group_entry) {
9678 perf_event__state_init(sibling);
9679 perf_install_in_context(ctx, sibling, sibling->cpu);
9680 get_ctx(ctx);
9681 }
9682
9683 /*
9684 * Removing from the context ends up with disabled
9685 * event. What we want here is event in the initial
9686 * startup state, ready to be add into new context.
9687 */
9688 perf_event__state_init(group_leader);
9689 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9690 get_ctx(ctx);
9691
9692 /*
9693 * Now that all events are installed in @ctx, nothing
9694 * references @gctx anymore, so drop the last reference we have
9695 * on it.
9696 */
9697 put_ctx(gctx);
9698 }
9699
9700 /*
9701 * Precalculate sample_data sizes; do while holding ctx::mutex such
9702 * that we're serialized against further additions and before
9703 * perf_install_in_context() which is the point the event is active and
9704 * can use these values.
9705 */
9706 perf_event__header_size(event);
9707 perf_event__id_header_size(event);
9708
9709 event->owner = current;
9710
9711 perf_install_in_context(ctx, event, event->cpu);
9712 perf_unpin_context(ctx);
9713
9714 if (move_group)
9715 mutex_unlock(&gctx->mutex);
9716 mutex_unlock(&ctx->mutex);
9717
9718 if (task) {
9719 mutex_unlock(&task->signal->cred_guard_mutex);
9720 put_task_struct(task);
9721 }
9722
9723 put_online_cpus();
9724
9725 mutex_lock(&current->perf_event_mutex);
9726 list_add_tail(&event->owner_entry, &current->perf_event_list);
9727 mutex_unlock(&current->perf_event_mutex);
9728
9729 /*
9730 * Drop the reference on the group_event after placing the
9731 * new event on the sibling_list. This ensures destruction
9732 * of the group leader will find the pointer to itself in
9733 * perf_group_detach().
9734 */
9735 fdput(group);
9736 fd_install(event_fd, event_file);
9737 return event_fd;
9738
9739 err_locked:
9740 if (move_group)
9741 mutex_unlock(&gctx->mutex);
9742 mutex_unlock(&ctx->mutex);
9743 /* err_file: */
9744 fput(event_file);
9745 err_context:
9746 perf_unpin_context(ctx);
9747 put_ctx(ctx);
9748 err_alloc:
9749 /*
9750 * If event_file is set, the fput() above will have called ->release()
9751 * and that will take care of freeing the event.
9752 */
9753 if (!event_file)
9754 free_event(event);
9755 err_cred:
9756 if (task)
9757 mutex_unlock(&task->signal->cred_guard_mutex);
9758 err_cpus:
9759 put_online_cpus();
9760 err_task:
9761 if (task)
9762 put_task_struct(task);
9763 err_group_fd:
9764 fdput(group);
9765 err_fd:
9766 put_unused_fd(event_fd);
9767 return err;
9768 }
9769
9770 /**
9771 * perf_event_create_kernel_counter
9772 *
9773 * @attr: attributes of the counter to create
9774 * @cpu: cpu in which the counter is bound
9775 * @task: task to profile (NULL for percpu)
9776 */
9777 struct perf_event *
9778 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9779 struct task_struct *task,
9780 perf_overflow_handler_t overflow_handler,
9781 void *context)
9782 {
9783 struct perf_event_context *ctx;
9784 struct perf_event *event;
9785 int err;
9786
9787 /*
9788 * Get the target context (task or percpu):
9789 */
9790
9791 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9792 overflow_handler, context, -1);
9793 if (IS_ERR(event)) {
9794 err = PTR_ERR(event);
9795 goto err;
9796 }
9797
9798 /* Mark owner so we could distinguish it from user events. */
9799 event->owner = TASK_TOMBSTONE;
9800
9801 ctx = find_get_context(event->pmu, task, event);
9802 if (IS_ERR(ctx)) {
9803 err = PTR_ERR(ctx);
9804 goto err_free;
9805 }
9806
9807 WARN_ON_ONCE(ctx->parent_ctx);
9808 mutex_lock(&ctx->mutex);
9809 if (ctx->task == TASK_TOMBSTONE) {
9810 err = -ESRCH;
9811 goto err_unlock;
9812 }
9813
9814 if (!exclusive_event_installable(event, ctx)) {
9815 err = -EBUSY;
9816 goto err_unlock;
9817 }
9818
9819 perf_install_in_context(ctx, event, cpu);
9820 perf_unpin_context(ctx);
9821 mutex_unlock(&ctx->mutex);
9822
9823 return event;
9824
9825 err_unlock:
9826 mutex_unlock(&ctx->mutex);
9827 perf_unpin_context(ctx);
9828 put_ctx(ctx);
9829 err_free:
9830 free_event(event);
9831 err:
9832 return ERR_PTR(err);
9833 }
9834 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9835
9836 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9837 {
9838 struct perf_event_context *src_ctx;
9839 struct perf_event_context *dst_ctx;
9840 struct perf_event *event, *tmp;
9841 LIST_HEAD(events);
9842
9843 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9844 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9845
9846 /*
9847 * See perf_event_ctx_lock() for comments on the details
9848 * of swizzling perf_event::ctx.
9849 */
9850 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9851 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9852 event_entry) {
9853 perf_remove_from_context(event, 0);
9854 unaccount_event_cpu(event, src_cpu);
9855 put_ctx(src_ctx);
9856 list_add(&event->migrate_entry, &events);
9857 }
9858
9859 /*
9860 * Wait for the events to quiesce before re-instating them.
9861 */
9862 synchronize_rcu();
9863
9864 /*
9865 * Re-instate events in 2 passes.
9866 *
9867 * Skip over group leaders and only install siblings on this first
9868 * pass, siblings will not get enabled without a leader, however a
9869 * leader will enable its siblings, even if those are still on the old
9870 * context.
9871 */
9872 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9873 if (event->group_leader == event)
9874 continue;
9875
9876 list_del(&event->migrate_entry);
9877 if (event->state >= PERF_EVENT_STATE_OFF)
9878 event->state = PERF_EVENT_STATE_INACTIVE;
9879 account_event_cpu(event, dst_cpu);
9880 perf_install_in_context(dst_ctx, event, dst_cpu);
9881 get_ctx(dst_ctx);
9882 }
9883
9884 /*
9885 * Once all the siblings are setup properly, install the group leaders
9886 * to make it go.
9887 */
9888 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9889 list_del(&event->migrate_entry);
9890 if (event->state >= PERF_EVENT_STATE_OFF)
9891 event->state = PERF_EVENT_STATE_INACTIVE;
9892 account_event_cpu(event, dst_cpu);
9893 perf_install_in_context(dst_ctx, event, dst_cpu);
9894 get_ctx(dst_ctx);
9895 }
9896 mutex_unlock(&dst_ctx->mutex);
9897 mutex_unlock(&src_ctx->mutex);
9898 }
9899 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
9900
9901 static void sync_child_event(struct perf_event *child_event,
9902 struct task_struct *child)
9903 {
9904 struct perf_event *parent_event = child_event->parent;
9905 u64 child_val;
9906
9907 if (child_event->attr.inherit_stat)
9908 perf_event_read_event(child_event, child);
9909
9910 child_val = perf_event_count(child_event);
9911
9912 /*
9913 * Add back the child's count to the parent's count:
9914 */
9915 atomic64_add(child_val, &parent_event->child_count);
9916 atomic64_add(child_event->total_time_enabled,
9917 &parent_event->child_total_time_enabled);
9918 atomic64_add(child_event->total_time_running,
9919 &parent_event->child_total_time_running);
9920 }
9921
9922 static void
9923 perf_event_exit_event(struct perf_event *child_event,
9924 struct perf_event_context *child_ctx,
9925 struct task_struct *child)
9926 {
9927 struct perf_event *parent_event = child_event->parent;
9928
9929 /*
9930 * Do not destroy the 'original' grouping; because of the context
9931 * switch optimization the original events could've ended up in a
9932 * random child task.
9933 *
9934 * If we were to destroy the original group, all group related
9935 * operations would cease to function properly after this random
9936 * child dies.
9937 *
9938 * Do destroy all inherited groups, we don't care about those
9939 * and being thorough is better.
9940 */
9941 raw_spin_lock_irq(&child_ctx->lock);
9942 WARN_ON_ONCE(child_ctx->is_active);
9943
9944 if (parent_event)
9945 perf_group_detach(child_event);
9946 list_del_event(child_event, child_ctx);
9947 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
9948 raw_spin_unlock_irq(&child_ctx->lock);
9949
9950 /*
9951 * Parent events are governed by their filedesc, retain them.
9952 */
9953 if (!parent_event) {
9954 perf_event_wakeup(child_event);
9955 return;
9956 }
9957 /*
9958 * Child events can be cleaned up.
9959 */
9960
9961 sync_child_event(child_event, child);
9962
9963 /*
9964 * Remove this event from the parent's list
9965 */
9966 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9967 mutex_lock(&parent_event->child_mutex);
9968 list_del_init(&child_event->child_list);
9969 mutex_unlock(&parent_event->child_mutex);
9970
9971 /*
9972 * Kick perf_poll() for is_event_hup().
9973 */
9974 perf_event_wakeup(parent_event);
9975 free_event(child_event);
9976 put_event(parent_event);
9977 }
9978
9979 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9980 {
9981 struct perf_event_context *child_ctx, *clone_ctx = NULL;
9982 struct perf_event *child_event, *next;
9983
9984 WARN_ON_ONCE(child != current);
9985
9986 child_ctx = perf_pin_task_context(child, ctxn);
9987 if (!child_ctx)
9988 return;
9989
9990 /*
9991 * In order to reduce the amount of tricky in ctx tear-down, we hold
9992 * ctx::mutex over the entire thing. This serializes against almost
9993 * everything that wants to access the ctx.
9994 *
9995 * The exception is sys_perf_event_open() /
9996 * perf_event_create_kernel_count() which does find_get_context()
9997 * without ctx::mutex (it cannot because of the move_group double mutex
9998 * lock thing). See the comments in perf_install_in_context().
9999 */
10000 mutex_lock(&child_ctx->mutex);
10001
10002 /*
10003 * In a single ctx::lock section, de-schedule the events and detach the
10004 * context from the task such that we cannot ever get it scheduled back
10005 * in.
10006 */
10007 raw_spin_lock_irq(&child_ctx->lock);
10008 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
10009
10010 /*
10011 * Now that the context is inactive, destroy the task <-> ctx relation
10012 * and mark the context dead.
10013 */
10014 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10015 put_ctx(child_ctx); /* cannot be last */
10016 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10017 put_task_struct(current); /* cannot be last */
10018
10019 clone_ctx = unclone_ctx(child_ctx);
10020 raw_spin_unlock_irq(&child_ctx->lock);
10021
10022 if (clone_ctx)
10023 put_ctx(clone_ctx);
10024
10025 /*
10026 * Report the task dead after unscheduling the events so that we
10027 * won't get any samples after PERF_RECORD_EXIT. We can however still
10028 * get a few PERF_RECORD_READ events.
10029 */
10030 perf_event_task(child, child_ctx, 0);
10031
10032 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10033 perf_event_exit_event(child_event, child_ctx, child);
10034
10035 mutex_unlock(&child_ctx->mutex);
10036
10037 put_ctx(child_ctx);
10038 }
10039
10040 /*
10041 * When a child task exits, feed back event values to parent events.
10042 *
10043 * Can be called with cred_guard_mutex held when called from
10044 * install_exec_creds().
10045 */
10046 void perf_event_exit_task(struct task_struct *child)
10047 {
10048 struct perf_event *event, *tmp;
10049 int ctxn;
10050
10051 mutex_lock(&child->perf_event_mutex);
10052 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10053 owner_entry) {
10054 list_del_init(&event->owner_entry);
10055
10056 /*
10057 * Ensure the list deletion is visible before we clear
10058 * the owner, closes a race against perf_release() where
10059 * we need to serialize on the owner->perf_event_mutex.
10060 */
10061 smp_store_release(&event->owner, NULL);
10062 }
10063 mutex_unlock(&child->perf_event_mutex);
10064
10065 for_each_task_context_nr(ctxn)
10066 perf_event_exit_task_context(child, ctxn);
10067
10068 /*
10069 * The perf_event_exit_task_context calls perf_event_task
10070 * with child's task_ctx, which generates EXIT events for
10071 * child contexts and sets child->perf_event_ctxp[] to NULL.
10072 * At this point we need to send EXIT events to cpu contexts.
10073 */
10074 perf_event_task(child, NULL, 0);
10075 }
10076
10077 static void perf_free_event(struct perf_event *event,
10078 struct perf_event_context *ctx)
10079 {
10080 struct perf_event *parent = event->parent;
10081
10082 if (WARN_ON_ONCE(!parent))
10083 return;
10084
10085 mutex_lock(&parent->child_mutex);
10086 list_del_init(&event->child_list);
10087 mutex_unlock(&parent->child_mutex);
10088
10089 put_event(parent);
10090
10091 raw_spin_lock_irq(&ctx->lock);
10092 perf_group_detach(event);
10093 list_del_event(event, ctx);
10094 raw_spin_unlock_irq(&ctx->lock);
10095 free_event(event);
10096 }
10097
10098 /*
10099 * Free an unexposed, unused context as created by inheritance by
10100 * perf_event_init_task below, used by fork() in case of fail.
10101 *
10102 * Not all locks are strictly required, but take them anyway to be nice and
10103 * help out with the lockdep assertions.
10104 */
10105 void perf_event_free_task(struct task_struct *task)
10106 {
10107 struct perf_event_context *ctx;
10108 struct perf_event *event, *tmp;
10109 int ctxn;
10110
10111 for_each_task_context_nr(ctxn) {
10112 ctx = task->perf_event_ctxp[ctxn];
10113 if (!ctx)
10114 continue;
10115
10116 mutex_lock(&ctx->mutex);
10117 again:
10118 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10119 group_entry)
10120 perf_free_event(event, ctx);
10121
10122 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10123 group_entry)
10124 perf_free_event(event, ctx);
10125
10126 if (!list_empty(&ctx->pinned_groups) ||
10127 !list_empty(&ctx->flexible_groups))
10128 goto again;
10129
10130 mutex_unlock(&ctx->mutex);
10131
10132 put_ctx(ctx);
10133 }
10134 }
10135
10136 void perf_event_delayed_put(struct task_struct *task)
10137 {
10138 int ctxn;
10139
10140 for_each_task_context_nr(ctxn)
10141 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10142 }
10143
10144 struct file *perf_event_get(unsigned int fd)
10145 {
10146 struct file *file;
10147
10148 file = fget_raw(fd);
10149 if (!file)
10150 return ERR_PTR(-EBADF);
10151
10152 if (file->f_op != &perf_fops) {
10153 fput(file);
10154 return ERR_PTR(-EBADF);
10155 }
10156
10157 return file;
10158 }
10159
10160 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10161 {
10162 if (!event)
10163 return ERR_PTR(-EINVAL);
10164
10165 return &event->attr;
10166 }
10167
10168 /*
10169 * inherit a event from parent task to child task:
10170 */
10171 static struct perf_event *
10172 inherit_event(struct perf_event *parent_event,
10173 struct task_struct *parent,
10174 struct perf_event_context *parent_ctx,
10175 struct task_struct *child,
10176 struct perf_event *group_leader,
10177 struct perf_event_context *child_ctx)
10178 {
10179 enum perf_event_active_state parent_state = parent_event->state;
10180 struct perf_event *child_event;
10181 unsigned long flags;
10182
10183 /*
10184 * Instead of creating recursive hierarchies of events,
10185 * we link inherited events back to the original parent,
10186 * which has a filp for sure, which we use as the reference
10187 * count:
10188 */
10189 if (parent_event->parent)
10190 parent_event = parent_event->parent;
10191
10192 child_event = perf_event_alloc(&parent_event->attr,
10193 parent_event->cpu,
10194 child,
10195 group_leader, parent_event,
10196 NULL, NULL, -1);
10197 if (IS_ERR(child_event))
10198 return child_event;
10199
10200 /*
10201 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10202 * must be under the same lock in order to serialize against
10203 * perf_event_release_kernel(), such that either we must observe
10204 * is_orphaned_event() or they will observe us on the child_list.
10205 */
10206 mutex_lock(&parent_event->child_mutex);
10207 if (is_orphaned_event(parent_event) ||
10208 !atomic_long_inc_not_zero(&parent_event->refcount)) {
10209 mutex_unlock(&parent_event->child_mutex);
10210 free_event(child_event);
10211 return NULL;
10212 }
10213
10214 get_ctx(child_ctx);
10215
10216 /*
10217 * Make the child state follow the state of the parent event,
10218 * not its attr.disabled bit. We hold the parent's mutex,
10219 * so we won't race with perf_event_{en, dis}able_family.
10220 */
10221 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10222 child_event->state = PERF_EVENT_STATE_INACTIVE;
10223 else
10224 child_event->state = PERF_EVENT_STATE_OFF;
10225
10226 if (parent_event->attr.freq) {
10227 u64 sample_period = parent_event->hw.sample_period;
10228 struct hw_perf_event *hwc = &child_event->hw;
10229
10230 hwc->sample_period = sample_period;
10231 hwc->last_period = sample_period;
10232
10233 local64_set(&hwc->period_left, sample_period);
10234 }
10235
10236 child_event->ctx = child_ctx;
10237 child_event->overflow_handler = parent_event->overflow_handler;
10238 child_event->overflow_handler_context
10239 = parent_event->overflow_handler_context;
10240
10241 /*
10242 * Precalculate sample_data sizes
10243 */
10244 perf_event__header_size(child_event);
10245 perf_event__id_header_size(child_event);
10246
10247 /*
10248 * Link it up in the child's context:
10249 */
10250 raw_spin_lock_irqsave(&child_ctx->lock, flags);
10251 add_event_to_ctx(child_event, child_ctx);
10252 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10253
10254 /*
10255 * Link this into the parent event's child list
10256 */
10257 list_add_tail(&child_event->child_list, &parent_event->child_list);
10258 mutex_unlock(&parent_event->child_mutex);
10259
10260 return child_event;
10261 }
10262
10263 static int inherit_group(struct perf_event *parent_event,
10264 struct task_struct *parent,
10265 struct perf_event_context *parent_ctx,
10266 struct task_struct *child,
10267 struct perf_event_context *child_ctx)
10268 {
10269 struct perf_event *leader;
10270 struct perf_event *sub;
10271 struct perf_event *child_ctr;
10272
10273 leader = inherit_event(parent_event, parent, parent_ctx,
10274 child, NULL, child_ctx);
10275 if (IS_ERR(leader))
10276 return PTR_ERR(leader);
10277 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10278 child_ctr = inherit_event(sub, parent, parent_ctx,
10279 child, leader, child_ctx);
10280 if (IS_ERR(child_ctr))
10281 return PTR_ERR(child_ctr);
10282 }
10283 return 0;
10284 }
10285
10286 static int
10287 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10288 struct perf_event_context *parent_ctx,
10289 struct task_struct *child, int ctxn,
10290 int *inherited_all)
10291 {
10292 int ret;
10293 struct perf_event_context *child_ctx;
10294
10295 if (!event->attr.inherit) {
10296 *inherited_all = 0;
10297 return 0;
10298 }
10299
10300 child_ctx = child->perf_event_ctxp[ctxn];
10301 if (!child_ctx) {
10302 /*
10303 * This is executed from the parent task context, so
10304 * inherit events that have been marked for cloning.
10305 * First allocate and initialize a context for the
10306 * child.
10307 */
10308
10309 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10310 if (!child_ctx)
10311 return -ENOMEM;
10312
10313 child->perf_event_ctxp[ctxn] = child_ctx;
10314 }
10315
10316 ret = inherit_group(event, parent, parent_ctx,
10317 child, child_ctx);
10318
10319 if (ret)
10320 *inherited_all = 0;
10321
10322 return ret;
10323 }
10324
10325 /*
10326 * Initialize the perf_event context in task_struct
10327 */
10328 static int perf_event_init_context(struct task_struct *child, int ctxn)
10329 {
10330 struct perf_event_context *child_ctx, *parent_ctx;
10331 struct perf_event_context *cloned_ctx;
10332 struct perf_event *event;
10333 struct task_struct *parent = current;
10334 int inherited_all = 1;
10335 unsigned long flags;
10336 int ret = 0;
10337
10338 if (likely(!parent->perf_event_ctxp[ctxn]))
10339 return 0;
10340
10341 /*
10342 * If the parent's context is a clone, pin it so it won't get
10343 * swapped under us.
10344 */
10345 parent_ctx = perf_pin_task_context(parent, ctxn);
10346 if (!parent_ctx)
10347 return 0;
10348
10349 /*
10350 * No need to check if parent_ctx != NULL here; since we saw
10351 * it non-NULL earlier, the only reason for it to become NULL
10352 * is if we exit, and since we're currently in the middle of
10353 * a fork we can't be exiting at the same time.
10354 */
10355
10356 /*
10357 * Lock the parent list. No need to lock the child - not PID
10358 * hashed yet and not running, so nobody can access it.
10359 */
10360 mutex_lock(&parent_ctx->mutex);
10361
10362 /*
10363 * We dont have to disable NMIs - we are only looking at
10364 * the list, not manipulating it:
10365 */
10366 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10367 ret = inherit_task_group(event, parent, parent_ctx,
10368 child, ctxn, &inherited_all);
10369 if (ret)
10370 break;
10371 }
10372
10373 /*
10374 * We can't hold ctx->lock when iterating the ->flexible_group list due
10375 * to allocations, but we need to prevent rotation because
10376 * rotate_ctx() will change the list from interrupt context.
10377 */
10378 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10379 parent_ctx->rotate_disable = 1;
10380 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10381
10382 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10383 ret = inherit_task_group(event, parent, parent_ctx,
10384 child, ctxn, &inherited_all);
10385 if (ret)
10386 break;
10387 }
10388
10389 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10390 parent_ctx->rotate_disable = 0;
10391
10392 child_ctx = child->perf_event_ctxp[ctxn];
10393
10394 if (child_ctx && inherited_all) {
10395 /*
10396 * Mark the child context as a clone of the parent
10397 * context, or of whatever the parent is a clone of.
10398 *
10399 * Note that if the parent is a clone, the holding of
10400 * parent_ctx->lock avoids it from being uncloned.
10401 */
10402 cloned_ctx = parent_ctx->parent_ctx;
10403 if (cloned_ctx) {
10404 child_ctx->parent_ctx = cloned_ctx;
10405 child_ctx->parent_gen = parent_ctx->parent_gen;
10406 } else {
10407 child_ctx->parent_ctx = parent_ctx;
10408 child_ctx->parent_gen = parent_ctx->generation;
10409 }
10410 get_ctx(child_ctx->parent_ctx);
10411 }
10412
10413 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10414 mutex_unlock(&parent_ctx->mutex);
10415
10416 perf_unpin_context(parent_ctx);
10417 put_ctx(parent_ctx);
10418
10419 return ret;
10420 }
10421
10422 /*
10423 * Initialize the perf_event context in task_struct
10424 */
10425 int perf_event_init_task(struct task_struct *child)
10426 {
10427 int ctxn, ret;
10428
10429 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10430 mutex_init(&child->perf_event_mutex);
10431 INIT_LIST_HEAD(&child->perf_event_list);
10432
10433 for_each_task_context_nr(ctxn) {
10434 ret = perf_event_init_context(child, ctxn);
10435 if (ret) {
10436 perf_event_free_task(child);
10437 return ret;
10438 }
10439 }
10440
10441 return 0;
10442 }
10443
10444 static void __init perf_event_init_all_cpus(void)
10445 {
10446 struct swevent_htable *swhash;
10447 int cpu;
10448
10449 for_each_possible_cpu(cpu) {
10450 swhash = &per_cpu(swevent_htable, cpu);
10451 mutex_init(&swhash->hlist_mutex);
10452 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10453
10454 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10455 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10456 }
10457 }
10458
10459 int perf_event_init_cpu(unsigned int cpu)
10460 {
10461 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10462
10463 mutex_lock(&swhash->hlist_mutex);
10464 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10465 struct swevent_hlist *hlist;
10466
10467 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10468 WARN_ON(!hlist);
10469 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10470 }
10471 mutex_unlock(&swhash->hlist_mutex);
10472 return 0;
10473 }
10474
10475 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10476 static void __perf_event_exit_context(void *__info)
10477 {
10478 struct perf_event_context *ctx = __info;
10479 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10480 struct perf_event *event;
10481
10482 raw_spin_lock(&ctx->lock);
10483 list_for_each_entry(event, &ctx->event_list, event_entry)
10484 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10485 raw_spin_unlock(&ctx->lock);
10486 }
10487
10488 static void perf_event_exit_cpu_context(int cpu)
10489 {
10490 struct perf_event_context *ctx;
10491 struct pmu *pmu;
10492 int idx;
10493
10494 idx = srcu_read_lock(&pmus_srcu);
10495 list_for_each_entry_rcu(pmu, &pmus, entry) {
10496 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10497
10498 mutex_lock(&ctx->mutex);
10499 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10500 mutex_unlock(&ctx->mutex);
10501 }
10502 srcu_read_unlock(&pmus_srcu, idx);
10503 }
10504 #else
10505
10506 static void perf_event_exit_cpu_context(int cpu) { }
10507
10508 #endif
10509
10510 int perf_event_exit_cpu(unsigned int cpu)
10511 {
10512 perf_event_exit_cpu_context(cpu);
10513 return 0;
10514 }
10515
10516 static int
10517 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10518 {
10519 int cpu;
10520
10521 for_each_online_cpu(cpu)
10522 perf_event_exit_cpu(cpu);
10523
10524 return NOTIFY_OK;
10525 }
10526
10527 /*
10528 * Run the perf reboot notifier at the very last possible moment so that
10529 * the generic watchdog code runs as long as possible.
10530 */
10531 static struct notifier_block perf_reboot_notifier = {
10532 .notifier_call = perf_reboot,
10533 .priority = INT_MIN,
10534 };
10535
10536 void __init perf_event_init(void)
10537 {
10538 int ret;
10539
10540 idr_init(&pmu_idr);
10541
10542 perf_event_init_all_cpus();
10543 init_srcu_struct(&pmus_srcu);
10544 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10545 perf_pmu_register(&perf_cpu_clock, NULL, -1);
10546 perf_pmu_register(&perf_task_clock, NULL, -1);
10547 perf_tp_register();
10548 perf_event_init_cpu(smp_processor_id());
10549 register_reboot_notifier(&perf_reboot_notifier);
10550
10551 ret = init_hw_breakpoint();
10552 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10553
10554 /*
10555 * Build time assertion that we keep the data_head at the intended
10556 * location. IOW, validation we got the __reserved[] size right.
10557 */
10558 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10559 != 1024);
10560 }
10561
10562 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10563 char *page)
10564 {
10565 struct perf_pmu_events_attr *pmu_attr =
10566 container_of(attr, struct perf_pmu_events_attr, attr);
10567
10568 if (pmu_attr->event_str)
10569 return sprintf(page, "%s\n", pmu_attr->event_str);
10570
10571 return 0;
10572 }
10573 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10574
10575 static int __init perf_event_sysfs_init(void)
10576 {
10577 struct pmu *pmu;
10578 int ret;
10579
10580 mutex_lock(&pmus_lock);
10581
10582 ret = bus_register(&pmu_bus);
10583 if (ret)
10584 goto unlock;
10585
10586 list_for_each_entry(pmu, &pmus, entry) {
10587 if (!pmu->name || pmu->type < 0)
10588 continue;
10589
10590 ret = pmu_dev_alloc(pmu);
10591 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10592 }
10593 pmu_bus_running = 1;
10594 ret = 0;
10595
10596 unlock:
10597 mutex_unlock(&pmus_lock);
10598
10599 return ret;
10600 }
10601 device_initcall(perf_event_sysfs_init);
10602
10603 #ifdef CONFIG_CGROUP_PERF
10604 static struct cgroup_subsys_state *
10605 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10606 {
10607 struct perf_cgroup *jc;
10608
10609 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10610 if (!jc)
10611 return ERR_PTR(-ENOMEM);
10612
10613 jc->info = alloc_percpu(struct perf_cgroup_info);
10614 if (!jc->info) {
10615 kfree(jc);
10616 return ERR_PTR(-ENOMEM);
10617 }
10618
10619 return &jc->css;
10620 }
10621
10622 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10623 {
10624 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10625
10626 free_percpu(jc->info);
10627 kfree(jc);
10628 }
10629
10630 static int __perf_cgroup_move(void *info)
10631 {
10632 struct task_struct *task = info;
10633 rcu_read_lock();
10634 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10635 rcu_read_unlock();
10636 return 0;
10637 }
10638
10639 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10640 {
10641 struct task_struct *task;
10642 struct cgroup_subsys_state *css;
10643
10644 cgroup_taskset_for_each(task, css, tset)
10645 task_function_call(task, __perf_cgroup_move, task);
10646 }
10647
10648 struct cgroup_subsys perf_event_cgrp_subsys = {
10649 .css_alloc = perf_cgroup_css_alloc,
10650 .css_free = perf_cgroup_css_free,
10651 .attach = perf_cgroup_attach,
10652 };
10653 #endif /* CONFIG_CGROUP_PERF */