]> git.ipfire.org Git - people/arne_f/kernel.git/blob - kernel/events/core.c
Merge tag 'microblaze-4.13-rc1' of git://git.monstr.eu/linux-2.6-microblaze
[people/arne_f/kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61 struct task_struct *p;
62 remote_function_f func;
63 void *info;
64 int ret;
65 };
66
67 static void remote_function(void *data)
68 {
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 struct remote_function_call data = {
107 .p = p,
108 .func = func,
109 .info = info,
110 .ret = -EAGAIN,
111 };
112 int ret;
113
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
119
120 return ret;
121 }
122
123 /**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 struct remote_function_call data = {
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
154 {
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162 {
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197 struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201 };
202
203 static int event_function(void *info)
204 {
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
207 struct perf_event_context *ctx = event->ctx;
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 int ret = 0;
211
212 WARN_ON_ONCE(!irqs_disabled());
213
214 perf_ctx_lock(cpuctx, task_ctx);
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
218 */
219 if (ctx->task) {
220 if (ctx->task != current) {
221 ret = -ESRCH;
222 goto unlock;
223 }
224
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 }
241
242 efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 perf_ctx_unlock(cpuctx, task_ctx);
245
246 return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 struct perf_event_context *ctx = event->ctx;
252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
258
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
267
268 if (!task) {
269 cpu_function_call(event->cpu, event_function, &efs);
270 return;
271 }
272
273 if (task == TASK_TOMBSTONE)
274 return;
275
276 again:
277 if (!task_function_call(task, event_function, &efs))
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
289 }
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
295 raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
309 WARN_ON_ONCE(!irqs_disabled());
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342 unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
350
351 /*
352 * branch priv levels that need permission checks
353 */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
361 EVENT_TIME = 0x4,
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392
393 /*
394 * perf event paranoia level:
395 * -1 - not paranoid at all
396 * 0 - disallow raw tracepoint access for unpriv
397 * 1 - disallow cpu events for unpriv
398 * 2 - disallow kernel profiling for unpriv
399 */
400 int sysctl_perf_event_paranoid __read_mostly = 2;
401
402 /* Minimum for 512 kiB + 1 user control page */
403 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
404
405 /*
406 * max perf event sample rate
407 */
408 #define DEFAULT_MAX_SAMPLE_RATE 100000
409 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
410 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
411
412 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
413
414 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
415 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
416
417 static int perf_sample_allowed_ns __read_mostly =
418 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
419
420 static void update_perf_cpu_limits(void)
421 {
422 u64 tmp = perf_sample_period_ns;
423
424 tmp *= sysctl_perf_cpu_time_max_percent;
425 tmp = div_u64(tmp, 100);
426 if (!tmp)
427 tmp = 1;
428
429 WRITE_ONCE(perf_sample_allowed_ns, tmp);
430 }
431
432 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
433
434 int perf_proc_update_handler(struct ctl_table *table, int write,
435 void __user *buffer, size_t *lenp,
436 loff_t *ppos)
437 {
438 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
439
440 if (ret || !write)
441 return ret;
442
443 /*
444 * If throttling is disabled don't allow the write:
445 */
446 if (sysctl_perf_cpu_time_max_percent == 100 ||
447 sysctl_perf_cpu_time_max_percent == 0)
448 return -EINVAL;
449
450 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
451 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
452 update_perf_cpu_limits();
453
454 return 0;
455 }
456
457 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
458
459 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
460 void __user *buffer, size_t *lenp,
461 loff_t *ppos)
462 {
463 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464
465 if (ret || !write)
466 return ret;
467
468 if (sysctl_perf_cpu_time_max_percent == 100 ||
469 sysctl_perf_cpu_time_max_percent == 0) {
470 printk(KERN_WARNING
471 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
472 WRITE_ONCE(perf_sample_allowed_ns, 0);
473 } else {
474 update_perf_cpu_limits();
475 }
476
477 return 0;
478 }
479
480 /*
481 * perf samples are done in some very critical code paths (NMIs).
482 * If they take too much CPU time, the system can lock up and not
483 * get any real work done. This will drop the sample rate when
484 * we detect that events are taking too long.
485 */
486 #define NR_ACCUMULATED_SAMPLES 128
487 static DEFINE_PER_CPU(u64, running_sample_length);
488
489 static u64 __report_avg;
490 static u64 __report_allowed;
491
492 static void perf_duration_warn(struct irq_work *w)
493 {
494 printk_ratelimited(KERN_INFO
495 "perf: interrupt took too long (%lld > %lld), lowering "
496 "kernel.perf_event_max_sample_rate to %d\n",
497 __report_avg, __report_allowed,
498 sysctl_perf_event_sample_rate);
499 }
500
501 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
502
503 void perf_sample_event_took(u64 sample_len_ns)
504 {
505 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
506 u64 running_len;
507 u64 avg_len;
508 u32 max;
509
510 if (max_len == 0)
511 return;
512
513 /* Decay the counter by 1 average sample. */
514 running_len = __this_cpu_read(running_sample_length);
515 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
516 running_len += sample_len_ns;
517 __this_cpu_write(running_sample_length, running_len);
518
519 /*
520 * Note: this will be biased artifically low until we have
521 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
522 * from having to maintain a count.
523 */
524 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
525 if (avg_len <= max_len)
526 return;
527
528 __report_avg = avg_len;
529 __report_allowed = max_len;
530
531 /*
532 * Compute a throttle threshold 25% below the current duration.
533 */
534 avg_len += avg_len / 4;
535 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
536 if (avg_len < max)
537 max /= (u32)avg_len;
538 else
539 max = 1;
540
541 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
542 WRITE_ONCE(max_samples_per_tick, max);
543
544 sysctl_perf_event_sample_rate = max * HZ;
545 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
546
547 if (!irq_work_queue(&perf_duration_work)) {
548 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
549 "kernel.perf_event_max_sample_rate to %d\n",
550 __report_avg, __report_allowed,
551 sysctl_perf_event_sample_rate);
552 }
553 }
554
555 static atomic64_t perf_event_id;
556
557 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
558 enum event_type_t event_type);
559
560 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
561 enum event_type_t event_type,
562 struct task_struct *task);
563
564 static void update_context_time(struct perf_event_context *ctx);
565 static u64 perf_event_time(struct perf_event *event);
566
567 void __weak perf_event_print_debug(void) { }
568
569 extern __weak const char *perf_pmu_name(void)
570 {
571 return "pmu";
572 }
573
574 static inline u64 perf_clock(void)
575 {
576 return local_clock();
577 }
578
579 static inline u64 perf_event_clock(struct perf_event *event)
580 {
581 return event->clock();
582 }
583
584 #ifdef CONFIG_CGROUP_PERF
585
586 static inline bool
587 perf_cgroup_match(struct perf_event *event)
588 {
589 struct perf_event_context *ctx = event->ctx;
590 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
591
592 /* @event doesn't care about cgroup */
593 if (!event->cgrp)
594 return true;
595
596 /* wants specific cgroup scope but @cpuctx isn't associated with any */
597 if (!cpuctx->cgrp)
598 return false;
599
600 /*
601 * Cgroup scoping is recursive. An event enabled for a cgroup is
602 * also enabled for all its descendant cgroups. If @cpuctx's
603 * cgroup is a descendant of @event's (the test covers identity
604 * case), it's a match.
605 */
606 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
607 event->cgrp->css.cgroup);
608 }
609
610 static inline void perf_detach_cgroup(struct perf_event *event)
611 {
612 css_put(&event->cgrp->css);
613 event->cgrp = NULL;
614 }
615
616 static inline int is_cgroup_event(struct perf_event *event)
617 {
618 return event->cgrp != NULL;
619 }
620
621 static inline u64 perf_cgroup_event_time(struct perf_event *event)
622 {
623 struct perf_cgroup_info *t;
624
625 t = per_cpu_ptr(event->cgrp->info, event->cpu);
626 return t->time;
627 }
628
629 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
630 {
631 struct perf_cgroup_info *info;
632 u64 now;
633
634 now = perf_clock();
635
636 info = this_cpu_ptr(cgrp->info);
637
638 info->time += now - info->timestamp;
639 info->timestamp = now;
640 }
641
642 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
643 {
644 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
645 if (cgrp_out)
646 __update_cgrp_time(cgrp_out);
647 }
648
649 static inline void update_cgrp_time_from_event(struct perf_event *event)
650 {
651 struct perf_cgroup *cgrp;
652
653 /*
654 * ensure we access cgroup data only when needed and
655 * when we know the cgroup is pinned (css_get)
656 */
657 if (!is_cgroup_event(event))
658 return;
659
660 cgrp = perf_cgroup_from_task(current, event->ctx);
661 /*
662 * Do not update time when cgroup is not active
663 */
664 if (cgrp == event->cgrp)
665 __update_cgrp_time(event->cgrp);
666 }
667
668 static inline void
669 perf_cgroup_set_timestamp(struct task_struct *task,
670 struct perf_event_context *ctx)
671 {
672 struct perf_cgroup *cgrp;
673 struct perf_cgroup_info *info;
674
675 /*
676 * ctx->lock held by caller
677 * ensure we do not access cgroup data
678 * unless we have the cgroup pinned (css_get)
679 */
680 if (!task || !ctx->nr_cgroups)
681 return;
682
683 cgrp = perf_cgroup_from_task(task, ctx);
684 info = this_cpu_ptr(cgrp->info);
685 info->timestamp = ctx->timestamp;
686 }
687
688 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
689
690 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
691 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
692
693 /*
694 * reschedule events based on the cgroup constraint of task.
695 *
696 * mode SWOUT : schedule out everything
697 * mode SWIN : schedule in based on cgroup for next
698 */
699 static void perf_cgroup_switch(struct task_struct *task, int mode)
700 {
701 struct perf_cpu_context *cpuctx;
702 struct list_head *list;
703 unsigned long flags;
704
705 /*
706 * Disable interrupts and preemption to avoid this CPU's
707 * cgrp_cpuctx_entry to change under us.
708 */
709 local_irq_save(flags);
710
711 list = this_cpu_ptr(&cgrp_cpuctx_list);
712 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
713 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
714
715 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
716 perf_pmu_disable(cpuctx->ctx.pmu);
717
718 if (mode & PERF_CGROUP_SWOUT) {
719 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
720 /*
721 * must not be done before ctxswout due
722 * to event_filter_match() in event_sched_out()
723 */
724 cpuctx->cgrp = NULL;
725 }
726
727 if (mode & PERF_CGROUP_SWIN) {
728 WARN_ON_ONCE(cpuctx->cgrp);
729 /*
730 * set cgrp before ctxsw in to allow
731 * event_filter_match() to not have to pass
732 * task around
733 * we pass the cpuctx->ctx to perf_cgroup_from_task()
734 * because cgorup events are only per-cpu
735 */
736 cpuctx->cgrp = perf_cgroup_from_task(task,
737 &cpuctx->ctx);
738 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
739 }
740 perf_pmu_enable(cpuctx->ctx.pmu);
741 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
742 }
743
744 local_irq_restore(flags);
745 }
746
747 static inline void perf_cgroup_sched_out(struct task_struct *task,
748 struct task_struct *next)
749 {
750 struct perf_cgroup *cgrp1;
751 struct perf_cgroup *cgrp2 = NULL;
752
753 rcu_read_lock();
754 /*
755 * we come here when we know perf_cgroup_events > 0
756 * we do not need to pass the ctx here because we know
757 * we are holding the rcu lock
758 */
759 cgrp1 = perf_cgroup_from_task(task, NULL);
760 cgrp2 = perf_cgroup_from_task(next, NULL);
761
762 /*
763 * only schedule out current cgroup events if we know
764 * that we are switching to a different cgroup. Otherwise,
765 * do no touch the cgroup events.
766 */
767 if (cgrp1 != cgrp2)
768 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
769
770 rcu_read_unlock();
771 }
772
773 static inline void perf_cgroup_sched_in(struct task_struct *prev,
774 struct task_struct *task)
775 {
776 struct perf_cgroup *cgrp1;
777 struct perf_cgroup *cgrp2 = NULL;
778
779 rcu_read_lock();
780 /*
781 * we come here when we know perf_cgroup_events > 0
782 * we do not need to pass the ctx here because we know
783 * we are holding the rcu lock
784 */
785 cgrp1 = perf_cgroup_from_task(task, NULL);
786 cgrp2 = perf_cgroup_from_task(prev, NULL);
787
788 /*
789 * only need to schedule in cgroup events if we are changing
790 * cgroup during ctxsw. Cgroup events were not scheduled
791 * out of ctxsw out if that was not the case.
792 */
793 if (cgrp1 != cgrp2)
794 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
795
796 rcu_read_unlock();
797 }
798
799 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
800 struct perf_event_attr *attr,
801 struct perf_event *group_leader)
802 {
803 struct perf_cgroup *cgrp;
804 struct cgroup_subsys_state *css;
805 struct fd f = fdget(fd);
806 int ret = 0;
807
808 if (!f.file)
809 return -EBADF;
810
811 css = css_tryget_online_from_dir(f.file->f_path.dentry,
812 &perf_event_cgrp_subsys);
813 if (IS_ERR(css)) {
814 ret = PTR_ERR(css);
815 goto out;
816 }
817
818 cgrp = container_of(css, struct perf_cgroup, css);
819 event->cgrp = cgrp;
820
821 /*
822 * all events in a group must monitor
823 * the same cgroup because a task belongs
824 * to only one perf cgroup at a time
825 */
826 if (group_leader && group_leader->cgrp != cgrp) {
827 perf_detach_cgroup(event);
828 ret = -EINVAL;
829 }
830 out:
831 fdput(f);
832 return ret;
833 }
834
835 static inline void
836 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
837 {
838 struct perf_cgroup_info *t;
839 t = per_cpu_ptr(event->cgrp->info, event->cpu);
840 event->shadow_ctx_time = now - t->timestamp;
841 }
842
843 static inline void
844 perf_cgroup_defer_enabled(struct perf_event *event)
845 {
846 /*
847 * when the current task's perf cgroup does not match
848 * the event's, we need to remember to call the
849 * perf_mark_enable() function the first time a task with
850 * a matching perf cgroup is scheduled in.
851 */
852 if (is_cgroup_event(event) && !perf_cgroup_match(event))
853 event->cgrp_defer_enabled = 1;
854 }
855
856 static inline void
857 perf_cgroup_mark_enabled(struct perf_event *event,
858 struct perf_event_context *ctx)
859 {
860 struct perf_event *sub;
861 u64 tstamp = perf_event_time(event);
862
863 if (!event->cgrp_defer_enabled)
864 return;
865
866 event->cgrp_defer_enabled = 0;
867
868 event->tstamp_enabled = tstamp - event->total_time_enabled;
869 list_for_each_entry(sub, &event->sibling_list, group_entry) {
870 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
871 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
872 sub->cgrp_defer_enabled = 0;
873 }
874 }
875 }
876
877 /*
878 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
879 * cleared when last cgroup event is removed.
880 */
881 static inline void
882 list_update_cgroup_event(struct perf_event *event,
883 struct perf_event_context *ctx, bool add)
884 {
885 struct perf_cpu_context *cpuctx;
886 struct list_head *cpuctx_entry;
887
888 if (!is_cgroup_event(event))
889 return;
890
891 if (add && ctx->nr_cgroups++)
892 return;
893 else if (!add && --ctx->nr_cgroups)
894 return;
895 /*
896 * Because cgroup events are always per-cpu events,
897 * this will always be called from the right CPU.
898 */
899 cpuctx = __get_cpu_context(ctx);
900 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
901 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
902 if (add) {
903 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
904 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
905 cpuctx->cgrp = event->cgrp;
906 } else {
907 list_del(cpuctx_entry);
908 cpuctx->cgrp = NULL;
909 }
910 }
911
912 #else /* !CONFIG_CGROUP_PERF */
913
914 static inline bool
915 perf_cgroup_match(struct perf_event *event)
916 {
917 return true;
918 }
919
920 static inline void perf_detach_cgroup(struct perf_event *event)
921 {}
922
923 static inline int is_cgroup_event(struct perf_event *event)
924 {
925 return 0;
926 }
927
928 static inline void update_cgrp_time_from_event(struct perf_event *event)
929 {
930 }
931
932 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
933 {
934 }
935
936 static inline void perf_cgroup_sched_out(struct task_struct *task,
937 struct task_struct *next)
938 {
939 }
940
941 static inline void perf_cgroup_sched_in(struct task_struct *prev,
942 struct task_struct *task)
943 {
944 }
945
946 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
947 struct perf_event_attr *attr,
948 struct perf_event *group_leader)
949 {
950 return -EINVAL;
951 }
952
953 static inline void
954 perf_cgroup_set_timestamp(struct task_struct *task,
955 struct perf_event_context *ctx)
956 {
957 }
958
959 void
960 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
961 {
962 }
963
964 static inline void
965 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
966 {
967 }
968
969 static inline u64 perf_cgroup_event_time(struct perf_event *event)
970 {
971 return 0;
972 }
973
974 static inline void
975 perf_cgroup_defer_enabled(struct perf_event *event)
976 {
977 }
978
979 static inline void
980 perf_cgroup_mark_enabled(struct perf_event *event,
981 struct perf_event_context *ctx)
982 {
983 }
984
985 static inline void
986 list_update_cgroup_event(struct perf_event *event,
987 struct perf_event_context *ctx, bool add)
988 {
989 }
990
991 #endif
992
993 /*
994 * set default to be dependent on timer tick just
995 * like original code
996 */
997 #define PERF_CPU_HRTIMER (1000 / HZ)
998 /*
999 * function must be called with interrupts disabled
1000 */
1001 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1002 {
1003 struct perf_cpu_context *cpuctx;
1004 int rotations = 0;
1005
1006 WARN_ON(!irqs_disabled());
1007
1008 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1009 rotations = perf_rotate_context(cpuctx);
1010
1011 raw_spin_lock(&cpuctx->hrtimer_lock);
1012 if (rotations)
1013 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1014 else
1015 cpuctx->hrtimer_active = 0;
1016 raw_spin_unlock(&cpuctx->hrtimer_lock);
1017
1018 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1019 }
1020
1021 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1022 {
1023 struct hrtimer *timer = &cpuctx->hrtimer;
1024 struct pmu *pmu = cpuctx->ctx.pmu;
1025 u64 interval;
1026
1027 /* no multiplexing needed for SW PMU */
1028 if (pmu->task_ctx_nr == perf_sw_context)
1029 return;
1030
1031 /*
1032 * check default is sane, if not set then force to
1033 * default interval (1/tick)
1034 */
1035 interval = pmu->hrtimer_interval_ms;
1036 if (interval < 1)
1037 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1038
1039 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1040
1041 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1042 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1043 timer->function = perf_mux_hrtimer_handler;
1044 }
1045
1046 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1047 {
1048 struct hrtimer *timer = &cpuctx->hrtimer;
1049 struct pmu *pmu = cpuctx->ctx.pmu;
1050 unsigned long flags;
1051
1052 /* not for SW PMU */
1053 if (pmu->task_ctx_nr == perf_sw_context)
1054 return 0;
1055
1056 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1057 if (!cpuctx->hrtimer_active) {
1058 cpuctx->hrtimer_active = 1;
1059 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1060 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1061 }
1062 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1063
1064 return 0;
1065 }
1066
1067 void perf_pmu_disable(struct pmu *pmu)
1068 {
1069 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1070 if (!(*count)++)
1071 pmu->pmu_disable(pmu);
1072 }
1073
1074 void perf_pmu_enable(struct pmu *pmu)
1075 {
1076 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1077 if (!--(*count))
1078 pmu->pmu_enable(pmu);
1079 }
1080
1081 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1082
1083 /*
1084 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1085 * perf_event_task_tick() are fully serialized because they're strictly cpu
1086 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1087 * disabled, while perf_event_task_tick is called from IRQ context.
1088 */
1089 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1090 {
1091 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1092
1093 WARN_ON(!irqs_disabled());
1094
1095 WARN_ON(!list_empty(&ctx->active_ctx_list));
1096
1097 list_add(&ctx->active_ctx_list, head);
1098 }
1099
1100 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1101 {
1102 WARN_ON(!irqs_disabled());
1103
1104 WARN_ON(list_empty(&ctx->active_ctx_list));
1105
1106 list_del_init(&ctx->active_ctx_list);
1107 }
1108
1109 static void get_ctx(struct perf_event_context *ctx)
1110 {
1111 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1112 }
1113
1114 static void free_ctx(struct rcu_head *head)
1115 {
1116 struct perf_event_context *ctx;
1117
1118 ctx = container_of(head, struct perf_event_context, rcu_head);
1119 kfree(ctx->task_ctx_data);
1120 kfree(ctx);
1121 }
1122
1123 static void put_ctx(struct perf_event_context *ctx)
1124 {
1125 if (atomic_dec_and_test(&ctx->refcount)) {
1126 if (ctx->parent_ctx)
1127 put_ctx(ctx->parent_ctx);
1128 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1129 put_task_struct(ctx->task);
1130 call_rcu(&ctx->rcu_head, free_ctx);
1131 }
1132 }
1133
1134 /*
1135 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1136 * perf_pmu_migrate_context() we need some magic.
1137 *
1138 * Those places that change perf_event::ctx will hold both
1139 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1140 *
1141 * Lock ordering is by mutex address. There are two other sites where
1142 * perf_event_context::mutex nests and those are:
1143 *
1144 * - perf_event_exit_task_context() [ child , 0 ]
1145 * perf_event_exit_event()
1146 * put_event() [ parent, 1 ]
1147 *
1148 * - perf_event_init_context() [ parent, 0 ]
1149 * inherit_task_group()
1150 * inherit_group()
1151 * inherit_event()
1152 * perf_event_alloc()
1153 * perf_init_event()
1154 * perf_try_init_event() [ child , 1 ]
1155 *
1156 * While it appears there is an obvious deadlock here -- the parent and child
1157 * nesting levels are inverted between the two. This is in fact safe because
1158 * life-time rules separate them. That is an exiting task cannot fork, and a
1159 * spawning task cannot (yet) exit.
1160 *
1161 * But remember that that these are parent<->child context relations, and
1162 * migration does not affect children, therefore these two orderings should not
1163 * interact.
1164 *
1165 * The change in perf_event::ctx does not affect children (as claimed above)
1166 * because the sys_perf_event_open() case will install a new event and break
1167 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1168 * concerned with cpuctx and that doesn't have children.
1169 *
1170 * The places that change perf_event::ctx will issue:
1171 *
1172 * perf_remove_from_context();
1173 * synchronize_rcu();
1174 * perf_install_in_context();
1175 *
1176 * to affect the change. The remove_from_context() + synchronize_rcu() should
1177 * quiesce the event, after which we can install it in the new location. This
1178 * means that only external vectors (perf_fops, prctl) can perturb the event
1179 * while in transit. Therefore all such accessors should also acquire
1180 * perf_event_context::mutex to serialize against this.
1181 *
1182 * However; because event->ctx can change while we're waiting to acquire
1183 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1184 * function.
1185 *
1186 * Lock order:
1187 * cred_guard_mutex
1188 * task_struct::perf_event_mutex
1189 * perf_event_context::mutex
1190 * perf_event::child_mutex;
1191 * perf_event_context::lock
1192 * perf_event::mmap_mutex
1193 * mmap_sem
1194 */
1195 static struct perf_event_context *
1196 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1197 {
1198 struct perf_event_context *ctx;
1199
1200 again:
1201 rcu_read_lock();
1202 ctx = ACCESS_ONCE(event->ctx);
1203 if (!atomic_inc_not_zero(&ctx->refcount)) {
1204 rcu_read_unlock();
1205 goto again;
1206 }
1207 rcu_read_unlock();
1208
1209 mutex_lock_nested(&ctx->mutex, nesting);
1210 if (event->ctx != ctx) {
1211 mutex_unlock(&ctx->mutex);
1212 put_ctx(ctx);
1213 goto again;
1214 }
1215
1216 return ctx;
1217 }
1218
1219 static inline struct perf_event_context *
1220 perf_event_ctx_lock(struct perf_event *event)
1221 {
1222 return perf_event_ctx_lock_nested(event, 0);
1223 }
1224
1225 static void perf_event_ctx_unlock(struct perf_event *event,
1226 struct perf_event_context *ctx)
1227 {
1228 mutex_unlock(&ctx->mutex);
1229 put_ctx(ctx);
1230 }
1231
1232 /*
1233 * This must be done under the ctx->lock, such as to serialize against
1234 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1235 * calling scheduler related locks and ctx->lock nests inside those.
1236 */
1237 static __must_check struct perf_event_context *
1238 unclone_ctx(struct perf_event_context *ctx)
1239 {
1240 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1241
1242 lockdep_assert_held(&ctx->lock);
1243
1244 if (parent_ctx)
1245 ctx->parent_ctx = NULL;
1246 ctx->generation++;
1247
1248 return parent_ctx;
1249 }
1250
1251 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1252 {
1253 /*
1254 * only top level events have the pid namespace they were created in
1255 */
1256 if (event->parent)
1257 event = event->parent;
1258
1259 return task_tgid_nr_ns(p, event->ns);
1260 }
1261
1262 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1263 {
1264 /*
1265 * only top level events have the pid namespace they were created in
1266 */
1267 if (event->parent)
1268 event = event->parent;
1269
1270 return task_pid_nr_ns(p, event->ns);
1271 }
1272
1273 /*
1274 * If we inherit events we want to return the parent event id
1275 * to userspace.
1276 */
1277 static u64 primary_event_id(struct perf_event *event)
1278 {
1279 u64 id = event->id;
1280
1281 if (event->parent)
1282 id = event->parent->id;
1283
1284 return id;
1285 }
1286
1287 /*
1288 * Get the perf_event_context for a task and lock it.
1289 *
1290 * This has to cope with with the fact that until it is locked,
1291 * the context could get moved to another task.
1292 */
1293 static struct perf_event_context *
1294 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1295 {
1296 struct perf_event_context *ctx;
1297
1298 retry:
1299 /*
1300 * One of the few rules of preemptible RCU is that one cannot do
1301 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1302 * part of the read side critical section was irqs-enabled -- see
1303 * rcu_read_unlock_special().
1304 *
1305 * Since ctx->lock nests under rq->lock we must ensure the entire read
1306 * side critical section has interrupts disabled.
1307 */
1308 local_irq_save(*flags);
1309 rcu_read_lock();
1310 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1311 if (ctx) {
1312 /*
1313 * If this context is a clone of another, it might
1314 * get swapped for another underneath us by
1315 * perf_event_task_sched_out, though the
1316 * rcu_read_lock() protects us from any context
1317 * getting freed. Lock the context and check if it
1318 * got swapped before we could get the lock, and retry
1319 * if so. If we locked the right context, then it
1320 * can't get swapped on us any more.
1321 */
1322 raw_spin_lock(&ctx->lock);
1323 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1324 raw_spin_unlock(&ctx->lock);
1325 rcu_read_unlock();
1326 local_irq_restore(*flags);
1327 goto retry;
1328 }
1329
1330 if (ctx->task == TASK_TOMBSTONE ||
1331 !atomic_inc_not_zero(&ctx->refcount)) {
1332 raw_spin_unlock(&ctx->lock);
1333 ctx = NULL;
1334 } else {
1335 WARN_ON_ONCE(ctx->task != task);
1336 }
1337 }
1338 rcu_read_unlock();
1339 if (!ctx)
1340 local_irq_restore(*flags);
1341 return ctx;
1342 }
1343
1344 /*
1345 * Get the context for a task and increment its pin_count so it
1346 * can't get swapped to another task. This also increments its
1347 * reference count so that the context can't get freed.
1348 */
1349 static struct perf_event_context *
1350 perf_pin_task_context(struct task_struct *task, int ctxn)
1351 {
1352 struct perf_event_context *ctx;
1353 unsigned long flags;
1354
1355 ctx = perf_lock_task_context(task, ctxn, &flags);
1356 if (ctx) {
1357 ++ctx->pin_count;
1358 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1359 }
1360 return ctx;
1361 }
1362
1363 static void perf_unpin_context(struct perf_event_context *ctx)
1364 {
1365 unsigned long flags;
1366
1367 raw_spin_lock_irqsave(&ctx->lock, flags);
1368 --ctx->pin_count;
1369 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1370 }
1371
1372 /*
1373 * Update the record of the current time in a context.
1374 */
1375 static void update_context_time(struct perf_event_context *ctx)
1376 {
1377 u64 now = perf_clock();
1378
1379 ctx->time += now - ctx->timestamp;
1380 ctx->timestamp = now;
1381 }
1382
1383 static u64 perf_event_time(struct perf_event *event)
1384 {
1385 struct perf_event_context *ctx = event->ctx;
1386
1387 if (is_cgroup_event(event))
1388 return perf_cgroup_event_time(event);
1389
1390 return ctx ? ctx->time : 0;
1391 }
1392
1393 /*
1394 * Update the total_time_enabled and total_time_running fields for a event.
1395 */
1396 static void update_event_times(struct perf_event *event)
1397 {
1398 struct perf_event_context *ctx = event->ctx;
1399 u64 run_end;
1400
1401 lockdep_assert_held(&ctx->lock);
1402
1403 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1404 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1405 return;
1406
1407 /*
1408 * in cgroup mode, time_enabled represents
1409 * the time the event was enabled AND active
1410 * tasks were in the monitored cgroup. This is
1411 * independent of the activity of the context as
1412 * there may be a mix of cgroup and non-cgroup events.
1413 *
1414 * That is why we treat cgroup events differently
1415 * here.
1416 */
1417 if (is_cgroup_event(event))
1418 run_end = perf_cgroup_event_time(event);
1419 else if (ctx->is_active)
1420 run_end = ctx->time;
1421 else
1422 run_end = event->tstamp_stopped;
1423
1424 event->total_time_enabled = run_end - event->tstamp_enabled;
1425
1426 if (event->state == PERF_EVENT_STATE_INACTIVE)
1427 run_end = event->tstamp_stopped;
1428 else
1429 run_end = perf_event_time(event);
1430
1431 event->total_time_running = run_end - event->tstamp_running;
1432
1433 }
1434
1435 /*
1436 * Update total_time_enabled and total_time_running for all events in a group.
1437 */
1438 static void update_group_times(struct perf_event *leader)
1439 {
1440 struct perf_event *event;
1441
1442 update_event_times(leader);
1443 list_for_each_entry(event, &leader->sibling_list, group_entry)
1444 update_event_times(event);
1445 }
1446
1447 static enum event_type_t get_event_type(struct perf_event *event)
1448 {
1449 struct perf_event_context *ctx = event->ctx;
1450 enum event_type_t event_type;
1451
1452 lockdep_assert_held(&ctx->lock);
1453
1454 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1455 if (!ctx->task)
1456 event_type |= EVENT_CPU;
1457
1458 return event_type;
1459 }
1460
1461 static struct list_head *
1462 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1463 {
1464 if (event->attr.pinned)
1465 return &ctx->pinned_groups;
1466 else
1467 return &ctx->flexible_groups;
1468 }
1469
1470 /*
1471 * Add a event from the lists for its context.
1472 * Must be called with ctx->mutex and ctx->lock held.
1473 */
1474 static void
1475 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1476 {
1477 lockdep_assert_held(&ctx->lock);
1478
1479 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1480 event->attach_state |= PERF_ATTACH_CONTEXT;
1481
1482 /*
1483 * If we're a stand alone event or group leader, we go to the context
1484 * list, group events are kept attached to the group so that
1485 * perf_group_detach can, at all times, locate all siblings.
1486 */
1487 if (event->group_leader == event) {
1488 struct list_head *list;
1489
1490 event->group_caps = event->event_caps;
1491
1492 list = ctx_group_list(event, ctx);
1493 list_add_tail(&event->group_entry, list);
1494 }
1495
1496 list_update_cgroup_event(event, ctx, true);
1497
1498 list_add_rcu(&event->event_entry, &ctx->event_list);
1499 ctx->nr_events++;
1500 if (event->attr.inherit_stat)
1501 ctx->nr_stat++;
1502
1503 ctx->generation++;
1504 }
1505
1506 /*
1507 * Initialize event state based on the perf_event_attr::disabled.
1508 */
1509 static inline void perf_event__state_init(struct perf_event *event)
1510 {
1511 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1512 PERF_EVENT_STATE_INACTIVE;
1513 }
1514
1515 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1516 {
1517 int entry = sizeof(u64); /* value */
1518 int size = 0;
1519 int nr = 1;
1520
1521 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1522 size += sizeof(u64);
1523
1524 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1525 size += sizeof(u64);
1526
1527 if (event->attr.read_format & PERF_FORMAT_ID)
1528 entry += sizeof(u64);
1529
1530 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1531 nr += nr_siblings;
1532 size += sizeof(u64);
1533 }
1534
1535 size += entry * nr;
1536 event->read_size = size;
1537 }
1538
1539 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1540 {
1541 struct perf_sample_data *data;
1542 u16 size = 0;
1543
1544 if (sample_type & PERF_SAMPLE_IP)
1545 size += sizeof(data->ip);
1546
1547 if (sample_type & PERF_SAMPLE_ADDR)
1548 size += sizeof(data->addr);
1549
1550 if (sample_type & PERF_SAMPLE_PERIOD)
1551 size += sizeof(data->period);
1552
1553 if (sample_type & PERF_SAMPLE_WEIGHT)
1554 size += sizeof(data->weight);
1555
1556 if (sample_type & PERF_SAMPLE_READ)
1557 size += event->read_size;
1558
1559 if (sample_type & PERF_SAMPLE_DATA_SRC)
1560 size += sizeof(data->data_src.val);
1561
1562 if (sample_type & PERF_SAMPLE_TRANSACTION)
1563 size += sizeof(data->txn);
1564
1565 event->header_size = size;
1566 }
1567
1568 /*
1569 * Called at perf_event creation and when events are attached/detached from a
1570 * group.
1571 */
1572 static void perf_event__header_size(struct perf_event *event)
1573 {
1574 __perf_event_read_size(event,
1575 event->group_leader->nr_siblings);
1576 __perf_event_header_size(event, event->attr.sample_type);
1577 }
1578
1579 static void perf_event__id_header_size(struct perf_event *event)
1580 {
1581 struct perf_sample_data *data;
1582 u64 sample_type = event->attr.sample_type;
1583 u16 size = 0;
1584
1585 if (sample_type & PERF_SAMPLE_TID)
1586 size += sizeof(data->tid_entry);
1587
1588 if (sample_type & PERF_SAMPLE_TIME)
1589 size += sizeof(data->time);
1590
1591 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1592 size += sizeof(data->id);
1593
1594 if (sample_type & PERF_SAMPLE_ID)
1595 size += sizeof(data->id);
1596
1597 if (sample_type & PERF_SAMPLE_STREAM_ID)
1598 size += sizeof(data->stream_id);
1599
1600 if (sample_type & PERF_SAMPLE_CPU)
1601 size += sizeof(data->cpu_entry);
1602
1603 event->id_header_size = size;
1604 }
1605
1606 static bool perf_event_validate_size(struct perf_event *event)
1607 {
1608 /*
1609 * The values computed here will be over-written when we actually
1610 * attach the event.
1611 */
1612 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1613 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1614 perf_event__id_header_size(event);
1615
1616 /*
1617 * Sum the lot; should not exceed the 64k limit we have on records.
1618 * Conservative limit to allow for callchains and other variable fields.
1619 */
1620 if (event->read_size + event->header_size +
1621 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1622 return false;
1623
1624 return true;
1625 }
1626
1627 static void perf_group_attach(struct perf_event *event)
1628 {
1629 struct perf_event *group_leader = event->group_leader, *pos;
1630
1631 lockdep_assert_held(&event->ctx->lock);
1632
1633 /*
1634 * We can have double attach due to group movement in perf_event_open.
1635 */
1636 if (event->attach_state & PERF_ATTACH_GROUP)
1637 return;
1638
1639 event->attach_state |= PERF_ATTACH_GROUP;
1640
1641 if (group_leader == event)
1642 return;
1643
1644 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1645
1646 group_leader->group_caps &= event->event_caps;
1647
1648 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1649 group_leader->nr_siblings++;
1650
1651 perf_event__header_size(group_leader);
1652
1653 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1654 perf_event__header_size(pos);
1655 }
1656
1657 /*
1658 * Remove a event from the lists for its context.
1659 * Must be called with ctx->mutex and ctx->lock held.
1660 */
1661 static void
1662 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1663 {
1664 WARN_ON_ONCE(event->ctx != ctx);
1665 lockdep_assert_held(&ctx->lock);
1666
1667 /*
1668 * We can have double detach due to exit/hot-unplug + close.
1669 */
1670 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1671 return;
1672
1673 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1674
1675 list_update_cgroup_event(event, ctx, false);
1676
1677 ctx->nr_events--;
1678 if (event->attr.inherit_stat)
1679 ctx->nr_stat--;
1680
1681 list_del_rcu(&event->event_entry);
1682
1683 if (event->group_leader == event)
1684 list_del_init(&event->group_entry);
1685
1686 update_group_times(event);
1687
1688 /*
1689 * If event was in error state, then keep it
1690 * that way, otherwise bogus counts will be
1691 * returned on read(). The only way to get out
1692 * of error state is by explicit re-enabling
1693 * of the event
1694 */
1695 if (event->state > PERF_EVENT_STATE_OFF)
1696 event->state = PERF_EVENT_STATE_OFF;
1697
1698 ctx->generation++;
1699 }
1700
1701 static void perf_group_detach(struct perf_event *event)
1702 {
1703 struct perf_event *sibling, *tmp;
1704 struct list_head *list = NULL;
1705
1706 lockdep_assert_held(&event->ctx->lock);
1707
1708 /*
1709 * We can have double detach due to exit/hot-unplug + close.
1710 */
1711 if (!(event->attach_state & PERF_ATTACH_GROUP))
1712 return;
1713
1714 event->attach_state &= ~PERF_ATTACH_GROUP;
1715
1716 /*
1717 * If this is a sibling, remove it from its group.
1718 */
1719 if (event->group_leader != event) {
1720 list_del_init(&event->group_entry);
1721 event->group_leader->nr_siblings--;
1722 goto out;
1723 }
1724
1725 if (!list_empty(&event->group_entry))
1726 list = &event->group_entry;
1727
1728 /*
1729 * If this was a group event with sibling events then
1730 * upgrade the siblings to singleton events by adding them
1731 * to whatever list we are on.
1732 */
1733 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1734 if (list)
1735 list_move_tail(&sibling->group_entry, list);
1736 sibling->group_leader = sibling;
1737
1738 /* Inherit group flags from the previous leader */
1739 sibling->group_caps = event->group_caps;
1740
1741 WARN_ON_ONCE(sibling->ctx != event->ctx);
1742 }
1743
1744 out:
1745 perf_event__header_size(event->group_leader);
1746
1747 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1748 perf_event__header_size(tmp);
1749 }
1750
1751 static bool is_orphaned_event(struct perf_event *event)
1752 {
1753 return event->state == PERF_EVENT_STATE_DEAD;
1754 }
1755
1756 static inline int __pmu_filter_match(struct perf_event *event)
1757 {
1758 struct pmu *pmu = event->pmu;
1759 return pmu->filter_match ? pmu->filter_match(event) : 1;
1760 }
1761
1762 /*
1763 * Check whether we should attempt to schedule an event group based on
1764 * PMU-specific filtering. An event group can consist of HW and SW events,
1765 * potentially with a SW leader, so we must check all the filters, to
1766 * determine whether a group is schedulable:
1767 */
1768 static inline int pmu_filter_match(struct perf_event *event)
1769 {
1770 struct perf_event *child;
1771
1772 if (!__pmu_filter_match(event))
1773 return 0;
1774
1775 list_for_each_entry(child, &event->sibling_list, group_entry) {
1776 if (!__pmu_filter_match(child))
1777 return 0;
1778 }
1779
1780 return 1;
1781 }
1782
1783 static inline int
1784 event_filter_match(struct perf_event *event)
1785 {
1786 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1787 perf_cgroup_match(event) && pmu_filter_match(event);
1788 }
1789
1790 static void
1791 event_sched_out(struct perf_event *event,
1792 struct perf_cpu_context *cpuctx,
1793 struct perf_event_context *ctx)
1794 {
1795 u64 tstamp = perf_event_time(event);
1796 u64 delta;
1797
1798 WARN_ON_ONCE(event->ctx != ctx);
1799 lockdep_assert_held(&ctx->lock);
1800
1801 /*
1802 * An event which could not be activated because of
1803 * filter mismatch still needs to have its timings
1804 * maintained, otherwise bogus information is return
1805 * via read() for time_enabled, time_running:
1806 */
1807 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1808 !event_filter_match(event)) {
1809 delta = tstamp - event->tstamp_stopped;
1810 event->tstamp_running += delta;
1811 event->tstamp_stopped = tstamp;
1812 }
1813
1814 if (event->state != PERF_EVENT_STATE_ACTIVE)
1815 return;
1816
1817 perf_pmu_disable(event->pmu);
1818
1819 event->tstamp_stopped = tstamp;
1820 event->pmu->del(event, 0);
1821 event->oncpu = -1;
1822 event->state = PERF_EVENT_STATE_INACTIVE;
1823 if (event->pending_disable) {
1824 event->pending_disable = 0;
1825 event->state = PERF_EVENT_STATE_OFF;
1826 }
1827
1828 if (!is_software_event(event))
1829 cpuctx->active_oncpu--;
1830 if (!--ctx->nr_active)
1831 perf_event_ctx_deactivate(ctx);
1832 if (event->attr.freq && event->attr.sample_freq)
1833 ctx->nr_freq--;
1834 if (event->attr.exclusive || !cpuctx->active_oncpu)
1835 cpuctx->exclusive = 0;
1836
1837 perf_pmu_enable(event->pmu);
1838 }
1839
1840 static void
1841 group_sched_out(struct perf_event *group_event,
1842 struct perf_cpu_context *cpuctx,
1843 struct perf_event_context *ctx)
1844 {
1845 struct perf_event *event;
1846 int state = group_event->state;
1847
1848 perf_pmu_disable(ctx->pmu);
1849
1850 event_sched_out(group_event, cpuctx, ctx);
1851
1852 /*
1853 * Schedule out siblings (if any):
1854 */
1855 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1856 event_sched_out(event, cpuctx, ctx);
1857
1858 perf_pmu_enable(ctx->pmu);
1859
1860 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1861 cpuctx->exclusive = 0;
1862 }
1863
1864 #define DETACH_GROUP 0x01UL
1865
1866 /*
1867 * Cross CPU call to remove a performance event
1868 *
1869 * We disable the event on the hardware level first. After that we
1870 * remove it from the context list.
1871 */
1872 static void
1873 __perf_remove_from_context(struct perf_event *event,
1874 struct perf_cpu_context *cpuctx,
1875 struct perf_event_context *ctx,
1876 void *info)
1877 {
1878 unsigned long flags = (unsigned long)info;
1879
1880 event_sched_out(event, cpuctx, ctx);
1881 if (flags & DETACH_GROUP)
1882 perf_group_detach(event);
1883 list_del_event(event, ctx);
1884
1885 if (!ctx->nr_events && ctx->is_active) {
1886 ctx->is_active = 0;
1887 if (ctx->task) {
1888 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1889 cpuctx->task_ctx = NULL;
1890 }
1891 }
1892 }
1893
1894 /*
1895 * Remove the event from a task's (or a CPU's) list of events.
1896 *
1897 * If event->ctx is a cloned context, callers must make sure that
1898 * every task struct that event->ctx->task could possibly point to
1899 * remains valid. This is OK when called from perf_release since
1900 * that only calls us on the top-level context, which can't be a clone.
1901 * When called from perf_event_exit_task, it's OK because the
1902 * context has been detached from its task.
1903 */
1904 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1905 {
1906 struct perf_event_context *ctx = event->ctx;
1907
1908 lockdep_assert_held(&ctx->mutex);
1909
1910 event_function_call(event, __perf_remove_from_context, (void *)flags);
1911
1912 /*
1913 * The above event_function_call() can NO-OP when it hits
1914 * TASK_TOMBSTONE. In that case we must already have been detached
1915 * from the context (by perf_event_exit_event()) but the grouping
1916 * might still be in-tact.
1917 */
1918 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1919 if ((flags & DETACH_GROUP) &&
1920 (event->attach_state & PERF_ATTACH_GROUP)) {
1921 /*
1922 * Since in that case we cannot possibly be scheduled, simply
1923 * detach now.
1924 */
1925 raw_spin_lock_irq(&ctx->lock);
1926 perf_group_detach(event);
1927 raw_spin_unlock_irq(&ctx->lock);
1928 }
1929 }
1930
1931 /*
1932 * Cross CPU call to disable a performance event
1933 */
1934 static void __perf_event_disable(struct perf_event *event,
1935 struct perf_cpu_context *cpuctx,
1936 struct perf_event_context *ctx,
1937 void *info)
1938 {
1939 if (event->state < PERF_EVENT_STATE_INACTIVE)
1940 return;
1941
1942 update_context_time(ctx);
1943 update_cgrp_time_from_event(event);
1944 update_group_times(event);
1945 if (event == event->group_leader)
1946 group_sched_out(event, cpuctx, ctx);
1947 else
1948 event_sched_out(event, cpuctx, ctx);
1949 event->state = PERF_EVENT_STATE_OFF;
1950 }
1951
1952 /*
1953 * Disable a event.
1954 *
1955 * If event->ctx is a cloned context, callers must make sure that
1956 * every task struct that event->ctx->task could possibly point to
1957 * remains valid. This condition is satisifed when called through
1958 * perf_event_for_each_child or perf_event_for_each because they
1959 * hold the top-level event's child_mutex, so any descendant that
1960 * goes to exit will block in perf_event_exit_event().
1961 *
1962 * When called from perf_pending_event it's OK because event->ctx
1963 * is the current context on this CPU and preemption is disabled,
1964 * hence we can't get into perf_event_task_sched_out for this context.
1965 */
1966 static void _perf_event_disable(struct perf_event *event)
1967 {
1968 struct perf_event_context *ctx = event->ctx;
1969
1970 raw_spin_lock_irq(&ctx->lock);
1971 if (event->state <= PERF_EVENT_STATE_OFF) {
1972 raw_spin_unlock_irq(&ctx->lock);
1973 return;
1974 }
1975 raw_spin_unlock_irq(&ctx->lock);
1976
1977 event_function_call(event, __perf_event_disable, NULL);
1978 }
1979
1980 void perf_event_disable_local(struct perf_event *event)
1981 {
1982 event_function_local(event, __perf_event_disable, NULL);
1983 }
1984
1985 /*
1986 * Strictly speaking kernel users cannot create groups and therefore this
1987 * interface does not need the perf_event_ctx_lock() magic.
1988 */
1989 void perf_event_disable(struct perf_event *event)
1990 {
1991 struct perf_event_context *ctx;
1992
1993 ctx = perf_event_ctx_lock(event);
1994 _perf_event_disable(event);
1995 perf_event_ctx_unlock(event, ctx);
1996 }
1997 EXPORT_SYMBOL_GPL(perf_event_disable);
1998
1999 void perf_event_disable_inatomic(struct perf_event *event)
2000 {
2001 event->pending_disable = 1;
2002 irq_work_queue(&event->pending);
2003 }
2004
2005 static void perf_set_shadow_time(struct perf_event *event,
2006 struct perf_event_context *ctx,
2007 u64 tstamp)
2008 {
2009 /*
2010 * use the correct time source for the time snapshot
2011 *
2012 * We could get by without this by leveraging the
2013 * fact that to get to this function, the caller
2014 * has most likely already called update_context_time()
2015 * and update_cgrp_time_xx() and thus both timestamp
2016 * are identical (or very close). Given that tstamp is,
2017 * already adjusted for cgroup, we could say that:
2018 * tstamp - ctx->timestamp
2019 * is equivalent to
2020 * tstamp - cgrp->timestamp.
2021 *
2022 * Then, in perf_output_read(), the calculation would
2023 * work with no changes because:
2024 * - event is guaranteed scheduled in
2025 * - no scheduled out in between
2026 * - thus the timestamp would be the same
2027 *
2028 * But this is a bit hairy.
2029 *
2030 * So instead, we have an explicit cgroup call to remain
2031 * within the time time source all along. We believe it
2032 * is cleaner and simpler to understand.
2033 */
2034 if (is_cgroup_event(event))
2035 perf_cgroup_set_shadow_time(event, tstamp);
2036 else
2037 event->shadow_ctx_time = tstamp - ctx->timestamp;
2038 }
2039
2040 #define MAX_INTERRUPTS (~0ULL)
2041
2042 static void perf_log_throttle(struct perf_event *event, int enable);
2043 static void perf_log_itrace_start(struct perf_event *event);
2044
2045 static int
2046 event_sched_in(struct perf_event *event,
2047 struct perf_cpu_context *cpuctx,
2048 struct perf_event_context *ctx)
2049 {
2050 u64 tstamp = perf_event_time(event);
2051 int ret = 0;
2052
2053 lockdep_assert_held(&ctx->lock);
2054
2055 if (event->state <= PERF_EVENT_STATE_OFF)
2056 return 0;
2057
2058 WRITE_ONCE(event->oncpu, smp_processor_id());
2059 /*
2060 * Order event::oncpu write to happen before the ACTIVE state
2061 * is visible.
2062 */
2063 smp_wmb();
2064 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2065
2066 /*
2067 * Unthrottle events, since we scheduled we might have missed several
2068 * ticks already, also for a heavily scheduling task there is little
2069 * guarantee it'll get a tick in a timely manner.
2070 */
2071 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2072 perf_log_throttle(event, 1);
2073 event->hw.interrupts = 0;
2074 }
2075
2076 /*
2077 * The new state must be visible before we turn it on in the hardware:
2078 */
2079 smp_wmb();
2080
2081 perf_pmu_disable(event->pmu);
2082
2083 perf_set_shadow_time(event, ctx, tstamp);
2084
2085 perf_log_itrace_start(event);
2086
2087 if (event->pmu->add(event, PERF_EF_START)) {
2088 event->state = PERF_EVENT_STATE_INACTIVE;
2089 event->oncpu = -1;
2090 ret = -EAGAIN;
2091 goto out;
2092 }
2093
2094 event->tstamp_running += tstamp - event->tstamp_stopped;
2095
2096 if (!is_software_event(event))
2097 cpuctx->active_oncpu++;
2098 if (!ctx->nr_active++)
2099 perf_event_ctx_activate(ctx);
2100 if (event->attr.freq && event->attr.sample_freq)
2101 ctx->nr_freq++;
2102
2103 if (event->attr.exclusive)
2104 cpuctx->exclusive = 1;
2105
2106 out:
2107 perf_pmu_enable(event->pmu);
2108
2109 return ret;
2110 }
2111
2112 static int
2113 group_sched_in(struct perf_event *group_event,
2114 struct perf_cpu_context *cpuctx,
2115 struct perf_event_context *ctx)
2116 {
2117 struct perf_event *event, *partial_group = NULL;
2118 struct pmu *pmu = ctx->pmu;
2119 u64 now = ctx->time;
2120 bool simulate = false;
2121
2122 if (group_event->state == PERF_EVENT_STATE_OFF)
2123 return 0;
2124
2125 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2126
2127 if (event_sched_in(group_event, cpuctx, ctx)) {
2128 pmu->cancel_txn(pmu);
2129 perf_mux_hrtimer_restart(cpuctx);
2130 return -EAGAIN;
2131 }
2132
2133 /*
2134 * Schedule in siblings as one group (if any):
2135 */
2136 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2137 if (event_sched_in(event, cpuctx, ctx)) {
2138 partial_group = event;
2139 goto group_error;
2140 }
2141 }
2142
2143 if (!pmu->commit_txn(pmu))
2144 return 0;
2145
2146 group_error:
2147 /*
2148 * Groups can be scheduled in as one unit only, so undo any
2149 * partial group before returning:
2150 * The events up to the failed event are scheduled out normally,
2151 * tstamp_stopped will be updated.
2152 *
2153 * The failed events and the remaining siblings need to have
2154 * their timings updated as if they had gone thru event_sched_in()
2155 * and event_sched_out(). This is required to get consistent timings
2156 * across the group. This also takes care of the case where the group
2157 * could never be scheduled by ensuring tstamp_stopped is set to mark
2158 * the time the event was actually stopped, such that time delta
2159 * calculation in update_event_times() is correct.
2160 */
2161 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2162 if (event == partial_group)
2163 simulate = true;
2164
2165 if (simulate) {
2166 event->tstamp_running += now - event->tstamp_stopped;
2167 event->tstamp_stopped = now;
2168 } else {
2169 event_sched_out(event, cpuctx, ctx);
2170 }
2171 }
2172 event_sched_out(group_event, cpuctx, ctx);
2173
2174 pmu->cancel_txn(pmu);
2175
2176 perf_mux_hrtimer_restart(cpuctx);
2177
2178 return -EAGAIN;
2179 }
2180
2181 /*
2182 * Work out whether we can put this event group on the CPU now.
2183 */
2184 static int group_can_go_on(struct perf_event *event,
2185 struct perf_cpu_context *cpuctx,
2186 int can_add_hw)
2187 {
2188 /*
2189 * Groups consisting entirely of software events can always go on.
2190 */
2191 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2192 return 1;
2193 /*
2194 * If an exclusive group is already on, no other hardware
2195 * events can go on.
2196 */
2197 if (cpuctx->exclusive)
2198 return 0;
2199 /*
2200 * If this group is exclusive and there are already
2201 * events on the CPU, it can't go on.
2202 */
2203 if (event->attr.exclusive && cpuctx->active_oncpu)
2204 return 0;
2205 /*
2206 * Otherwise, try to add it if all previous groups were able
2207 * to go on.
2208 */
2209 return can_add_hw;
2210 }
2211
2212 static void add_event_to_ctx(struct perf_event *event,
2213 struct perf_event_context *ctx)
2214 {
2215 u64 tstamp = perf_event_time(event);
2216
2217 list_add_event(event, ctx);
2218 perf_group_attach(event);
2219 event->tstamp_enabled = tstamp;
2220 event->tstamp_running = tstamp;
2221 event->tstamp_stopped = tstamp;
2222 }
2223
2224 static void ctx_sched_out(struct perf_event_context *ctx,
2225 struct perf_cpu_context *cpuctx,
2226 enum event_type_t event_type);
2227 static void
2228 ctx_sched_in(struct perf_event_context *ctx,
2229 struct perf_cpu_context *cpuctx,
2230 enum event_type_t event_type,
2231 struct task_struct *task);
2232
2233 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2234 struct perf_event_context *ctx,
2235 enum event_type_t event_type)
2236 {
2237 if (!cpuctx->task_ctx)
2238 return;
2239
2240 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2241 return;
2242
2243 ctx_sched_out(ctx, cpuctx, event_type);
2244 }
2245
2246 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2247 struct perf_event_context *ctx,
2248 struct task_struct *task)
2249 {
2250 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2251 if (ctx)
2252 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2253 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2254 if (ctx)
2255 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2256 }
2257
2258 /*
2259 * We want to maintain the following priority of scheduling:
2260 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2261 * - task pinned (EVENT_PINNED)
2262 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2263 * - task flexible (EVENT_FLEXIBLE).
2264 *
2265 * In order to avoid unscheduling and scheduling back in everything every
2266 * time an event is added, only do it for the groups of equal priority and
2267 * below.
2268 *
2269 * This can be called after a batch operation on task events, in which case
2270 * event_type is a bit mask of the types of events involved. For CPU events,
2271 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2272 */
2273 static void ctx_resched(struct perf_cpu_context *cpuctx,
2274 struct perf_event_context *task_ctx,
2275 enum event_type_t event_type)
2276 {
2277 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2278 bool cpu_event = !!(event_type & EVENT_CPU);
2279
2280 /*
2281 * If pinned groups are involved, flexible groups also need to be
2282 * scheduled out.
2283 */
2284 if (event_type & EVENT_PINNED)
2285 event_type |= EVENT_FLEXIBLE;
2286
2287 perf_pmu_disable(cpuctx->ctx.pmu);
2288 if (task_ctx)
2289 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2290
2291 /*
2292 * Decide which cpu ctx groups to schedule out based on the types
2293 * of events that caused rescheduling:
2294 * - EVENT_CPU: schedule out corresponding groups;
2295 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2296 * - otherwise, do nothing more.
2297 */
2298 if (cpu_event)
2299 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2300 else if (ctx_event_type & EVENT_PINNED)
2301 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2302
2303 perf_event_sched_in(cpuctx, task_ctx, current);
2304 perf_pmu_enable(cpuctx->ctx.pmu);
2305 }
2306
2307 /*
2308 * Cross CPU call to install and enable a performance event
2309 *
2310 * Very similar to remote_function() + event_function() but cannot assume that
2311 * things like ctx->is_active and cpuctx->task_ctx are set.
2312 */
2313 static int __perf_install_in_context(void *info)
2314 {
2315 struct perf_event *event = info;
2316 struct perf_event_context *ctx = event->ctx;
2317 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2318 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2319 bool reprogram = true;
2320 int ret = 0;
2321
2322 raw_spin_lock(&cpuctx->ctx.lock);
2323 if (ctx->task) {
2324 raw_spin_lock(&ctx->lock);
2325 task_ctx = ctx;
2326
2327 reprogram = (ctx->task == current);
2328
2329 /*
2330 * If the task is running, it must be running on this CPU,
2331 * otherwise we cannot reprogram things.
2332 *
2333 * If its not running, we don't care, ctx->lock will
2334 * serialize against it becoming runnable.
2335 */
2336 if (task_curr(ctx->task) && !reprogram) {
2337 ret = -ESRCH;
2338 goto unlock;
2339 }
2340
2341 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2342 } else if (task_ctx) {
2343 raw_spin_lock(&task_ctx->lock);
2344 }
2345
2346 if (reprogram) {
2347 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2348 add_event_to_ctx(event, ctx);
2349 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2350 } else {
2351 add_event_to_ctx(event, ctx);
2352 }
2353
2354 unlock:
2355 perf_ctx_unlock(cpuctx, task_ctx);
2356
2357 return ret;
2358 }
2359
2360 /*
2361 * Attach a performance event to a context.
2362 *
2363 * Very similar to event_function_call, see comment there.
2364 */
2365 static void
2366 perf_install_in_context(struct perf_event_context *ctx,
2367 struct perf_event *event,
2368 int cpu)
2369 {
2370 struct task_struct *task = READ_ONCE(ctx->task);
2371
2372 lockdep_assert_held(&ctx->mutex);
2373
2374 if (event->cpu != -1)
2375 event->cpu = cpu;
2376
2377 /*
2378 * Ensures that if we can observe event->ctx, both the event and ctx
2379 * will be 'complete'. See perf_iterate_sb_cpu().
2380 */
2381 smp_store_release(&event->ctx, ctx);
2382
2383 if (!task) {
2384 cpu_function_call(cpu, __perf_install_in_context, event);
2385 return;
2386 }
2387
2388 /*
2389 * Should not happen, we validate the ctx is still alive before calling.
2390 */
2391 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2392 return;
2393
2394 /*
2395 * Installing events is tricky because we cannot rely on ctx->is_active
2396 * to be set in case this is the nr_events 0 -> 1 transition.
2397 *
2398 * Instead we use task_curr(), which tells us if the task is running.
2399 * However, since we use task_curr() outside of rq::lock, we can race
2400 * against the actual state. This means the result can be wrong.
2401 *
2402 * If we get a false positive, we retry, this is harmless.
2403 *
2404 * If we get a false negative, things are complicated. If we are after
2405 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2406 * value must be correct. If we're before, it doesn't matter since
2407 * perf_event_context_sched_in() will program the counter.
2408 *
2409 * However, this hinges on the remote context switch having observed
2410 * our task->perf_event_ctxp[] store, such that it will in fact take
2411 * ctx::lock in perf_event_context_sched_in().
2412 *
2413 * We do this by task_function_call(), if the IPI fails to hit the task
2414 * we know any future context switch of task must see the
2415 * perf_event_ctpx[] store.
2416 */
2417
2418 /*
2419 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2420 * task_cpu() load, such that if the IPI then does not find the task
2421 * running, a future context switch of that task must observe the
2422 * store.
2423 */
2424 smp_mb();
2425 again:
2426 if (!task_function_call(task, __perf_install_in_context, event))
2427 return;
2428
2429 raw_spin_lock_irq(&ctx->lock);
2430 task = ctx->task;
2431 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2432 /*
2433 * Cannot happen because we already checked above (which also
2434 * cannot happen), and we hold ctx->mutex, which serializes us
2435 * against perf_event_exit_task_context().
2436 */
2437 raw_spin_unlock_irq(&ctx->lock);
2438 return;
2439 }
2440 /*
2441 * If the task is not running, ctx->lock will avoid it becoming so,
2442 * thus we can safely install the event.
2443 */
2444 if (task_curr(task)) {
2445 raw_spin_unlock_irq(&ctx->lock);
2446 goto again;
2447 }
2448 add_event_to_ctx(event, ctx);
2449 raw_spin_unlock_irq(&ctx->lock);
2450 }
2451
2452 /*
2453 * Put a event into inactive state and update time fields.
2454 * Enabling the leader of a group effectively enables all
2455 * the group members that aren't explicitly disabled, so we
2456 * have to update their ->tstamp_enabled also.
2457 * Note: this works for group members as well as group leaders
2458 * since the non-leader members' sibling_lists will be empty.
2459 */
2460 static void __perf_event_mark_enabled(struct perf_event *event)
2461 {
2462 struct perf_event *sub;
2463 u64 tstamp = perf_event_time(event);
2464
2465 event->state = PERF_EVENT_STATE_INACTIVE;
2466 event->tstamp_enabled = tstamp - event->total_time_enabled;
2467 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2468 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2469 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2470 }
2471 }
2472
2473 /*
2474 * Cross CPU call to enable a performance event
2475 */
2476 static void __perf_event_enable(struct perf_event *event,
2477 struct perf_cpu_context *cpuctx,
2478 struct perf_event_context *ctx,
2479 void *info)
2480 {
2481 struct perf_event *leader = event->group_leader;
2482 struct perf_event_context *task_ctx;
2483
2484 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2485 event->state <= PERF_EVENT_STATE_ERROR)
2486 return;
2487
2488 if (ctx->is_active)
2489 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2490
2491 __perf_event_mark_enabled(event);
2492
2493 if (!ctx->is_active)
2494 return;
2495
2496 if (!event_filter_match(event)) {
2497 if (is_cgroup_event(event))
2498 perf_cgroup_defer_enabled(event);
2499 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2500 return;
2501 }
2502
2503 /*
2504 * If the event is in a group and isn't the group leader,
2505 * then don't put it on unless the group is on.
2506 */
2507 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2508 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2509 return;
2510 }
2511
2512 task_ctx = cpuctx->task_ctx;
2513 if (ctx->task)
2514 WARN_ON_ONCE(task_ctx != ctx);
2515
2516 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2517 }
2518
2519 /*
2520 * Enable a event.
2521 *
2522 * If event->ctx is a cloned context, callers must make sure that
2523 * every task struct that event->ctx->task could possibly point to
2524 * remains valid. This condition is satisfied when called through
2525 * perf_event_for_each_child or perf_event_for_each as described
2526 * for perf_event_disable.
2527 */
2528 static void _perf_event_enable(struct perf_event *event)
2529 {
2530 struct perf_event_context *ctx = event->ctx;
2531
2532 raw_spin_lock_irq(&ctx->lock);
2533 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2534 event->state < PERF_EVENT_STATE_ERROR) {
2535 raw_spin_unlock_irq(&ctx->lock);
2536 return;
2537 }
2538
2539 /*
2540 * If the event is in error state, clear that first.
2541 *
2542 * That way, if we see the event in error state below, we know that it
2543 * has gone back into error state, as distinct from the task having
2544 * been scheduled away before the cross-call arrived.
2545 */
2546 if (event->state == PERF_EVENT_STATE_ERROR)
2547 event->state = PERF_EVENT_STATE_OFF;
2548 raw_spin_unlock_irq(&ctx->lock);
2549
2550 event_function_call(event, __perf_event_enable, NULL);
2551 }
2552
2553 /*
2554 * See perf_event_disable();
2555 */
2556 void perf_event_enable(struct perf_event *event)
2557 {
2558 struct perf_event_context *ctx;
2559
2560 ctx = perf_event_ctx_lock(event);
2561 _perf_event_enable(event);
2562 perf_event_ctx_unlock(event, ctx);
2563 }
2564 EXPORT_SYMBOL_GPL(perf_event_enable);
2565
2566 struct stop_event_data {
2567 struct perf_event *event;
2568 unsigned int restart;
2569 };
2570
2571 static int __perf_event_stop(void *info)
2572 {
2573 struct stop_event_data *sd = info;
2574 struct perf_event *event = sd->event;
2575
2576 /* if it's already INACTIVE, do nothing */
2577 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2578 return 0;
2579
2580 /* matches smp_wmb() in event_sched_in() */
2581 smp_rmb();
2582
2583 /*
2584 * There is a window with interrupts enabled before we get here,
2585 * so we need to check again lest we try to stop another CPU's event.
2586 */
2587 if (READ_ONCE(event->oncpu) != smp_processor_id())
2588 return -EAGAIN;
2589
2590 event->pmu->stop(event, PERF_EF_UPDATE);
2591
2592 /*
2593 * May race with the actual stop (through perf_pmu_output_stop()),
2594 * but it is only used for events with AUX ring buffer, and such
2595 * events will refuse to restart because of rb::aux_mmap_count==0,
2596 * see comments in perf_aux_output_begin().
2597 *
2598 * Since this is happening on a event-local CPU, no trace is lost
2599 * while restarting.
2600 */
2601 if (sd->restart)
2602 event->pmu->start(event, 0);
2603
2604 return 0;
2605 }
2606
2607 static int perf_event_stop(struct perf_event *event, int restart)
2608 {
2609 struct stop_event_data sd = {
2610 .event = event,
2611 .restart = restart,
2612 };
2613 int ret = 0;
2614
2615 do {
2616 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2617 return 0;
2618
2619 /* matches smp_wmb() in event_sched_in() */
2620 smp_rmb();
2621
2622 /*
2623 * We only want to restart ACTIVE events, so if the event goes
2624 * inactive here (event->oncpu==-1), there's nothing more to do;
2625 * fall through with ret==-ENXIO.
2626 */
2627 ret = cpu_function_call(READ_ONCE(event->oncpu),
2628 __perf_event_stop, &sd);
2629 } while (ret == -EAGAIN);
2630
2631 return ret;
2632 }
2633
2634 /*
2635 * In order to contain the amount of racy and tricky in the address filter
2636 * configuration management, it is a two part process:
2637 *
2638 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2639 * we update the addresses of corresponding vmas in
2640 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2641 * (p2) when an event is scheduled in (pmu::add), it calls
2642 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2643 * if the generation has changed since the previous call.
2644 *
2645 * If (p1) happens while the event is active, we restart it to force (p2).
2646 *
2647 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2648 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2649 * ioctl;
2650 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2651 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2652 * for reading;
2653 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2654 * of exec.
2655 */
2656 void perf_event_addr_filters_sync(struct perf_event *event)
2657 {
2658 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2659
2660 if (!has_addr_filter(event))
2661 return;
2662
2663 raw_spin_lock(&ifh->lock);
2664 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2665 event->pmu->addr_filters_sync(event);
2666 event->hw.addr_filters_gen = event->addr_filters_gen;
2667 }
2668 raw_spin_unlock(&ifh->lock);
2669 }
2670 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2671
2672 static int _perf_event_refresh(struct perf_event *event, int refresh)
2673 {
2674 /*
2675 * not supported on inherited events
2676 */
2677 if (event->attr.inherit || !is_sampling_event(event))
2678 return -EINVAL;
2679
2680 atomic_add(refresh, &event->event_limit);
2681 _perf_event_enable(event);
2682
2683 return 0;
2684 }
2685
2686 /*
2687 * See perf_event_disable()
2688 */
2689 int perf_event_refresh(struct perf_event *event, int refresh)
2690 {
2691 struct perf_event_context *ctx;
2692 int ret;
2693
2694 ctx = perf_event_ctx_lock(event);
2695 ret = _perf_event_refresh(event, refresh);
2696 perf_event_ctx_unlock(event, ctx);
2697
2698 return ret;
2699 }
2700 EXPORT_SYMBOL_GPL(perf_event_refresh);
2701
2702 static void ctx_sched_out(struct perf_event_context *ctx,
2703 struct perf_cpu_context *cpuctx,
2704 enum event_type_t event_type)
2705 {
2706 int is_active = ctx->is_active;
2707 struct perf_event *event;
2708
2709 lockdep_assert_held(&ctx->lock);
2710
2711 if (likely(!ctx->nr_events)) {
2712 /*
2713 * See __perf_remove_from_context().
2714 */
2715 WARN_ON_ONCE(ctx->is_active);
2716 if (ctx->task)
2717 WARN_ON_ONCE(cpuctx->task_ctx);
2718 return;
2719 }
2720
2721 ctx->is_active &= ~event_type;
2722 if (!(ctx->is_active & EVENT_ALL))
2723 ctx->is_active = 0;
2724
2725 if (ctx->task) {
2726 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2727 if (!ctx->is_active)
2728 cpuctx->task_ctx = NULL;
2729 }
2730
2731 /*
2732 * Always update time if it was set; not only when it changes.
2733 * Otherwise we can 'forget' to update time for any but the last
2734 * context we sched out. For example:
2735 *
2736 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2737 * ctx_sched_out(.event_type = EVENT_PINNED)
2738 *
2739 * would only update time for the pinned events.
2740 */
2741 if (is_active & EVENT_TIME) {
2742 /* update (and stop) ctx time */
2743 update_context_time(ctx);
2744 update_cgrp_time_from_cpuctx(cpuctx);
2745 }
2746
2747 is_active ^= ctx->is_active; /* changed bits */
2748
2749 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2750 return;
2751
2752 perf_pmu_disable(ctx->pmu);
2753 if (is_active & EVENT_PINNED) {
2754 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2755 group_sched_out(event, cpuctx, ctx);
2756 }
2757
2758 if (is_active & EVENT_FLEXIBLE) {
2759 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2760 group_sched_out(event, cpuctx, ctx);
2761 }
2762 perf_pmu_enable(ctx->pmu);
2763 }
2764
2765 /*
2766 * Test whether two contexts are equivalent, i.e. whether they have both been
2767 * cloned from the same version of the same context.
2768 *
2769 * Equivalence is measured using a generation number in the context that is
2770 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2771 * and list_del_event().
2772 */
2773 static int context_equiv(struct perf_event_context *ctx1,
2774 struct perf_event_context *ctx2)
2775 {
2776 lockdep_assert_held(&ctx1->lock);
2777 lockdep_assert_held(&ctx2->lock);
2778
2779 /* Pinning disables the swap optimization */
2780 if (ctx1->pin_count || ctx2->pin_count)
2781 return 0;
2782
2783 /* If ctx1 is the parent of ctx2 */
2784 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2785 return 1;
2786
2787 /* If ctx2 is the parent of ctx1 */
2788 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2789 return 1;
2790
2791 /*
2792 * If ctx1 and ctx2 have the same parent; we flatten the parent
2793 * hierarchy, see perf_event_init_context().
2794 */
2795 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2796 ctx1->parent_gen == ctx2->parent_gen)
2797 return 1;
2798
2799 /* Unmatched */
2800 return 0;
2801 }
2802
2803 static void __perf_event_sync_stat(struct perf_event *event,
2804 struct perf_event *next_event)
2805 {
2806 u64 value;
2807
2808 if (!event->attr.inherit_stat)
2809 return;
2810
2811 /*
2812 * Update the event value, we cannot use perf_event_read()
2813 * because we're in the middle of a context switch and have IRQs
2814 * disabled, which upsets smp_call_function_single(), however
2815 * we know the event must be on the current CPU, therefore we
2816 * don't need to use it.
2817 */
2818 switch (event->state) {
2819 case PERF_EVENT_STATE_ACTIVE:
2820 event->pmu->read(event);
2821 /* fall-through */
2822
2823 case PERF_EVENT_STATE_INACTIVE:
2824 update_event_times(event);
2825 break;
2826
2827 default:
2828 break;
2829 }
2830
2831 /*
2832 * In order to keep per-task stats reliable we need to flip the event
2833 * values when we flip the contexts.
2834 */
2835 value = local64_read(&next_event->count);
2836 value = local64_xchg(&event->count, value);
2837 local64_set(&next_event->count, value);
2838
2839 swap(event->total_time_enabled, next_event->total_time_enabled);
2840 swap(event->total_time_running, next_event->total_time_running);
2841
2842 /*
2843 * Since we swizzled the values, update the user visible data too.
2844 */
2845 perf_event_update_userpage(event);
2846 perf_event_update_userpage(next_event);
2847 }
2848
2849 static void perf_event_sync_stat(struct perf_event_context *ctx,
2850 struct perf_event_context *next_ctx)
2851 {
2852 struct perf_event *event, *next_event;
2853
2854 if (!ctx->nr_stat)
2855 return;
2856
2857 update_context_time(ctx);
2858
2859 event = list_first_entry(&ctx->event_list,
2860 struct perf_event, event_entry);
2861
2862 next_event = list_first_entry(&next_ctx->event_list,
2863 struct perf_event, event_entry);
2864
2865 while (&event->event_entry != &ctx->event_list &&
2866 &next_event->event_entry != &next_ctx->event_list) {
2867
2868 __perf_event_sync_stat(event, next_event);
2869
2870 event = list_next_entry(event, event_entry);
2871 next_event = list_next_entry(next_event, event_entry);
2872 }
2873 }
2874
2875 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2876 struct task_struct *next)
2877 {
2878 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2879 struct perf_event_context *next_ctx;
2880 struct perf_event_context *parent, *next_parent;
2881 struct perf_cpu_context *cpuctx;
2882 int do_switch = 1;
2883
2884 if (likely(!ctx))
2885 return;
2886
2887 cpuctx = __get_cpu_context(ctx);
2888 if (!cpuctx->task_ctx)
2889 return;
2890
2891 rcu_read_lock();
2892 next_ctx = next->perf_event_ctxp[ctxn];
2893 if (!next_ctx)
2894 goto unlock;
2895
2896 parent = rcu_dereference(ctx->parent_ctx);
2897 next_parent = rcu_dereference(next_ctx->parent_ctx);
2898
2899 /* If neither context have a parent context; they cannot be clones. */
2900 if (!parent && !next_parent)
2901 goto unlock;
2902
2903 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2904 /*
2905 * Looks like the two contexts are clones, so we might be
2906 * able to optimize the context switch. We lock both
2907 * contexts and check that they are clones under the
2908 * lock (including re-checking that neither has been
2909 * uncloned in the meantime). It doesn't matter which
2910 * order we take the locks because no other cpu could
2911 * be trying to lock both of these tasks.
2912 */
2913 raw_spin_lock(&ctx->lock);
2914 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2915 if (context_equiv(ctx, next_ctx)) {
2916 WRITE_ONCE(ctx->task, next);
2917 WRITE_ONCE(next_ctx->task, task);
2918
2919 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2920
2921 /*
2922 * RCU_INIT_POINTER here is safe because we've not
2923 * modified the ctx and the above modification of
2924 * ctx->task and ctx->task_ctx_data are immaterial
2925 * since those values are always verified under
2926 * ctx->lock which we're now holding.
2927 */
2928 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2929 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2930
2931 do_switch = 0;
2932
2933 perf_event_sync_stat(ctx, next_ctx);
2934 }
2935 raw_spin_unlock(&next_ctx->lock);
2936 raw_spin_unlock(&ctx->lock);
2937 }
2938 unlock:
2939 rcu_read_unlock();
2940
2941 if (do_switch) {
2942 raw_spin_lock(&ctx->lock);
2943 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2944 raw_spin_unlock(&ctx->lock);
2945 }
2946 }
2947
2948 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2949
2950 void perf_sched_cb_dec(struct pmu *pmu)
2951 {
2952 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2953
2954 this_cpu_dec(perf_sched_cb_usages);
2955
2956 if (!--cpuctx->sched_cb_usage)
2957 list_del(&cpuctx->sched_cb_entry);
2958 }
2959
2960
2961 void perf_sched_cb_inc(struct pmu *pmu)
2962 {
2963 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2964
2965 if (!cpuctx->sched_cb_usage++)
2966 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2967
2968 this_cpu_inc(perf_sched_cb_usages);
2969 }
2970
2971 /*
2972 * This function provides the context switch callback to the lower code
2973 * layer. It is invoked ONLY when the context switch callback is enabled.
2974 *
2975 * This callback is relevant even to per-cpu events; for example multi event
2976 * PEBS requires this to provide PID/TID information. This requires we flush
2977 * all queued PEBS records before we context switch to a new task.
2978 */
2979 static void perf_pmu_sched_task(struct task_struct *prev,
2980 struct task_struct *next,
2981 bool sched_in)
2982 {
2983 struct perf_cpu_context *cpuctx;
2984 struct pmu *pmu;
2985
2986 if (prev == next)
2987 return;
2988
2989 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2990 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2991
2992 if (WARN_ON_ONCE(!pmu->sched_task))
2993 continue;
2994
2995 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2996 perf_pmu_disable(pmu);
2997
2998 pmu->sched_task(cpuctx->task_ctx, sched_in);
2999
3000 perf_pmu_enable(pmu);
3001 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3002 }
3003 }
3004
3005 static void perf_event_switch(struct task_struct *task,
3006 struct task_struct *next_prev, bool sched_in);
3007
3008 #define for_each_task_context_nr(ctxn) \
3009 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3010
3011 /*
3012 * Called from scheduler to remove the events of the current task,
3013 * with interrupts disabled.
3014 *
3015 * We stop each event and update the event value in event->count.
3016 *
3017 * This does not protect us against NMI, but disable()
3018 * sets the disabled bit in the control field of event _before_
3019 * accessing the event control register. If a NMI hits, then it will
3020 * not restart the event.
3021 */
3022 void __perf_event_task_sched_out(struct task_struct *task,
3023 struct task_struct *next)
3024 {
3025 int ctxn;
3026
3027 if (__this_cpu_read(perf_sched_cb_usages))
3028 perf_pmu_sched_task(task, next, false);
3029
3030 if (atomic_read(&nr_switch_events))
3031 perf_event_switch(task, next, false);
3032
3033 for_each_task_context_nr(ctxn)
3034 perf_event_context_sched_out(task, ctxn, next);
3035
3036 /*
3037 * if cgroup events exist on this CPU, then we need
3038 * to check if we have to switch out PMU state.
3039 * cgroup event are system-wide mode only
3040 */
3041 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3042 perf_cgroup_sched_out(task, next);
3043 }
3044
3045 /*
3046 * Called with IRQs disabled
3047 */
3048 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3049 enum event_type_t event_type)
3050 {
3051 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3052 }
3053
3054 static void
3055 ctx_pinned_sched_in(struct perf_event_context *ctx,
3056 struct perf_cpu_context *cpuctx)
3057 {
3058 struct perf_event *event;
3059
3060 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3061 if (event->state <= PERF_EVENT_STATE_OFF)
3062 continue;
3063 if (!event_filter_match(event))
3064 continue;
3065
3066 /* may need to reset tstamp_enabled */
3067 if (is_cgroup_event(event))
3068 perf_cgroup_mark_enabled(event, ctx);
3069
3070 if (group_can_go_on(event, cpuctx, 1))
3071 group_sched_in(event, cpuctx, ctx);
3072
3073 /*
3074 * If this pinned group hasn't been scheduled,
3075 * put it in error state.
3076 */
3077 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3078 update_group_times(event);
3079 event->state = PERF_EVENT_STATE_ERROR;
3080 }
3081 }
3082 }
3083
3084 static void
3085 ctx_flexible_sched_in(struct perf_event_context *ctx,
3086 struct perf_cpu_context *cpuctx)
3087 {
3088 struct perf_event *event;
3089 int can_add_hw = 1;
3090
3091 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3092 /* Ignore events in OFF or ERROR state */
3093 if (event->state <= PERF_EVENT_STATE_OFF)
3094 continue;
3095 /*
3096 * Listen to the 'cpu' scheduling filter constraint
3097 * of events:
3098 */
3099 if (!event_filter_match(event))
3100 continue;
3101
3102 /* may need to reset tstamp_enabled */
3103 if (is_cgroup_event(event))
3104 perf_cgroup_mark_enabled(event, ctx);
3105
3106 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3107 if (group_sched_in(event, cpuctx, ctx))
3108 can_add_hw = 0;
3109 }
3110 }
3111 }
3112
3113 static void
3114 ctx_sched_in(struct perf_event_context *ctx,
3115 struct perf_cpu_context *cpuctx,
3116 enum event_type_t event_type,
3117 struct task_struct *task)
3118 {
3119 int is_active = ctx->is_active;
3120 u64 now;
3121
3122 lockdep_assert_held(&ctx->lock);
3123
3124 if (likely(!ctx->nr_events))
3125 return;
3126
3127 ctx->is_active |= (event_type | EVENT_TIME);
3128 if (ctx->task) {
3129 if (!is_active)
3130 cpuctx->task_ctx = ctx;
3131 else
3132 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3133 }
3134
3135 is_active ^= ctx->is_active; /* changed bits */
3136
3137 if (is_active & EVENT_TIME) {
3138 /* start ctx time */
3139 now = perf_clock();
3140 ctx->timestamp = now;
3141 perf_cgroup_set_timestamp(task, ctx);
3142 }
3143
3144 /*
3145 * First go through the list and put on any pinned groups
3146 * in order to give them the best chance of going on.
3147 */
3148 if (is_active & EVENT_PINNED)
3149 ctx_pinned_sched_in(ctx, cpuctx);
3150
3151 /* Then walk through the lower prio flexible groups */
3152 if (is_active & EVENT_FLEXIBLE)
3153 ctx_flexible_sched_in(ctx, cpuctx);
3154 }
3155
3156 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3157 enum event_type_t event_type,
3158 struct task_struct *task)
3159 {
3160 struct perf_event_context *ctx = &cpuctx->ctx;
3161
3162 ctx_sched_in(ctx, cpuctx, event_type, task);
3163 }
3164
3165 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3166 struct task_struct *task)
3167 {
3168 struct perf_cpu_context *cpuctx;
3169
3170 cpuctx = __get_cpu_context(ctx);
3171 if (cpuctx->task_ctx == ctx)
3172 return;
3173
3174 perf_ctx_lock(cpuctx, ctx);
3175 perf_pmu_disable(ctx->pmu);
3176 /*
3177 * We want to keep the following priority order:
3178 * cpu pinned (that don't need to move), task pinned,
3179 * cpu flexible, task flexible.
3180 *
3181 * However, if task's ctx is not carrying any pinned
3182 * events, no need to flip the cpuctx's events around.
3183 */
3184 if (!list_empty(&ctx->pinned_groups))
3185 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3186 perf_event_sched_in(cpuctx, ctx, task);
3187 perf_pmu_enable(ctx->pmu);
3188 perf_ctx_unlock(cpuctx, ctx);
3189 }
3190
3191 /*
3192 * Called from scheduler to add the events of the current task
3193 * with interrupts disabled.
3194 *
3195 * We restore the event value and then enable it.
3196 *
3197 * This does not protect us against NMI, but enable()
3198 * sets the enabled bit in the control field of event _before_
3199 * accessing the event control register. If a NMI hits, then it will
3200 * keep the event running.
3201 */
3202 void __perf_event_task_sched_in(struct task_struct *prev,
3203 struct task_struct *task)
3204 {
3205 struct perf_event_context *ctx;
3206 int ctxn;
3207
3208 /*
3209 * If cgroup events exist on this CPU, then we need to check if we have
3210 * to switch in PMU state; cgroup event are system-wide mode only.
3211 *
3212 * Since cgroup events are CPU events, we must schedule these in before
3213 * we schedule in the task events.
3214 */
3215 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3216 perf_cgroup_sched_in(prev, task);
3217
3218 for_each_task_context_nr(ctxn) {
3219 ctx = task->perf_event_ctxp[ctxn];
3220 if (likely(!ctx))
3221 continue;
3222
3223 perf_event_context_sched_in(ctx, task);
3224 }
3225
3226 if (atomic_read(&nr_switch_events))
3227 perf_event_switch(task, prev, true);
3228
3229 if (__this_cpu_read(perf_sched_cb_usages))
3230 perf_pmu_sched_task(prev, task, true);
3231 }
3232
3233 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3234 {
3235 u64 frequency = event->attr.sample_freq;
3236 u64 sec = NSEC_PER_SEC;
3237 u64 divisor, dividend;
3238
3239 int count_fls, nsec_fls, frequency_fls, sec_fls;
3240
3241 count_fls = fls64(count);
3242 nsec_fls = fls64(nsec);
3243 frequency_fls = fls64(frequency);
3244 sec_fls = 30;
3245
3246 /*
3247 * We got @count in @nsec, with a target of sample_freq HZ
3248 * the target period becomes:
3249 *
3250 * @count * 10^9
3251 * period = -------------------
3252 * @nsec * sample_freq
3253 *
3254 */
3255
3256 /*
3257 * Reduce accuracy by one bit such that @a and @b converge
3258 * to a similar magnitude.
3259 */
3260 #define REDUCE_FLS(a, b) \
3261 do { \
3262 if (a##_fls > b##_fls) { \
3263 a >>= 1; \
3264 a##_fls--; \
3265 } else { \
3266 b >>= 1; \
3267 b##_fls--; \
3268 } \
3269 } while (0)
3270
3271 /*
3272 * Reduce accuracy until either term fits in a u64, then proceed with
3273 * the other, so that finally we can do a u64/u64 division.
3274 */
3275 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3276 REDUCE_FLS(nsec, frequency);
3277 REDUCE_FLS(sec, count);
3278 }
3279
3280 if (count_fls + sec_fls > 64) {
3281 divisor = nsec * frequency;
3282
3283 while (count_fls + sec_fls > 64) {
3284 REDUCE_FLS(count, sec);
3285 divisor >>= 1;
3286 }
3287
3288 dividend = count * sec;
3289 } else {
3290 dividend = count * sec;
3291
3292 while (nsec_fls + frequency_fls > 64) {
3293 REDUCE_FLS(nsec, frequency);
3294 dividend >>= 1;
3295 }
3296
3297 divisor = nsec * frequency;
3298 }
3299
3300 if (!divisor)
3301 return dividend;
3302
3303 return div64_u64(dividend, divisor);
3304 }
3305
3306 static DEFINE_PER_CPU(int, perf_throttled_count);
3307 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3308
3309 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3310 {
3311 struct hw_perf_event *hwc = &event->hw;
3312 s64 period, sample_period;
3313 s64 delta;
3314
3315 period = perf_calculate_period(event, nsec, count);
3316
3317 delta = (s64)(period - hwc->sample_period);
3318 delta = (delta + 7) / 8; /* low pass filter */
3319
3320 sample_period = hwc->sample_period + delta;
3321
3322 if (!sample_period)
3323 sample_period = 1;
3324
3325 hwc->sample_period = sample_period;
3326
3327 if (local64_read(&hwc->period_left) > 8*sample_period) {
3328 if (disable)
3329 event->pmu->stop(event, PERF_EF_UPDATE);
3330
3331 local64_set(&hwc->period_left, 0);
3332
3333 if (disable)
3334 event->pmu->start(event, PERF_EF_RELOAD);
3335 }
3336 }
3337
3338 /*
3339 * combine freq adjustment with unthrottling to avoid two passes over the
3340 * events. At the same time, make sure, having freq events does not change
3341 * the rate of unthrottling as that would introduce bias.
3342 */
3343 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3344 int needs_unthr)
3345 {
3346 struct perf_event *event;
3347 struct hw_perf_event *hwc;
3348 u64 now, period = TICK_NSEC;
3349 s64 delta;
3350
3351 /*
3352 * only need to iterate over all events iff:
3353 * - context have events in frequency mode (needs freq adjust)
3354 * - there are events to unthrottle on this cpu
3355 */
3356 if (!(ctx->nr_freq || needs_unthr))
3357 return;
3358
3359 raw_spin_lock(&ctx->lock);
3360 perf_pmu_disable(ctx->pmu);
3361
3362 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3363 if (event->state != PERF_EVENT_STATE_ACTIVE)
3364 continue;
3365
3366 if (!event_filter_match(event))
3367 continue;
3368
3369 perf_pmu_disable(event->pmu);
3370
3371 hwc = &event->hw;
3372
3373 if (hwc->interrupts == MAX_INTERRUPTS) {
3374 hwc->interrupts = 0;
3375 perf_log_throttle(event, 1);
3376 event->pmu->start(event, 0);
3377 }
3378
3379 if (!event->attr.freq || !event->attr.sample_freq)
3380 goto next;
3381
3382 /*
3383 * stop the event and update event->count
3384 */
3385 event->pmu->stop(event, PERF_EF_UPDATE);
3386
3387 now = local64_read(&event->count);
3388 delta = now - hwc->freq_count_stamp;
3389 hwc->freq_count_stamp = now;
3390
3391 /*
3392 * restart the event
3393 * reload only if value has changed
3394 * we have stopped the event so tell that
3395 * to perf_adjust_period() to avoid stopping it
3396 * twice.
3397 */
3398 if (delta > 0)
3399 perf_adjust_period(event, period, delta, false);
3400
3401 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3402 next:
3403 perf_pmu_enable(event->pmu);
3404 }
3405
3406 perf_pmu_enable(ctx->pmu);
3407 raw_spin_unlock(&ctx->lock);
3408 }
3409
3410 /*
3411 * Round-robin a context's events:
3412 */
3413 static void rotate_ctx(struct perf_event_context *ctx)
3414 {
3415 /*
3416 * Rotate the first entry last of non-pinned groups. Rotation might be
3417 * disabled by the inheritance code.
3418 */
3419 if (!ctx->rotate_disable)
3420 list_rotate_left(&ctx->flexible_groups);
3421 }
3422
3423 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3424 {
3425 struct perf_event_context *ctx = NULL;
3426 int rotate = 0;
3427
3428 if (cpuctx->ctx.nr_events) {
3429 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3430 rotate = 1;
3431 }
3432
3433 ctx = cpuctx->task_ctx;
3434 if (ctx && ctx->nr_events) {
3435 if (ctx->nr_events != ctx->nr_active)
3436 rotate = 1;
3437 }
3438
3439 if (!rotate)
3440 goto done;
3441
3442 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3443 perf_pmu_disable(cpuctx->ctx.pmu);
3444
3445 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3446 if (ctx)
3447 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3448
3449 rotate_ctx(&cpuctx->ctx);
3450 if (ctx)
3451 rotate_ctx(ctx);
3452
3453 perf_event_sched_in(cpuctx, ctx, current);
3454
3455 perf_pmu_enable(cpuctx->ctx.pmu);
3456 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3457 done:
3458
3459 return rotate;
3460 }
3461
3462 void perf_event_task_tick(void)
3463 {
3464 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3465 struct perf_event_context *ctx, *tmp;
3466 int throttled;
3467
3468 WARN_ON(!irqs_disabled());
3469
3470 __this_cpu_inc(perf_throttled_seq);
3471 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3472 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3473
3474 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3475 perf_adjust_freq_unthr_context(ctx, throttled);
3476 }
3477
3478 static int event_enable_on_exec(struct perf_event *event,
3479 struct perf_event_context *ctx)
3480 {
3481 if (!event->attr.enable_on_exec)
3482 return 0;
3483
3484 event->attr.enable_on_exec = 0;
3485 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3486 return 0;
3487
3488 __perf_event_mark_enabled(event);
3489
3490 return 1;
3491 }
3492
3493 /*
3494 * Enable all of a task's events that have been marked enable-on-exec.
3495 * This expects task == current.
3496 */
3497 static void perf_event_enable_on_exec(int ctxn)
3498 {
3499 struct perf_event_context *ctx, *clone_ctx = NULL;
3500 enum event_type_t event_type = 0;
3501 struct perf_cpu_context *cpuctx;
3502 struct perf_event *event;
3503 unsigned long flags;
3504 int enabled = 0;
3505
3506 local_irq_save(flags);
3507 ctx = current->perf_event_ctxp[ctxn];
3508 if (!ctx || !ctx->nr_events)
3509 goto out;
3510
3511 cpuctx = __get_cpu_context(ctx);
3512 perf_ctx_lock(cpuctx, ctx);
3513 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3514 list_for_each_entry(event, &ctx->event_list, event_entry) {
3515 enabled |= event_enable_on_exec(event, ctx);
3516 event_type |= get_event_type(event);
3517 }
3518
3519 /*
3520 * Unclone and reschedule this context if we enabled any event.
3521 */
3522 if (enabled) {
3523 clone_ctx = unclone_ctx(ctx);
3524 ctx_resched(cpuctx, ctx, event_type);
3525 } else {
3526 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3527 }
3528 perf_ctx_unlock(cpuctx, ctx);
3529
3530 out:
3531 local_irq_restore(flags);
3532
3533 if (clone_ctx)
3534 put_ctx(clone_ctx);
3535 }
3536
3537 struct perf_read_data {
3538 struct perf_event *event;
3539 bool group;
3540 int ret;
3541 };
3542
3543 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3544 {
3545 u16 local_pkg, event_pkg;
3546
3547 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3548 int local_cpu = smp_processor_id();
3549
3550 event_pkg = topology_physical_package_id(event_cpu);
3551 local_pkg = topology_physical_package_id(local_cpu);
3552
3553 if (event_pkg == local_pkg)
3554 return local_cpu;
3555 }
3556
3557 return event_cpu;
3558 }
3559
3560 /*
3561 * Cross CPU call to read the hardware event
3562 */
3563 static void __perf_event_read(void *info)
3564 {
3565 struct perf_read_data *data = info;
3566 struct perf_event *sub, *event = data->event;
3567 struct perf_event_context *ctx = event->ctx;
3568 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3569 struct pmu *pmu = event->pmu;
3570
3571 /*
3572 * If this is a task context, we need to check whether it is
3573 * the current task context of this cpu. If not it has been
3574 * scheduled out before the smp call arrived. In that case
3575 * event->count would have been updated to a recent sample
3576 * when the event was scheduled out.
3577 */
3578 if (ctx->task && cpuctx->task_ctx != ctx)
3579 return;
3580
3581 raw_spin_lock(&ctx->lock);
3582 if (ctx->is_active) {
3583 update_context_time(ctx);
3584 update_cgrp_time_from_event(event);
3585 }
3586
3587 update_event_times(event);
3588 if (event->state != PERF_EVENT_STATE_ACTIVE)
3589 goto unlock;
3590
3591 if (!data->group) {
3592 pmu->read(event);
3593 data->ret = 0;
3594 goto unlock;
3595 }
3596
3597 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3598
3599 pmu->read(event);
3600
3601 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3602 update_event_times(sub);
3603 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3604 /*
3605 * Use sibling's PMU rather than @event's since
3606 * sibling could be on different (eg: software) PMU.
3607 */
3608 sub->pmu->read(sub);
3609 }
3610 }
3611
3612 data->ret = pmu->commit_txn(pmu);
3613
3614 unlock:
3615 raw_spin_unlock(&ctx->lock);
3616 }
3617
3618 static inline u64 perf_event_count(struct perf_event *event)
3619 {
3620 if (event->pmu->count)
3621 return event->pmu->count(event);
3622
3623 return __perf_event_count(event);
3624 }
3625
3626 /*
3627 * NMI-safe method to read a local event, that is an event that
3628 * is:
3629 * - either for the current task, or for this CPU
3630 * - does not have inherit set, for inherited task events
3631 * will not be local and we cannot read them atomically
3632 * - must not have a pmu::count method
3633 */
3634 u64 perf_event_read_local(struct perf_event *event)
3635 {
3636 unsigned long flags;
3637 u64 val;
3638
3639 /*
3640 * Disabling interrupts avoids all counter scheduling (context
3641 * switches, timer based rotation and IPIs).
3642 */
3643 local_irq_save(flags);
3644
3645 /* If this is a per-task event, it must be for current */
3646 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3647 event->hw.target != current);
3648
3649 /* If this is a per-CPU event, it must be for this CPU */
3650 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3651 event->cpu != smp_processor_id());
3652
3653 /*
3654 * It must not be an event with inherit set, we cannot read
3655 * all child counters from atomic context.
3656 */
3657 WARN_ON_ONCE(event->attr.inherit);
3658
3659 /*
3660 * It must not have a pmu::count method, those are not
3661 * NMI safe.
3662 */
3663 WARN_ON_ONCE(event->pmu->count);
3664
3665 /*
3666 * If the event is currently on this CPU, its either a per-task event,
3667 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3668 * oncpu == -1).
3669 */
3670 if (event->oncpu == smp_processor_id())
3671 event->pmu->read(event);
3672
3673 val = local64_read(&event->count);
3674 local_irq_restore(flags);
3675
3676 return val;
3677 }
3678
3679 static int perf_event_read(struct perf_event *event, bool group)
3680 {
3681 int event_cpu, ret = 0;
3682
3683 /*
3684 * If event is enabled and currently active on a CPU, update the
3685 * value in the event structure:
3686 */
3687 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3688 struct perf_read_data data = {
3689 .event = event,
3690 .group = group,
3691 .ret = 0,
3692 };
3693
3694 event_cpu = READ_ONCE(event->oncpu);
3695 if ((unsigned)event_cpu >= nr_cpu_ids)
3696 return 0;
3697
3698 preempt_disable();
3699 event_cpu = __perf_event_read_cpu(event, event_cpu);
3700
3701 /*
3702 * Purposely ignore the smp_call_function_single() return
3703 * value.
3704 *
3705 * If event_cpu isn't a valid CPU it means the event got
3706 * scheduled out and that will have updated the event count.
3707 *
3708 * Therefore, either way, we'll have an up-to-date event count
3709 * after this.
3710 */
3711 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3712 preempt_enable();
3713 ret = data.ret;
3714 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3715 struct perf_event_context *ctx = event->ctx;
3716 unsigned long flags;
3717
3718 raw_spin_lock_irqsave(&ctx->lock, flags);
3719 /*
3720 * may read while context is not active
3721 * (e.g., thread is blocked), in that case
3722 * we cannot update context time
3723 */
3724 if (ctx->is_active) {
3725 update_context_time(ctx);
3726 update_cgrp_time_from_event(event);
3727 }
3728 if (group)
3729 update_group_times(event);
3730 else
3731 update_event_times(event);
3732 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3733 }
3734
3735 return ret;
3736 }
3737
3738 /*
3739 * Initialize the perf_event context in a task_struct:
3740 */
3741 static void __perf_event_init_context(struct perf_event_context *ctx)
3742 {
3743 raw_spin_lock_init(&ctx->lock);
3744 mutex_init(&ctx->mutex);
3745 INIT_LIST_HEAD(&ctx->active_ctx_list);
3746 INIT_LIST_HEAD(&ctx->pinned_groups);
3747 INIT_LIST_HEAD(&ctx->flexible_groups);
3748 INIT_LIST_HEAD(&ctx->event_list);
3749 atomic_set(&ctx->refcount, 1);
3750 }
3751
3752 static struct perf_event_context *
3753 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3754 {
3755 struct perf_event_context *ctx;
3756
3757 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3758 if (!ctx)
3759 return NULL;
3760
3761 __perf_event_init_context(ctx);
3762 if (task) {
3763 ctx->task = task;
3764 get_task_struct(task);
3765 }
3766 ctx->pmu = pmu;
3767
3768 return ctx;
3769 }
3770
3771 static struct task_struct *
3772 find_lively_task_by_vpid(pid_t vpid)
3773 {
3774 struct task_struct *task;
3775
3776 rcu_read_lock();
3777 if (!vpid)
3778 task = current;
3779 else
3780 task = find_task_by_vpid(vpid);
3781 if (task)
3782 get_task_struct(task);
3783 rcu_read_unlock();
3784
3785 if (!task)
3786 return ERR_PTR(-ESRCH);
3787
3788 return task;
3789 }
3790
3791 /*
3792 * Returns a matching context with refcount and pincount.
3793 */
3794 static struct perf_event_context *
3795 find_get_context(struct pmu *pmu, struct task_struct *task,
3796 struct perf_event *event)
3797 {
3798 struct perf_event_context *ctx, *clone_ctx = NULL;
3799 struct perf_cpu_context *cpuctx;
3800 void *task_ctx_data = NULL;
3801 unsigned long flags;
3802 int ctxn, err;
3803 int cpu = event->cpu;
3804
3805 if (!task) {
3806 /* Must be root to operate on a CPU event: */
3807 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3808 return ERR_PTR(-EACCES);
3809
3810 /*
3811 * We could be clever and allow to attach a event to an
3812 * offline CPU and activate it when the CPU comes up, but
3813 * that's for later.
3814 */
3815 if (!cpu_online(cpu))
3816 return ERR_PTR(-ENODEV);
3817
3818 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3819 ctx = &cpuctx->ctx;
3820 get_ctx(ctx);
3821 ++ctx->pin_count;
3822
3823 return ctx;
3824 }
3825
3826 err = -EINVAL;
3827 ctxn = pmu->task_ctx_nr;
3828 if (ctxn < 0)
3829 goto errout;
3830
3831 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3832 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3833 if (!task_ctx_data) {
3834 err = -ENOMEM;
3835 goto errout;
3836 }
3837 }
3838
3839 retry:
3840 ctx = perf_lock_task_context(task, ctxn, &flags);
3841 if (ctx) {
3842 clone_ctx = unclone_ctx(ctx);
3843 ++ctx->pin_count;
3844
3845 if (task_ctx_data && !ctx->task_ctx_data) {
3846 ctx->task_ctx_data = task_ctx_data;
3847 task_ctx_data = NULL;
3848 }
3849 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3850
3851 if (clone_ctx)
3852 put_ctx(clone_ctx);
3853 } else {
3854 ctx = alloc_perf_context(pmu, task);
3855 err = -ENOMEM;
3856 if (!ctx)
3857 goto errout;
3858
3859 if (task_ctx_data) {
3860 ctx->task_ctx_data = task_ctx_data;
3861 task_ctx_data = NULL;
3862 }
3863
3864 err = 0;
3865 mutex_lock(&task->perf_event_mutex);
3866 /*
3867 * If it has already passed perf_event_exit_task().
3868 * we must see PF_EXITING, it takes this mutex too.
3869 */
3870 if (task->flags & PF_EXITING)
3871 err = -ESRCH;
3872 else if (task->perf_event_ctxp[ctxn])
3873 err = -EAGAIN;
3874 else {
3875 get_ctx(ctx);
3876 ++ctx->pin_count;
3877 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3878 }
3879 mutex_unlock(&task->perf_event_mutex);
3880
3881 if (unlikely(err)) {
3882 put_ctx(ctx);
3883
3884 if (err == -EAGAIN)
3885 goto retry;
3886 goto errout;
3887 }
3888 }
3889
3890 kfree(task_ctx_data);
3891 return ctx;
3892
3893 errout:
3894 kfree(task_ctx_data);
3895 return ERR_PTR(err);
3896 }
3897
3898 static void perf_event_free_filter(struct perf_event *event);
3899 static void perf_event_free_bpf_prog(struct perf_event *event);
3900
3901 static void free_event_rcu(struct rcu_head *head)
3902 {
3903 struct perf_event *event;
3904
3905 event = container_of(head, struct perf_event, rcu_head);
3906 if (event->ns)
3907 put_pid_ns(event->ns);
3908 perf_event_free_filter(event);
3909 kfree(event);
3910 }
3911
3912 static void ring_buffer_attach(struct perf_event *event,
3913 struct ring_buffer *rb);
3914
3915 static void detach_sb_event(struct perf_event *event)
3916 {
3917 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3918
3919 raw_spin_lock(&pel->lock);
3920 list_del_rcu(&event->sb_list);
3921 raw_spin_unlock(&pel->lock);
3922 }
3923
3924 static bool is_sb_event(struct perf_event *event)
3925 {
3926 struct perf_event_attr *attr = &event->attr;
3927
3928 if (event->parent)
3929 return false;
3930
3931 if (event->attach_state & PERF_ATTACH_TASK)
3932 return false;
3933
3934 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3935 attr->comm || attr->comm_exec ||
3936 attr->task ||
3937 attr->context_switch)
3938 return true;
3939 return false;
3940 }
3941
3942 static void unaccount_pmu_sb_event(struct perf_event *event)
3943 {
3944 if (is_sb_event(event))
3945 detach_sb_event(event);
3946 }
3947
3948 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3949 {
3950 if (event->parent)
3951 return;
3952
3953 if (is_cgroup_event(event))
3954 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3955 }
3956
3957 #ifdef CONFIG_NO_HZ_FULL
3958 static DEFINE_SPINLOCK(nr_freq_lock);
3959 #endif
3960
3961 static void unaccount_freq_event_nohz(void)
3962 {
3963 #ifdef CONFIG_NO_HZ_FULL
3964 spin_lock(&nr_freq_lock);
3965 if (atomic_dec_and_test(&nr_freq_events))
3966 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3967 spin_unlock(&nr_freq_lock);
3968 #endif
3969 }
3970
3971 static void unaccount_freq_event(void)
3972 {
3973 if (tick_nohz_full_enabled())
3974 unaccount_freq_event_nohz();
3975 else
3976 atomic_dec(&nr_freq_events);
3977 }
3978
3979 static void unaccount_event(struct perf_event *event)
3980 {
3981 bool dec = false;
3982
3983 if (event->parent)
3984 return;
3985
3986 if (event->attach_state & PERF_ATTACH_TASK)
3987 dec = true;
3988 if (event->attr.mmap || event->attr.mmap_data)
3989 atomic_dec(&nr_mmap_events);
3990 if (event->attr.comm)
3991 atomic_dec(&nr_comm_events);
3992 if (event->attr.namespaces)
3993 atomic_dec(&nr_namespaces_events);
3994 if (event->attr.task)
3995 atomic_dec(&nr_task_events);
3996 if (event->attr.freq)
3997 unaccount_freq_event();
3998 if (event->attr.context_switch) {
3999 dec = true;
4000 atomic_dec(&nr_switch_events);
4001 }
4002 if (is_cgroup_event(event))
4003 dec = true;
4004 if (has_branch_stack(event))
4005 dec = true;
4006
4007 if (dec) {
4008 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4009 schedule_delayed_work(&perf_sched_work, HZ);
4010 }
4011
4012 unaccount_event_cpu(event, event->cpu);
4013
4014 unaccount_pmu_sb_event(event);
4015 }
4016
4017 static void perf_sched_delayed(struct work_struct *work)
4018 {
4019 mutex_lock(&perf_sched_mutex);
4020 if (atomic_dec_and_test(&perf_sched_count))
4021 static_branch_disable(&perf_sched_events);
4022 mutex_unlock(&perf_sched_mutex);
4023 }
4024
4025 /*
4026 * The following implement mutual exclusion of events on "exclusive" pmus
4027 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4028 * at a time, so we disallow creating events that might conflict, namely:
4029 *
4030 * 1) cpu-wide events in the presence of per-task events,
4031 * 2) per-task events in the presence of cpu-wide events,
4032 * 3) two matching events on the same context.
4033 *
4034 * The former two cases are handled in the allocation path (perf_event_alloc(),
4035 * _free_event()), the latter -- before the first perf_install_in_context().
4036 */
4037 static int exclusive_event_init(struct perf_event *event)
4038 {
4039 struct pmu *pmu = event->pmu;
4040
4041 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4042 return 0;
4043
4044 /*
4045 * Prevent co-existence of per-task and cpu-wide events on the
4046 * same exclusive pmu.
4047 *
4048 * Negative pmu::exclusive_cnt means there are cpu-wide
4049 * events on this "exclusive" pmu, positive means there are
4050 * per-task events.
4051 *
4052 * Since this is called in perf_event_alloc() path, event::ctx
4053 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4054 * to mean "per-task event", because unlike other attach states it
4055 * never gets cleared.
4056 */
4057 if (event->attach_state & PERF_ATTACH_TASK) {
4058 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4059 return -EBUSY;
4060 } else {
4061 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4062 return -EBUSY;
4063 }
4064
4065 return 0;
4066 }
4067
4068 static void exclusive_event_destroy(struct perf_event *event)
4069 {
4070 struct pmu *pmu = event->pmu;
4071
4072 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4073 return;
4074
4075 /* see comment in exclusive_event_init() */
4076 if (event->attach_state & PERF_ATTACH_TASK)
4077 atomic_dec(&pmu->exclusive_cnt);
4078 else
4079 atomic_inc(&pmu->exclusive_cnt);
4080 }
4081
4082 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4083 {
4084 if ((e1->pmu == e2->pmu) &&
4085 (e1->cpu == e2->cpu ||
4086 e1->cpu == -1 ||
4087 e2->cpu == -1))
4088 return true;
4089 return false;
4090 }
4091
4092 /* Called under the same ctx::mutex as perf_install_in_context() */
4093 static bool exclusive_event_installable(struct perf_event *event,
4094 struct perf_event_context *ctx)
4095 {
4096 struct perf_event *iter_event;
4097 struct pmu *pmu = event->pmu;
4098
4099 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4100 return true;
4101
4102 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4103 if (exclusive_event_match(iter_event, event))
4104 return false;
4105 }
4106
4107 return true;
4108 }
4109
4110 static void perf_addr_filters_splice(struct perf_event *event,
4111 struct list_head *head);
4112
4113 static void _free_event(struct perf_event *event)
4114 {
4115 irq_work_sync(&event->pending);
4116
4117 unaccount_event(event);
4118
4119 if (event->rb) {
4120 /*
4121 * Can happen when we close an event with re-directed output.
4122 *
4123 * Since we have a 0 refcount, perf_mmap_close() will skip
4124 * over us; possibly making our ring_buffer_put() the last.
4125 */
4126 mutex_lock(&event->mmap_mutex);
4127 ring_buffer_attach(event, NULL);
4128 mutex_unlock(&event->mmap_mutex);
4129 }
4130
4131 if (is_cgroup_event(event))
4132 perf_detach_cgroup(event);
4133
4134 if (!event->parent) {
4135 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4136 put_callchain_buffers();
4137 }
4138
4139 perf_event_free_bpf_prog(event);
4140 perf_addr_filters_splice(event, NULL);
4141 kfree(event->addr_filters_offs);
4142
4143 if (event->destroy)
4144 event->destroy(event);
4145
4146 if (event->ctx)
4147 put_ctx(event->ctx);
4148
4149 exclusive_event_destroy(event);
4150 module_put(event->pmu->module);
4151
4152 call_rcu(&event->rcu_head, free_event_rcu);
4153 }
4154
4155 /*
4156 * Used to free events which have a known refcount of 1, such as in error paths
4157 * where the event isn't exposed yet and inherited events.
4158 */
4159 static void free_event(struct perf_event *event)
4160 {
4161 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4162 "unexpected event refcount: %ld; ptr=%p\n",
4163 atomic_long_read(&event->refcount), event)) {
4164 /* leak to avoid use-after-free */
4165 return;
4166 }
4167
4168 _free_event(event);
4169 }
4170
4171 /*
4172 * Remove user event from the owner task.
4173 */
4174 static void perf_remove_from_owner(struct perf_event *event)
4175 {
4176 struct task_struct *owner;
4177
4178 rcu_read_lock();
4179 /*
4180 * Matches the smp_store_release() in perf_event_exit_task(). If we
4181 * observe !owner it means the list deletion is complete and we can
4182 * indeed free this event, otherwise we need to serialize on
4183 * owner->perf_event_mutex.
4184 */
4185 owner = lockless_dereference(event->owner);
4186 if (owner) {
4187 /*
4188 * Since delayed_put_task_struct() also drops the last
4189 * task reference we can safely take a new reference
4190 * while holding the rcu_read_lock().
4191 */
4192 get_task_struct(owner);
4193 }
4194 rcu_read_unlock();
4195
4196 if (owner) {
4197 /*
4198 * If we're here through perf_event_exit_task() we're already
4199 * holding ctx->mutex which would be an inversion wrt. the
4200 * normal lock order.
4201 *
4202 * However we can safely take this lock because its the child
4203 * ctx->mutex.
4204 */
4205 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4206
4207 /*
4208 * We have to re-check the event->owner field, if it is cleared
4209 * we raced with perf_event_exit_task(), acquiring the mutex
4210 * ensured they're done, and we can proceed with freeing the
4211 * event.
4212 */
4213 if (event->owner) {
4214 list_del_init(&event->owner_entry);
4215 smp_store_release(&event->owner, NULL);
4216 }
4217 mutex_unlock(&owner->perf_event_mutex);
4218 put_task_struct(owner);
4219 }
4220 }
4221
4222 static void put_event(struct perf_event *event)
4223 {
4224 if (!atomic_long_dec_and_test(&event->refcount))
4225 return;
4226
4227 _free_event(event);
4228 }
4229
4230 /*
4231 * Kill an event dead; while event:refcount will preserve the event
4232 * object, it will not preserve its functionality. Once the last 'user'
4233 * gives up the object, we'll destroy the thing.
4234 */
4235 int perf_event_release_kernel(struct perf_event *event)
4236 {
4237 struct perf_event_context *ctx = event->ctx;
4238 struct perf_event *child, *tmp;
4239
4240 /*
4241 * If we got here through err_file: fput(event_file); we will not have
4242 * attached to a context yet.
4243 */
4244 if (!ctx) {
4245 WARN_ON_ONCE(event->attach_state &
4246 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4247 goto no_ctx;
4248 }
4249
4250 if (!is_kernel_event(event))
4251 perf_remove_from_owner(event);
4252
4253 ctx = perf_event_ctx_lock(event);
4254 WARN_ON_ONCE(ctx->parent_ctx);
4255 perf_remove_from_context(event, DETACH_GROUP);
4256
4257 raw_spin_lock_irq(&ctx->lock);
4258 /*
4259 * Mark this event as STATE_DEAD, there is no external reference to it
4260 * anymore.
4261 *
4262 * Anybody acquiring event->child_mutex after the below loop _must_
4263 * also see this, most importantly inherit_event() which will avoid
4264 * placing more children on the list.
4265 *
4266 * Thus this guarantees that we will in fact observe and kill _ALL_
4267 * child events.
4268 */
4269 event->state = PERF_EVENT_STATE_DEAD;
4270 raw_spin_unlock_irq(&ctx->lock);
4271
4272 perf_event_ctx_unlock(event, ctx);
4273
4274 again:
4275 mutex_lock(&event->child_mutex);
4276 list_for_each_entry(child, &event->child_list, child_list) {
4277
4278 /*
4279 * Cannot change, child events are not migrated, see the
4280 * comment with perf_event_ctx_lock_nested().
4281 */
4282 ctx = lockless_dereference(child->ctx);
4283 /*
4284 * Since child_mutex nests inside ctx::mutex, we must jump
4285 * through hoops. We start by grabbing a reference on the ctx.
4286 *
4287 * Since the event cannot get freed while we hold the
4288 * child_mutex, the context must also exist and have a !0
4289 * reference count.
4290 */
4291 get_ctx(ctx);
4292
4293 /*
4294 * Now that we have a ctx ref, we can drop child_mutex, and
4295 * acquire ctx::mutex without fear of it going away. Then we
4296 * can re-acquire child_mutex.
4297 */
4298 mutex_unlock(&event->child_mutex);
4299 mutex_lock(&ctx->mutex);
4300 mutex_lock(&event->child_mutex);
4301
4302 /*
4303 * Now that we hold ctx::mutex and child_mutex, revalidate our
4304 * state, if child is still the first entry, it didn't get freed
4305 * and we can continue doing so.
4306 */
4307 tmp = list_first_entry_or_null(&event->child_list,
4308 struct perf_event, child_list);
4309 if (tmp == child) {
4310 perf_remove_from_context(child, DETACH_GROUP);
4311 list_del(&child->child_list);
4312 free_event(child);
4313 /*
4314 * This matches the refcount bump in inherit_event();
4315 * this can't be the last reference.
4316 */
4317 put_event(event);
4318 }
4319
4320 mutex_unlock(&event->child_mutex);
4321 mutex_unlock(&ctx->mutex);
4322 put_ctx(ctx);
4323 goto again;
4324 }
4325 mutex_unlock(&event->child_mutex);
4326
4327 no_ctx:
4328 put_event(event); /* Must be the 'last' reference */
4329 return 0;
4330 }
4331 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4332
4333 /*
4334 * Called when the last reference to the file is gone.
4335 */
4336 static int perf_release(struct inode *inode, struct file *file)
4337 {
4338 perf_event_release_kernel(file->private_data);
4339 return 0;
4340 }
4341
4342 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4343 {
4344 struct perf_event *child;
4345 u64 total = 0;
4346
4347 *enabled = 0;
4348 *running = 0;
4349
4350 mutex_lock(&event->child_mutex);
4351
4352 (void)perf_event_read(event, false);
4353 total += perf_event_count(event);
4354
4355 *enabled += event->total_time_enabled +
4356 atomic64_read(&event->child_total_time_enabled);
4357 *running += event->total_time_running +
4358 atomic64_read(&event->child_total_time_running);
4359
4360 list_for_each_entry(child, &event->child_list, child_list) {
4361 (void)perf_event_read(child, false);
4362 total += perf_event_count(child);
4363 *enabled += child->total_time_enabled;
4364 *running += child->total_time_running;
4365 }
4366 mutex_unlock(&event->child_mutex);
4367
4368 return total;
4369 }
4370 EXPORT_SYMBOL_GPL(perf_event_read_value);
4371
4372 static int __perf_read_group_add(struct perf_event *leader,
4373 u64 read_format, u64 *values)
4374 {
4375 struct perf_event *sub;
4376 int n = 1; /* skip @nr */
4377 int ret;
4378
4379 ret = perf_event_read(leader, true);
4380 if (ret)
4381 return ret;
4382
4383 /*
4384 * Since we co-schedule groups, {enabled,running} times of siblings
4385 * will be identical to those of the leader, so we only publish one
4386 * set.
4387 */
4388 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4389 values[n++] += leader->total_time_enabled +
4390 atomic64_read(&leader->child_total_time_enabled);
4391 }
4392
4393 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4394 values[n++] += leader->total_time_running +
4395 atomic64_read(&leader->child_total_time_running);
4396 }
4397
4398 /*
4399 * Write {count,id} tuples for every sibling.
4400 */
4401 values[n++] += perf_event_count(leader);
4402 if (read_format & PERF_FORMAT_ID)
4403 values[n++] = primary_event_id(leader);
4404
4405 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4406 values[n++] += perf_event_count(sub);
4407 if (read_format & PERF_FORMAT_ID)
4408 values[n++] = primary_event_id(sub);
4409 }
4410
4411 return 0;
4412 }
4413
4414 static int perf_read_group(struct perf_event *event,
4415 u64 read_format, char __user *buf)
4416 {
4417 struct perf_event *leader = event->group_leader, *child;
4418 struct perf_event_context *ctx = leader->ctx;
4419 int ret;
4420 u64 *values;
4421
4422 lockdep_assert_held(&ctx->mutex);
4423
4424 values = kzalloc(event->read_size, GFP_KERNEL);
4425 if (!values)
4426 return -ENOMEM;
4427
4428 values[0] = 1 + leader->nr_siblings;
4429
4430 /*
4431 * By locking the child_mutex of the leader we effectively
4432 * lock the child list of all siblings.. XXX explain how.
4433 */
4434 mutex_lock(&leader->child_mutex);
4435
4436 ret = __perf_read_group_add(leader, read_format, values);
4437 if (ret)
4438 goto unlock;
4439
4440 list_for_each_entry(child, &leader->child_list, child_list) {
4441 ret = __perf_read_group_add(child, read_format, values);
4442 if (ret)
4443 goto unlock;
4444 }
4445
4446 mutex_unlock(&leader->child_mutex);
4447
4448 ret = event->read_size;
4449 if (copy_to_user(buf, values, event->read_size))
4450 ret = -EFAULT;
4451 goto out;
4452
4453 unlock:
4454 mutex_unlock(&leader->child_mutex);
4455 out:
4456 kfree(values);
4457 return ret;
4458 }
4459
4460 static int perf_read_one(struct perf_event *event,
4461 u64 read_format, char __user *buf)
4462 {
4463 u64 enabled, running;
4464 u64 values[4];
4465 int n = 0;
4466
4467 values[n++] = perf_event_read_value(event, &enabled, &running);
4468 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4469 values[n++] = enabled;
4470 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4471 values[n++] = running;
4472 if (read_format & PERF_FORMAT_ID)
4473 values[n++] = primary_event_id(event);
4474
4475 if (copy_to_user(buf, values, n * sizeof(u64)))
4476 return -EFAULT;
4477
4478 return n * sizeof(u64);
4479 }
4480
4481 static bool is_event_hup(struct perf_event *event)
4482 {
4483 bool no_children;
4484
4485 if (event->state > PERF_EVENT_STATE_EXIT)
4486 return false;
4487
4488 mutex_lock(&event->child_mutex);
4489 no_children = list_empty(&event->child_list);
4490 mutex_unlock(&event->child_mutex);
4491 return no_children;
4492 }
4493
4494 /*
4495 * Read the performance event - simple non blocking version for now
4496 */
4497 static ssize_t
4498 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4499 {
4500 u64 read_format = event->attr.read_format;
4501 int ret;
4502
4503 /*
4504 * Return end-of-file for a read on a event that is in
4505 * error state (i.e. because it was pinned but it couldn't be
4506 * scheduled on to the CPU at some point).
4507 */
4508 if (event->state == PERF_EVENT_STATE_ERROR)
4509 return 0;
4510
4511 if (count < event->read_size)
4512 return -ENOSPC;
4513
4514 WARN_ON_ONCE(event->ctx->parent_ctx);
4515 if (read_format & PERF_FORMAT_GROUP)
4516 ret = perf_read_group(event, read_format, buf);
4517 else
4518 ret = perf_read_one(event, read_format, buf);
4519
4520 return ret;
4521 }
4522
4523 static ssize_t
4524 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4525 {
4526 struct perf_event *event = file->private_data;
4527 struct perf_event_context *ctx;
4528 int ret;
4529
4530 ctx = perf_event_ctx_lock(event);
4531 ret = __perf_read(event, buf, count);
4532 perf_event_ctx_unlock(event, ctx);
4533
4534 return ret;
4535 }
4536
4537 static unsigned int perf_poll(struct file *file, poll_table *wait)
4538 {
4539 struct perf_event *event = file->private_data;
4540 struct ring_buffer *rb;
4541 unsigned int events = POLLHUP;
4542
4543 poll_wait(file, &event->waitq, wait);
4544
4545 if (is_event_hup(event))
4546 return events;
4547
4548 /*
4549 * Pin the event->rb by taking event->mmap_mutex; otherwise
4550 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4551 */
4552 mutex_lock(&event->mmap_mutex);
4553 rb = event->rb;
4554 if (rb)
4555 events = atomic_xchg(&rb->poll, 0);
4556 mutex_unlock(&event->mmap_mutex);
4557 return events;
4558 }
4559
4560 static void _perf_event_reset(struct perf_event *event)
4561 {
4562 (void)perf_event_read(event, false);
4563 local64_set(&event->count, 0);
4564 perf_event_update_userpage(event);
4565 }
4566
4567 /*
4568 * Holding the top-level event's child_mutex means that any
4569 * descendant process that has inherited this event will block
4570 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4571 * task existence requirements of perf_event_enable/disable.
4572 */
4573 static void perf_event_for_each_child(struct perf_event *event,
4574 void (*func)(struct perf_event *))
4575 {
4576 struct perf_event *child;
4577
4578 WARN_ON_ONCE(event->ctx->parent_ctx);
4579
4580 mutex_lock(&event->child_mutex);
4581 func(event);
4582 list_for_each_entry(child, &event->child_list, child_list)
4583 func(child);
4584 mutex_unlock(&event->child_mutex);
4585 }
4586
4587 static void perf_event_for_each(struct perf_event *event,
4588 void (*func)(struct perf_event *))
4589 {
4590 struct perf_event_context *ctx = event->ctx;
4591 struct perf_event *sibling;
4592
4593 lockdep_assert_held(&ctx->mutex);
4594
4595 event = event->group_leader;
4596
4597 perf_event_for_each_child(event, func);
4598 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4599 perf_event_for_each_child(sibling, func);
4600 }
4601
4602 static void __perf_event_period(struct perf_event *event,
4603 struct perf_cpu_context *cpuctx,
4604 struct perf_event_context *ctx,
4605 void *info)
4606 {
4607 u64 value = *((u64 *)info);
4608 bool active;
4609
4610 if (event->attr.freq) {
4611 event->attr.sample_freq = value;
4612 } else {
4613 event->attr.sample_period = value;
4614 event->hw.sample_period = value;
4615 }
4616
4617 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4618 if (active) {
4619 perf_pmu_disable(ctx->pmu);
4620 /*
4621 * We could be throttled; unthrottle now to avoid the tick
4622 * trying to unthrottle while we already re-started the event.
4623 */
4624 if (event->hw.interrupts == MAX_INTERRUPTS) {
4625 event->hw.interrupts = 0;
4626 perf_log_throttle(event, 1);
4627 }
4628 event->pmu->stop(event, PERF_EF_UPDATE);
4629 }
4630
4631 local64_set(&event->hw.period_left, 0);
4632
4633 if (active) {
4634 event->pmu->start(event, PERF_EF_RELOAD);
4635 perf_pmu_enable(ctx->pmu);
4636 }
4637 }
4638
4639 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4640 {
4641 u64 value;
4642
4643 if (!is_sampling_event(event))
4644 return -EINVAL;
4645
4646 if (copy_from_user(&value, arg, sizeof(value)))
4647 return -EFAULT;
4648
4649 if (!value)
4650 return -EINVAL;
4651
4652 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4653 return -EINVAL;
4654
4655 event_function_call(event, __perf_event_period, &value);
4656
4657 return 0;
4658 }
4659
4660 static const struct file_operations perf_fops;
4661
4662 static inline int perf_fget_light(int fd, struct fd *p)
4663 {
4664 struct fd f = fdget(fd);
4665 if (!f.file)
4666 return -EBADF;
4667
4668 if (f.file->f_op != &perf_fops) {
4669 fdput(f);
4670 return -EBADF;
4671 }
4672 *p = f;
4673 return 0;
4674 }
4675
4676 static int perf_event_set_output(struct perf_event *event,
4677 struct perf_event *output_event);
4678 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4679 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4680
4681 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4682 {
4683 void (*func)(struct perf_event *);
4684 u32 flags = arg;
4685
4686 switch (cmd) {
4687 case PERF_EVENT_IOC_ENABLE:
4688 func = _perf_event_enable;
4689 break;
4690 case PERF_EVENT_IOC_DISABLE:
4691 func = _perf_event_disable;
4692 break;
4693 case PERF_EVENT_IOC_RESET:
4694 func = _perf_event_reset;
4695 break;
4696
4697 case PERF_EVENT_IOC_REFRESH:
4698 return _perf_event_refresh(event, arg);
4699
4700 case PERF_EVENT_IOC_PERIOD:
4701 return perf_event_period(event, (u64 __user *)arg);
4702
4703 case PERF_EVENT_IOC_ID:
4704 {
4705 u64 id = primary_event_id(event);
4706
4707 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4708 return -EFAULT;
4709 return 0;
4710 }
4711
4712 case PERF_EVENT_IOC_SET_OUTPUT:
4713 {
4714 int ret;
4715 if (arg != -1) {
4716 struct perf_event *output_event;
4717 struct fd output;
4718 ret = perf_fget_light(arg, &output);
4719 if (ret)
4720 return ret;
4721 output_event = output.file->private_data;
4722 ret = perf_event_set_output(event, output_event);
4723 fdput(output);
4724 } else {
4725 ret = perf_event_set_output(event, NULL);
4726 }
4727 return ret;
4728 }
4729
4730 case PERF_EVENT_IOC_SET_FILTER:
4731 return perf_event_set_filter(event, (void __user *)arg);
4732
4733 case PERF_EVENT_IOC_SET_BPF:
4734 return perf_event_set_bpf_prog(event, arg);
4735
4736 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4737 struct ring_buffer *rb;
4738
4739 rcu_read_lock();
4740 rb = rcu_dereference(event->rb);
4741 if (!rb || !rb->nr_pages) {
4742 rcu_read_unlock();
4743 return -EINVAL;
4744 }
4745 rb_toggle_paused(rb, !!arg);
4746 rcu_read_unlock();
4747 return 0;
4748 }
4749 default:
4750 return -ENOTTY;
4751 }
4752
4753 if (flags & PERF_IOC_FLAG_GROUP)
4754 perf_event_for_each(event, func);
4755 else
4756 perf_event_for_each_child(event, func);
4757
4758 return 0;
4759 }
4760
4761 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4762 {
4763 struct perf_event *event = file->private_data;
4764 struct perf_event_context *ctx;
4765 long ret;
4766
4767 ctx = perf_event_ctx_lock(event);
4768 ret = _perf_ioctl(event, cmd, arg);
4769 perf_event_ctx_unlock(event, ctx);
4770
4771 return ret;
4772 }
4773
4774 #ifdef CONFIG_COMPAT
4775 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4776 unsigned long arg)
4777 {
4778 switch (_IOC_NR(cmd)) {
4779 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4780 case _IOC_NR(PERF_EVENT_IOC_ID):
4781 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4782 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4783 cmd &= ~IOCSIZE_MASK;
4784 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4785 }
4786 break;
4787 }
4788 return perf_ioctl(file, cmd, arg);
4789 }
4790 #else
4791 # define perf_compat_ioctl NULL
4792 #endif
4793
4794 int perf_event_task_enable(void)
4795 {
4796 struct perf_event_context *ctx;
4797 struct perf_event *event;
4798
4799 mutex_lock(&current->perf_event_mutex);
4800 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4801 ctx = perf_event_ctx_lock(event);
4802 perf_event_for_each_child(event, _perf_event_enable);
4803 perf_event_ctx_unlock(event, ctx);
4804 }
4805 mutex_unlock(&current->perf_event_mutex);
4806
4807 return 0;
4808 }
4809
4810 int perf_event_task_disable(void)
4811 {
4812 struct perf_event_context *ctx;
4813 struct perf_event *event;
4814
4815 mutex_lock(&current->perf_event_mutex);
4816 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4817 ctx = perf_event_ctx_lock(event);
4818 perf_event_for_each_child(event, _perf_event_disable);
4819 perf_event_ctx_unlock(event, ctx);
4820 }
4821 mutex_unlock(&current->perf_event_mutex);
4822
4823 return 0;
4824 }
4825
4826 static int perf_event_index(struct perf_event *event)
4827 {
4828 if (event->hw.state & PERF_HES_STOPPED)
4829 return 0;
4830
4831 if (event->state != PERF_EVENT_STATE_ACTIVE)
4832 return 0;
4833
4834 return event->pmu->event_idx(event);
4835 }
4836
4837 static void calc_timer_values(struct perf_event *event,
4838 u64 *now,
4839 u64 *enabled,
4840 u64 *running)
4841 {
4842 u64 ctx_time;
4843
4844 *now = perf_clock();
4845 ctx_time = event->shadow_ctx_time + *now;
4846 *enabled = ctx_time - event->tstamp_enabled;
4847 *running = ctx_time - event->tstamp_running;
4848 }
4849
4850 static void perf_event_init_userpage(struct perf_event *event)
4851 {
4852 struct perf_event_mmap_page *userpg;
4853 struct ring_buffer *rb;
4854
4855 rcu_read_lock();
4856 rb = rcu_dereference(event->rb);
4857 if (!rb)
4858 goto unlock;
4859
4860 userpg = rb->user_page;
4861
4862 /* Allow new userspace to detect that bit 0 is deprecated */
4863 userpg->cap_bit0_is_deprecated = 1;
4864 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4865 userpg->data_offset = PAGE_SIZE;
4866 userpg->data_size = perf_data_size(rb);
4867
4868 unlock:
4869 rcu_read_unlock();
4870 }
4871
4872 void __weak arch_perf_update_userpage(
4873 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4874 {
4875 }
4876
4877 /*
4878 * Callers need to ensure there can be no nesting of this function, otherwise
4879 * the seqlock logic goes bad. We can not serialize this because the arch
4880 * code calls this from NMI context.
4881 */
4882 void perf_event_update_userpage(struct perf_event *event)
4883 {
4884 struct perf_event_mmap_page *userpg;
4885 struct ring_buffer *rb;
4886 u64 enabled, running, now;
4887
4888 rcu_read_lock();
4889 rb = rcu_dereference(event->rb);
4890 if (!rb)
4891 goto unlock;
4892
4893 /*
4894 * compute total_time_enabled, total_time_running
4895 * based on snapshot values taken when the event
4896 * was last scheduled in.
4897 *
4898 * we cannot simply called update_context_time()
4899 * because of locking issue as we can be called in
4900 * NMI context
4901 */
4902 calc_timer_values(event, &now, &enabled, &running);
4903
4904 userpg = rb->user_page;
4905 /*
4906 * Disable preemption so as to not let the corresponding user-space
4907 * spin too long if we get preempted.
4908 */
4909 preempt_disable();
4910 ++userpg->lock;
4911 barrier();
4912 userpg->index = perf_event_index(event);
4913 userpg->offset = perf_event_count(event);
4914 if (userpg->index)
4915 userpg->offset -= local64_read(&event->hw.prev_count);
4916
4917 userpg->time_enabled = enabled +
4918 atomic64_read(&event->child_total_time_enabled);
4919
4920 userpg->time_running = running +
4921 atomic64_read(&event->child_total_time_running);
4922
4923 arch_perf_update_userpage(event, userpg, now);
4924
4925 barrier();
4926 ++userpg->lock;
4927 preempt_enable();
4928 unlock:
4929 rcu_read_unlock();
4930 }
4931
4932 static int perf_mmap_fault(struct vm_fault *vmf)
4933 {
4934 struct perf_event *event = vmf->vma->vm_file->private_data;
4935 struct ring_buffer *rb;
4936 int ret = VM_FAULT_SIGBUS;
4937
4938 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4939 if (vmf->pgoff == 0)
4940 ret = 0;
4941 return ret;
4942 }
4943
4944 rcu_read_lock();
4945 rb = rcu_dereference(event->rb);
4946 if (!rb)
4947 goto unlock;
4948
4949 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4950 goto unlock;
4951
4952 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4953 if (!vmf->page)
4954 goto unlock;
4955
4956 get_page(vmf->page);
4957 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4958 vmf->page->index = vmf->pgoff;
4959
4960 ret = 0;
4961 unlock:
4962 rcu_read_unlock();
4963
4964 return ret;
4965 }
4966
4967 static void ring_buffer_attach(struct perf_event *event,
4968 struct ring_buffer *rb)
4969 {
4970 struct ring_buffer *old_rb = NULL;
4971 unsigned long flags;
4972
4973 if (event->rb) {
4974 /*
4975 * Should be impossible, we set this when removing
4976 * event->rb_entry and wait/clear when adding event->rb_entry.
4977 */
4978 WARN_ON_ONCE(event->rcu_pending);
4979
4980 old_rb = event->rb;
4981 spin_lock_irqsave(&old_rb->event_lock, flags);
4982 list_del_rcu(&event->rb_entry);
4983 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4984
4985 event->rcu_batches = get_state_synchronize_rcu();
4986 event->rcu_pending = 1;
4987 }
4988
4989 if (rb) {
4990 if (event->rcu_pending) {
4991 cond_synchronize_rcu(event->rcu_batches);
4992 event->rcu_pending = 0;
4993 }
4994
4995 spin_lock_irqsave(&rb->event_lock, flags);
4996 list_add_rcu(&event->rb_entry, &rb->event_list);
4997 spin_unlock_irqrestore(&rb->event_lock, flags);
4998 }
4999
5000 /*
5001 * Avoid racing with perf_mmap_close(AUX): stop the event
5002 * before swizzling the event::rb pointer; if it's getting
5003 * unmapped, its aux_mmap_count will be 0 and it won't
5004 * restart. See the comment in __perf_pmu_output_stop().
5005 *
5006 * Data will inevitably be lost when set_output is done in
5007 * mid-air, but then again, whoever does it like this is
5008 * not in for the data anyway.
5009 */
5010 if (has_aux(event))
5011 perf_event_stop(event, 0);
5012
5013 rcu_assign_pointer(event->rb, rb);
5014
5015 if (old_rb) {
5016 ring_buffer_put(old_rb);
5017 /*
5018 * Since we detached before setting the new rb, so that we
5019 * could attach the new rb, we could have missed a wakeup.
5020 * Provide it now.
5021 */
5022 wake_up_all(&event->waitq);
5023 }
5024 }
5025
5026 static void ring_buffer_wakeup(struct perf_event *event)
5027 {
5028 struct ring_buffer *rb;
5029
5030 rcu_read_lock();
5031 rb = rcu_dereference(event->rb);
5032 if (rb) {
5033 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5034 wake_up_all(&event->waitq);
5035 }
5036 rcu_read_unlock();
5037 }
5038
5039 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5040 {
5041 struct ring_buffer *rb;
5042
5043 rcu_read_lock();
5044 rb = rcu_dereference(event->rb);
5045 if (rb) {
5046 if (!atomic_inc_not_zero(&rb->refcount))
5047 rb = NULL;
5048 }
5049 rcu_read_unlock();
5050
5051 return rb;
5052 }
5053
5054 void ring_buffer_put(struct ring_buffer *rb)
5055 {
5056 if (!atomic_dec_and_test(&rb->refcount))
5057 return;
5058
5059 WARN_ON_ONCE(!list_empty(&rb->event_list));
5060
5061 call_rcu(&rb->rcu_head, rb_free_rcu);
5062 }
5063
5064 static void perf_mmap_open(struct vm_area_struct *vma)
5065 {
5066 struct perf_event *event = vma->vm_file->private_data;
5067
5068 atomic_inc(&event->mmap_count);
5069 atomic_inc(&event->rb->mmap_count);
5070
5071 if (vma->vm_pgoff)
5072 atomic_inc(&event->rb->aux_mmap_count);
5073
5074 if (event->pmu->event_mapped)
5075 event->pmu->event_mapped(event);
5076 }
5077
5078 static void perf_pmu_output_stop(struct perf_event *event);
5079
5080 /*
5081 * A buffer can be mmap()ed multiple times; either directly through the same
5082 * event, or through other events by use of perf_event_set_output().
5083 *
5084 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5085 * the buffer here, where we still have a VM context. This means we need
5086 * to detach all events redirecting to us.
5087 */
5088 static void perf_mmap_close(struct vm_area_struct *vma)
5089 {
5090 struct perf_event *event = vma->vm_file->private_data;
5091
5092 struct ring_buffer *rb = ring_buffer_get(event);
5093 struct user_struct *mmap_user = rb->mmap_user;
5094 int mmap_locked = rb->mmap_locked;
5095 unsigned long size = perf_data_size(rb);
5096
5097 if (event->pmu->event_unmapped)
5098 event->pmu->event_unmapped(event);
5099
5100 /*
5101 * rb->aux_mmap_count will always drop before rb->mmap_count and
5102 * event->mmap_count, so it is ok to use event->mmap_mutex to
5103 * serialize with perf_mmap here.
5104 */
5105 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5106 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5107 /*
5108 * Stop all AUX events that are writing to this buffer,
5109 * so that we can free its AUX pages and corresponding PMU
5110 * data. Note that after rb::aux_mmap_count dropped to zero,
5111 * they won't start any more (see perf_aux_output_begin()).
5112 */
5113 perf_pmu_output_stop(event);
5114
5115 /* now it's safe to free the pages */
5116 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5117 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5118
5119 /* this has to be the last one */
5120 rb_free_aux(rb);
5121 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5122
5123 mutex_unlock(&event->mmap_mutex);
5124 }
5125
5126 atomic_dec(&rb->mmap_count);
5127
5128 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5129 goto out_put;
5130
5131 ring_buffer_attach(event, NULL);
5132 mutex_unlock(&event->mmap_mutex);
5133
5134 /* If there's still other mmap()s of this buffer, we're done. */
5135 if (atomic_read(&rb->mmap_count))
5136 goto out_put;
5137
5138 /*
5139 * No other mmap()s, detach from all other events that might redirect
5140 * into the now unreachable buffer. Somewhat complicated by the
5141 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5142 */
5143 again:
5144 rcu_read_lock();
5145 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5146 if (!atomic_long_inc_not_zero(&event->refcount)) {
5147 /*
5148 * This event is en-route to free_event() which will
5149 * detach it and remove it from the list.
5150 */
5151 continue;
5152 }
5153 rcu_read_unlock();
5154
5155 mutex_lock(&event->mmap_mutex);
5156 /*
5157 * Check we didn't race with perf_event_set_output() which can
5158 * swizzle the rb from under us while we were waiting to
5159 * acquire mmap_mutex.
5160 *
5161 * If we find a different rb; ignore this event, a next
5162 * iteration will no longer find it on the list. We have to
5163 * still restart the iteration to make sure we're not now
5164 * iterating the wrong list.
5165 */
5166 if (event->rb == rb)
5167 ring_buffer_attach(event, NULL);
5168
5169 mutex_unlock(&event->mmap_mutex);
5170 put_event(event);
5171
5172 /*
5173 * Restart the iteration; either we're on the wrong list or
5174 * destroyed its integrity by doing a deletion.
5175 */
5176 goto again;
5177 }
5178 rcu_read_unlock();
5179
5180 /*
5181 * It could be there's still a few 0-ref events on the list; they'll
5182 * get cleaned up by free_event() -- they'll also still have their
5183 * ref on the rb and will free it whenever they are done with it.
5184 *
5185 * Aside from that, this buffer is 'fully' detached and unmapped,
5186 * undo the VM accounting.
5187 */
5188
5189 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5190 vma->vm_mm->pinned_vm -= mmap_locked;
5191 free_uid(mmap_user);
5192
5193 out_put:
5194 ring_buffer_put(rb); /* could be last */
5195 }
5196
5197 static const struct vm_operations_struct perf_mmap_vmops = {
5198 .open = perf_mmap_open,
5199 .close = perf_mmap_close, /* non mergable */
5200 .fault = perf_mmap_fault,
5201 .page_mkwrite = perf_mmap_fault,
5202 };
5203
5204 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5205 {
5206 struct perf_event *event = file->private_data;
5207 unsigned long user_locked, user_lock_limit;
5208 struct user_struct *user = current_user();
5209 unsigned long locked, lock_limit;
5210 struct ring_buffer *rb = NULL;
5211 unsigned long vma_size;
5212 unsigned long nr_pages;
5213 long user_extra = 0, extra = 0;
5214 int ret = 0, flags = 0;
5215
5216 /*
5217 * Don't allow mmap() of inherited per-task counters. This would
5218 * create a performance issue due to all children writing to the
5219 * same rb.
5220 */
5221 if (event->cpu == -1 && event->attr.inherit)
5222 return -EINVAL;
5223
5224 if (!(vma->vm_flags & VM_SHARED))
5225 return -EINVAL;
5226
5227 vma_size = vma->vm_end - vma->vm_start;
5228
5229 if (vma->vm_pgoff == 0) {
5230 nr_pages = (vma_size / PAGE_SIZE) - 1;
5231 } else {
5232 /*
5233 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5234 * mapped, all subsequent mappings should have the same size
5235 * and offset. Must be above the normal perf buffer.
5236 */
5237 u64 aux_offset, aux_size;
5238
5239 if (!event->rb)
5240 return -EINVAL;
5241
5242 nr_pages = vma_size / PAGE_SIZE;
5243
5244 mutex_lock(&event->mmap_mutex);
5245 ret = -EINVAL;
5246
5247 rb = event->rb;
5248 if (!rb)
5249 goto aux_unlock;
5250
5251 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5252 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5253
5254 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5255 goto aux_unlock;
5256
5257 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5258 goto aux_unlock;
5259
5260 /* already mapped with a different offset */
5261 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5262 goto aux_unlock;
5263
5264 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5265 goto aux_unlock;
5266
5267 /* already mapped with a different size */
5268 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5269 goto aux_unlock;
5270
5271 if (!is_power_of_2(nr_pages))
5272 goto aux_unlock;
5273
5274 if (!atomic_inc_not_zero(&rb->mmap_count))
5275 goto aux_unlock;
5276
5277 if (rb_has_aux(rb)) {
5278 atomic_inc(&rb->aux_mmap_count);
5279 ret = 0;
5280 goto unlock;
5281 }
5282
5283 atomic_set(&rb->aux_mmap_count, 1);
5284 user_extra = nr_pages;
5285
5286 goto accounting;
5287 }
5288
5289 /*
5290 * If we have rb pages ensure they're a power-of-two number, so we
5291 * can do bitmasks instead of modulo.
5292 */
5293 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5294 return -EINVAL;
5295
5296 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5297 return -EINVAL;
5298
5299 WARN_ON_ONCE(event->ctx->parent_ctx);
5300 again:
5301 mutex_lock(&event->mmap_mutex);
5302 if (event->rb) {
5303 if (event->rb->nr_pages != nr_pages) {
5304 ret = -EINVAL;
5305 goto unlock;
5306 }
5307
5308 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5309 /*
5310 * Raced against perf_mmap_close() through
5311 * perf_event_set_output(). Try again, hope for better
5312 * luck.
5313 */
5314 mutex_unlock(&event->mmap_mutex);
5315 goto again;
5316 }
5317
5318 goto unlock;
5319 }
5320
5321 user_extra = nr_pages + 1;
5322
5323 accounting:
5324 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5325
5326 /*
5327 * Increase the limit linearly with more CPUs:
5328 */
5329 user_lock_limit *= num_online_cpus();
5330
5331 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5332
5333 if (user_locked > user_lock_limit)
5334 extra = user_locked - user_lock_limit;
5335
5336 lock_limit = rlimit(RLIMIT_MEMLOCK);
5337 lock_limit >>= PAGE_SHIFT;
5338 locked = vma->vm_mm->pinned_vm + extra;
5339
5340 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5341 !capable(CAP_IPC_LOCK)) {
5342 ret = -EPERM;
5343 goto unlock;
5344 }
5345
5346 WARN_ON(!rb && event->rb);
5347
5348 if (vma->vm_flags & VM_WRITE)
5349 flags |= RING_BUFFER_WRITABLE;
5350
5351 if (!rb) {
5352 rb = rb_alloc(nr_pages,
5353 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5354 event->cpu, flags);
5355
5356 if (!rb) {
5357 ret = -ENOMEM;
5358 goto unlock;
5359 }
5360
5361 atomic_set(&rb->mmap_count, 1);
5362 rb->mmap_user = get_current_user();
5363 rb->mmap_locked = extra;
5364
5365 ring_buffer_attach(event, rb);
5366
5367 perf_event_init_userpage(event);
5368 perf_event_update_userpage(event);
5369 } else {
5370 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5371 event->attr.aux_watermark, flags);
5372 if (!ret)
5373 rb->aux_mmap_locked = extra;
5374 }
5375
5376 unlock:
5377 if (!ret) {
5378 atomic_long_add(user_extra, &user->locked_vm);
5379 vma->vm_mm->pinned_vm += extra;
5380
5381 atomic_inc(&event->mmap_count);
5382 } else if (rb) {
5383 atomic_dec(&rb->mmap_count);
5384 }
5385 aux_unlock:
5386 mutex_unlock(&event->mmap_mutex);
5387
5388 /*
5389 * Since pinned accounting is per vm we cannot allow fork() to copy our
5390 * vma.
5391 */
5392 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5393 vma->vm_ops = &perf_mmap_vmops;
5394
5395 if (event->pmu->event_mapped)
5396 event->pmu->event_mapped(event);
5397
5398 return ret;
5399 }
5400
5401 static int perf_fasync(int fd, struct file *filp, int on)
5402 {
5403 struct inode *inode = file_inode(filp);
5404 struct perf_event *event = filp->private_data;
5405 int retval;
5406
5407 inode_lock(inode);
5408 retval = fasync_helper(fd, filp, on, &event->fasync);
5409 inode_unlock(inode);
5410
5411 if (retval < 0)
5412 return retval;
5413
5414 return 0;
5415 }
5416
5417 static const struct file_operations perf_fops = {
5418 .llseek = no_llseek,
5419 .release = perf_release,
5420 .read = perf_read,
5421 .poll = perf_poll,
5422 .unlocked_ioctl = perf_ioctl,
5423 .compat_ioctl = perf_compat_ioctl,
5424 .mmap = perf_mmap,
5425 .fasync = perf_fasync,
5426 };
5427
5428 /*
5429 * Perf event wakeup
5430 *
5431 * If there's data, ensure we set the poll() state and publish everything
5432 * to user-space before waking everybody up.
5433 */
5434
5435 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5436 {
5437 /* only the parent has fasync state */
5438 if (event->parent)
5439 event = event->parent;
5440 return &event->fasync;
5441 }
5442
5443 void perf_event_wakeup(struct perf_event *event)
5444 {
5445 ring_buffer_wakeup(event);
5446
5447 if (event->pending_kill) {
5448 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5449 event->pending_kill = 0;
5450 }
5451 }
5452
5453 static void perf_pending_event(struct irq_work *entry)
5454 {
5455 struct perf_event *event = container_of(entry,
5456 struct perf_event, pending);
5457 int rctx;
5458
5459 rctx = perf_swevent_get_recursion_context();
5460 /*
5461 * If we 'fail' here, that's OK, it means recursion is already disabled
5462 * and we won't recurse 'further'.
5463 */
5464
5465 if (event->pending_disable) {
5466 event->pending_disable = 0;
5467 perf_event_disable_local(event);
5468 }
5469
5470 if (event->pending_wakeup) {
5471 event->pending_wakeup = 0;
5472 perf_event_wakeup(event);
5473 }
5474
5475 if (rctx >= 0)
5476 perf_swevent_put_recursion_context(rctx);
5477 }
5478
5479 /*
5480 * We assume there is only KVM supporting the callbacks.
5481 * Later on, we might change it to a list if there is
5482 * another virtualization implementation supporting the callbacks.
5483 */
5484 struct perf_guest_info_callbacks *perf_guest_cbs;
5485
5486 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5487 {
5488 perf_guest_cbs = cbs;
5489 return 0;
5490 }
5491 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5492
5493 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5494 {
5495 perf_guest_cbs = NULL;
5496 return 0;
5497 }
5498 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5499
5500 static void
5501 perf_output_sample_regs(struct perf_output_handle *handle,
5502 struct pt_regs *regs, u64 mask)
5503 {
5504 int bit;
5505 DECLARE_BITMAP(_mask, 64);
5506
5507 bitmap_from_u64(_mask, mask);
5508 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5509 u64 val;
5510
5511 val = perf_reg_value(regs, bit);
5512 perf_output_put(handle, val);
5513 }
5514 }
5515
5516 static void perf_sample_regs_user(struct perf_regs *regs_user,
5517 struct pt_regs *regs,
5518 struct pt_regs *regs_user_copy)
5519 {
5520 if (user_mode(regs)) {
5521 regs_user->abi = perf_reg_abi(current);
5522 regs_user->regs = regs;
5523 } else if (current->mm) {
5524 perf_get_regs_user(regs_user, regs, regs_user_copy);
5525 } else {
5526 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5527 regs_user->regs = NULL;
5528 }
5529 }
5530
5531 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5532 struct pt_regs *regs)
5533 {
5534 regs_intr->regs = regs;
5535 regs_intr->abi = perf_reg_abi(current);
5536 }
5537
5538
5539 /*
5540 * Get remaining task size from user stack pointer.
5541 *
5542 * It'd be better to take stack vma map and limit this more
5543 * precisly, but there's no way to get it safely under interrupt,
5544 * so using TASK_SIZE as limit.
5545 */
5546 static u64 perf_ustack_task_size(struct pt_regs *regs)
5547 {
5548 unsigned long addr = perf_user_stack_pointer(regs);
5549
5550 if (!addr || addr >= TASK_SIZE)
5551 return 0;
5552
5553 return TASK_SIZE - addr;
5554 }
5555
5556 static u16
5557 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5558 struct pt_regs *regs)
5559 {
5560 u64 task_size;
5561
5562 /* No regs, no stack pointer, no dump. */
5563 if (!regs)
5564 return 0;
5565
5566 /*
5567 * Check if we fit in with the requested stack size into the:
5568 * - TASK_SIZE
5569 * If we don't, we limit the size to the TASK_SIZE.
5570 *
5571 * - remaining sample size
5572 * If we don't, we customize the stack size to
5573 * fit in to the remaining sample size.
5574 */
5575
5576 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5577 stack_size = min(stack_size, (u16) task_size);
5578
5579 /* Current header size plus static size and dynamic size. */
5580 header_size += 2 * sizeof(u64);
5581
5582 /* Do we fit in with the current stack dump size? */
5583 if ((u16) (header_size + stack_size) < header_size) {
5584 /*
5585 * If we overflow the maximum size for the sample,
5586 * we customize the stack dump size to fit in.
5587 */
5588 stack_size = USHRT_MAX - header_size - sizeof(u64);
5589 stack_size = round_up(stack_size, sizeof(u64));
5590 }
5591
5592 return stack_size;
5593 }
5594
5595 static void
5596 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5597 struct pt_regs *regs)
5598 {
5599 /* Case of a kernel thread, nothing to dump */
5600 if (!regs) {
5601 u64 size = 0;
5602 perf_output_put(handle, size);
5603 } else {
5604 unsigned long sp;
5605 unsigned int rem;
5606 u64 dyn_size;
5607
5608 /*
5609 * We dump:
5610 * static size
5611 * - the size requested by user or the best one we can fit
5612 * in to the sample max size
5613 * data
5614 * - user stack dump data
5615 * dynamic size
5616 * - the actual dumped size
5617 */
5618
5619 /* Static size. */
5620 perf_output_put(handle, dump_size);
5621
5622 /* Data. */
5623 sp = perf_user_stack_pointer(regs);
5624 rem = __output_copy_user(handle, (void *) sp, dump_size);
5625 dyn_size = dump_size - rem;
5626
5627 perf_output_skip(handle, rem);
5628
5629 /* Dynamic size. */
5630 perf_output_put(handle, dyn_size);
5631 }
5632 }
5633
5634 static void __perf_event_header__init_id(struct perf_event_header *header,
5635 struct perf_sample_data *data,
5636 struct perf_event *event)
5637 {
5638 u64 sample_type = event->attr.sample_type;
5639
5640 data->type = sample_type;
5641 header->size += event->id_header_size;
5642
5643 if (sample_type & PERF_SAMPLE_TID) {
5644 /* namespace issues */
5645 data->tid_entry.pid = perf_event_pid(event, current);
5646 data->tid_entry.tid = perf_event_tid(event, current);
5647 }
5648
5649 if (sample_type & PERF_SAMPLE_TIME)
5650 data->time = perf_event_clock(event);
5651
5652 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5653 data->id = primary_event_id(event);
5654
5655 if (sample_type & PERF_SAMPLE_STREAM_ID)
5656 data->stream_id = event->id;
5657
5658 if (sample_type & PERF_SAMPLE_CPU) {
5659 data->cpu_entry.cpu = raw_smp_processor_id();
5660 data->cpu_entry.reserved = 0;
5661 }
5662 }
5663
5664 void perf_event_header__init_id(struct perf_event_header *header,
5665 struct perf_sample_data *data,
5666 struct perf_event *event)
5667 {
5668 if (event->attr.sample_id_all)
5669 __perf_event_header__init_id(header, data, event);
5670 }
5671
5672 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5673 struct perf_sample_data *data)
5674 {
5675 u64 sample_type = data->type;
5676
5677 if (sample_type & PERF_SAMPLE_TID)
5678 perf_output_put(handle, data->tid_entry);
5679
5680 if (sample_type & PERF_SAMPLE_TIME)
5681 perf_output_put(handle, data->time);
5682
5683 if (sample_type & PERF_SAMPLE_ID)
5684 perf_output_put(handle, data->id);
5685
5686 if (sample_type & PERF_SAMPLE_STREAM_ID)
5687 perf_output_put(handle, data->stream_id);
5688
5689 if (sample_type & PERF_SAMPLE_CPU)
5690 perf_output_put(handle, data->cpu_entry);
5691
5692 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5693 perf_output_put(handle, data->id);
5694 }
5695
5696 void perf_event__output_id_sample(struct perf_event *event,
5697 struct perf_output_handle *handle,
5698 struct perf_sample_data *sample)
5699 {
5700 if (event->attr.sample_id_all)
5701 __perf_event__output_id_sample(handle, sample);
5702 }
5703
5704 static void perf_output_read_one(struct perf_output_handle *handle,
5705 struct perf_event *event,
5706 u64 enabled, u64 running)
5707 {
5708 u64 read_format = event->attr.read_format;
5709 u64 values[4];
5710 int n = 0;
5711
5712 values[n++] = perf_event_count(event);
5713 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5714 values[n++] = enabled +
5715 atomic64_read(&event->child_total_time_enabled);
5716 }
5717 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5718 values[n++] = running +
5719 atomic64_read(&event->child_total_time_running);
5720 }
5721 if (read_format & PERF_FORMAT_ID)
5722 values[n++] = primary_event_id(event);
5723
5724 __output_copy(handle, values, n * sizeof(u64));
5725 }
5726
5727 static void perf_output_read_group(struct perf_output_handle *handle,
5728 struct perf_event *event,
5729 u64 enabled, u64 running)
5730 {
5731 struct perf_event *leader = event->group_leader, *sub;
5732 u64 read_format = event->attr.read_format;
5733 u64 values[5];
5734 int n = 0;
5735
5736 values[n++] = 1 + leader->nr_siblings;
5737
5738 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5739 values[n++] = enabled;
5740
5741 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5742 values[n++] = running;
5743
5744 if (leader != event)
5745 leader->pmu->read(leader);
5746
5747 values[n++] = perf_event_count(leader);
5748 if (read_format & PERF_FORMAT_ID)
5749 values[n++] = primary_event_id(leader);
5750
5751 __output_copy(handle, values, n * sizeof(u64));
5752
5753 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5754 n = 0;
5755
5756 if ((sub != event) &&
5757 (sub->state == PERF_EVENT_STATE_ACTIVE))
5758 sub->pmu->read(sub);
5759
5760 values[n++] = perf_event_count(sub);
5761 if (read_format & PERF_FORMAT_ID)
5762 values[n++] = primary_event_id(sub);
5763
5764 __output_copy(handle, values, n * sizeof(u64));
5765 }
5766 }
5767
5768 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5769 PERF_FORMAT_TOTAL_TIME_RUNNING)
5770
5771 /*
5772 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5773 *
5774 * The problem is that its both hard and excessively expensive to iterate the
5775 * child list, not to mention that its impossible to IPI the children running
5776 * on another CPU, from interrupt/NMI context.
5777 */
5778 static void perf_output_read(struct perf_output_handle *handle,
5779 struct perf_event *event)
5780 {
5781 u64 enabled = 0, running = 0, now;
5782 u64 read_format = event->attr.read_format;
5783
5784 /*
5785 * compute total_time_enabled, total_time_running
5786 * based on snapshot values taken when the event
5787 * was last scheduled in.
5788 *
5789 * we cannot simply called update_context_time()
5790 * because of locking issue as we are called in
5791 * NMI context
5792 */
5793 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5794 calc_timer_values(event, &now, &enabled, &running);
5795
5796 if (event->attr.read_format & PERF_FORMAT_GROUP)
5797 perf_output_read_group(handle, event, enabled, running);
5798 else
5799 perf_output_read_one(handle, event, enabled, running);
5800 }
5801
5802 void perf_output_sample(struct perf_output_handle *handle,
5803 struct perf_event_header *header,
5804 struct perf_sample_data *data,
5805 struct perf_event *event)
5806 {
5807 u64 sample_type = data->type;
5808
5809 perf_output_put(handle, *header);
5810
5811 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5812 perf_output_put(handle, data->id);
5813
5814 if (sample_type & PERF_SAMPLE_IP)
5815 perf_output_put(handle, data->ip);
5816
5817 if (sample_type & PERF_SAMPLE_TID)
5818 perf_output_put(handle, data->tid_entry);
5819
5820 if (sample_type & PERF_SAMPLE_TIME)
5821 perf_output_put(handle, data->time);
5822
5823 if (sample_type & PERF_SAMPLE_ADDR)
5824 perf_output_put(handle, data->addr);
5825
5826 if (sample_type & PERF_SAMPLE_ID)
5827 perf_output_put(handle, data->id);
5828
5829 if (sample_type & PERF_SAMPLE_STREAM_ID)
5830 perf_output_put(handle, data->stream_id);
5831
5832 if (sample_type & PERF_SAMPLE_CPU)
5833 perf_output_put(handle, data->cpu_entry);
5834
5835 if (sample_type & PERF_SAMPLE_PERIOD)
5836 perf_output_put(handle, data->period);
5837
5838 if (sample_type & PERF_SAMPLE_READ)
5839 perf_output_read(handle, event);
5840
5841 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5842 if (data->callchain) {
5843 int size = 1;
5844
5845 if (data->callchain)
5846 size += data->callchain->nr;
5847
5848 size *= sizeof(u64);
5849
5850 __output_copy(handle, data->callchain, size);
5851 } else {
5852 u64 nr = 0;
5853 perf_output_put(handle, nr);
5854 }
5855 }
5856
5857 if (sample_type & PERF_SAMPLE_RAW) {
5858 struct perf_raw_record *raw = data->raw;
5859
5860 if (raw) {
5861 struct perf_raw_frag *frag = &raw->frag;
5862
5863 perf_output_put(handle, raw->size);
5864 do {
5865 if (frag->copy) {
5866 __output_custom(handle, frag->copy,
5867 frag->data, frag->size);
5868 } else {
5869 __output_copy(handle, frag->data,
5870 frag->size);
5871 }
5872 if (perf_raw_frag_last(frag))
5873 break;
5874 frag = frag->next;
5875 } while (1);
5876 if (frag->pad)
5877 __output_skip(handle, NULL, frag->pad);
5878 } else {
5879 struct {
5880 u32 size;
5881 u32 data;
5882 } raw = {
5883 .size = sizeof(u32),
5884 .data = 0,
5885 };
5886 perf_output_put(handle, raw);
5887 }
5888 }
5889
5890 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5891 if (data->br_stack) {
5892 size_t size;
5893
5894 size = data->br_stack->nr
5895 * sizeof(struct perf_branch_entry);
5896
5897 perf_output_put(handle, data->br_stack->nr);
5898 perf_output_copy(handle, data->br_stack->entries, size);
5899 } else {
5900 /*
5901 * we always store at least the value of nr
5902 */
5903 u64 nr = 0;
5904 perf_output_put(handle, nr);
5905 }
5906 }
5907
5908 if (sample_type & PERF_SAMPLE_REGS_USER) {
5909 u64 abi = data->regs_user.abi;
5910
5911 /*
5912 * If there are no regs to dump, notice it through
5913 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5914 */
5915 perf_output_put(handle, abi);
5916
5917 if (abi) {
5918 u64 mask = event->attr.sample_regs_user;
5919 perf_output_sample_regs(handle,
5920 data->regs_user.regs,
5921 mask);
5922 }
5923 }
5924
5925 if (sample_type & PERF_SAMPLE_STACK_USER) {
5926 perf_output_sample_ustack(handle,
5927 data->stack_user_size,
5928 data->regs_user.regs);
5929 }
5930
5931 if (sample_type & PERF_SAMPLE_WEIGHT)
5932 perf_output_put(handle, data->weight);
5933
5934 if (sample_type & PERF_SAMPLE_DATA_SRC)
5935 perf_output_put(handle, data->data_src.val);
5936
5937 if (sample_type & PERF_SAMPLE_TRANSACTION)
5938 perf_output_put(handle, data->txn);
5939
5940 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5941 u64 abi = data->regs_intr.abi;
5942 /*
5943 * If there are no regs to dump, notice it through
5944 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5945 */
5946 perf_output_put(handle, abi);
5947
5948 if (abi) {
5949 u64 mask = event->attr.sample_regs_intr;
5950
5951 perf_output_sample_regs(handle,
5952 data->regs_intr.regs,
5953 mask);
5954 }
5955 }
5956
5957 if (!event->attr.watermark) {
5958 int wakeup_events = event->attr.wakeup_events;
5959
5960 if (wakeup_events) {
5961 struct ring_buffer *rb = handle->rb;
5962 int events = local_inc_return(&rb->events);
5963
5964 if (events >= wakeup_events) {
5965 local_sub(wakeup_events, &rb->events);
5966 local_inc(&rb->wakeup);
5967 }
5968 }
5969 }
5970 }
5971
5972 void perf_prepare_sample(struct perf_event_header *header,
5973 struct perf_sample_data *data,
5974 struct perf_event *event,
5975 struct pt_regs *regs)
5976 {
5977 u64 sample_type = event->attr.sample_type;
5978
5979 header->type = PERF_RECORD_SAMPLE;
5980 header->size = sizeof(*header) + event->header_size;
5981
5982 header->misc = 0;
5983 header->misc |= perf_misc_flags(regs);
5984
5985 __perf_event_header__init_id(header, data, event);
5986
5987 if (sample_type & PERF_SAMPLE_IP)
5988 data->ip = perf_instruction_pointer(regs);
5989
5990 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5991 int size = 1;
5992
5993 data->callchain = perf_callchain(event, regs);
5994
5995 if (data->callchain)
5996 size += data->callchain->nr;
5997
5998 header->size += size * sizeof(u64);
5999 }
6000
6001 if (sample_type & PERF_SAMPLE_RAW) {
6002 struct perf_raw_record *raw = data->raw;
6003 int size;
6004
6005 if (raw) {
6006 struct perf_raw_frag *frag = &raw->frag;
6007 u32 sum = 0;
6008
6009 do {
6010 sum += frag->size;
6011 if (perf_raw_frag_last(frag))
6012 break;
6013 frag = frag->next;
6014 } while (1);
6015
6016 size = round_up(sum + sizeof(u32), sizeof(u64));
6017 raw->size = size - sizeof(u32);
6018 frag->pad = raw->size - sum;
6019 } else {
6020 size = sizeof(u64);
6021 }
6022
6023 header->size += size;
6024 }
6025
6026 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6027 int size = sizeof(u64); /* nr */
6028 if (data->br_stack) {
6029 size += data->br_stack->nr
6030 * sizeof(struct perf_branch_entry);
6031 }
6032 header->size += size;
6033 }
6034
6035 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6036 perf_sample_regs_user(&data->regs_user, regs,
6037 &data->regs_user_copy);
6038
6039 if (sample_type & PERF_SAMPLE_REGS_USER) {
6040 /* regs dump ABI info */
6041 int size = sizeof(u64);
6042
6043 if (data->regs_user.regs) {
6044 u64 mask = event->attr.sample_regs_user;
6045 size += hweight64(mask) * sizeof(u64);
6046 }
6047
6048 header->size += size;
6049 }
6050
6051 if (sample_type & PERF_SAMPLE_STACK_USER) {
6052 /*
6053 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6054 * processed as the last one or have additional check added
6055 * in case new sample type is added, because we could eat
6056 * up the rest of the sample size.
6057 */
6058 u16 stack_size = event->attr.sample_stack_user;
6059 u16 size = sizeof(u64);
6060
6061 stack_size = perf_sample_ustack_size(stack_size, header->size,
6062 data->regs_user.regs);
6063
6064 /*
6065 * If there is something to dump, add space for the dump
6066 * itself and for the field that tells the dynamic size,
6067 * which is how many have been actually dumped.
6068 */
6069 if (stack_size)
6070 size += sizeof(u64) + stack_size;
6071
6072 data->stack_user_size = stack_size;
6073 header->size += size;
6074 }
6075
6076 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6077 /* regs dump ABI info */
6078 int size = sizeof(u64);
6079
6080 perf_sample_regs_intr(&data->regs_intr, regs);
6081
6082 if (data->regs_intr.regs) {
6083 u64 mask = event->attr.sample_regs_intr;
6084
6085 size += hweight64(mask) * sizeof(u64);
6086 }
6087
6088 header->size += size;
6089 }
6090 }
6091
6092 static void __always_inline
6093 __perf_event_output(struct perf_event *event,
6094 struct perf_sample_data *data,
6095 struct pt_regs *regs,
6096 int (*output_begin)(struct perf_output_handle *,
6097 struct perf_event *,
6098 unsigned int))
6099 {
6100 struct perf_output_handle handle;
6101 struct perf_event_header header;
6102
6103 /* protect the callchain buffers */
6104 rcu_read_lock();
6105
6106 perf_prepare_sample(&header, data, event, regs);
6107
6108 if (output_begin(&handle, event, header.size))
6109 goto exit;
6110
6111 perf_output_sample(&handle, &header, data, event);
6112
6113 perf_output_end(&handle);
6114
6115 exit:
6116 rcu_read_unlock();
6117 }
6118
6119 void
6120 perf_event_output_forward(struct perf_event *event,
6121 struct perf_sample_data *data,
6122 struct pt_regs *regs)
6123 {
6124 __perf_event_output(event, data, regs, perf_output_begin_forward);
6125 }
6126
6127 void
6128 perf_event_output_backward(struct perf_event *event,
6129 struct perf_sample_data *data,
6130 struct pt_regs *regs)
6131 {
6132 __perf_event_output(event, data, regs, perf_output_begin_backward);
6133 }
6134
6135 void
6136 perf_event_output(struct perf_event *event,
6137 struct perf_sample_data *data,
6138 struct pt_regs *regs)
6139 {
6140 __perf_event_output(event, data, regs, perf_output_begin);
6141 }
6142
6143 /*
6144 * read event_id
6145 */
6146
6147 struct perf_read_event {
6148 struct perf_event_header header;
6149
6150 u32 pid;
6151 u32 tid;
6152 };
6153
6154 static void
6155 perf_event_read_event(struct perf_event *event,
6156 struct task_struct *task)
6157 {
6158 struct perf_output_handle handle;
6159 struct perf_sample_data sample;
6160 struct perf_read_event read_event = {
6161 .header = {
6162 .type = PERF_RECORD_READ,
6163 .misc = 0,
6164 .size = sizeof(read_event) + event->read_size,
6165 },
6166 .pid = perf_event_pid(event, task),
6167 .tid = perf_event_tid(event, task),
6168 };
6169 int ret;
6170
6171 perf_event_header__init_id(&read_event.header, &sample, event);
6172 ret = perf_output_begin(&handle, event, read_event.header.size);
6173 if (ret)
6174 return;
6175
6176 perf_output_put(&handle, read_event);
6177 perf_output_read(&handle, event);
6178 perf_event__output_id_sample(event, &handle, &sample);
6179
6180 perf_output_end(&handle);
6181 }
6182
6183 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6184
6185 static void
6186 perf_iterate_ctx(struct perf_event_context *ctx,
6187 perf_iterate_f output,
6188 void *data, bool all)
6189 {
6190 struct perf_event *event;
6191
6192 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6193 if (!all) {
6194 if (event->state < PERF_EVENT_STATE_INACTIVE)
6195 continue;
6196 if (!event_filter_match(event))
6197 continue;
6198 }
6199
6200 output(event, data);
6201 }
6202 }
6203
6204 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6205 {
6206 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6207 struct perf_event *event;
6208
6209 list_for_each_entry_rcu(event, &pel->list, sb_list) {
6210 /*
6211 * Skip events that are not fully formed yet; ensure that
6212 * if we observe event->ctx, both event and ctx will be
6213 * complete enough. See perf_install_in_context().
6214 */
6215 if (!smp_load_acquire(&event->ctx))
6216 continue;
6217
6218 if (event->state < PERF_EVENT_STATE_INACTIVE)
6219 continue;
6220 if (!event_filter_match(event))
6221 continue;
6222 output(event, data);
6223 }
6224 }
6225
6226 /*
6227 * Iterate all events that need to receive side-band events.
6228 *
6229 * For new callers; ensure that account_pmu_sb_event() includes
6230 * your event, otherwise it might not get delivered.
6231 */
6232 static void
6233 perf_iterate_sb(perf_iterate_f output, void *data,
6234 struct perf_event_context *task_ctx)
6235 {
6236 struct perf_event_context *ctx;
6237 int ctxn;
6238
6239 rcu_read_lock();
6240 preempt_disable();
6241
6242 /*
6243 * If we have task_ctx != NULL we only notify the task context itself.
6244 * The task_ctx is set only for EXIT events before releasing task
6245 * context.
6246 */
6247 if (task_ctx) {
6248 perf_iterate_ctx(task_ctx, output, data, false);
6249 goto done;
6250 }
6251
6252 perf_iterate_sb_cpu(output, data);
6253
6254 for_each_task_context_nr(ctxn) {
6255 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6256 if (ctx)
6257 perf_iterate_ctx(ctx, output, data, false);
6258 }
6259 done:
6260 preempt_enable();
6261 rcu_read_unlock();
6262 }
6263
6264 /*
6265 * Clear all file-based filters at exec, they'll have to be
6266 * re-instated when/if these objects are mmapped again.
6267 */
6268 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6269 {
6270 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6271 struct perf_addr_filter *filter;
6272 unsigned int restart = 0, count = 0;
6273 unsigned long flags;
6274
6275 if (!has_addr_filter(event))
6276 return;
6277
6278 raw_spin_lock_irqsave(&ifh->lock, flags);
6279 list_for_each_entry(filter, &ifh->list, entry) {
6280 if (filter->inode) {
6281 event->addr_filters_offs[count] = 0;
6282 restart++;
6283 }
6284
6285 count++;
6286 }
6287
6288 if (restart)
6289 event->addr_filters_gen++;
6290 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6291
6292 if (restart)
6293 perf_event_stop(event, 1);
6294 }
6295
6296 void perf_event_exec(void)
6297 {
6298 struct perf_event_context *ctx;
6299 int ctxn;
6300
6301 rcu_read_lock();
6302 for_each_task_context_nr(ctxn) {
6303 ctx = current->perf_event_ctxp[ctxn];
6304 if (!ctx)
6305 continue;
6306
6307 perf_event_enable_on_exec(ctxn);
6308
6309 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6310 true);
6311 }
6312 rcu_read_unlock();
6313 }
6314
6315 struct remote_output {
6316 struct ring_buffer *rb;
6317 int err;
6318 };
6319
6320 static void __perf_event_output_stop(struct perf_event *event, void *data)
6321 {
6322 struct perf_event *parent = event->parent;
6323 struct remote_output *ro = data;
6324 struct ring_buffer *rb = ro->rb;
6325 struct stop_event_data sd = {
6326 .event = event,
6327 };
6328
6329 if (!has_aux(event))
6330 return;
6331
6332 if (!parent)
6333 parent = event;
6334
6335 /*
6336 * In case of inheritance, it will be the parent that links to the
6337 * ring-buffer, but it will be the child that's actually using it.
6338 *
6339 * We are using event::rb to determine if the event should be stopped,
6340 * however this may race with ring_buffer_attach() (through set_output),
6341 * which will make us skip the event that actually needs to be stopped.
6342 * So ring_buffer_attach() has to stop an aux event before re-assigning
6343 * its rb pointer.
6344 */
6345 if (rcu_dereference(parent->rb) == rb)
6346 ro->err = __perf_event_stop(&sd);
6347 }
6348
6349 static int __perf_pmu_output_stop(void *info)
6350 {
6351 struct perf_event *event = info;
6352 struct pmu *pmu = event->pmu;
6353 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6354 struct remote_output ro = {
6355 .rb = event->rb,
6356 };
6357
6358 rcu_read_lock();
6359 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6360 if (cpuctx->task_ctx)
6361 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6362 &ro, false);
6363 rcu_read_unlock();
6364
6365 return ro.err;
6366 }
6367
6368 static void perf_pmu_output_stop(struct perf_event *event)
6369 {
6370 struct perf_event *iter;
6371 int err, cpu;
6372
6373 restart:
6374 rcu_read_lock();
6375 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6376 /*
6377 * For per-CPU events, we need to make sure that neither they
6378 * nor their children are running; for cpu==-1 events it's
6379 * sufficient to stop the event itself if it's active, since
6380 * it can't have children.
6381 */
6382 cpu = iter->cpu;
6383 if (cpu == -1)
6384 cpu = READ_ONCE(iter->oncpu);
6385
6386 if (cpu == -1)
6387 continue;
6388
6389 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6390 if (err == -EAGAIN) {
6391 rcu_read_unlock();
6392 goto restart;
6393 }
6394 }
6395 rcu_read_unlock();
6396 }
6397
6398 /*
6399 * task tracking -- fork/exit
6400 *
6401 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6402 */
6403
6404 struct perf_task_event {
6405 struct task_struct *task;
6406 struct perf_event_context *task_ctx;
6407
6408 struct {
6409 struct perf_event_header header;
6410
6411 u32 pid;
6412 u32 ppid;
6413 u32 tid;
6414 u32 ptid;
6415 u64 time;
6416 } event_id;
6417 };
6418
6419 static int perf_event_task_match(struct perf_event *event)
6420 {
6421 return event->attr.comm || event->attr.mmap ||
6422 event->attr.mmap2 || event->attr.mmap_data ||
6423 event->attr.task;
6424 }
6425
6426 static void perf_event_task_output(struct perf_event *event,
6427 void *data)
6428 {
6429 struct perf_task_event *task_event = data;
6430 struct perf_output_handle handle;
6431 struct perf_sample_data sample;
6432 struct task_struct *task = task_event->task;
6433 int ret, size = task_event->event_id.header.size;
6434
6435 if (!perf_event_task_match(event))
6436 return;
6437
6438 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6439
6440 ret = perf_output_begin(&handle, event,
6441 task_event->event_id.header.size);
6442 if (ret)
6443 goto out;
6444
6445 task_event->event_id.pid = perf_event_pid(event, task);
6446 task_event->event_id.ppid = perf_event_pid(event, current);
6447
6448 task_event->event_id.tid = perf_event_tid(event, task);
6449 task_event->event_id.ptid = perf_event_tid(event, current);
6450
6451 task_event->event_id.time = perf_event_clock(event);
6452
6453 perf_output_put(&handle, task_event->event_id);
6454
6455 perf_event__output_id_sample(event, &handle, &sample);
6456
6457 perf_output_end(&handle);
6458 out:
6459 task_event->event_id.header.size = size;
6460 }
6461
6462 static void perf_event_task(struct task_struct *task,
6463 struct perf_event_context *task_ctx,
6464 int new)
6465 {
6466 struct perf_task_event task_event;
6467
6468 if (!atomic_read(&nr_comm_events) &&
6469 !atomic_read(&nr_mmap_events) &&
6470 !atomic_read(&nr_task_events))
6471 return;
6472
6473 task_event = (struct perf_task_event){
6474 .task = task,
6475 .task_ctx = task_ctx,
6476 .event_id = {
6477 .header = {
6478 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6479 .misc = 0,
6480 .size = sizeof(task_event.event_id),
6481 },
6482 /* .pid */
6483 /* .ppid */
6484 /* .tid */
6485 /* .ptid */
6486 /* .time */
6487 },
6488 };
6489
6490 perf_iterate_sb(perf_event_task_output,
6491 &task_event,
6492 task_ctx);
6493 }
6494
6495 void perf_event_fork(struct task_struct *task)
6496 {
6497 perf_event_task(task, NULL, 1);
6498 perf_event_namespaces(task);
6499 }
6500
6501 /*
6502 * comm tracking
6503 */
6504
6505 struct perf_comm_event {
6506 struct task_struct *task;
6507 char *comm;
6508 int comm_size;
6509
6510 struct {
6511 struct perf_event_header header;
6512
6513 u32 pid;
6514 u32 tid;
6515 } event_id;
6516 };
6517
6518 static int perf_event_comm_match(struct perf_event *event)
6519 {
6520 return event->attr.comm;
6521 }
6522
6523 static void perf_event_comm_output(struct perf_event *event,
6524 void *data)
6525 {
6526 struct perf_comm_event *comm_event = data;
6527 struct perf_output_handle handle;
6528 struct perf_sample_data sample;
6529 int size = comm_event->event_id.header.size;
6530 int ret;
6531
6532 if (!perf_event_comm_match(event))
6533 return;
6534
6535 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6536 ret = perf_output_begin(&handle, event,
6537 comm_event->event_id.header.size);
6538
6539 if (ret)
6540 goto out;
6541
6542 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6543 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6544
6545 perf_output_put(&handle, comm_event->event_id);
6546 __output_copy(&handle, comm_event->comm,
6547 comm_event->comm_size);
6548
6549 perf_event__output_id_sample(event, &handle, &sample);
6550
6551 perf_output_end(&handle);
6552 out:
6553 comm_event->event_id.header.size = size;
6554 }
6555
6556 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6557 {
6558 char comm[TASK_COMM_LEN];
6559 unsigned int size;
6560
6561 memset(comm, 0, sizeof(comm));
6562 strlcpy(comm, comm_event->task->comm, sizeof(comm));
6563 size = ALIGN(strlen(comm)+1, sizeof(u64));
6564
6565 comm_event->comm = comm;
6566 comm_event->comm_size = size;
6567
6568 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6569
6570 perf_iterate_sb(perf_event_comm_output,
6571 comm_event,
6572 NULL);
6573 }
6574
6575 void perf_event_comm(struct task_struct *task, bool exec)
6576 {
6577 struct perf_comm_event comm_event;
6578
6579 if (!atomic_read(&nr_comm_events))
6580 return;
6581
6582 comm_event = (struct perf_comm_event){
6583 .task = task,
6584 /* .comm */
6585 /* .comm_size */
6586 .event_id = {
6587 .header = {
6588 .type = PERF_RECORD_COMM,
6589 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6590 /* .size */
6591 },
6592 /* .pid */
6593 /* .tid */
6594 },
6595 };
6596
6597 perf_event_comm_event(&comm_event);
6598 }
6599
6600 /*
6601 * namespaces tracking
6602 */
6603
6604 struct perf_namespaces_event {
6605 struct task_struct *task;
6606
6607 struct {
6608 struct perf_event_header header;
6609
6610 u32 pid;
6611 u32 tid;
6612 u64 nr_namespaces;
6613 struct perf_ns_link_info link_info[NR_NAMESPACES];
6614 } event_id;
6615 };
6616
6617 static int perf_event_namespaces_match(struct perf_event *event)
6618 {
6619 return event->attr.namespaces;
6620 }
6621
6622 static void perf_event_namespaces_output(struct perf_event *event,
6623 void *data)
6624 {
6625 struct perf_namespaces_event *namespaces_event = data;
6626 struct perf_output_handle handle;
6627 struct perf_sample_data sample;
6628 int ret;
6629
6630 if (!perf_event_namespaces_match(event))
6631 return;
6632
6633 perf_event_header__init_id(&namespaces_event->event_id.header,
6634 &sample, event);
6635 ret = perf_output_begin(&handle, event,
6636 namespaces_event->event_id.header.size);
6637 if (ret)
6638 return;
6639
6640 namespaces_event->event_id.pid = perf_event_pid(event,
6641 namespaces_event->task);
6642 namespaces_event->event_id.tid = perf_event_tid(event,
6643 namespaces_event->task);
6644
6645 perf_output_put(&handle, namespaces_event->event_id);
6646
6647 perf_event__output_id_sample(event, &handle, &sample);
6648
6649 perf_output_end(&handle);
6650 }
6651
6652 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6653 struct task_struct *task,
6654 const struct proc_ns_operations *ns_ops)
6655 {
6656 struct path ns_path;
6657 struct inode *ns_inode;
6658 void *error;
6659
6660 error = ns_get_path(&ns_path, task, ns_ops);
6661 if (!error) {
6662 ns_inode = ns_path.dentry->d_inode;
6663 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6664 ns_link_info->ino = ns_inode->i_ino;
6665 }
6666 }
6667
6668 void perf_event_namespaces(struct task_struct *task)
6669 {
6670 struct perf_namespaces_event namespaces_event;
6671 struct perf_ns_link_info *ns_link_info;
6672
6673 if (!atomic_read(&nr_namespaces_events))
6674 return;
6675
6676 namespaces_event = (struct perf_namespaces_event){
6677 .task = task,
6678 .event_id = {
6679 .header = {
6680 .type = PERF_RECORD_NAMESPACES,
6681 .misc = 0,
6682 .size = sizeof(namespaces_event.event_id),
6683 },
6684 /* .pid */
6685 /* .tid */
6686 .nr_namespaces = NR_NAMESPACES,
6687 /* .link_info[NR_NAMESPACES] */
6688 },
6689 };
6690
6691 ns_link_info = namespaces_event.event_id.link_info;
6692
6693 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6694 task, &mntns_operations);
6695
6696 #ifdef CONFIG_USER_NS
6697 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6698 task, &userns_operations);
6699 #endif
6700 #ifdef CONFIG_NET_NS
6701 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6702 task, &netns_operations);
6703 #endif
6704 #ifdef CONFIG_UTS_NS
6705 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6706 task, &utsns_operations);
6707 #endif
6708 #ifdef CONFIG_IPC_NS
6709 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6710 task, &ipcns_operations);
6711 #endif
6712 #ifdef CONFIG_PID_NS
6713 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6714 task, &pidns_operations);
6715 #endif
6716 #ifdef CONFIG_CGROUPS
6717 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6718 task, &cgroupns_operations);
6719 #endif
6720
6721 perf_iterate_sb(perf_event_namespaces_output,
6722 &namespaces_event,
6723 NULL);
6724 }
6725
6726 /*
6727 * mmap tracking
6728 */
6729
6730 struct perf_mmap_event {
6731 struct vm_area_struct *vma;
6732
6733 const char *file_name;
6734 int file_size;
6735 int maj, min;
6736 u64 ino;
6737 u64 ino_generation;
6738 u32 prot, flags;
6739
6740 struct {
6741 struct perf_event_header header;
6742
6743 u32 pid;
6744 u32 tid;
6745 u64 start;
6746 u64 len;
6747 u64 pgoff;
6748 } event_id;
6749 };
6750
6751 static int perf_event_mmap_match(struct perf_event *event,
6752 void *data)
6753 {
6754 struct perf_mmap_event *mmap_event = data;
6755 struct vm_area_struct *vma = mmap_event->vma;
6756 int executable = vma->vm_flags & VM_EXEC;
6757
6758 return (!executable && event->attr.mmap_data) ||
6759 (executable && (event->attr.mmap || event->attr.mmap2));
6760 }
6761
6762 static void perf_event_mmap_output(struct perf_event *event,
6763 void *data)
6764 {
6765 struct perf_mmap_event *mmap_event = data;
6766 struct perf_output_handle handle;
6767 struct perf_sample_data sample;
6768 int size = mmap_event->event_id.header.size;
6769 int ret;
6770
6771 if (!perf_event_mmap_match(event, data))
6772 return;
6773
6774 if (event->attr.mmap2) {
6775 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6776 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6777 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6778 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6779 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6780 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6781 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6782 }
6783
6784 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6785 ret = perf_output_begin(&handle, event,
6786 mmap_event->event_id.header.size);
6787 if (ret)
6788 goto out;
6789
6790 mmap_event->event_id.pid = perf_event_pid(event, current);
6791 mmap_event->event_id.tid = perf_event_tid(event, current);
6792
6793 perf_output_put(&handle, mmap_event->event_id);
6794
6795 if (event->attr.mmap2) {
6796 perf_output_put(&handle, mmap_event->maj);
6797 perf_output_put(&handle, mmap_event->min);
6798 perf_output_put(&handle, mmap_event->ino);
6799 perf_output_put(&handle, mmap_event->ino_generation);
6800 perf_output_put(&handle, mmap_event->prot);
6801 perf_output_put(&handle, mmap_event->flags);
6802 }
6803
6804 __output_copy(&handle, mmap_event->file_name,
6805 mmap_event->file_size);
6806
6807 perf_event__output_id_sample(event, &handle, &sample);
6808
6809 perf_output_end(&handle);
6810 out:
6811 mmap_event->event_id.header.size = size;
6812 }
6813
6814 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6815 {
6816 struct vm_area_struct *vma = mmap_event->vma;
6817 struct file *file = vma->vm_file;
6818 int maj = 0, min = 0;
6819 u64 ino = 0, gen = 0;
6820 u32 prot = 0, flags = 0;
6821 unsigned int size;
6822 char tmp[16];
6823 char *buf = NULL;
6824 char *name;
6825
6826 if (vma->vm_flags & VM_READ)
6827 prot |= PROT_READ;
6828 if (vma->vm_flags & VM_WRITE)
6829 prot |= PROT_WRITE;
6830 if (vma->vm_flags & VM_EXEC)
6831 prot |= PROT_EXEC;
6832
6833 if (vma->vm_flags & VM_MAYSHARE)
6834 flags = MAP_SHARED;
6835 else
6836 flags = MAP_PRIVATE;
6837
6838 if (vma->vm_flags & VM_DENYWRITE)
6839 flags |= MAP_DENYWRITE;
6840 if (vma->vm_flags & VM_MAYEXEC)
6841 flags |= MAP_EXECUTABLE;
6842 if (vma->vm_flags & VM_LOCKED)
6843 flags |= MAP_LOCKED;
6844 if (vma->vm_flags & VM_HUGETLB)
6845 flags |= MAP_HUGETLB;
6846
6847 if (file) {
6848 struct inode *inode;
6849 dev_t dev;
6850
6851 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6852 if (!buf) {
6853 name = "//enomem";
6854 goto cpy_name;
6855 }
6856 /*
6857 * d_path() works from the end of the rb backwards, so we
6858 * need to add enough zero bytes after the string to handle
6859 * the 64bit alignment we do later.
6860 */
6861 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6862 if (IS_ERR(name)) {
6863 name = "//toolong";
6864 goto cpy_name;
6865 }
6866 inode = file_inode(vma->vm_file);
6867 dev = inode->i_sb->s_dev;
6868 ino = inode->i_ino;
6869 gen = inode->i_generation;
6870 maj = MAJOR(dev);
6871 min = MINOR(dev);
6872
6873 goto got_name;
6874 } else {
6875 if (vma->vm_ops && vma->vm_ops->name) {
6876 name = (char *) vma->vm_ops->name(vma);
6877 if (name)
6878 goto cpy_name;
6879 }
6880
6881 name = (char *)arch_vma_name(vma);
6882 if (name)
6883 goto cpy_name;
6884
6885 if (vma->vm_start <= vma->vm_mm->start_brk &&
6886 vma->vm_end >= vma->vm_mm->brk) {
6887 name = "[heap]";
6888 goto cpy_name;
6889 }
6890 if (vma->vm_start <= vma->vm_mm->start_stack &&
6891 vma->vm_end >= vma->vm_mm->start_stack) {
6892 name = "[stack]";
6893 goto cpy_name;
6894 }
6895
6896 name = "//anon";
6897 goto cpy_name;
6898 }
6899
6900 cpy_name:
6901 strlcpy(tmp, name, sizeof(tmp));
6902 name = tmp;
6903 got_name:
6904 /*
6905 * Since our buffer works in 8 byte units we need to align our string
6906 * size to a multiple of 8. However, we must guarantee the tail end is
6907 * zero'd out to avoid leaking random bits to userspace.
6908 */
6909 size = strlen(name)+1;
6910 while (!IS_ALIGNED(size, sizeof(u64)))
6911 name[size++] = '\0';
6912
6913 mmap_event->file_name = name;
6914 mmap_event->file_size = size;
6915 mmap_event->maj = maj;
6916 mmap_event->min = min;
6917 mmap_event->ino = ino;
6918 mmap_event->ino_generation = gen;
6919 mmap_event->prot = prot;
6920 mmap_event->flags = flags;
6921
6922 if (!(vma->vm_flags & VM_EXEC))
6923 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6924
6925 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6926
6927 perf_iterate_sb(perf_event_mmap_output,
6928 mmap_event,
6929 NULL);
6930
6931 kfree(buf);
6932 }
6933
6934 /*
6935 * Check whether inode and address range match filter criteria.
6936 */
6937 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6938 struct file *file, unsigned long offset,
6939 unsigned long size)
6940 {
6941 if (filter->inode != file_inode(file))
6942 return false;
6943
6944 if (filter->offset > offset + size)
6945 return false;
6946
6947 if (filter->offset + filter->size < offset)
6948 return false;
6949
6950 return true;
6951 }
6952
6953 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6954 {
6955 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6956 struct vm_area_struct *vma = data;
6957 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6958 struct file *file = vma->vm_file;
6959 struct perf_addr_filter *filter;
6960 unsigned int restart = 0, count = 0;
6961
6962 if (!has_addr_filter(event))
6963 return;
6964
6965 if (!file)
6966 return;
6967
6968 raw_spin_lock_irqsave(&ifh->lock, flags);
6969 list_for_each_entry(filter, &ifh->list, entry) {
6970 if (perf_addr_filter_match(filter, file, off,
6971 vma->vm_end - vma->vm_start)) {
6972 event->addr_filters_offs[count] = vma->vm_start;
6973 restart++;
6974 }
6975
6976 count++;
6977 }
6978
6979 if (restart)
6980 event->addr_filters_gen++;
6981 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6982
6983 if (restart)
6984 perf_event_stop(event, 1);
6985 }
6986
6987 /*
6988 * Adjust all task's events' filters to the new vma
6989 */
6990 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6991 {
6992 struct perf_event_context *ctx;
6993 int ctxn;
6994
6995 /*
6996 * Data tracing isn't supported yet and as such there is no need
6997 * to keep track of anything that isn't related to executable code:
6998 */
6999 if (!(vma->vm_flags & VM_EXEC))
7000 return;
7001
7002 rcu_read_lock();
7003 for_each_task_context_nr(ctxn) {
7004 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7005 if (!ctx)
7006 continue;
7007
7008 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7009 }
7010 rcu_read_unlock();
7011 }
7012
7013 void perf_event_mmap(struct vm_area_struct *vma)
7014 {
7015 struct perf_mmap_event mmap_event;
7016
7017 if (!atomic_read(&nr_mmap_events))
7018 return;
7019
7020 mmap_event = (struct perf_mmap_event){
7021 .vma = vma,
7022 /* .file_name */
7023 /* .file_size */
7024 .event_id = {
7025 .header = {
7026 .type = PERF_RECORD_MMAP,
7027 .misc = PERF_RECORD_MISC_USER,
7028 /* .size */
7029 },
7030 /* .pid */
7031 /* .tid */
7032 .start = vma->vm_start,
7033 .len = vma->vm_end - vma->vm_start,
7034 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
7035 },
7036 /* .maj (attr_mmap2 only) */
7037 /* .min (attr_mmap2 only) */
7038 /* .ino (attr_mmap2 only) */
7039 /* .ino_generation (attr_mmap2 only) */
7040 /* .prot (attr_mmap2 only) */
7041 /* .flags (attr_mmap2 only) */
7042 };
7043
7044 perf_addr_filters_adjust(vma);
7045 perf_event_mmap_event(&mmap_event);
7046 }
7047
7048 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7049 unsigned long size, u64 flags)
7050 {
7051 struct perf_output_handle handle;
7052 struct perf_sample_data sample;
7053 struct perf_aux_event {
7054 struct perf_event_header header;
7055 u64 offset;
7056 u64 size;
7057 u64 flags;
7058 } rec = {
7059 .header = {
7060 .type = PERF_RECORD_AUX,
7061 .misc = 0,
7062 .size = sizeof(rec),
7063 },
7064 .offset = head,
7065 .size = size,
7066 .flags = flags,
7067 };
7068 int ret;
7069
7070 perf_event_header__init_id(&rec.header, &sample, event);
7071 ret = perf_output_begin(&handle, event, rec.header.size);
7072
7073 if (ret)
7074 return;
7075
7076 perf_output_put(&handle, rec);
7077 perf_event__output_id_sample(event, &handle, &sample);
7078
7079 perf_output_end(&handle);
7080 }
7081
7082 /*
7083 * Lost/dropped samples logging
7084 */
7085 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7086 {
7087 struct perf_output_handle handle;
7088 struct perf_sample_data sample;
7089 int ret;
7090
7091 struct {
7092 struct perf_event_header header;
7093 u64 lost;
7094 } lost_samples_event = {
7095 .header = {
7096 .type = PERF_RECORD_LOST_SAMPLES,
7097 .misc = 0,
7098 .size = sizeof(lost_samples_event),
7099 },
7100 .lost = lost,
7101 };
7102
7103 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7104
7105 ret = perf_output_begin(&handle, event,
7106 lost_samples_event.header.size);
7107 if (ret)
7108 return;
7109
7110 perf_output_put(&handle, lost_samples_event);
7111 perf_event__output_id_sample(event, &handle, &sample);
7112 perf_output_end(&handle);
7113 }
7114
7115 /*
7116 * context_switch tracking
7117 */
7118
7119 struct perf_switch_event {
7120 struct task_struct *task;
7121 struct task_struct *next_prev;
7122
7123 struct {
7124 struct perf_event_header header;
7125 u32 next_prev_pid;
7126 u32 next_prev_tid;
7127 } event_id;
7128 };
7129
7130 static int perf_event_switch_match(struct perf_event *event)
7131 {
7132 return event->attr.context_switch;
7133 }
7134
7135 static void perf_event_switch_output(struct perf_event *event, void *data)
7136 {
7137 struct perf_switch_event *se = data;
7138 struct perf_output_handle handle;
7139 struct perf_sample_data sample;
7140 int ret;
7141
7142 if (!perf_event_switch_match(event))
7143 return;
7144
7145 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7146 if (event->ctx->task) {
7147 se->event_id.header.type = PERF_RECORD_SWITCH;
7148 se->event_id.header.size = sizeof(se->event_id.header);
7149 } else {
7150 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7151 se->event_id.header.size = sizeof(se->event_id);
7152 se->event_id.next_prev_pid =
7153 perf_event_pid(event, se->next_prev);
7154 se->event_id.next_prev_tid =
7155 perf_event_tid(event, se->next_prev);
7156 }
7157
7158 perf_event_header__init_id(&se->event_id.header, &sample, event);
7159
7160 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7161 if (ret)
7162 return;
7163
7164 if (event->ctx->task)
7165 perf_output_put(&handle, se->event_id.header);
7166 else
7167 perf_output_put(&handle, se->event_id);
7168
7169 perf_event__output_id_sample(event, &handle, &sample);
7170
7171 perf_output_end(&handle);
7172 }
7173
7174 static void perf_event_switch(struct task_struct *task,
7175 struct task_struct *next_prev, bool sched_in)
7176 {
7177 struct perf_switch_event switch_event;
7178
7179 /* N.B. caller checks nr_switch_events != 0 */
7180
7181 switch_event = (struct perf_switch_event){
7182 .task = task,
7183 .next_prev = next_prev,
7184 .event_id = {
7185 .header = {
7186 /* .type */
7187 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7188 /* .size */
7189 },
7190 /* .next_prev_pid */
7191 /* .next_prev_tid */
7192 },
7193 };
7194
7195 perf_iterate_sb(perf_event_switch_output,
7196 &switch_event,
7197 NULL);
7198 }
7199
7200 /*
7201 * IRQ throttle logging
7202 */
7203
7204 static void perf_log_throttle(struct perf_event *event, int enable)
7205 {
7206 struct perf_output_handle handle;
7207 struct perf_sample_data sample;
7208 int ret;
7209
7210 struct {
7211 struct perf_event_header header;
7212 u64 time;
7213 u64 id;
7214 u64 stream_id;
7215 } throttle_event = {
7216 .header = {
7217 .type = PERF_RECORD_THROTTLE,
7218 .misc = 0,
7219 .size = sizeof(throttle_event),
7220 },
7221 .time = perf_event_clock(event),
7222 .id = primary_event_id(event),
7223 .stream_id = event->id,
7224 };
7225
7226 if (enable)
7227 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7228
7229 perf_event_header__init_id(&throttle_event.header, &sample, event);
7230
7231 ret = perf_output_begin(&handle, event,
7232 throttle_event.header.size);
7233 if (ret)
7234 return;
7235
7236 perf_output_put(&handle, throttle_event);
7237 perf_event__output_id_sample(event, &handle, &sample);
7238 perf_output_end(&handle);
7239 }
7240
7241 static void perf_log_itrace_start(struct perf_event *event)
7242 {
7243 struct perf_output_handle handle;
7244 struct perf_sample_data sample;
7245 struct perf_aux_event {
7246 struct perf_event_header header;
7247 u32 pid;
7248 u32 tid;
7249 } rec;
7250 int ret;
7251
7252 if (event->parent)
7253 event = event->parent;
7254
7255 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7256 event->hw.itrace_started)
7257 return;
7258
7259 rec.header.type = PERF_RECORD_ITRACE_START;
7260 rec.header.misc = 0;
7261 rec.header.size = sizeof(rec);
7262 rec.pid = perf_event_pid(event, current);
7263 rec.tid = perf_event_tid(event, current);
7264
7265 perf_event_header__init_id(&rec.header, &sample, event);
7266 ret = perf_output_begin(&handle, event, rec.header.size);
7267
7268 if (ret)
7269 return;
7270
7271 perf_output_put(&handle, rec);
7272 perf_event__output_id_sample(event, &handle, &sample);
7273
7274 perf_output_end(&handle);
7275 }
7276
7277 static int
7278 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7279 {
7280 struct hw_perf_event *hwc = &event->hw;
7281 int ret = 0;
7282 u64 seq;
7283
7284 seq = __this_cpu_read(perf_throttled_seq);
7285 if (seq != hwc->interrupts_seq) {
7286 hwc->interrupts_seq = seq;
7287 hwc->interrupts = 1;
7288 } else {
7289 hwc->interrupts++;
7290 if (unlikely(throttle
7291 && hwc->interrupts >= max_samples_per_tick)) {
7292 __this_cpu_inc(perf_throttled_count);
7293 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7294 hwc->interrupts = MAX_INTERRUPTS;
7295 perf_log_throttle(event, 0);
7296 ret = 1;
7297 }
7298 }
7299
7300 if (event->attr.freq) {
7301 u64 now = perf_clock();
7302 s64 delta = now - hwc->freq_time_stamp;
7303
7304 hwc->freq_time_stamp = now;
7305
7306 if (delta > 0 && delta < 2*TICK_NSEC)
7307 perf_adjust_period(event, delta, hwc->last_period, true);
7308 }
7309
7310 return ret;
7311 }
7312
7313 int perf_event_account_interrupt(struct perf_event *event)
7314 {
7315 return __perf_event_account_interrupt(event, 1);
7316 }
7317
7318 static bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
7319 {
7320 /*
7321 * Due to interrupt latency (AKA "skid"), we may enter the
7322 * kernel before taking an overflow, even if the PMU is only
7323 * counting user events.
7324 * To avoid leaking information to userspace, we must always
7325 * reject kernel samples when exclude_kernel is set.
7326 */
7327 if (event->attr.exclude_kernel && !user_mode(regs))
7328 return false;
7329
7330 return true;
7331 }
7332
7333 /*
7334 * Generic event overflow handling, sampling.
7335 */
7336
7337 static int __perf_event_overflow(struct perf_event *event,
7338 int throttle, struct perf_sample_data *data,
7339 struct pt_regs *regs)
7340 {
7341 int events = atomic_read(&event->event_limit);
7342 int ret = 0;
7343
7344 /*
7345 * Non-sampling counters might still use the PMI to fold short
7346 * hardware counters, ignore those.
7347 */
7348 if (unlikely(!is_sampling_event(event)))
7349 return 0;
7350
7351 ret = __perf_event_account_interrupt(event, throttle);
7352
7353 /*
7354 * For security, drop the skid kernel samples if necessary.
7355 */
7356 if (!sample_is_allowed(event, regs))
7357 return ret;
7358
7359 /*
7360 * XXX event_limit might not quite work as expected on inherited
7361 * events
7362 */
7363
7364 event->pending_kill = POLL_IN;
7365 if (events && atomic_dec_and_test(&event->event_limit)) {
7366 ret = 1;
7367 event->pending_kill = POLL_HUP;
7368
7369 perf_event_disable_inatomic(event);
7370 }
7371
7372 READ_ONCE(event->overflow_handler)(event, data, regs);
7373
7374 if (*perf_event_fasync(event) && event->pending_kill) {
7375 event->pending_wakeup = 1;
7376 irq_work_queue(&event->pending);
7377 }
7378
7379 return ret;
7380 }
7381
7382 int perf_event_overflow(struct perf_event *event,
7383 struct perf_sample_data *data,
7384 struct pt_regs *regs)
7385 {
7386 return __perf_event_overflow(event, 1, data, regs);
7387 }
7388
7389 /*
7390 * Generic software event infrastructure
7391 */
7392
7393 struct swevent_htable {
7394 struct swevent_hlist *swevent_hlist;
7395 struct mutex hlist_mutex;
7396 int hlist_refcount;
7397
7398 /* Recursion avoidance in each contexts */
7399 int recursion[PERF_NR_CONTEXTS];
7400 };
7401
7402 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7403
7404 /*
7405 * We directly increment event->count and keep a second value in
7406 * event->hw.period_left to count intervals. This period event
7407 * is kept in the range [-sample_period, 0] so that we can use the
7408 * sign as trigger.
7409 */
7410
7411 u64 perf_swevent_set_period(struct perf_event *event)
7412 {
7413 struct hw_perf_event *hwc = &event->hw;
7414 u64 period = hwc->last_period;
7415 u64 nr, offset;
7416 s64 old, val;
7417
7418 hwc->last_period = hwc->sample_period;
7419
7420 again:
7421 old = val = local64_read(&hwc->period_left);
7422 if (val < 0)
7423 return 0;
7424
7425 nr = div64_u64(period + val, period);
7426 offset = nr * period;
7427 val -= offset;
7428 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7429 goto again;
7430
7431 return nr;
7432 }
7433
7434 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7435 struct perf_sample_data *data,
7436 struct pt_regs *regs)
7437 {
7438 struct hw_perf_event *hwc = &event->hw;
7439 int throttle = 0;
7440
7441 if (!overflow)
7442 overflow = perf_swevent_set_period(event);
7443
7444 if (hwc->interrupts == MAX_INTERRUPTS)
7445 return;
7446
7447 for (; overflow; overflow--) {
7448 if (__perf_event_overflow(event, throttle,
7449 data, regs)) {
7450 /*
7451 * We inhibit the overflow from happening when
7452 * hwc->interrupts == MAX_INTERRUPTS.
7453 */
7454 break;
7455 }
7456 throttle = 1;
7457 }
7458 }
7459
7460 static void perf_swevent_event(struct perf_event *event, u64 nr,
7461 struct perf_sample_data *data,
7462 struct pt_regs *regs)
7463 {
7464 struct hw_perf_event *hwc = &event->hw;
7465
7466 local64_add(nr, &event->count);
7467
7468 if (!regs)
7469 return;
7470
7471 if (!is_sampling_event(event))
7472 return;
7473
7474 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7475 data->period = nr;
7476 return perf_swevent_overflow(event, 1, data, regs);
7477 } else
7478 data->period = event->hw.last_period;
7479
7480 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7481 return perf_swevent_overflow(event, 1, data, regs);
7482
7483 if (local64_add_negative(nr, &hwc->period_left))
7484 return;
7485
7486 perf_swevent_overflow(event, 0, data, regs);
7487 }
7488
7489 static int perf_exclude_event(struct perf_event *event,
7490 struct pt_regs *regs)
7491 {
7492 if (event->hw.state & PERF_HES_STOPPED)
7493 return 1;
7494
7495 if (regs) {
7496 if (event->attr.exclude_user && user_mode(regs))
7497 return 1;
7498
7499 if (event->attr.exclude_kernel && !user_mode(regs))
7500 return 1;
7501 }
7502
7503 return 0;
7504 }
7505
7506 static int perf_swevent_match(struct perf_event *event,
7507 enum perf_type_id type,
7508 u32 event_id,
7509 struct perf_sample_data *data,
7510 struct pt_regs *regs)
7511 {
7512 if (event->attr.type != type)
7513 return 0;
7514
7515 if (event->attr.config != event_id)
7516 return 0;
7517
7518 if (perf_exclude_event(event, regs))
7519 return 0;
7520
7521 return 1;
7522 }
7523
7524 static inline u64 swevent_hash(u64 type, u32 event_id)
7525 {
7526 u64 val = event_id | (type << 32);
7527
7528 return hash_64(val, SWEVENT_HLIST_BITS);
7529 }
7530
7531 static inline struct hlist_head *
7532 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7533 {
7534 u64 hash = swevent_hash(type, event_id);
7535
7536 return &hlist->heads[hash];
7537 }
7538
7539 /* For the read side: events when they trigger */
7540 static inline struct hlist_head *
7541 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7542 {
7543 struct swevent_hlist *hlist;
7544
7545 hlist = rcu_dereference(swhash->swevent_hlist);
7546 if (!hlist)
7547 return NULL;
7548
7549 return __find_swevent_head(hlist, type, event_id);
7550 }
7551
7552 /* For the event head insertion and removal in the hlist */
7553 static inline struct hlist_head *
7554 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7555 {
7556 struct swevent_hlist *hlist;
7557 u32 event_id = event->attr.config;
7558 u64 type = event->attr.type;
7559
7560 /*
7561 * Event scheduling is always serialized against hlist allocation
7562 * and release. Which makes the protected version suitable here.
7563 * The context lock guarantees that.
7564 */
7565 hlist = rcu_dereference_protected(swhash->swevent_hlist,
7566 lockdep_is_held(&event->ctx->lock));
7567 if (!hlist)
7568 return NULL;
7569
7570 return __find_swevent_head(hlist, type, event_id);
7571 }
7572
7573 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7574 u64 nr,
7575 struct perf_sample_data *data,
7576 struct pt_regs *regs)
7577 {
7578 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7579 struct perf_event *event;
7580 struct hlist_head *head;
7581
7582 rcu_read_lock();
7583 head = find_swevent_head_rcu(swhash, type, event_id);
7584 if (!head)
7585 goto end;
7586
7587 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7588 if (perf_swevent_match(event, type, event_id, data, regs))
7589 perf_swevent_event(event, nr, data, regs);
7590 }
7591 end:
7592 rcu_read_unlock();
7593 }
7594
7595 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7596
7597 int perf_swevent_get_recursion_context(void)
7598 {
7599 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7600
7601 return get_recursion_context(swhash->recursion);
7602 }
7603 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7604
7605 void perf_swevent_put_recursion_context(int rctx)
7606 {
7607 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7608
7609 put_recursion_context(swhash->recursion, rctx);
7610 }
7611
7612 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7613 {
7614 struct perf_sample_data data;
7615
7616 if (WARN_ON_ONCE(!regs))
7617 return;
7618
7619 perf_sample_data_init(&data, addr, 0);
7620 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7621 }
7622
7623 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7624 {
7625 int rctx;
7626
7627 preempt_disable_notrace();
7628 rctx = perf_swevent_get_recursion_context();
7629 if (unlikely(rctx < 0))
7630 goto fail;
7631
7632 ___perf_sw_event(event_id, nr, regs, addr);
7633
7634 perf_swevent_put_recursion_context(rctx);
7635 fail:
7636 preempt_enable_notrace();
7637 }
7638
7639 static void perf_swevent_read(struct perf_event *event)
7640 {
7641 }
7642
7643 static int perf_swevent_add(struct perf_event *event, int flags)
7644 {
7645 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7646 struct hw_perf_event *hwc = &event->hw;
7647 struct hlist_head *head;
7648
7649 if (is_sampling_event(event)) {
7650 hwc->last_period = hwc->sample_period;
7651 perf_swevent_set_period(event);
7652 }
7653
7654 hwc->state = !(flags & PERF_EF_START);
7655
7656 head = find_swevent_head(swhash, event);
7657 if (WARN_ON_ONCE(!head))
7658 return -EINVAL;
7659
7660 hlist_add_head_rcu(&event->hlist_entry, head);
7661 perf_event_update_userpage(event);
7662
7663 return 0;
7664 }
7665
7666 static void perf_swevent_del(struct perf_event *event, int flags)
7667 {
7668 hlist_del_rcu(&event->hlist_entry);
7669 }
7670
7671 static void perf_swevent_start(struct perf_event *event, int flags)
7672 {
7673 event->hw.state = 0;
7674 }
7675
7676 static void perf_swevent_stop(struct perf_event *event, int flags)
7677 {
7678 event->hw.state = PERF_HES_STOPPED;
7679 }
7680
7681 /* Deref the hlist from the update side */
7682 static inline struct swevent_hlist *
7683 swevent_hlist_deref(struct swevent_htable *swhash)
7684 {
7685 return rcu_dereference_protected(swhash->swevent_hlist,
7686 lockdep_is_held(&swhash->hlist_mutex));
7687 }
7688
7689 static void swevent_hlist_release(struct swevent_htable *swhash)
7690 {
7691 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7692
7693 if (!hlist)
7694 return;
7695
7696 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7697 kfree_rcu(hlist, rcu_head);
7698 }
7699
7700 static void swevent_hlist_put_cpu(int cpu)
7701 {
7702 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7703
7704 mutex_lock(&swhash->hlist_mutex);
7705
7706 if (!--swhash->hlist_refcount)
7707 swevent_hlist_release(swhash);
7708
7709 mutex_unlock(&swhash->hlist_mutex);
7710 }
7711
7712 static void swevent_hlist_put(void)
7713 {
7714 int cpu;
7715
7716 for_each_possible_cpu(cpu)
7717 swevent_hlist_put_cpu(cpu);
7718 }
7719
7720 static int swevent_hlist_get_cpu(int cpu)
7721 {
7722 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7723 int err = 0;
7724
7725 mutex_lock(&swhash->hlist_mutex);
7726 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7727 struct swevent_hlist *hlist;
7728
7729 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7730 if (!hlist) {
7731 err = -ENOMEM;
7732 goto exit;
7733 }
7734 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7735 }
7736 swhash->hlist_refcount++;
7737 exit:
7738 mutex_unlock(&swhash->hlist_mutex);
7739
7740 return err;
7741 }
7742
7743 static int swevent_hlist_get(void)
7744 {
7745 int err, cpu, failed_cpu;
7746
7747 get_online_cpus();
7748 for_each_possible_cpu(cpu) {
7749 err = swevent_hlist_get_cpu(cpu);
7750 if (err) {
7751 failed_cpu = cpu;
7752 goto fail;
7753 }
7754 }
7755 put_online_cpus();
7756
7757 return 0;
7758 fail:
7759 for_each_possible_cpu(cpu) {
7760 if (cpu == failed_cpu)
7761 break;
7762 swevent_hlist_put_cpu(cpu);
7763 }
7764
7765 put_online_cpus();
7766 return err;
7767 }
7768
7769 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7770
7771 static void sw_perf_event_destroy(struct perf_event *event)
7772 {
7773 u64 event_id = event->attr.config;
7774
7775 WARN_ON(event->parent);
7776
7777 static_key_slow_dec(&perf_swevent_enabled[event_id]);
7778 swevent_hlist_put();
7779 }
7780
7781 static int perf_swevent_init(struct perf_event *event)
7782 {
7783 u64 event_id = event->attr.config;
7784
7785 if (event->attr.type != PERF_TYPE_SOFTWARE)
7786 return -ENOENT;
7787
7788 /*
7789 * no branch sampling for software events
7790 */
7791 if (has_branch_stack(event))
7792 return -EOPNOTSUPP;
7793
7794 switch (event_id) {
7795 case PERF_COUNT_SW_CPU_CLOCK:
7796 case PERF_COUNT_SW_TASK_CLOCK:
7797 return -ENOENT;
7798
7799 default:
7800 break;
7801 }
7802
7803 if (event_id >= PERF_COUNT_SW_MAX)
7804 return -ENOENT;
7805
7806 if (!event->parent) {
7807 int err;
7808
7809 err = swevent_hlist_get();
7810 if (err)
7811 return err;
7812
7813 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7814 event->destroy = sw_perf_event_destroy;
7815 }
7816
7817 return 0;
7818 }
7819
7820 static struct pmu perf_swevent = {
7821 .task_ctx_nr = perf_sw_context,
7822
7823 .capabilities = PERF_PMU_CAP_NO_NMI,
7824
7825 .event_init = perf_swevent_init,
7826 .add = perf_swevent_add,
7827 .del = perf_swevent_del,
7828 .start = perf_swevent_start,
7829 .stop = perf_swevent_stop,
7830 .read = perf_swevent_read,
7831 };
7832
7833 #ifdef CONFIG_EVENT_TRACING
7834
7835 static int perf_tp_filter_match(struct perf_event *event,
7836 struct perf_sample_data *data)
7837 {
7838 void *record = data->raw->frag.data;
7839
7840 /* only top level events have filters set */
7841 if (event->parent)
7842 event = event->parent;
7843
7844 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7845 return 1;
7846 return 0;
7847 }
7848
7849 static int perf_tp_event_match(struct perf_event *event,
7850 struct perf_sample_data *data,
7851 struct pt_regs *regs)
7852 {
7853 if (event->hw.state & PERF_HES_STOPPED)
7854 return 0;
7855 /*
7856 * All tracepoints are from kernel-space.
7857 */
7858 if (event->attr.exclude_kernel)
7859 return 0;
7860
7861 if (!perf_tp_filter_match(event, data))
7862 return 0;
7863
7864 return 1;
7865 }
7866
7867 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7868 struct trace_event_call *call, u64 count,
7869 struct pt_regs *regs, struct hlist_head *head,
7870 struct task_struct *task)
7871 {
7872 struct bpf_prog *prog = call->prog;
7873
7874 if (prog) {
7875 *(struct pt_regs **)raw_data = regs;
7876 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7877 perf_swevent_put_recursion_context(rctx);
7878 return;
7879 }
7880 }
7881 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7882 rctx, task);
7883 }
7884 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7885
7886 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7887 struct pt_regs *regs, struct hlist_head *head, int rctx,
7888 struct task_struct *task)
7889 {
7890 struct perf_sample_data data;
7891 struct perf_event *event;
7892
7893 struct perf_raw_record raw = {
7894 .frag = {
7895 .size = entry_size,
7896 .data = record,
7897 },
7898 };
7899
7900 perf_sample_data_init(&data, 0, 0);
7901 data.raw = &raw;
7902
7903 perf_trace_buf_update(record, event_type);
7904
7905 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7906 if (perf_tp_event_match(event, &data, regs))
7907 perf_swevent_event(event, count, &data, regs);
7908 }
7909
7910 /*
7911 * If we got specified a target task, also iterate its context and
7912 * deliver this event there too.
7913 */
7914 if (task && task != current) {
7915 struct perf_event_context *ctx;
7916 struct trace_entry *entry = record;
7917
7918 rcu_read_lock();
7919 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7920 if (!ctx)
7921 goto unlock;
7922
7923 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7924 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7925 continue;
7926 if (event->attr.config != entry->type)
7927 continue;
7928 if (perf_tp_event_match(event, &data, regs))
7929 perf_swevent_event(event, count, &data, regs);
7930 }
7931 unlock:
7932 rcu_read_unlock();
7933 }
7934
7935 perf_swevent_put_recursion_context(rctx);
7936 }
7937 EXPORT_SYMBOL_GPL(perf_tp_event);
7938
7939 static void tp_perf_event_destroy(struct perf_event *event)
7940 {
7941 perf_trace_destroy(event);
7942 }
7943
7944 static int perf_tp_event_init(struct perf_event *event)
7945 {
7946 int err;
7947
7948 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7949 return -ENOENT;
7950
7951 /*
7952 * no branch sampling for tracepoint events
7953 */
7954 if (has_branch_stack(event))
7955 return -EOPNOTSUPP;
7956
7957 err = perf_trace_init(event);
7958 if (err)
7959 return err;
7960
7961 event->destroy = tp_perf_event_destroy;
7962
7963 return 0;
7964 }
7965
7966 static struct pmu perf_tracepoint = {
7967 .task_ctx_nr = perf_sw_context,
7968
7969 .event_init = perf_tp_event_init,
7970 .add = perf_trace_add,
7971 .del = perf_trace_del,
7972 .start = perf_swevent_start,
7973 .stop = perf_swevent_stop,
7974 .read = perf_swevent_read,
7975 };
7976
7977 static inline void perf_tp_register(void)
7978 {
7979 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7980 }
7981
7982 static void perf_event_free_filter(struct perf_event *event)
7983 {
7984 ftrace_profile_free_filter(event);
7985 }
7986
7987 #ifdef CONFIG_BPF_SYSCALL
7988 static void bpf_overflow_handler(struct perf_event *event,
7989 struct perf_sample_data *data,
7990 struct pt_regs *regs)
7991 {
7992 struct bpf_perf_event_data_kern ctx = {
7993 .data = data,
7994 .regs = regs,
7995 };
7996 int ret = 0;
7997
7998 preempt_disable();
7999 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8000 goto out;
8001 rcu_read_lock();
8002 ret = BPF_PROG_RUN(event->prog, &ctx);
8003 rcu_read_unlock();
8004 out:
8005 __this_cpu_dec(bpf_prog_active);
8006 preempt_enable();
8007 if (!ret)
8008 return;
8009
8010 event->orig_overflow_handler(event, data, regs);
8011 }
8012
8013 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8014 {
8015 struct bpf_prog *prog;
8016
8017 if (event->overflow_handler_context)
8018 /* hw breakpoint or kernel counter */
8019 return -EINVAL;
8020
8021 if (event->prog)
8022 return -EEXIST;
8023
8024 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8025 if (IS_ERR(prog))
8026 return PTR_ERR(prog);
8027
8028 event->prog = prog;
8029 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8030 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8031 return 0;
8032 }
8033
8034 static void perf_event_free_bpf_handler(struct perf_event *event)
8035 {
8036 struct bpf_prog *prog = event->prog;
8037
8038 if (!prog)
8039 return;
8040
8041 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8042 event->prog = NULL;
8043 bpf_prog_put(prog);
8044 }
8045 #else
8046 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8047 {
8048 return -EOPNOTSUPP;
8049 }
8050 static void perf_event_free_bpf_handler(struct perf_event *event)
8051 {
8052 }
8053 #endif
8054
8055 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8056 {
8057 bool is_kprobe, is_tracepoint;
8058 struct bpf_prog *prog;
8059
8060 if (event->attr.type == PERF_TYPE_HARDWARE ||
8061 event->attr.type == PERF_TYPE_SOFTWARE)
8062 return perf_event_set_bpf_handler(event, prog_fd);
8063
8064 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8065 return -EINVAL;
8066
8067 if (event->tp_event->prog)
8068 return -EEXIST;
8069
8070 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8071 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8072 if (!is_kprobe && !is_tracepoint)
8073 /* bpf programs can only be attached to u/kprobe or tracepoint */
8074 return -EINVAL;
8075
8076 prog = bpf_prog_get(prog_fd);
8077 if (IS_ERR(prog))
8078 return PTR_ERR(prog);
8079
8080 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8081 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8082 /* valid fd, but invalid bpf program type */
8083 bpf_prog_put(prog);
8084 return -EINVAL;
8085 }
8086
8087 if (is_tracepoint) {
8088 int off = trace_event_get_offsets(event->tp_event);
8089
8090 if (prog->aux->max_ctx_offset > off) {
8091 bpf_prog_put(prog);
8092 return -EACCES;
8093 }
8094 }
8095 event->tp_event->prog = prog;
8096
8097 return 0;
8098 }
8099
8100 static void perf_event_free_bpf_prog(struct perf_event *event)
8101 {
8102 struct bpf_prog *prog;
8103
8104 perf_event_free_bpf_handler(event);
8105
8106 if (!event->tp_event)
8107 return;
8108
8109 prog = event->tp_event->prog;
8110 if (prog) {
8111 event->tp_event->prog = NULL;
8112 bpf_prog_put(prog);
8113 }
8114 }
8115
8116 #else
8117
8118 static inline void perf_tp_register(void)
8119 {
8120 }
8121
8122 static void perf_event_free_filter(struct perf_event *event)
8123 {
8124 }
8125
8126 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8127 {
8128 return -ENOENT;
8129 }
8130
8131 static void perf_event_free_bpf_prog(struct perf_event *event)
8132 {
8133 }
8134 #endif /* CONFIG_EVENT_TRACING */
8135
8136 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8137 void perf_bp_event(struct perf_event *bp, void *data)
8138 {
8139 struct perf_sample_data sample;
8140 struct pt_regs *regs = data;
8141
8142 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8143
8144 if (!bp->hw.state && !perf_exclude_event(bp, regs))
8145 perf_swevent_event(bp, 1, &sample, regs);
8146 }
8147 #endif
8148
8149 /*
8150 * Allocate a new address filter
8151 */
8152 static struct perf_addr_filter *
8153 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8154 {
8155 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8156 struct perf_addr_filter *filter;
8157
8158 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8159 if (!filter)
8160 return NULL;
8161
8162 INIT_LIST_HEAD(&filter->entry);
8163 list_add_tail(&filter->entry, filters);
8164
8165 return filter;
8166 }
8167
8168 static void free_filters_list(struct list_head *filters)
8169 {
8170 struct perf_addr_filter *filter, *iter;
8171
8172 list_for_each_entry_safe(filter, iter, filters, entry) {
8173 if (filter->inode)
8174 iput(filter->inode);
8175 list_del(&filter->entry);
8176 kfree(filter);
8177 }
8178 }
8179
8180 /*
8181 * Free existing address filters and optionally install new ones
8182 */
8183 static void perf_addr_filters_splice(struct perf_event *event,
8184 struct list_head *head)
8185 {
8186 unsigned long flags;
8187 LIST_HEAD(list);
8188
8189 if (!has_addr_filter(event))
8190 return;
8191
8192 /* don't bother with children, they don't have their own filters */
8193 if (event->parent)
8194 return;
8195
8196 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8197
8198 list_splice_init(&event->addr_filters.list, &list);
8199 if (head)
8200 list_splice(head, &event->addr_filters.list);
8201
8202 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8203
8204 free_filters_list(&list);
8205 }
8206
8207 /*
8208 * Scan through mm's vmas and see if one of them matches the
8209 * @filter; if so, adjust filter's address range.
8210 * Called with mm::mmap_sem down for reading.
8211 */
8212 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8213 struct mm_struct *mm)
8214 {
8215 struct vm_area_struct *vma;
8216
8217 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8218 struct file *file = vma->vm_file;
8219 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8220 unsigned long vma_size = vma->vm_end - vma->vm_start;
8221
8222 if (!file)
8223 continue;
8224
8225 if (!perf_addr_filter_match(filter, file, off, vma_size))
8226 continue;
8227
8228 return vma->vm_start;
8229 }
8230
8231 return 0;
8232 }
8233
8234 /*
8235 * Update event's address range filters based on the
8236 * task's existing mappings, if any.
8237 */
8238 static void perf_event_addr_filters_apply(struct perf_event *event)
8239 {
8240 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8241 struct task_struct *task = READ_ONCE(event->ctx->task);
8242 struct perf_addr_filter *filter;
8243 struct mm_struct *mm = NULL;
8244 unsigned int count = 0;
8245 unsigned long flags;
8246
8247 /*
8248 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8249 * will stop on the parent's child_mutex that our caller is also holding
8250 */
8251 if (task == TASK_TOMBSTONE)
8252 return;
8253
8254 if (!ifh->nr_file_filters)
8255 return;
8256
8257 mm = get_task_mm(event->ctx->task);
8258 if (!mm)
8259 goto restart;
8260
8261 down_read(&mm->mmap_sem);
8262
8263 raw_spin_lock_irqsave(&ifh->lock, flags);
8264 list_for_each_entry(filter, &ifh->list, entry) {
8265 event->addr_filters_offs[count] = 0;
8266
8267 /*
8268 * Adjust base offset if the filter is associated to a binary
8269 * that needs to be mapped:
8270 */
8271 if (filter->inode)
8272 event->addr_filters_offs[count] =
8273 perf_addr_filter_apply(filter, mm);
8274
8275 count++;
8276 }
8277
8278 event->addr_filters_gen++;
8279 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8280
8281 up_read(&mm->mmap_sem);
8282
8283 mmput(mm);
8284
8285 restart:
8286 perf_event_stop(event, 1);
8287 }
8288
8289 /*
8290 * Address range filtering: limiting the data to certain
8291 * instruction address ranges. Filters are ioctl()ed to us from
8292 * userspace as ascii strings.
8293 *
8294 * Filter string format:
8295 *
8296 * ACTION RANGE_SPEC
8297 * where ACTION is one of the
8298 * * "filter": limit the trace to this region
8299 * * "start": start tracing from this address
8300 * * "stop": stop tracing at this address/region;
8301 * RANGE_SPEC is
8302 * * for kernel addresses: <start address>[/<size>]
8303 * * for object files: <start address>[/<size>]@</path/to/object/file>
8304 *
8305 * if <size> is not specified, the range is treated as a single address.
8306 */
8307 enum {
8308 IF_ACT_NONE = -1,
8309 IF_ACT_FILTER,
8310 IF_ACT_START,
8311 IF_ACT_STOP,
8312 IF_SRC_FILE,
8313 IF_SRC_KERNEL,
8314 IF_SRC_FILEADDR,
8315 IF_SRC_KERNELADDR,
8316 };
8317
8318 enum {
8319 IF_STATE_ACTION = 0,
8320 IF_STATE_SOURCE,
8321 IF_STATE_END,
8322 };
8323
8324 static const match_table_t if_tokens = {
8325 { IF_ACT_FILTER, "filter" },
8326 { IF_ACT_START, "start" },
8327 { IF_ACT_STOP, "stop" },
8328 { IF_SRC_FILE, "%u/%u@%s" },
8329 { IF_SRC_KERNEL, "%u/%u" },
8330 { IF_SRC_FILEADDR, "%u@%s" },
8331 { IF_SRC_KERNELADDR, "%u" },
8332 { IF_ACT_NONE, NULL },
8333 };
8334
8335 /*
8336 * Address filter string parser
8337 */
8338 static int
8339 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8340 struct list_head *filters)
8341 {
8342 struct perf_addr_filter *filter = NULL;
8343 char *start, *orig, *filename = NULL;
8344 struct path path;
8345 substring_t args[MAX_OPT_ARGS];
8346 int state = IF_STATE_ACTION, token;
8347 unsigned int kernel = 0;
8348 int ret = -EINVAL;
8349
8350 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8351 if (!fstr)
8352 return -ENOMEM;
8353
8354 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8355 ret = -EINVAL;
8356
8357 if (!*start)
8358 continue;
8359
8360 /* filter definition begins */
8361 if (state == IF_STATE_ACTION) {
8362 filter = perf_addr_filter_new(event, filters);
8363 if (!filter)
8364 goto fail;
8365 }
8366
8367 token = match_token(start, if_tokens, args);
8368 switch (token) {
8369 case IF_ACT_FILTER:
8370 case IF_ACT_START:
8371 filter->filter = 1;
8372
8373 case IF_ACT_STOP:
8374 if (state != IF_STATE_ACTION)
8375 goto fail;
8376
8377 state = IF_STATE_SOURCE;
8378 break;
8379
8380 case IF_SRC_KERNELADDR:
8381 case IF_SRC_KERNEL:
8382 kernel = 1;
8383
8384 case IF_SRC_FILEADDR:
8385 case IF_SRC_FILE:
8386 if (state != IF_STATE_SOURCE)
8387 goto fail;
8388
8389 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8390 filter->range = 1;
8391
8392 *args[0].to = 0;
8393 ret = kstrtoul(args[0].from, 0, &filter->offset);
8394 if (ret)
8395 goto fail;
8396
8397 if (filter->range) {
8398 *args[1].to = 0;
8399 ret = kstrtoul(args[1].from, 0, &filter->size);
8400 if (ret)
8401 goto fail;
8402 }
8403
8404 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8405 int fpos = filter->range ? 2 : 1;
8406
8407 filename = match_strdup(&args[fpos]);
8408 if (!filename) {
8409 ret = -ENOMEM;
8410 goto fail;
8411 }
8412 }
8413
8414 state = IF_STATE_END;
8415 break;
8416
8417 default:
8418 goto fail;
8419 }
8420
8421 /*
8422 * Filter definition is fully parsed, validate and install it.
8423 * Make sure that it doesn't contradict itself or the event's
8424 * attribute.
8425 */
8426 if (state == IF_STATE_END) {
8427 ret = -EINVAL;
8428 if (kernel && event->attr.exclude_kernel)
8429 goto fail;
8430
8431 if (!kernel) {
8432 if (!filename)
8433 goto fail;
8434
8435 /*
8436 * For now, we only support file-based filters
8437 * in per-task events; doing so for CPU-wide
8438 * events requires additional context switching
8439 * trickery, since same object code will be
8440 * mapped at different virtual addresses in
8441 * different processes.
8442 */
8443 ret = -EOPNOTSUPP;
8444 if (!event->ctx->task)
8445 goto fail_free_name;
8446
8447 /* look up the path and grab its inode */
8448 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8449 if (ret)
8450 goto fail_free_name;
8451
8452 filter->inode = igrab(d_inode(path.dentry));
8453 path_put(&path);
8454 kfree(filename);
8455 filename = NULL;
8456
8457 ret = -EINVAL;
8458 if (!filter->inode ||
8459 !S_ISREG(filter->inode->i_mode))
8460 /* free_filters_list() will iput() */
8461 goto fail;
8462
8463 event->addr_filters.nr_file_filters++;
8464 }
8465
8466 /* ready to consume more filters */
8467 state = IF_STATE_ACTION;
8468 filter = NULL;
8469 }
8470 }
8471
8472 if (state != IF_STATE_ACTION)
8473 goto fail;
8474
8475 kfree(orig);
8476
8477 return 0;
8478
8479 fail_free_name:
8480 kfree(filename);
8481 fail:
8482 free_filters_list(filters);
8483 kfree(orig);
8484
8485 return ret;
8486 }
8487
8488 static int
8489 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8490 {
8491 LIST_HEAD(filters);
8492 int ret;
8493
8494 /*
8495 * Since this is called in perf_ioctl() path, we're already holding
8496 * ctx::mutex.
8497 */
8498 lockdep_assert_held(&event->ctx->mutex);
8499
8500 if (WARN_ON_ONCE(event->parent))
8501 return -EINVAL;
8502
8503 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8504 if (ret)
8505 goto fail_clear_files;
8506
8507 ret = event->pmu->addr_filters_validate(&filters);
8508 if (ret)
8509 goto fail_free_filters;
8510
8511 /* remove existing filters, if any */
8512 perf_addr_filters_splice(event, &filters);
8513
8514 /* install new filters */
8515 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8516
8517 return ret;
8518
8519 fail_free_filters:
8520 free_filters_list(&filters);
8521
8522 fail_clear_files:
8523 event->addr_filters.nr_file_filters = 0;
8524
8525 return ret;
8526 }
8527
8528 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8529 {
8530 char *filter_str;
8531 int ret = -EINVAL;
8532
8533 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8534 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8535 !has_addr_filter(event))
8536 return -EINVAL;
8537
8538 filter_str = strndup_user(arg, PAGE_SIZE);
8539 if (IS_ERR(filter_str))
8540 return PTR_ERR(filter_str);
8541
8542 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8543 event->attr.type == PERF_TYPE_TRACEPOINT)
8544 ret = ftrace_profile_set_filter(event, event->attr.config,
8545 filter_str);
8546 else if (has_addr_filter(event))
8547 ret = perf_event_set_addr_filter(event, filter_str);
8548
8549 kfree(filter_str);
8550 return ret;
8551 }
8552
8553 /*
8554 * hrtimer based swevent callback
8555 */
8556
8557 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8558 {
8559 enum hrtimer_restart ret = HRTIMER_RESTART;
8560 struct perf_sample_data data;
8561 struct pt_regs *regs;
8562 struct perf_event *event;
8563 u64 period;
8564
8565 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8566
8567 if (event->state != PERF_EVENT_STATE_ACTIVE)
8568 return HRTIMER_NORESTART;
8569
8570 event->pmu->read(event);
8571
8572 perf_sample_data_init(&data, 0, event->hw.last_period);
8573 regs = get_irq_regs();
8574
8575 if (regs && !perf_exclude_event(event, regs)) {
8576 if (!(event->attr.exclude_idle && is_idle_task(current)))
8577 if (__perf_event_overflow(event, 1, &data, regs))
8578 ret = HRTIMER_NORESTART;
8579 }
8580
8581 period = max_t(u64, 10000, event->hw.sample_period);
8582 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8583
8584 return ret;
8585 }
8586
8587 static void perf_swevent_start_hrtimer(struct perf_event *event)
8588 {
8589 struct hw_perf_event *hwc = &event->hw;
8590 s64 period;
8591
8592 if (!is_sampling_event(event))
8593 return;
8594
8595 period = local64_read(&hwc->period_left);
8596 if (period) {
8597 if (period < 0)
8598 period = 10000;
8599
8600 local64_set(&hwc->period_left, 0);
8601 } else {
8602 period = max_t(u64, 10000, hwc->sample_period);
8603 }
8604 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8605 HRTIMER_MODE_REL_PINNED);
8606 }
8607
8608 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8609 {
8610 struct hw_perf_event *hwc = &event->hw;
8611
8612 if (is_sampling_event(event)) {
8613 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8614 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8615
8616 hrtimer_cancel(&hwc->hrtimer);
8617 }
8618 }
8619
8620 static void perf_swevent_init_hrtimer(struct perf_event *event)
8621 {
8622 struct hw_perf_event *hwc = &event->hw;
8623
8624 if (!is_sampling_event(event))
8625 return;
8626
8627 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8628 hwc->hrtimer.function = perf_swevent_hrtimer;
8629
8630 /*
8631 * Since hrtimers have a fixed rate, we can do a static freq->period
8632 * mapping and avoid the whole period adjust feedback stuff.
8633 */
8634 if (event->attr.freq) {
8635 long freq = event->attr.sample_freq;
8636
8637 event->attr.sample_period = NSEC_PER_SEC / freq;
8638 hwc->sample_period = event->attr.sample_period;
8639 local64_set(&hwc->period_left, hwc->sample_period);
8640 hwc->last_period = hwc->sample_period;
8641 event->attr.freq = 0;
8642 }
8643 }
8644
8645 /*
8646 * Software event: cpu wall time clock
8647 */
8648
8649 static void cpu_clock_event_update(struct perf_event *event)
8650 {
8651 s64 prev;
8652 u64 now;
8653
8654 now = local_clock();
8655 prev = local64_xchg(&event->hw.prev_count, now);
8656 local64_add(now - prev, &event->count);
8657 }
8658
8659 static void cpu_clock_event_start(struct perf_event *event, int flags)
8660 {
8661 local64_set(&event->hw.prev_count, local_clock());
8662 perf_swevent_start_hrtimer(event);
8663 }
8664
8665 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8666 {
8667 perf_swevent_cancel_hrtimer(event);
8668 cpu_clock_event_update(event);
8669 }
8670
8671 static int cpu_clock_event_add(struct perf_event *event, int flags)
8672 {
8673 if (flags & PERF_EF_START)
8674 cpu_clock_event_start(event, flags);
8675 perf_event_update_userpage(event);
8676
8677 return 0;
8678 }
8679
8680 static void cpu_clock_event_del(struct perf_event *event, int flags)
8681 {
8682 cpu_clock_event_stop(event, flags);
8683 }
8684
8685 static void cpu_clock_event_read(struct perf_event *event)
8686 {
8687 cpu_clock_event_update(event);
8688 }
8689
8690 static int cpu_clock_event_init(struct perf_event *event)
8691 {
8692 if (event->attr.type != PERF_TYPE_SOFTWARE)
8693 return -ENOENT;
8694
8695 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8696 return -ENOENT;
8697
8698 /*
8699 * no branch sampling for software events
8700 */
8701 if (has_branch_stack(event))
8702 return -EOPNOTSUPP;
8703
8704 perf_swevent_init_hrtimer(event);
8705
8706 return 0;
8707 }
8708
8709 static struct pmu perf_cpu_clock = {
8710 .task_ctx_nr = perf_sw_context,
8711
8712 .capabilities = PERF_PMU_CAP_NO_NMI,
8713
8714 .event_init = cpu_clock_event_init,
8715 .add = cpu_clock_event_add,
8716 .del = cpu_clock_event_del,
8717 .start = cpu_clock_event_start,
8718 .stop = cpu_clock_event_stop,
8719 .read = cpu_clock_event_read,
8720 };
8721
8722 /*
8723 * Software event: task time clock
8724 */
8725
8726 static void task_clock_event_update(struct perf_event *event, u64 now)
8727 {
8728 u64 prev;
8729 s64 delta;
8730
8731 prev = local64_xchg(&event->hw.prev_count, now);
8732 delta = now - prev;
8733 local64_add(delta, &event->count);
8734 }
8735
8736 static void task_clock_event_start(struct perf_event *event, int flags)
8737 {
8738 local64_set(&event->hw.prev_count, event->ctx->time);
8739 perf_swevent_start_hrtimer(event);
8740 }
8741
8742 static void task_clock_event_stop(struct perf_event *event, int flags)
8743 {
8744 perf_swevent_cancel_hrtimer(event);
8745 task_clock_event_update(event, event->ctx->time);
8746 }
8747
8748 static int task_clock_event_add(struct perf_event *event, int flags)
8749 {
8750 if (flags & PERF_EF_START)
8751 task_clock_event_start(event, flags);
8752 perf_event_update_userpage(event);
8753
8754 return 0;
8755 }
8756
8757 static void task_clock_event_del(struct perf_event *event, int flags)
8758 {
8759 task_clock_event_stop(event, PERF_EF_UPDATE);
8760 }
8761
8762 static void task_clock_event_read(struct perf_event *event)
8763 {
8764 u64 now = perf_clock();
8765 u64 delta = now - event->ctx->timestamp;
8766 u64 time = event->ctx->time + delta;
8767
8768 task_clock_event_update(event, time);
8769 }
8770
8771 static int task_clock_event_init(struct perf_event *event)
8772 {
8773 if (event->attr.type != PERF_TYPE_SOFTWARE)
8774 return -ENOENT;
8775
8776 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8777 return -ENOENT;
8778
8779 /*
8780 * no branch sampling for software events
8781 */
8782 if (has_branch_stack(event))
8783 return -EOPNOTSUPP;
8784
8785 perf_swevent_init_hrtimer(event);
8786
8787 return 0;
8788 }
8789
8790 static struct pmu perf_task_clock = {
8791 .task_ctx_nr = perf_sw_context,
8792
8793 .capabilities = PERF_PMU_CAP_NO_NMI,
8794
8795 .event_init = task_clock_event_init,
8796 .add = task_clock_event_add,
8797 .del = task_clock_event_del,
8798 .start = task_clock_event_start,
8799 .stop = task_clock_event_stop,
8800 .read = task_clock_event_read,
8801 };
8802
8803 static void perf_pmu_nop_void(struct pmu *pmu)
8804 {
8805 }
8806
8807 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8808 {
8809 }
8810
8811 static int perf_pmu_nop_int(struct pmu *pmu)
8812 {
8813 return 0;
8814 }
8815
8816 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8817
8818 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8819 {
8820 __this_cpu_write(nop_txn_flags, flags);
8821
8822 if (flags & ~PERF_PMU_TXN_ADD)
8823 return;
8824
8825 perf_pmu_disable(pmu);
8826 }
8827
8828 static int perf_pmu_commit_txn(struct pmu *pmu)
8829 {
8830 unsigned int flags = __this_cpu_read(nop_txn_flags);
8831
8832 __this_cpu_write(nop_txn_flags, 0);
8833
8834 if (flags & ~PERF_PMU_TXN_ADD)
8835 return 0;
8836
8837 perf_pmu_enable(pmu);
8838 return 0;
8839 }
8840
8841 static void perf_pmu_cancel_txn(struct pmu *pmu)
8842 {
8843 unsigned int flags = __this_cpu_read(nop_txn_flags);
8844
8845 __this_cpu_write(nop_txn_flags, 0);
8846
8847 if (flags & ~PERF_PMU_TXN_ADD)
8848 return;
8849
8850 perf_pmu_enable(pmu);
8851 }
8852
8853 static int perf_event_idx_default(struct perf_event *event)
8854 {
8855 return 0;
8856 }
8857
8858 /*
8859 * Ensures all contexts with the same task_ctx_nr have the same
8860 * pmu_cpu_context too.
8861 */
8862 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8863 {
8864 struct pmu *pmu;
8865
8866 if (ctxn < 0)
8867 return NULL;
8868
8869 list_for_each_entry(pmu, &pmus, entry) {
8870 if (pmu->task_ctx_nr == ctxn)
8871 return pmu->pmu_cpu_context;
8872 }
8873
8874 return NULL;
8875 }
8876
8877 static void free_pmu_context(struct pmu *pmu)
8878 {
8879 mutex_lock(&pmus_lock);
8880 free_percpu(pmu->pmu_cpu_context);
8881 mutex_unlock(&pmus_lock);
8882 }
8883
8884 /*
8885 * Let userspace know that this PMU supports address range filtering:
8886 */
8887 static ssize_t nr_addr_filters_show(struct device *dev,
8888 struct device_attribute *attr,
8889 char *page)
8890 {
8891 struct pmu *pmu = dev_get_drvdata(dev);
8892
8893 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8894 }
8895 DEVICE_ATTR_RO(nr_addr_filters);
8896
8897 static struct idr pmu_idr;
8898
8899 static ssize_t
8900 type_show(struct device *dev, struct device_attribute *attr, char *page)
8901 {
8902 struct pmu *pmu = dev_get_drvdata(dev);
8903
8904 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8905 }
8906 static DEVICE_ATTR_RO(type);
8907
8908 static ssize_t
8909 perf_event_mux_interval_ms_show(struct device *dev,
8910 struct device_attribute *attr,
8911 char *page)
8912 {
8913 struct pmu *pmu = dev_get_drvdata(dev);
8914
8915 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8916 }
8917
8918 static DEFINE_MUTEX(mux_interval_mutex);
8919
8920 static ssize_t
8921 perf_event_mux_interval_ms_store(struct device *dev,
8922 struct device_attribute *attr,
8923 const char *buf, size_t count)
8924 {
8925 struct pmu *pmu = dev_get_drvdata(dev);
8926 int timer, cpu, ret;
8927
8928 ret = kstrtoint(buf, 0, &timer);
8929 if (ret)
8930 return ret;
8931
8932 if (timer < 1)
8933 return -EINVAL;
8934
8935 /* same value, noting to do */
8936 if (timer == pmu->hrtimer_interval_ms)
8937 return count;
8938
8939 mutex_lock(&mux_interval_mutex);
8940 pmu->hrtimer_interval_ms = timer;
8941
8942 /* update all cpuctx for this PMU */
8943 get_online_cpus();
8944 for_each_online_cpu(cpu) {
8945 struct perf_cpu_context *cpuctx;
8946 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8947 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8948
8949 cpu_function_call(cpu,
8950 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8951 }
8952 put_online_cpus();
8953 mutex_unlock(&mux_interval_mutex);
8954
8955 return count;
8956 }
8957 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8958
8959 static struct attribute *pmu_dev_attrs[] = {
8960 &dev_attr_type.attr,
8961 &dev_attr_perf_event_mux_interval_ms.attr,
8962 NULL,
8963 };
8964 ATTRIBUTE_GROUPS(pmu_dev);
8965
8966 static int pmu_bus_running;
8967 static struct bus_type pmu_bus = {
8968 .name = "event_source",
8969 .dev_groups = pmu_dev_groups,
8970 };
8971
8972 static void pmu_dev_release(struct device *dev)
8973 {
8974 kfree(dev);
8975 }
8976
8977 static int pmu_dev_alloc(struct pmu *pmu)
8978 {
8979 int ret = -ENOMEM;
8980
8981 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8982 if (!pmu->dev)
8983 goto out;
8984
8985 pmu->dev->groups = pmu->attr_groups;
8986 device_initialize(pmu->dev);
8987 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8988 if (ret)
8989 goto free_dev;
8990
8991 dev_set_drvdata(pmu->dev, pmu);
8992 pmu->dev->bus = &pmu_bus;
8993 pmu->dev->release = pmu_dev_release;
8994 ret = device_add(pmu->dev);
8995 if (ret)
8996 goto free_dev;
8997
8998 /* For PMUs with address filters, throw in an extra attribute: */
8999 if (pmu->nr_addr_filters)
9000 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9001
9002 if (ret)
9003 goto del_dev;
9004
9005 out:
9006 return ret;
9007
9008 del_dev:
9009 device_del(pmu->dev);
9010
9011 free_dev:
9012 put_device(pmu->dev);
9013 goto out;
9014 }
9015
9016 static struct lock_class_key cpuctx_mutex;
9017 static struct lock_class_key cpuctx_lock;
9018
9019 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9020 {
9021 int cpu, ret;
9022
9023 mutex_lock(&pmus_lock);
9024 ret = -ENOMEM;
9025 pmu->pmu_disable_count = alloc_percpu(int);
9026 if (!pmu->pmu_disable_count)
9027 goto unlock;
9028
9029 pmu->type = -1;
9030 if (!name)
9031 goto skip_type;
9032 pmu->name = name;
9033
9034 if (type < 0) {
9035 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9036 if (type < 0) {
9037 ret = type;
9038 goto free_pdc;
9039 }
9040 }
9041 pmu->type = type;
9042
9043 if (pmu_bus_running) {
9044 ret = pmu_dev_alloc(pmu);
9045 if (ret)
9046 goto free_idr;
9047 }
9048
9049 skip_type:
9050 if (pmu->task_ctx_nr == perf_hw_context) {
9051 static int hw_context_taken = 0;
9052
9053 /*
9054 * Other than systems with heterogeneous CPUs, it never makes
9055 * sense for two PMUs to share perf_hw_context. PMUs which are
9056 * uncore must use perf_invalid_context.
9057 */
9058 if (WARN_ON_ONCE(hw_context_taken &&
9059 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9060 pmu->task_ctx_nr = perf_invalid_context;
9061
9062 hw_context_taken = 1;
9063 }
9064
9065 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9066 if (pmu->pmu_cpu_context)
9067 goto got_cpu_context;
9068
9069 ret = -ENOMEM;
9070 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9071 if (!pmu->pmu_cpu_context)
9072 goto free_dev;
9073
9074 for_each_possible_cpu(cpu) {
9075 struct perf_cpu_context *cpuctx;
9076
9077 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9078 __perf_event_init_context(&cpuctx->ctx);
9079 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9080 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9081 cpuctx->ctx.pmu = pmu;
9082
9083 __perf_mux_hrtimer_init(cpuctx, cpu);
9084 }
9085
9086 got_cpu_context:
9087 if (!pmu->start_txn) {
9088 if (pmu->pmu_enable) {
9089 /*
9090 * If we have pmu_enable/pmu_disable calls, install
9091 * transaction stubs that use that to try and batch
9092 * hardware accesses.
9093 */
9094 pmu->start_txn = perf_pmu_start_txn;
9095 pmu->commit_txn = perf_pmu_commit_txn;
9096 pmu->cancel_txn = perf_pmu_cancel_txn;
9097 } else {
9098 pmu->start_txn = perf_pmu_nop_txn;
9099 pmu->commit_txn = perf_pmu_nop_int;
9100 pmu->cancel_txn = perf_pmu_nop_void;
9101 }
9102 }
9103
9104 if (!pmu->pmu_enable) {
9105 pmu->pmu_enable = perf_pmu_nop_void;
9106 pmu->pmu_disable = perf_pmu_nop_void;
9107 }
9108
9109 if (!pmu->event_idx)
9110 pmu->event_idx = perf_event_idx_default;
9111
9112 list_add_rcu(&pmu->entry, &pmus);
9113 atomic_set(&pmu->exclusive_cnt, 0);
9114 ret = 0;
9115 unlock:
9116 mutex_unlock(&pmus_lock);
9117
9118 return ret;
9119
9120 free_dev:
9121 device_del(pmu->dev);
9122 put_device(pmu->dev);
9123
9124 free_idr:
9125 if (pmu->type >= PERF_TYPE_MAX)
9126 idr_remove(&pmu_idr, pmu->type);
9127
9128 free_pdc:
9129 free_percpu(pmu->pmu_disable_count);
9130 goto unlock;
9131 }
9132 EXPORT_SYMBOL_GPL(perf_pmu_register);
9133
9134 void perf_pmu_unregister(struct pmu *pmu)
9135 {
9136 int remove_device;
9137
9138 mutex_lock(&pmus_lock);
9139 remove_device = pmu_bus_running;
9140 list_del_rcu(&pmu->entry);
9141 mutex_unlock(&pmus_lock);
9142
9143 /*
9144 * We dereference the pmu list under both SRCU and regular RCU, so
9145 * synchronize against both of those.
9146 */
9147 synchronize_srcu(&pmus_srcu);
9148 synchronize_rcu();
9149
9150 free_percpu(pmu->pmu_disable_count);
9151 if (pmu->type >= PERF_TYPE_MAX)
9152 idr_remove(&pmu_idr, pmu->type);
9153 if (remove_device) {
9154 if (pmu->nr_addr_filters)
9155 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9156 device_del(pmu->dev);
9157 put_device(pmu->dev);
9158 }
9159 free_pmu_context(pmu);
9160 }
9161 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9162
9163 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9164 {
9165 struct perf_event_context *ctx = NULL;
9166 int ret;
9167
9168 if (!try_module_get(pmu->module))
9169 return -ENODEV;
9170
9171 if (event->group_leader != event) {
9172 /*
9173 * This ctx->mutex can nest when we're called through
9174 * inheritance. See the perf_event_ctx_lock_nested() comment.
9175 */
9176 ctx = perf_event_ctx_lock_nested(event->group_leader,
9177 SINGLE_DEPTH_NESTING);
9178 BUG_ON(!ctx);
9179 }
9180
9181 event->pmu = pmu;
9182 ret = pmu->event_init(event);
9183
9184 if (ctx)
9185 perf_event_ctx_unlock(event->group_leader, ctx);
9186
9187 if (ret)
9188 module_put(pmu->module);
9189
9190 return ret;
9191 }
9192
9193 static struct pmu *perf_init_event(struct perf_event *event)
9194 {
9195 struct pmu *pmu;
9196 int idx;
9197 int ret;
9198
9199 idx = srcu_read_lock(&pmus_srcu);
9200
9201 /* Try parent's PMU first: */
9202 if (event->parent && event->parent->pmu) {
9203 pmu = event->parent->pmu;
9204 ret = perf_try_init_event(pmu, event);
9205 if (!ret)
9206 goto unlock;
9207 }
9208
9209 rcu_read_lock();
9210 pmu = idr_find(&pmu_idr, event->attr.type);
9211 rcu_read_unlock();
9212 if (pmu) {
9213 ret = perf_try_init_event(pmu, event);
9214 if (ret)
9215 pmu = ERR_PTR(ret);
9216 goto unlock;
9217 }
9218
9219 list_for_each_entry_rcu(pmu, &pmus, entry) {
9220 ret = perf_try_init_event(pmu, event);
9221 if (!ret)
9222 goto unlock;
9223
9224 if (ret != -ENOENT) {
9225 pmu = ERR_PTR(ret);
9226 goto unlock;
9227 }
9228 }
9229 pmu = ERR_PTR(-ENOENT);
9230 unlock:
9231 srcu_read_unlock(&pmus_srcu, idx);
9232
9233 return pmu;
9234 }
9235
9236 static void attach_sb_event(struct perf_event *event)
9237 {
9238 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9239
9240 raw_spin_lock(&pel->lock);
9241 list_add_rcu(&event->sb_list, &pel->list);
9242 raw_spin_unlock(&pel->lock);
9243 }
9244
9245 /*
9246 * We keep a list of all !task (and therefore per-cpu) events
9247 * that need to receive side-band records.
9248 *
9249 * This avoids having to scan all the various PMU per-cpu contexts
9250 * looking for them.
9251 */
9252 static void account_pmu_sb_event(struct perf_event *event)
9253 {
9254 if (is_sb_event(event))
9255 attach_sb_event(event);
9256 }
9257
9258 static void account_event_cpu(struct perf_event *event, int cpu)
9259 {
9260 if (event->parent)
9261 return;
9262
9263 if (is_cgroup_event(event))
9264 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9265 }
9266
9267 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9268 static void account_freq_event_nohz(void)
9269 {
9270 #ifdef CONFIG_NO_HZ_FULL
9271 /* Lock so we don't race with concurrent unaccount */
9272 spin_lock(&nr_freq_lock);
9273 if (atomic_inc_return(&nr_freq_events) == 1)
9274 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9275 spin_unlock(&nr_freq_lock);
9276 #endif
9277 }
9278
9279 static void account_freq_event(void)
9280 {
9281 if (tick_nohz_full_enabled())
9282 account_freq_event_nohz();
9283 else
9284 atomic_inc(&nr_freq_events);
9285 }
9286
9287
9288 static void account_event(struct perf_event *event)
9289 {
9290 bool inc = false;
9291
9292 if (event->parent)
9293 return;
9294
9295 if (event->attach_state & PERF_ATTACH_TASK)
9296 inc = true;
9297 if (event->attr.mmap || event->attr.mmap_data)
9298 atomic_inc(&nr_mmap_events);
9299 if (event->attr.comm)
9300 atomic_inc(&nr_comm_events);
9301 if (event->attr.namespaces)
9302 atomic_inc(&nr_namespaces_events);
9303 if (event->attr.task)
9304 atomic_inc(&nr_task_events);
9305 if (event->attr.freq)
9306 account_freq_event();
9307 if (event->attr.context_switch) {
9308 atomic_inc(&nr_switch_events);
9309 inc = true;
9310 }
9311 if (has_branch_stack(event))
9312 inc = true;
9313 if (is_cgroup_event(event))
9314 inc = true;
9315
9316 if (inc) {
9317 if (atomic_inc_not_zero(&perf_sched_count))
9318 goto enabled;
9319
9320 mutex_lock(&perf_sched_mutex);
9321 if (!atomic_read(&perf_sched_count)) {
9322 static_branch_enable(&perf_sched_events);
9323 /*
9324 * Guarantee that all CPUs observe they key change and
9325 * call the perf scheduling hooks before proceeding to
9326 * install events that need them.
9327 */
9328 synchronize_sched();
9329 }
9330 /*
9331 * Now that we have waited for the sync_sched(), allow further
9332 * increments to by-pass the mutex.
9333 */
9334 atomic_inc(&perf_sched_count);
9335 mutex_unlock(&perf_sched_mutex);
9336 }
9337 enabled:
9338
9339 account_event_cpu(event, event->cpu);
9340
9341 account_pmu_sb_event(event);
9342 }
9343
9344 /*
9345 * Allocate and initialize a event structure
9346 */
9347 static struct perf_event *
9348 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9349 struct task_struct *task,
9350 struct perf_event *group_leader,
9351 struct perf_event *parent_event,
9352 perf_overflow_handler_t overflow_handler,
9353 void *context, int cgroup_fd)
9354 {
9355 struct pmu *pmu;
9356 struct perf_event *event;
9357 struct hw_perf_event *hwc;
9358 long err = -EINVAL;
9359
9360 if ((unsigned)cpu >= nr_cpu_ids) {
9361 if (!task || cpu != -1)
9362 return ERR_PTR(-EINVAL);
9363 }
9364
9365 event = kzalloc(sizeof(*event), GFP_KERNEL);
9366 if (!event)
9367 return ERR_PTR(-ENOMEM);
9368
9369 /*
9370 * Single events are their own group leaders, with an
9371 * empty sibling list:
9372 */
9373 if (!group_leader)
9374 group_leader = event;
9375
9376 mutex_init(&event->child_mutex);
9377 INIT_LIST_HEAD(&event->child_list);
9378
9379 INIT_LIST_HEAD(&event->group_entry);
9380 INIT_LIST_HEAD(&event->event_entry);
9381 INIT_LIST_HEAD(&event->sibling_list);
9382 INIT_LIST_HEAD(&event->rb_entry);
9383 INIT_LIST_HEAD(&event->active_entry);
9384 INIT_LIST_HEAD(&event->addr_filters.list);
9385 INIT_HLIST_NODE(&event->hlist_entry);
9386
9387
9388 init_waitqueue_head(&event->waitq);
9389 init_irq_work(&event->pending, perf_pending_event);
9390
9391 mutex_init(&event->mmap_mutex);
9392 raw_spin_lock_init(&event->addr_filters.lock);
9393
9394 atomic_long_set(&event->refcount, 1);
9395 event->cpu = cpu;
9396 event->attr = *attr;
9397 event->group_leader = group_leader;
9398 event->pmu = NULL;
9399 event->oncpu = -1;
9400
9401 event->parent = parent_event;
9402
9403 event->ns = get_pid_ns(task_active_pid_ns(current));
9404 event->id = atomic64_inc_return(&perf_event_id);
9405
9406 event->state = PERF_EVENT_STATE_INACTIVE;
9407
9408 if (task) {
9409 event->attach_state = PERF_ATTACH_TASK;
9410 /*
9411 * XXX pmu::event_init needs to know what task to account to
9412 * and we cannot use the ctx information because we need the
9413 * pmu before we get a ctx.
9414 */
9415 event->hw.target = task;
9416 }
9417
9418 event->clock = &local_clock;
9419 if (parent_event)
9420 event->clock = parent_event->clock;
9421
9422 if (!overflow_handler && parent_event) {
9423 overflow_handler = parent_event->overflow_handler;
9424 context = parent_event->overflow_handler_context;
9425 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9426 if (overflow_handler == bpf_overflow_handler) {
9427 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9428
9429 if (IS_ERR(prog)) {
9430 err = PTR_ERR(prog);
9431 goto err_ns;
9432 }
9433 event->prog = prog;
9434 event->orig_overflow_handler =
9435 parent_event->orig_overflow_handler;
9436 }
9437 #endif
9438 }
9439
9440 if (overflow_handler) {
9441 event->overflow_handler = overflow_handler;
9442 event->overflow_handler_context = context;
9443 } else if (is_write_backward(event)){
9444 event->overflow_handler = perf_event_output_backward;
9445 event->overflow_handler_context = NULL;
9446 } else {
9447 event->overflow_handler = perf_event_output_forward;
9448 event->overflow_handler_context = NULL;
9449 }
9450
9451 perf_event__state_init(event);
9452
9453 pmu = NULL;
9454
9455 hwc = &event->hw;
9456 hwc->sample_period = attr->sample_period;
9457 if (attr->freq && attr->sample_freq)
9458 hwc->sample_period = 1;
9459 hwc->last_period = hwc->sample_period;
9460
9461 local64_set(&hwc->period_left, hwc->sample_period);
9462
9463 /*
9464 * We currently do not support PERF_SAMPLE_READ on inherited events.
9465 * See perf_output_read().
9466 */
9467 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9468 goto err_ns;
9469
9470 if (!has_branch_stack(event))
9471 event->attr.branch_sample_type = 0;
9472
9473 if (cgroup_fd != -1) {
9474 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9475 if (err)
9476 goto err_ns;
9477 }
9478
9479 pmu = perf_init_event(event);
9480 if (IS_ERR(pmu)) {
9481 err = PTR_ERR(pmu);
9482 goto err_ns;
9483 }
9484
9485 err = exclusive_event_init(event);
9486 if (err)
9487 goto err_pmu;
9488
9489 if (has_addr_filter(event)) {
9490 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9491 sizeof(unsigned long),
9492 GFP_KERNEL);
9493 if (!event->addr_filters_offs) {
9494 err = -ENOMEM;
9495 goto err_per_task;
9496 }
9497
9498 /* force hw sync on the address filters */
9499 event->addr_filters_gen = 1;
9500 }
9501
9502 if (!event->parent) {
9503 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9504 err = get_callchain_buffers(attr->sample_max_stack);
9505 if (err)
9506 goto err_addr_filters;
9507 }
9508 }
9509
9510 /* symmetric to unaccount_event() in _free_event() */
9511 account_event(event);
9512
9513 return event;
9514
9515 err_addr_filters:
9516 kfree(event->addr_filters_offs);
9517
9518 err_per_task:
9519 exclusive_event_destroy(event);
9520
9521 err_pmu:
9522 if (event->destroy)
9523 event->destroy(event);
9524 module_put(pmu->module);
9525 err_ns:
9526 if (is_cgroup_event(event))
9527 perf_detach_cgroup(event);
9528 if (event->ns)
9529 put_pid_ns(event->ns);
9530 kfree(event);
9531
9532 return ERR_PTR(err);
9533 }
9534
9535 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9536 struct perf_event_attr *attr)
9537 {
9538 u32 size;
9539 int ret;
9540
9541 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9542 return -EFAULT;
9543
9544 /*
9545 * zero the full structure, so that a short copy will be nice.
9546 */
9547 memset(attr, 0, sizeof(*attr));
9548
9549 ret = get_user(size, &uattr->size);
9550 if (ret)
9551 return ret;
9552
9553 if (size > PAGE_SIZE) /* silly large */
9554 goto err_size;
9555
9556 if (!size) /* abi compat */
9557 size = PERF_ATTR_SIZE_VER0;
9558
9559 if (size < PERF_ATTR_SIZE_VER0)
9560 goto err_size;
9561
9562 /*
9563 * If we're handed a bigger struct than we know of,
9564 * ensure all the unknown bits are 0 - i.e. new
9565 * user-space does not rely on any kernel feature
9566 * extensions we dont know about yet.
9567 */
9568 if (size > sizeof(*attr)) {
9569 unsigned char __user *addr;
9570 unsigned char __user *end;
9571 unsigned char val;
9572
9573 addr = (void __user *)uattr + sizeof(*attr);
9574 end = (void __user *)uattr + size;
9575
9576 for (; addr < end; addr++) {
9577 ret = get_user(val, addr);
9578 if (ret)
9579 return ret;
9580 if (val)
9581 goto err_size;
9582 }
9583 size = sizeof(*attr);
9584 }
9585
9586 ret = copy_from_user(attr, uattr, size);
9587 if (ret)
9588 return -EFAULT;
9589
9590 if (attr->__reserved_1)
9591 return -EINVAL;
9592
9593 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9594 return -EINVAL;
9595
9596 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9597 return -EINVAL;
9598
9599 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9600 u64 mask = attr->branch_sample_type;
9601
9602 /* only using defined bits */
9603 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9604 return -EINVAL;
9605
9606 /* at least one branch bit must be set */
9607 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9608 return -EINVAL;
9609
9610 /* propagate priv level, when not set for branch */
9611 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9612
9613 /* exclude_kernel checked on syscall entry */
9614 if (!attr->exclude_kernel)
9615 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9616
9617 if (!attr->exclude_user)
9618 mask |= PERF_SAMPLE_BRANCH_USER;
9619
9620 if (!attr->exclude_hv)
9621 mask |= PERF_SAMPLE_BRANCH_HV;
9622 /*
9623 * adjust user setting (for HW filter setup)
9624 */
9625 attr->branch_sample_type = mask;
9626 }
9627 /* privileged levels capture (kernel, hv): check permissions */
9628 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9629 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9630 return -EACCES;
9631 }
9632
9633 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9634 ret = perf_reg_validate(attr->sample_regs_user);
9635 if (ret)
9636 return ret;
9637 }
9638
9639 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9640 if (!arch_perf_have_user_stack_dump())
9641 return -ENOSYS;
9642
9643 /*
9644 * We have __u32 type for the size, but so far
9645 * we can only use __u16 as maximum due to the
9646 * __u16 sample size limit.
9647 */
9648 if (attr->sample_stack_user >= USHRT_MAX)
9649 ret = -EINVAL;
9650 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9651 ret = -EINVAL;
9652 }
9653
9654 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9655 ret = perf_reg_validate(attr->sample_regs_intr);
9656 out:
9657 return ret;
9658
9659 err_size:
9660 put_user(sizeof(*attr), &uattr->size);
9661 ret = -E2BIG;
9662 goto out;
9663 }
9664
9665 static int
9666 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9667 {
9668 struct ring_buffer *rb = NULL;
9669 int ret = -EINVAL;
9670
9671 if (!output_event)
9672 goto set;
9673
9674 /* don't allow circular references */
9675 if (event == output_event)
9676 goto out;
9677
9678 /*
9679 * Don't allow cross-cpu buffers
9680 */
9681 if (output_event->cpu != event->cpu)
9682 goto out;
9683
9684 /*
9685 * If its not a per-cpu rb, it must be the same task.
9686 */
9687 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9688 goto out;
9689
9690 /*
9691 * Mixing clocks in the same buffer is trouble you don't need.
9692 */
9693 if (output_event->clock != event->clock)
9694 goto out;
9695
9696 /*
9697 * Either writing ring buffer from beginning or from end.
9698 * Mixing is not allowed.
9699 */
9700 if (is_write_backward(output_event) != is_write_backward(event))
9701 goto out;
9702
9703 /*
9704 * If both events generate aux data, they must be on the same PMU
9705 */
9706 if (has_aux(event) && has_aux(output_event) &&
9707 event->pmu != output_event->pmu)
9708 goto out;
9709
9710 set:
9711 mutex_lock(&event->mmap_mutex);
9712 /* Can't redirect output if we've got an active mmap() */
9713 if (atomic_read(&event->mmap_count))
9714 goto unlock;
9715
9716 if (output_event) {
9717 /* get the rb we want to redirect to */
9718 rb = ring_buffer_get(output_event);
9719 if (!rb)
9720 goto unlock;
9721 }
9722
9723 ring_buffer_attach(event, rb);
9724
9725 ret = 0;
9726 unlock:
9727 mutex_unlock(&event->mmap_mutex);
9728
9729 out:
9730 return ret;
9731 }
9732
9733 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9734 {
9735 if (b < a)
9736 swap(a, b);
9737
9738 mutex_lock(a);
9739 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9740 }
9741
9742 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9743 {
9744 bool nmi_safe = false;
9745
9746 switch (clk_id) {
9747 case CLOCK_MONOTONIC:
9748 event->clock = &ktime_get_mono_fast_ns;
9749 nmi_safe = true;
9750 break;
9751
9752 case CLOCK_MONOTONIC_RAW:
9753 event->clock = &ktime_get_raw_fast_ns;
9754 nmi_safe = true;
9755 break;
9756
9757 case CLOCK_REALTIME:
9758 event->clock = &ktime_get_real_ns;
9759 break;
9760
9761 case CLOCK_BOOTTIME:
9762 event->clock = &ktime_get_boot_ns;
9763 break;
9764
9765 case CLOCK_TAI:
9766 event->clock = &ktime_get_tai_ns;
9767 break;
9768
9769 default:
9770 return -EINVAL;
9771 }
9772
9773 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9774 return -EINVAL;
9775
9776 return 0;
9777 }
9778
9779 /*
9780 * Variation on perf_event_ctx_lock_nested(), except we take two context
9781 * mutexes.
9782 */
9783 static struct perf_event_context *
9784 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9785 struct perf_event_context *ctx)
9786 {
9787 struct perf_event_context *gctx;
9788
9789 again:
9790 rcu_read_lock();
9791 gctx = READ_ONCE(group_leader->ctx);
9792 if (!atomic_inc_not_zero(&gctx->refcount)) {
9793 rcu_read_unlock();
9794 goto again;
9795 }
9796 rcu_read_unlock();
9797
9798 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9799
9800 if (group_leader->ctx != gctx) {
9801 mutex_unlock(&ctx->mutex);
9802 mutex_unlock(&gctx->mutex);
9803 put_ctx(gctx);
9804 goto again;
9805 }
9806
9807 return gctx;
9808 }
9809
9810 /**
9811 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9812 *
9813 * @attr_uptr: event_id type attributes for monitoring/sampling
9814 * @pid: target pid
9815 * @cpu: target cpu
9816 * @group_fd: group leader event fd
9817 */
9818 SYSCALL_DEFINE5(perf_event_open,
9819 struct perf_event_attr __user *, attr_uptr,
9820 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9821 {
9822 struct perf_event *group_leader = NULL, *output_event = NULL;
9823 struct perf_event *event, *sibling;
9824 struct perf_event_attr attr;
9825 struct perf_event_context *ctx, *uninitialized_var(gctx);
9826 struct file *event_file = NULL;
9827 struct fd group = {NULL, 0};
9828 struct task_struct *task = NULL;
9829 struct pmu *pmu;
9830 int event_fd;
9831 int move_group = 0;
9832 int err;
9833 int f_flags = O_RDWR;
9834 int cgroup_fd = -1;
9835
9836 /* for future expandability... */
9837 if (flags & ~PERF_FLAG_ALL)
9838 return -EINVAL;
9839
9840 err = perf_copy_attr(attr_uptr, &attr);
9841 if (err)
9842 return err;
9843
9844 if (!attr.exclude_kernel) {
9845 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9846 return -EACCES;
9847 }
9848
9849 if (attr.namespaces) {
9850 if (!capable(CAP_SYS_ADMIN))
9851 return -EACCES;
9852 }
9853
9854 if (attr.freq) {
9855 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9856 return -EINVAL;
9857 } else {
9858 if (attr.sample_period & (1ULL << 63))
9859 return -EINVAL;
9860 }
9861
9862 if (!attr.sample_max_stack)
9863 attr.sample_max_stack = sysctl_perf_event_max_stack;
9864
9865 /*
9866 * In cgroup mode, the pid argument is used to pass the fd
9867 * opened to the cgroup directory in cgroupfs. The cpu argument
9868 * designates the cpu on which to monitor threads from that
9869 * cgroup.
9870 */
9871 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9872 return -EINVAL;
9873
9874 if (flags & PERF_FLAG_FD_CLOEXEC)
9875 f_flags |= O_CLOEXEC;
9876
9877 event_fd = get_unused_fd_flags(f_flags);
9878 if (event_fd < 0)
9879 return event_fd;
9880
9881 if (group_fd != -1) {
9882 err = perf_fget_light(group_fd, &group);
9883 if (err)
9884 goto err_fd;
9885 group_leader = group.file->private_data;
9886 if (flags & PERF_FLAG_FD_OUTPUT)
9887 output_event = group_leader;
9888 if (flags & PERF_FLAG_FD_NO_GROUP)
9889 group_leader = NULL;
9890 }
9891
9892 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9893 task = find_lively_task_by_vpid(pid);
9894 if (IS_ERR(task)) {
9895 err = PTR_ERR(task);
9896 goto err_group_fd;
9897 }
9898 }
9899
9900 if (task && group_leader &&
9901 group_leader->attr.inherit != attr.inherit) {
9902 err = -EINVAL;
9903 goto err_task;
9904 }
9905
9906 get_online_cpus();
9907
9908 if (task) {
9909 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9910 if (err)
9911 goto err_cpus;
9912
9913 /*
9914 * Reuse ptrace permission checks for now.
9915 *
9916 * We must hold cred_guard_mutex across this and any potential
9917 * perf_install_in_context() call for this new event to
9918 * serialize against exec() altering our credentials (and the
9919 * perf_event_exit_task() that could imply).
9920 */
9921 err = -EACCES;
9922 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9923 goto err_cred;
9924 }
9925
9926 if (flags & PERF_FLAG_PID_CGROUP)
9927 cgroup_fd = pid;
9928
9929 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9930 NULL, NULL, cgroup_fd);
9931 if (IS_ERR(event)) {
9932 err = PTR_ERR(event);
9933 goto err_cred;
9934 }
9935
9936 if (is_sampling_event(event)) {
9937 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9938 err = -EOPNOTSUPP;
9939 goto err_alloc;
9940 }
9941 }
9942
9943 /*
9944 * Special case software events and allow them to be part of
9945 * any hardware group.
9946 */
9947 pmu = event->pmu;
9948
9949 if (attr.use_clockid) {
9950 err = perf_event_set_clock(event, attr.clockid);
9951 if (err)
9952 goto err_alloc;
9953 }
9954
9955 if (pmu->task_ctx_nr == perf_sw_context)
9956 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9957
9958 if (group_leader &&
9959 (is_software_event(event) != is_software_event(group_leader))) {
9960 if (is_software_event(event)) {
9961 /*
9962 * If event and group_leader are not both a software
9963 * event, and event is, then group leader is not.
9964 *
9965 * Allow the addition of software events to !software
9966 * groups, this is safe because software events never
9967 * fail to schedule.
9968 */
9969 pmu = group_leader->pmu;
9970 } else if (is_software_event(group_leader) &&
9971 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9972 /*
9973 * In case the group is a pure software group, and we
9974 * try to add a hardware event, move the whole group to
9975 * the hardware context.
9976 */
9977 move_group = 1;
9978 }
9979 }
9980
9981 /*
9982 * Get the target context (task or percpu):
9983 */
9984 ctx = find_get_context(pmu, task, event);
9985 if (IS_ERR(ctx)) {
9986 err = PTR_ERR(ctx);
9987 goto err_alloc;
9988 }
9989
9990 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9991 err = -EBUSY;
9992 goto err_context;
9993 }
9994
9995 /*
9996 * Look up the group leader (we will attach this event to it):
9997 */
9998 if (group_leader) {
9999 err = -EINVAL;
10000
10001 /*
10002 * Do not allow a recursive hierarchy (this new sibling
10003 * becoming part of another group-sibling):
10004 */
10005 if (group_leader->group_leader != group_leader)
10006 goto err_context;
10007
10008 /* All events in a group should have the same clock */
10009 if (group_leader->clock != event->clock)
10010 goto err_context;
10011
10012 /*
10013 * Do not allow to attach to a group in a different
10014 * task or CPU context:
10015 */
10016 if (move_group) {
10017 /*
10018 * Make sure we're both on the same task, or both
10019 * per-cpu events.
10020 */
10021 if (group_leader->ctx->task != ctx->task)
10022 goto err_context;
10023
10024 /*
10025 * Make sure we're both events for the same CPU;
10026 * grouping events for different CPUs is broken; since
10027 * you can never concurrently schedule them anyhow.
10028 */
10029 if (group_leader->cpu != event->cpu)
10030 goto err_context;
10031 } else {
10032 if (group_leader->ctx != ctx)
10033 goto err_context;
10034 }
10035
10036 /*
10037 * Only a group leader can be exclusive or pinned
10038 */
10039 if (attr.exclusive || attr.pinned)
10040 goto err_context;
10041 }
10042
10043 if (output_event) {
10044 err = perf_event_set_output(event, output_event);
10045 if (err)
10046 goto err_context;
10047 }
10048
10049 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10050 f_flags);
10051 if (IS_ERR(event_file)) {
10052 err = PTR_ERR(event_file);
10053 event_file = NULL;
10054 goto err_context;
10055 }
10056
10057 if (move_group) {
10058 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10059
10060 if (gctx->task == TASK_TOMBSTONE) {
10061 err = -ESRCH;
10062 goto err_locked;
10063 }
10064
10065 /*
10066 * Check if we raced against another sys_perf_event_open() call
10067 * moving the software group underneath us.
10068 */
10069 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10070 /*
10071 * If someone moved the group out from under us, check
10072 * if this new event wound up on the same ctx, if so
10073 * its the regular !move_group case, otherwise fail.
10074 */
10075 if (gctx != ctx) {
10076 err = -EINVAL;
10077 goto err_locked;
10078 } else {
10079 perf_event_ctx_unlock(group_leader, gctx);
10080 move_group = 0;
10081 }
10082 }
10083 } else {
10084 mutex_lock(&ctx->mutex);
10085 }
10086
10087 if (ctx->task == TASK_TOMBSTONE) {
10088 err = -ESRCH;
10089 goto err_locked;
10090 }
10091
10092 if (!perf_event_validate_size(event)) {
10093 err = -E2BIG;
10094 goto err_locked;
10095 }
10096
10097 /*
10098 * Must be under the same ctx::mutex as perf_install_in_context(),
10099 * because we need to serialize with concurrent event creation.
10100 */
10101 if (!exclusive_event_installable(event, ctx)) {
10102 /* exclusive and group stuff are assumed mutually exclusive */
10103 WARN_ON_ONCE(move_group);
10104
10105 err = -EBUSY;
10106 goto err_locked;
10107 }
10108
10109 WARN_ON_ONCE(ctx->parent_ctx);
10110
10111 /*
10112 * This is the point on no return; we cannot fail hereafter. This is
10113 * where we start modifying current state.
10114 */
10115
10116 if (move_group) {
10117 /*
10118 * See perf_event_ctx_lock() for comments on the details
10119 * of swizzling perf_event::ctx.
10120 */
10121 perf_remove_from_context(group_leader, 0);
10122 put_ctx(gctx);
10123
10124 list_for_each_entry(sibling, &group_leader->sibling_list,
10125 group_entry) {
10126 perf_remove_from_context(sibling, 0);
10127 put_ctx(gctx);
10128 }
10129
10130 /*
10131 * Wait for everybody to stop referencing the events through
10132 * the old lists, before installing it on new lists.
10133 */
10134 synchronize_rcu();
10135
10136 /*
10137 * Install the group siblings before the group leader.
10138 *
10139 * Because a group leader will try and install the entire group
10140 * (through the sibling list, which is still in-tact), we can
10141 * end up with siblings installed in the wrong context.
10142 *
10143 * By installing siblings first we NO-OP because they're not
10144 * reachable through the group lists.
10145 */
10146 list_for_each_entry(sibling, &group_leader->sibling_list,
10147 group_entry) {
10148 perf_event__state_init(sibling);
10149 perf_install_in_context(ctx, sibling, sibling->cpu);
10150 get_ctx(ctx);
10151 }
10152
10153 /*
10154 * Removing from the context ends up with disabled
10155 * event. What we want here is event in the initial
10156 * startup state, ready to be add into new context.
10157 */
10158 perf_event__state_init(group_leader);
10159 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10160 get_ctx(ctx);
10161 }
10162
10163 /*
10164 * Precalculate sample_data sizes; do while holding ctx::mutex such
10165 * that we're serialized against further additions and before
10166 * perf_install_in_context() which is the point the event is active and
10167 * can use these values.
10168 */
10169 perf_event__header_size(event);
10170 perf_event__id_header_size(event);
10171
10172 event->owner = current;
10173
10174 perf_install_in_context(ctx, event, event->cpu);
10175 perf_unpin_context(ctx);
10176
10177 if (move_group)
10178 perf_event_ctx_unlock(group_leader, gctx);
10179 mutex_unlock(&ctx->mutex);
10180
10181 if (task) {
10182 mutex_unlock(&task->signal->cred_guard_mutex);
10183 put_task_struct(task);
10184 }
10185
10186 put_online_cpus();
10187
10188 mutex_lock(&current->perf_event_mutex);
10189 list_add_tail(&event->owner_entry, &current->perf_event_list);
10190 mutex_unlock(&current->perf_event_mutex);
10191
10192 /*
10193 * Drop the reference on the group_event after placing the
10194 * new event on the sibling_list. This ensures destruction
10195 * of the group leader will find the pointer to itself in
10196 * perf_group_detach().
10197 */
10198 fdput(group);
10199 fd_install(event_fd, event_file);
10200 return event_fd;
10201
10202 err_locked:
10203 if (move_group)
10204 perf_event_ctx_unlock(group_leader, gctx);
10205 mutex_unlock(&ctx->mutex);
10206 /* err_file: */
10207 fput(event_file);
10208 err_context:
10209 perf_unpin_context(ctx);
10210 put_ctx(ctx);
10211 err_alloc:
10212 /*
10213 * If event_file is set, the fput() above will have called ->release()
10214 * and that will take care of freeing the event.
10215 */
10216 if (!event_file)
10217 free_event(event);
10218 err_cred:
10219 if (task)
10220 mutex_unlock(&task->signal->cred_guard_mutex);
10221 err_cpus:
10222 put_online_cpus();
10223 err_task:
10224 if (task)
10225 put_task_struct(task);
10226 err_group_fd:
10227 fdput(group);
10228 err_fd:
10229 put_unused_fd(event_fd);
10230 return err;
10231 }
10232
10233 /**
10234 * perf_event_create_kernel_counter
10235 *
10236 * @attr: attributes of the counter to create
10237 * @cpu: cpu in which the counter is bound
10238 * @task: task to profile (NULL for percpu)
10239 */
10240 struct perf_event *
10241 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10242 struct task_struct *task,
10243 perf_overflow_handler_t overflow_handler,
10244 void *context)
10245 {
10246 struct perf_event_context *ctx;
10247 struct perf_event *event;
10248 int err;
10249
10250 /*
10251 * Get the target context (task or percpu):
10252 */
10253
10254 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10255 overflow_handler, context, -1);
10256 if (IS_ERR(event)) {
10257 err = PTR_ERR(event);
10258 goto err;
10259 }
10260
10261 /* Mark owner so we could distinguish it from user events. */
10262 event->owner = TASK_TOMBSTONE;
10263
10264 ctx = find_get_context(event->pmu, task, event);
10265 if (IS_ERR(ctx)) {
10266 err = PTR_ERR(ctx);
10267 goto err_free;
10268 }
10269
10270 WARN_ON_ONCE(ctx->parent_ctx);
10271 mutex_lock(&ctx->mutex);
10272 if (ctx->task == TASK_TOMBSTONE) {
10273 err = -ESRCH;
10274 goto err_unlock;
10275 }
10276
10277 if (!exclusive_event_installable(event, ctx)) {
10278 err = -EBUSY;
10279 goto err_unlock;
10280 }
10281
10282 perf_install_in_context(ctx, event, cpu);
10283 perf_unpin_context(ctx);
10284 mutex_unlock(&ctx->mutex);
10285
10286 return event;
10287
10288 err_unlock:
10289 mutex_unlock(&ctx->mutex);
10290 perf_unpin_context(ctx);
10291 put_ctx(ctx);
10292 err_free:
10293 free_event(event);
10294 err:
10295 return ERR_PTR(err);
10296 }
10297 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10298
10299 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10300 {
10301 struct perf_event_context *src_ctx;
10302 struct perf_event_context *dst_ctx;
10303 struct perf_event *event, *tmp;
10304 LIST_HEAD(events);
10305
10306 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10307 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10308
10309 /*
10310 * See perf_event_ctx_lock() for comments on the details
10311 * of swizzling perf_event::ctx.
10312 */
10313 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10314 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10315 event_entry) {
10316 perf_remove_from_context(event, 0);
10317 unaccount_event_cpu(event, src_cpu);
10318 put_ctx(src_ctx);
10319 list_add(&event->migrate_entry, &events);
10320 }
10321
10322 /*
10323 * Wait for the events to quiesce before re-instating them.
10324 */
10325 synchronize_rcu();
10326
10327 /*
10328 * Re-instate events in 2 passes.
10329 *
10330 * Skip over group leaders and only install siblings on this first
10331 * pass, siblings will not get enabled without a leader, however a
10332 * leader will enable its siblings, even if those are still on the old
10333 * context.
10334 */
10335 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10336 if (event->group_leader == event)
10337 continue;
10338
10339 list_del(&event->migrate_entry);
10340 if (event->state >= PERF_EVENT_STATE_OFF)
10341 event->state = PERF_EVENT_STATE_INACTIVE;
10342 account_event_cpu(event, dst_cpu);
10343 perf_install_in_context(dst_ctx, event, dst_cpu);
10344 get_ctx(dst_ctx);
10345 }
10346
10347 /*
10348 * Once all the siblings are setup properly, install the group leaders
10349 * to make it go.
10350 */
10351 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10352 list_del(&event->migrate_entry);
10353 if (event->state >= PERF_EVENT_STATE_OFF)
10354 event->state = PERF_EVENT_STATE_INACTIVE;
10355 account_event_cpu(event, dst_cpu);
10356 perf_install_in_context(dst_ctx, event, dst_cpu);
10357 get_ctx(dst_ctx);
10358 }
10359 mutex_unlock(&dst_ctx->mutex);
10360 mutex_unlock(&src_ctx->mutex);
10361 }
10362 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10363
10364 static void sync_child_event(struct perf_event *child_event,
10365 struct task_struct *child)
10366 {
10367 struct perf_event *parent_event = child_event->parent;
10368 u64 child_val;
10369
10370 if (child_event->attr.inherit_stat)
10371 perf_event_read_event(child_event, child);
10372
10373 child_val = perf_event_count(child_event);
10374
10375 /*
10376 * Add back the child's count to the parent's count:
10377 */
10378 atomic64_add(child_val, &parent_event->child_count);
10379 atomic64_add(child_event->total_time_enabled,
10380 &parent_event->child_total_time_enabled);
10381 atomic64_add(child_event->total_time_running,
10382 &parent_event->child_total_time_running);
10383 }
10384
10385 static void
10386 perf_event_exit_event(struct perf_event *child_event,
10387 struct perf_event_context *child_ctx,
10388 struct task_struct *child)
10389 {
10390 struct perf_event *parent_event = child_event->parent;
10391
10392 /*
10393 * Do not destroy the 'original' grouping; because of the context
10394 * switch optimization the original events could've ended up in a
10395 * random child task.
10396 *
10397 * If we were to destroy the original group, all group related
10398 * operations would cease to function properly after this random
10399 * child dies.
10400 *
10401 * Do destroy all inherited groups, we don't care about those
10402 * and being thorough is better.
10403 */
10404 raw_spin_lock_irq(&child_ctx->lock);
10405 WARN_ON_ONCE(child_ctx->is_active);
10406
10407 if (parent_event)
10408 perf_group_detach(child_event);
10409 list_del_event(child_event, child_ctx);
10410 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10411 raw_spin_unlock_irq(&child_ctx->lock);
10412
10413 /*
10414 * Parent events are governed by their filedesc, retain them.
10415 */
10416 if (!parent_event) {
10417 perf_event_wakeup(child_event);
10418 return;
10419 }
10420 /*
10421 * Child events can be cleaned up.
10422 */
10423
10424 sync_child_event(child_event, child);
10425
10426 /*
10427 * Remove this event from the parent's list
10428 */
10429 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10430 mutex_lock(&parent_event->child_mutex);
10431 list_del_init(&child_event->child_list);
10432 mutex_unlock(&parent_event->child_mutex);
10433
10434 /*
10435 * Kick perf_poll() for is_event_hup().
10436 */
10437 perf_event_wakeup(parent_event);
10438 free_event(child_event);
10439 put_event(parent_event);
10440 }
10441
10442 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10443 {
10444 struct perf_event_context *child_ctx, *clone_ctx = NULL;
10445 struct perf_event *child_event, *next;
10446
10447 WARN_ON_ONCE(child != current);
10448
10449 child_ctx = perf_pin_task_context(child, ctxn);
10450 if (!child_ctx)
10451 return;
10452
10453 /*
10454 * In order to reduce the amount of tricky in ctx tear-down, we hold
10455 * ctx::mutex over the entire thing. This serializes against almost
10456 * everything that wants to access the ctx.
10457 *
10458 * The exception is sys_perf_event_open() /
10459 * perf_event_create_kernel_count() which does find_get_context()
10460 * without ctx::mutex (it cannot because of the move_group double mutex
10461 * lock thing). See the comments in perf_install_in_context().
10462 */
10463 mutex_lock(&child_ctx->mutex);
10464
10465 /*
10466 * In a single ctx::lock section, de-schedule the events and detach the
10467 * context from the task such that we cannot ever get it scheduled back
10468 * in.
10469 */
10470 raw_spin_lock_irq(&child_ctx->lock);
10471 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10472
10473 /*
10474 * Now that the context is inactive, destroy the task <-> ctx relation
10475 * and mark the context dead.
10476 */
10477 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10478 put_ctx(child_ctx); /* cannot be last */
10479 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10480 put_task_struct(current); /* cannot be last */
10481
10482 clone_ctx = unclone_ctx(child_ctx);
10483 raw_spin_unlock_irq(&child_ctx->lock);
10484
10485 if (clone_ctx)
10486 put_ctx(clone_ctx);
10487
10488 /*
10489 * Report the task dead after unscheduling the events so that we
10490 * won't get any samples after PERF_RECORD_EXIT. We can however still
10491 * get a few PERF_RECORD_READ events.
10492 */
10493 perf_event_task(child, child_ctx, 0);
10494
10495 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10496 perf_event_exit_event(child_event, child_ctx, child);
10497
10498 mutex_unlock(&child_ctx->mutex);
10499
10500 put_ctx(child_ctx);
10501 }
10502
10503 /*
10504 * When a child task exits, feed back event values to parent events.
10505 *
10506 * Can be called with cred_guard_mutex held when called from
10507 * install_exec_creds().
10508 */
10509 void perf_event_exit_task(struct task_struct *child)
10510 {
10511 struct perf_event *event, *tmp;
10512 int ctxn;
10513
10514 mutex_lock(&child->perf_event_mutex);
10515 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10516 owner_entry) {
10517 list_del_init(&event->owner_entry);
10518
10519 /*
10520 * Ensure the list deletion is visible before we clear
10521 * the owner, closes a race against perf_release() where
10522 * we need to serialize on the owner->perf_event_mutex.
10523 */
10524 smp_store_release(&event->owner, NULL);
10525 }
10526 mutex_unlock(&child->perf_event_mutex);
10527
10528 for_each_task_context_nr(ctxn)
10529 perf_event_exit_task_context(child, ctxn);
10530
10531 /*
10532 * The perf_event_exit_task_context calls perf_event_task
10533 * with child's task_ctx, which generates EXIT events for
10534 * child contexts and sets child->perf_event_ctxp[] to NULL.
10535 * At this point we need to send EXIT events to cpu contexts.
10536 */
10537 perf_event_task(child, NULL, 0);
10538 }
10539
10540 static void perf_free_event(struct perf_event *event,
10541 struct perf_event_context *ctx)
10542 {
10543 struct perf_event *parent = event->parent;
10544
10545 if (WARN_ON_ONCE(!parent))
10546 return;
10547
10548 mutex_lock(&parent->child_mutex);
10549 list_del_init(&event->child_list);
10550 mutex_unlock(&parent->child_mutex);
10551
10552 put_event(parent);
10553
10554 raw_spin_lock_irq(&ctx->lock);
10555 perf_group_detach(event);
10556 list_del_event(event, ctx);
10557 raw_spin_unlock_irq(&ctx->lock);
10558 free_event(event);
10559 }
10560
10561 /*
10562 * Free an unexposed, unused context as created by inheritance by
10563 * perf_event_init_task below, used by fork() in case of fail.
10564 *
10565 * Not all locks are strictly required, but take them anyway to be nice and
10566 * help out with the lockdep assertions.
10567 */
10568 void perf_event_free_task(struct task_struct *task)
10569 {
10570 struct perf_event_context *ctx;
10571 struct perf_event *event, *tmp;
10572 int ctxn;
10573
10574 for_each_task_context_nr(ctxn) {
10575 ctx = task->perf_event_ctxp[ctxn];
10576 if (!ctx)
10577 continue;
10578
10579 mutex_lock(&ctx->mutex);
10580 raw_spin_lock_irq(&ctx->lock);
10581 /*
10582 * Destroy the task <-> ctx relation and mark the context dead.
10583 *
10584 * This is important because even though the task hasn't been
10585 * exposed yet the context has been (through child_list).
10586 */
10587 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10588 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10589 put_task_struct(task); /* cannot be last */
10590 raw_spin_unlock_irq(&ctx->lock);
10591
10592 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10593 perf_free_event(event, ctx);
10594
10595 mutex_unlock(&ctx->mutex);
10596 put_ctx(ctx);
10597 }
10598 }
10599
10600 void perf_event_delayed_put(struct task_struct *task)
10601 {
10602 int ctxn;
10603
10604 for_each_task_context_nr(ctxn)
10605 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10606 }
10607
10608 struct file *perf_event_get(unsigned int fd)
10609 {
10610 struct file *file;
10611
10612 file = fget_raw(fd);
10613 if (!file)
10614 return ERR_PTR(-EBADF);
10615
10616 if (file->f_op != &perf_fops) {
10617 fput(file);
10618 return ERR_PTR(-EBADF);
10619 }
10620
10621 return file;
10622 }
10623
10624 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10625 {
10626 if (!event)
10627 return ERR_PTR(-EINVAL);
10628
10629 return &event->attr;
10630 }
10631
10632 /*
10633 * Inherit a event from parent task to child task.
10634 *
10635 * Returns:
10636 * - valid pointer on success
10637 * - NULL for orphaned events
10638 * - IS_ERR() on error
10639 */
10640 static struct perf_event *
10641 inherit_event(struct perf_event *parent_event,
10642 struct task_struct *parent,
10643 struct perf_event_context *parent_ctx,
10644 struct task_struct *child,
10645 struct perf_event *group_leader,
10646 struct perf_event_context *child_ctx)
10647 {
10648 enum perf_event_active_state parent_state = parent_event->state;
10649 struct perf_event *child_event;
10650 unsigned long flags;
10651
10652 /*
10653 * Instead of creating recursive hierarchies of events,
10654 * we link inherited events back to the original parent,
10655 * which has a filp for sure, which we use as the reference
10656 * count:
10657 */
10658 if (parent_event->parent)
10659 parent_event = parent_event->parent;
10660
10661 child_event = perf_event_alloc(&parent_event->attr,
10662 parent_event->cpu,
10663 child,
10664 group_leader, parent_event,
10665 NULL, NULL, -1);
10666 if (IS_ERR(child_event))
10667 return child_event;
10668
10669 /*
10670 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10671 * must be under the same lock in order to serialize against
10672 * perf_event_release_kernel(), such that either we must observe
10673 * is_orphaned_event() or they will observe us on the child_list.
10674 */
10675 mutex_lock(&parent_event->child_mutex);
10676 if (is_orphaned_event(parent_event) ||
10677 !atomic_long_inc_not_zero(&parent_event->refcount)) {
10678 mutex_unlock(&parent_event->child_mutex);
10679 free_event(child_event);
10680 return NULL;
10681 }
10682
10683 get_ctx(child_ctx);
10684
10685 /*
10686 * Make the child state follow the state of the parent event,
10687 * not its attr.disabled bit. We hold the parent's mutex,
10688 * so we won't race with perf_event_{en, dis}able_family.
10689 */
10690 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10691 child_event->state = PERF_EVENT_STATE_INACTIVE;
10692 else
10693 child_event->state = PERF_EVENT_STATE_OFF;
10694
10695 if (parent_event->attr.freq) {
10696 u64 sample_period = parent_event->hw.sample_period;
10697 struct hw_perf_event *hwc = &child_event->hw;
10698
10699 hwc->sample_period = sample_period;
10700 hwc->last_period = sample_period;
10701
10702 local64_set(&hwc->period_left, sample_period);
10703 }
10704
10705 child_event->ctx = child_ctx;
10706 child_event->overflow_handler = parent_event->overflow_handler;
10707 child_event->overflow_handler_context
10708 = parent_event->overflow_handler_context;
10709
10710 /*
10711 * Precalculate sample_data sizes
10712 */
10713 perf_event__header_size(child_event);
10714 perf_event__id_header_size(child_event);
10715
10716 /*
10717 * Link it up in the child's context:
10718 */
10719 raw_spin_lock_irqsave(&child_ctx->lock, flags);
10720 add_event_to_ctx(child_event, child_ctx);
10721 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10722
10723 /*
10724 * Link this into the parent event's child list
10725 */
10726 list_add_tail(&child_event->child_list, &parent_event->child_list);
10727 mutex_unlock(&parent_event->child_mutex);
10728
10729 return child_event;
10730 }
10731
10732 /*
10733 * Inherits an event group.
10734 *
10735 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10736 * This matches with perf_event_release_kernel() removing all child events.
10737 *
10738 * Returns:
10739 * - 0 on success
10740 * - <0 on error
10741 */
10742 static int inherit_group(struct perf_event *parent_event,
10743 struct task_struct *parent,
10744 struct perf_event_context *parent_ctx,
10745 struct task_struct *child,
10746 struct perf_event_context *child_ctx)
10747 {
10748 struct perf_event *leader;
10749 struct perf_event *sub;
10750 struct perf_event *child_ctr;
10751
10752 leader = inherit_event(parent_event, parent, parent_ctx,
10753 child, NULL, child_ctx);
10754 if (IS_ERR(leader))
10755 return PTR_ERR(leader);
10756 /*
10757 * @leader can be NULL here because of is_orphaned_event(). In this
10758 * case inherit_event() will create individual events, similar to what
10759 * perf_group_detach() would do anyway.
10760 */
10761 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10762 child_ctr = inherit_event(sub, parent, parent_ctx,
10763 child, leader, child_ctx);
10764 if (IS_ERR(child_ctr))
10765 return PTR_ERR(child_ctr);
10766 }
10767 return 0;
10768 }
10769
10770 /*
10771 * Creates the child task context and tries to inherit the event-group.
10772 *
10773 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10774 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10775 * consistent with perf_event_release_kernel() removing all child events.
10776 *
10777 * Returns:
10778 * - 0 on success
10779 * - <0 on error
10780 */
10781 static int
10782 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10783 struct perf_event_context *parent_ctx,
10784 struct task_struct *child, int ctxn,
10785 int *inherited_all)
10786 {
10787 int ret;
10788 struct perf_event_context *child_ctx;
10789
10790 if (!event->attr.inherit) {
10791 *inherited_all = 0;
10792 return 0;
10793 }
10794
10795 child_ctx = child->perf_event_ctxp[ctxn];
10796 if (!child_ctx) {
10797 /*
10798 * This is executed from the parent task context, so
10799 * inherit events that have been marked for cloning.
10800 * First allocate and initialize a context for the
10801 * child.
10802 */
10803 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10804 if (!child_ctx)
10805 return -ENOMEM;
10806
10807 child->perf_event_ctxp[ctxn] = child_ctx;
10808 }
10809
10810 ret = inherit_group(event, parent, parent_ctx,
10811 child, child_ctx);
10812
10813 if (ret)
10814 *inherited_all = 0;
10815
10816 return ret;
10817 }
10818
10819 /*
10820 * Initialize the perf_event context in task_struct
10821 */
10822 static int perf_event_init_context(struct task_struct *child, int ctxn)
10823 {
10824 struct perf_event_context *child_ctx, *parent_ctx;
10825 struct perf_event_context *cloned_ctx;
10826 struct perf_event *event;
10827 struct task_struct *parent = current;
10828 int inherited_all = 1;
10829 unsigned long flags;
10830 int ret = 0;
10831
10832 if (likely(!parent->perf_event_ctxp[ctxn]))
10833 return 0;
10834
10835 /*
10836 * If the parent's context is a clone, pin it so it won't get
10837 * swapped under us.
10838 */
10839 parent_ctx = perf_pin_task_context(parent, ctxn);
10840 if (!parent_ctx)
10841 return 0;
10842
10843 /*
10844 * No need to check if parent_ctx != NULL here; since we saw
10845 * it non-NULL earlier, the only reason for it to become NULL
10846 * is if we exit, and since we're currently in the middle of
10847 * a fork we can't be exiting at the same time.
10848 */
10849
10850 /*
10851 * Lock the parent list. No need to lock the child - not PID
10852 * hashed yet and not running, so nobody can access it.
10853 */
10854 mutex_lock(&parent_ctx->mutex);
10855
10856 /*
10857 * We dont have to disable NMIs - we are only looking at
10858 * the list, not manipulating it:
10859 */
10860 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10861 ret = inherit_task_group(event, parent, parent_ctx,
10862 child, ctxn, &inherited_all);
10863 if (ret)
10864 goto out_unlock;
10865 }
10866
10867 /*
10868 * We can't hold ctx->lock when iterating the ->flexible_group list due
10869 * to allocations, but we need to prevent rotation because
10870 * rotate_ctx() will change the list from interrupt context.
10871 */
10872 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10873 parent_ctx->rotate_disable = 1;
10874 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10875
10876 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10877 ret = inherit_task_group(event, parent, parent_ctx,
10878 child, ctxn, &inherited_all);
10879 if (ret)
10880 goto out_unlock;
10881 }
10882
10883 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10884 parent_ctx->rotate_disable = 0;
10885
10886 child_ctx = child->perf_event_ctxp[ctxn];
10887
10888 if (child_ctx && inherited_all) {
10889 /*
10890 * Mark the child context as a clone of the parent
10891 * context, or of whatever the parent is a clone of.
10892 *
10893 * Note that if the parent is a clone, the holding of
10894 * parent_ctx->lock avoids it from being uncloned.
10895 */
10896 cloned_ctx = parent_ctx->parent_ctx;
10897 if (cloned_ctx) {
10898 child_ctx->parent_ctx = cloned_ctx;
10899 child_ctx->parent_gen = parent_ctx->parent_gen;
10900 } else {
10901 child_ctx->parent_ctx = parent_ctx;
10902 child_ctx->parent_gen = parent_ctx->generation;
10903 }
10904 get_ctx(child_ctx->parent_ctx);
10905 }
10906
10907 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10908 out_unlock:
10909 mutex_unlock(&parent_ctx->mutex);
10910
10911 perf_unpin_context(parent_ctx);
10912 put_ctx(parent_ctx);
10913
10914 return ret;
10915 }
10916
10917 /*
10918 * Initialize the perf_event context in task_struct
10919 */
10920 int perf_event_init_task(struct task_struct *child)
10921 {
10922 int ctxn, ret;
10923
10924 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10925 mutex_init(&child->perf_event_mutex);
10926 INIT_LIST_HEAD(&child->perf_event_list);
10927
10928 for_each_task_context_nr(ctxn) {
10929 ret = perf_event_init_context(child, ctxn);
10930 if (ret) {
10931 perf_event_free_task(child);
10932 return ret;
10933 }
10934 }
10935
10936 return 0;
10937 }
10938
10939 static void __init perf_event_init_all_cpus(void)
10940 {
10941 struct swevent_htable *swhash;
10942 int cpu;
10943
10944 for_each_possible_cpu(cpu) {
10945 swhash = &per_cpu(swevent_htable, cpu);
10946 mutex_init(&swhash->hlist_mutex);
10947 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10948
10949 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10950 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10951
10952 #ifdef CONFIG_CGROUP_PERF
10953 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
10954 #endif
10955 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10956 }
10957 }
10958
10959 int perf_event_init_cpu(unsigned int cpu)
10960 {
10961 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10962
10963 mutex_lock(&swhash->hlist_mutex);
10964 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10965 struct swevent_hlist *hlist;
10966
10967 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10968 WARN_ON(!hlist);
10969 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10970 }
10971 mutex_unlock(&swhash->hlist_mutex);
10972 return 0;
10973 }
10974
10975 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10976 static void __perf_event_exit_context(void *__info)
10977 {
10978 struct perf_event_context *ctx = __info;
10979 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10980 struct perf_event *event;
10981
10982 raw_spin_lock(&ctx->lock);
10983 list_for_each_entry(event, &ctx->event_list, event_entry)
10984 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10985 raw_spin_unlock(&ctx->lock);
10986 }
10987
10988 static void perf_event_exit_cpu_context(int cpu)
10989 {
10990 struct perf_event_context *ctx;
10991 struct pmu *pmu;
10992 int idx;
10993
10994 idx = srcu_read_lock(&pmus_srcu);
10995 list_for_each_entry_rcu(pmu, &pmus, entry) {
10996 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10997
10998 mutex_lock(&ctx->mutex);
10999 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11000 mutex_unlock(&ctx->mutex);
11001 }
11002 srcu_read_unlock(&pmus_srcu, idx);
11003 }
11004 #else
11005
11006 static void perf_event_exit_cpu_context(int cpu) { }
11007
11008 #endif
11009
11010 int perf_event_exit_cpu(unsigned int cpu)
11011 {
11012 perf_event_exit_cpu_context(cpu);
11013 return 0;
11014 }
11015
11016 static int
11017 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11018 {
11019 int cpu;
11020
11021 for_each_online_cpu(cpu)
11022 perf_event_exit_cpu(cpu);
11023
11024 return NOTIFY_OK;
11025 }
11026
11027 /*
11028 * Run the perf reboot notifier at the very last possible moment so that
11029 * the generic watchdog code runs as long as possible.
11030 */
11031 static struct notifier_block perf_reboot_notifier = {
11032 .notifier_call = perf_reboot,
11033 .priority = INT_MIN,
11034 };
11035
11036 void __init perf_event_init(void)
11037 {
11038 int ret;
11039
11040 idr_init(&pmu_idr);
11041
11042 perf_event_init_all_cpus();
11043 init_srcu_struct(&pmus_srcu);
11044 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11045 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11046 perf_pmu_register(&perf_task_clock, NULL, -1);
11047 perf_tp_register();
11048 perf_event_init_cpu(smp_processor_id());
11049 register_reboot_notifier(&perf_reboot_notifier);
11050
11051 ret = init_hw_breakpoint();
11052 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11053
11054 /*
11055 * Build time assertion that we keep the data_head at the intended
11056 * location. IOW, validation we got the __reserved[] size right.
11057 */
11058 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11059 != 1024);
11060 }
11061
11062 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11063 char *page)
11064 {
11065 struct perf_pmu_events_attr *pmu_attr =
11066 container_of(attr, struct perf_pmu_events_attr, attr);
11067
11068 if (pmu_attr->event_str)
11069 return sprintf(page, "%s\n", pmu_attr->event_str);
11070
11071 return 0;
11072 }
11073 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11074
11075 static int __init perf_event_sysfs_init(void)
11076 {
11077 struct pmu *pmu;
11078 int ret;
11079
11080 mutex_lock(&pmus_lock);
11081
11082 ret = bus_register(&pmu_bus);
11083 if (ret)
11084 goto unlock;
11085
11086 list_for_each_entry(pmu, &pmus, entry) {
11087 if (!pmu->name || pmu->type < 0)
11088 continue;
11089
11090 ret = pmu_dev_alloc(pmu);
11091 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11092 }
11093 pmu_bus_running = 1;
11094 ret = 0;
11095
11096 unlock:
11097 mutex_unlock(&pmus_lock);
11098
11099 return ret;
11100 }
11101 device_initcall(perf_event_sysfs_init);
11102
11103 #ifdef CONFIG_CGROUP_PERF
11104 static struct cgroup_subsys_state *
11105 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11106 {
11107 struct perf_cgroup *jc;
11108
11109 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11110 if (!jc)
11111 return ERR_PTR(-ENOMEM);
11112
11113 jc->info = alloc_percpu(struct perf_cgroup_info);
11114 if (!jc->info) {
11115 kfree(jc);
11116 return ERR_PTR(-ENOMEM);
11117 }
11118
11119 return &jc->css;
11120 }
11121
11122 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11123 {
11124 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11125
11126 free_percpu(jc->info);
11127 kfree(jc);
11128 }
11129
11130 static int __perf_cgroup_move(void *info)
11131 {
11132 struct task_struct *task = info;
11133 rcu_read_lock();
11134 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11135 rcu_read_unlock();
11136 return 0;
11137 }
11138
11139 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11140 {
11141 struct task_struct *task;
11142 struct cgroup_subsys_state *css;
11143
11144 cgroup_taskset_for_each(task, css, tset)
11145 task_function_call(task, __perf_cgroup_move, task);
11146 }
11147
11148 struct cgroup_subsys perf_event_cgrp_subsys = {
11149 .css_alloc = perf_cgroup_css_alloc,
11150 .css_free = perf_cgroup_css_free,
11151 .attach = perf_cgroup_attach,
11152 /*
11153 * Implicitly enable on dfl hierarchy so that perf events can
11154 * always be filtered by cgroup2 path as long as perf_event
11155 * controller is not mounted on a legacy hierarchy.
11156 */
11157 .implicit_on_dfl = true,
11158 };
11159 #endif /* CONFIG_CGROUP_PERF */