]> git.ipfire.org Git - people/arne_f/kernel.git/blob - kernel/events/core.c
Merge branch 'for-4.12/driver-matching-fix' of git://git.kernel.org/pub/scm/linux...
[people/arne_f/kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61 struct task_struct *p;
62 remote_function_f func;
63 void *info;
64 int ret;
65 };
66
67 static void remote_function(void *data)
68 {
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 struct remote_function_call data = {
107 .p = p,
108 .func = func,
109 .info = info,
110 .ret = -EAGAIN,
111 };
112 int ret;
113
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
119
120 return ret;
121 }
122
123 /**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 struct remote_function_call data = {
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
154 {
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162 {
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197 struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201 };
202
203 static int event_function(void *info)
204 {
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
207 struct perf_event_context *ctx = event->ctx;
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 int ret = 0;
211
212 WARN_ON_ONCE(!irqs_disabled());
213
214 perf_ctx_lock(cpuctx, task_ctx);
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
218 */
219 if (ctx->task) {
220 if (ctx->task != current) {
221 ret = -ESRCH;
222 goto unlock;
223 }
224
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 }
241
242 efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 perf_ctx_unlock(cpuctx, task_ctx);
245
246 return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 struct perf_event_context *ctx = event->ctx;
252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
258
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
267
268 if (!task) {
269 cpu_function_call(event->cpu, event_function, &efs);
270 return;
271 }
272
273 if (task == TASK_TOMBSTONE)
274 return;
275
276 again:
277 if (!task_function_call(task, event_function, &efs))
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
289 }
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
295 raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
309 WARN_ON_ONCE(!irqs_disabled());
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342 unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
350
351 /*
352 * branch priv levels that need permission checks
353 */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
361 EVENT_TIME = 0x4,
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392
393 /*
394 * perf event paranoia level:
395 * -1 - not paranoid at all
396 * 0 - disallow raw tracepoint access for unpriv
397 * 1 - disallow cpu events for unpriv
398 * 2 - disallow kernel profiling for unpriv
399 */
400 int sysctl_perf_event_paranoid __read_mostly = 2;
401
402 /* Minimum for 512 kiB + 1 user control page */
403 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
404
405 /*
406 * max perf event sample rate
407 */
408 #define DEFAULT_MAX_SAMPLE_RATE 100000
409 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
410 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
411
412 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
413
414 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
415 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
416
417 static int perf_sample_allowed_ns __read_mostly =
418 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
419
420 static void update_perf_cpu_limits(void)
421 {
422 u64 tmp = perf_sample_period_ns;
423
424 tmp *= sysctl_perf_cpu_time_max_percent;
425 tmp = div_u64(tmp, 100);
426 if (!tmp)
427 tmp = 1;
428
429 WRITE_ONCE(perf_sample_allowed_ns, tmp);
430 }
431
432 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
433
434 int perf_proc_update_handler(struct ctl_table *table, int write,
435 void __user *buffer, size_t *lenp,
436 loff_t *ppos)
437 {
438 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
439
440 if (ret || !write)
441 return ret;
442
443 /*
444 * If throttling is disabled don't allow the write:
445 */
446 if (sysctl_perf_cpu_time_max_percent == 100 ||
447 sysctl_perf_cpu_time_max_percent == 0)
448 return -EINVAL;
449
450 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
451 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
452 update_perf_cpu_limits();
453
454 return 0;
455 }
456
457 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
458
459 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
460 void __user *buffer, size_t *lenp,
461 loff_t *ppos)
462 {
463 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464
465 if (ret || !write)
466 return ret;
467
468 if (sysctl_perf_cpu_time_max_percent == 100 ||
469 sysctl_perf_cpu_time_max_percent == 0) {
470 printk(KERN_WARNING
471 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
472 WRITE_ONCE(perf_sample_allowed_ns, 0);
473 } else {
474 update_perf_cpu_limits();
475 }
476
477 return 0;
478 }
479
480 /*
481 * perf samples are done in some very critical code paths (NMIs).
482 * If they take too much CPU time, the system can lock up and not
483 * get any real work done. This will drop the sample rate when
484 * we detect that events are taking too long.
485 */
486 #define NR_ACCUMULATED_SAMPLES 128
487 static DEFINE_PER_CPU(u64, running_sample_length);
488
489 static u64 __report_avg;
490 static u64 __report_allowed;
491
492 static void perf_duration_warn(struct irq_work *w)
493 {
494 printk_ratelimited(KERN_INFO
495 "perf: interrupt took too long (%lld > %lld), lowering "
496 "kernel.perf_event_max_sample_rate to %d\n",
497 __report_avg, __report_allowed,
498 sysctl_perf_event_sample_rate);
499 }
500
501 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
502
503 void perf_sample_event_took(u64 sample_len_ns)
504 {
505 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
506 u64 running_len;
507 u64 avg_len;
508 u32 max;
509
510 if (max_len == 0)
511 return;
512
513 /* Decay the counter by 1 average sample. */
514 running_len = __this_cpu_read(running_sample_length);
515 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
516 running_len += sample_len_ns;
517 __this_cpu_write(running_sample_length, running_len);
518
519 /*
520 * Note: this will be biased artifically low until we have
521 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
522 * from having to maintain a count.
523 */
524 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
525 if (avg_len <= max_len)
526 return;
527
528 __report_avg = avg_len;
529 __report_allowed = max_len;
530
531 /*
532 * Compute a throttle threshold 25% below the current duration.
533 */
534 avg_len += avg_len / 4;
535 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
536 if (avg_len < max)
537 max /= (u32)avg_len;
538 else
539 max = 1;
540
541 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
542 WRITE_ONCE(max_samples_per_tick, max);
543
544 sysctl_perf_event_sample_rate = max * HZ;
545 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
546
547 if (!irq_work_queue(&perf_duration_work)) {
548 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
549 "kernel.perf_event_max_sample_rate to %d\n",
550 __report_avg, __report_allowed,
551 sysctl_perf_event_sample_rate);
552 }
553 }
554
555 static atomic64_t perf_event_id;
556
557 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
558 enum event_type_t event_type);
559
560 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
561 enum event_type_t event_type,
562 struct task_struct *task);
563
564 static void update_context_time(struct perf_event_context *ctx);
565 static u64 perf_event_time(struct perf_event *event);
566
567 void __weak perf_event_print_debug(void) { }
568
569 extern __weak const char *perf_pmu_name(void)
570 {
571 return "pmu";
572 }
573
574 static inline u64 perf_clock(void)
575 {
576 return local_clock();
577 }
578
579 static inline u64 perf_event_clock(struct perf_event *event)
580 {
581 return event->clock();
582 }
583
584 #ifdef CONFIG_CGROUP_PERF
585
586 static inline bool
587 perf_cgroup_match(struct perf_event *event)
588 {
589 struct perf_event_context *ctx = event->ctx;
590 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
591
592 /* @event doesn't care about cgroup */
593 if (!event->cgrp)
594 return true;
595
596 /* wants specific cgroup scope but @cpuctx isn't associated with any */
597 if (!cpuctx->cgrp)
598 return false;
599
600 /*
601 * Cgroup scoping is recursive. An event enabled for a cgroup is
602 * also enabled for all its descendant cgroups. If @cpuctx's
603 * cgroup is a descendant of @event's (the test covers identity
604 * case), it's a match.
605 */
606 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
607 event->cgrp->css.cgroup);
608 }
609
610 static inline void perf_detach_cgroup(struct perf_event *event)
611 {
612 css_put(&event->cgrp->css);
613 event->cgrp = NULL;
614 }
615
616 static inline int is_cgroup_event(struct perf_event *event)
617 {
618 return event->cgrp != NULL;
619 }
620
621 static inline u64 perf_cgroup_event_time(struct perf_event *event)
622 {
623 struct perf_cgroup_info *t;
624
625 t = per_cpu_ptr(event->cgrp->info, event->cpu);
626 return t->time;
627 }
628
629 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
630 {
631 struct perf_cgroup_info *info;
632 u64 now;
633
634 now = perf_clock();
635
636 info = this_cpu_ptr(cgrp->info);
637
638 info->time += now - info->timestamp;
639 info->timestamp = now;
640 }
641
642 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
643 {
644 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
645 if (cgrp_out)
646 __update_cgrp_time(cgrp_out);
647 }
648
649 static inline void update_cgrp_time_from_event(struct perf_event *event)
650 {
651 struct perf_cgroup *cgrp;
652
653 /*
654 * ensure we access cgroup data only when needed and
655 * when we know the cgroup is pinned (css_get)
656 */
657 if (!is_cgroup_event(event))
658 return;
659
660 cgrp = perf_cgroup_from_task(current, event->ctx);
661 /*
662 * Do not update time when cgroup is not active
663 */
664 if (cgrp == event->cgrp)
665 __update_cgrp_time(event->cgrp);
666 }
667
668 static inline void
669 perf_cgroup_set_timestamp(struct task_struct *task,
670 struct perf_event_context *ctx)
671 {
672 struct perf_cgroup *cgrp;
673 struct perf_cgroup_info *info;
674
675 /*
676 * ctx->lock held by caller
677 * ensure we do not access cgroup data
678 * unless we have the cgroup pinned (css_get)
679 */
680 if (!task || !ctx->nr_cgroups)
681 return;
682
683 cgrp = perf_cgroup_from_task(task, ctx);
684 info = this_cpu_ptr(cgrp->info);
685 info->timestamp = ctx->timestamp;
686 }
687
688 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
689
690 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
691 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
692
693 /*
694 * reschedule events based on the cgroup constraint of task.
695 *
696 * mode SWOUT : schedule out everything
697 * mode SWIN : schedule in based on cgroup for next
698 */
699 static void perf_cgroup_switch(struct task_struct *task, int mode)
700 {
701 struct perf_cpu_context *cpuctx;
702 struct list_head *list;
703 unsigned long flags;
704
705 /*
706 * Disable interrupts and preemption to avoid this CPU's
707 * cgrp_cpuctx_entry to change under us.
708 */
709 local_irq_save(flags);
710
711 list = this_cpu_ptr(&cgrp_cpuctx_list);
712 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
713 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
714
715 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
716 perf_pmu_disable(cpuctx->ctx.pmu);
717
718 if (mode & PERF_CGROUP_SWOUT) {
719 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
720 /*
721 * must not be done before ctxswout due
722 * to event_filter_match() in event_sched_out()
723 */
724 cpuctx->cgrp = NULL;
725 }
726
727 if (mode & PERF_CGROUP_SWIN) {
728 WARN_ON_ONCE(cpuctx->cgrp);
729 /*
730 * set cgrp before ctxsw in to allow
731 * event_filter_match() to not have to pass
732 * task around
733 * we pass the cpuctx->ctx to perf_cgroup_from_task()
734 * because cgorup events are only per-cpu
735 */
736 cpuctx->cgrp = perf_cgroup_from_task(task,
737 &cpuctx->ctx);
738 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
739 }
740 perf_pmu_enable(cpuctx->ctx.pmu);
741 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
742 }
743
744 local_irq_restore(flags);
745 }
746
747 static inline void perf_cgroup_sched_out(struct task_struct *task,
748 struct task_struct *next)
749 {
750 struct perf_cgroup *cgrp1;
751 struct perf_cgroup *cgrp2 = NULL;
752
753 rcu_read_lock();
754 /*
755 * we come here when we know perf_cgroup_events > 0
756 * we do not need to pass the ctx here because we know
757 * we are holding the rcu lock
758 */
759 cgrp1 = perf_cgroup_from_task(task, NULL);
760 cgrp2 = perf_cgroup_from_task(next, NULL);
761
762 /*
763 * only schedule out current cgroup events if we know
764 * that we are switching to a different cgroup. Otherwise,
765 * do no touch the cgroup events.
766 */
767 if (cgrp1 != cgrp2)
768 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
769
770 rcu_read_unlock();
771 }
772
773 static inline void perf_cgroup_sched_in(struct task_struct *prev,
774 struct task_struct *task)
775 {
776 struct perf_cgroup *cgrp1;
777 struct perf_cgroup *cgrp2 = NULL;
778
779 rcu_read_lock();
780 /*
781 * we come here when we know perf_cgroup_events > 0
782 * we do not need to pass the ctx here because we know
783 * we are holding the rcu lock
784 */
785 cgrp1 = perf_cgroup_from_task(task, NULL);
786 cgrp2 = perf_cgroup_from_task(prev, NULL);
787
788 /*
789 * only need to schedule in cgroup events if we are changing
790 * cgroup during ctxsw. Cgroup events were not scheduled
791 * out of ctxsw out if that was not the case.
792 */
793 if (cgrp1 != cgrp2)
794 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
795
796 rcu_read_unlock();
797 }
798
799 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
800 struct perf_event_attr *attr,
801 struct perf_event *group_leader)
802 {
803 struct perf_cgroup *cgrp;
804 struct cgroup_subsys_state *css;
805 struct fd f = fdget(fd);
806 int ret = 0;
807
808 if (!f.file)
809 return -EBADF;
810
811 css = css_tryget_online_from_dir(f.file->f_path.dentry,
812 &perf_event_cgrp_subsys);
813 if (IS_ERR(css)) {
814 ret = PTR_ERR(css);
815 goto out;
816 }
817
818 cgrp = container_of(css, struct perf_cgroup, css);
819 event->cgrp = cgrp;
820
821 /*
822 * all events in a group must monitor
823 * the same cgroup because a task belongs
824 * to only one perf cgroup at a time
825 */
826 if (group_leader && group_leader->cgrp != cgrp) {
827 perf_detach_cgroup(event);
828 ret = -EINVAL;
829 }
830 out:
831 fdput(f);
832 return ret;
833 }
834
835 static inline void
836 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
837 {
838 struct perf_cgroup_info *t;
839 t = per_cpu_ptr(event->cgrp->info, event->cpu);
840 event->shadow_ctx_time = now - t->timestamp;
841 }
842
843 static inline void
844 perf_cgroup_defer_enabled(struct perf_event *event)
845 {
846 /*
847 * when the current task's perf cgroup does not match
848 * the event's, we need to remember to call the
849 * perf_mark_enable() function the first time a task with
850 * a matching perf cgroup is scheduled in.
851 */
852 if (is_cgroup_event(event) && !perf_cgroup_match(event))
853 event->cgrp_defer_enabled = 1;
854 }
855
856 static inline void
857 perf_cgroup_mark_enabled(struct perf_event *event,
858 struct perf_event_context *ctx)
859 {
860 struct perf_event *sub;
861 u64 tstamp = perf_event_time(event);
862
863 if (!event->cgrp_defer_enabled)
864 return;
865
866 event->cgrp_defer_enabled = 0;
867
868 event->tstamp_enabled = tstamp - event->total_time_enabled;
869 list_for_each_entry(sub, &event->sibling_list, group_entry) {
870 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
871 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
872 sub->cgrp_defer_enabled = 0;
873 }
874 }
875 }
876
877 /*
878 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
879 * cleared when last cgroup event is removed.
880 */
881 static inline void
882 list_update_cgroup_event(struct perf_event *event,
883 struct perf_event_context *ctx, bool add)
884 {
885 struct perf_cpu_context *cpuctx;
886 struct list_head *cpuctx_entry;
887
888 if (!is_cgroup_event(event))
889 return;
890
891 if (add && ctx->nr_cgroups++)
892 return;
893 else if (!add && --ctx->nr_cgroups)
894 return;
895 /*
896 * Because cgroup events are always per-cpu events,
897 * this will always be called from the right CPU.
898 */
899 cpuctx = __get_cpu_context(ctx);
900 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
901 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
902 if (add) {
903 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
904 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
905 cpuctx->cgrp = event->cgrp;
906 } else {
907 list_del(cpuctx_entry);
908 cpuctx->cgrp = NULL;
909 }
910 }
911
912 #else /* !CONFIG_CGROUP_PERF */
913
914 static inline bool
915 perf_cgroup_match(struct perf_event *event)
916 {
917 return true;
918 }
919
920 static inline void perf_detach_cgroup(struct perf_event *event)
921 {}
922
923 static inline int is_cgroup_event(struct perf_event *event)
924 {
925 return 0;
926 }
927
928 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
929 {
930 return 0;
931 }
932
933 static inline void update_cgrp_time_from_event(struct perf_event *event)
934 {
935 }
936
937 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
938 {
939 }
940
941 static inline void perf_cgroup_sched_out(struct task_struct *task,
942 struct task_struct *next)
943 {
944 }
945
946 static inline void perf_cgroup_sched_in(struct task_struct *prev,
947 struct task_struct *task)
948 {
949 }
950
951 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
952 struct perf_event_attr *attr,
953 struct perf_event *group_leader)
954 {
955 return -EINVAL;
956 }
957
958 static inline void
959 perf_cgroup_set_timestamp(struct task_struct *task,
960 struct perf_event_context *ctx)
961 {
962 }
963
964 void
965 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
966 {
967 }
968
969 static inline void
970 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
971 {
972 }
973
974 static inline u64 perf_cgroup_event_time(struct perf_event *event)
975 {
976 return 0;
977 }
978
979 static inline void
980 perf_cgroup_defer_enabled(struct perf_event *event)
981 {
982 }
983
984 static inline void
985 perf_cgroup_mark_enabled(struct perf_event *event,
986 struct perf_event_context *ctx)
987 {
988 }
989
990 static inline void
991 list_update_cgroup_event(struct perf_event *event,
992 struct perf_event_context *ctx, bool add)
993 {
994 }
995
996 #endif
997
998 /*
999 * set default to be dependent on timer tick just
1000 * like original code
1001 */
1002 #define PERF_CPU_HRTIMER (1000 / HZ)
1003 /*
1004 * function must be called with interrupts disabled
1005 */
1006 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1007 {
1008 struct perf_cpu_context *cpuctx;
1009 int rotations = 0;
1010
1011 WARN_ON(!irqs_disabled());
1012
1013 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1014 rotations = perf_rotate_context(cpuctx);
1015
1016 raw_spin_lock(&cpuctx->hrtimer_lock);
1017 if (rotations)
1018 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1019 else
1020 cpuctx->hrtimer_active = 0;
1021 raw_spin_unlock(&cpuctx->hrtimer_lock);
1022
1023 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1024 }
1025
1026 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1027 {
1028 struct hrtimer *timer = &cpuctx->hrtimer;
1029 struct pmu *pmu = cpuctx->ctx.pmu;
1030 u64 interval;
1031
1032 /* no multiplexing needed for SW PMU */
1033 if (pmu->task_ctx_nr == perf_sw_context)
1034 return;
1035
1036 /*
1037 * check default is sane, if not set then force to
1038 * default interval (1/tick)
1039 */
1040 interval = pmu->hrtimer_interval_ms;
1041 if (interval < 1)
1042 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1043
1044 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1045
1046 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1047 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1048 timer->function = perf_mux_hrtimer_handler;
1049 }
1050
1051 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1052 {
1053 struct hrtimer *timer = &cpuctx->hrtimer;
1054 struct pmu *pmu = cpuctx->ctx.pmu;
1055 unsigned long flags;
1056
1057 /* not for SW PMU */
1058 if (pmu->task_ctx_nr == perf_sw_context)
1059 return 0;
1060
1061 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1062 if (!cpuctx->hrtimer_active) {
1063 cpuctx->hrtimer_active = 1;
1064 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1065 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1066 }
1067 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1068
1069 return 0;
1070 }
1071
1072 void perf_pmu_disable(struct pmu *pmu)
1073 {
1074 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1075 if (!(*count)++)
1076 pmu->pmu_disable(pmu);
1077 }
1078
1079 void perf_pmu_enable(struct pmu *pmu)
1080 {
1081 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1082 if (!--(*count))
1083 pmu->pmu_enable(pmu);
1084 }
1085
1086 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1087
1088 /*
1089 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1090 * perf_event_task_tick() are fully serialized because they're strictly cpu
1091 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1092 * disabled, while perf_event_task_tick is called from IRQ context.
1093 */
1094 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1095 {
1096 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1097
1098 WARN_ON(!irqs_disabled());
1099
1100 WARN_ON(!list_empty(&ctx->active_ctx_list));
1101
1102 list_add(&ctx->active_ctx_list, head);
1103 }
1104
1105 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1106 {
1107 WARN_ON(!irqs_disabled());
1108
1109 WARN_ON(list_empty(&ctx->active_ctx_list));
1110
1111 list_del_init(&ctx->active_ctx_list);
1112 }
1113
1114 static void get_ctx(struct perf_event_context *ctx)
1115 {
1116 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1117 }
1118
1119 static void free_ctx(struct rcu_head *head)
1120 {
1121 struct perf_event_context *ctx;
1122
1123 ctx = container_of(head, struct perf_event_context, rcu_head);
1124 kfree(ctx->task_ctx_data);
1125 kfree(ctx);
1126 }
1127
1128 static void put_ctx(struct perf_event_context *ctx)
1129 {
1130 if (atomic_dec_and_test(&ctx->refcount)) {
1131 if (ctx->parent_ctx)
1132 put_ctx(ctx->parent_ctx);
1133 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1134 put_task_struct(ctx->task);
1135 call_rcu(&ctx->rcu_head, free_ctx);
1136 }
1137 }
1138
1139 /*
1140 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1141 * perf_pmu_migrate_context() we need some magic.
1142 *
1143 * Those places that change perf_event::ctx will hold both
1144 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1145 *
1146 * Lock ordering is by mutex address. There are two other sites where
1147 * perf_event_context::mutex nests and those are:
1148 *
1149 * - perf_event_exit_task_context() [ child , 0 ]
1150 * perf_event_exit_event()
1151 * put_event() [ parent, 1 ]
1152 *
1153 * - perf_event_init_context() [ parent, 0 ]
1154 * inherit_task_group()
1155 * inherit_group()
1156 * inherit_event()
1157 * perf_event_alloc()
1158 * perf_init_event()
1159 * perf_try_init_event() [ child , 1 ]
1160 *
1161 * While it appears there is an obvious deadlock here -- the parent and child
1162 * nesting levels are inverted between the two. This is in fact safe because
1163 * life-time rules separate them. That is an exiting task cannot fork, and a
1164 * spawning task cannot (yet) exit.
1165 *
1166 * But remember that that these are parent<->child context relations, and
1167 * migration does not affect children, therefore these two orderings should not
1168 * interact.
1169 *
1170 * The change in perf_event::ctx does not affect children (as claimed above)
1171 * because the sys_perf_event_open() case will install a new event and break
1172 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1173 * concerned with cpuctx and that doesn't have children.
1174 *
1175 * The places that change perf_event::ctx will issue:
1176 *
1177 * perf_remove_from_context();
1178 * synchronize_rcu();
1179 * perf_install_in_context();
1180 *
1181 * to affect the change. The remove_from_context() + synchronize_rcu() should
1182 * quiesce the event, after which we can install it in the new location. This
1183 * means that only external vectors (perf_fops, prctl) can perturb the event
1184 * while in transit. Therefore all such accessors should also acquire
1185 * perf_event_context::mutex to serialize against this.
1186 *
1187 * However; because event->ctx can change while we're waiting to acquire
1188 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1189 * function.
1190 *
1191 * Lock order:
1192 * cred_guard_mutex
1193 * task_struct::perf_event_mutex
1194 * perf_event_context::mutex
1195 * perf_event::child_mutex;
1196 * perf_event_context::lock
1197 * perf_event::mmap_mutex
1198 * mmap_sem
1199 */
1200 static struct perf_event_context *
1201 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1202 {
1203 struct perf_event_context *ctx;
1204
1205 again:
1206 rcu_read_lock();
1207 ctx = ACCESS_ONCE(event->ctx);
1208 if (!atomic_inc_not_zero(&ctx->refcount)) {
1209 rcu_read_unlock();
1210 goto again;
1211 }
1212 rcu_read_unlock();
1213
1214 mutex_lock_nested(&ctx->mutex, nesting);
1215 if (event->ctx != ctx) {
1216 mutex_unlock(&ctx->mutex);
1217 put_ctx(ctx);
1218 goto again;
1219 }
1220
1221 return ctx;
1222 }
1223
1224 static inline struct perf_event_context *
1225 perf_event_ctx_lock(struct perf_event *event)
1226 {
1227 return perf_event_ctx_lock_nested(event, 0);
1228 }
1229
1230 static void perf_event_ctx_unlock(struct perf_event *event,
1231 struct perf_event_context *ctx)
1232 {
1233 mutex_unlock(&ctx->mutex);
1234 put_ctx(ctx);
1235 }
1236
1237 /*
1238 * This must be done under the ctx->lock, such as to serialize against
1239 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1240 * calling scheduler related locks and ctx->lock nests inside those.
1241 */
1242 static __must_check struct perf_event_context *
1243 unclone_ctx(struct perf_event_context *ctx)
1244 {
1245 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1246
1247 lockdep_assert_held(&ctx->lock);
1248
1249 if (parent_ctx)
1250 ctx->parent_ctx = NULL;
1251 ctx->generation++;
1252
1253 return parent_ctx;
1254 }
1255
1256 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1257 {
1258 /*
1259 * only top level events have the pid namespace they were created in
1260 */
1261 if (event->parent)
1262 event = event->parent;
1263
1264 return task_tgid_nr_ns(p, event->ns);
1265 }
1266
1267 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1268 {
1269 /*
1270 * only top level events have the pid namespace they were created in
1271 */
1272 if (event->parent)
1273 event = event->parent;
1274
1275 return task_pid_nr_ns(p, event->ns);
1276 }
1277
1278 /*
1279 * If we inherit events we want to return the parent event id
1280 * to userspace.
1281 */
1282 static u64 primary_event_id(struct perf_event *event)
1283 {
1284 u64 id = event->id;
1285
1286 if (event->parent)
1287 id = event->parent->id;
1288
1289 return id;
1290 }
1291
1292 /*
1293 * Get the perf_event_context for a task and lock it.
1294 *
1295 * This has to cope with with the fact that until it is locked,
1296 * the context could get moved to another task.
1297 */
1298 static struct perf_event_context *
1299 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1300 {
1301 struct perf_event_context *ctx;
1302
1303 retry:
1304 /*
1305 * One of the few rules of preemptible RCU is that one cannot do
1306 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1307 * part of the read side critical section was irqs-enabled -- see
1308 * rcu_read_unlock_special().
1309 *
1310 * Since ctx->lock nests under rq->lock we must ensure the entire read
1311 * side critical section has interrupts disabled.
1312 */
1313 local_irq_save(*flags);
1314 rcu_read_lock();
1315 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1316 if (ctx) {
1317 /*
1318 * If this context is a clone of another, it might
1319 * get swapped for another underneath us by
1320 * perf_event_task_sched_out, though the
1321 * rcu_read_lock() protects us from any context
1322 * getting freed. Lock the context and check if it
1323 * got swapped before we could get the lock, and retry
1324 * if so. If we locked the right context, then it
1325 * can't get swapped on us any more.
1326 */
1327 raw_spin_lock(&ctx->lock);
1328 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1329 raw_spin_unlock(&ctx->lock);
1330 rcu_read_unlock();
1331 local_irq_restore(*flags);
1332 goto retry;
1333 }
1334
1335 if (ctx->task == TASK_TOMBSTONE ||
1336 !atomic_inc_not_zero(&ctx->refcount)) {
1337 raw_spin_unlock(&ctx->lock);
1338 ctx = NULL;
1339 } else {
1340 WARN_ON_ONCE(ctx->task != task);
1341 }
1342 }
1343 rcu_read_unlock();
1344 if (!ctx)
1345 local_irq_restore(*flags);
1346 return ctx;
1347 }
1348
1349 /*
1350 * Get the context for a task and increment its pin_count so it
1351 * can't get swapped to another task. This also increments its
1352 * reference count so that the context can't get freed.
1353 */
1354 static struct perf_event_context *
1355 perf_pin_task_context(struct task_struct *task, int ctxn)
1356 {
1357 struct perf_event_context *ctx;
1358 unsigned long flags;
1359
1360 ctx = perf_lock_task_context(task, ctxn, &flags);
1361 if (ctx) {
1362 ++ctx->pin_count;
1363 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1364 }
1365 return ctx;
1366 }
1367
1368 static void perf_unpin_context(struct perf_event_context *ctx)
1369 {
1370 unsigned long flags;
1371
1372 raw_spin_lock_irqsave(&ctx->lock, flags);
1373 --ctx->pin_count;
1374 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1375 }
1376
1377 /*
1378 * Update the record of the current time in a context.
1379 */
1380 static void update_context_time(struct perf_event_context *ctx)
1381 {
1382 u64 now = perf_clock();
1383
1384 ctx->time += now - ctx->timestamp;
1385 ctx->timestamp = now;
1386 }
1387
1388 static u64 perf_event_time(struct perf_event *event)
1389 {
1390 struct perf_event_context *ctx = event->ctx;
1391
1392 if (is_cgroup_event(event))
1393 return perf_cgroup_event_time(event);
1394
1395 return ctx ? ctx->time : 0;
1396 }
1397
1398 /*
1399 * Update the total_time_enabled and total_time_running fields for a event.
1400 */
1401 static void update_event_times(struct perf_event *event)
1402 {
1403 struct perf_event_context *ctx = event->ctx;
1404 u64 run_end;
1405
1406 lockdep_assert_held(&ctx->lock);
1407
1408 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1409 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1410 return;
1411
1412 /*
1413 * in cgroup mode, time_enabled represents
1414 * the time the event was enabled AND active
1415 * tasks were in the monitored cgroup. This is
1416 * independent of the activity of the context as
1417 * there may be a mix of cgroup and non-cgroup events.
1418 *
1419 * That is why we treat cgroup events differently
1420 * here.
1421 */
1422 if (is_cgroup_event(event))
1423 run_end = perf_cgroup_event_time(event);
1424 else if (ctx->is_active)
1425 run_end = ctx->time;
1426 else
1427 run_end = event->tstamp_stopped;
1428
1429 event->total_time_enabled = run_end - event->tstamp_enabled;
1430
1431 if (event->state == PERF_EVENT_STATE_INACTIVE)
1432 run_end = event->tstamp_stopped;
1433 else
1434 run_end = perf_event_time(event);
1435
1436 event->total_time_running = run_end - event->tstamp_running;
1437
1438 }
1439
1440 /*
1441 * Update total_time_enabled and total_time_running for all events in a group.
1442 */
1443 static void update_group_times(struct perf_event *leader)
1444 {
1445 struct perf_event *event;
1446
1447 update_event_times(leader);
1448 list_for_each_entry(event, &leader->sibling_list, group_entry)
1449 update_event_times(event);
1450 }
1451
1452 static enum event_type_t get_event_type(struct perf_event *event)
1453 {
1454 struct perf_event_context *ctx = event->ctx;
1455 enum event_type_t event_type;
1456
1457 lockdep_assert_held(&ctx->lock);
1458
1459 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1460 if (!ctx->task)
1461 event_type |= EVENT_CPU;
1462
1463 return event_type;
1464 }
1465
1466 static struct list_head *
1467 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1468 {
1469 if (event->attr.pinned)
1470 return &ctx->pinned_groups;
1471 else
1472 return &ctx->flexible_groups;
1473 }
1474
1475 /*
1476 * Add a event from the lists for its context.
1477 * Must be called with ctx->mutex and ctx->lock held.
1478 */
1479 static void
1480 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1481 {
1482 lockdep_assert_held(&ctx->lock);
1483
1484 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1485 event->attach_state |= PERF_ATTACH_CONTEXT;
1486
1487 /*
1488 * If we're a stand alone event or group leader, we go to the context
1489 * list, group events are kept attached to the group so that
1490 * perf_group_detach can, at all times, locate all siblings.
1491 */
1492 if (event->group_leader == event) {
1493 struct list_head *list;
1494
1495 event->group_caps = event->event_caps;
1496
1497 list = ctx_group_list(event, ctx);
1498 list_add_tail(&event->group_entry, list);
1499 }
1500
1501 list_update_cgroup_event(event, ctx, true);
1502
1503 list_add_rcu(&event->event_entry, &ctx->event_list);
1504 ctx->nr_events++;
1505 if (event->attr.inherit_stat)
1506 ctx->nr_stat++;
1507
1508 ctx->generation++;
1509 }
1510
1511 /*
1512 * Initialize event state based on the perf_event_attr::disabled.
1513 */
1514 static inline void perf_event__state_init(struct perf_event *event)
1515 {
1516 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1517 PERF_EVENT_STATE_INACTIVE;
1518 }
1519
1520 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1521 {
1522 int entry = sizeof(u64); /* value */
1523 int size = 0;
1524 int nr = 1;
1525
1526 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1527 size += sizeof(u64);
1528
1529 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1530 size += sizeof(u64);
1531
1532 if (event->attr.read_format & PERF_FORMAT_ID)
1533 entry += sizeof(u64);
1534
1535 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1536 nr += nr_siblings;
1537 size += sizeof(u64);
1538 }
1539
1540 size += entry * nr;
1541 event->read_size = size;
1542 }
1543
1544 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1545 {
1546 struct perf_sample_data *data;
1547 u16 size = 0;
1548
1549 if (sample_type & PERF_SAMPLE_IP)
1550 size += sizeof(data->ip);
1551
1552 if (sample_type & PERF_SAMPLE_ADDR)
1553 size += sizeof(data->addr);
1554
1555 if (sample_type & PERF_SAMPLE_PERIOD)
1556 size += sizeof(data->period);
1557
1558 if (sample_type & PERF_SAMPLE_WEIGHT)
1559 size += sizeof(data->weight);
1560
1561 if (sample_type & PERF_SAMPLE_READ)
1562 size += event->read_size;
1563
1564 if (sample_type & PERF_SAMPLE_DATA_SRC)
1565 size += sizeof(data->data_src.val);
1566
1567 if (sample_type & PERF_SAMPLE_TRANSACTION)
1568 size += sizeof(data->txn);
1569
1570 event->header_size = size;
1571 }
1572
1573 /*
1574 * Called at perf_event creation and when events are attached/detached from a
1575 * group.
1576 */
1577 static void perf_event__header_size(struct perf_event *event)
1578 {
1579 __perf_event_read_size(event,
1580 event->group_leader->nr_siblings);
1581 __perf_event_header_size(event, event->attr.sample_type);
1582 }
1583
1584 static void perf_event__id_header_size(struct perf_event *event)
1585 {
1586 struct perf_sample_data *data;
1587 u64 sample_type = event->attr.sample_type;
1588 u16 size = 0;
1589
1590 if (sample_type & PERF_SAMPLE_TID)
1591 size += sizeof(data->tid_entry);
1592
1593 if (sample_type & PERF_SAMPLE_TIME)
1594 size += sizeof(data->time);
1595
1596 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1597 size += sizeof(data->id);
1598
1599 if (sample_type & PERF_SAMPLE_ID)
1600 size += sizeof(data->id);
1601
1602 if (sample_type & PERF_SAMPLE_STREAM_ID)
1603 size += sizeof(data->stream_id);
1604
1605 if (sample_type & PERF_SAMPLE_CPU)
1606 size += sizeof(data->cpu_entry);
1607
1608 event->id_header_size = size;
1609 }
1610
1611 static bool perf_event_validate_size(struct perf_event *event)
1612 {
1613 /*
1614 * The values computed here will be over-written when we actually
1615 * attach the event.
1616 */
1617 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1618 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1619 perf_event__id_header_size(event);
1620
1621 /*
1622 * Sum the lot; should not exceed the 64k limit we have on records.
1623 * Conservative limit to allow for callchains and other variable fields.
1624 */
1625 if (event->read_size + event->header_size +
1626 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1627 return false;
1628
1629 return true;
1630 }
1631
1632 static void perf_group_attach(struct perf_event *event)
1633 {
1634 struct perf_event *group_leader = event->group_leader, *pos;
1635
1636 lockdep_assert_held(&event->ctx->lock);
1637
1638 /*
1639 * We can have double attach due to group movement in perf_event_open.
1640 */
1641 if (event->attach_state & PERF_ATTACH_GROUP)
1642 return;
1643
1644 event->attach_state |= PERF_ATTACH_GROUP;
1645
1646 if (group_leader == event)
1647 return;
1648
1649 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1650
1651 group_leader->group_caps &= event->event_caps;
1652
1653 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1654 group_leader->nr_siblings++;
1655
1656 perf_event__header_size(group_leader);
1657
1658 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1659 perf_event__header_size(pos);
1660 }
1661
1662 /*
1663 * Remove a event from the lists for its context.
1664 * Must be called with ctx->mutex and ctx->lock held.
1665 */
1666 static void
1667 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1668 {
1669 WARN_ON_ONCE(event->ctx != ctx);
1670 lockdep_assert_held(&ctx->lock);
1671
1672 /*
1673 * We can have double detach due to exit/hot-unplug + close.
1674 */
1675 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1676 return;
1677
1678 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1679
1680 list_update_cgroup_event(event, ctx, false);
1681
1682 ctx->nr_events--;
1683 if (event->attr.inherit_stat)
1684 ctx->nr_stat--;
1685
1686 list_del_rcu(&event->event_entry);
1687
1688 if (event->group_leader == event)
1689 list_del_init(&event->group_entry);
1690
1691 update_group_times(event);
1692
1693 /*
1694 * If event was in error state, then keep it
1695 * that way, otherwise bogus counts will be
1696 * returned on read(). The only way to get out
1697 * of error state is by explicit re-enabling
1698 * of the event
1699 */
1700 if (event->state > PERF_EVENT_STATE_OFF)
1701 event->state = PERF_EVENT_STATE_OFF;
1702
1703 ctx->generation++;
1704 }
1705
1706 static void perf_group_detach(struct perf_event *event)
1707 {
1708 struct perf_event *sibling, *tmp;
1709 struct list_head *list = NULL;
1710
1711 lockdep_assert_held(&event->ctx->lock);
1712
1713 /*
1714 * We can have double detach due to exit/hot-unplug + close.
1715 */
1716 if (!(event->attach_state & PERF_ATTACH_GROUP))
1717 return;
1718
1719 event->attach_state &= ~PERF_ATTACH_GROUP;
1720
1721 /*
1722 * If this is a sibling, remove it from its group.
1723 */
1724 if (event->group_leader != event) {
1725 list_del_init(&event->group_entry);
1726 event->group_leader->nr_siblings--;
1727 goto out;
1728 }
1729
1730 if (!list_empty(&event->group_entry))
1731 list = &event->group_entry;
1732
1733 /*
1734 * If this was a group event with sibling events then
1735 * upgrade the siblings to singleton events by adding them
1736 * to whatever list we are on.
1737 */
1738 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1739 if (list)
1740 list_move_tail(&sibling->group_entry, list);
1741 sibling->group_leader = sibling;
1742
1743 /* Inherit group flags from the previous leader */
1744 sibling->group_caps = event->group_caps;
1745
1746 WARN_ON_ONCE(sibling->ctx != event->ctx);
1747 }
1748
1749 out:
1750 perf_event__header_size(event->group_leader);
1751
1752 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1753 perf_event__header_size(tmp);
1754 }
1755
1756 static bool is_orphaned_event(struct perf_event *event)
1757 {
1758 return event->state == PERF_EVENT_STATE_DEAD;
1759 }
1760
1761 static inline int __pmu_filter_match(struct perf_event *event)
1762 {
1763 struct pmu *pmu = event->pmu;
1764 return pmu->filter_match ? pmu->filter_match(event) : 1;
1765 }
1766
1767 /*
1768 * Check whether we should attempt to schedule an event group based on
1769 * PMU-specific filtering. An event group can consist of HW and SW events,
1770 * potentially with a SW leader, so we must check all the filters, to
1771 * determine whether a group is schedulable:
1772 */
1773 static inline int pmu_filter_match(struct perf_event *event)
1774 {
1775 struct perf_event *child;
1776
1777 if (!__pmu_filter_match(event))
1778 return 0;
1779
1780 list_for_each_entry(child, &event->sibling_list, group_entry) {
1781 if (!__pmu_filter_match(child))
1782 return 0;
1783 }
1784
1785 return 1;
1786 }
1787
1788 static inline int
1789 event_filter_match(struct perf_event *event)
1790 {
1791 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1792 perf_cgroup_match(event) && pmu_filter_match(event);
1793 }
1794
1795 static void
1796 event_sched_out(struct perf_event *event,
1797 struct perf_cpu_context *cpuctx,
1798 struct perf_event_context *ctx)
1799 {
1800 u64 tstamp = perf_event_time(event);
1801 u64 delta;
1802
1803 WARN_ON_ONCE(event->ctx != ctx);
1804 lockdep_assert_held(&ctx->lock);
1805
1806 /*
1807 * An event which could not be activated because of
1808 * filter mismatch still needs to have its timings
1809 * maintained, otherwise bogus information is return
1810 * via read() for time_enabled, time_running:
1811 */
1812 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1813 !event_filter_match(event)) {
1814 delta = tstamp - event->tstamp_stopped;
1815 event->tstamp_running += delta;
1816 event->tstamp_stopped = tstamp;
1817 }
1818
1819 if (event->state != PERF_EVENT_STATE_ACTIVE)
1820 return;
1821
1822 perf_pmu_disable(event->pmu);
1823
1824 event->tstamp_stopped = tstamp;
1825 event->pmu->del(event, 0);
1826 event->oncpu = -1;
1827 event->state = PERF_EVENT_STATE_INACTIVE;
1828 if (event->pending_disable) {
1829 event->pending_disable = 0;
1830 event->state = PERF_EVENT_STATE_OFF;
1831 }
1832
1833 if (!is_software_event(event))
1834 cpuctx->active_oncpu--;
1835 if (!--ctx->nr_active)
1836 perf_event_ctx_deactivate(ctx);
1837 if (event->attr.freq && event->attr.sample_freq)
1838 ctx->nr_freq--;
1839 if (event->attr.exclusive || !cpuctx->active_oncpu)
1840 cpuctx->exclusive = 0;
1841
1842 perf_pmu_enable(event->pmu);
1843 }
1844
1845 static void
1846 group_sched_out(struct perf_event *group_event,
1847 struct perf_cpu_context *cpuctx,
1848 struct perf_event_context *ctx)
1849 {
1850 struct perf_event *event;
1851 int state = group_event->state;
1852
1853 perf_pmu_disable(ctx->pmu);
1854
1855 event_sched_out(group_event, cpuctx, ctx);
1856
1857 /*
1858 * Schedule out siblings (if any):
1859 */
1860 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1861 event_sched_out(event, cpuctx, ctx);
1862
1863 perf_pmu_enable(ctx->pmu);
1864
1865 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1866 cpuctx->exclusive = 0;
1867 }
1868
1869 #define DETACH_GROUP 0x01UL
1870
1871 /*
1872 * Cross CPU call to remove a performance event
1873 *
1874 * We disable the event on the hardware level first. After that we
1875 * remove it from the context list.
1876 */
1877 static void
1878 __perf_remove_from_context(struct perf_event *event,
1879 struct perf_cpu_context *cpuctx,
1880 struct perf_event_context *ctx,
1881 void *info)
1882 {
1883 unsigned long flags = (unsigned long)info;
1884
1885 event_sched_out(event, cpuctx, ctx);
1886 if (flags & DETACH_GROUP)
1887 perf_group_detach(event);
1888 list_del_event(event, ctx);
1889
1890 if (!ctx->nr_events && ctx->is_active) {
1891 ctx->is_active = 0;
1892 if (ctx->task) {
1893 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1894 cpuctx->task_ctx = NULL;
1895 }
1896 }
1897 }
1898
1899 /*
1900 * Remove the event from a task's (or a CPU's) list of events.
1901 *
1902 * If event->ctx is a cloned context, callers must make sure that
1903 * every task struct that event->ctx->task could possibly point to
1904 * remains valid. This is OK when called from perf_release since
1905 * that only calls us on the top-level context, which can't be a clone.
1906 * When called from perf_event_exit_task, it's OK because the
1907 * context has been detached from its task.
1908 */
1909 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1910 {
1911 struct perf_event_context *ctx = event->ctx;
1912
1913 lockdep_assert_held(&ctx->mutex);
1914
1915 event_function_call(event, __perf_remove_from_context, (void *)flags);
1916
1917 /*
1918 * The above event_function_call() can NO-OP when it hits
1919 * TASK_TOMBSTONE. In that case we must already have been detached
1920 * from the context (by perf_event_exit_event()) but the grouping
1921 * might still be in-tact.
1922 */
1923 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1924 if ((flags & DETACH_GROUP) &&
1925 (event->attach_state & PERF_ATTACH_GROUP)) {
1926 /*
1927 * Since in that case we cannot possibly be scheduled, simply
1928 * detach now.
1929 */
1930 raw_spin_lock_irq(&ctx->lock);
1931 perf_group_detach(event);
1932 raw_spin_unlock_irq(&ctx->lock);
1933 }
1934 }
1935
1936 /*
1937 * Cross CPU call to disable a performance event
1938 */
1939 static void __perf_event_disable(struct perf_event *event,
1940 struct perf_cpu_context *cpuctx,
1941 struct perf_event_context *ctx,
1942 void *info)
1943 {
1944 if (event->state < PERF_EVENT_STATE_INACTIVE)
1945 return;
1946
1947 update_context_time(ctx);
1948 update_cgrp_time_from_event(event);
1949 update_group_times(event);
1950 if (event == event->group_leader)
1951 group_sched_out(event, cpuctx, ctx);
1952 else
1953 event_sched_out(event, cpuctx, ctx);
1954 event->state = PERF_EVENT_STATE_OFF;
1955 }
1956
1957 /*
1958 * Disable a event.
1959 *
1960 * If event->ctx is a cloned context, callers must make sure that
1961 * every task struct that event->ctx->task could possibly point to
1962 * remains valid. This condition is satisifed when called through
1963 * perf_event_for_each_child or perf_event_for_each because they
1964 * hold the top-level event's child_mutex, so any descendant that
1965 * goes to exit will block in perf_event_exit_event().
1966 *
1967 * When called from perf_pending_event it's OK because event->ctx
1968 * is the current context on this CPU and preemption is disabled,
1969 * hence we can't get into perf_event_task_sched_out for this context.
1970 */
1971 static void _perf_event_disable(struct perf_event *event)
1972 {
1973 struct perf_event_context *ctx = event->ctx;
1974
1975 raw_spin_lock_irq(&ctx->lock);
1976 if (event->state <= PERF_EVENT_STATE_OFF) {
1977 raw_spin_unlock_irq(&ctx->lock);
1978 return;
1979 }
1980 raw_spin_unlock_irq(&ctx->lock);
1981
1982 event_function_call(event, __perf_event_disable, NULL);
1983 }
1984
1985 void perf_event_disable_local(struct perf_event *event)
1986 {
1987 event_function_local(event, __perf_event_disable, NULL);
1988 }
1989
1990 /*
1991 * Strictly speaking kernel users cannot create groups and therefore this
1992 * interface does not need the perf_event_ctx_lock() magic.
1993 */
1994 void perf_event_disable(struct perf_event *event)
1995 {
1996 struct perf_event_context *ctx;
1997
1998 ctx = perf_event_ctx_lock(event);
1999 _perf_event_disable(event);
2000 perf_event_ctx_unlock(event, ctx);
2001 }
2002 EXPORT_SYMBOL_GPL(perf_event_disable);
2003
2004 void perf_event_disable_inatomic(struct perf_event *event)
2005 {
2006 event->pending_disable = 1;
2007 irq_work_queue(&event->pending);
2008 }
2009
2010 static void perf_set_shadow_time(struct perf_event *event,
2011 struct perf_event_context *ctx,
2012 u64 tstamp)
2013 {
2014 /*
2015 * use the correct time source for the time snapshot
2016 *
2017 * We could get by without this by leveraging the
2018 * fact that to get to this function, the caller
2019 * has most likely already called update_context_time()
2020 * and update_cgrp_time_xx() and thus both timestamp
2021 * are identical (or very close). Given that tstamp is,
2022 * already adjusted for cgroup, we could say that:
2023 * tstamp - ctx->timestamp
2024 * is equivalent to
2025 * tstamp - cgrp->timestamp.
2026 *
2027 * Then, in perf_output_read(), the calculation would
2028 * work with no changes because:
2029 * - event is guaranteed scheduled in
2030 * - no scheduled out in between
2031 * - thus the timestamp would be the same
2032 *
2033 * But this is a bit hairy.
2034 *
2035 * So instead, we have an explicit cgroup call to remain
2036 * within the time time source all along. We believe it
2037 * is cleaner and simpler to understand.
2038 */
2039 if (is_cgroup_event(event))
2040 perf_cgroup_set_shadow_time(event, tstamp);
2041 else
2042 event->shadow_ctx_time = tstamp - ctx->timestamp;
2043 }
2044
2045 #define MAX_INTERRUPTS (~0ULL)
2046
2047 static void perf_log_throttle(struct perf_event *event, int enable);
2048 static void perf_log_itrace_start(struct perf_event *event);
2049
2050 static int
2051 event_sched_in(struct perf_event *event,
2052 struct perf_cpu_context *cpuctx,
2053 struct perf_event_context *ctx)
2054 {
2055 u64 tstamp = perf_event_time(event);
2056 int ret = 0;
2057
2058 lockdep_assert_held(&ctx->lock);
2059
2060 if (event->state <= PERF_EVENT_STATE_OFF)
2061 return 0;
2062
2063 WRITE_ONCE(event->oncpu, smp_processor_id());
2064 /*
2065 * Order event::oncpu write to happen before the ACTIVE state
2066 * is visible.
2067 */
2068 smp_wmb();
2069 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2070
2071 /*
2072 * Unthrottle events, since we scheduled we might have missed several
2073 * ticks already, also for a heavily scheduling task there is little
2074 * guarantee it'll get a tick in a timely manner.
2075 */
2076 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2077 perf_log_throttle(event, 1);
2078 event->hw.interrupts = 0;
2079 }
2080
2081 /*
2082 * The new state must be visible before we turn it on in the hardware:
2083 */
2084 smp_wmb();
2085
2086 perf_pmu_disable(event->pmu);
2087
2088 perf_set_shadow_time(event, ctx, tstamp);
2089
2090 perf_log_itrace_start(event);
2091
2092 if (event->pmu->add(event, PERF_EF_START)) {
2093 event->state = PERF_EVENT_STATE_INACTIVE;
2094 event->oncpu = -1;
2095 ret = -EAGAIN;
2096 goto out;
2097 }
2098
2099 event->tstamp_running += tstamp - event->tstamp_stopped;
2100
2101 if (!is_software_event(event))
2102 cpuctx->active_oncpu++;
2103 if (!ctx->nr_active++)
2104 perf_event_ctx_activate(ctx);
2105 if (event->attr.freq && event->attr.sample_freq)
2106 ctx->nr_freq++;
2107
2108 if (event->attr.exclusive)
2109 cpuctx->exclusive = 1;
2110
2111 out:
2112 perf_pmu_enable(event->pmu);
2113
2114 return ret;
2115 }
2116
2117 static int
2118 group_sched_in(struct perf_event *group_event,
2119 struct perf_cpu_context *cpuctx,
2120 struct perf_event_context *ctx)
2121 {
2122 struct perf_event *event, *partial_group = NULL;
2123 struct pmu *pmu = ctx->pmu;
2124 u64 now = ctx->time;
2125 bool simulate = false;
2126
2127 if (group_event->state == PERF_EVENT_STATE_OFF)
2128 return 0;
2129
2130 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2131
2132 if (event_sched_in(group_event, cpuctx, ctx)) {
2133 pmu->cancel_txn(pmu);
2134 perf_mux_hrtimer_restart(cpuctx);
2135 return -EAGAIN;
2136 }
2137
2138 /*
2139 * Schedule in siblings as one group (if any):
2140 */
2141 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2142 if (event_sched_in(event, cpuctx, ctx)) {
2143 partial_group = event;
2144 goto group_error;
2145 }
2146 }
2147
2148 if (!pmu->commit_txn(pmu))
2149 return 0;
2150
2151 group_error:
2152 /*
2153 * Groups can be scheduled in as one unit only, so undo any
2154 * partial group before returning:
2155 * The events up to the failed event are scheduled out normally,
2156 * tstamp_stopped will be updated.
2157 *
2158 * The failed events and the remaining siblings need to have
2159 * their timings updated as if they had gone thru event_sched_in()
2160 * and event_sched_out(). This is required to get consistent timings
2161 * across the group. This also takes care of the case where the group
2162 * could never be scheduled by ensuring tstamp_stopped is set to mark
2163 * the time the event was actually stopped, such that time delta
2164 * calculation in update_event_times() is correct.
2165 */
2166 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2167 if (event == partial_group)
2168 simulate = true;
2169
2170 if (simulate) {
2171 event->tstamp_running += now - event->tstamp_stopped;
2172 event->tstamp_stopped = now;
2173 } else {
2174 event_sched_out(event, cpuctx, ctx);
2175 }
2176 }
2177 event_sched_out(group_event, cpuctx, ctx);
2178
2179 pmu->cancel_txn(pmu);
2180
2181 perf_mux_hrtimer_restart(cpuctx);
2182
2183 return -EAGAIN;
2184 }
2185
2186 /*
2187 * Work out whether we can put this event group on the CPU now.
2188 */
2189 static int group_can_go_on(struct perf_event *event,
2190 struct perf_cpu_context *cpuctx,
2191 int can_add_hw)
2192 {
2193 /*
2194 * Groups consisting entirely of software events can always go on.
2195 */
2196 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2197 return 1;
2198 /*
2199 * If an exclusive group is already on, no other hardware
2200 * events can go on.
2201 */
2202 if (cpuctx->exclusive)
2203 return 0;
2204 /*
2205 * If this group is exclusive and there are already
2206 * events on the CPU, it can't go on.
2207 */
2208 if (event->attr.exclusive && cpuctx->active_oncpu)
2209 return 0;
2210 /*
2211 * Otherwise, try to add it if all previous groups were able
2212 * to go on.
2213 */
2214 return can_add_hw;
2215 }
2216
2217 static void add_event_to_ctx(struct perf_event *event,
2218 struct perf_event_context *ctx)
2219 {
2220 u64 tstamp = perf_event_time(event);
2221
2222 list_add_event(event, ctx);
2223 perf_group_attach(event);
2224 event->tstamp_enabled = tstamp;
2225 event->tstamp_running = tstamp;
2226 event->tstamp_stopped = tstamp;
2227 }
2228
2229 static void ctx_sched_out(struct perf_event_context *ctx,
2230 struct perf_cpu_context *cpuctx,
2231 enum event_type_t event_type);
2232 static void
2233 ctx_sched_in(struct perf_event_context *ctx,
2234 struct perf_cpu_context *cpuctx,
2235 enum event_type_t event_type,
2236 struct task_struct *task);
2237
2238 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2239 struct perf_event_context *ctx,
2240 enum event_type_t event_type)
2241 {
2242 if (!cpuctx->task_ctx)
2243 return;
2244
2245 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2246 return;
2247
2248 ctx_sched_out(ctx, cpuctx, event_type);
2249 }
2250
2251 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2252 struct perf_event_context *ctx,
2253 struct task_struct *task)
2254 {
2255 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2256 if (ctx)
2257 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2258 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2259 if (ctx)
2260 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2261 }
2262
2263 /*
2264 * We want to maintain the following priority of scheduling:
2265 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2266 * - task pinned (EVENT_PINNED)
2267 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2268 * - task flexible (EVENT_FLEXIBLE).
2269 *
2270 * In order to avoid unscheduling and scheduling back in everything every
2271 * time an event is added, only do it for the groups of equal priority and
2272 * below.
2273 *
2274 * This can be called after a batch operation on task events, in which case
2275 * event_type is a bit mask of the types of events involved. For CPU events,
2276 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2277 */
2278 static void ctx_resched(struct perf_cpu_context *cpuctx,
2279 struct perf_event_context *task_ctx,
2280 enum event_type_t event_type)
2281 {
2282 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2283 bool cpu_event = !!(event_type & EVENT_CPU);
2284
2285 /*
2286 * If pinned groups are involved, flexible groups also need to be
2287 * scheduled out.
2288 */
2289 if (event_type & EVENT_PINNED)
2290 event_type |= EVENT_FLEXIBLE;
2291
2292 perf_pmu_disable(cpuctx->ctx.pmu);
2293 if (task_ctx)
2294 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2295
2296 /*
2297 * Decide which cpu ctx groups to schedule out based on the types
2298 * of events that caused rescheduling:
2299 * - EVENT_CPU: schedule out corresponding groups;
2300 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2301 * - otherwise, do nothing more.
2302 */
2303 if (cpu_event)
2304 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2305 else if (ctx_event_type & EVENT_PINNED)
2306 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2307
2308 perf_event_sched_in(cpuctx, task_ctx, current);
2309 perf_pmu_enable(cpuctx->ctx.pmu);
2310 }
2311
2312 /*
2313 * Cross CPU call to install and enable a performance event
2314 *
2315 * Very similar to remote_function() + event_function() but cannot assume that
2316 * things like ctx->is_active and cpuctx->task_ctx are set.
2317 */
2318 static int __perf_install_in_context(void *info)
2319 {
2320 struct perf_event *event = info;
2321 struct perf_event_context *ctx = event->ctx;
2322 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2323 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2324 bool reprogram = true;
2325 int ret = 0;
2326
2327 raw_spin_lock(&cpuctx->ctx.lock);
2328 if (ctx->task) {
2329 raw_spin_lock(&ctx->lock);
2330 task_ctx = ctx;
2331
2332 reprogram = (ctx->task == current);
2333
2334 /*
2335 * If the task is running, it must be running on this CPU,
2336 * otherwise we cannot reprogram things.
2337 *
2338 * If its not running, we don't care, ctx->lock will
2339 * serialize against it becoming runnable.
2340 */
2341 if (task_curr(ctx->task) && !reprogram) {
2342 ret = -ESRCH;
2343 goto unlock;
2344 }
2345
2346 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2347 } else if (task_ctx) {
2348 raw_spin_lock(&task_ctx->lock);
2349 }
2350
2351 if (reprogram) {
2352 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2353 add_event_to_ctx(event, ctx);
2354 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2355 } else {
2356 add_event_to_ctx(event, ctx);
2357 }
2358
2359 unlock:
2360 perf_ctx_unlock(cpuctx, task_ctx);
2361
2362 return ret;
2363 }
2364
2365 /*
2366 * Attach a performance event to a context.
2367 *
2368 * Very similar to event_function_call, see comment there.
2369 */
2370 static void
2371 perf_install_in_context(struct perf_event_context *ctx,
2372 struct perf_event *event,
2373 int cpu)
2374 {
2375 struct task_struct *task = READ_ONCE(ctx->task);
2376
2377 lockdep_assert_held(&ctx->mutex);
2378
2379 if (event->cpu != -1)
2380 event->cpu = cpu;
2381
2382 /*
2383 * Ensures that if we can observe event->ctx, both the event and ctx
2384 * will be 'complete'. See perf_iterate_sb_cpu().
2385 */
2386 smp_store_release(&event->ctx, ctx);
2387
2388 if (!task) {
2389 cpu_function_call(cpu, __perf_install_in_context, event);
2390 return;
2391 }
2392
2393 /*
2394 * Should not happen, we validate the ctx is still alive before calling.
2395 */
2396 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2397 return;
2398
2399 /*
2400 * Installing events is tricky because we cannot rely on ctx->is_active
2401 * to be set in case this is the nr_events 0 -> 1 transition.
2402 *
2403 * Instead we use task_curr(), which tells us if the task is running.
2404 * However, since we use task_curr() outside of rq::lock, we can race
2405 * against the actual state. This means the result can be wrong.
2406 *
2407 * If we get a false positive, we retry, this is harmless.
2408 *
2409 * If we get a false negative, things are complicated. If we are after
2410 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2411 * value must be correct. If we're before, it doesn't matter since
2412 * perf_event_context_sched_in() will program the counter.
2413 *
2414 * However, this hinges on the remote context switch having observed
2415 * our task->perf_event_ctxp[] store, such that it will in fact take
2416 * ctx::lock in perf_event_context_sched_in().
2417 *
2418 * We do this by task_function_call(), if the IPI fails to hit the task
2419 * we know any future context switch of task must see the
2420 * perf_event_ctpx[] store.
2421 */
2422
2423 /*
2424 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2425 * task_cpu() load, such that if the IPI then does not find the task
2426 * running, a future context switch of that task must observe the
2427 * store.
2428 */
2429 smp_mb();
2430 again:
2431 if (!task_function_call(task, __perf_install_in_context, event))
2432 return;
2433
2434 raw_spin_lock_irq(&ctx->lock);
2435 task = ctx->task;
2436 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2437 /*
2438 * Cannot happen because we already checked above (which also
2439 * cannot happen), and we hold ctx->mutex, which serializes us
2440 * against perf_event_exit_task_context().
2441 */
2442 raw_spin_unlock_irq(&ctx->lock);
2443 return;
2444 }
2445 /*
2446 * If the task is not running, ctx->lock will avoid it becoming so,
2447 * thus we can safely install the event.
2448 */
2449 if (task_curr(task)) {
2450 raw_spin_unlock_irq(&ctx->lock);
2451 goto again;
2452 }
2453 add_event_to_ctx(event, ctx);
2454 raw_spin_unlock_irq(&ctx->lock);
2455 }
2456
2457 /*
2458 * Put a event into inactive state and update time fields.
2459 * Enabling the leader of a group effectively enables all
2460 * the group members that aren't explicitly disabled, so we
2461 * have to update their ->tstamp_enabled also.
2462 * Note: this works for group members as well as group leaders
2463 * since the non-leader members' sibling_lists will be empty.
2464 */
2465 static void __perf_event_mark_enabled(struct perf_event *event)
2466 {
2467 struct perf_event *sub;
2468 u64 tstamp = perf_event_time(event);
2469
2470 event->state = PERF_EVENT_STATE_INACTIVE;
2471 event->tstamp_enabled = tstamp - event->total_time_enabled;
2472 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2473 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2474 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2475 }
2476 }
2477
2478 /*
2479 * Cross CPU call to enable a performance event
2480 */
2481 static void __perf_event_enable(struct perf_event *event,
2482 struct perf_cpu_context *cpuctx,
2483 struct perf_event_context *ctx,
2484 void *info)
2485 {
2486 struct perf_event *leader = event->group_leader;
2487 struct perf_event_context *task_ctx;
2488
2489 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2490 event->state <= PERF_EVENT_STATE_ERROR)
2491 return;
2492
2493 if (ctx->is_active)
2494 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2495
2496 __perf_event_mark_enabled(event);
2497
2498 if (!ctx->is_active)
2499 return;
2500
2501 if (!event_filter_match(event)) {
2502 if (is_cgroup_event(event))
2503 perf_cgroup_defer_enabled(event);
2504 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2505 return;
2506 }
2507
2508 /*
2509 * If the event is in a group and isn't the group leader,
2510 * then don't put it on unless the group is on.
2511 */
2512 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2513 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2514 return;
2515 }
2516
2517 task_ctx = cpuctx->task_ctx;
2518 if (ctx->task)
2519 WARN_ON_ONCE(task_ctx != ctx);
2520
2521 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2522 }
2523
2524 /*
2525 * Enable a event.
2526 *
2527 * If event->ctx is a cloned context, callers must make sure that
2528 * every task struct that event->ctx->task could possibly point to
2529 * remains valid. This condition is satisfied when called through
2530 * perf_event_for_each_child or perf_event_for_each as described
2531 * for perf_event_disable.
2532 */
2533 static void _perf_event_enable(struct perf_event *event)
2534 {
2535 struct perf_event_context *ctx = event->ctx;
2536
2537 raw_spin_lock_irq(&ctx->lock);
2538 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2539 event->state < PERF_EVENT_STATE_ERROR) {
2540 raw_spin_unlock_irq(&ctx->lock);
2541 return;
2542 }
2543
2544 /*
2545 * If the event is in error state, clear that first.
2546 *
2547 * That way, if we see the event in error state below, we know that it
2548 * has gone back into error state, as distinct from the task having
2549 * been scheduled away before the cross-call arrived.
2550 */
2551 if (event->state == PERF_EVENT_STATE_ERROR)
2552 event->state = PERF_EVENT_STATE_OFF;
2553 raw_spin_unlock_irq(&ctx->lock);
2554
2555 event_function_call(event, __perf_event_enable, NULL);
2556 }
2557
2558 /*
2559 * See perf_event_disable();
2560 */
2561 void perf_event_enable(struct perf_event *event)
2562 {
2563 struct perf_event_context *ctx;
2564
2565 ctx = perf_event_ctx_lock(event);
2566 _perf_event_enable(event);
2567 perf_event_ctx_unlock(event, ctx);
2568 }
2569 EXPORT_SYMBOL_GPL(perf_event_enable);
2570
2571 struct stop_event_data {
2572 struct perf_event *event;
2573 unsigned int restart;
2574 };
2575
2576 static int __perf_event_stop(void *info)
2577 {
2578 struct stop_event_data *sd = info;
2579 struct perf_event *event = sd->event;
2580
2581 /* if it's already INACTIVE, do nothing */
2582 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2583 return 0;
2584
2585 /* matches smp_wmb() in event_sched_in() */
2586 smp_rmb();
2587
2588 /*
2589 * There is a window with interrupts enabled before we get here,
2590 * so we need to check again lest we try to stop another CPU's event.
2591 */
2592 if (READ_ONCE(event->oncpu) != smp_processor_id())
2593 return -EAGAIN;
2594
2595 event->pmu->stop(event, PERF_EF_UPDATE);
2596
2597 /*
2598 * May race with the actual stop (through perf_pmu_output_stop()),
2599 * but it is only used for events with AUX ring buffer, and such
2600 * events will refuse to restart because of rb::aux_mmap_count==0,
2601 * see comments in perf_aux_output_begin().
2602 *
2603 * Since this is happening on a event-local CPU, no trace is lost
2604 * while restarting.
2605 */
2606 if (sd->restart)
2607 event->pmu->start(event, 0);
2608
2609 return 0;
2610 }
2611
2612 static int perf_event_stop(struct perf_event *event, int restart)
2613 {
2614 struct stop_event_data sd = {
2615 .event = event,
2616 .restart = restart,
2617 };
2618 int ret = 0;
2619
2620 do {
2621 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2622 return 0;
2623
2624 /* matches smp_wmb() in event_sched_in() */
2625 smp_rmb();
2626
2627 /*
2628 * We only want to restart ACTIVE events, so if the event goes
2629 * inactive here (event->oncpu==-1), there's nothing more to do;
2630 * fall through with ret==-ENXIO.
2631 */
2632 ret = cpu_function_call(READ_ONCE(event->oncpu),
2633 __perf_event_stop, &sd);
2634 } while (ret == -EAGAIN);
2635
2636 return ret;
2637 }
2638
2639 /*
2640 * In order to contain the amount of racy and tricky in the address filter
2641 * configuration management, it is a two part process:
2642 *
2643 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2644 * we update the addresses of corresponding vmas in
2645 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2646 * (p2) when an event is scheduled in (pmu::add), it calls
2647 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2648 * if the generation has changed since the previous call.
2649 *
2650 * If (p1) happens while the event is active, we restart it to force (p2).
2651 *
2652 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2653 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2654 * ioctl;
2655 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2656 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2657 * for reading;
2658 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2659 * of exec.
2660 */
2661 void perf_event_addr_filters_sync(struct perf_event *event)
2662 {
2663 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2664
2665 if (!has_addr_filter(event))
2666 return;
2667
2668 raw_spin_lock(&ifh->lock);
2669 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2670 event->pmu->addr_filters_sync(event);
2671 event->hw.addr_filters_gen = event->addr_filters_gen;
2672 }
2673 raw_spin_unlock(&ifh->lock);
2674 }
2675 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2676
2677 static int _perf_event_refresh(struct perf_event *event, int refresh)
2678 {
2679 /*
2680 * not supported on inherited events
2681 */
2682 if (event->attr.inherit || !is_sampling_event(event))
2683 return -EINVAL;
2684
2685 atomic_add(refresh, &event->event_limit);
2686 _perf_event_enable(event);
2687
2688 return 0;
2689 }
2690
2691 /*
2692 * See perf_event_disable()
2693 */
2694 int perf_event_refresh(struct perf_event *event, int refresh)
2695 {
2696 struct perf_event_context *ctx;
2697 int ret;
2698
2699 ctx = perf_event_ctx_lock(event);
2700 ret = _perf_event_refresh(event, refresh);
2701 perf_event_ctx_unlock(event, ctx);
2702
2703 return ret;
2704 }
2705 EXPORT_SYMBOL_GPL(perf_event_refresh);
2706
2707 static void ctx_sched_out(struct perf_event_context *ctx,
2708 struct perf_cpu_context *cpuctx,
2709 enum event_type_t event_type)
2710 {
2711 int is_active = ctx->is_active;
2712 struct perf_event *event;
2713
2714 lockdep_assert_held(&ctx->lock);
2715
2716 if (likely(!ctx->nr_events)) {
2717 /*
2718 * See __perf_remove_from_context().
2719 */
2720 WARN_ON_ONCE(ctx->is_active);
2721 if (ctx->task)
2722 WARN_ON_ONCE(cpuctx->task_ctx);
2723 return;
2724 }
2725
2726 ctx->is_active &= ~event_type;
2727 if (!(ctx->is_active & EVENT_ALL))
2728 ctx->is_active = 0;
2729
2730 if (ctx->task) {
2731 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2732 if (!ctx->is_active)
2733 cpuctx->task_ctx = NULL;
2734 }
2735
2736 /*
2737 * Always update time if it was set; not only when it changes.
2738 * Otherwise we can 'forget' to update time for any but the last
2739 * context we sched out. For example:
2740 *
2741 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2742 * ctx_sched_out(.event_type = EVENT_PINNED)
2743 *
2744 * would only update time for the pinned events.
2745 */
2746 if (is_active & EVENT_TIME) {
2747 /* update (and stop) ctx time */
2748 update_context_time(ctx);
2749 update_cgrp_time_from_cpuctx(cpuctx);
2750 }
2751
2752 is_active ^= ctx->is_active; /* changed bits */
2753
2754 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2755 return;
2756
2757 perf_pmu_disable(ctx->pmu);
2758 if (is_active & EVENT_PINNED) {
2759 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2760 group_sched_out(event, cpuctx, ctx);
2761 }
2762
2763 if (is_active & EVENT_FLEXIBLE) {
2764 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2765 group_sched_out(event, cpuctx, ctx);
2766 }
2767 perf_pmu_enable(ctx->pmu);
2768 }
2769
2770 /*
2771 * Test whether two contexts are equivalent, i.e. whether they have both been
2772 * cloned from the same version of the same context.
2773 *
2774 * Equivalence is measured using a generation number in the context that is
2775 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2776 * and list_del_event().
2777 */
2778 static int context_equiv(struct perf_event_context *ctx1,
2779 struct perf_event_context *ctx2)
2780 {
2781 lockdep_assert_held(&ctx1->lock);
2782 lockdep_assert_held(&ctx2->lock);
2783
2784 /* Pinning disables the swap optimization */
2785 if (ctx1->pin_count || ctx2->pin_count)
2786 return 0;
2787
2788 /* If ctx1 is the parent of ctx2 */
2789 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2790 return 1;
2791
2792 /* If ctx2 is the parent of ctx1 */
2793 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2794 return 1;
2795
2796 /*
2797 * If ctx1 and ctx2 have the same parent; we flatten the parent
2798 * hierarchy, see perf_event_init_context().
2799 */
2800 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2801 ctx1->parent_gen == ctx2->parent_gen)
2802 return 1;
2803
2804 /* Unmatched */
2805 return 0;
2806 }
2807
2808 static void __perf_event_sync_stat(struct perf_event *event,
2809 struct perf_event *next_event)
2810 {
2811 u64 value;
2812
2813 if (!event->attr.inherit_stat)
2814 return;
2815
2816 /*
2817 * Update the event value, we cannot use perf_event_read()
2818 * because we're in the middle of a context switch and have IRQs
2819 * disabled, which upsets smp_call_function_single(), however
2820 * we know the event must be on the current CPU, therefore we
2821 * don't need to use it.
2822 */
2823 switch (event->state) {
2824 case PERF_EVENT_STATE_ACTIVE:
2825 event->pmu->read(event);
2826 /* fall-through */
2827
2828 case PERF_EVENT_STATE_INACTIVE:
2829 update_event_times(event);
2830 break;
2831
2832 default:
2833 break;
2834 }
2835
2836 /*
2837 * In order to keep per-task stats reliable we need to flip the event
2838 * values when we flip the contexts.
2839 */
2840 value = local64_read(&next_event->count);
2841 value = local64_xchg(&event->count, value);
2842 local64_set(&next_event->count, value);
2843
2844 swap(event->total_time_enabled, next_event->total_time_enabled);
2845 swap(event->total_time_running, next_event->total_time_running);
2846
2847 /*
2848 * Since we swizzled the values, update the user visible data too.
2849 */
2850 perf_event_update_userpage(event);
2851 perf_event_update_userpage(next_event);
2852 }
2853
2854 static void perf_event_sync_stat(struct perf_event_context *ctx,
2855 struct perf_event_context *next_ctx)
2856 {
2857 struct perf_event *event, *next_event;
2858
2859 if (!ctx->nr_stat)
2860 return;
2861
2862 update_context_time(ctx);
2863
2864 event = list_first_entry(&ctx->event_list,
2865 struct perf_event, event_entry);
2866
2867 next_event = list_first_entry(&next_ctx->event_list,
2868 struct perf_event, event_entry);
2869
2870 while (&event->event_entry != &ctx->event_list &&
2871 &next_event->event_entry != &next_ctx->event_list) {
2872
2873 __perf_event_sync_stat(event, next_event);
2874
2875 event = list_next_entry(event, event_entry);
2876 next_event = list_next_entry(next_event, event_entry);
2877 }
2878 }
2879
2880 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2881 struct task_struct *next)
2882 {
2883 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2884 struct perf_event_context *next_ctx;
2885 struct perf_event_context *parent, *next_parent;
2886 struct perf_cpu_context *cpuctx;
2887 int do_switch = 1;
2888
2889 if (likely(!ctx))
2890 return;
2891
2892 cpuctx = __get_cpu_context(ctx);
2893 if (!cpuctx->task_ctx)
2894 return;
2895
2896 rcu_read_lock();
2897 next_ctx = next->perf_event_ctxp[ctxn];
2898 if (!next_ctx)
2899 goto unlock;
2900
2901 parent = rcu_dereference(ctx->parent_ctx);
2902 next_parent = rcu_dereference(next_ctx->parent_ctx);
2903
2904 /* If neither context have a parent context; they cannot be clones. */
2905 if (!parent && !next_parent)
2906 goto unlock;
2907
2908 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2909 /*
2910 * Looks like the two contexts are clones, so we might be
2911 * able to optimize the context switch. We lock both
2912 * contexts and check that they are clones under the
2913 * lock (including re-checking that neither has been
2914 * uncloned in the meantime). It doesn't matter which
2915 * order we take the locks because no other cpu could
2916 * be trying to lock both of these tasks.
2917 */
2918 raw_spin_lock(&ctx->lock);
2919 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2920 if (context_equiv(ctx, next_ctx)) {
2921 WRITE_ONCE(ctx->task, next);
2922 WRITE_ONCE(next_ctx->task, task);
2923
2924 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2925
2926 /*
2927 * RCU_INIT_POINTER here is safe because we've not
2928 * modified the ctx and the above modification of
2929 * ctx->task and ctx->task_ctx_data are immaterial
2930 * since those values are always verified under
2931 * ctx->lock which we're now holding.
2932 */
2933 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2934 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2935
2936 do_switch = 0;
2937
2938 perf_event_sync_stat(ctx, next_ctx);
2939 }
2940 raw_spin_unlock(&next_ctx->lock);
2941 raw_spin_unlock(&ctx->lock);
2942 }
2943 unlock:
2944 rcu_read_unlock();
2945
2946 if (do_switch) {
2947 raw_spin_lock(&ctx->lock);
2948 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2949 raw_spin_unlock(&ctx->lock);
2950 }
2951 }
2952
2953 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2954
2955 void perf_sched_cb_dec(struct pmu *pmu)
2956 {
2957 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2958
2959 this_cpu_dec(perf_sched_cb_usages);
2960
2961 if (!--cpuctx->sched_cb_usage)
2962 list_del(&cpuctx->sched_cb_entry);
2963 }
2964
2965
2966 void perf_sched_cb_inc(struct pmu *pmu)
2967 {
2968 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2969
2970 if (!cpuctx->sched_cb_usage++)
2971 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2972
2973 this_cpu_inc(perf_sched_cb_usages);
2974 }
2975
2976 /*
2977 * This function provides the context switch callback to the lower code
2978 * layer. It is invoked ONLY when the context switch callback is enabled.
2979 *
2980 * This callback is relevant even to per-cpu events; for example multi event
2981 * PEBS requires this to provide PID/TID information. This requires we flush
2982 * all queued PEBS records before we context switch to a new task.
2983 */
2984 static void perf_pmu_sched_task(struct task_struct *prev,
2985 struct task_struct *next,
2986 bool sched_in)
2987 {
2988 struct perf_cpu_context *cpuctx;
2989 struct pmu *pmu;
2990
2991 if (prev == next)
2992 return;
2993
2994 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2995 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2996
2997 if (WARN_ON_ONCE(!pmu->sched_task))
2998 continue;
2999
3000 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3001 perf_pmu_disable(pmu);
3002
3003 pmu->sched_task(cpuctx->task_ctx, sched_in);
3004
3005 perf_pmu_enable(pmu);
3006 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3007 }
3008 }
3009
3010 static void perf_event_switch(struct task_struct *task,
3011 struct task_struct *next_prev, bool sched_in);
3012
3013 #define for_each_task_context_nr(ctxn) \
3014 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3015
3016 /*
3017 * Called from scheduler to remove the events of the current task,
3018 * with interrupts disabled.
3019 *
3020 * We stop each event and update the event value in event->count.
3021 *
3022 * This does not protect us against NMI, but disable()
3023 * sets the disabled bit in the control field of event _before_
3024 * accessing the event control register. If a NMI hits, then it will
3025 * not restart the event.
3026 */
3027 void __perf_event_task_sched_out(struct task_struct *task,
3028 struct task_struct *next)
3029 {
3030 int ctxn;
3031
3032 if (__this_cpu_read(perf_sched_cb_usages))
3033 perf_pmu_sched_task(task, next, false);
3034
3035 if (atomic_read(&nr_switch_events))
3036 perf_event_switch(task, next, false);
3037
3038 for_each_task_context_nr(ctxn)
3039 perf_event_context_sched_out(task, ctxn, next);
3040
3041 /*
3042 * if cgroup events exist on this CPU, then we need
3043 * to check if we have to switch out PMU state.
3044 * cgroup event are system-wide mode only
3045 */
3046 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3047 perf_cgroup_sched_out(task, next);
3048 }
3049
3050 /*
3051 * Called with IRQs disabled
3052 */
3053 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3054 enum event_type_t event_type)
3055 {
3056 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3057 }
3058
3059 static void
3060 ctx_pinned_sched_in(struct perf_event_context *ctx,
3061 struct perf_cpu_context *cpuctx)
3062 {
3063 struct perf_event *event;
3064
3065 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3066 if (event->state <= PERF_EVENT_STATE_OFF)
3067 continue;
3068 if (!event_filter_match(event))
3069 continue;
3070
3071 /* may need to reset tstamp_enabled */
3072 if (is_cgroup_event(event))
3073 perf_cgroup_mark_enabled(event, ctx);
3074
3075 if (group_can_go_on(event, cpuctx, 1))
3076 group_sched_in(event, cpuctx, ctx);
3077
3078 /*
3079 * If this pinned group hasn't been scheduled,
3080 * put it in error state.
3081 */
3082 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3083 update_group_times(event);
3084 event->state = PERF_EVENT_STATE_ERROR;
3085 }
3086 }
3087 }
3088
3089 static void
3090 ctx_flexible_sched_in(struct perf_event_context *ctx,
3091 struct perf_cpu_context *cpuctx)
3092 {
3093 struct perf_event *event;
3094 int can_add_hw = 1;
3095
3096 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3097 /* Ignore events in OFF or ERROR state */
3098 if (event->state <= PERF_EVENT_STATE_OFF)
3099 continue;
3100 /*
3101 * Listen to the 'cpu' scheduling filter constraint
3102 * of events:
3103 */
3104 if (!event_filter_match(event))
3105 continue;
3106
3107 /* may need to reset tstamp_enabled */
3108 if (is_cgroup_event(event))
3109 perf_cgroup_mark_enabled(event, ctx);
3110
3111 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3112 if (group_sched_in(event, cpuctx, ctx))
3113 can_add_hw = 0;
3114 }
3115 }
3116 }
3117
3118 static void
3119 ctx_sched_in(struct perf_event_context *ctx,
3120 struct perf_cpu_context *cpuctx,
3121 enum event_type_t event_type,
3122 struct task_struct *task)
3123 {
3124 int is_active = ctx->is_active;
3125 u64 now;
3126
3127 lockdep_assert_held(&ctx->lock);
3128
3129 if (likely(!ctx->nr_events))
3130 return;
3131
3132 ctx->is_active |= (event_type | EVENT_TIME);
3133 if (ctx->task) {
3134 if (!is_active)
3135 cpuctx->task_ctx = ctx;
3136 else
3137 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3138 }
3139
3140 is_active ^= ctx->is_active; /* changed bits */
3141
3142 if (is_active & EVENT_TIME) {
3143 /* start ctx time */
3144 now = perf_clock();
3145 ctx->timestamp = now;
3146 perf_cgroup_set_timestamp(task, ctx);
3147 }
3148
3149 /*
3150 * First go through the list and put on any pinned groups
3151 * in order to give them the best chance of going on.
3152 */
3153 if (is_active & EVENT_PINNED)
3154 ctx_pinned_sched_in(ctx, cpuctx);
3155
3156 /* Then walk through the lower prio flexible groups */
3157 if (is_active & EVENT_FLEXIBLE)
3158 ctx_flexible_sched_in(ctx, cpuctx);
3159 }
3160
3161 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3162 enum event_type_t event_type,
3163 struct task_struct *task)
3164 {
3165 struct perf_event_context *ctx = &cpuctx->ctx;
3166
3167 ctx_sched_in(ctx, cpuctx, event_type, task);
3168 }
3169
3170 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3171 struct task_struct *task)
3172 {
3173 struct perf_cpu_context *cpuctx;
3174
3175 cpuctx = __get_cpu_context(ctx);
3176 if (cpuctx->task_ctx == ctx)
3177 return;
3178
3179 perf_ctx_lock(cpuctx, ctx);
3180 perf_pmu_disable(ctx->pmu);
3181 /*
3182 * We want to keep the following priority order:
3183 * cpu pinned (that don't need to move), task pinned,
3184 * cpu flexible, task flexible.
3185 *
3186 * However, if task's ctx is not carrying any pinned
3187 * events, no need to flip the cpuctx's events around.
3188 */
3189 if (!list_empty(&ctx->pinned_groups))
3190 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3191 perf_event_sched_in(cpuctx, ctx, task);
3192 perf_pmu_enable(ctx->pmu);
3193 perf_ctx_unlock(cpuctx, ctx);
3194 }
3195
3196 /*
3197 * Called from scheduler to add the events of the current task
3198 * with interrupts disabled.
3199 *
3200 * We restore the event value and then enable it.
3201 *
3202 * This does not protect us against NMI, but enable()
3203 * sets the enabled bit in the control field of event _before_
3204 * accessing the event control register. If a NMI hits, then it will
3205 * keep the event running.
3206 */
3207 void __perf_event_task_sched_in(struct task_struct *prev,
3208 struct task_struct *task)
3209 {
3210 struct perf_event_context *ctx;
3211 int ctxn;
3212
3213 /*
3214 * If cgroup events exist on this CPU, then we need to check if we have
3215 * to switch in PMU state; cgroup event are system-wide mode only.
3216 *
3217 * Since cgroup events are CPU events, we must schedule these in before
3218 * we schedule in the task events.
3219 */
3220 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3221 perf_cgroup_sched_in(prev, task);
3222
3223 for_each_task_context_nr(ctxn) {
3224 ctx = task->perf_event_ctxp[ctxn];
3225 if (likely(!ctx))
3226 continue;
3227
3228 perf_event_context_sched_in(ctx, task);
3229 }
3230
3231 if (atomic_read(&nr_switch_events))
3232 perf_event_switch(task, prev, true);
3233
3234 if (__this_cpu_read(perf_sched_cb_usages))
3235 perf_pmu_sched_task(prev, task, true);
3236 }
3237
3238 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3239 {
3240 u64 frequency = event->attr.sample_freq;
3241 u64 sec = NSEC_PER_SEC;
3242 u64 divisor, dividend;
3243
3244 int count_fls, nsec_fls, frequency_fls, sec_fls;
3245
3246 count_fls = fls64(count);
3247 nsec_fls = fls64(nsec);
3248 frequency_fls = fls64(frequency);
3249 sec_fls = 30;
3250
3251 /*
3252 * We got @count in @nsec, with a target of sample_freq HZ
3253 * the target period becomes:
3254 *
3255 * @count * 10^9
3256 * period = -------------------
3257 * @nsec * sample_freq
3258 *
3259 */
3260
3261 /*
3262 * Reduce accuracy by one bit such that @a and @b converge
3263 * to a similar magnitude.
3264 */
3265 #define REDUCE_FLS(a, b) \
3266 do { \
3267 if (a##_fls > b##_fls) { \
3268 a >>= 1; \
3269 a##_fls--; \
3270 } else { \
3271 b >>= 1; \
3272 b##_fls--; \
3273 } \
3274 } while (0)
3275
3276 /*
3277 * Reduce accuracy until either term fits in a u64, then proceed with
3278 * the other, so that finally we can do a u64/u64 division.
3279 */
3280 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3281 REDUCE_FLS(nsec, frequency);
3282 REDUCE_FLS(sec, count);
3283 }
3284
3285 if (count_fls + sec_fls > 64) {
3286 divisor = nsec * frequency;
3287
3288 while (count_fls + sec_fls > 64) {
3289 REDUCE_FLS(count, sec);
3290 divisor >>= 1;
3291 }
3292
3293 dividend = count * sec;
3294 } else {
3295 dividend = count * sec;
3296
3297 while (nsec_fls + frequency_fls > 64) {
3298 REDUCE_FLS(nsec, frequency);
3299 dividend >>= 1;
3300 }
3301
3302 divisor = nsec * frequency;
3303 }
3304
3305 if (!divisor)
3306 return dividend;
3307
3308 return div64_u64(dividend, divisor);
3309 }
3310
3311 static DEFINE_PER_CPU(int, perf_throttled_count);
3312 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3313
3314 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3315 {
3316 struct hw_perf_event *hwc = &event->hw;
3317 s64 period, sample_period;
3318 s64 delta;
3319
3320 period = perf_calculate_period(event, nsec, count);
3321
3322 delta = (s64)(period - hwc->sample_period);
3323 delta = (delta + 7) / 8; /* low pass filter */
3324
3325 sample_period = hwc->sample_period + delta;
3326
3327 if (!sample_period)
3328 sample_period = 1;
3329
3330 hwc->sample_period = sample_period;
3331
3332 if (local64_read(&hwc->period_left) > 8*sample_period) {
3333 if (disable)
3334 event->pmu->stop(event, PERF_EF_UPDATE);
3335
3336 local64_set(&hwc->period_left, 0);
3337
3338 if (disable)
3339 event->pmu->start(event, PERF_EF_RELOAD);
3340 }
3341 }
3342
3343 /*
3344 * combine freq adjustment with unthrottling to avoid two passes over the
3345 * events. At the same time, make sure, having freq events does not change
3346 * the rate of unthrottling as that would introduce bias.
3347 */
3348 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3349 int needs_unthr)
3350 {
3351 struct perf_event *event;
3352 struct hw_perf_event *hwc;
3353 u64 now, period = TICK_NSEC;
3354 s64 delta;
3355
3356 /*
3357 * only need to iterate over all events iff:
3358 * - context have events in frequency mode (needs freq adjust)
3359 * - there are events to unthrottle on this cpu
3360 */
3361 if (!(ctx->nr_freq || needs_unthr))
3362 return;
3363
3364 raw_spin_lock(&ctx->lock);
3365 perf_pmu_disable(ctx->pmu);
3366
3367 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3368 if (event->state != PERF_EVENT_STATE_ACTIVE)
3369 continue;
3370
3371 if (!event_filter_match(event))
3372 continue;
3373
3374 perf_pmu_disable(event->pmu);
3375
3376 hwc = &event->hw;
3377
3378 if (hwc->interrupts == MAX_INTERRUPTS) {
3379 hwc->interrupts = 0;
3380 perf_log_throttle(event, 1);
3381 event->pmu->start(event, 0);
3382 }
3383
3384 if (!event->attr.freq || !event->attr.sample_freq)
3385 goto next;
3386
3387 /*
3388 * stop the event and update event->count
3389 */
3390 event->pmu->stop(event, PERF_EF_UPDATE);
3391
3392 now = local64_read(&event->count);
3393 delta = now - hwc->freq_count_stamp;
3394 hwc->freq_count_stamp = now;
3395
3396 /*
3397 * restart the event
3398 * reload only if value has changed
3399 * we have stopped the event so tell that
3400 * to perf_adjust_period() to avoid stopping it
3401 * twice.
3402 */
3403 if (delta > 0)
3404 perf_adjust_period(event, period, delta, false);
3405
3406 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3407 next:
3408 perf_pmu_enable(event->pmu);
3409 }
3410
3411 perf_pmu_enable(ctx->pmu);
3412 raw_spin_unlock(&ctx->lock);
3413 }
3414
3415 /*
3416 * Round-robin a context's events:
3417 */
3418 static void rotate_ctx(struct perf_event_context *ctx)
3419 {
3420 /*
3421 * Rotate the first entry last of non-pinned groups. Rotation might be
3422 * disabled by the inheritance code.
3423 */
3424 if (!ctx->rotate_disable)
3425 list_rotate_left(&ctx->flexible_groups);
3426 }
3427
3428 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3429 {
3430 struct perf_event_context *ctx = NULL;
3431 int rotate = 0;
3432
3433 if (cpuctx->ctx.nr_events) {
3434 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3435 rotate = 1;
3436 }
3437
3438 ctx = cpuctx->task_ctx;
3439 if (ctx && ctx->nr_events) {
3440 if (ctx->nr_events != ctx->nr_active)
3441 rotate = 1;
3442 }
3443
3444 if (!rotate)
3445 goto done;
3446
3447 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3448 perf_pmu_disable(cpuctx->ctx.pmu);
3449
3450 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3451 if (ctx)
3452 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3453
3454 rotate_ctx(&cpuctx->ctx);
3455 if (ctx)
3456 rotate_ctx(ctx);
3457
3458 perf_event_sched_in(cpuctx, ctx, current);
3459
3460 perf_pmu_enable(cpuctx->ctx.pmu);
3461 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3462 done:
3463
3464 return rotate;
3465 }
3466
3467 void perf_event_task_tick(void)
3468 {
3469 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3470 struct perf_event_context *ctx, *tmp;
3471 int throttled;
3472
3473 WARN_ON(!irqs_disabled());
3474
3475 __this_cpu_inc(perf_throttled_seq);
3476 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3477 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3478
3479 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3480 perf_adjust_freq_unthr_context(ctx, throttled);
3481 }
3482
3483 static int event_enable_on_exec(struct perf_event *event,
3484 struct perf_event_context *ctx)
3485 {
3486 if (!event->attr.enable_on_exec)
3487 return 0;
3488
3489 event->attr.enable_on_exec = 0;
3490 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3491 return 0;
3492
3493 __perf_event_mark_enabled(event);
3494
3495 return 1;
3496 }
3497
3498 /*
3499 * Enable all of a task's events that have been marked enable-on-exec.
3500 * This expects task == current.
3501 */
3502 static void perf_event_enable_on_exec(int ctxn)
3503 {
3504 struct perf_event_context *ctx, *clone_ctx = NULL;
3505 enum event_type_t event_type = 0;
3506 struct perf_cpu_context *cpuctx;
3507 struct perf_event *event;
3508 unsigned long flags;
3509 int enabled = 0;
3510
3511 local_irq_save(flags);
3512 ctx = current->perf_event_ctxp[ctxn];
3513 if (!ctx || !ctx->nr_events)
3514 goto out;
3515
3516 cpuctx = __get_cpu_context(ctx);
3517 perf_ctx_lock(cpuctx, ctx);
3518 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3519 list_for_each_entry(event, &ctx->event_list, event_entry) {
3520 enabled |= event_enable_on_exec(event, ctx);
3521 event_type |= get_event_type(event);
3522 }
3523
3524 /*
3525 * Unclone and reschedule this context if we enabled any event.
3526 */
3527 if (enabled) {
3528 clone_ctx = unclone_ctx(ctx);
3529 ctx_resched(cpuctx, ctx, event_type);
3530 } else {
3531 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3532 }
3533 perf_ctx_unlock(cpuctx, ctx);
3534
3535 out:
3536 local_irq_restore(flags);
3537
3538 if (clone_ctx)
3539 put_ctx(clone_ctx);
3540 }
3541
3542 struct perf_read_data {
3543 struct perf_event *event;
3544 bool group;
3545 int ret;
3546 };
3547
3548 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3549 {
3550 u16 local_pkg, event_pkg;
3551
3552 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3553 int local_cpu = smp_processor_id();
3554
3555 event_pkg = topology_physical_package_id(event_cpu);
3556 local_pkg = topology_physical_package_id(local_cpu);
3557
3558 if (event_pkg == local_pkg)
3559 return local_cpu;
3560 }
3561
3562 return event_cpu;
3563 }
3564
3565 /*
3566 * Cross CPU call to read the hardware event
3567 */
3568 static void __perf_event_read(void *info)
3569 {
3570 struct perf_read_data *data = info;
3571 struct perf_event *sub, *event = data->event;
3572 struct perf_event_context *ctx = event->ctx;
3573 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3574 struct pmu *pmu = event->pmu;
3575
3576 /*
3577 * If this is a task context, we need to check whether it is
3578 * the current task context of this cpu. If not it has been
3579 * scheduled out before the smp call arrived. In that case
3580 * event->count would have been updated to a recent sample
3581 * when the event was scheduled out.
3582 */
3583 if (ctx->task && cpuctx->task_ctx != ctx)
3584 return;
3585
3586 raw_spin_lock(&ctx->lock);
3587 if (ctx->is_active) {
3588 update_context_time(ctx);
3589 update_cgrp_time_from_event(event);
3590 }
3591
3592 update_event_times(event);
3593 if (event->state != PERF_EVENT_STATE_ACTIVE)
3594 goto unlock;
3595
3596 if (!data->group) {
3597 pmu->read(event);
3598 data->ret = 0;
3599 goto unlock;
3600 }
3601
3602 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3603
3604 pmu->read(event);
3605
3606 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3607 update_event_times(sub);
3608 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3609 /*
3610 * Use sibling's PMU rather than @event's since
3611 * sibling could be on different (eg: software) PMU.
3612 */
3613 sub->pmu->read(sub);
3614 }
3615 }
3616
3617 data->ret = pmu->commit_txn(pmu);
3618
3619 unlock:
3620 raw_spin_unlock(&ctx->lock);
3621 }
3622
3623 static inline u64 perf_event_count(struct perf_event *event)
3624 {
3625 if (event->pmu->count)
3626 return event->pmu->count(event);
3627
3628 return __perf_event_count(event);
3629 }
3630
3631 /*
3632 * NMI-safe method to read a local event, that is an event that
3633 * is:
3634 * - either for the current task, or for this CPU
3635 * - does not have inherit set, for inherited task events
3636 * will not be local and we cannot read them atomically
3637 * - must not have a pmu::count method
3638 */
3639 u64 perf_event_read_local(struct perf_event *event)
3640 {
3641 unsigned long flags;
3642 u64 val;
3643
3644 /*
3645 * Disabling interrupts avoids all counter scheduling (context
3646 * switches, timer based rotation and IPIs).
3647 */
3648 local_irq_save(flags);
3649
3650 /* If this is a per-task event, it must be for current */
3651 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3652 event->hw.target != current);
3653
3654 /* If this is a per-CPU event, it must be for this CPU */
3655 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3656 event->cpu != smp_processor_id());
3657
3658 /*
3659 * It must not be an event with inherit set, we cannot read
3660 * all child counters from atomic context.
3661 */
3662 WARN_ON_ONCE(event->attr.inherit);
3663
3664 /*
3665 * It must not have a pmu::count method, those are not
3666 * NMI safe.
3667 */
3668 WARN_ON_ONCE(event->pmu->count);
3669
3670 /*
3671 * If the event is currently on this CPU, its either a per-task event,
3672 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3673 * oncpu == -1).
3674 */
3675 if (event->oncpu == smp_processor_id())
3676 event->pmu->read(event);
3677
3678 val = local64_read(&event->count);
3679 local_irq_restore(flags);
3680
3681 return val;
3682 }
3683
3684 static int perf_event_read(struct perf_event *event, bool group)
3685 {
3686 int event_cpu, ret = 0;
3687
3688 /*
3689 * If event is enabled and currently active on a CPU, update the
3690 * value in the event structure:
3691 */
3692 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3693 struct perf_read_data data = {
3694 .event = event,
3695 .group = group,
3696 .ret = 0,
3697 };
3698
3699 event_cpu = READ_ONCE(event->oncpu);
3700 if ((unsigned)event_cpu >= nr_cpu_ids)
3701 return 0;
3702
3703 preempt_disable();
3704 event_cpu = __perf_event_read_cpu(event, event_cpu);
3705
3706 /*
3707 * Purposely ignore the smp_call_function_single() return
3708 * value.
3709 *
3710 * If event_cpu isn't a valid CPU it means the event got
3711 * scheduled out and that will have updated the event count.
3712 *
3713 * Therefore, either way, we'll have an up-to-date event count
3714 * after this.
3715 */
3716 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3717 preempt_enable();
3718 ret = data.ret;
3719 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3720 struct perf_event_context *ctx = event->ctx;
3721 unsigned long flags;
3722
3723 raw_spin_lock_irqsave(&ctx->lock, flags);
3724 /*
3725 * may read while context is not active
3726 * (e.g., thread is blocked), in that case
3727 * we cannot update context time
3728 */
3729 if (ctx->is_active) {
3730 update_context_time(ctx);
3731 update_cgrp_time_from_event(event);
3732 }
3733 if (group)
3734 update_group_times(event);
3735 else
3736 update_event_times(event);
3737 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3738 }
3739
3740 return ret;
3741 }
3742
3743 /*
3744 * Initialize the perf_event context in a task_struct:
3745 */
3746 static void __perf_event_init_context(struct perf_event_context *ctx)
3747 {
3748 raw_spin_lock_init(&ctx->lock);
3749 mutex_init(&ctx->mutex);
3750 INIT_LIST_HEAD(&ctx->active_ctx_list);
3751 INIT_LIST_HEAD(&ctx->pinned_groups);
3752 INIT_LIST_HEAD(&ctx->flexible_groups);
3753 INIT_LIST_HEAD(&ctx->event_list);
3754 atomic_set(&ctx->refcount, 1);
3755 }
3756
3757 static struct perf_event_context *
3758 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3759 {
3760 struct perf_event_context *ctx;
3761
3762 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3763 if (!ctx)
3764 return NULL;
3765
3766 __perf_event_init_context(ctx);
3767 if (task) {
3768 ctx->task = task;
3769 get_task_struct(task);
3770 }
3771 ctx->pmu = pmu;
3772
3773 return ctx;
3774 }
3775
3776 static struct task_struct *
3777 find_lively_task_by_vpid(pid_t vpid)
3778 {
3779 struct task_struct *task;
3780
3781 rcu_read_lock();
3782 if (!vpid)
3783 task = current;
3784 else
3785 task = find_task_by_vpid(vpid);
3786 if (task)
3787 get_task_struct(task);
3788 rcu_read_unlock();
3789
3790 if (!task)
3791 return ERR_PTR(-ESRCH);
3792
3793 return task;
3794 }
3795
3796 /*
3797 * Returns a matching context with refcount and pincount.
3798 */
3799 static struct perf_event_context *
3800 find_get_context(struct pmu *pmu, struct task_struct *task,
3801 struct perf_event *event)
3802 {
3803 struct perf_event_context *ctx, *clone_ctx = NULL;
3804 struct perf_cpu_context *cpuctx;
3805 void *task_ctx_data = NULL;
3806 unsigned long flags;
3807 int ctxn, err;
3808 int cpu = event->cpu;
3809
3810 if (!task) {
3811 /* Must be root to operate on a CPU event: */
3812 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3813 return ERR_PTR(-EACCES);
3814
3815 /*
3816 * We could be clever and allow to attach a event to an
3817 * offline CPU and activate it when the CPU comes up, but
3818 * that's for later.
3819 */
3820 if (!cpu_online(cpu))
3821 return ERR_PTR(-ENODEV);
3822
3823 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3824 ctx = &cpuctx->ctx;
3825 get_ctx(ctx);
3826 ++ctx->pin_count;
3827
3828 return ctx;
3829 }
3830
3831 err = -EINVAL;
3832 ctxn = pmu->task_ctx_nr;
3833 if (ctxn < 0)
3834 goto errout;
3835
3836 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3837 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3838 if (!task_ctx_data) {
3839 err = -ENOMEM;
3840 goto errout;
3841 }
3842 }
3843
3844 retry:
3845 ctx = perf_lock_task_context(task, ctxn, &flags);
3846 if (ctx) {
3847 clone_ctx = unclone_ctx(ctx);
3848 ++ctx->pin_count;
3849
3850 if (task_ctx_data && !ctx->task_ctx_data) {
3851 ctx->task_ctx_data = task_ctx_data;
3852 task_ctx_data = NULL;
3853 }
3854 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3855
3856 if (clone_ctx)
3857 put_ctx(clone_ctx);
3858 } else {
3859 ctx = alloc_perf_context(pmu, task);
3860 err = -ENOMEM;
3861 if (!ctx)
3862 goto errout;
3863
3864 if (task_ctx_data) {
3865 ctx->task_ctx_data = task_ctx_data;
3866 task_ctx_data = NULL;
3867 }
3868
3869 err = 0;
3870 mutex_lock(&task->perf_event_mutex);
3871 /*
3872 * If it has already passed perf_event_exit_task().
3873 * we must see PF_EXITING, it takes this mutex too.
3874 */
3875 if (task->flags & PF_EXITING)
3876 err = -ESRCH;
3877 else if (task->perf_event_ctxp[ctxn])
3878 err = -EAGAIN;
3879 else {
3880 get_ctx(ctx);
3881 ++ctx->pin_count;
3882 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3883 }
3884 mutex_unlock(&task->perf_event_mutex);
3885
3886 if (unlikely(err)) {
3887 put_ctx(ctx);
3888
3889 if (err == -EAGAIN)
3890 goto retry;
3891 goto errout;
3892 }
3893 }
3894
3895 kfree(task_ctx_data);
3896 return ctx;
3897
3898 errout:
3899 kfree(task_ctx_data);
3900 return ERR_PTR(err);
3901 }
3902
3903 static void perf_event_free_filter(struct perf_event *event);
3904 static void perf_event_free_bpf_prog(struct perf_event *event);
3905
3906 static void free_event_rcu(struct rcu_head *head)
3907 {
3908 struct perf_event *event;
3909
3910 event = container_of(head, struct perf_event, rcu_head);
3911 if (event->ns)
3912 put_pid_ns(event->ns);
3913 perf_event_free_filter(event);
3914 kfree(event);
3915 }
3916
3917 static void ring_buffer_attach(struct perf_event *event,
3918 struct ring_buffer *rb);
3919
3920 static void detach_sb_event(struct perf_event *event)
3921 {
3922 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3923
3924 raw_spin_lock(&pel->lock);
3925 list_del_rcu(&event->sb_list);
3926 raw_spin_unlock(&pel->lock);
3927 }
3928
3929 static bool is_sb_event(struct perf_event *event)
3930 {
3931 struct perf_event_attr *attr = &event->attr;
3932
3933 if (event->parent)
3934 return false;
3935
3936 if (event->attach_state & PERF_ATTACH_TASK)
3937 return false;
3938
3939 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3940 attr->comm || attr->comm_exec ||
3941 attr->task ||
3942 attr->context_switch)
3943 return true;
3944 return false;
3945 }
3946
3947 static void unaccount_pmu_sb_event(struct perf_event *event)
3948 {
3949 if (is_sb_event(event))
3950 detach_sb_event(event);
3951 }
3952
3953 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3954 {
3955 if (event->parent)
3956 return;
3957
3958 if (is_cgroup_event(event))
3959 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3960 }
3961
3962 #ifdef CONFIG_NO_HZ_FULL
3963 static DEFINE_SPINLOCK(nr_freq_lock);
3964 #endif
3965
3966 static void unaccount_freq_event_nohz(void)
3967 {
3968 #ifdef CONFIG_NO_HZ_FULL
3969 spin_lock(&nr_freq_lock);
3970 if (atomic_dec_and_test(&nr_freq_events))
3971 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3972 spin_unlock(&nr_freq_lock);
3973 #endif
3974 }
3975
3976 static void unaccount_freq_event(void)
3977 {
3978 if (tick_nohz_full_enabled())
3979 unaccount_freq_event_nohz();
3980 else
3981 atomic_dec(&nr_freq_events);
3982 }
3983
3984 static void unaccount_event(struct perf_event *event)
3985 {
3986 bool dec = false;
3987
3988 if (event->parent)
3989 return;
3990
3991 if (event->attach_state & PERF_ATTACH_TASK)
3992 dec = true;
3993 if (event->attr.mmap || event->attr.mmap_data)
3994 atomic_dec(&nr_mmap_events);
3995 if (event->attr.comm)
3996 atomic_dec(&nr_comm_events);
3997 if (event->attr.namespaces)
3998 atomic_dec(&nr_namespaces_events);
3999 if (event->attr.task)
4000 atomic_dec(&nr_task_events);
4001 if (event->attr.freq)
4002 unaccount_freq_event();
4003 if (event->attr.context_switch) {
4004 dec = true;
4005 atomic_dec(&nr_switch_events);
4006 }
4007 if (is_cgroup_event(event))
4008 dec = true;
4009 if (has_branch_stack(event))
4010 dec = true;
4011
4012 if (dec) {
4013 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4014 schedule_delayed_work(&perf_sched_work, HZ);
4015 }
4016
4017 unaccount_event_cpu(event, event->cpu);
4018
4019 unaccount_pmu_sb_event(event);
4020 }
4021
4022 static void perf_sched_delayed(struct work_struct *work)
4023 {
4024 mutex_lock(&perf_sched_mutex);
4025 if (atomic_dec_and_test(&perf_sched_count))
4026 static_branch_disable(&perf_sched_events);
4027 mutex_unlock(&perf_sched_mutex);
4028 }
4029
4030 /*
4031 * The following implement mutual exclusion of events on "exclusive" pmus
4032 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4033 * at a time, so we disallow creating events that might conflict, namely:
4034 *
4035 * 1) cpu-wide events in the presence of per-task events,
4036 * 2) per-task events in the presence of cpu-wide events,
4037 * 3) two matching events on the same context.
4038 *
4039 * The former two cases are handled in the allocation path (perf_event_alloc(),
4040 * _free_event()), the latter -- before the first perf_install_in_context().
4041 */
4042 static int exclusive_event_init(struct perf_event *event)
4043 {
4044 struct pmu *pmu = event->pmu;
4045
4046 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4047 return 0;
4048
4049 /*
4050 * Prevent co-existence of per-task and cpu-wide events on the
4051 * same exclusive pmu.
4052 *
4053 * Negative pmu::exclusive_cnt means there are cpu-wide
4054 * events on this "exclusive" pmu, positive means there are
4055 * per-task events.
4056 *
4057 * Since this is called in perf_event_alloc() path, event::ctx
4058 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4059 * to mean "per-task event", because unlike other attach states it
4060 * never gets cleared.
4061 */
4062 if (event->attach_state & PERF_ATTACH_TASK) {
4063 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4064 return -EBUSY;
4065 } else {
4066 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4067 return -EBUSY;
4068 }
4069
4070 return 0;
4071 }
4072
4073 static void exclusive_event_destroy(struct perf_event *event)
4074 {
4075 struct pmu *pmu = event->pmu;
4076
4077 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4078 return;
4079
4080 /* see comment in exclusive_event_init() */
4081 if (event->attach_state & PERF_ATTACH_TASK)
4082 atomic_dec(&pmu->exclusive_cnt);
4083 else
4084 atomic_inc(&pmu->exclusive_cnt);
4085 }
4086
4087 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4088 {
4089 if ((e1->pmu == e2->pmu) &&
4090 (e1->cpu == e2->cpu ||
4091 e1->cpu == -1 ||
4092 e2->cpu == -1))
4093 return true;
4094 return false;
4095 }
4096
4097 /* Called under the same ctx::mutex as perf_install_in_context() */
4098 static bool exclusive_event_installable(struct perf_event *event,
4099 struct perf_event_context *ctx)
4100 {
4101 struct perf_event *iter_event;
4102 struct pmu *pmu = event->pmu;
4103
4104 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4105 return true;
4106
4107 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4108 if (exclusive_event_match(iter_event, event))
4109 return false;
4110 }
4111
4112 return true;
4113 }
4114
4115 static void perf_addr_filters_splice(struct perf_event *event,
4116 struct list_head *head);
4117
4118 static void _free_event(struct perf_event *event)
4119 {
4120 irq_work_sync(&event->pending);
4121
4122 unaccount_event(event);
4123
4124 if (event->rb) {
4125 /*
4126 * Can happen when we close an event with re-directed output.
4127 *
4128 * Since we have a 0 refcount, perf_mmap_close() will skip
4129 * over us; possibly making our ring_buffer_put() the last.
4130 */
4131 mutex_lock(&event->mmap_mutex);
4132 ring_buffer_attach(event, NULL);
4133 mutex_unlock(&event->mmap_mutex);
4134 }
4135
4136 if (is_cgroup_event(event))
4137 perf_detach_cgroup(event);
4138
4139 if (!event->parent) {
4140 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4141 put_callchain_buffers();
4142 }
4143
4144 perf_event_free_bpf_prog(event);
4145 perf_addr_filters_splice(event, NULL);
4146 kfree(event->addr_filters_offs);
4147
4148 if (event->destroy)
4149 event->destroy(event);
4150
4151 if (event->ctx)
4152 put_ctx(event->ctx);
4153
4154 exclusive_event_destroy(event);
4155 module_put(event->pmu->module);
4156
4157 call_rcu(&event->rcu_head, free_event_rcu);
4158 }
4159
4160 /*
4161 * Used to free events which have a known refcount of 1, such as in error paths
4162 * where the event isn't exposed yet and inherited events.
4163 */
4164 static void free_event(struct perf_event *event)
4165 {
4166 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4167 "unexpected event refcount: %ld; ptr=%p\n",
4168 atomic_long_read(&event->refcount), event)) {
4169 /* leak to avoid use-after-free */
4170 return;
4171 }
4172
4173 _free_event(event);
4174 }
4175
4176 /*
4177 * Remove user event from the owner task.
4178 */
4179 static void perf_remove_from_owner(struct perf_event *event)
4180 {
4181 struct task_struct *owner;
4182
4183 rcu_read_lock();
4184 /*
4185 * Matches the smp_store_release() in perf_event_exit_task(). If we
4186 * observe !owner it means the list deletion is complete and we can
4187 * indeed free this event, otherwise we need to serialize on
4188 * owner->perf_event_mutex.
4189 */
4190 owner = lockless_dereference(event->owner);
4191 if (owner) {
4192 /*
4193 * Since delayed_put_task_struct() also drops the last
4194 * task reference we can safely take a new reference
4195 * while holding the rcu_read_lock().
4196 */
4197 get_task_struct(owner);
4198 }
4199 rcu_read_unlock();
4200
4201 if (owner) {
4202 /*
4203 * If we're here through perf_event_exit_task() we're already
4204 * holding ctx->mutex which would be an inversion wrt. the
4205 * normal lock order.
4206 *
4207 * However we can safely take this lock because its the child
4208 * ctx->mutex.
4209 */
4210 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4211
4212 /*
4213 * We have to re-check the event->owner field, if it is cleared
4214 * we raced with perf_event_exit_task(), acquiring the mutex
4215 * ensured they're done, and we can proceed with freeing the
4216 * event.
4217 */
4218 if (event->owner) {
4219 list_del_init(&event->owner_entry);
4220 smp_store_release(&event->owner, NULL);
4221 }
4222 mutex_unlock(&owner->perf_event_mutex);
4223 put_task_struct(owner);
4224 }
4225 }
4226
4227 static void put_event(struct perf_event *event)
4228 {
4229 if (!atomic_long_dec_and_test(&event->refcount))
4230 return;
4231
4232 _free_event(event);
4233 }
4234
4235 /*
4236 * Kill an event dead; while event:refcount will preserve the event
4237 * object, it will not preserve its functionality. Once the last 'user'
4238 * gives up the object, we'll destroy the thing.
4239 */
4240 int perf_event_release_kernel(struct perf_event *event)
4241 {
4242 struct perf_event_context *ctx = event->ctx;
4243 struct perf_event *child, *tmp;
4244
4245 /*
4246 * If we got here through err_file: fput(event_file); we will not have
4247 * attached to a context yet.
4248 */
4249 if (!ctx) {
4250 WARN_ON_ONCE(event->attach_state &
4251 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4252 goto no_ctx;
4253 }
4254
4255 if (!is_kernel_event(event))
4256 perf_remove_from_owner(event);
4257
4258 ctx = perf_event_ctx_lock(event);
4259 WARN_ON_ONCE(ctx->parent_ctx);
4260 perf_remove_from_context(event, DETACH_GROUP);
4261
4262 raw_spin_lock_irq(&ctx->lock);
4263 /*
4264 * Mark this event as STATE_DEAD, there is no external reference to it
4265 * anymore.
4266 *
4267 * Anybody acquiring event->child_mutex after the below loop _must_
4268 * also see this, most importantly inherit_event() which will avoid
4269 * placing more children on the list.
4270 *
4271 * Thus this guarantees that we will in fact observe and kill _ALL_
4272 * child events.
4273 */
4274 event->state = PERF_EVENT_STATE_DEAD;
4275 raw_spin_unlock_irq(&ctx->lock);
4276
4277 perf_event_ctx_unlock(event, ctx);
4278
4279 again:
4280 mutex_lock(&event->child_mutex);
4281 list_for_each_entry(child, &event->child_list, child_list) {
4282
4283 /*
4284 * Cannot change, child events are not migrated, see the
4285 * comment with perf_event_ctx_lock_nested().
4286 */
4287 ctx = lockless_dereference(child->ctx);
4288 /*
4289 * Since child_mutex nests inside ctx::mutex, we must jump
4290 * through hoops. We start by grabbing a reference on the ctx.
4291 *
4292 * Since the event cannot get freed while we hold the
4293 * child_mutex, the context must also exist and have a !0
4294 * reference count.
4295 */
4296 get_ctx(ctx);
4297
4298 /*
4299 * Now that we have a ctx ref, we can drop child_mutex, and
4300 * acquire ctx::mutex without fear of it going away. Then we
4301 * can re-acquire child_mutex.
4302 */
4303 mutex_unlock(&event->child_mutex);
4304 mutex_lock(&ctx->mutex);
4305 mutex_lock(&event->child_mutex);
4306
4307 /*
4308 * Now that we hold ctx::mutex and child_mutex, revalidate our
4309 * state, if child is still the first entry, it didn't get freed
4310 * and we can continue doing so.
4311 */
4312 tmp = list_first_entry_or_null(&event->child_list,
4313 struct perf_event, child_list);
4314 if (tmp == child) {
4315 perf_remove_from_context(child, DETACH_GROUP);
4316 list_del(&child->child_list);
4317 free_event(child);
4318 /*
4319 * This matches the refcount bump in inherit_event();
4320 * this can't be the last reference.
4321 */
4322 put_event(event);
4323 }
4324
4325 mutex_unlock(&event->child_mutex);
4326 mutex_unlock(&ctx->mutex);
4327 put_ctx(ctx);
4328 goto again;
4329 }
4330 mutex_unlock(&event->child_mutex);
4331
4332 no_ctx:
4333 put_event(event); /* Must be the 'last' reference */
4334 return 0;
4335 }
4336 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4337
4338 /*
4339 * Called when the last reference to the file is gone.
4340 */
4341 static int perf_release(struct inode *inode, struct file *file)
4342 {
4343 perf_event_release_kernel(file->private_data);
4344 return 0;
4345 }
4346
4347 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4348 {
4349 struct perf_event *child;
4350 u64 total = 0;
4351
4352 *enabled = 0;
4353 *running = 0;
4354
4355 mutex_lock(&event->child_mutex);
4356
4357 (void)perf_event_read(event, false);
4358 total += perf_event_count(event);
4359
4360 *enabled += event->total_time_enabled +
4361 atomic64_read(&event->child_total_time_enabled);
4362 *running += event->total_time_running +
4363 atomic64_read(&event->child_total_time_running);
4364
4365 list_for_each_entry(child, &event->child_list, child_list) {
4366 (void)perf_event_read(child, false);
4367 total += perf_event_count(child);
4368 *enabled += child->total_time_enabled;
4369 *running += child->total_time_running;
4370 }
4371 mutex_unlock(&event->child_mutex);
4372
4373 return total;
4374 }
4375 EXPORT_SYMBOL_GPL(perf_event_read_value);
4376
4377 static int __perf_read_group_add(struct perf_event *leader,
4378 u64 read_format, u64 *values)
4379 {
4380 struct perf_event *sub;
4381 int n = 1; /* skip @nr */
4382 int ret;
4383
4384 ret = perf_event_read(leader, true);
4385 if (ret)
4386 return ret;
4387
4388 /*
4389 * Since we co-schedule groups, {enabled,running} times of siblings
4390 * will be identical to those of the leader, so we only publish one
4391 * set.
4392 */
4393 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4394 values[n++] += leader->total_time_enabled +
4395 atomic64_read(&leader->child_total_time_enabled);
4396 }
4397
4398 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4399 values[n++] += leader->total_time_running +
4400 atomic64_read(&leader->child_total_time_running);
4401 }
4402
4403 /*
4404 * Write {count,id} tuples for every sibling.
4405 */
4406 values[n++] += perf_event_count(leader);
4407 if (read_format & PERF_FORMAT_ID)
4408 values[n++] = primary_event_id(leader);
4409
4410 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4411 values[n++] += perf_event_count(sub);
4412 if (read_format & PERF_FORMAT_ID)
4413 values[n++] = primary_event_id(sub);
4414 }
4415
4416 return 0;
4417 }
4418
4419 static int perf_read_group(struct perf_event *event,
4420 u64 read_format, char __user *buf)
4421 {
4422 struct perf_event *leader = event->group_leader, *child;
4423 struct perf_event_context *ctx = leader->ctx;
4424 int ret;
4425 u64 *values;
4426
4427 lockdep_assert_held(&ctx->mutex);
4428
4429 values = kzalloc(event->read_size, GFP_KERNEL);
4430 if (!values)
4431 return -ENOMEM;
4432
4433 values[0] = 1 + leader->nr_siblings;
4434
4435 /*
4436 * By locking the child_mutex of the leader we effectively
4437 * lock the child list of all siblings.. XXX explain how.
4438 */
4439 mutex_lock(&leader->child_mutex);
4440
4441 ret = __perf_read_group_add(leader, read_format, values);
4442 if (ret)
4443 goto unlock;
4444
4445 list_for_each_entry(child, &leader->child_list, child_list) {
4446 ret = __perf_read_group_add(child, read_format, values);
4447 if (ret)
4448 goto unlock;
4449 }
4450
4451 mutex_unlock(&leader->child_mutex);
4452
4453 ret = event->read_size;
4454 if (copy_to_user(buf, values, event->read_size))
4455 ret = -EFAULT;
4456 goto out;
4457
4458 unlock:
4459 mutex_unlock(&leader->child_mutex);
4460 out:
4461 kfree(values);
4462 return ret;
4463 }
4464
4465 static int perf_read_one(struct perf_event *event,
4466 u64 read_format, char __user *buf)
4467 {
4468 u64 enabled, running;
4469 u64 values[4];
4470 int n = 0;
4471
4472 values[n++] = perf_event_read_value(event, &enabled, &running);
4473 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4474 values[n++] = enabled;
4475 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4476 values[n++] = running;
4477 if (read_format & PERF_FORMAT_ID)
4478 values[n++] = primary_event_id(event);
4479
4480 if (copy_to_user(buf, values, n * sizeof(u64)))
4481 return -EFAULT;
4482
4483 return n * sizeof(u64);
4484 }
4485
4486 static bool is_event_hup(struct perf_event *event)
4487 {
4488 bool no_children;
4489
4490 if (event->state > PERF_EVENT_STATE_EXIT)
4491 return false;
4492
4493 mutex_lock(&event->child_mutex);
4494 no_children = list_empty(&event->child_list);
4495 mutex_unlock(&event->child_mutex);
4496 return no_children;
4497 }
4498
4499 /*
4500 * Read the performance event - simple non blocking version for now
4501 */
4502 static ssize_t
4503 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4504 {
4505 u64 read_format = event->attr.read_format;
4506 int ret;
4507
4508 /*
4509 * Return end-of-file for a read on a event that is in
4510 * error state (i.e. because it was pinned but it couldn't be
4511 * scheduled on to the CPU at some point).
4512 */
4513 if (event->state == PERF_EVENT_STATE_ERROR)
4514 return 0;
4515
4516 if (count < event->read_size)
4517 return -ENOSPC;
4518
4519 WARN_ON_ONCE(event->ctx->parent_ctx);
4520 if (read_format & PERF_FORMAT_GROUP)
4521 ret = perf_read_group(event, read_format, buf);
4522 else
4523 ret = perf_read_one(event, read_format, buf);
4524
4525 return ret;
4526 }
4527
4528 static ssize_t
4529 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4530 {
4531 struct perf_event *event = file->private_data;
4532 struct perf_event_context *ctx;
4533 int ret;
4534
4535 ctx = perf_event_ctx_lock(event);
4536 ret = __perf_read(event, buf, count);
4537 perf_event_ctx_unlock(event, ctx);
4538
4539 return ret;
4540 }
4541
4542 static unsigned int perf_poll(struct file *file, poll_table *wait)
4543 {
4544 struct perf_event *event = file->private_data;
4545 struct ring_buffer *rb;
4546 unsigned int events = POLLHUP;
4547
4548 poll_wait(file, &event->waitq, wait);
4549
4550 if (is_event_hup(event))
4551 return events;
4552
4553 /*
4554 * Pin the event->rb by taking event->mmap_mutex; otherwise
4555 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4556 */
4557 mutex_lock(&event->mmap_mutex);
4558 rb = event->rb;
4559 if (rb)
4560 events = atomic_xchg(&rb->poll, 0);
4561 mutex_unlock(&event->mmap_mutex);
4562 return events;
4563 }
4564
4565 static void _perf_event_reset(struct perf_event *event)
4566 {
4567 (void)perf_event_read(event, false);
4568 local64_set(&event->count, 0);
4569 perf_event_update_userpage(event);
4570 }
4571
4572 /*
4573 * Holding the top-level event's child_mutex means that any
4574 * descendant process that has inherited this event will block
4575 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4576 * task existence requirements of perf_event_enable/disable.
4577 */
4578 static void perf_event_for_each_child(struct perf_event *event,
4579 void (*func)(struct perf_event *))
4580 {
4581 struct perf_event *child;
4582
4583 WARN_ON_ONCE(event->ctx->parent_ctx);
4584
4585 mutex_lock(&event->child_mutex);
4586 func(event);
4587 list_for_each_entry(child, &event->child_list, child_list)
4588 func(child);
4589 mutex_unlock(&event->child_mutex);
4590 }
4591
4592 static void perf_event_for_each(struct perf_event *event,
4593 void (*func)(struct perf_event *))
4594 {
4595 struct perf_event_context *ctx = event->ctx;
4596 struct perf_event *sibling;
4597
4598 lockdep_assert_held(&ctx->mutex);
4599
4600 event = event->group_leader;
4601
4602 perf_event_for_each_child(event, func);
4603 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4604 perf_event_for_each_child(sibling, func);
4605 }
4606
4607 static void __perf_event_period(struct perf_event *event,
4608 struct perf_cpu_context *cpuctx,
4609 struct perf_event_context *ctx,
4610 void *info)
4611 {
4612 u64 value = *((u64 *)info);
4613 bool active;
4614
4615 if (event->attr.freq) {
4616 event->attr.sample_freq = value;
4617 } else {
4618 event->attr.sample_period = value;
4619 event->hw.sample_period = value;
4620 }
4621
4622 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4623 if (active) {
4624 perf_pmu_disable(ctx->pmu);
4625 /*
4626 * We could be throttled; unthrottle now to avoid the tick
4627 * trying to unthrottle while we already re-started the event.
4628 */
4629 if (event->hw.interrupts == MAX_INTERRUPTS) {
4630 event->hw.interrupts = 0;
4631 perf_log_throttle(event, 1);
4632 }
4633 event->pmu->stop(event, PERF_EF_UPDATE);
4634 }
4635
4636 local64_set(&event->hw.period_left, 0);
4637
4638 if (active) {
4639 event->pmu->start(event, PERF_EF_RELOAD);
4640 perf_pmu_enable(ctx->pmu);
4641 }
4642 }
4643
4644 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4645 {
4646 u64 value;
4647
4648 if (!is_sampling_event(event))
4649 return -EINVAL;
4650
4651 if (copy_from_user(&value, arg, sizeof(value)))
4652 return -EFAULT;
4653
4654 if (!value)
4655 return -EINVAL;
4656
4657 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4658 return -EINVAL;
4659
4660 event_function_call(event, __perf_event_period, &value);
4661
4662 return 0;
4663 }
4664
4665 static const struct file_operations perf_fops;
4666
4667 static inline int perf_fget_light(int fd, struct fd *p)
4668 {
4669 struct fd f = fdget(fd);
4670 if (!f.file)
4671 return -EBADF;
4672
4673 if (f.file->f_op != &perf_fops) {
4674 fdput(f);
4675 return -EBADF;
4676 }
4677 *p = f;
4678 return 0;
4679 }
4680
4681 static int perf_event_set_output(struct perf_event *event,
4682 struct perf_event *output_event);
4683 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4684 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4685
4686 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4687 {
4688 void (*func)(struct perf_event *);
4689 u32 flags = arg;
4690
4691 switch (cmd) {
4692 case PERF_EVENT_IOC_ENABLE:
4693 func = _perf_event_enable;
4694 break;
4695 case PERF_EVENT_IOC_DISABLE:
4696 func = _perf_event_disable;
4697 break;
4698 case PERF_EVENT_IOC_RESET:
4699 func = _perf_event_reset;
4700 break;
4701
4702 case PERF_EVENT_IOC_REFRESH:
4703 return _perf_event_refresh(event, arg);
4704
4705 case PERF_EVENT_IOC_PERIOD:
4706 return perf_event_period(event, (u64 __user *)arg);
4707
4708 case PERF_EVENT_IOC_ID:
4709 {
4710 u64 id = primary_event_id(event);
4711
4712 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4713 return -EFAULT;
4714 return 0;
4715 }
4716
4717 case PERF_EVENT_IOC_SET_OUTPUT:
4718 {
4719 int ret;
4720 if (arg != -1) {
4721 struct perf_event *output_event;
4722 struct fd output;
4723 ret = perf_fget_light(arg, &output);
4724 if (ret)
4725 return ret;
4726 output_event = output.file->private_data;
4727 ret = perf_event_set_output(event, output_event);
4728 fdput(output);
4729 } else {
4730 ret = perf_event_set_output(event, NULL);
4731 }
4732 return ret;
4733 }
4734
4735 case PERF_EVENT_IOC_SET_FILTER:
4736 return perf_event_set_filter(event, (void __user *)arg);
4737
4738 case PERF_EVENT_IOC_SET_BPF:
4739 return perf_event_set_bpf_prog(event, arg);
4740
4741 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4742 struct ring_buffer *rb;
4743
4744 rcu_read_lock();
4745 rb = rcu_dereference(event->rb);
4746 if (!rb || !rb->nr_pages) {
4747 rcu_read_unlock();
4748 return -EINVAL;
4749 }
4750 rb_toggle_paused(rb, !!arg);
4751 rcu_read_unlock();
4752 return 0;
4753 }
4754 default:
4755 return -ENOTTY;
4756 }
4757
4758 if (flags & PERF_IOC_FLAG_GROUP)
4759 perf_event_for_each(event, func);
4760 else
4761 perf_event_for_each_child(event, func);
4762
4763 return 0;
4764 }
4765
4766 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4767 {
4768 struct perf_event *event = file->private_data;
4769 struct perf_event_context *ctx;
4770 long ret;
4771
4772 ctx = perf_event_ctx_lock(event);
4773 ret = _perf_ioctl(event, cmd, arg);
4774 perf_event_ctx_unlock(event, ctx);
4775
4776 return ret;
4777 }
4778
4779 #ifdef CONFIG_COMPAT
4780 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4781 unsigned long arg)
4782 {
4783 switch (_IOC_NR(cmd)) {
4784 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4785 case _IOC_NR(PERF_EVENT_IOC_ID):
4786 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4787 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4788 cmd &= ~IOCSIZE_MASK;
4789 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4790 }
4791 break;
4792 }
4793 return perf_ioctl(file, cmd, arg);
4794 }
4795 #else
4796 # define perf_compat_ioctl NULL
4797 #endif
4798
4799 int perf_event_task_enable(void)
4800 {
4801 struct perf_event_context *ctx;
4802 struct perf_event *event;
4803
4804 mutex_lock(&current->perf_event_mutex);
4805 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4806 ctx = perf_event_ctx_lock(event);
4807 perf_event_for_each_child(event, _perf_event_enable);
4808 perf_event_ctx_unlock(event, ctx);
4809 }
4810 mutex_unlock(&current->perf_event_mutex);
4811
4812 return 0;
4813 }
4814
4815 int perf_event_task_disable(void)
4816 {
4817 struct perf_event_context *ctx;
4818 struct perf_event *event;
4819
4820 mutex_lock(&current->perf_event_mutex);
4821 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4822 ctx = perf_event_ctx_lock(event);
4823 perf_event_for_each_child(event, _perf_event_disable);
4824 perf_event_ctx_unlock(event, ctx);
4825 }
4826 mutex_unlock(&current->perf_event_mutex);
4827
4828 return 0;
4829 }
4830
4831 static int perf_event_index(struct perf_event *event)
4832 {
4833 if (event->hw.state & PERF_HES_STOPPED)
4834 return 0;
4835
4836 if (event->state != PERF_EVENT_STATE_ACTIVE)
4837 return 0;
4838
4839 return event->pmu->event_idx(event);
4840 }
4841
4842 static void calc_timer_values(struct perf_event *event,
4843 u64 *now,
4844 u64 *enabled,
4845 u64 *running)
4846 {
4847 u64 ctx_time;
4848
4849 *now = perf_clock();
4850 ctx_time = event->shadow_ctx_time + *now;
4851 *enabled = ctx_time - event->tstamp_enabled;
4852 *running = ctx_time - event->tstamp_running;
4853 }
4854
4855 static void perf_event_init_userpage(struct perf_event *event)
4856 {
4857 struct perf_event_mmap_page *userpg;
4858 struct ring_buffer *rb;
4859
4860 rcu_read_lock();
4861 rb = rcu_dereference(event->rb);
4862 if (!rb)
4863 goto unlock;
4864
4865 userpg = rb->user_page;
4866
4867 /* Allow new userspace to detect that bit 0 is deprecated */
4868 userpg->cap_bit0_is_deprecated = 1;
4869 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4870 userpg->data_offset = PAGE_SIZE;
4871 userpg->data_size = perf_data_size(rb);
4872
4873 unlock:
4874 rcu_read_unlock();
4875 }
4876
4877 void __weak arch_perf_update_userpage(
4878 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4879 {
4880 }
4881
4882 /*
4883 * Callers need to ensure there can be no nesting of this function, otherwise
4884 * the seqlock logic goes bad. We can not serialize this because the arch
4885 * code calls this from NMI context.
4886 */
4887 void perf_event_update_userpage(struct perf_event *event)
4888 {
4889 struct perf_event_mmap_page *userpg;
4890 struct ring_buffer *rb;
4891 u64 enabled, running, now;
4892
4893 rcu_read_lock();
4894 rb = rcu_dereference(event->rb);
4895 if (!rb)
4896 goto unlock;
4897
4898 /*
4899 * compute total_time_enabled, total_time_running
4900 * based on snapshot values taken when the event
4901 * was last scheduled in.
4902 *
4903 * we cannot simply called update_context_time()
4904 * because of locking issue as we can be called in
4905 * NMI context
4906 */
4907 calc_timer_values(event, &now, &enabled, &running);
4908
4909 userpg = rb->user_page;
4910 /*
4911 * Disable preemption so as to not let the corresponding user-space
4912 * spin too long if we get preempted.
4913 */
4914 preempt_disable();
4915 ++userpg->lock;
4916 barrier();
4917 userpg->index = perf_event_index(event);
4918 userpg->offset = perf_event_count(event);
4919 if (userpg->index)
4920 userpg->offset -= local64_read(&event->hw.prev_count);
4921
4922 userpg->time_enabled = enabled +
4923 atomic64_read(&event->child_total_time_enabled);
4924
4925 userpg->time_running = running +
4926 atomic64_read(&event->child_total_time_running);
4927
4928 arch_perf_update_userpage(event, userpg, now);
4929
4930 barrier();
4931 ++userpg->lock;
4932 preempt_enable();
4933 unlock:
4934 rcu_read_unlock();
4935 }
4936
4937 static int perf_mmap_fault(struct vm_fault *vmf)
4938 {
4939 struct perf_event *event = vmf->vma->vm_file->private_data;
4940 struct ring_buffer *rb;
4941 int ret = VM_FAULT_SIGBUS;
4942
4943 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4944 if (vmf->pgoff == 0)
4945 ret = 0;
4946 return ret;
4947 }
4948
4949 rcu_read_lock();
4950 rb = rcu_dereference(event->rb);
4951 if (!rb)
4952 goto unlock;
4953
4954 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4955 goto unlock;
4956
4957 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4958 if (!vmf->page)
4959 goto unlock;
4960
4961 get_page(vmf->page);
4962 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4963 vmf->page->index = vmf->pgoff;
4964
4965 ret = 0;
4966 unlock:
4967 rcu_read_unlock();
4968
4969 return ret;
4970 }
4971
4972 static void ring_buffer_attach(struct perf_event *event,
4973 struct ring_buffer *rb)
4974 {
4975 struct ring_buffer *old_rb = NULL;
4976 unsigned long flags;
4977
4978 if (event->rb) {
4979 /*
4980 * Should be impossible, we set this when removing
4981 * event->rb_entry and wait/clear when adding event->rb_entry.
4982 */
4983 WARN_ON_ONCE(event->rcu_pending);
4984
4985 old_rb = event->rb;
4986 spin_lock_irqsave(&old_rb->event_lock, flags);
4987 list_del_rcu(&event->rb_entry);
4988 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4989
4990 event->rcu_batches = get_state_synchronize_rcu();
4991 event->rcu_pending = 1;
4992 }
4993
4994 if (rb) {
4995 if (event->rcu_pending) {
4996 cond_synchronize_rcu(event->rcu_batches);
4997 event->rcu_pending = 0;
4998 }
4999
5000 spin_lock_irqsave(&rb->event_lock, flags);
5001 list_add_rcu(&event->rb_entry, &rb->event_list);
5002 spin_unlock_irqrestore(&rb->event_lock, flags);
5003 }
5004
5005 /*
5006 * Avoid racing with perf_mmap_close(AUX): stop the event
5007 * before swizzling the event::rb pointer; if it's getting
5008 * unmapped, its aux_mmap_count will be 0 and it won't
5009 * restart. See the comment in __perf_pmu_output_stop().
5010 *
5011 * Data will inevitably be lost when set_output is done in
5012 * mid-air, but then again, whoever does it like this is
5013 * not in for the data anyway.
5014 */
5015 if (has_aux(event))
5016 perf_event_stop(event, 0);
5017
5018 rcu_assign_pointer(event->rb, rb);
5019
5020 if (old_rb) {
5021 ring_buffer_put(old_rb);
5022 /*
5023 * Since we detached before setting the new rb, so that we
5024 * could attach the new rb, we could have missed a wakeup.
5025 * Provide it now.
5026 */
5027 wake_up_all(&event->waitq);
5028 }
5029 }
5030
5031 static void ring_buffer_wakeup(struct perf_event *event)
5032 {
5033 struct ring_buffer *rb;
5034
5035 rcu_read_lock();
5036 rb = rcu_dereference(event->rb);
5037 if (rb) {
5038 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5039 wake_up_all(&event->waitq);
5040 }
5041 rcu_read_unlock();
5042 }
5043
5044 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5045 {
5046 struct ring_buffer *rb;
5047
5048 rcu_read_lock();
5049 rb = rcu_dereference(event->rb);
5050 if (rb) {
5051 if (!atomic_inc_not_zero(&rb->refcount))
5052 rb = NULL;
5053 }
5054 rcu_read_unlock();
5055
5056 return rb;
5057 }
5058
5059 void ring_buffer_put(struct ring_buffer *rb)
5060 {
5061 if (!atomic_dec_and_test(&rb->refcount))
5062 return;
5063
5064 WARN_ON_ONCE(!list_empty(&rb->event_list));
5065
5066 call_rcu(&rb->rcu_head, rb_free_rcu);
5067 }
5068
5069 static void perf_mmap_open(struct vm_area_struct *vma)
5070 {
5071 struct perf_event *event = vma->vm_file->private_data;
5072
5073 atomic_inc(&event->mmap_count);
5074 atomic_inc(&event->rb->mmap_count);
5075
5076 if (vma->vm_pgoff)
5077 atomic_inc(&event->rb->aux_mmap_count);
5078
5079 if (event->pmu->event_mapped)
5080 event->pmu->event_mapped(event);
5081 }
5082
5083 static void perf_pmu_output_stop(struct perf_event *event);
5084
5085 /*
5086 * A buffer can be mmap()ed multiple times; either directly through the same
5087 * event, or through other events by use of perf_event_set_output().
5088 *
5089 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5090 * the buffer here, where we still have a VM context. This means we need
5091 * to detach all events redirecting to us.
5092 */
5093 static void perf_mmap_close(struct vm_area_struct *vma)
5094 {
5095 struct perf_event *event = vma->vm_file->private_data;
5096
5097 struct ring_buffer *rb = ring_buffer_get(event);
5098 struct user_struct *mmap_user = rb->mmap_user;
5099 int mmap_locked = rb->mmap_locked;
5100 unsigned long size = perf_data_size(rb);
5101
5102 if (event->pmu->event_unmapped)
5103 event->pmu->event_unmapped(event);
5104
5105 /*
5106 * rb->aux_mmap_count will always drop before rb->mmap_count and
5107 * event->mmap_count, so it is ok to use event->mmap_mutex to
5108 * serialize with perf_mmap here.
5109 */
5110 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5111 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5112 /*
5113 * Stop all AUX events that are writing to this buffer,
5114 * so that we can free its AUX pages and corresponding PMU
5115 * data. Note that after rb::aux_mmap_count dropped to zero,
5116 * they won't start any more (see perf_aux_output_begin()).
5117 */
5118 perf_pmu_output_stop(event);
5119
5120 /* now it's safe to free the pages */
5121 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5122 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5123
5124 /* this has to be the last one */
5125 rb_free_aux(rb);
5126 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5127
5128 mutex_unlock(&event->mmap_mutex);
5129 }
5130
5131 atomic_dec(&rb->mmap_count);
5132
5133 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5134 goto out_put;
5135
5136 ring_buffer_attach(event, NULL);
5137 mutex_unlock(&event->mmap_mutex);
5138
5139 /* If there's still other mmap()s of this buffer, we're done. */
5140 if (atomic_read(&rb->mmap_count))
5141 goto out_put;
5142
5143 /*
5144 * No other mmap()s, detach from all other events that might redirect
5145 * into the now unreachable buffer. Somewhat complicated by the
5146 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5147 */
5148 again:
5149 rcu_read_lock();
5150 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5151 if (!atomic_long_inc_not_zero(&event->refcount)) {
5152 /*
5153 * This event is en-route to free_event() which will
5154 * detach it and remove it from the list.
5155 */
5156 continue;
5157 }
5158 rcu_read_unlock();
5159
5160 mutex_lock(&event->mmap_mutex);
5161 /*
5162 * Check we didn't race with perf_event_set_output() which can
5163 * swizzle the rb from under us while we were waiting to
5164 * acquire mmap_mutex.
5165 *
5166 * If we find a different rb; ignore this event, a next
5167 * iteration will no longer find it on the list. We have to
5168 * still restart the iteration to make sure we're not now
5169 * iterating the wrong list.
5170 */
5171 if (event->rb == rb)
5172 ring_buffer_attach(event, NULL);
5173
5174 mutex_unlock(&event->mmap_mutex);
5175 put_event(event);
5176
5177 /*
5178 * Restart the iteration; either we're on the wrong list or
5179 * destroyed its integrity by doing a deletion.
5180 */
5181 goto again;
5182 }
5183 rcu_read_unlock();
5184
5185 /*
5186 * It could be there's still a few 0-ref events on the list; they'll
5187 * get cleaned up by free_event() -- they'll also still have their
5188 * ref on the rb and will free it whenever they are done with it.
5189 *
5190 * Aside from that, this buffer is 'fully' detached and unmapped,
5191 * undo the VM accounting.
5192 */
5193
5194 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5195 vma->vm_mm->pinned_vm -= mmap_locked;
5196 free_uid(mmap_user);
5197
5198 out_put:
5199 ring_buffer_put(rb); /* could be last */
5200 }
5201
5202 static const struct vm_operations_struct perf_mmap_vmops = {
5203 .open = perf_mmap_open,
5204 .close = perf_mmap_close, /* non mergable */
5205 .fault = perf_mmap_fault,
5206 .page_mkwrite = perf_mmap_fault,
5207 };
5208
5209 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5210 {
5211 struct perf_event *event = file->private_data;
5212 unsigned long user_locked, user_lock_limit;
5213 struct user_struct *user = current_user();
5214 unsigned long locked, lock_limit;
5215 struct ring_buffer *rb = NULL;
5216 unsigned long vma_size;
5217 unsigned long nr_pages;
5218 long user_extra = 0, extra = 0;
5219 int ret = 0, flags = 0;
5220
5221 /*
5222 * Don't allow mmap() of inherited per-task counters. This would
5223 * create a performance issue due to all children writing to the
5224 * same rb.
5225 */
5226 if (event->cpu == -1 && event->attr.inherit)
5227 return -EINVAL;
5228
5229 if (!(vma->vm_flags & VM_SHARED))
5230 return -EINVAL;
5231
5232 vma_size = vma->vm_end - vma->vm_start;
5233
5234 if (vma->vm_pgoff == 0) {
5235 nr_pages = (vma_size / PAGE_SIZE) - 1;
5236 } else {
5237 /*
5238 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5239 * mapped, all subsequent mappings should have the same size
5240 * and offset. Must be above the normal perf buffer.
5241 */
5242 u64 aux_offset, aux_size;
5243
5244 if (!event->rb)
5245 return -EINVAL;
5246
5247 nr_pages = vma_size / PAGE_SIZE;
5248
5249 mutex_lock(&event->mmap_mutex);
5250 ret = -EINVAL;
5251
5252 rb = event->rb;
5253 if (!rb)
5254 goto aux_unlock;
5255
5256 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5257 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5258
5259 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5260 goto aux_unlock;
5261
5262 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5263 goto aux_unlock;
5264
5265 /* already mapped with a different offset */
5266 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5267 goto aux_unlock;
5268
5269 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5270 goto aux_unlock;
5271
5272 /* already mapped with a different size */
5273 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5274 goto aux_unlock;
5275
5276 if (!is_power_of_2(nr_pages))
5277 goto aux_unlock;
5278
5279 if (!atomic_inc_not_zero(&rb->mmap_count))
5280 goto aux_unlock;
5281
5282 if (rb_has_aux(rb)) {
5283 atomic_inc(&rb->aux_mmap_count);
5284 ret = 0;
5285 goto unlock;
5286 }
5287
5288 atomic_set(&rb->aux_mmap_count, 1);
5289 user_extra = nr_pages;
5290
5291 goto accounting;
5292 }
5293
5294 /*
5295 * If we have rb pages ensure they're a power-of-two number, so we
5296 * can do bitmasks instead of modulo.
5297 */
5298 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5299 return -EINVAL;
5300
5301 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5302 return -EINVAL;
5303
5304 WARN_ON_ONCE(event->ctx->parent_ctx);
5305 again:
5306 mutex_lock(&event->mmap_mutex);
5307 if (event->rb) {
5308 if (event->rb->nr_pages != nr_pages) {
5309 ret = -EINVAL;
5310 goto unlock;
5311 }
5312
5313 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5314 /*
5315 * Raced against perf_mmap_close() through
5316 * perf_event_set_output(). Try again, hope for better
5317 * luck.
5318 */
5319 mutex_unlock(&event->mmap_mutex);
5320 goto again;
5321 }
5322
5323 goto unlock;
5324 }
5325
5326 user_extra = nr_pages + 1;
5327
5328 accounting:
5329 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5330
5331 /*
5332 * Increase the limit linearly with more CPUs:
5333 */
5334 user_lock_limit *= num_online_cpus();
5335
5336 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5337
5338 if (user_locked > user_lock_limit)
5339 extra = user_locked - user_lock_limit;
5340
5341 lock_limit = rlimit(RLIMIT_MEMLOCK);
5342 lock_limit >>= PAGE_SHIFT;
5343 locked = vma->vm_mm->pinned_vm + extra;
5344
5345 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5346 !capable(CAP_IPC_LOCK)) {
5347 ret = -EPERM;
5348 goto unlock;
5349 }
5350
5351 WARN_ON(!rb && event->rb);
5352
5353 if (vma->vm_flags & VM_WRITE)
5354 flags |= RING_BUFFER_WRITABLE;
5355
5356 if (!rb) {
5357 rb = rb_alloc(nr_pages,
5358 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5359 event->cpu, flags);
5360
5361 if (!rb) {
5362 ret = -ENOMEM;
5363 goto unlock;
5364 }
5365
5366 atomic_set(&rb->mmap_count, 1);
5367 rb->mmap_user = get_current_user();
5368 rb->mmap_locked = extra;
5369
5370 ring_buffer_attach(event, rb);
5371
5372 perf_event_init_userpage(event);
5373 perf_event_update_userpage(event);
5374 } else {
5375 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5376 event->attr.aux_watermark, flags);
5377 if (!ret)
5378 rb->aux_mmap_locked = extra;
5379 }
5380
5381 unlock:
5382 if (!ret) {
5383 atomic_long_add(user_extra, &user->locked_vm);
5384 vma->vm_mm->pinned_vm += extra;
5385
5386 atomic_inc(&event->mmap_count);
5387 } else if (rb) {
5388 atomic_dec(&rb->mmap_count);
5389 }
5390 aux_unlock:
5391 mutex_unlock(&event->mmap_mutex);
5392
5393 /*
5394 * Since pinned accounting is per vm we cannot allow fork() to copy our
5395 * vma.
5396 */
5397 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5398 vma->vm_ops = &perf_mmap_vmops;
5399
5400 if (event->pmu->event_mapped)
5401 event->pmu->event_mapped(event);
5402
5403 return ret;
5404 }
5405
5406 static int perf_fasync(int fd, struct file *filp, int on)
5407 {
5408 struct inode *inode = file_inode(filp);
5409 struct perf_event *event = filp->private_data;
5410 int retval;
5411
5412 inode_lock(inode);
5413 retval = fasync_helper(fd, filp, on, &event->fasync);
5414 inode_unlock(inode);
5415
5416 if (retval < 0)
5417 return retval;
5418
5419 return 0;
5420 }
5421
5422 static const struct file_operations perf_fops = {
5423 .llseek = no_llseek,
5424 .release = perf_release,
5425 .read = perf_read,
5426 .poll = perf_poll,
5427 .unlocked_ioctl = perf_ioctl,
5428 .compat_ioctl = perf_compat_ioctl,
5429 .mmap = perf_mmap,
5430 .fasync = perf_fasync,
5431 };
5432
5433 /*
5434 * Perf event wakeup
5435 *
5436 * If there's data, ensure we set the poll() state and publish everything
5437 * to user-space before waking everybody up.
5438 */
5439
5440 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5441 {
5442 /* only the parent has fasync state */
5443 if (event->parent)
5444 event = event->parent;
5445 return &event->fasync;
5446 }
5447
5448 void perf_event_wakeup(struct perf_event *event)
5449 {
5450 ring_buffer_wakeup(event);
5451
5452 if (event->pending_kill) {
5453 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5454 event->pending_kill = 0;
5455 }
5456 }
5457
5458 static void perf_pending_event(struct irq_work *entry)
5459 {
5460 struct perf_event *event = container_of(entry,
5461 struct perf_event, pending);
5462 int rctx;
5463
5464 rctx = perf_swevent_get_recursion_context();
5465 /*
5466 * If we 'fail' here, that's OK, it means recursion is already disabled
5467 * and we won't recurse 'further'.
5468 */
5469
5470 if (event->pending_disable) {
5471 event->pending_disable = 0;
5472 perf_event_disable_local(event);
5473 }
5474
5475 if (event->pending_wakeup) {
5476 event->pending_wakeup = 0;
5477 perf_event_wakeup(event);
5478 }
5479
5480 if (rctx >= 0)
5481 perf_swevent_put_recursion_context(rctx);
5482 }
5483
5484 /*
5485 * We assume there is only KVM supporting the callbacks.
5486 * Later on, we might change it to a list if there is
5487 * another virtualization implementation supporting the callbacks.
5488 */
5489 struct perf_guest_info_callbacks *perf_guest_cbs;
5490
5491 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5492 {
5493 perf_guest_cbs = cbs;
5494 return 0;
5495 }
5496 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5497
5498 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5499 {
5500 perf_guest_cbs = NULL;
5501 return 0;
5502 }
5503 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5504
5505 static void
5506 perf_output_sample_regs(struct perf_output_handle *handle,
5507 struct pt_regs *regs, u64 mask)
5508 {
5509 int bit;
5510 DECLARE_BITMAP(_mask, 64);
5511
5512 bitmap_from_u64(_mask, mask);
5513 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5514 u64 val;
5515
5516 val = perf_reg_value(regs, bit);
5517 perf_output_put(handle, val);
5518 }
5519 }
5520
5521 static void perf_sample_regs_user(struct perf_regs *regs_user,
5522 struct pt_regs *regs,
5523 struct pt_regs *regs_user_copy)
5524 {
5525 if (user_mode(regs)) {
5526 regs_user->abi = perf_reg_abi(current);
5527 regs_user->regs = regs;
5528 } else if (current->mm) {
5529 perf_get_regs_user(regs_user, regs, regs_user_copy);
5530 } else {
5531 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5532 regs_user->regs = NULL;
5533 }
5534 }
5535
5536 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5537 struct pt_regs *regs)
5538 {
5539 regs_intr->regs = regs;
5540 regs_intr->abi = perf_reg_abi(current);
5541 }
5542
5543
5544 /*
5545 * Get remaining task size from user stack pointer.
5546 *
5547 * It'd be better to take stack vma map and limit this more
5548 * precisly, but there's no way to get it safely under interrupt,
5549 * so using TASK_SIZE as limit.
5550 */
5551 static u64 perf_ustack_task_size(struct pt_regs *regs)
5552 {
5553 unsigned long addr = perf_user_stack_pointer(regs);
5554
5555 if (!addr || addr >= TASK_SIZE)
5556 return 0;
5557
5558 return TASK_SIZE - addr;
5559 }
5560
5561 static u16
5562 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5563 struct pt_regs *regs)
5564 {
5565 u64 task_size;
5566
5567 /* No regs, no stack pointer, no dump. */
5568 if (!regs)
5569 return 0;
5570
5571 /*
5572 * Check if we fit in with the requested stack size into the:
5573 * - TASK_SIZE
5574 * If we don't, we limit the size to the TASK_SIZE.
5575 *
5576 * - remaining sample size
5577 * If we don't, we customize the stack size to
5578 * fit in to the remaining sample size.
5579 */
5580
5581 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5582 stack_size = min(stack_size, (u16) task_size);
5583
5584 /* Current header size plus static size and dynamic size. */
5585 header_size += 2 * sizeof(u64);
5586
5587 /* Do we fit in with the current stack dump size? */
5588 if ((u16) (header_size + stack_size) < header_size) {
5589 /*
5590 * If we overflow the maximum size for the sample,
5591 * we customize the stack dump size to fit in.
5592 */
5593 stack_size = USHRT_MAX - header_size - sizeof(u64);
5594 stack_size = round_up(stack_size, sizeof(u64));
5595 }
5596
5597 return stack_size;
5598 }
5599
5600 static void
5601 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5602 struct pt_regs *regs)
5603 {
5604 /* Case of a kernel thread, nothing to dump */
5605 if (!regs) {
5606 u64 size = 0;
5607 perf_output_put(handle, size);
5608 } else {
5609 unsigned long sp;
5610 unsigned int rem;
5611 u64 dyn_size;
5612
5613 /*
5614 * We dump:
5615 * static size
5616 * - the size requested by user or the best one we can fit
5617 * in to the sample max size
5618 * data
5619 * - user stack dump data
5620 * dynamic size
5621 * - the actual dumped size
5622 */
5623
5624 /* Static size. */
5625 perf_output_put(handle, dump_size);
5626
5627 /* Data. */
5628 sp = perf_user_stack_pointer(regs);
5629 rem = __output_copy_user(handle, (void *) sp, dump_size);
5630 dyn_size = dump_size - rem;
5631
5632 perf_output_skip(handle, rem);
5633
5634 /* Dynamic size. */
5635 perf_output_put(handle, dyn_size);
5636 }
5637 }
5638
5639 static void __perf_event_header__init_id(struct perf_event_header *header,
5640 struct perf_sample_data *data,
5641 struct perf_event *event)
5642 {
5643 u64 sample_type = event->attr.sample_type;
5644
5645 data->type = sample_type;
5646 header->size += event->id_header_size;
5647
5648 if (sample_type & PERF_SAMPLE_TID) {
5649 /* namespace issues */
5650 data->tid_entry.pid = perf_event_pid(event, current);
5651 data->tid_entry.tid = perf_event_tid(event, current);
5652 }
5653
5654 if (sample_type & PERF_SAMPLE_TIME)
5655 data->time = perf_event_clock(event);
5656
5657 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5658 data->id = primary_event_id(event);
5659
5660 if (sample_type & PERF_SAMPLE_STREAM_ID)
5661 data->stream_id = event->id;
5662
5663 if (sample_type & PERF_SAMPLE_CPU) {
5664 data->cpu_entry.cpu = raw_smp_processor_id();
5665 data->cpu_entry.reserved = 0;
5666 }
5667 }
5668
5669 void perf_event_header__init_id(struct perf_event_header *header,
5670 struct perf_sample_data *data,
5671 struct perf_event *event)
5672 {
5673 if (event->attr.sample_id_all)
5674 __perf_event_header__init_id(header, data, event);
5675 }
5676
5677 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5678 struct perf_sample_data *data)
5679 {
5680 u64 sample_type = data->type;
5681
5682 if (sample_type & PERF_SAMPLE_TID)
5683 perf_output_put(handle, data->tid_entry);
5684
5685 if (sample_type & PERF_SAMPLE_TIME)
5686 perf_output_put(handle, data->time);
5687
5688 if (sample_type & PERF_SAMPLE_ID)
5689 perf_output_put(handle, data->id);
5690
5691 if (sample_type & PERF_SAMPLE_STREAM_ID)
5692 perf_output_put(handle, data->stream_id);
5693
5694 if (sample_type & PERF_SAMPLE_CPU)
5695 perf_output_put(handle, data->cpu_entry);
5696
5697 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5698 perf_output_put(handle, data->id);
5699 }
5700
5701 void perf_event__output_id_sample(struct perf_event *event,
5702 struct perf_output_handle *handle,
5703 struct perf_sample_data *sample)
5704 {
5705 if (event->attr.sample_id_all)
5706 __perf_event__output_id_sample(handle, sample);
5707 }
5708
5709 static void perf_output_read_one(struct perf_output_handle *handle,
5710 struct perf_event *event,
5711 u64 enabled, u64 running)
5712 {
5713 u64 read_format = event->attr.read_format;
5714 u64 values[4];
5715 int n = 0;
5716
5717 values[n++] = perf_event_count(event);
5718 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5719 values[n++] = enabled +
5720 atomic64_read(&event->child_total_time_enabled);
5721 }
5722 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5723 values[n++] = running +
5724 atomic64_read(&event->child_total_time_running);
5725 }
5726 if (read_format & PERF_FORMAT_ID)
5727 values[n++] = primary_event_id(event);
5728
5729 __output_copy(handle, values, n * sizeof(u64));
5730 }
5731
5732 /*
5733 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5734 */
5735 static void perf_output_read_group(struct perf_output_handle *handle,
5736 struct perf_event *event,
5737 u64 enabled, u64 running)
5738 {
5739 struct perf_event *leader = event->group_leader, *sub;
5740 u64 read_format = event->attr.read_format;
5741 u64 values[5];
5742 int n = 0;
5743
5744 values[n++] = 1 + leader->nr_siblings;
5745
5746 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5747 values[n++] = enabled;
5748
5749 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5750 values[n++] = running;
5751
5752 if (leader != event)
5753 leader->pmu->read(leader);
5754
5755 values[n++] = perf_event_count(leader);
5756 if (read_format & PERF_FORMAT_ID)
5757 values[n++] = primary_event_id(leader);
5758
5759 __output_copy(handle, values, n * sizeof(u64));
5760
5761 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5762 n = 0;
5763
5764 if ((sub != event) &&
5765 (sub->state == PERF_EVENT_STATE_ACTIVE))
5766 sub->pmu->read(sub);
5767
5768 values[n++] = perf_event_count(sub);
5769 if (read_format & PERF_FORMAT_ID)
5770 values[n++] = primary_event_id(sub);
5771
5772 __output_copy(handle, values, n * sizeof(u64));
5773 }
5774 }
5775
5776 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5777 PERF_FORMAT_TOTAL_TIME_RUNNING)
5778
5779 static void perf_output_read(struct perf_output_handle *handle,
5780 struct perf_event *event)
5781 {
5782 u64 enabled = 0, running = 0, now;
5783 u64 read_format = event->attr.read_format;
5784
5785 /*
5786 * compute total_time_enabled, total_time_running
5787 * based on snapshot values taken when the event
5788 * was last scheduled in.
5789 *
5790 * we cannot simply called update_context_time()
5791 * because of locking issue as we are called in
5792 * NMI context
5793 */
5794 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5795 calc_timer_values(event, &now, &enabled, &running);
5796
5797 if (event->attr.read_format & PERF_FORMAT_GROUP)
5798 perf_output_read_group(handle, event, enabled, running);
5799 else
5800 perf_output_read_one(handle, event, enabled, running);
5801 }
5802
5803 void perf_output_sample(struct perf_output_handle *handle,
5804 struct perf_event_header *header,
5805 struct perf_sample_data *data,
5806 struct perf_event *event)
5807 {
5808 u64 sample_type = data->type;
5809
5810 perf_output_put(handle, *header);
5811
5812 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5813 perf_output_put(handle, data->id);
5814
5815 if (sample_type & PERF_SAMPLE_IP)
5816 perf_output_put(handle, data->ip);
5817
5818 if (sample_type & PERF_SAMPLE_TID)
5819 perf_output_put(handle, data->tid_entry);
5820
5821 if (sample_type & PERF_SAMPLE_TIME)
5822 perf_output_put(handle, data->time);
5823
5824 if (sample_type & PERF_SAMPLE_ADDR)
5825 perf_output_put(handle, data->addr);
5826
5827 if (sample_type & PERF_SAMPLE_ID)
5828 perf_output_put(handle, data->id);
5829
5830 if (sample_type & PERF_SAMPLE_STREAM_ID)
5831 perf_output_put(handle, data->stream_id);
5832
5833 if (sample_type & PERF_SAMPLE_CPU)
5834 perf_output_put(handle, data->cpu_entry);
5835
5836 if (sample_type & PERF_SAMPLE_PERIOD)
5837 perf_output_put(handle, data->period);
5838
5839 if (sample_type & PERF_SAMPLE_READ)
5840 perf_output_read(handle, event);
5841
5842 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5843 if (data->callchain) {
5844 int size = 1;
5845
5846 if (data->callchain)
5847 size += data->callchain->nr;
5848
5849 size *= sizeof(u64);
5850
5851 __output_copy(handle, data->callchain, size);
5852 } else {
5853 u64 nr = 0;
5854 perf_output_put(handle, nr);
5855 }
5856 }
5857
5858 if (sample_type & PERF_SAMPLE_RAW) {
5859 struct perf_raw_record *raw = data->raw;
5860
5861 if (raw) {
5862 struct perf_raw_frag *frag = &raw->frag;
5863
5864 perf_output_put(handle, raw->size);
5865 do {
5866 if (frag->copy) {
5867 __output_custom(handle, frag->copy,
5868 frag->data, frag->size);
5869 } else {
5870 __output_copy(handle, frag->data,
5871 frag->size);
5872 }
5873 if (perf_raw_frag_last(frag))
5874 break;
5875 frag = frag->next;
5876 } while (1);
5877 if (frag->pad)
5878 __output_skip(handle, NULL, frag->pad);
5879 } else {
5880 struct {
5881 u32 size;
5882 u32 data;
5883 } raw = {
5884 .size = sizeof(u32),
5885 .data = 0,
5886 };
5887 perf_output_put(handle, raw);
5888 }
5889 }
5890
5891 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5892 if (data->br_stack) {
5893 size_t size;
5894
5895 size = data->br_stack->nr
5896 * sizeof(struct perf_branch_entry);
5897
5898 perf_output_put(handle, data->br_stack->nr);
5899 perf_output_copy(handle, data->br_stack->entries, size);
5900 } else {
5901 /*
5902 * we always store at least the value of nr
5903 */
5904 u64 nr = 0;
5905 perf_output_put(handle, nr);
5906 }
5907 }
5908
5909 if (sample_type & PERF_SAMPLE_REGS_USER) {
5910 u64 abi = data->regs_user.abi;
5911
5912 /*
5913 * If there are no regs to dump, notice it through
5914 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5915 */
5916 perf_output_put(handle, abi);
5917
5918 if (abi) {
5919 u64 mask = event->attr.sample_regs_user;
5920 perf_output_sample_regs(handle,
5921 data->regs_user.regs,
5922 mask);
5923 }
5924 }
5925
5926 if (sample_type & PERF_SAMPLE_STACK_USER) {
5927 perf_output_sample_ustack(handle,
5928 data->stack_user_size,
5929 data->regs_user.regs);
5930 }
5931
5932 if (sample_type & PERF_SAMPLE_WEIGHT)
5933 perf_output_put(handle, data->weight);
5934
5935 if (sample_type & PERF_SAMPLE_DATA_SRC)
5936 perf_output_put(handle, data->data_src.val);
5937
5938 if (sample_type & PERF_SAMPLE_TRANSACTION)
5939 perf_output_put(handle, data->txn);
5940
5941 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5942 u64 abi = data->regs_intr.abi;
5943 /*
5944 * If there are no regs to dump, notice it through
5945 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5946 */
5947 perf_output_put(handle, abi);
5948
5949 if (abi) {
5950 u64 mask = event->attr.sample_regs_intr;
5951
5952 perf_output_sample_regs(handle,
5953 data->regs_intr.regs,
5954 mask);
5955 }
5956 }
5957
5958 if (!event->attr.watermark) {
5959 int wakeup_events = event->attr.wakeup_events;
5960
5961 if (wakeup_events) {
5962 struct ring_buffer *rb = handle->rb;
5963 int events = local_inc_return(&rb->events);
5964
5965 if (events >= wakeup_events) {
5966 local_sub(wakeup_events, &rb->events);
5967 local_inc(&rb->wakeup);
5968 }
5969 }
5970 }
5971 }
5972
5973 void perf_prepare_sample(struct perf_event_header *header,
5974 struct perf_sample_data *data,
5975 struct perf_event *event,
5976 struct pt_regs *regs)
5977 {
5978 u64 sample_type = event->attr.sample_type;
5979
5980 header->type = PERF_RECORD_SAMPLE;
5981 header->size = sizeof(*header) + event->header_size;
5982
5983 header->misc = 0;
5984 header->misc |= perf_misc_flags(regs);
5985
5986 __perf_event_header__init_id(header, data, event);
5987
5988 if (sample_type & PERF_SAMPLE_IP)
5989 data->ip = perf_instruction_pointer(regs);
5990
5991 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5992 int size = 1;
5993
5994 data->callchain = perf_callchain(event, regs);
5995
5996 if (data->callchain)
5997 size += data->callchain->nr;
5998
5999 header->size += size * sizeof(u64);
6000 }
6001
6002 if (sample_type & PERF_SAMPLE_RAW) {
6003 struct perf_raw_record *raw = data->raw;
6004 int size;
6005
6006 if (raw) {
6007 struct perf_raw_frag *frag = &raw->frag;
6008 u32 sum = 0;
6009
6010 do {
6011 sum += frag->size;
6012 if (perf_raw_frag_last(frag))
6013 break;
6014 frag = frag->next;
6015 } while (1);
6016
6017 size = round_up(sum + sizeof(u32), sizeof(u64));
6018 raw->size = size - sizeof(u32);
6019 frag->pad = raw->size - sum;
6020 } else {
6021 size = sizeof(u64);
6022 }
6023
6024 header->size += size;
6025 }
6026
6027 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6028 int size = sizeof(u64); /* nr */
6029 if (data->br_stack) {
6030 size += data->br_stack->nr
6031 * sizeof(struct perf_branch_entry);
6032 }
6033 header->size += size;
6034 }
6035
6036 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6037 perf_sample_regs_user(&data->regs_user, regs,
6038 &data->regs_user_copy);
6039
6040 if (sample_type & PERF_SAMPLE_REGS_USER) {
6041 /* regs dump ABI info */
6042 int size = sizeof(u64);
6043
6044 if (data->regs_user.regs) {
6045 u64 mask = event->attr.sample_regs_user;
6046 size += hweight64(mask) * sizeof(u64);
6047 }
6048
6049 header->size += size;
6050 }
6051
6052 if (sample_type & PERF_SAMPLE_STACK_USER) {
6053 /*
6054 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6055 * processed as the last one or have additional check added
6056 * in case new sample type is added, because we could eat
6057 * up the rest of the sample size.
6058 */
6059 u16 stack_size = event->attr.sample_stack_user;
6060 u16 size = sizeof(u64);
6061
6062 stack_size = perf_sample_ustack_size(stack_size, header->size,
6063 data->regs_user.regs);
6064
6065 /*
6066 * If there is something to dump, add space for the dump
6067 * itself and for the field that tells the dynamic size,
6068 * which is how many have been actually dumped.
6069 */
6070 if (stack_size)
6071 size += sizeof(u64) + stack_size;
6072
6073 data->stack_user_size = stack_size;
6074 header->size += size;
6075 }
6076
6077 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6078 /* regs dump ABI info */
6079 int size = sizeof(u64);
6080
6081 perf_sample_regs_intr(&data->regs_intr, regs);
6082
6083 if (data->regs_intr.regs) {
6084 u64 mask = event->attr.sample_regs_intr;
6085
6086 size += hweight64(mask) * sizeof(u64);
6087 }
6088
6089 header->size += size;
6090 }
6091 }
6092
6093 static void __always_inline
6094 __perf_event_output(struct perf_event *event,
6095 struct perf_sample_data *data,
6096 struct pt_regs *regs,
6097 int (*output_begin)(struct perf_output_handle *,
6098 struct perf_event *,
6099 unsigned int))
6100 {
6101 struct perf_output_handle handle;
6102 struct perf_event_header header;
6103
6104 /* protect the callchain buffers */
6105 rcu_read_lock();
6106
6107 perf_prepare_sample(&header, data, event, regs);
6108
6109 if (output_begin(&handle, event, header.size))
6110 goto exit;
6111
6112 perf_output_sample(&handle, &header, data, event);
6113
6114 perf_output_end(&handle);
6115
6116 exit:
6117 rcu_read_unlock();
6118 }
6119
6120 void
6121 perf_event_output_forward(struct perf_event *event,
6122 struct perf_sample_data *data,
6123 struct pt_regs *regs)
6124 {
6125 __perf_event_output(event, data, regs, perf_output_begin_forward);
6126 }
6127
6128 void
6129 perf_event_output_backward(struct perf_event *event,
6130 struct perf_sample_data *data,
6131 struct pt_regs *regs)
6132 {
6133 __perf_event_output(event, data, regs, perf_output_begin_backward);
6134 }
6135
6136 void
6137 perf_event_output(struct perf_event *event,
6138 struct perf_sample_data *data,
6139 struct pt_regs *regs)
6140 {
6141 __perf_event_output(event, data, regs, perf_output_begin);
6142 }
6143
6144 /*
6145 * read event_id
6146 */
6147
6148 struct perf_read_event {
6149 struct perf_event_header header;
6150
6151 u32 pid;
6152 u32 tid;
6153 };
6154
6155 static void
6156 perf_event_read_event(struct perf_event *event,
6157 struct task_struct *task)
6158 {
6159 struct perf_output_handle handle;
6160 struct perf_sample_data sample;
6161 struct perf_read_event read_event = {
6162 .header = {
6163 .type = PERF_RECORD_READ,
6164 .misc = 0,
6165 .size = sizeof(read_event) + event->read_size,
6166 },
6167 .pid = perf_event_pid(event, task),
6168 .tid = perf_event_tid(event, task),
6169 };
6170 int ret;
6171
6172 perf_event_header__init_id(&read_event.header, &sample, event);
6173 ret = perf_output_begin(&handle, event, read_event.header.size);
6174 if (ret)
6175 return;
6176
6177 perf_output_put(&handle, read_event);
6178 perf_output_read(&handle, event);
6179 perf_event__output_id_sample(event, &handle, &sample);
6180
6181 perf_output_end(&handle);
6182 }
6183
6184 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6185
6186 static void
6187 perf_iterate_ctx(struct perf_event_context *ctx,
6188 perf_iterate_f output,
6189 void *data, bool all)
6190 {
6191 struct perf_event *event;
6192
6193 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6194 if (!all) {
6195 if (event->state < PERF_EVENT_STATE_INACTIVE)
6196 continue;
6197 if (!event_filter_match(event))
6198 continue;
6199 }
6200
6201 output(event, data);
6202 }
6203 }
6204
6205 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6206 {
6207 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6208 struct perf_event *event;
6209
6210 list_for_each_entry_rcu(event, &pel->list, sb_list) {
6211 /*
6212 * Skip events that are not fully formed yet; ensure that
6213 * if we observe event->ctx, both event and ctx will be
6214 * complete enough. See perf_install_in_context().
6215 */
6216 if (!smp_load_acquire(&event->ctx))
6217 continue;
6218
6219 if (event->state < PERF_EVENT_STATE_INACTIVE)
6220 continue;
6221 if (!event_filter_match(event))
6222 continue;
6223 output(event, data);
6224 }
6225 }
6226
6227 /*
6228 * Iterate all events that need to receive side-band events.
6229 *
6230 * For new callers; ensure that account_pmu_sb_event() includes
6231 * your event, otherwise it might not get delivered.
6232 */
6233 static void
6234 perf_iterate_sb(perf_iterate_f output, void *data,
6235 struct perf_event_context *task_ctx)
6236 {
6237 struct perf_event_context *ctx;
6238 int ctxn;
6239
6240 rcu_read_lock();
6241 preempt_disable();
6242
6243 /*
6244 * If we have task_ctx != NULL we only notify the task context itself.
6245 * The task_ctx is set only for EXIT events before releasing task
6246 * context.
6247 */
6248 if (task_ctx) {
6249 perf_iterate_ctx(task_ctx, output, data, false);
6250 goto done;
6251 }
6252
6253 perf_iterate_sb_cpu(output, data);
6254
6255 for_each_task_context_nr(ctxn) {
6256 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6257 if (ctx)
6258 perf_iterate_ctx(ctx, output, data, false);
6259 }
6260 done:
6261 preempt_enable();
6262 rcu_read_unlock();
6263 }
6264
6265 /*
6266 * Clear all file-based filters at exec, they'll have to be
6267 * re-instated when/if these objects are mmapped again.
6268 */
6269 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6270 {
6271 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6272 struct perf_addr_filter *filter;
6273 unsigned int restart = 0, count = 0;
6274 unsigned long flags;
6275
6276 if (!has_addr_filter(event))
6277 return;
6278
6279 raw_spin_lock_irqsave(&ifh->lock, flags);
6280 list_for_each_entry(filter, &ifh->list, entry) {
6281 if (filter->inode) {
6282 event->addr_filters_offs[count] = 0;
6283 restart++;
6284 }
6285
6286 count++;
6287 }
6288
6289 if (restart)
6290 event->addr_filters_gen++;
6291 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6292
6293 if (restart)
6294 perf_event_stop(event, 1);
6295 }
6296
6297 void perf_event_exec(void)
6298 {
6299 struct perf_event_context *ctx;
6300 int ctxn;
6301
6302 rcu_read_lock();
6303 for_each_task_context_nr(ctxn) {
6304 ctx = current->perf_event_ctxp[ctxn];
6305 if (!ctx)
6306 continue;
6307
6308 perf_event_enable_on_exec(ctxn);
6309
6310 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6311 true);
6312 }
6313 rcu_read_unlock();
6314 }
6315
6316 struct remote_output {
6317 struct ring_buffer *rb;
6318 int err;
6319 };
6320
6321 static void __perf_event_output_stop(struct perf_event *event, void *data)
6322 {
6323 struct perf_event *parent = event->parent;
6324 struct remote_output *ro = data;
6325 struct ring_buffer *rb = ro->rb;
6326 struct stop_event_data sd = {
6327 .event = event,
6328 };
6329
6330 if (!has_aux(event))
6331 return;
6332
6333 if (!parent)
6334 parent = event;
6335
6336 /*
6337 * In case of inheritance, it will be the parent that links to the
6338 * ring-buffer, but it will be the child that's actually using it.
6339 *
6340 * We are using event::rb to determine if the event should be stopped,
6341 * however this may race with ring_buffer_attach() (through set_output),
6342 * which will make us skip the event that actually needs to be stopped.
6343 * So ring_buffer_attach() has to stop an aux event before re-assigning
6344 * its rb pointer.
6345 */
6346 if (rcu_dereference(parent->rb) == rb)
6347 ro->err = __perf_event_stop(&sd);
6348 }
6349
6350 static int __perf_pmu_output_stop(void *info)
6351 {
6352 struct perf_event *event = info;
6353 struct pmu *pmu = event->pmu;
6354 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6355 struct remote_output ro = {
6356 .rb = event->rb,
6357 };
6358
6359 rcu_read_lock();
6360 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6361 if (cpuctx->task_ctx)
6362 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6363 &ro, false);
6364 rcu_read_unlock();
6365
6366 return ro.err;
6367 }
6368
6369 static void perf_pmu_output_stop(struct perf_event *event)
6370 {
6371 struct perf_event *iter;
6372 int err, cpu;
6373
6374 restart:
6375 rcu_read_lock();
6376 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6377 /*
6378 * For per-CPU events, we need to make sure that neither they
6379 * nor their children are running; for cpu==-1 events it's
6380 * sufficient to stop the event itself if it's active, since
6381 * it can't have children.
6382 */
6383 cpu = iter->cpu;
6384 if (cpu == -1)
6385 cpu = READ_ONCE(iter->oncpu);
6386
6387 if (cpu == -1)
6388 continue;
6389
6390 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6391 if (err == -EAGAIN) {
6392 rcu_read_unlock();
6393 goto restart;
6394 }
6395 }
6396 rcu_read_unlock();
6397 }
6398
6399 /*
6400 * task tracking -- fork/exit
6401 *
6402 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6403 */
6404
6405 struct perf_task_event {
6406 struct task_struct *task;
6407 struct perf_event_context *task_ctx;
6408
6409 struct {
6410 struct perf_event_header header;
6411
6412 u32 pid;
6413 u32 ppid;
6414 u32 tid;
6415 u32 ptid;
6416 u64 time;
6417 } event_id;
6418 };
6419
6420 static int perf_event_task_match(struct perf_event *event)
6421 {
6422 return event->attr.comm || event->attr.mmap ||
6423 event->attr.mmap2 || event->attr.mmap_data ||
6424 event->attr.task;
6425 }
6426
6427 static void perf_event_task_output(struct perf_event *event,
6428 void *data)
6429 {
6430 struct perf_task_event *task_event = data;
6431 struct perf_output_handle handle;
6432 struct perf_sample_data sample;
6433 struct task_struct *task = task_event->task;
6434 int ret, size = task_event->event_id.header.size;
6435
6436 if (!perf_event_task_match(event))
6437 return;
6438
6439 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6440
6441 ret = perf_output_begin(&handle, event,
6442 task_event->event_id.header.size);
6443 if (ret)
6444 goto out;
6445
6446 task_event->event_id.pid = perf_event_pid(event, task);
6447 task_event->event_id.ppid = perf_event_pid(event, current);
6448
6449 task_event->event_id.tid = perf_event_tid(event, task);
6450 task_event->event_id.ptid = perf_event_tid(event, current);
6451
6452 task_event->event_id.time = perf_event_clock(event);
6453
6454 perf_output_put(&handle, task_event->event_id);
6455
6456 perf_event__output_id_sample(event, &handle, &sample);
6457
6458 perf_output_end(&handle);
6459 out:
6460 task_event->event_id.header.size = size;
6461 }
6462
6463 static void perf_event_task(struct task_struct *task,
6464 struct perf_event_context *task_ctx,
6465 int new)
6466 {
6467 struct perf_task_event task_event;
6468
6469 if (!atomic_read(&nr_comm_events) &&
6470 !atomic_read(&nr_mmap_events) &&
6471 !atomic_read(&nr_task_events))
6472 return;
6473
6474 task_event = (struct perf_task_event){
6475 .task = task,
6476 .task_ctx = task_ctx,
6477 .event_id = {
6478 .header = {
6479 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6480 .misc = 0,
6481 .size = sizeof(task_event.event_id),
6482 },
6483 /* .pid */
6484 /* .ppid */
6485 /* .tid */
6486 /* .ptid */
6487 /* .time */
6488 },
6489 };
6490
6491 perf_iterate_sb(perf_event_task_output,
6492 &task_event,
6493 task_ctx);
6494 }
6495
6496 void perf_event_fork(struct task_struct *task)
6497 {
6498 perf_event_task(task, NULL, 1);
6499 perf_event_namespaces(task);
6500 }
6501
6502 /*
6503 * comm tracking
6504 */
6505
6506 struct perf_comm_event {
6507 struct task_struct *task;
6508 char *comm;
6509 int comm_size;
6510
6511 struct {
6512 struct perf_event_header header;
6513
6514 u32 pid;
6515 u32 tid;
6516 } event_id;
6517 };
6518
6519 static int perf_event_comm_match(struct perf_event *event)
6520 {
6521 return event->attr.comm;
6522 }
6523
6524 static void perf_event_comm_output(struct perf_event *event,
6525 void *data)
6526 {
6527 struct perf_comm_event *comm_event = data;
6528 struct perf_output_handle handle;
6529 struct perf_sample_data sample;
6530 int size = comm_event->event_id.header.size;
6531 int ret;
6532
6533 if (!perf_event_comm_match(event))
6534 return;
6535
6536 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6537 ret = perf_output_begin(&handle, event,
6538 comm_event->event_id.header.size);
6539
6540 if (ret)
6541 goto out;
6542
6543 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6544 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6545
6546 perf_output_put(&handle, comm_event->event_id);
6547 __output_copy(&handle, comm_event->comm,
6548 comm_event->comm_size);
6549
6550 perf_event__output_id_sample(event, &handle, &sample);
6551
6552 perf_output_end(&handle);
6553 out:
6554 comm_event->event_id.header.size = size;
6555 }
6556
6557 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6558 {
6559 char comm[TASK_COMM_LEN];
6560 unsigned int size;
6561
6562 memset(comm, 0, sizeof(comm));
6563 strlcpy(comm, comm_event->task->comm, sizeof(comm));
6564 size = ALIGN(strlen(comm)+1, sizeof(u64));
6565
6566 comm_event->comm = comm;
6567 comm_event->comm_size = size;
6568
6569 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6570
6571 perf_iterate_sb(perf_event_comm_output,
6572 comm_event,
6573 NULL);
6574 }
6575
6576 void perf_event_comm(struct task_struct *task, bool exec)
6577 {
6578 struct perf_comm_event comm_event;
6579
6580 if (!atomic_read(&nr_comm_events))
6581 return;
6582
6583 comm_event = (struct perf_comm_event){
6584 .task = task,
6585 /* .comm */
6586 /* .comm_size */
6587 .event_id = {
6588 .header = {
6589 .type = PERF_RECORD_COMM,
6590 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6591 /* .size */
6592 },
6593 /* .pid */
6594 /* .tid */
6595 },
6596 };
6597
6598 perf_event_comm_event(&comm_event);
6599 }
6600
6601 /*
6602 * namespaces tracking
6603 */
6604
6605 struct perf_namespaces_event {
6606 struct task_struct *task;
6607
6608 struct {
6609 struct perf_event_header header;
6610
6611 u32 pid;
6612 u32 tid;
6613 u64 nr_namespaces;
6614 struct perf_ns_link_info link_info[NR_NAMESPACES];
6615 } event_id;
6616 };
6617
6618 static int perf_event_namespaces_match(struct perf_event *event)
6619 {
6620 return event->attr.namespaces;
6621 }
6622
6623 static void perf_event_namespaces_output(struct perf_event *event,
6624 void *data)
6625 {
6626 struct perf_namespaces_event *namespaces_event = data;
6627 struct perf_output_handle handle;
6628 struct perf_sample_data sample;
6629 int ret;
6630
6631 if (!perf_event_namespaces_match(event))
6632 return;
6633
6634 perf_event_header__init_id(&namespaces_event->event_id.header,
6635 &sample, event);
6636 ret = perf_output_begin(&handle, event,
6637 namespaces_event->event_id.header.size);
6638 if (ret)
6639 return;
6640
6641 namespaces_event->event_id.pid = perf_event_pid(event,
6642 namespaces_event->task);
6643 namespaces_event->event_id.tid = perf_event_tid(event,
6644 namespaces_event->task);
6645
6646 perf_output_put(&handle, namespaces_event->event_id);
6647
6648 perf_event__output_id_sample(event, &handle, &sample);
6649
6650 perf_output_end(&handle);
6651 }
6652
6653 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6654 struct task_struct *task,
6655 const struct proc_ns_operations *ns_ops)
6656 {
6657 struct path ns_path;
6658 struct inode *ns_inode;
6659 void *error;
6660
6661 error = ns_get_path(&ns_path, task, ns_ops);
6662 if (!error) {
6663 ns_inode = ns_path.dentry->d_inode;
6664 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6665 ns_link_info->ino = ns_inode->i_ino;
6666 }
6667 }
6668
6669 void perf_event_namespaces(struct task_struct *task)
6670 {
6671 struct perf_namespaces_event namespaces_event;
6672 struct perf_ns_link_info *ns_link_info;
6673
6674 if (!atomic_read(&nr_namespaces_events))
6675 return;
6676
6677 namespaces_event = (struct perf_namespaces_event){
6678 .task = task,
6679 .event_id = {
6680 .header = {
6681 .type = PERF_RECORD_NAMESPACES,
6682 .misc = 0,
6683 .size = sizeof(namespaces_event.event_id),
6684 },
6685 /* .pid */
6686 /* .tid */
6687 .nr_namespaces = NR_NAMESPACES,
6688 /* .link_info[NR_NAMESPACES] */
6689 },
6690 };
6691
6692 ns_link_info = namespaces_event.event_id.link_info;
6693
6694 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6695 task, &mntns_operations);
6696
6697 #ifdef CONFIG_USER_NS
6698 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6699 task, &userns_operations);
6700 #endif
6701 #ifdef CONFIG_NET_NS
6702 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6703 task, &netns_operations);
6704 #endif
6705 #ifdef CONFIG_UTS_NS
6706 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6707 task, &utsns_operations);
6708 #endif
6709 #ifdef CONFIG_IPC_NS
6710 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6711 task, &ipcns_operations);
6712 #endif
6713 #ifdef CONFIG_PID_NS
6714 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6715 task, &pidns_operations);
6716 #endif
6717 #ifdef CONFIG_CGROUPS
6718 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6719 task, &cgroupns_operations);
6720 #endif
6721
6722 perf_iterate_sb(perf_event_namespaces_output,
6723 &namespaces_event,
6724 NULL);
6725 }
6726
6727 /*
6728 * mmap tracking
6729 */
6730
6731 struct perf_mmap_event {
6732 struct vm_area_struct *vma;
6733
6734 const char *file_name;
6735 int file_size;
6736 int maj, min;
6737 u64 ino;
6738 u64 ino_generation;
6739 u32 prot, flags;
6740
6741 struct {
6742 struct perf_event_header header;
6743
6744 u32 pid;
6745 u32 tid;
6746 u64 start;
6747 u64 len;
6748 u64 pgoff;
6749 } event_id;
6750 };
6751
6752 static int perf_event_mmap_match(struct perf_event *event,
6753 void *data)
6754 {
6755 struct perf_mmap_event *mmap_event = data;
6756 struct vm_area_struct *vma = mmap_event->vma;
6757 int executable = vma->vm_flags & VM_EXEC;
6758
6759 return (!executable && event->attr.mmap_data) ||
6760 (executable && (event->attr.mmap || event->attr.mmap2));
6761 }
6762
6763 static void perf_event_mmap_output(struct perf_event *event,
6764 void *data)
6765 {
6766 struct perf_mmap_event *mmap_event = data;
6767 struct perf_output_handle handle;
6768 struct perf_sample_data sample;
6769 int size = mmap_event->event_id.header.size;
6770 int ret;
6771
6772 if (!perf_event_mmap_match(event, data))
6773 return;
6774
6775 if (event->attr.mmap2) {
6776 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6777 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6778 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6779 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6780 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6781 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6782 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6783 }
6784
6785 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6786 ret = perf_output_begin(&handle, event,
6787 mmap_event->event_id.header.size);
6788 if (ret)
6789 goto out;
6790
6791 mmap_event->event_id.pid = perf_event_pid(event, current);
6792 mmap_event->event_id.tid = perf_event_tid(event, current);
6793
6794 perf_output_put(&handle, mmap_event->event_id);
6795
6796 if (event->attr.mmap2) {
6797 perf_output_put(&handle, mmap_event->maj);
6798 perf_output_put(&handle, mmap_event->min);
6799 perf_output_put(&handle, mmap_event->ino);
6800 perf_output_put(&handle, mmap_event->ino_generation);
6801 perf_output_put(&handle, mmap_event->prot);
6802 perf_output_put(&handle, mmap_event->flags);
6803 }
6804
6805 __output_copy(&handle, mmap_event->file_name,
6806 mmap_event->file_size);
6807
6808 perf_event__output_id_sample(event, &handle, &sample);
6809
6810 perf_output_end(&handle);
6811 out:
6812 mmap_event->event_id.header.size = size;
6813 }
6814
6815 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6816 {
6817 struct vm_area_struct *vma = mmap_event->vma;
6818 struct file *file = vma->vm_file;
6819 int maj = 0, min = 0;
6820 u64 ino = 0, gen = 0;
6821 u32 prot = 0, flags = 0;
6822 unsigned int size;
6823 char tmp[16];
6824 char *buf = NULL;
6825 char *name;
6826
6827 if (vma->vm_flags & VM_READ)
6828 prot |= PROT_READ;
6829 if (vma->vm_flags & VM_WRITE)
6830 prot |= PROT_WRITE;
6831 if (vma->vm_flags & VM_EXEC)
6832 prot |= PROT_EXEC;
6833
6834 if (vma->vm_flags & VM_MAYSHARE)
6835 flags = MAP_SHARED;
6836 else
6837 flags = MAP_PRIVATE;
6838
6839 if (vma->vm_flags & VM_DENYWRITE)
6840 flags |= MAP_DENYWRITE;
6841 if (vma->vm_flags & VM_MAYEXEC)
6842 flags |= MAP_EXECUTABLE;
6843 if (vma->vm_flags & VM_LOCKED)
6844 flags |= MAP_LOCKED;
6845 if (vma->vm_flags & VM_HUGETLB)
6846 flags |= MAP_HUGETLB;
6847
6848 if (file) {
6849 struct inode *inode;
6850 dev_t dev;
6851
6852 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6853 if (!buf) {
6854 name = "//enomem";
6855 goto cpy_name;
6856 }
6857 /*
6858 * d_path() works from the end of the rb backwards, so we
6859 * need to add enough zero bytes after the string to handle
6860 * the 64bit alignment we do later.
6861 */
6862 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6863 if (IS_ERR(name)) {
6864 name = "//toolong";
6865 goto cpy_name;
6866 }
6867 inode = file_inode(vma->vm_file);
6868 dev = inode->i_sb->s_dev;
6869 ino = inode->i_ino;
6870 gen = inode->i_generation;
6871 maj = MAJOR(dev);
6872 min = MINOR(dev);
6873
6874 goto got_name;
6875 } else {
6876 if (vma->vm_ops && vma->vm_ops->name) {
6877 name = (char *) vma->vm_ops->name(vma);
6878 if (name)
6879 goto cpy_name;
6880 }
6881
6882 name = (char *)arch_vma_name(vma);
6883 if (name)
6884 goto cpy_name;
6885
6886 if (vma->vm_start <= vma->vm_mm->start_brk &&
6887 vma->vm_end >= vma->vm_mm->brk) {
6888 name = "[heap]";
6889 goto cpy_name;
6890 }
6891 if (vma->vm_start <= vma->vm_mm->start_stack &&
6892 vma->vm_end >= vma->vm_mm->start_stack) {
6893 name = "[stack]";
6894 goto cpy_name;
6895 }
6896
6897 name = "//anon";
6898 goto cpy_name;
6899 }
6900
6901 cpy_name:
6902 strlcpy(tmp, name, sizeof(tmp));
6903 name = tmp;
6904 got_name:
6905 /*
6906 * Since our buffer works in 8 byte units we need to align our string
6907 * size to a multiple of 8. However, we must guarantee the tail end is
6908 * zero'd out to avoid leaking random bits to userspace.
6909 */
6910 size = strlen(name)+1;
6911 while (!IS_ALIGNED(size, sizeof(u64)))
6912 name[size++] = '\0';
6913
6914 mmap_event->file_name = name;
6915 mmap_event->file_size = size;
6916 mmap_event->maj = maj;
6917 mmap_event->min = min;
6918 mmap_event->ino = ino;
6919 mmap_event->ino_generation = gen;
6920 mmap_event->prot = prot;
6921 mmap_event->flags = flags;
6922
6923 if (!(vma->vm_flags & VM_EXEC))
6924 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6925
6926 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6927
6928 perf_iterate_sb(perf_event_mmap_output,
6929 mmap_event,
6930 NULL);
6931
6932 kfree(buf);
6933 }
6934
6935 /*
6936 * Check whether inode and address range match filter criteria.
6937 */
6938 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6939 struct file *file, unsigned long offset,
6940 unsigned long size)
6941 {
6942 if (filter->inode != file_inode(file))
6943 return false;
6944
6945 if (filter->offset > offset + size)
6946 return false;
6947
6948 if (filter->offset + filter->size < offset)
6949 return false;
6950
6951 return true;
6952 }
6953
6954 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6955 {
6956 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6957 struct vm_area_struct *vma = data;
6958 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6959 struct file *file = vma->vm_file;
6960 struct perf_addr_filter *filter;
6961 unsigned int restart = 0, count = 0;
6962
6963 if (!has_addr_filter(event))
6964 return;
6965
6966 if (!file)
6967 return;
6968
6969 raw_spin_lock_irqsave(&ifh->lock, flags);
6970 list_for_each_entry(filter, &ifh->list, entry) {
6971 if (perf_addr_filter_match(filter, file, off,
6972 vma->vm_end - vma->vm_start)) {
6973 event->addr_filters_offs[count] = vma->vm_start;
6974 restart++;
6975 }
6976
6977 count++;
6978 }
6979
6980 if (restart)
6981 event->addr_filters_gen++;
6982 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6983
6984 if (restart)
6985 perf_event_stop(event, 1);
6986 }
6987
6988 /*
6989 * Adjust all task's events' filters to the new vma
6990 */
6991 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6992 {
6993 struct perf_event_context *ctx;
6994 int ctxn;
6995
6996 /*
6997 * Data tracing isn't supported yet and as such there is no need
6998 * to keep track of anything that isn't related to executable code:
6999 */
7000 if (!(vma->vm_flags & VM_EXEC))
7001 return;
7002
7003 rcu_read_lock();
7004 for_each_task_context_nr(ctxn) {
7005 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7006 if (!ctx)
7007 continue;
7008
7009 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7010 }
7011 rcu_read_unlock();
7012 }
7013
7014 void perf_event_mmap(struct vm_area_struct *vma)
7015 {
7016 struct perf_mmap_event mmap_event;
7017
7018 if (!atomic_read(&nr_mmap_events))
7019 return;
7020
7021 mmap_event = (struct perf_mmap_event){
7022 .vma = vma,
7023 /* .file_name */
7024 /* .file_size */
7025 .event_id = {
7026 .header = {
7027 .type = PERF_RECORD_MMAP,
7028 .misc = PERF_RECORD_MISC_USER,
7029 /* .size */
7030 },
7031 /* .pid */
7032 /* .tid */
7033 .start = vma->vm_start,
7034 .len = vma->vm_end - vma->vm_start,
7035 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
7036 },
7037 /* .maj (attr_mmap2 only) */
7038 /* .min (attr_mmap2 only) */
7039 /* .ino (attr_mmap2 only) */
7040 /* .ino_generation (attr_mmap2 only) */
7041 /* .prot (attr_mmap2 only) */
7042 /* .flags (attr_mmap2 only) */
7043 };
7044
7045 perf_addr_filters_adjust(vma);
7046 perf_event_mmap_event(&mmap_event);
7047 }
7048
7049 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7050 unsigned long size, u64 flags)
7051 {
7052 struct perf_output_handle handle;
7053 struct perf_sample_data sample;
7054 struct perf_aux_event {
7055 struct perf_event_header header;
7056 u64 offset;
7057 u64 size;
7058 u64 flags;
7059 } rec = {
7060 .header = {
7061 .type = PERF_RECORD_AUX,
7062 .misc = 0,
7063 .size = sizeof(rec),
7064 },
7065 .offset = head,
7066 .size = size,
7067 .flags = flags,
7068 };
7069 int ret;
7070
7071 perf_event_header__init_id(&rec.header, &sample, event);
7072 ret = perf_output_begin(&handle, event, rec.header.size);
7073
7074 if (ret)
7075 return;
7076
7077 perf_output_put(&handle, rec);
7078 perf_event__output_id_sample(event, &handle, &sample);
7079
7080 perf_output_end(&handle);
7081 }
7082
7083 /*
7084 * Lost/dropped samples logging
7085 */
7086 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7087 {
7088 struct perf_output_handle handle;
7089 struct perf_sample_data sample;
7090 int ret;
7091
7092 struct {
7093 struct perf_event_header header;
7094 u64 lost;
7095 } lost_samples_event = {
7096 .header = {
7097 .type = PERF_RECORD_LOST_SAMPLES,
7098 .misc = 0,
7099 .size = sizeof(lost_samples_event),
7100 },
7101 .lost = lost,
7102 };
7103
7104 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7105
7106 ret = perf_output_begin(&handle, event,
7107 lost_samples_event.header.size);
7108 if (ret)
7109 return;
7110
7111 perf_output_put(&handle, lost_samples_event);
7112 perf_event__output_id_sample(event, &handle, &sample);
7113 perf_output_end(&handle);
7114 }
7115
7116 /*
7117 * context_switch tracking
7118 */
7119
7120 struct perf_switch_event {
7121 struct task_struct *task;
7122 struct task_struct *next_prev;
7123
7124 struct {
7125 struct perf_event_header header;
7126 u32 next_prev_pid;
7127 u32 next_prev_tid;
7128 } event_id;
7129 };
7130
7131 static int perf_event_switch_match(struct perf_event *event)
7132 {
7133 return event->attr.context_switch;
7134 }
7135
7136 static void perf_event_switch_output(struct perf_event *event, void *data)
7137 {
7138 struct perf_switch_event *se = data;
7139 struct perf_output_handle handle;
7140 struct perf_sample_data sample;
7141 int ret;
7142
7143 if (!perf_event_switch_match(event))
7144 return;
7145
7146 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7147 if (event->ctx->task) {
7148 se->event_id.header.type = PERF_RECORD_SWITCH;
7149 se->event_id.header.size = sizeof(se->event_id.header);
7150 } else {
7151 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7152 se->event_id.header.size = sizeof(se->event_id);
7153 se->event_id.next_prev_pid =
7154 perf_event_pid(event, se->next_prev);
7155 se->event_id.next_prev_tid =
7156 perf_event_tid(event, se->next_prev);
7157 }
7158
7159 perf_event_header__init_id(&se->event_id.header, &sample, event);
7160
7161 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7162 if (ret)
7163 return;
7164
7165 if (event->ctx->task)
7166 perf_output_put(&handle, se->event_id.header);
7167 else
7168 perf_output_put(&handle, se->event_id);
7169
7170 perf_event__output_id_sample(event, &handle, &sample);
7171
7172 perf_output_end(&handle);
7173 }
7174
7175 static void perf_event_switch(struct task_struct *task,
7176 struct task_struct *next_prev, bool sched_in)
7177 {
7178 struct perf_switch_event switch_event;
7179
7180 /* N.B. caller checks nr_switch_events != 0 */
7181
7182 switch_event = (struct perf_switch_event){
7183 .task = task,
7184 .next_prev = next_prev,
7185 .event_id = {
7186 .header = {
7187 /* .type */
7188 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7189 /* .size */
7190 },
7191 /* .next_prev_pid */
7192 /* .next_prev_tid */
7193 },
7194 };
7195
7196 perf_iterate_sb(perf_event_switch_output,
7197 &switch_event,
7198 NULL);
7199 }
7200
7201 /*
7202 * IRQ throttle logging
7203 */
7204
7205 static void perf_log_throttle(struct perf_event *event, int enable)
7206 {
7207 struct perf_output_handle handle;
7208 struct perf_sample_data sample;
7209 int ret;
7210
7211 struct {
7212 struct perf_event_header header;
7213 u64 time;
7214 u64 id;
7215 u64 stream_id;
7216 } throttle_event = {
7217 .header = {
7218 .type = PERF_RECORD_THROTTLE,
7219 .misc = 0,
7220 .size = sizeof(throttle_event),
7221 },
7222 .time = perf_event_clock(event),
7223 .id = primary_event_id(event),
7224 .stream_id = event->id,
7225 };
7226
7227 if (enable)
7228 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7229
7230 perf_event_header__init_id(&throttle_event.header, &sample, event);
7231
7232 ret = perf_output_begin(&handle, event,
7233 throttle_event.header.size);
7234 if (ret)
7235 return;
7236
7237 perf_output_put(&handle, throttle_event);
7238 perf_event__output_id_sample(event, &handle, &sample);
7239 perf_output_end(&handle);
7240 }
7241
7242 static void perf_log_itrace_start(struct perf_event *event)
7243 {
7244 struct perf_output_handle handle;
7245 struct perf_sample_data sample;
7246 struct perf_aux_event {
7247 struct perf_event_header header;
7248 u32 pid;
7249 u32 tid;
7250 } rec;
7251 int ret;
7252
7253 if (event->parent)
7254 event = event->parent;
7255
7256 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7257 event->hw.itrace_started)
7258 return;
7259
7260 rec.header.type = PERF_RECORD_ITRACE_START;
7261 rec.header.misc = 0;
7262 rec.header.size = sizeof(rec);
7263 rec.pid = perf_event_pid(event, current);
7264 rec.tid = perf_event_tid(event, current);
7265
7266 perf_event_header__init_id(&rec.header, &sample, event);
7267 ret = perf_output_begin(&handle, event, rec.header.size);
7268
7269 if (ret)
7270 return;
7271
7272 perf_output_put(&handle, rec);
7273 perf_event__output_id_sample(event, &handle, &sample);
7274
7275 perf_output_end(&handle);
7276 }
7277
7278 static int
7279 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7280 {
7281 struct hw_perf_event *hwc = &event->hw;
7282 int ret = 0;
7283 u64 seq;
7284
7285 seq = __this_cpu_read(perf_throttled_seq);
7286 if (seq != hwc->interrupts_seq) {
7287 hwc->interrupts_seq = seq;
7288 hwc->interrupts = 1;
7289 } else {
7290 hwc->interrupts++;
7291 if (unlikely(throttle
7292 && hwc->interrupts >= max_samples_per_tick)) {
7293 __this_cpu_inc(perf_throttled_count);
7294 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7295 hwc->interrupts = MAX_INTERRUPTS;
7296 perf_log_throttle(event, 0);
7297 ret = 1;
7298 }
7299 }
7300
7301 if (event->attr.freq) {
7302 u64 now = perf_clock();
7303 s64 delta = now - hwc->freq_time_stamp;
7304
7305 hwc->freq_time_stamp = now;
7306
7307 if (delta > 0 && delta < 2*TICK_NSEC)
7308 perf_adjust_period(event, delta, hwc->last_period, true);
7309 }
7310
7311 return ret;
7312 }
7313
7314 int perf_event_account_interrupt(struct perf_event *event)
7315 {
7316 return __perf_event_account_interrupt(event, 1);
7317 }
7318
7319 static bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
7320 {
7321 /*
7322 * Due to interrupt latency (AKA "skid"), we may enter the
7323 * kernel before taking an overflow, even if the PMU is only
7324 * counting user events.
7325 * To avoid leaking information to userspace, we must always
7326 * reject kernel samples when exclude_kernel is set.
7327 */
7328 if (event->attr.exclude_kernel && !user_mode(regs))
7329 return false;
7330
7331 return true;
7332 }
7333
7334 /*
7335 * Generic event overflow handling, sampling.
7336 */
7337
7338 static int __perf_event_overflow(struct perf_event *event,
7339 int throttle, struct perf_sample_data *data,
7340 struct pt_regs *regs)
7341 {
7342 int events = atomic_read(&event->event_limit);
7343 int ret = 0;
7344
7345 /*
7346 * Non-sampling counters might still use the PMI to fold short
7347 * hardware counters, ignore those.
7348 */
7349 if (unlikely(!is_sampling_event(event)))
7350 return 0;
7351
7352 ret = __perf_event_account_interrupt(event, throttle);
7353
7354 /*
7355 * For security, drop the skid kernel samples if necessary.
7356 */
7357 if (!sample_is_allowed(event, regs))
7358 return ret;
7359
7360 /*
7361 * XXX event_limit might not quite work as expected on inherited
7362 * events
7363 */
7364
7365 event->pending_kill = POLL_IN;
7366 if (events && atomic_dec_and_test(&event->event_limit)) {
7367 ret = 1;
7368 event->pending_kill = POLL_HUP;
7369
7370 perf_event_disable_inatomic(event);
7371 }
7372
7373 READ_ONCE(event->overflow_handler)(event, data, regs);
7374
7375 if (*perf_event_fasync(event) && event->pending_kill) {
7376 event->pending_wakeup = 1;
7377 irq_work_queue(&event->pending);
7378 }
7379
7380 return ret;
7381 }
7382
7383 int perf_event_overflow(struct perf_event *event,
7384 struct perf_sample_data *data,
7385 struct pt_regs *regs)
7386 {
7387 return __perf_event_overflow(event, 1, data, regs);
7388 }
7389
7390 /*
7391 * Generic software event infrastructure
7392 */
7393
7394 struct swevent_htable {
7395 struct swevent_hlist *swevent_hlist;
7396 struct mutex hlist_mutex;
7397 int hlist_refcount;
7398
7399 /* Recursion avoidance in each contexts */
7400 int recursion[PERF_NR_CONTEXTS];
7401 };
7402
7403 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7404
7405 /*
7406 * We directly increment event->count and keep a second value in
7407 * event->hw.period_left to count intervals. This period event
7408 * is kept in the range [-sample_period, 0] so that we can use the
7409 * sign as trigger.
7410 */
7411
7412 u64 perf_swevent_set_period(struct perf_event *event)
7413 {
7414 struct hw_perf_event *hwc = &event->hw;
7415 u64 period = hwc->last_period;
7416 u64 nr, offset;
7417 s64 old, val;
7418
7419 hwc->last_period = hwc->sample_period;
7420
7421 again:
7422 old = val = local64_read(&hwc->period_left);
7423 if (val < 0)
7424 return 0;
7425
7426 nr = div64_u64(period + val, period);
7427 offset = nr * period;
7428 val -= offset;
7429 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7430 goto again;
7431
7432 return nr;
7433 }
7434
7435 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7436 struct perf_sample_data *data,
7437 struct pt_regs *regs)
7438 {
7439 struct hw_perf_event *hwc = &event->hw;
7440 int throttle = 0;
7441
7442 if (!overflow)
7443 overflow = perf_swevent_set_period(event);
7444
7445 if (hwc->interrupts == MAX_INTERRUPTS)
7446 return;
7447
7448 for (; overflow; overflow--) {
7449 if (__perf_event_overflow(event, throttle,
7450 data, regs)) {
7451 /*
7452 * We inhibit the overflow from happening when
7453 * hwc->interrupts == MAX_INTERRUPTS.
7454 */
7455 break;
7456 }
7457 throttle = 1;
7458 }
7459 }
7460
7461 static void perf_swevent_event(struct perf_event *event, u64 nr,
7462 struct perf_sample_data *data,
7463 struct pt_regs *regs)
7464 {
7465 struct hw_perf_event *hwc = &event->hw;
7466
7467 local64_add(nr, &event->count);
7468
7469 if (!regs)
7470 return;
7471
7472 if (!is_sampling_event(event))
7473 return;
7474
7475 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7476 data->period = nr;
7477 return perf_swevent_overflow(event, 1, data, regs);
7478 } else
7479 data->period = event->hw.last_period;
7480
7481 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7482 return perf_swevent_overflow(event, 1, data, regs);
7483
7484 if (local64_add_negative(nr, &hwc->period_left))
7485 return;
7486
7487 perf_swevent_overflow(event, 0, data, regs);
7488 }
7489
7490 static int perf_exclude_event(struct perf_event *event,
7491 struct pt_regs *regs)
7492 {
7493 if (event->hw.state & PERF_HES_STOPPED)
7494 return 1;
7495
7496 if (regs) {
7497 if (event->attr.exclude_user && user_mode(regs))
7498 return 1;
7499
7500 if (event->attr.exclude_kernel && !user_mode(regs))
7501 return 1;
7502 }
7503
7504 return 0;
7505 }
7506
7507 static int perf_swevent_match(struct perf_event *event,
7508 enum perf_type_id type,
7509 u32 event_id,
7510 struct perf_sample_data *data,
7511 struct pt_regs *regs)
7512 {
7513 if (event->attr.type != type)
7514 return 0;
7515
7516 if (event->attr.config != event_id)
7517 return 0;
7518
7519 if (perf_exclude_event(event, regs))
7520 return 0;
7521
7522 return 1;
7523 }
7524
7525 static inline u64 swevent_hash(u64 type, u32 event_id)
7526 {
7527 u64 val = event_id | (type << 32);
7528
7529 return hash_64(val, SWEVENT_HLIST_BITS);
7530 }
7531
7532 static inline struct hlist_head *
7533 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7534 {
7535 u64 hash = swevent_hash(type, event_id);
7536
7537 return &hlist->heads[hash];
7538 }
7539
7540 /* For the read side: events when they trigger */
7541 static inline struct hlist_head *
7542 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7543 {
7544 struct swevent_hlist *hlist;
7545
7546 hlist = rcu_dereference(swhash->swevent_hlist);
7547 if (!hlist)
7548 return NULL;
7549
7550 return __find_swevent_head(hlist, type, event_id);
7551 }
7552
7553 /* For the event head insertion and removal in the hlist */
7554 static inline struct hlist_head *
7555 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7556 {
7557 struct swevent_hlist *hlist;
7558 u32 event_id = event->attr.config;
7559 u64 type = event->attr.type;
7560
7561 /*
7562 * Event scheduling is always serialized against hlist allocation
7563 * and release. Which makes the protected version suitable here.
7564 * The context lock guarantees that.
7565 */
7566 hlist = rcu_dereference_protected(swhash->swevent_hlist,
7567 lockdep_is_held(&event->ctx->lock));
7568 if (!hlist)
7569 return NULL;
7570
7571 return __find_swevent_head(hlist, type, event_id);
7572 }
7573
7574 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7575 u64 nr,
7576 struct perf_sample_data *data,
7577 struct pt_regs *regs)
7578 {
7579 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7580 struct perf_event *event;
7581 struct hlist_head *head;
7582
7583 rcu_read_lock();
7584 head = find_swevent_head_rcu(swhash, type, event_id);
7585 if (!head)
7586 goto end;
7587
7588 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7589 if (perf_swevent_match(event, type, event_id, data, regs))
7590 perf_swevent_event(event, nr, data, regs);
7591 }
7592 end:
7593 rcu_read_unlock();
7594 }
7595
7596 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7597
7598 int perf_swevent_get_recursion_context(void)
7599 {
7600 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7601
7602 return get_recursion_context(swhash->recursion);
7603 }
7604 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7605
7606 void perf_swevent_put_recursion_context(int rctx)
7607 {
7608 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7609
7610 put_recursion_context(swhash->recursion, rctx);
7611 }
7612
7613 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7614 {
7615 struct perf_sample_data data;
7616
7617 if (WARN_ON_ONCE(!regs))
7618 return;
7619
7620 perf_sample_data_init(&data, addr, 0);
7621 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7622 }
7623
7624 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7625 {
7626 int rctx;
7627
7628 preempt_disable_notrace();
7629 rctx = perf_swevent_get_recursion_context();
7630 if (unlikely(rctx < 0))
7631 goto fail;
7632
7633 ___perf_sw_event(event_id, nr, regs, addr);
7634
7635 perf_swevent_put_recursion_context(rctx);
7636 fail:
7637 preempt_enable_notrace();
7638 }
7639
7640 static void perf_swevent_read(struct perf_event *event)
7641 {
7642 }
7643
7644 static int perf_swevent_add(struct perf_event *event, int flags)
7645 {
7646 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7647 struct hw_perf_event *hwc = &event->hw;
7648 struct hlist_head *head;
7649
7650 if (is_sampling_event(event)) {
7651 hwc->last_period = hwc->sample_period;
7652 perf_swevent_set_period(event);
7653 }
7654
7655 hwc->state = !(flags & PERF_EF_START);
7656
7657 head = find_swevent_head(swhash, event);
7658 if (WARN_ON_ONCE(!head))
7659 return -EINVAL;
7660
7661 hlist_add_head_rcu(&event->hlist_entry, head);
7662 perf_event_update_userpage(event);
7663
7664 return 0;
7665 }
7666
7667 static void perf_swevent_del(struct perf_event *event, int flags)
7668 {
7669 hlist_del_rcu(&event->hlist_entry);
7670 }
7671
7672 static void perf_swevent_start(struct perf_event *event, int flags)
7673 {
7674 event->hw.state = 0;
7675 }
7676
7677 static void perf_swevent_stop(struct perf_event *event, int flags)
7678 {
7679 event->hw.state = PERF_HES_STOPPED;
7680 }
7681
7682 /* Deref the hlist from the update side */
7683 static inline struct swevent_hlist *
7684 swevent_hlist_deref(struct swevent_htable *swhash)
7685 {
7686 return rcu_dereference_protected(swhash->swevent_hlist,
7687 lockdep_is_held(&swhash->hlist_mutex));
7688 }
7689
7690 static void swevent_hlist_release(struct swevent_htable *swhash)
7691 {
7692 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7693
7694 if (!hlist)
7695 return;
7696
7697 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7698 kfree_rcu(hlist, rcu_head);
7699 }
7700
7701 static void swevent_hlist_put_cpu(int cpu)
7702 {
7703 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7704
7705 mutex_lock(&swhash->hlist_mutex);
7706
7707 if (!--swhash->hlist_refcount)
7708 swevent_hlist_release(swhash);
7709
7710 mutex_unlock(&swhash->hlist_mutex);
7711 }
7712
7713 static void swevent_hlist_put(void)
7714 {
7715 int cpu;
7716
7717 for_each_possible_cpu(cpu)
7718 swevent_hlist_put_cpu(cpu);
7719 }
7720
7721 static int swevent_hlist_get_cpu(int cpu)
7722 {
7723 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7724 int err = 0;
7725
7726 mutex_lock(&swhash->hlist_mutex);
7727 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7728 struct swevent_hlist *hlist;
7729
7730 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7731 if (!hlist) {
7732 err = -ENOMEM;
7733 goto exit;
7734 }
7735 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7736 }
7737 swhash->hlist_refcount++;
7738 exit:
7739 mutex_unlock(&swhash->hlist_mutex);
7740
7741 return err;
7742 }
7743
7744 static int swevent_hlist_get(void)
7745 {
7746 int err, cpu, failed_cpu;
7747
7748 get_online_cpus();
7749 for_each_possible_cpu(cpu) {
7750 err = swevent_hlist_get_cpu(cpu);
7751 if (err) {
7752 failed_cpu = cpu;
7753 goto fail;
7754 }
7755 }
7756 put_online_cpus();
7757
7758 return 0;
7759 fail:
7760 for_each_possible_cpu(cpu) {
7761 if (cpu == failed_cpu)
7762 break;
7763 swevent_hlist_put_cpu(cpu);
7764 }
7765
7766 put_online_cpus();
7767 return err;
7768 }
7769
7770 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7771
7772 static void sw_perf_event_destroy(struct perf_event *event)
7773 {
7774 u64 event_id = event->attr.config;
7775
7776 WARN_ON(event->parent);
7777
7778 static_key_slow_dec(&perf_swevent_enabled[event_id]);
7779 swevent_hlist_put();
7780 }
7781
7782 static int perf_swevent_init(struct perf_event *event)
7783 {
7784 u64 event_id = event->attr.config;
7785
7786 if (event->attr.type != PERF_TYPE_SOFTWARE)
7787 return -ENOENT;
7788
7789 /*
7790 * no branch sampling for software events
7791 */
7792 if (has_branch_stack(event))
7793 return -EOPNOTSUPP;
7794
7795 switch (event_id) {
7796 case PERF_COUNT_SW_CPU_CLOCK:
7797 case PERF_COUNT_SW_TASK_CLOCK:
7798 return -ENOENT;
7799
7800 default:
7801 break;
7802 }
7803
7804 if (event_id >= PERF_COUNT_SW_MAX)
7805 return -ENOENT;
7806
7807 if (!event->parent) {
7808 int err;
7809
7810 err = swevent_hlist_get();
7811 if (err)
7812 return err;
7813
7814 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7815 event->destroy = sw_perf_event_destroy;
7816 }
7817
7818 return 0;
7819 }
7820
7821 static struct pmu perf_swevent = {
7822 .task_ctx_nr = perf_sw_context,
7823
7824 .capabilities = PERF_PMU_CAP_NO_NMI,
7825
7826 .event_init = perf_swevent_init,
7827 .add = perf_swevent_add,
7828 .del = perf_swevent_del,
7829 .start = perf_swevent_start,
7830 .stop = perf_swevent_stop,
7831 .read = perf_swevent_read,
7832 };
7833
7834 #ifdef CONFIG_EVENT_TRACING
7835
7836 static int perf_tp_filter_match(struct perf_event *event,
7837 struct perf_sample_data *data)
7838 {
7839 void *record = data->raw->frag.data;
7840
7841 /* only top level events have filters set */
7842 if (event->parent)
7843 event = event->parent;
7844
7845 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7846 return 1;
7847 return 0;
7848 }
7849
7850 static int perf_tp_event_match(struct perf_event *event,
7851 struct perf_sample_data *data,
7852 struct pt_regs *regs)
7853 {
7854 if (event->hw.state & PERF_HES_STOPPED)
7855 return 0;
7856 /*
7857 * All tracepoints are from kernel-space.
7858 */
7859 if (event->attr.exclude_kernel)
7860 return 0;
7861
7862 if (!perf_tp_filter_match(event, data))
7863 return 0;
7864
7865 return 1;
7866 }
7867
7868 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7869 struct trace_event_call *call, u64 count,
7870 struct pt_regs *regs, struct hlist_head *head,
7871 struct task_struct *task)
7872 {
7873 struct bpf_prog *prog = call->prog;
7874
7875 if (prog) {
7876 *(struct pt_regs **)raw_data = regs;
7877 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7878 perf_swevent_put_recursion_context(rctx);
7879 return;
7880 }
7881 }
7882 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7883 rctx, task);
7884 }
7885 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7886
7887 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7888 struct pt_regs *regs, struct hlist_head *head, int rctx,
7889 struct task_struct *task)
7890 {
7891 struct perf_sample_data data;
7892 struct perf_event *event;
7893
7894 struct perf_raw_record raw = {
7895 .frag = {
7896 .size = entry_size,
7897 .data = record,
7898 },
7899 };
7900
7901 perf_sample_data_init(&data, 0, 0);
7902 data.raw = &raw;
7903
7904 perf_trace_buf_update(record, event_type);
7905
7906 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7907 if (perf_tp_event_match(event, &data, regs))
7908 perf_swevent_event(event, count, &data, regs);
7909 }
7910
7911 /*
7912 * If we got specified a target task, also iterate its context and
7913 * deliver this event there too.
7914 */
7915 if (task && task != current) {
7916 struct perf_event_context *ctx;
7917 struct trace_entry *entry = record;
7918
7919 rcu_read_lock();
7920 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7921 if (!ctx)
7922 goto unlock;
7923
7924 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7925 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7926 continue;
7927 if (event->attr.config != entry->type)
7928 continue;
7929 if (perf_tp_event_match(event, &data, regs))
7930 perf_swevent_event(event, count, &data, regs);
7931 }
7932 unlock:
7933 rcu_read_unlock();
7934 }
7935
7936 perf_swevent_put_recursion_context(rctx);
7937 }
7938 EXPORT_SYMBOL_GPL(perf_tp_event);
7939
7940 static void tp_perf_event_destroy(struct perf_event *event)
7941 {
7942 perf_trace_destroy(event);
7943 }
7944
7945 static int perf_tp_event_init(struct perf_event *event)
7946 {
7947 int err;
7948
7949 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7950 return -ENOENT;
7951
7952 /*
7953 * no branch sampling for tracepoint events
7954 */
7955 if (has_branch_stack(event))
7956 return -EOPNOTSUPP;
7957
7958 err = perf_trace_init(event);
7959 if (err)
7960 return err;
7961
7962 event->destroy = tp_perf_event_destroy;
7963
7964 return 0;
7965 }
7966
7967 static struct pmu perf_tracepoint = {
7968 .task_ctx_nr = perf_sw_context,
7969
7970 .event_init = perf_tp_event_init,
7971 .add = perf_trace_add,
7972 .del = perf_trace_del,
7973 .start = perf_swevent_start,
7974 .stop = perf_swevent_stop,
7975 .read = perf_swevent_read,
7976 };
7977
7978 static inline void perf_tp_register(void)
7979 {
7980 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7981 }
7982
7983 static void perf_event_free_filter(struct perf_event *event)
7984 {
7985 ftrace_profile_free_filter(event);
7986 }
7987
7988 #ifdef CONFIG_BPF_SYSCALL
7989 static void bpf_overflow_handler(struct perf_event *event,
7990 struct perf_sample_data *data,
7991 struct pt_regs *regs)
7992 {
7993 struct bpf_perf_event_data_kern ctx = {
7994 .data = data,
7995 .regs = regs,
7996 };
7997 int ret = 0;
7998
7999 preempt_disable();
8000 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8001 goto out;
8002 rcu_read_lock();
8003 ret = BPF_PROG_RUN(event->prog, &ctx);
8004 rcu_read_unlock();
8005 out:
8006 __this_cpu_dec(bpf_prog_active);
8007 preempt_enable();
8008 if (!ret)
8009 return;
8010
8011 event->orig_overflow_handler(event, data, regs);
8012 }
8013
8014 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8015 {
8016 struct bpf_prog *prog;
8017
8018 if (event->overflow_handler_context)
8019 /* hw breakpoint or kernel counter */
8020 return -EINVAL;
8021
8022 if (event->prog)
8023 return -EEXIST;
8024
8025 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8026 if (IS_ERR(prog))
8027 return PTR_ERR(prog);
8028
8029 event->prog = prog;
8030 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8031 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8032 return 0;
8033 }
8034
8035 static void perf_event_free_bpf_handler(struct perf_event *event)
8036 {
8037 struct bpf_prog *prog = event->prog;
8038
8039 if (!prog)
8040 return;
8041
8042 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8043 event->prog = NULL;
8044 bpf_prog_put(prog);
8045 }
8046 #else
8047 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8048 {
8049 return -EOPNOTSUPP;
8050 }
8051 static void perf_event_free_bpf_handler(struct perf_event *event)
8052 {
8053 }
8054 #endif
8055
8056 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8057 {
8058 bool is_kprobe, is_tracepoint;
8059 struct bpf_prog *prog;
8060
8061 if (event->attr.type == PERF_TYPE_HARDWARE ||
8062 event->attr.type == PERF_TYPE_SOFTWARE)
8063 return perf_event_set_bpf_handler(event, prog_fd);
8064
8065 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8066 return -EINVAL;
8067
8068 if (event->tp_event->prog)
8069 return -EEXIST;
8070
8071 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8072 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8073 if (!is_kprobe && !is_tracepoint)
8074 /* bpf programs can only be attached to u/kprobe or tracepoint */
8075 return -EINVAL;
8076
8077 prog = bpf_prog_get(prog_fd);
8078 if (IS_ERR(prog))
8079 return PTR_ERR(prog);
8080
8081 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8082 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8083 /* valid fd, but invalid bpf program type */
8084 bpf_prog_put(prog);
8085 return -EINVAL;
8086 }
8087
8088 if (is_tracepoint) {
8089 int off = trace_event_get_offsets(event->tp_event);
8090
8091 if (prog->aux->max_ctx_offset > off) {
8092 bpf_prog_put(prog);
8093 return -EACCES;
8094 }
8095 }
8096 event->tp_event->prog = prog;
8097
8098 return 0;
8099 }
8100
8101 static void perf_event_free_bpf_prog(struct perf_event *event)
8102 {
8103 struct bpf_prog *prog;
8104
8105 perf_event_free_bpf_handler(event);
8106
8107 if (!event->tp_event)
8108 return;
8109
8110 prog = event->tp_event->prog;
8111 if (prog) {
8112 event->tp_event->prog = NULL;
8113 bpf_prog_put(prog);
8114 }
8115 }
8116
8117 #else
8118
8119 static inline void perf_tp_register(void)
8120 {
8121 }
8122
8123 static void perf_event_free_filter(struct perf_event *event)
8124 {
8125 }
8126
8127 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8128 {
8129 return -ENOENT;
8130 }
8131
8132 static void perf_event_free_bpf_prog(struct perf_event *event)
8133 {
8134 }
8135 #endif /* CONFIG_EVENT_TRACING */
8136
8137 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8138 void perf_bp_event(struct perf_event *bp, void *data)
8139 {
8140 struct perf_sample_data sample;
8141 struct pt_regs *regs = data;
8142
8143 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8144
8145 if (!bp->hw.state && !perf_exclude_event(bp, regs))
8146 perf_swevent_event(bp, 1, &sample, regs);
8147 }
8148 #endif
8149
8150 /*
8151 * Allocate a new address filter
8152 */
8153 static struct perf_addr_filter *
8154 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8155 {
8156 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8157 struct perf_addr_filter *filter;
8158
8159 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8160 if (!filter)
8161 return NULL;
8162
8163 INIT_LIST_HEAD(&filter->entry);
8164 list_add_tail(&filter->entry, filters);
8165
8166 return filter;
8167 }
8168
8169 static void free_filters_list(struct list_head *filters)
8170 {
8171 struct perf_addr_filter *filter, *iter;
8172
8173 list_for_each_entry_safe(filter, iter, filters, entry) {
8174 if (filter->inode)
8175 iput(filter->inode);
8176 list_del(&filter->entry);
8177 kfree(filter);
8178 }
8179 }
8180
8181 /*
8182 * Free existing address filters and optionally install new ones
8183 */
8184 static void perf_addr_filters_splice(struct perf_event *event,
8185 struct list_head *head)
8186 {
8187 unsigned long flags;
8188 LIST_HEAD(list);
8189
8190 if (!has_addr_filter(event))
8191 return;
8192
8193 /* don't bother with children, they don't have their own filters */
8194 if (event->parent)
8195 return;
8196
8197 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8198
8199 list_splice_init(&event->addr_filters.list, &list);
8200 if (head)
8201 list_splice(head, &event->addr_filters.list);
8202
8203 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8204
8205 free_filters_list(&list);
8206 }
8207
8208 /*
8209 * Scan through mm's vmas and see if one of them matches the
8210 * @filter; if so, adjust filter's address range.
8211 * Called with mm::mmap_sem down for reading.
8212 */
8213 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8214 struct mm_struct *mm)
8215 {
8216 struct vm_area_struct *vma;
8217
8218 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8219 struct file *file = vma->vm_file;
8220 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8221 unsigned long vma_size = vma->vm_end - vma->vm_start;
8222
8223 if (!file)
8224 continue;
8225
8226 if (!perf_addr_filter_match(filter, file, off, vma_size))
8227 continue;
8228
8229 return vma->vm_start;
8230 }
8231
8232 return 0;
8233 }
8234
8235 /*
8236 * Update event's address range filters based on the
8237 * task's existing mappings, if any.
8238 */
8239 static void perf_event_addr_filters_apply(struct perf_event *event)
8240 {
8241 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8242 struct task_struct *task = READ_ONCE(event->ctx->task);
8243 struct perf_addr_filter *filter;
8244 struct mm_struct *mm = NULL;
8245 unsigned int count = 0;
8246 unsigned long flags;
8247
8248 /*
8249 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8250 * will stop on the parent's child_mutex that our caller is also holding
8251 */
8252 if (task == TASK_TOMBSTONE)
8253 return;
8254
8255 if (!ifh->nr_file_filters)
8256 return;
8257
8258 mm = get_task_mm(event->ctx->task);
8259 if (!mm)
8260 goto restart;
8261
8262 down_read(&mm->mmap_sem);
8263
8264 raw_spin_lock_irqsave(&ifh->lock, flags);
8265 list_for_each_entry(filter, &ifh->list, entry) {
8266 event->addr_filters_offs[count] = 0;
8267
8268 /*
8269 * Adjust base offset if the filter is associated to a binary
8270 * that needs to be mapped:
8271 */
8272 if (filter->inode)
8273 event->addr_filters_offs[count] =
8274 perf_addr_filter_apply(filter, mm);
8275
8276 count++;
8277 }
8278
8279 event->addr_filters_gen++;
8280 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8281
8282 up_read(&mm->mmap_sem);
8283
8284 mmput(mm);
8285
8286 restart:
8287 perf_event_stop(event, 1);
8288 }
8289
8290 /*
8291 * Address range filtering: limiting the data to certain
8292 * instruction address ranges. Filters are ioctl()ed to us from
8293 * userspace as ascii strings.
8294 *
8295 * Filter string format:
8296 *
8297 * ACTION RANGE_SPEC
8298 * where ACTION is one of the
8299 * * "filter": limit the trace to this region
8300 * * "start": start tracing from this address
8301 * * "stop": stop tracing at this address/region;
8302 * RANGE_SPEC is
8303 * * for kernel addresses: <start address>[/<size>]
8304 * * for object files: <start address>[/<size>]@</path/to/object/file>
8305 *
8306 * if <size> is not specified, the range is treated as a single address.
8307 */
8308 enum {
8309 IF_ACT_NONE = -1,
8310 IF_ACT_FILTER,
8311 IF_ACT_START,
8312 IF_ACT_STOP,
8313 IF_SRC_FILE,
8314 IF_SRC_KERNEL,
8315 IF_SRC_FILEADDR,
8316 IF_SRC_KERNELADDR,
8317 };
8318
8319 enum {
8320 IF_STATE_ACTION = 0,
8321 IF_STATE_SOURCE,
8322 IF_STATE_END,
8323 };
8324
8325 static const match_table_t if_tokens = {
8326 { IF_ACT_FILTER, "filter" },
8327 { IF_ACT_START, "start" },
8328 { IF_ACT_STOP, "stop" },
8329 { IF_SRC_FILE, "%u/%u@%s" },
8330 { IF_SRC_KERNEL, "%u/%u" },
8331 { IF_SRC_FILEADDR, "%u@%s" },
8332 { IF_SRC_KERNELADDR, "%u" },
8333 { IF_ACT_NONE, NULL },
8334 };
8335
8336 /*
8337 * Address filter string parser
8338 */
8339 static int
8340 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8341 struct list_head *filters)
8342 {
8343 struct perf_addr_filter *filter = NULL;
8344 char *start, *orig, *filename = NULL;
8345 struct path path;
8346 substring_t args[MAX_OPT_ARGS];
8347 int state = IF_STATE_ACTION, token;
8348 unsigned int kernel = 0;
8349 int ret = -EINVAL;
8350
8351 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8352 if (!fstr)
8353 return -ENOMEM;
8354
8355 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8356 ret = -EINVAL;
8357
8358 if (!*start)
8359 continue;
8360
8361 /* filter definition begins */
8362 if (state == IF_STATE_ACTION) {
8363 filter = perf_addr_filter_new(event, filters);
8364 if (!filter)
8365 goto fail;
8366 }
8367
8368 token = match_token(start, if_tokens, args);
8369 switch (token) {
8370 case IF_ACT_FILTER:
8371 case IF_ACT_START:
8372 filter->filter = 1;
8373
8374 case IF_ACT_STOP:
8375 if (state != IF_STATE_ACTION)
8376 goto fail;
8377
8378 state = IF_STATE_SOURCE;
8379 break;
8380
8381 case IF_SRC_KERNELADDR:
8382 case IF_SRC_KERNEL:
8383 kernel = 1;
8384
8385 case IF_SRC_FILEADDR:
8386 case IF_SRC_FILE:
8387 if (state != IF_STATE_SOURCE)
8388 goto fail;
8389
8390 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8391 filter->range = 1;
8392
8393 *args[0].to = 0;
8394 ret = kstrtoul(args[0].from, 0, &filter->offset);
8395 if (ret)
8396 goto fail;
8397
8398 if (filter->range) {
8399 *args[1].to = 0;
8400 ret = kstrtoul(args[1].from, 0, &filter->size);
8401 if (ret)
8402 goto fail;
8403 }
8404
8405 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8406 int fpos = filter->range ? 2 : 1;
8407
8408 filename = match_strdup(&args[fpos]);
8409 if (!filename) {
8410 ret = -ENOMEM;
8411 goto fail;
8412 }
8413 }
8414
8415 state = IF_STATE_END;
8416 break;
8417
8418 default:
8419 goto fail;
8420 }
8421
8422 /*
8423 * Filter definition is fully parsed, validate and install it.
8424 * Make sure that it doesn't contradict itself or the event's
8425 * attribute.
8426 */
8427 if (state == IF_STATE_END) {
8428 ret = -EINVAL;
8429 if (kernel && event->attr.exclude_kernel)
8430 goto fail;
8431
8432 if (!kernel) {
8433 if (!filename)
8434 goto fail;
8435
8436 /*
8437 * For now, we only support file-based filters
8438 * in per-task events; doing so for CPU-wide
8439 * events requires additional context switching
8440 * trickery, since same object code will be
8441 * mapped at different virtual addresses in
8442 * different processes.
8443 */
8444 ret = -EOPNOTSUPP;
8445 if (!event->ctx->task)
8446 goto fail_free_name;
8447
8448 /* look up the path and grab its inode */
8449 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8450 if (ret)
8451 goto fail_free_name;
8452
8453 filter->inode = igrab(d_inode(path.dentry));
8454 path_put(&path);
8455 kfree(filename);
8456 filename = NULL;
8457
8458 ret = -EINVAL;
8459 if (!filter->inode ||
8460 !S_ISREG(filter->inode->i_mode))
8461 /* free_filters_list() will iput() */
8462 goto fail;
8463
8464 event->addr_filters.nr_file_filters++;
8465 }
8466
8467 /* ready to consume more filters */
8468 state = IF_STATE_ACTION;
8469 filter = NULL;
8470 }
8471 }
8472
8473 if (state != IF_STATE_ACTION)
8474 goto fail;
8475
8476 kfree(orig);
8477
8478 return 0;
8479
8480 fail_free_name:
8481 kfree(filename);
8482 fail:
8483 free_filters_list(filters);
8484 kfree(orig);
8485
8486 return ret;
8487 }
8488
8489 static int
8490 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8491 {
8492 LIST_HEAD(filters);
8493 int ret;
8494
8495 /*
8496 * Since this is called in perf_ioctl() path, we're already holding
8497 * ctx::mutex.
8498 */
8499 lockdep_assert_held(&event->ctx->mutex);
8500
8501 if (WARN_ON_ONCE(event->parent))
8502 return -EINVAL;
8503
8504 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8505 if (ret)
8506 goto fail_clear_files;
8507
8508 ret = event->pmu->addr_filters_validate(&filters);
8509 if (ret)
8510 goto fail_free_filters;
8511
8512 /* remove existing filters, if any */
8513 perf_addr_filters_splice(event, &filters);
8514
8515 /* install new filters */
8516 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8517
8518 return ret;
8519
8520 fail_free_filters:
8521 free_filters_list(&filters);
8522
8523 fail_clear_files:
8524 event->addr_filters.nr_file_filters = 0;
8525
8526 return ret;
8527 }
8528
8529 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8530 {
8531 char *filter_str;
8532 int ret = -EINVAL;
8533
8534 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8535 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8536 !has_addr_filter(event))
8537 return -EINVAL;
8538
8539 filter_str = strndup_user(arg, PAGE_SIZE);
8540 if (IS_ERR(filter_str))
8541 return PTR_ERR(filter_str);
8542
8543 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8544 event->attr.type == PERF_TYPE_TRACEPOINT)
8545 ret = ftrace_profile_set_filter(event, event->attr.config,
8546 filter_str);
8547 else if (has_addr_filter(event))
8548 ret = perf_event_set_addr_filter(event, filter_str);
8549
8550 kfree(filter_str);
8551 return ret;
8552 }
8553
8554 /*
8555 * hrtimer based swevent callback
8556 */
8557
8558 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8559 {
8560 enum hrtimer_restart ret = HRTIMER_RESTART;
8561 struct perf_sample_data data;
8562 struct pt_regs *regs;
8563 struct perf_event *event;
8564 u64 period;
8565
8566 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8567
8568 if (event->state != PERF_EVENT_STATE_ACTIVE)
8569 return HRTIMER_NORESTART;
8570
8571 event->pmu->read(event);
8572
8573 perf_sample_data_init(&data, 0, event->hw.last_period);
8574 regs = get_irq_regs();
8575
8576 if (regs && !perf_exclude_event(event, regs)) {
8577 if (!(event->attr.exclude_idle && is_idle_task(current)))
8578 if (__perf_event_overflow(event, 1, &data, regs))
8579 ret = HRTIMER_NORESTART;
8580 }
8581
8582 period = max_t(u64, 10000, event->hw.sample_period);
8583 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8584
8585 return ret;
8586 }
8587
8588 static void perf_swevent_start_hrtimer(struct perf_event *event)
8589 {
8590 struct hw_perf_event *hwc = &event->hw;
8591 s64 period;
8592
8593 if (!is_sampling_event(event))
8594 return;
8595
8596 period = local64_read(&hwc->period_left);
8597 if (period) {
8598 if (period < 0)
8599 period = 10000;
8600
8601 local64_set(&hwc->period_left, 0);
8602 } else {
8603 period = max_t(u64, 10000, hwc->sample_period);
8604 }
8605 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8606 HRTIMER_MODE_REL_PINNED);
8607 }
8608
8609 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8610 {
8611 struct hw_perf_event *hwc = &event->hw;
8612
8613 if (is_sampling_event(event)) {
8614 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8615 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8616
8617 hrtimer_cancel(&hwc->hrtimer);
8618 }
8619 }
8620
8621 static void perf_swevent_init_hrtimer(struct perf_event *event)
8622 {
8623 struct hw_perf_event *hwc = &event->hw;
8624
8625 if (!is_sampling_event(event))
8626 return;
8627
8628 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8629 hwc->hrtimer.function = perf_swevent_hrtimer;
8630
8631 /*
8632 * Since hrtimers have a fixed rate, we can do a static freq->period
8633 * mapping and avoid the whole period adjust feedback stuff.
8634 */
8635 if (event->attr.freq) {
8636 long freq = event->attr.sample_freq;
8637
8638 event->attr.sample_period = NSEC_PER_SEC / freq;
8639 hwc->sample_period = event->attr.sample_period;
8640 local64_set(&hwc->period_left, hwc->sample_period);
8641 hwc->last_period = hwc->sample_period;
8642 event->attr.freq = 0;
8643 }
8644 }
8645
8646 /*
8647 * Software event: cpu wall time clock
8648 */
8649
8650 static void cpu_clock_event_update(struct perf_event *event)
8651 {
8652 s64 prev;
8653 u64 now;
8654
8655 now = local_clock();
8656 prev = local64_xchg(&event->hw.prev_count, now);
8657 local64_add(now - prev, &event->count);
8658 }
8659
8660 static void cpu_clock_event_start(struct perf_event *event, int flags)
8661 {
8662 local64_set(&event->hw.prev_count, local_clock());
8663 perf_swevent_start_hrtimer(event);
8664 }
8665
8666 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8667 {
8668 perf_swevent_cancel_hrtimer(event);
8669 cpu_clock_event_update(event);
8670 }
8671
8672 static int cpu_clock_event_add(struct perf_event *event, int flags)
8673 {
8674 if (flags & PERF_EF_START)
8675 cpu_clock_event_start(event, flags);
8676 perf_event_update_userpage(event);
8677
8678 return 0;
8679 }
8680
8681 static void cpu_clock_event_del(struct perf_event *event, int flags)
8682 {
8683 cpu_clock_event_stop(event, flags);
8684 }
8685
8686 static void cpu_clock_event_read(struct perf_event *event)
8687 {
8688 cpu_clock_event_update(event);
8689 }
8690
8691 static int cpu_clock_event_init(struct perf_event *event)
8692 {
8693 if (event->attr.type != PERF_TYPE_SOFTWARE)
8694 return -ENOENT;
8695
8696 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8697 return -ENOENT;
8698
8699 /*
8700 * no branch sampling for software events
8701 */
8702 if (has_branch_stack(event))
8703 return -EOPNOTSUPP;
8704
8705 perf_swevent_init_hrtimer(event);
8706
8707 return 0;
8708 }
8709
8710 static struct pmu perf_cpu_clock = {
8711 .task_ctx_nr = perf_sw_context,
8712
8713 .capabilities = PERF_PMU_CAP_NO_NMI,
8714
8715 .event_init = cpu_clock_event_init,
8716 .add = cpu_clock_event_add,
8717 .del = cpu_clock_event_del,
8718 .start = cpu_clock_event_start,
8719 .stop = cpu_clock_event_stop,
8720 .read = cpu_clock_event_read,
8721 };
8722
8723 /*
8724 * Software event: task time clock
8725 */
8726
8727 static void task_clock_event_update(struct perf_event *event, u64 now)
8728 {
8729 u64 prev;
8730 s64 delta;
8731
8732 prev = local64_xchg(&event->hw.prev_count, now);
8733 delta = now - prev;
8734 local64_add(delta, &event->count);
8735 }
8736
8737 static void task_clock_event_start(struct perf_event *event, int flags)
8738 {
8739 local64_set(&event->hw.prev_count, event->ctx->time);
8740 perf_swevent_start_hrtimer(event);
8741 }
8742
8743 static void task_clock_event_stop(struct perf_event *event, int flags)
8744 {
8745 perf_swevent_cancel_hrtimer(event);
8746 task_clock_event_update(event, event->ctx->time);
8747 }
8748
8749 static int task_clock_event_add(struct perf_event *event, int flags)
8750 {
8751 if (flags & PERF_EF_START)
8752 task_clock_event_start(event, flags);
8753 perf_event_update_userpage(event);
8754
8755 return 0;
8756 }
8757
8758 static void task_clock_event_del(struct perf_event *event, int flags)
8759 {
8760 task_clock_event_stop(event, PERF_EF_UPDATE);
8761 }
8762
8763 static void task_clock_event_read(struct perf_event *event)
8764 {
8765 u64 now = perf_clock();
8766 u64 delta = now - event->ctx->timestamp;
8767 u64 time = event->ctx->time + delta;
8768
8769 task_clock_event_update(event, time);
8770 }
8771
8772 static int task_clock_event_init(struct perf_event *event)
8773 {
8774 if (event->attr.type != PERF_TYPE_SOFTWARE)
8775 return -ENOENT;
8776
8777 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8778 return -ENOENT;
8779
8780 /*
8781 * no branch sampling for software events
8782 */
8783 if (has_branch_stack(event))
8784 return -EOPNOTSUPP;
8785
8786 perf_swevent_init_hrtimer(event);
8787
8788 return 0;
8789 }
8790
8791 static struct pmu perf_task_clock = {
8792 .task_ctx_nr = perf_sw_context,
8793
8794 .capabilities = PERF_PMU_CAP_NO_NMI,
8795
8796 .event_init = task_clock_event_init,
8797 .add = task_clock_event_add,
8798 .del = task_clock_event_del,
8799 .start = task_clock_event_start,
8800 .stop = task_clock_event_stop,
8801 .read = task_clock_event_read,
8802 };
8803
8804 static void perf_pmu_nop_void(struct pmu *pmu)
8805 {
8806 }
8807
8808 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8809 {
8810 }
8811
8812 static int perf_pmu_nop_int(struct pmu *pmu)
8813 {
8814 return 0;
8815 }
8816
8817 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8818
8819 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8820 {
8821 __this_cpu_write(nop_txn_flags, flags);
8822
8823 if (flags & ~PERF_PMU_TXN_ADD)
8824 return;
8825
8826 perf_pmu_disable(pmu);
8827 }
8828
8829 static int perf_pmu_commit_txn(struct pmu *pmu)
8830 {
8831 unsigned int flags = __this_cpu_read(nop_txn_flags);
8832
8833 __this_cpu_write(nop_txn_flags, 0);
8834
8835 if (flags & ~PERF_PMU_TXN_ADD)
8836 return 0;
8837
8838 perf_pmu_enable(pmu);
8839 return 0;
8840 }
8841
8842 static void perf_pmu_cancel_txn(struct pmu *pmu)
8843 {
8844 unsigned int flags = __this_cpu_read(nop_txn_flags);
8845
8846 __this_cpu_write(nop_txn_flags, 0);
8847
8848 if (flags & ~PERF_PMU_TXN_ADD)
8849 return;
8850
8851 perf_pmu_enable(pmu);
8852 }
8853
8854 static int perf_event_idx_default(struct perf_event *event)
8855 {
8856 return 0;
8857 }
8858
8859 /*
8860 * Ensures all contexts with the same task_ctx_nr have the same
8861 * pmu_cpu_context too.
8862 */
8863 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8864 {
8865 struct pmu *pmu;
8866
8867 if (ctxn < 0)
8868 return NULL;
8869
8870 list_for_each_entry(pmu, &pmus, entry) {
8871 if (pmu->task_ctx_nr == ctxn)
8872 return pmu->pmu_cpu_context;
8873 }
8874
8875 return NULL;
8876 }
8877
8878 static void free_pmu_context(struct pmu *pmu)
8879 {
8880 mutex_lock(&pmus_lock);
8881 free_percpu(pmu->pmu_cpu_context);
8882 mutex_unlock(&pmus_lock);
8883 }
8884
8885 /*
8886 * Let userspace know that this PMU supports address range filtering:
8887 */
8888 static ssize_t nr_addr_filters_show(struct device *dev,
8889 struct device_attribute *attr,
8890 char *page)
8891 {
8892 struct pmu *pmu = dev_get_drvdata(dev);
8893
8894 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8895 }
8896 DEVICE_ATTR_RO(nr_addr_filters);
8897
8898 static struct idr pmu_idr;
8899
8900 static ssize_t
8901 type_show(struct device *dev, struct device_attribute *attr, char *page)
8902 {
8903 struct pmu *pmu = dev_get_drvdata(dev);
8904
8905 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8906 }
8907 static DEVICE_ATTR_RO(type);
8908
8909 static ssize_t
8910 perf_event_mux_interval_ms_show(struct device *dev,
8911 struct device_attribute *attr,
8912 char *page)
8913 {
8914 struct pmu *pmu = dev_get_drvdata(dev);
8915
8916 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8917 }
8918
8919 static DEFINE_MUTEX(mux_interval_mutex);
8920
8921 static ssize_t
8922 perf_event_mux_interval_ms_store(struct device *dev,
8923 struct device_attribute *attr,
8924 const char *buf, size_t count)
8925 {
8926 struct pmu *pmu = dev_get_drvdata(dev);
8927 int timer, cpu, ret;
8928
8929 ret = kstrtoint(buf, 0, &timer);
8930 if (ret)
8931 return ret;
8932
8933 if (timer < 1)
8934 return -EINVAL;
8935
8936 /* same value, noting to do */
8937 if (timer == pmu->hrtimer_interval_ms)
8938 return count;
8939
8940 mutex_lock(&mux_interval_mutex);
8941 pmu->hrtimer_interval_ms = timer;
8942
8943 /* update all cpuctx for this PMU */
8944 get_online_cpus();
8945 for_each_online_cpu(cpu) {
8946 struct perf_cpu_context *cpuctx;
8947 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8948 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8949
8950 cpu_function_call(cpu,
8951 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8952 }
8953 put_online_cpus();
8954 mutex_unlock(&mux_interval_mutex);
8955
8956 return count;
8957 }
8958 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8959
8960 static struct attribute *pmu_dev_attrs[] = {
8961 &dev_attr_type.attr,
8962 &dev_attr_perf_event_mux_interval_ms.attr,
8963 NULL,
8964 };
8965 ATTRIBUTE_GROUPS(pmu_dev);
8966
8967 static int pmu_bus_running;
8968 static struct bus_type pmu_bus = {
8969 .name = "event_source",
8970 .dev_groups = pmu_dev_groups,
8971 };
8972
8973 static void pmu_dev_release(struct device *dev)
8974 {
8975 kfree(dev);
8976 }
8977
8978 static int pmu_dev_alloc(struct pmu *pmu)
8979 {
8980 int ret = -ENOMEM;
8981
8982 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8983 if (!pmu->dev)
8984 goto out;
8985
8986 pmu->dev->groups = pmu->attr_groups;
8987 device_initialize(pmu->dev);
8988 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8989 if (ret)
8990 goto free_dev;
8991
8992 dev_set_drvdata(pmu->dev, pmu);
8993 pmu->dev->bus = &pmu_bus;
8994 pmu->dev->release = pmu_dev_release;
8995 ret = device_add(pmu->dev);
8996 if (ret)
8997 goto free_dev;
8998
8999 /* For PMUs with address filters, throw in an extra attribute: */
9000 if (pmu->nr_addr_filters)
9001 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9002
9003 if (ret)
9004 goto del_dev;
9005
9006 out:
9007 return ret;
9008
9009 del_dev:
9010 device_del(pmu->dev);
9011
9012 free_dev:
9013 put_device(pmu->dev);
9014 goto out;
9015 }
9016
9017 static struct lock_class_key cpuctx_mutex;
9018 static struct lock_class_key cpuctx_lock;
9019
9020 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9021 {
9022 int cpu, ret;
9023
9024 mutex_lock(&pmus_lock);
9025 ret = -ENOMEM;
9026 pmu->pmu_disable_count = alloc_percpu(int);
9027 if (!pmu->pmu_disable_count)
9028 goto unlock;
9029
9030 pmu->type = -1;
9031 if (!name)
9032 goto skip_type;
9033 pmu->name = name;
9034
9035 if (type < 0) {
9036 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9037 if (type < 0) {
9038 ret = type;
9039 goto free_pdc;
9040 }
9041 }
9042 pmu->type = type;
9043
9044 if (pmu_bus_running) {
9045 ret = pmu_dev_alloc(pmu);
9046 if (ret)
9047 goto free_idr;
9048 }
9049
9050 skip_type:
9051 if (pmu->task_ctx_nr == perf_hw_context) {
9052 static int hw_context_taken = 0;
9053
9054 /*
9055 * Other than systems with heterogeneous CPUs, it never makes
9056 * sense for two PMUs to share perf_hw_context. PMUs which are
9057 * uncore must use perf_invalid_context.
9058 */
9059 if (WARN_ON_ONCE(hw_context_taken &&
9060 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9061 pmu->task_ctx_nr = perf_invalid_context;
9062
9063 hw_context_taken = 1;
9064 }
9065
9066 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9067 if (pmu->pmu_cpu_context)
9068 goto got_cpu_context;
9069
9070 ret = -ENOMEM;
9071 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9072 if (!pmu->pmu_cpu_context)
9073 goto free_dev;
9074
9075 for_each_possible_cpu(cpu) {
9076 struct perf_cpu_context *cpuctx;
9077
9078 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9079 __perf_event_init_context(&cpuctx->ctx);
9080 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9081 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9082 cpuctx->ctx.pmu = pmu;
9083
9084 __perf_mux_hrtimer_init(cpuctx, cpu);
9085 }
9086
9087 got_cpu_context:
9088 if (!pmu->start_txn) {
9089 if (pmu->pmu_enable) {
9090 /*
9091 * If we have pmu_enable/pmu_disable calls, install
9092 * transaction stubs that use that to try and batch
9093 * hardware accesses.
9094 */
9095 pmu->start_txn = perf_pmu_start_txn;
9096 pmu->commit_txn = perf_pmu_commit_txn;
9097 pmu->cancel_txn = perf_pmu_cancel_txn;
9098 } else {
9099 pmu->start_txn = perf_pmu_nop_txn;
9100 pmu->commit_txn = perf_pmu_nop_int;
9101 pmu->cancel_txn = perf_pmu_nop_void;
9102 }
9103 }
9104
9105 if (!pmu->pmu_enable) {
9106 pmu->pmu_enable = perf_pmu_nop_void;
9107 pmu->pmu_disable = perf_pmu_nop_void;
9108 }
9109
9110 if (!pmu->event_idx)
9111 pmu->event_idx = perf_event_idx_default;
9112
9113 list_add_rcu(&pmu->entry, &pmus);
9114 atomic_set(&pmu->exclusive_cnt, 0);
9115 ret = 0;
9116 unlock:
9117 mutex_unlock(&pmus_lock);
9118
9119 return ret;
9120
9121 free_dev:
9122 device_del(pmu->dev);
9123 put_device(pmu->dev);
9124
9125 free_idr:
9126 if (pmu->type >= PERF_TYPE_MAX)
9127 idr_remove(&pmu_idr, pmu->type);
9128
9129 free_pdc:
9130 free_percpu(pmu->pmu_disable_count);
9131 goto unlock;
9132 }
9133 EXPORT_SYMBOL_GPL(perf_pmu_register);
9134
9135 void perf_pmu_unregister(struct pmu *pmu)
9136 {
9137 int remove_device;
9138
9139 mutex_lock(&pmus_lock);
9140 remove_device = pmu_bus_running;
9141 list_del_rcu(&pmu->entry);
9142 mutex_unlock(&pmus_lock);
9143
9144 /*
9145 * We dereference the pmu list under both SRCU and regular RCU, so
9146 * synchronize against both of those.
9147 */
9148 synchronize_srcu(&pmus_srcu);
9149 synchronize_rcu();
9150
9151 free_percpu(pmu->pmu_disable_count);
9152 if (pmu->type >= PERF_TYPE_MAX)
9153 idr_remove(&pmu_idr, pmu->type);
9154 if (remove_device) {
9155 if (pmu->nr_addr_filters)
9156 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9157 device_del(pmu->dev);
9158 put_device(pmu->dev);
9159 }
9160 free_pmu_context(pmu);
9161 }
9162 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9163
9164 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9165 {
9166 struct perf_event_context *ctx = NULL;
9167 int ret;
9168
9169 if (!try_module_get(pmu->module))
9170 return -ENODEV;
9171
9172 if (event->group_leader != event) {
9173 /*
9174 * This ctx->mutex can nest when we're called through
9175 * inheritance. See the perf_event_ctx_lock_nested() comment.
9176 */
9177 ctx = perf_event_ctx_lock_nested(event->group_leader,
9178 SINGLE_DEPTH_NESTING);
9179 BUG_ON(!ctx);
9180 }
9181
9182 event->pmu = pmu;
9183 ret = pmu->event_init(event);
9184
9185 if (ctx)
9186 perf_event_ctx_unlock(event->group_leader, ctx);
9187
9188 if (ret)
9189 module_put(pmu->module);
9190
9191 return ret;
9192 }
9193
9194 static struct pmu *perf_init_event(struct perf_event *event)
9195 {
9196 struct pmu *pmu = NULL;
9197 int idx;
9198 int ret;
9199
9200 idx = srcu_read_lock(&pmus_srcu);
9201
9202 /* Try parent's PMU first: */
9203 if (event->parent && event->parent->pmu) {
9204 pmu = event->parent->pmu;
9205 ret = perf_try_init_event(pmu, event);
9206 if (!ret)
9207 goto unlock;
9208 }
9209
9210 rcu_read_lock();
9211 pmu = idr_find(&pmu_idr, event->attr.type);
9212 rcu_read_unlock();
9213 if (pmu) {
9214 ret = perf_try_init_event(pmu, event);
9215 if (ret)
9216 pmu = ERR_PTR(ret);
9217 goto unlock;
9218 }
9219
9220 list_for_each_entry_rcu(pmu, &pmus, entry) {
9221 ret = perf_try_init_event(pmu, event);
9222 if (!ret)
9223 goto unlock;
9224
9225 if (ret != -ENOENT) {
9226 pmu = ERR_PTR(ret);
9227 goto unlock;
9228 }
9229 }
9230 pmu = ERR_PTR(-ENOENT);
9231 unlock:
9232 srcu_read_unlock(&pmus_srcu, idx);
9233
9234 return pmu;
9235 }
9236
9237 static void attach_sb_event(struct perf_event *event)
9238 {
9239 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9240
9241 raw_spin_lock(&pel->lock);
9242 list_add_rcu(&event->sb_list, &pel->list);
9243 raw_spin_unlock(&pel->lock);
9244 }
9245
9246 /*
9247 * We keep a list of all !task (and therefore per-cpu) events
9248 * that need to receive side-band records.
9249 *
9250 * This avoids having to scan all the various PMU per-cpu contexts
9251 * looking for them.
9252 */
9253 static void account_pmu_sb_event(struct perf_event *event)
9254 {
9255 if (is_sb_event(event))
9256 attach_sb_event(event);
9257 }
9258
9259 static void account_event_cpu(struct perf_event *event, int cpu)
9260 {
9261 if (event->parent)
9262 return;
9263
9264 if (is_cgroup_event(event))
9265 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9266 }
9267
9268 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9269 static void account_freq_event_nohz(void)
9270 {
9271 #ifdef CONFIG_NO_HZ_FULL
9272 /* Lock so we don't race with concurrent unaccount */
9273 spin_lock(&nr_freq_lock);
9274 if (atomic_inc_return(&nr_freq_events) == 1)
9275 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9276 spin_unlock(&nr_freq_lock);
9277 #endif
9278 }
9279
9280 static void account_freq_event(void)
9281 {
9282 if (tick_nohz_full_enabled())
9283 account_freq_event_nohz();
9284 else
9285 atomic_inc(&nr_freq_events);
9286 }
9287
9288
9289 static void account_event(struct perf_event *event)
9290 {
9291 bool inc = false;
9292
9293 if (event->parent)
9294 return;
9295
9296 if (event->attach_state & PERF_ATTACH_TASK)
9297 inc = true;
9298 if (event->attr.mmap || event->attr.mmap_data)
9299 atomic_inc(&nr_mmap_events);
9300 if (event->attr.comm)
9301 atomic_inc(&nr_comm_events);
9302 if (event->attr.namespaces)
9303 atomic_inc(&nr_namespaces_events);
9304 if (event->attr.task)
9305 atomic_inc(&nr_task_events);
9306 if (event->attr.freq)
9307 account_freq_event();
9308 if (event->attr.context_switch) {
9309 atomic_inc(&nr_switch_events);
9310 inc = true;
9311 }
9312 if (has_branch_stack(event))
9313 inc = true;
9314 if (is_cgroup_event(event))
9315 inc = true;
9316
9317 if (inc) {
9318 if (atomic_inc_not_zero(&perf_sched_count))
9319 goto enabled;
9320
9321 mutex_lock(&perf_sched_mutex);
9322 if (!atomic_read(&perf_sched_count)) {
9323 static_branch_enable(&perf_sched_events);
9324 /*
9325 * Guarantee that all CPUs observe they key change and
9326 * call the perf scheduling hooks before proceeding to
9327 * install events that need them.
9328 */
9329 synchronize_sched();
9330 }
9331 /*
9332 * Now that we have waited for the sync_sched(), allow further
9333 * increments to by-pass the mutex.
9334 */
9335 atomic_inc(&perf_sched_count);
9336 mutex_unlock(&perf_sched_mutex);
9337 }
9338 enabled:
9339
9340 account_event_cpu(event, event->cpu);
9341
9342 account_pmu_sb_event(event);
9343 }
9344
9345 /*
9346 * Allocate and initialize a event structure
9347 */
9348 static struct perf_event *
9349 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9350 struct task_struct *task,
9351 struct perf_event *group_leader,
9352 struct perf_event *parent_event,
9353 perf_overflow_handler_t overflow_handler,
9354 void *context, int cgroup_fd)
9355 {
9356 struct pmu *pmu;
9357 struct perf_event *event;
9358 struct hw_perf_event *hwc;
9359 long err = -EINVAL;
9360
9361 if ((unsigned)cpu >= nr_cpu_ids) {
9362 if (!task || cpu != -1)
9363 return ERR_PTR(-EINVAL);
9364 }
9365
9366 event = kzalloc(sizeof(*event), GFP_KERNEL);
9367 if (!event)
9368 return ERR_PTR(-ENOMEM);
9369
9370 /*
9371 * Single events are their own group leaders, with an
9372 * empty sibling list:
9373 */
9374 if (!group_leader)
9375 group_leader = event;
9376
9377 mutex_init(&event->child_mutex);
9378 INIT_LIST_HEAD(&event->child_list);
9379
9380 INIT_LIST_HEAD(&event->group_entry);
9381 INIT_LIST_HEAD(&event->event_entry);
9382 INIT_LIST_HEAD(&event->sibling_list);
9383 INIT_LIST_HEAD(&event->rb_entry);
9384 INIT_LIST_HEAD(&event->active_entry);
9385 INIT_LIST_HEAD(&event->addr_filters.list);
9386 INIT_HLIST_NODE(&event->hlist_entry);
9387
9388
9389 init_waitqueue_head(&event->waitq);
9390 init_irq_work(&event->pending, perf_pending_event);
9391
9392 mutex_init(&event->mmap_mutex);
9393 raw_spin_lock_init(&event->addr_filters.lock);
9394
9395 atomic_long_set(&event->refcount, 1);
9396 event->cpu = cpu;
9397 event->attr = *attr;
9398 event->group_leader = group_leader;
9399 event->pmu = NULL;
9400 event->oncpu = -1;
9401
9402 event->parent = parent_event;
9403
9404 event->ns = get_pid_ns(task_active_pid_ns(current));
9405 event->id = atomic64_inc_return(&perf_event_id);
9406
9407 event->state = PERF_EVENT_STATE_INACTIVE;
9408
9409 if (task) {
9410 event->attach_state = PERF_ATTACH_TASK;
9411 /*
9412 * XXX pmu::event_init needs to know what task to account to
9413 * and we cannot use the ctx information because we need the
9414 * pmu before we get a ctx.
9415 */
9416 event->hw.target = task;
9417 }
9418
9419 event->clock = &local_clock;
9420 if (parent_event)
9421 event->clock = parent_event->clock;
9422
9423 if (!overflow_handler && parent_event) {
9424 overflow_handler = parent_event->overflow_handler;
9425 context = parent_event->overflow_handler_context;
9426 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9427 if (overflow_handler == bpf_overflow_handler) {
9428 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9429
9430 if (IS_ERR(prog)) {
9431 err = PTR_ERR(prog);
9432 goto err_ns;
9433 }
9434 event->prog = prog;
9435 event->orig_overflow_handler =
9436 parent_event->orig_overflow_handler;
9437 }
9438 #endif
9439 }
9440
9441 if (overflow_handler) {
9442 event->overflow_handler = overflow_handler;
9443 event->overflow_handler_context = context;
9444 } else if (is_write_backward(event)){
9445 event->overflow_handler = perf_event_output_backward;
9446 event->overflow_handler_context = NULL;
9447 } else {
9448 event->overflow_handler = perf_event_output_forward;
9449 event->overflow_handler_context = NULL;
9450 }
9451
9452 perf_event__state_init(event);
9453
9454 pmu = NULL;
9455
9456 hwc = &event->hw;
9457 hwc->sample_period = attr->sample_period;
9458 if (attr->freq && attr->sample_freq)
9459 hwc->sample_period = 1;
9460 hwc->last_period = hwc->sample_period;
9461
9462 local64_set(&hwc->period_left, hwc->sample_period);
9463
9464 /*
9465 * we currently do not support PERF_FORMAT_GROUP on inherited events
9466 */
9467 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9468 goto err_ns;
9469
9470 if (!has_branch_stack(event))
9471 event->attr.branch_sample_type = 0;
9472
9473 if (cgroup_fd != -1) {
9474 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9475 if (err)
9476 goto err_ns;
9477 }
9478
9479 pmu = perf_init_event(event);
9480 if (!pmu)
9481 goto err_ns;
9482 else if (IS_ERR(pmu)) {
9483 err = PTR_ERR(pmu);
9484 goto err_ns;
9485 }
9486
9487 err = exclusive_event_init(event);
9488 if (err)
9489 goto err_pmu;
9490
9491 if (has_addr_filter(event)) {
9492 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9493 sizeof(unsigned long),
9494 GFP_KERNEL);
9495 if (!event->addr_filters_offs)
9496 goto err_per_task;
9497
9498 /* force hw sync on the address filters */
9499 event->addr_filters_gen = 1;
9500 }
9501
9502 if (!event->parent) {
9503 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9504 err = get_callchain_buffers(attr->sample_max_stack);
9505 if (err)
9506 goto err_addr_filters;
9507 }
9508 }
9509
9510 /* symmetric to unaccount_event() in _free_event() */
9511 account_event(event);
9512
9513 return event;
9514
9515 err_addr_filters:
9516 kfree(event->addr_filters_offs);
9517
9518 err_per_task:
9519 exclusive_event_destroy(event);
9520
9521 err_pmu:
9522 if (event->destroy)
9523 event->destroy(event);
9524 module_put(pmu->module);
9525 err_ns:
9526 if (is_cgroup_event(event))
9527 perf_detach_cgroup(event);
9528 if (event->ns)
9529 put_pid_ns(event->ns);
9530 kfree(event);
9531
9532 return ERR_PTR(err);
9533 }
9534
9535 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9536 struct perf_event_attr *attr)
9537 {
9538 u32 size;
9539 int ret;
9540
9541 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9542 return -EFAULT;
9543
9544 /*
9545 * zero the full structure, so that a short copy will be nice.
9546 */
9547 memset(attr, 0, sizeof(*attr));
9548
9549 ret = get_user(size, &uattr->size);
9550 if (ret)
9551 return ret;
9552
9553 if (size > PAGE_SIZE) /* silly large */
9554 goto err_size;
9555
9556 if (!size) /* abi compat */
9557 size = PERF_ATTR_SIZE_VER0;
9558
9559 if (size < PERF_ATTR_SIZE_VER0)
9560 goto err_size;
9561
9562 /*
9563 * If we're handed a bigger struct than we know of,
9564 * ensure all the unknown bits are 0 - i.e. new
9565 * user-space does not rely on any kernel feature
9566 * extensions we dont know about yet.
9567 */
9568 if (size > sizeof(*attr)) {
9569 unsigned char __user *addr;
9570 unsigned char __user *end;
9571 unsigned char val;
9572
9573 addr = (void __user *)uattr + sizeof(*attr);
9574 end = (void __user *)uattr + size;
9575
9576 for (; addr < end; addr++) {
9577 ret = get_user(val, addr);
9578 if (ret)
9579 return ret;
9580 if (val)
9581 goto err_size;
9582 }
9583 size = sizeof(*attr);
9584 }
9585
9586 ret = copy_from_user(attr, uattr, size);
9587 if (ret)
9588 return -EFAULT;
9589
9590 if (attr->__reserved_1)
9591 return -EINVAL;
9592
9593 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9594 return -EINVAL;
9595
9596 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9597 return -EINVAL;
9598
9599 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9600 u64 mask = attr->branch_sample_type;
9601
9602 /* only using defined bits */
9603 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9604 return -EINVAL;
9605
9606 /* at least one branch bit must be set */
9607 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9608 return -EINVAL;
9609
9610 /* propagate priv level, when not set for branch */
9611 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9612
9613 /* exclude_kernel checked on syscall entry */
9614 if (!attr->exclude_kernel)
9615 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9616
9617 if (!attr->exclude_user)
9618 mask |= PERF_SAMPLE_BRANCH_USER;
9619
9620 if (!attr->exclude_hv)
9621 mask |= PERF_SAMPLE_BRANCH_HV;
9622 /*
9623 * adjust user setting (for HW filter setup)
9624 */
9625 attr->branch_sample_type = mask;
9626 }
9627 /* privileged levels capture (kernel, hv): check permissions */
9628 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9629 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9630 return -EACCES;
9631 }
9632
9633 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9634 ret = perf_reg_validate(attr->sample_regs_user);
9635 if (ret)
9636 return ret;
9637 }
9638
9639 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9640 if (!arch_perf_have_user_stack_dump())
9641 return -ENOSYS;
9642
9643 /*
9644 * We have __u32 type for the size, but so far
9645 * we can only use __u16 as maximum due to the
9646 * __u16 sample size limit.
9647 */
9648 if (attr->sample_stack_user >= USHRT_MAX)
9649 ret = -EINVAL;
9650 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9651 ret = -EINVAL;
9652 }
9653
9654 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9655 ret = perf_reg_validate(attr->sample_regs_intr);
9656 out:
9657 return ret;
9658
9659 err_size:
9660 put_user(sizeof(*attr), &uattr->size);
9661 ret = -E2BIG;
9662 goto out;
9663 }
9664
9665 static int
9666 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9667 {
9668 struct ring_buffer *rb = NULL;
9669 int ret = -EINVAL;
9670
9671 if (!output_event)
9672 goto set;
9673
9674 /* don't allow circular references */
9675 if (event == output_event)
9676 goto out;
9677
9678 /*
9679 * Don't allow cross-cpu buffers
9680 */
9681 if (output_event->cpu != event->cpu)
9682 goto out;
9683
9684 /*
9685 * If its not a per-cpu rb, it must be the same task.
9686 */
9687 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9688 goto out;
9689
9690 /*
9691 * Mixing clocks in the same buffer is trouble you don't need.
9692 */
9693 if (output_event->clock != event->clock)
9694 goto out;
9695
9696 /*
9697 * Either writing ring buffer from beginning or from end.
9698 * Mixing is not allowed.
9699 */
9700 if (is_write_backward(output_event) != is_write_backward(event))
9701 goto out;
9702
9703 /*
9704 * If both events generate aux data, they must be on the same PMU
9705 */
9706 if (has_aux(event) && has_aux(output_event) &&
9707 event->pmu != output_event->pmu)
9708 goto out;
9709
9710 set:
9711 mutex_lock(&event->mmap_mutex);
9712 /* Can't redirect output if we've got an active mmap() */
9713 if (atomic_read(&event->mmap_count))
9714 goto unlock;
9715
9716 if (output_event) {
9717 /* get the rb we want to redirect to */
9718 rb = ring_buffer_get(output_event);
9719 if (!rb)
9720 goto unlock;
9721 }
9722
9723 ring_buffer_attach(event, rb);
9724
9725 ret = 0;
9726 unlock:
9727 mutex_unlock(&event->mmap_mutex);
9728
9729 out:
9730 return ret;
9731 }
9732
9733 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9734 {
9735 if (b < a)
9736 swap(a, b);
9737
9738 mutex_lock(a);
9739 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9740 }
9741
9742 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9743 {
9744 bool nmi_safe = false;
9745
9746 switch (clk_id) {
9747 case CLOCK_MONOTONIC:
9748 event->clock = &ktime_get_mono_fast_ns;
9749 nmi_safe = true;
9750 break;
9751
9752 case CLOCK_MONOTONIC_RAW:
9753 event->clock = &ktime_get_raw_fast_ns;
9754 nmi_safe = true;
9755 break;
9756
9757 case CLOCK_REALTIME:
9758 event->clock = &ktime_get_real_ns;
9759 break;
9760
9761 case CLOCK_BOOTTIME:
9762 event->clock = &ktime_get_boot_ns;
9763 break;
9764
9765 case CLOCK_TAI:
9766 event->clock = &ktime_get_tai_ns;
9767 break;
9768
9769 default:
9770 return -EINVAL;
9771 }
9772
9773 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9774 return -EINVAL;
9775
9776 return 0;
9777 }
9778
9779 /*
9780 * Variation on perf_event_ctx_lock_nested(), except we take two context
9781 * mutexes.
9782 */
9783 static struct perf_event_context *
9784 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9785 struct perf_event_context *ctx)
9786 {
9787 struct perf_event_context *gctx;
9788
9789 again:
9790 rcu_read_lock();
9791 gctx = READ_ONCE(group_leader->ctx);
9792 if (!atomic_inc_not_zero(&gctx->refcount)) {
9793 rcu_read_unlock();
9794 goto again;
9795 }
9796 rcu_read_unlock();
9797
9798 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9799
9800 if (group_leader->ctx != gctx) {
9801 mutex_unlock(&ctx->mutex);
9802 mutex_unlock(&gctx->mutex);
9803 put_ctx(gctx);
9804 goto again;
9805 }
9806
9807 return gctx;
9808 }
9809
9810 /**
9811 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9812 *
9813 * @attr_uptr: event_id type attributes for monitoring/sampling
9814 * @pid: target pid
9815 * @cpu: target cpu
9816 * @group_fd: group leader event fd
9817 */
9818 SYSCALL_DEFINE5(perf_event_open,
9819 struct perf_event_attr __user *, attr_uptr,
9820 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9821 {
9822 struct perf_event *group_leader = NULL, *output_event = NULL;
9823 struct perf_event *event, *sibling;
9824 struct perf_event_attr attr;
9825 struct perf_event_context *ctx, *uninitialized_var(gctx);
9826 struct file *event_file = NULL;
9827 struct fd group = {NULL, 0};
9828 struct task_struct *task = NULL;
9829 struct pmu *pmu;
9830 int event_fd;
9831 int move_group = 0;
9832 int err;
9833 int f_flags = O_RDWR;
9834 int cgroup_fd = -1;
9835
9836 /* for future expandability... */
9837 if (flags & ~PERF_FLAG_ALL)
9838 return -EINVAL;
9839
9840 err = perf_copy_attr(attr_uptr, &attr);
9841 if (err)
9842 return err;
9843
9844 if (!attr.exclude_kernel) {
9845 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9846 return -EACCES;
9847 }
9848
9849 if (attr.namespaces) {
9850 if (!capable(CAP_SYS_ADMIN))
9851 return -EACCES;
9852 }
9853
9854 if (attr.freq) {
9855 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9856 return -EINVAL;
9857 } else {
9858 if (attr.sample_period & (1ULL << 63))
9859 return -EINVAL;
9860 }
9861
9862 if (!attr.sample_max_stack)
9863 attr.sample_max_stack = sysctl_perf_event_max_stack;
9864
9865 /*
9866 * In cgroup mode, the pid argument is used to pass the fd
9867 * opened to the cgroup directory in cgroupfs. The cpu argument
9868 * designates the cpu on which to monitor threads from that
9869 * cgroup.
9870 */
9871 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9872 return -EINVAL;
9873
9874 if (flags & PERF_FLAG_FD_CLOEXEC)
9875 f_flags |= O_CLOEXEC;
9876
9877 event_fd = get_unused_fd_flags(f_flags);
9878 if (event_fd < 0)
9879 return event_fd;
9880
9881 if (group_fd != -1) {
9882 err = perf_fget_light(group_fd, &group);
9883 if (err)
9884 goto err_fd;
9885 group_leader = group.file->private_data;
9886 if (flags & PERF_FLAG_FD_OUTPUT)
9887 output_event = group_leader;
9888 if (flags & PERF_FLAG_FD_NO_GROUP)
9889 group_leader = NULL;
9890 }
9891
9892 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9893 task = find_lively_task_by_vpid(pid);
9894 if (IS_ERR(task)) {
9895 err = PTR_ERR(task);
9896 goto err_group_fd;
9897 }
9898 }
9899
9900 if (task && group_leader &&
9901 group_leader->attr.inherit != attr.inherit) {
9902 err = -EINVAL;
9903 goto err_task;
9904 }
9905
9906 get_online_cpus();
9907
9908 if (task) {
9909 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9910 if (err)
9911 goto err_cpus;
9912
9913 /*
9914 * Reuse ptrace permission checks for now.
9915 *
9916 * We must hold cred_guard_mutex across this and any potential
9917 * perf_install_in_context() call for this new event to
9918 * serialize against exec() altering our credentials (and the
9919 * perf_event_exit_task() that could imply).
9920 */
9921 err = -EACCES;
9922 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9923 goto err_cred;
9924 }
9925
9926 if (flags & PERF_FLAG_PID_CGROUP)
9927 cgroup_fd = pid;
9928
9929 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9930 NULL, NULL, cgroup_fd);
9931 if (IS_ERR(event)) {
9932 err = PTR_ERR(event);
9933 goto err_cred;
9934 }
9935
9936 if (is_sampling_event(event)) {
9937 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9938 err = -EOPNOTSUPP;
9939 goto err_alloc;
9940 }
9941 }
9942
9943 /*
9944 * Special case software events and allow them to be part of
9945 * any hardware group.
9946 */
9947 pmu = event->pmu;
9948
9949 if (attr.use_clockid) {
9950 err = perf_event_set_clock(event, attr.clockid);
9951 if (err)
9952 goto err_alloc;
9953 }
9954
9955 if (pmu->task_ctx_nr == perf_sw_context)
9956 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9957
9958 if (group_leader &&
9959 (is_software_event(event) != is_software_event(group_leader))) {
9960 if (is_software_event(event)) {
9961 /*
9962 * If event and group_leader are not both a software
9963 * event, and event is, then group leader is not.
9964 *
9965 * Allow the addition of software events to !software
9966 * groups, this is safe because software events never
9967 * fail to schedule.
9968 */
9969 pmu = group_leader->pmu;
9970 } else if (is_software_event(group_leader) &&
9971 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9972 /*
9973 * In case the group is a pure software group, and we
9974 * try to add a hardware event, move the whole group to
9975 * the hardware context.
9976 */
9977 move_group = 1;
9978 }
9979 }
9980
9981 /*
9982 * Get the target context (task or percpu):
9983 */
9984 ctx = find_get_context(pmu, task, event);
9985 if (IS_ERR(ctx)) {
9986 err = PTR_ERR(ctx);
9987 goto err_alloc;
9988 }
9989
9990 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9991 err = -EBUSY;
9992 goto err_context;
9993 }
9994
9995 /*
9996 * Look up the group leader (we will attach this event to it):
9997 */
9998 if (group_leader) {
9999 err = -EINVAL;
10000
10001 /*
10002 * Do not allow a recursive hierarchy (this new sibling
10003 * becoming part of another group-sibling):
10004 */
10005 if (group_leader->group_leader != group_leader)
10006 goto err_context;
10007
10008 /* All events in a group should have the same clock */
10009 if (group_leader->clock != event->clock)
10010 goto err_context;
10011
10012 /*
10013 * Do not allow to attach to a group in a different
10014 * task or CPU context:
10015 */
10016 if (move_group) {
10017 /*
10018 * Make sure we're both on the same task, or both
10019 * per-cpu events.
10020 */
10021 if (group_leader->ctx->task != ctx->task)
10022 goto err_context;
10023
10024 /*
10025 * Make sure we're both events for the same CPU;
10026 * grouping events for different CPUs is broken; since
10027 * you can never concurrently schedule them anyhow.
10028 */
10029 if (group_leader->cpu != event->cpu)
10030 goto err_context;
10031 } else {
10032 if (group_leader->ctx != ctx)
10033 goto err_context;
10034 }
10035
10036 /*
10037 * Only a group leader can be exclusive or pinned
10038 */
10039 if (attr.exclusive || attr.pinned)
10040 goto err_context;
10041 }
10042
10043 if (output_event) {
10044 err = perf_event_set_output(event, output_event);
10045 if (err)
10046 goto err_context;
10047 }
10048
10049 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10050 f_flags);
10051 if (IS_ERR(event_file)) {
10052 err = PTR_ERR(event_file);
10053 event_file = NULL;
10054 goto err_context;
10055 }
10056
10057 if (move_group) {
10058 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10059
10060 if (gctx->task == TASK_TOMBSTONE) {
10061 err = -ESRCH;
10062 goto err_locked;
10063 }
10064
10065 /*
10066 * Check if we raced against another sys_perf_event_open() call
10067 * moving the software group underneath us.
10068 */
10069 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10070 /*
10071 * If someone moved the group out from under us, check
10072 * if this new event wound up on the same ctx, if so
10073 * its the regular !move_group case, otherwise fail.
10074 */
10075 if (gctx != ctx) {
10076 err = -EINVAL;
10077 goto err_locked;
10078 } else {
10079 perf_event_ctx_unlock(group_leader, gctx);
10080 move_group = 0;
10081 }
10082 }
10083 } else {
10084 mutex_lock(&ctx->mutex);
10085 }
10086
10087 if (ctx->task == TASK_TOMBSTONE) {
10088 err = -ESRCH;
10089 goto err_locked;
10090 }
10091
10092 if (!perf_event_validate_size(event)) {
10093 err = -E2BIG;
10094 goto err_locked;
10095 }
10096
10097 /*
10098 * Must be under the same ctx::mutex as perf_install_in_context(),
10099 * because we need to serialize with concurrent event creation.
10100 */
10101 if (!exclusive_event_installable(event, ctx)) {
10102 /* exclusive and group stuff are assumed mutually exclusive */
10103 WARN_ON_ONCE(move_group);
10104
10105 err = -EBUSY;
10106 goto err_locked;
10107 }
10108
10109 WARN_ON_ONCE(ctx->parent_ctx);
10110
10111 /*
10112 * This is the point on no return; we cannot fail hereafter. This is
10113 * where we start modifying current state.
10114 */
10115
10116 if (move_group) {
10117 /*
10118 * See perf_event_ctx_lock() for comments on the details
10119 * of swizzling perf_event::ctx.
10120 */
10121 perf_remove_from_context(group_leader, 0);
10122 put_ctx(gctx);
10123
10124 list_for_each_entry(sibling, &group_leader->sibling_list,
10125 group_entry) {
10126 perf_remove_from_context(sibling, 0);
10127 put_ctx(gctx);
10128 }
10129
10130 /*
10131 * Wait for everybody to stop referencing the events through
10132 * the old lists, before installing it on new lists.
10133 */
10134 synchronize_rcu();
10135
10136 /*
10137 * Install the group siblings before the group leader.
10138 *
10139 * Because a group leader will try and install the entire group
10140 * (through the sibling list, which is still in-tact), we can
10141 * end up with siblings installed in the wrong context.
10142 *
10143 * By installing siblings first we NO-OP because they're not
10144 * reachable through the group lists.
10145 */
10146 list_for_each_entry(sibling, &group_leader->sibling_list,
10147 group_entry) {
10148 perf_event__state_init(sibling);
10149 perf_install_in_context(ctx, sibling, sibling->cpu);
10150 get_ctx(ctx);
10151 }
10152
10153 /*
10154 * Removing from the context ends up with disabled
10155 * event. What we want here is event in the initial
10156 * startup state, ready to be add into new context.
10157 */
10158 perf_event__state_init(group_leader);
10159 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10160 get_ctx(ctx);
10161 }
10162
10163 /*
10164 * Precalculate sample_data sizes; do while holding ctx::mutex such
10165 * that we're serialized against further additions and before
10166 * perf_install_in_context() which is the point the event is active and
10167 * can use these values.
10168 */
10169 perf_event__header_size(event);
10170 perf_event__id_header_size(event);
10171
10172 event->owner = current;
10173
10174 perf_install_in_context(ctx, event, event->cpu);
10175 perf_unpin_context(ctx);
10176
10177 if (move_group)
10178 perf_event_ctx_unlock(group_leader, gctx);
10179 mutex_unlock(&ctx->mutex);
10180
10181 if (task) {
10182 mutex_unlock(&task->signal->cred_guard_mutex);
10183 put_task_struct(task);
10184 }
10185
10186 put_online_cpus();
10187
10188 mutex_lock(&current->perf_event_mutex);
10189 list_add_tail(&event->owner_entry, &current->perf_event_list);
10190 mutex_unlock(&current->perf_event_mutex);
10191
10192 /*
10193 * Drop the reference on the group_event after placing the
10194 * new event on the sibling_list. This ensures destruction
10195 * of the group leader will find the pointer to itself in
10196 * perf_group_detach().
10197 */
10198 fdput(group);
10199 fd_install(event_fd, event_file);
10200 return event_fd;
10201
10202 err_locked:
10203 if (move_group)
10204 perf_event_ctx_unlock(group_leader, gctx);
10205 mutex_unlock(&ctx->mutex);
10206 /* err_file: */
10207 fput(event_file);
10208 err_context:
10209 perf_unpin_context(ctx);
10210 put_ctx(ctx);
10211 err_alloc:
10212 /*
10213 * If event_file is set, the fput() above will have called ->release()
10214 * and that will take care of freeing the event.
10215 */
10216 if (!event_file)
10217 free_event(event);
10218 err_cred:
10219 if (task)
10220 mutex_unlock(&task->signal->cred_guard_mutex);
10221 err_cpus:
10222 put_online_cpus();
10223 err_task:
10224 if (task)
10225 put_task_struct(task);
10226 err_group_fd:
10227 fdput(group);
10228 err_fd:
10229 put_unused_fd(event_fd);
10230 return err;
10231 }
10232
10233 /**
10234 * perf_event_create_kernel_counter
10235 *
10236 * @attr: attributes of the counter to create
10237 * @cpu: cpu in which the counter is bound
10238 * @task: task to profile (NULL for percpu)
10239 */
10240 struct perf_event *
10241 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10242 struct task_struct *task,
10243 perf_overflow_handler_t overflow_handler,
10244 void *context)
10245 {
10246 struct perf_event_context *ctx;
10247 struct perf_event *event;
10248 int err;
10249
10250 /*
10251 * Get the target context (task or percpu):
10252 */
10253
10254 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10255 overflow_handler, context, -1);
10256 if (IS_ERR(event)) {
10257 err = PTR_ERR(event);
10258 goto err;
10259 }
10260
10261 /* Mark owner so we could distinguish it from user events. */
10262 event->owner = TASK_TOMBSTONE;
10263
10264 ctx = find_get_context(event->pmu, task, event);
10265 if (IS_ERR(ctx)) {
10266 err = PTR_ERR(ctx);
10267 goto err_free;
10268 }
10269
10270 WARN_ON_ONCE(ctx->parent_ctx);
10271 mutex_lock(&ctx->mutex);
10272 if (ctx->task == TASK_TOMBSTONE) {
10273 err = -ESRCH;
10274 goto err_unlock;
10275 }
10276
10277 if (!exclusive_event_installable(event, ctx)) {
10278 err = -EBUSY;
10279 goto err_unlock;
10280 }
10281
10282 perf_install_in_context(ctx, event, cpu);
10283 perf_unpin_context(ctx);
10284 mutex_unlock(&ctx->mutex);
10285
10286 return event;
10287
10288 err_unlock:
10289 mutex_unlock(&ctx->mutex);
10290 perf_unpin_context(ctx);
10291 put_ctx(ctx);
10292 err_free:
10293 free_event(event);
10294 err:
10295 return ERR_PTR(err);
10296 }
10297 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10298
10299 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10300 {
10301 struct perf_event_context *src_ctx;
10302 struct perf_event_context *dst_ctx;
10303 struct perf_event *event, *tmp;
10304 LIST_HEAD(events);
10305
10306 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10307 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10308
10309 /*
10310 * See perf_event_ctx_lock() for comments on the details
10311 * of swizzling perf_event::ctx.
10312 */
10313 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10314 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10315 event_entry) {
10316 perf_remove_from_context(event, 0);
10317 unaccount_event_cpu(event, src_cpu);
10318 put_ctx(src_ctx);
10319 list_add(&event->migrate_entry, &events);
10320 }
10321
10322 /*
10323 * Wait for the events to quiesce before re-instating them.
10324 */
10325 synchronize_rcu();
10326
10327 /*
10328 * Re-instate events in 2 passes.
10329 *
10330 * Skip over group leaders and only install siblings on this first
10331 * pass, siblings will not get enabled without a leader, however a
10332 * leader will enable its siblings, even if those are still on the old
10333 * context.
10334 */
10335 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10336 if (event->group_leader == event)
10337 continue;
10338
10339 list_del(&event->migrate_entry);
10340 if (event->state >= PERF_EVENT_STATE_OFF)
10341 event->state = PERF_EVENT_STATE_INACTIVE;
10342 account_event_cpu(event, dst_cpu);
10343 perf_install_in_context(dst_ctx, event, dst_cpu);
10344 get_ctx(dst_ctx);
10345 }
10346
10347 /*
10348 * Once all the siblings are setup properly, install the group leaders
10349 * to make it go.
10350 */
10351 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10352 list_del(&event->migrate_entry);
10353 if (event->state >= PERF_EVENT_STATE_OFF)
10354 event->state = PERF_EVENT_STATE_INACTIVE;
10355 account_event_cpu(event, dst_cpu);
10356 perf_install_in_context(dst_ctx, event, dst_cpu);
10357 get_ctx(dst_ctx);
10358 }
10359 mutex_unlock(&dst_ctx->mutex);
10360 mutex_unlock(&src_ctx->mutex);
10361 }
10362 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10363
10364 static void sync_child_event(struct perf_event *child_event,
10365 struct task_struct *child)
10366 {
10367 struct perf_event *parent_event = child_event->parent;
10368 u64 child_val;
10369
10370 if (child_event->attr.inherit_stat)
10371 perf_event_read_event(child_event, child);
10372
10373 child_val = perf_event_count(child_event);
10374
10375 /*
10376 * Add back the child's count to the parent's count:
10377 */
10378 atomic64_add(child_val, &parent_event->child_count);
10379 atomic64_add(child_event->total_time_enabled,
10380 &parent_event->child_total_time_enabled);
10381 atomic64_add(child_event->total_time_running,
10382 &parent_event->child_total_time_running);
10383 }
10384
10385 static void
10386 perf_event_exit_event(struct perf_event *child_event,
10387 struct perf_event_context *child_ctx,
10388 struct task_struct *child)
10389 {
10390 struct perf_event *parent_event = child_event->parent;
10391
10392 /*
10393 * Do not destroy the 'original' grouping; because of the context
10394 * switch optimization the original events could've ended up in a
10395 * random child task.
10396 *
10397 * If we were to destroy the original group, all group related
10398 * operations would cease to function properly after this random
10399 * child dies.
10400 *
10401 * Do destroy all inherited groups, we don't care about those
10402 * and being thorough is better.
10403 */
10404 raw_spin_lock_irq(&child_ctx->lock);
10405 WARN_ON_ONCE(child_ctx->is_active);
10406
10407 if (parent_event)
10408 perf_group_detach(child_event);
10409 list_del_event(child_event, child_ctx);
10410 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10411 raw_spin_unlock_irq(&child_ctx->lock);
10412
10413 /*
10414 * Parent events are governed by their filedesc, retain them.
10415 */
10416 if (!parent_event) {
10417 perf_event_wakeup(child_event);
10418 return;
10419 }
10420 /*
10421 * Child events can be cleaned up.
10422 */
10423
10424 sync_child_event(child_event, child);
10425
10426 /*
10427 * Remove this event from the parent's list
10428 */
10429 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10430 mutex_lock(&parent_event->child_mutex);
10431 list_del_init(&child_event->child_list);
10432 mutex_unlock(&parent_event->child_mutex);
10433
10434 /*
10435 * Kick perf_poll() for is_event_hup().
10436 */
10437 perf_event_wakeup(parent_event);
10438 free_event(child_event);
10439 put_event(parent_event);
10440 }
10441
10442 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10443 {
10444 struct perf_event_context *child_ctx, *clone_ctx = NULL;
10445 struct perf_event *child_event, *next;
10446
10447 WARN_ON_ONCE(child != current);
10448
10449 child_ctx = perf_pin_task_context(child, ctxn);
10450 if (!child_ctx)
10451 return;
10452
10453 /*
10454 * In order to reduce the amount of tricky in ctx tear-down, we hold
10455 * ctx::mutex over the entire thing. This serializes against almost
10456 * everything that wants to access the ctx.
10457 *
10458 * The exception is sys_perf_event_open() /
10459 * perf_event_create_kernel_count() which does find_get_context()
10460 * without ctx::mutex (it cannot because of the move_group double mutex
10461 * lock thing). See the comments in perf_install_in_context().
10462 */
10463 mutex_lock(&child_ctx->mutex);
10464
10465 /*
10466 * In a single ctx::lock section, de-schedule the events and detach the
10467 * context from the task such that we cannot ever get it scheduled back
10468 * in.
10469 */
10470 raw_spin_lock_irq(&child_ctx->lock);
10471 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10472
10473 /*
10474 * Now that the context is inactive, destroy the task <-> ctx relation
10475 * and mark the context dead.
10476 */
10477 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10478 put_ctx(child_ctx); /* cannot be last */
10479 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10480 put_task_struct(current); /* cannot be last */
10481
10482 clone_ctx = unclone_ctx(child_ctx);
10483 raw_spin_unlock_irq(&child_ctx->lock);
10484
10485 if (clone_ctx)
10486 put_ctx(clone_ctx);
10487
10488 /*
10489 * Report the task dead after unscheduling the events so that we
10490 * won't get any samples after PERF_RECORD_EXIT. We can however still
10491 * get a few PERF_RECORD_READ events.
10492 */
10493 perf_event_task(child, child_ctx, 0);
10494
10495 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10496 perf_event_exit_event(child_event, child_ctx, child);
10497
10498 mutex_unlock(&child_ctx->mutex);
10499
10500 put_ctx(child_ctx);
10501 }
10502
10503 /*
10504 * When a child task exits, feed back event values to parent events.
10505 *
10506 * Can be called with cred_guard_mutex held when called from
10507 * install_exec_creds().
10508 */
10509 void perf_event_exit_task(struct task_struct *child)
10510 {
10511 struct perf_event *event, *tmp;
10512 int ctxn;
10513
10514 mutex_lock(&child->perf_event_mutex);
10515 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10516 owner_entry) {
10517 list_del_init(&event->owner_entry);
10518
10519 /*
10520 * Ensure the list deletion is visible before we clear
10521 * the owner, closes a race against perf_release() where
10522 * we need to serialize on the owner->perf_event_mutex.
10523 */
10524 smp_store_release(&event->owner, NULL);
10525 }
10526 mutex_unlock(&child->perf_event_mutex);
10527
10528 for_each_task_context_nr(ctxn)
10529 perf_event_exit_task_context(child, ctxn);
10530
10531 /*
10532 * The perf_event_exit_task_context calls perf_event_task
10533 * with child's task_ctx, which generates EXIT events for
10534 * child contexts and sets child->perf_event_ctxp[] to NULL.
10535 * At this point we need to send EXIT events to cpu contexts.
10536 */
10537 perf_event_task(child, NULL, 0);
10538 }
10539
10540 static void perf_free_event(struct perf_event *event,
10541 struct perf_event_context *ctx)
10542 {
10543 struct perf_event *parent = event->parent;
10544
10545 if (WARN_ON_ONCE(!parent))
10546 return;
10547
10548 mutex_lock(&parent->child_mutex);
10549 list_del_init(&event->child_list);
10550 mutex_unlock(&parent->child_mutex);
10551
10552 put_event(parent);
10553
10554 raw_spin_lock_irq(&ctx->lock);
10555 perf_group_detach(event);
10556 list_del_event(event, ctx);
10557 raw_spin_unlock_irq(&ctx->lock);
10558 free_event(event);
10559 }
10560
10561 /*
10562 * Free an unexposed, unused context as created by inheritance by
10563 * perf_event_init_task below, used by fork() in case of fail.
10564 *
10565 * Not all locks are strictly required, but take them anyway to be nice and
10566 * help out with the lockdep assertions.
10567 */
10568 void perf_event_free_task(struct task_struct *task)
10569 {
10570 struct perf_event_context *ctx;
10571 struct perf_event *event, *tmp;
10572 int ctxn;
10573
10574 for_each_task_context_nr(ctxn) {
10575 ctx = task->perf_event_ctxp[ctxn];
10576 if (!ctx)
10577 continue;
10578
10579 mutex_lock(&ctx->mutex);
10580 raw_spin_lock_irq(&ctx->lock);
10581 /*
10582 * Destroy the task <-> ctx relation and mark the context dead.
10583 *
10584 * This is important because even though the task hasn't been
10585 * exposed yet the context has been (through child_list).
10586 */
10587 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10588 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10589 put_task_struct(task); /* cannot be last */
10590 raw_spin_unlock_irq(&ctx->lock);
10591
10592 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10593 perf_free_event(event, ctx);
10594
10595 mutex_unlock(&ctx->mutex);
10596 put_ctx(ctx);
10597 }
10598 }
10599
10600 void perf_event_delayed_put(struct task_struct *task)
10601 {
10602 int ctxn;
10603
10604 for_each_task_context_nr(ctxn)
10605 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10606 }
10607
10608 struct file *perf_event_get(unsigned int fd)
10609 {
10610 struct file *file;
10611
10612 file = fget_raw(fd);
10613 if (!file)
10614 return ERR_PTR(-EBADF);
10615
10616 if (file->f_op != &perf_fops) {
10617 fput(file);
10618 return ERR_PTR(-EBADF);
10619 }
10620
10621 return file;
10622 }
10623
10624 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10625 {
10626 if (!event)
10627 return ERR_PTR(-EINVAL);
10628
10629 return &event->attr;
10630 }
10631
10632 /*
10633 * Inherit a event from parent task to child task.
10634 *
10635 * Returns:
10636 * - valid pointer on success
10637 * - NULL for orphaned events
10638 * - IS_ERR() on error
10639 */
10640 static struct perf_event *
10641 inherit_event(struct perf_event *parent_event,
10642 struct task_struct *parent,
10643 struct perf_event_context *parent_ctx,
10644 struct task_struct *child,
10645 struct perf_event *group_leader,
10646 struct perf_event_context *child_ctx)
10647 {
10648 enum perf_event_active_state parent_state = parent_event->state;
10649 struct perf_event *child_event;
10650 unsigned long flags;
10651
10652 /*
10653 * Instead of creating recursive hierarchies of events,
10654 * we link inherited events back to the original parent,
10655 * which has a filp for sure, which we use as the reference
10656 * count:
10657 */
10658 if (parent_event->parent)
10659 parent_event = parent_event->parent;
10660
10661 child_event = perf_event_alloc(&parent_event->attr,
10662 parent_event->cpu,
10663 child,
10664 group_leader, parent_event,
10665 NULL, NULL, -1);
10666 if (IS_ERR(child_event))
10667 return child_event;
10668
10669 /*
10670 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10671 * must be under the same lock in order to serialize against
10672 * perf_event_release_kernel(), such that either we must observe
10673 * is_orphaned_event() or they will observe us on the child_list.
10674 */
10675 mutex_lock(&parent_event->child_mutex);
10676 if (is_orphaned_event(parent_event) ||
10677 !atomic_long_inc_not_zero(&parent_event->refcount)) {
10678 mutex_unlock(&parent_event->child_mutex);
10679 free_event(child_event);
10680 return NULL;
10681 }
10682
10683 get_ctx(child_ctx);
10684
10685 /*
10686 * Make the child state follow the state of the parent event,
10687 * not its attr.disabled bit. We hold the parent's mutex,
10688 * so we won't race with perf_event_{en, dis}able_family.
10689 */
10690 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10691 child_event->state = PERF_EVENT_STATE_INACTIVE;
10692 else
10693 child_event->state = PERF_EVENT_STATE_OFF;
10694
10695 if (parent_event->attr.freq) {
10696 u64 sample_period = parent_event->hw.sample_period;
10697 struct hw_perf_event *hwc = &child_event->hw;
10698
10699 hwc->sample_period = sample_period;
10700 hwc->last_period = sample_period;
10701
10702 local64_set(&hwc->period_left, sample_period);
10703 }
10704
10705 child_event->ctx = child_ctx;
10706 child_event->overflow_handler = parent_event->overflow_handler;
10707 child_event->overflow_handler_context
10708 = parent_event->overflow_handler_context;
10709
10710 /*
10711 * Precalculate sample_data sizes
10712 */
10713 perf_event__header_size(child_event);
10714 perf_event__id_header_size(child_event);
10715
10716 /*
10717 * Link it up in the child's context:
10718 */
10719 raw_spin_lock_irqsave(&child_ctx->lock, flags);
10720 add_event_to_ctx(child_event, child_ctx);
10721 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10722
10723 /*
10724 * Link this into the parent event's child list
10725 */
10726 list_add_tail(&child_event->child_list, &parent_event->child_list);
10727 mutex_unlock(&parent_event->child_mutex);
10728
10729 return child_event;
10730 }
10731
10732 /*
10733 * Inherits an event group.
10734 *
10735 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10736 * This matches with perf_event_release_kernel() removing all child events.
10737 *
10738 * Returns:
10739 * - 0 on success
10740 * - <0 on error
10741 */
10742 static int inherit_group(struct perf_event *parent_event,
10743 struct task_struct *parent,
10744 struct perf_event_context *parent_ctx,
10745 struct task_struct *child,
10746 struct perf_event_context *child_ctx)
10747 {
10748 struct perf_event *leader;
10749 struct perf_event *sub;
10750 struct perf_event *child_ctr;
10751
10752 leader = inherit_event(parent_event, parent, parent_ctx,
10753 child, NULL, child_ctx);
10754 if (IS_ERR(leader))
10755 return PTR_ERR(leader);
10756 /*
10757 * @leader can be NULL here because of is_orphaned_event(). In this
10758 * case inherit_event() will create individual events, similar to what
10759 * perf_group_detach() would do anyway.
10760 */
10761 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10762 child_ctr = inherit_event(sub, parent, parent_ctx,
10763 child, leader, child_ctx);
10764 if (IS_ERR(child_ctr))
10765 return PTR_ERR(child_ctr);
10766 }
10767 return 0;
10768 }
10769
10770 /*
10771 * Creates the child task context and tries to inherit the event-group.
10772 *
10773 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10774 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10775 * consistent with perf_event_release_kernel() removing all child events.
10776 *
10777 * Returns:
10778 * - 0 on success
10779 * - <0 on error
10780 */
10781 static int
10782 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10783 struct perf_event_context *parent_ctx,
10784 struct task_struct *child, int ctxn,
10785 int *inherited_all)
10786 {
10787 int ret;
10788 struct perf_event_context *child_ctx;
10789
10790 if (!event->attr.inherit) {
10791 *inherited_all = 0;
10792 return 0;
10793 }
10794
10795 child_ctx = child->perf_event_ctxp[ctxn];
10796 if (!child_ctx) {
10797 /*
10798 * This is executed from the parent task context, so
10799 * inherit events that have been marked for cloning.
10800 * First allocate and initialize a context for the
10801 * child.
10802 */
10803 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10804 if (!child_ctx)
10805 return -ENOMEM;
10806
10807 child->perf_event_ctxp[ctxn] = child_ctx;
10808 }
10809
10810 ret = inherit_group(event, parent, parent_ctx,
10811 child, child_ctx);
10812
10813 if (ret)
10814 *inherited_all = 0;
10815
10816 return ret;
10817 }
10818
10819 /*
10820 * Initialize the perf_event context in task_struct
10821 */
10822 static int perf_event_init_context(struct task_struct *child, int ctxn)
10823 {
10824 struct perf_event_context *child_ctx, *parent_ctx;
10825 struct perf_event_context *cloned_ctx;
10826 struct perf_event *event;
10827 struct task_struct *parent = current;
10828 int inherited_all = 1;
10829 unsigned long flags;
10830 int ret = 0;
10831
10832 if (likely(!parent->perf_event_ctxp[ctxn]))
10833 return 0;
10834
10835 /*
10836 * If the parent's context is a clone, pin it so it won't get
10837 * swapped under us.
10838 */
10839 parent_ctx = perf_pin_task_context(parent, ctxn);
10840 if (!parent_ctx)
10841 return 0;
10842
10843 /*
10844 * No need to check if parent_ctx != NULL here; since we saw
10845 * it non-NULL earlier, the only reason for it to become NULL
10846 * is if we exit, and since we're currently in the middle of
10847 * a fork we can't be exiting at the same time.
10848 */
10849
10850 /*
10851 * Lock the parent list. No need to lock the child - not PID
10852 * hashed yet and not running, so nobody can access it.
10853 */
10854 mutex_lock(&parent_ctx->mutex);
10855
10856 /*
10857 * We dont have to disable NMIs - we are only looking at
10858 * the list, not manipulating it:
10859 */
10860 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10861 ret = inherit_task_group(event, parent, parent_ctx,
10862 child, ctxn, &inherited_all);
10863 if (ret)
10864 goto out_unlock;
10865 }
10866
10867 /*
10868 * We can't hold ctx->lock when iterating the ->flexible_group list due
10869 * to allocations, but we need to prevent rotation because
10870 * rotate_ctx() will change the list from interrupt context.
10871 */
10872 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10873 parent_ctx->rotate_disable = 1;
10874 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10875
10876 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10877 ret = inherit_task_group(event, parent, parent_ctx,
10878 child, ctxn, &inherited_all);
10879 if (ret)
10880 goto out_unlock;
10881 }
10882
10883 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10884 parent_ctx->rotate_disable = 0;
10885
10886 child_ctx = child->perf_event_ctxp[ctxn];
10887
10888 if (child_ctx && inherited_all) {
10889 /*
10890 * Mark the child context as a clone of the parent
10891 * context, or of whatever the parent is a clone of.
10892 *
10893 * Note that if the parent is a clone, the holding of
10894 * parent_ctx->lock avoids it from being uncloned.
10895 */
10896 cloned_ctx = parent_ctx->parent_ctx;
10897 if (cloned_ctx) {
10898 child_ctx->parent_ctx = cloned_ctx;
10899 child_ctx->parent_gen = parent_ctx->parent_gen;
10900 } else {
10901 child_ctx->parent_ctx = parent_ctx;
10902 child_ctx->parent_gen = parent_ctx->generation;
10903 }
10904 get_ctx(child_ctx->parent_ctx);
10905 }
10906
10907 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10908 out_unlock:
10909 mutex_unlock(&parent_ctx->mutex);
10910
10911 perf_unpin_context(parent_ctx);
10912 put_ctx(parent_ctx);
10913
10914 return ret;
10915 }
10916
10917 /*
10918 * Initialize the perf_event context in task_struct
10919 */
10920 int perf_event_init_task(struct task_struct *child)
10921 {
10922 int ctxn, ret;
10923
10924 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10925 mutex_init(&child->perf_event_mutex);
10926 INIT_LIST_HEAD(&child->perf_event_list);
10927
10928 for_each_task_context_nr(ctxn) {
10929 ret = perf_event_init_context(child, ctxn);
10930 if (ret) {
10931 perf_event_free_task(child);
10932 return ret;
10933 }
10934 }
10935
10936 return 0;
10937 }
10938
10939 static void __init perf_event_init_all_cpus(void)
10940 {
10941 struct swevent_htable *swhash;
10942 int cpu;
10943
10944 for_each_possible_cpu(cpu) {
10945 swhash = &per_cpu(swevent_htable, cpu);
10946 mutex_init(&swhash->hlist_mutex);
10947 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10948
10949 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10950 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10951
10952 #ifdef CONFIG_CGROUP_PERF
10953 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
10954 #endif
10955 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10956 }
10957 }
10958
10959 int perf_event_init_cpu(unsigned int cpu)
10960 {
10961 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10962
10963 mutex_lock(&swhash->hlist_mutex);
10964 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10965 struct swevent_hlist *hlist;
10966
10967 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10968 WARN_ON(!hlist);
10969 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10970 }
10971 mutex_unlock(&swhash->hlist_mutex);
10972 return 0;
10973 }
10974
10975 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10976 static void __perf_event_exit_context(void *__info)
10977 {
10978 struct perf_event_context *ctx = __info;
10979 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10980 struct perf_event *event;
10981
10982 raw_spin_lock(&ctx->lock);
10983 list_for_each_entry(event, &ctx->event_list, event_entry)
10984 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10985 raw_spin_unlock(&ctx->lock);
10986 }
10987
10988 static void perf_event_exit_cpu_context(int cpu)
10989 {
10990 struct perf_event_context *ctx;
10991 struct pmu *pmu;
10992 int idx;
10993
10994 idx = srcu_read_lock(&pmus_srcu);
10995 list_for_each_entry_rcu(pmu, &pmus, entry) {
10996 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10997
10998 mutex_lock(&ctx->mutex);
10999 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11000 mutex_unlock(&ctx->mutex);
11001 }
11002 srcu_read_unlock(&pmus_srcu, idx);
11003 }
11004 #else
11005
11006 static void perf_event_exit_cpu_context(int cpu) { }
11007
11008 #endif
11009
11010 int perf_event_exit_cpu(unsigned int cpu)
11011 {
11012 perf_event_exit_cpu_context(cpu);
11013 return 0;
11014 }
11015
11016 static int
11017 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11018 {
11019 int cpu;
11020
11021 for_each_online_cpu(cpu)
11022 perf_event_exit_cpu(cpu);
11023
11024 return NOTIFY_OK;
11025 }
11026
11027 /*
11028 * Run the perf reboot notifier at the very last possible moment so that
11029 * the generic watchdog code runs as long as possible.
11030 */
11031 static struct notifier_block perf_reboot_notifier = {
11032 .notifier_call = perf_reboot,
11033 .priority = INT_MIN,
11034 };
11035
11036 void __init perf_event_init(void)
11037 {
11038 int ret;
11039
11040 idr_init(&pmu_idr);
11041
11042 perf_event_init_all_cpus();
11043 init_srcu_struct(&pmus_srcu);
11044 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11045 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11046 perf_pmu_register(&perf_task_clock, NULL, -1);
11047 perf_tp_register();
11048 perf_event_init_cpu(smp_processor_id());
11049 register_reboot_notifier(&perf_reboot_notifier);
11050
11051 ret = init_hw_breakpoint();
11052 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11053
11054 /*
11055 * Build time assertion that we keep the data_head at the intended
11056 * location. IOW, validation we got the __reserved[] size right.
11057 */
11058 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11059 != 1024);
11060 }
11061
11062 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11063 char *page)
11064 {
11065 struct perf_pmu_events_attr *pmu_attr =
11066 container_of(attr, struct perf_pmu_events_attr, attr);
11067
11068 if (pmu_attr->event_str)
11069 return sprintf(page, "%s\n", pmu_attr->event_str);
11070
11071 return 0;
11072 }
11073 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11074
11075 static int __init perf_event_sysfs_init(void)
11076 {
11077 struct pmu *pmu;
11078 int ret;
11079
11080 mutex_lock(&pmus_lock);
11081
11082 ret = bus_register(&pmu_bus);
11083 if (ret)
11084 goto unlock;
11085
11086 list_for_each_entry(pmu, &pmus, entry) {
11087 if (!pmu->name || pmu->type < 0)
11088 continue;
11089
11090 ret = pmu_dev_alloc(pmu);
11091 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11092 }
11093 pmu_bus_running = 1;
11094 ret = 0;
11095
11096 unlock:
11097 mutex_unlock(&pmus_lock);
11098
11099 return ret;
11100 }
11101 device_initcall(perf_event_sysfs_init);
11102
11103 #ifdef CONFIG_CGROUP_PERF
11104 static struct cgroup_subsys_state *
11105 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11106 {
11107 struct perf_cgroup *jc;
11108
11109 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11110 if (!jc)
11111 return ERR_PTR(-ENOMEM);
11112
11113 jc->info = alloc_percpu(struct perf_cgroup_info);
11114 if (!jc->info) {
11115 kfree(jc);
11116 return ERR_PTR(-ENOMEM);
11117 }
11118
11119 return &jc->css;
11120 }
11121
11122 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11123 {
11124 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11125
11126 free_percpu(jc->info);
11127 kfree(jc);
11128 }
11129
11130 static int __perf_cgroup_move(void *info)
11131 {
11132 struct task_struct *task = info;
11133 rcu_read_lock();
11134 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11135 rcu_read_unlock();
11136 return 0;
11137 }
11138
11139 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11140 {
11141 struct task_struct *task;
11142 struct cgroup_subsys_state *css;
11143
11144 cgroup_taskset_for_each(task, css, tset)
11145 task_function_call(task, __perf_cgroup_move, task);
11146 }
11147
11148 struct cgroup_subsys perf_event_cgrp_subsys = {
11149 .css_alloc = perf_cgroup_css_alloc,
11150 .css_free = perf_cgroup_css_free,
11151 .attach = perf_cgroup_attach,
11152 /*
11153 * Implicitly enable on dfl hierarchy so that perf events can
11154 * always be filtered by cgroup2 path as long as perf_event
11155 * controller is not mounted on a legacy hierarchy.
11156 */
11157 .implicit_on_dfl = true,
11158 };
11159 #endif /* CONFIG_CGROUP_PERF */