]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/events/uprobes.c
mmap locking API: convert mmap_sem comments
[thirdparty/linux.git] / kernel / events / uprobes.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * User-space Probes (UProbes)
4 *
5 * Copyright (C) IBM Corporation, 2008-2012
6 * Authors:
7 * Srikar Dronamraju
8 * Jim Keniston
9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h> /* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h> /* anon_vma_prepare */
21 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
22 #include <linux/swap.h> /* try_to_free_swap */
23 #include <linux/ptrace.h> /* user_enable_single_step */
24 #include <linux/kdebug.h> /* notifier mechanism */
25 #include "../../mm/internal.h" /* munlock_vma_page */
26 #include <linux/percpu-rwsem.h>
27 #include <linux/task_work.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/khugepaged.h>
30
31 #include <linux/uprobes.h>
32
33 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
34 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
35
36 static struct rb_root uprobes_tree = RB_ROOT;
37 /*
38 * allows us to skip the uprobe_mmap if there are no uprobe events active
39 * at this time. Probably a fine grained per inode count is better?
40 */
41 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
42
43 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
44
45 #define UPROBES_HASH_SZ 13
46 /* serialize uprobe->pending_list */
47 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
48 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
49
50 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
51
52 /* Have a copy of original instruction */
53 #define UPROBE_COPY_INSN 0
54
55 struct uprobe {
56 struct rb_node rb_node; /* node in the rb tree */
57 refcount_t ref;
58 struct rw_semaphore register_rwsem;
59 struct rw_semaphore consumer_rwsem;
60 struct list_head pending_list;
61 struct uprobe_consumer *consumers;
62 struct inode *inode; /* Also hold a ref to inode */
63 loff_t offset;
64 loff_t ref_ctr_offset;
65 unsigned long flags;
66
67 /*
68 * The generic code assumes that it has two members of unknown type
69 * owned by the arch-specific code:
70 *
71 * insn - copy_insn() saves the original instruction here for
72 * arch_uprobe_analyze_insn().
73 *
74 * ixol - potentially modified instruction to execute out of
75 * line, copied to xol_area by xol_get_insn_slot().
76 */
77 struct arch_uprobe arch;
78 };
79
80 struct delayed_uprobe {
81 struct list_head list;
82 struct uprobe *uprobe;
83 struct mm_struct *mm;
84 };
85
86 static DEFINE_MUTEX(delayed_uprobe_lock);
87 static LIST_HEAD(delayed_uprobe_list);
88
89 /*
90 * Execute out of line area: anonymous executable mapping installed
91 * by the probed task to execute the copy of the original instruction
92 * mangled by set_swbp().
93 *
94 * On a breakpoint hit, thread contests for a slot. It frees the
95 * slot after singlestep. Currently a fixed number of slots are
96 * allocated.
97 */
98 struct xol_area {
99 wait_queue_head_t wq; /* if all slots are busy */
100 atomic_t slot_count; /* number of in-use slots */
101 unsigned long *bitmap; /* 0 = free slot */
102
103 struct vm_special_mapping xol_mapping;
104 struct page *pages[2];
105 /*
106 * We keep the vma's vm_start rather than a pointer to the vma
107 * itself. The probed process or a naughty kernel module could make
108 * the vma go away, and we must handle that reasonably gracefully.
109 */
110 unsigned long vaddr; /* Page(s) of instruction slots */
111 };
112
113 /*
114 * valid_vma: Verify if the specified vma is an executable vma
115 * Relax restrictions while unregistering: vm_flags might have
116 * changed after breakpoint was inserted.
117 * - is_register: indicates if we are in register context.
118 * - Return 1 if the specified virtual address is in an
119 * executable vma.
120 */
121 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122 {
123 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124
125 if (is_register)
126 flags |= VM_WRITE;
127
128 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129 }
130
131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132 {
133 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134 }
135
136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137 {
138 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139 }
140
141 /**
142 * __replace_page - replace page in vma by new page.
143 * based on replace_page in mm/ksm.c
144 *
145 * @vma: vma that holds the pte pointing to page
146 * @addr: address the old @page is mapped at
147 * @old_page: the page we are replacing by new_page
148 * @new_page: the modified page we replace page by
149 *
150 * If @new_page is NULL, only unmap @old_page.
151 *
152 * Returns 0 on success, negative error code otherwise.
153 */
154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
155 struct page *old_page, struct page *new_page)
156 {
157 struct mm_struct *mm = vma->vm_mm;
158 struct page_vma_mapped_walk pvmw = {
159 .page = compound_head(old_page),
160 .vma = vma,
161 .address = addr,
162 };
163 int err;
164 struct mmu_notifier_range range;
165
166 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
167 addr + PAGE_SIZE);
168
169 if (new_page) {
170 err = mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL);
171 if (err)
172 return err;
173 }
174
175 /* For try_to_free_swap() and munlock_vma_page() below */
176 lock_page(old_page);
177
178 mmu_notifier_invalidate_range_start(&range);
179 err = -EAGAIN;
180 if (!page_vma_mapped_walk(&pvmw))
181 goto unlock;
182 VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
183
184 if (new_page) {
185 get_page(new_page);
186 page_add_new_anon_rmap(new_page, vma, addr, false);
187 lru_cache_add_active_or_unevictable(new_page, vma);
188 } else
189 /* no new page, just dec_mm_counter for old_page */
190 dec_mm_counter(mm, MM_ANONPAGES);
191
192 if (!PageAnon(old_page)) {
193 dec_mm_counter(mm, mm_counter_file(old_page));
194 inc_mm_counter(mm, MM_ANONPAGES);
195 }
196
197 flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
198 ptep_clear_flush_notify(vma, addr, pvmw.pte);
199 if (new_page)
200 set_pte_at_notify(mm, addr, pvmw.pte,
201 mk_pte(new_page, vma->vm_page_prot));
202
203 page_remove_rmap(old_page, false);
204 if (!page_mapped(old_page))
205 try_to_free_swap(old_page);
206 page_vma_mapped_walk_done(&pvmw);
207
208 if (vma->vm_flags & VM_LOCKED)
209 munlock_vma_page(old_page);
210 put_page(old_page);
211
212 err = 0;
213 unlock:
214 mmu_notifier_invalidate_range_end(&range);
215 unlock_page(old_page);
216 return err;
217 }
218
219 /**
220 * is_swbp_insn - check if instruction is breakpoint instruction.
221 * @insn: instruction to be checked.
222 * Default implementation of is_swbp_insn
223 * Returns true if @insn is a breakpoint instruction.
224 */
225 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
226 {
227 return *insn == UPROBE_SWBP_INSN;
228 }
229
230 /**
231 * is_trap_insn - check if instruction is breakpoint instruction.
232 * @insn: instruction to be checked.
233 * Default implementation of is_trap_insn
234 * Returns true if @insn is a breakpoint instruction.
235 *
236 * This function is needed for the case where an architecture has multiple
237 * trap instructions (like powerpc).
238 */
239 bool __weak is_trap_insn(uprobe_opcode_t *insn)
240 {
241 return is_swbp_insn(insn);
242 }
243
244 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
245 {
246 void *kaddr = kmap_atomic(page);
247 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
248 kunmap_atomic(kaddr);
249 }
250
251 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
252 {
253 void *kaddr = kmap_atomic(page);
254 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
255 kunmap_atomic(kaddr);
256 }
257
258 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
259 {
260 uprobe_opcode_t old_opcode;
261 bool is_swbp;
262
263 /*
264 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
265 * We do not check if it is any other 'trap variant' which could
266 * be conditional trap instruction such as the one powerpc supports.
267 *
268 * The logic is that we do not care if the underlying instruction
269 * is a trap variant; uprobes always wins over any other (gdb)
270 * breakpoint.
271 */
272 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
273 is_swbp = is_swbp_insn(&old_opcode);
274
275 if (is_swbp_insn(new_opcode)) {
276 if (is_swbp) /* register: already installed? */
277 return 0;
278 } else {
279 if (!is_swbp) /* unregister: was it changed by us? */
280 return 0;
281 }
282
283 return 1;
284 }
285
286 static struct delayed_uprobe *
287 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
288 {
289 struct delayed_uprobe *du;
290
291 list_for_each_entry(du, &delayed_uprobe_list, list)
292 if (du->uprobe == uprobe && du->mm == mm)
293 return du;
294 return NULL;
295 }
296
297 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
298 {
299 struct delayed_uprobe *du;
300
301 if (delayed_uprobe_check(uprobe, mm))
302 return 0;
303
304 du = kzalloc(sizeof(*du), GFP_KERNEL);
305 if (!du)
306 return -ENOMEM;
307
308 du->uprobe = uprobe;
309 du->mm = mm;
310 list_add(&du->list, &delayed_uprobe_list);
311 return 0;
312 }
313
314 static void delayed_uprobe_delete(struct delayed_uprobe *du)
315 {
316 if (WARN_ON(!du))
317 return;
318 list_del(&du->list);
319 kfree(du);
320 }
321
322 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
323 {
324 struct list_head *pos, *q;
325 struct delayed_uprobe *du;
326
327 if (!uprobe && !mm)
328 return;
329
330 list_for_each_safe(pos, q, &delayed_uprobe_list) {
331 du = list_entry(pos, struct delayed_uprobe, list);
332
333 if (uprobe && du->uprobe != uprobe)
334 continue;
335 if (mm && du->mm != mm)
336 continue;
337
338 delayed_uprobe_delete(du);
339 }
340 }
341
342 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
343 struct vm_area_struct *vma)
344 {
345 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
346
347 return uprobe->ref_ctr_offset &&
348 vma->vm_file &&
349 file_inode(vma->vm_file) == uprobe->inode &&
350 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
351 vma->vm_start <= vaddr &&
352 vma->vm_end > vaddr;
353 }
354
355 static struct vm_area_struct *
356 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
357 {
358 struct vm_area_struct *tmp;
359
360 for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
361 if (valid_ref_ctr_vma(uprobe, tmp))
362 return tmp;
363
364 return NULL;
365 }
366
367 static int
368 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
369 {
370 void *kaddr;
371 struct page *page;
372 struct vm_area_struct *vma;
373 int ret;
374 short *ptr;
375
376 if (!vaddr || !d)
377 return -EINVAL;
378
379 ret = get_user_pages_remote(NULL, mm, vaddr, 1,
380 FOLL_WRITE, &page, &vma, NULL);
381 if (unlikely(ret <= 0)) {
382 /*
383 * We are asking for 1 page. If get_user_pages_remote() fails,
384 * it may return 0, in that case we have to return error.
385 */
386 return ret == 0 ? -EBUSY : ret;
387 }
388
389 kaddr = kmap_atomic(page);
390 ptr = kaddr + (vaddr & ~PAGE_MASK);
391
392 if (unlikely(*ptr + d < 0)) {
393 pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
394 "curr val: %d, delta: %d\n", vaddr, *ptr, d);
395 ret = -EINVAL;
396 goto out;
397 }
398
399 *ptr += d;
400 ret = 0;
401 out:
402 kunmap_atomic(kaddr);
403 put_page(page);
404 return ret;
405 }
406
407 static void update_ref_ctr_warn(struct uprobe *uprobe,
408 struct mm_struct *mm, short d)
409 {
410 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
411 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
412 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
413 (unsigned long long) uprobe->offset,
414 (unsigned long long) uprobe->ref_ctr_offset, mm);
415 }
416
417 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
418 short d)
419 {
420 struct vm_area_struct *rc_vma;
421 unsigned long rc_vaddr;
422 int ret = 0;
423
424 rc_vma = find_ref_ctr_vma(uprobe, mm);
425
426 if (rc_vma) {
427 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
428 ret = __update_ref_ctr(mm, rc_vaddr, d);
429 if (ret)
430 update_ref_ctr_warn(uprobe, mm, d);
431
432 if (d > 0)
433 return ret;
434 }
435
436 mutex_lock(&delayed_uprobe_lock);
437 if (d > 0)
438 ret = delayed_uprobe_add(uprobe, mm);
439 else
440 delayed_uprobe_remove(uprobe, mm);
441 mutex_unlock(&delayed_uprobe_lock);
442
443 return ret;
444 }
445
446 /*
447 * NOTE:
448 * Expect the breakpoint instruction to be the smallest size instruction for
449 * the architecture. If an arch has variable length instruction and the
450 * breakpoint instruction is not of the smallest length instruction
451 * supported by that architecture then we need to modify is_trap_at_addr and
452 * uprobe_write_opcode accordingly. This would never be a problem for archs
453 * that have fixed length instructions.
454 *
455 * uprobe_write_opcode - write the opcode at a given virtual address.
456 * @mm: the probed process address space.
457 * @vaddr: the virtual address to store the opcode.
458 * @opcode: opcode to be written at @vaddr.
459 *
460 * Called with mm->mmap_lock held for write.
461 * Return 0 (success) or a negative errno.
462 */
463 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
464 unsigned long vaddr, uprobe_opcode_t opcode)
465 {
466 struct uprobe *uprobe;
467 struct page *old_page, *new_page;
468 struct vm_area_struct *vma;
469 int ret, is_register, ref_ctr_updated = 0;
470 bool orig_page_huge = false;
471 unsigned int gup_flags = FOLL_FORCE;
472
473 is_register = is_swbp_insn(&opcode);
474 uprobe = container_of(auprobe, struct uprobe, arch);
475
476 retry:
477 if (is_register)
478 gup_flags |= FOLL_SPLIT_PMD;
479 /* Read the page with vaddr into memory */
480 ret = get_user_pages_remote(NULL, mm, vaddr, 1, gup_flags,
481 &old_page, &vma, NULL);
482 if (ret <= 0)
483 return ret;
484
485 ret = verify_opcode(old_page, vaddr, &opcode);
486 if (ret <= 0)
487 goto put_old;
488
489 if (WARN(!is_register && PageCompound(old_page),
490 "uprobe unregister should never work on compound page\n")) {
491 ret = -EINVAL;
492 goto put_old;
493 }
494
495 /* We are going to replace instruction, update ref_ctr. */
496 if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
497 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
498 if (ret)
499 goto put_old;
500
501 ref_ctr_updated = 1;
502 }
503
504 ret = 0;
505 if (!is_register && !PageAnon(old_page))
506 goto put_old;
507
508 ret = anon_vma_prepare(vma);
509 if (ret)
510 goto put_old;
511
512 ret = -ENOMEM;
513 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
514 if (!new_page)
515 goto put_old;
516
517 __SetPageUptodate(new_page);
518 copy_highpage(new_page, old_page);
519 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
520
521 if (!is_register) {
522 struct page *orig_page;
523 pgoff_t index;
524
525 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
526
527 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
528 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
529 index);
530
531 if (orig_page) {
532 if (PageUptodate(orig_page) &&
533 pages_identical(new_page, orig_page)) {
534 /* let go new_page */
535 put_page(new_page);
536 new_page = NULL;
537
538 if (PageCompound(orig_page))
539 orig_page_huge = true;
540 }
541 put_page(orig_page);
542 }
543 }
544
545 ret = __replace_page(vma, vaddr, old_page, new_page);
546 if (new_page)
547 put_page(new_page);
548 put_old:
549 put_page(old_page);
550
551 if (unlikely(ret == -EAGAIN))
552 goto retry;
553
554 /* Revert back reference counter if instruction update failed. */
555 if (ret && is_register && ref_ctr_updated)
556 update_ref_ctr(uprobe, mm, -1);
557
558 /* try collapse pmd for compound page */
559 if (!ret && orig_page_huge)
560 collapse_pte_mapped_thp(mm, vaddr);
561
562 return ret;
563 }
564
565 /**
566 * set_swbp - store breakpoint at a given address.
567 * @auprobe: arch specific probepoint information.
568 * @mm: the probed process address space.
569 * @vaddr: the virtual address to insert the opcode.
570 *
571 * For mm @mm, store the breakpoint instruction at @vaddr.
572 * Return 0 (success) or a negative errno.
573 */
574 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
575 {
576 return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
577 }
578
579 /**
580 * set_orig_insn - Restore the original instruction.
581 * @mm: the probed process address space.
582 * @auprobe: arch specific probepoint information.
583 * @vaddr: the virtual address to insert the opcode.
584 *
585 * For mm @mm, restore the original opcode (opcode) at @vaddr.
586 * Return 0 (success) or a negative errno.
587 */
588 int __weak
589 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
590 {
591 return uprobe_write_opcode(auprobe, mm, vaddr,
592 *(uprobe_opcode_t *)&auprobe->insn);
593 }
594
595 static struct uprobe *get_uprobe(struct uprobe *uprobe)
596 {
597 refcount_inc(&uprobe->ref);
598 return uprobe;
599 }
600
601 static void put_uprobe(struct uprobe *uprobe)
602 {
603 if (refcount_dec_and_test(&uprobe->ref)) {
604 /*
605 * If application munmap(exec_vma) before uprobe_unregister()
606 * gets called, we don't get a chance to remove uprobe from
607 * delayed_uprobe_list from remove_breakpoint(). Do it here.
608 */
609 mutex_lock(&delayed_uprobe_lock);
610 delayed_uprobe_remove(uprobe, NULL);
611 mutex_unlock(&delayed_uprobe_lock);
612 kfree(uprobe);
613 }
614 }
615
616 static int match_uprobe(struct uprobe *l, struct uprobe *r)
617 {
618 if (l->inode < r->inode)
619 return -1;
620
621 if (l->inode > r->inode)
622 return 1;
623
624 if (l->offset < r->offset)
625 return -1;
626
627 if (l->offset > r->offset)
628 return 1;
629
630 return 0;
631 }
632
633 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
634 {
635 struct uprobe u = { .inode = inode, .offset = offset };
636 struct rb_node *n = uprobes_tree.rb_node;
637 struct uprobe *uprobe;
638 int match;
639
640 while (n) {
641 uprobe = rb_entry(n, struct uprobe, rb_node);
642 match = match_uprobe(&u, uprobe);
643 if (!match)
644 return get_uprobe(uprobe);
645
646 if (match < 0)
647 n = n->rb_left;
648 else
649 n = n->rb_right;
650 }
651 return NULL;
652 }
653
654 /*
655 * Find a uprobe corresponding to a given inode:offset
656 * Acquires uprobes_treelock
657 */
658 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
659 {
660 struct uprobe *uprobe;
661
662 spin_lock(&uprobes_treelock);
663 uprobe = __find_uprobe(inode, offset);
664 spin_unlock(&uprobes_treelock);
665
666 return uprobe;
667 }
668
669 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
670 {
671 struct rb_node **p = &uprobes_tree.rb_node;
672 struct rb_node *parent = NULL;
673 struct uprobe *u;
674 int match;
675
676 while (*p) {
677 parent = *p;
678 u = rb_entry(parent, struct uprobe, rb_node);
679 match = match_uprobe(uprobe, u);
680 if (!match)
681 return get_uprobe(u);
682
683 if (match < 0)
684 p = &parent->rb_left;
685 else
686 p = &parent->rb_right;
687
688 }
689
690 u = NULL;
691 rb_link_node(&uprobe->rb_node, parent, p);
692 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
693 /* get access + creation ref */
694 refcount_set(&uprobe->ref, 2);
695
696 return u;
697 }
698
699 /*
700 * Acquire uprobes_treelock.
701 * Matching uprobe already exists in rbtree;
702 * increment (access refcount) and return the matching uprobe.
703 *
704 * No matching uprobe; insert the uprobe in rb_tree;
705 * get a double refcount (access + creation) and return NULL.
706 */
707 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
708 {
709 struct uprobe *u;
710
711 spin_lock(&uprobes_treelock);
712 u = __insert_uprobe(uprobe);
713 spin_unlock(&uprobes_treelock);
714
715 return u;
716 }
717
718 static void
719 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
720 {
721 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
722 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
723 uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
724 (unsigned long long) cur_uprobe->ref_ctr_offset,
725 (unsigned long long) uprobe->ref_ctr_offset);
726 }
727
728 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
729 loff_t ref_ctr_offset)
730 {
731 struct uprobe *uprobe, *cur_uprobe;
732
733 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
734 if (!uprobe)
735 return NULL;
736
737 uprobe->inode = inode;
738 uprobe->offset = offset;
739 uprobe->ref_ctr_offset = ref_ctr_offset;
740 init_rwsem(&uprobe->register_rwsem);
741 init_rwsem(&uprobe->consumer_rwsem);
742
743 /* add to uprobes_tree, sorted on inode:offset */
744 cur_uprobe = insert_uprobe(uprobe);
745 /* a uprobe exists for this inode:offset combination */
746 if (cur_uprobe) {
747 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
748 ref_ctr_mismatch_warn(cur_uprobe, uprobe);
749 put_uprobe(cur_uprobe);
750 kfree(uprobe);
751 return ERR_PTR(-EINVAL);
752 }
753 kfree(uprobe);
754 uprobe = cur_uprobe;
755 }
756
757 return uprobe;
758 }
759
760 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
761 {
762 down_write(&uprobe->consumer_rwsem);
763 uc->next = uprobe->consumers;
764 uprobe->consumers = uc;
765 up_write(&uprobe->consumer_rwsem);
766 }
767
768 /*
769 * For uprobe @uprobe, delete the consumer @uc.
770 * Return true if the @uc is deleted successfully
771 * or return false.
772 */
773 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
774 {
775 struct uprobe_consumer **con;
776 bool ret = false;
777
778 down_write(&uprobe->consumer_rwsem);
779 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
780 if (*con == uc) {
781 *con = uc->next;
782 ret = true;
783 break;
784 }
785 }
786 up_write(&uprobe->consumer_rwsem);
787
788 return ret;
789 }
790
791 static int __copy_insn(struct address_space *mapping, struct file *filp,
792 void *insn, int nbytes, loff_t offset)
793 {
794 struct page *page;
795 /*
796 * Ensure that the page that has the original instruction is populated
797 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
798 * see uprobe_register().
799 */
800 if (mapping->a_ops->readpage)
801 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
802 else
803 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
804 if (IS_ERR(page))
805 return PTR_ERR(page);
806
807 copy_from_page(page, offset, insn, nbytes);
808 put_page(page);
809
810 return 0;
811 }
812
813 static int copy_insn(struct uprobe *uprobe, struct file *filp)
814 {
815 struct address_space *mapping = uprobe->inode->i_mapping;
816 loff_t offs = uprobe->offset;
817 void *insn = &uprobe->arch.insn;
818 int size = sizeof(uprobe->arch.insn);
819 int len, err = -EIO;
820
821 /* Copy only available bytes, -EIO if nothing was read */
822 do {
823 if (offs >= i_size_read(uprobe->inode))
824 break;
825
826 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
827 err = __copy_insn(mapping, filp, insn, len, offs);
828 if (err)
829 break;
830
831 insn += len;
832 offs += len;
833 size -= len;
834 } while (size);
835
836 return err;
837 }
838
839 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
840 struct mm_struct *mm, unsigned long vaddr)
841 {
842 int ret = 0;
843
844 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
845 return ret;
846
847 /* TODO: move this into _register, until then we abuse this sem. */
848 down_write(&uprobe->consumer_rwsem);
849 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
850 goto out;
851
852 ret = copy_insn(uprobe, file);
853 if (ret)
854 goto out;
855
856 ret = -ENOTSUPP;
857 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
858 goto out;
859
860 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
861 if (ret)
862 goto out;
863
864 /* uprobe_write_opcode() assumes we don't cross page boundary */
865 BUG_ON((uprobe->offset & ~PAGE_MASK) +
866 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
867
868 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
869 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
870
871 out:
872 up_write(&uprobe->consumer_rwsem);
873
874 return ret;
875 }
876
877 static inline bool consumer_filter(struct uprobe_consumer *uc,
878 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
879 {
880 return !uc->filter || uc->filter(uc, ctx, mm);
881 }
882
883 static bool filter_chain(struct uprobe *uprobe,
884 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
885 {
886 struct uprobe_consumer *uc;
887 bool ret = false;
888
889 down_read(&uprobe->consumer_rwsem);
890 for (uc = uprobe->consumers; uc; uc = uc->next) {
891 ret = consumer_filter(uc, ctx, mm);
892 if (ret)
893 break;
894 }
895 up_read(&uprobe->consumer_rwsem);
896
897 return ret;
898 }
899
900 static int
901 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
902 struct vm_area_struct *vma, unsigned long vaddr)
903 {
904 bool first_uprobe;
905 int ret;
906
907 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
908 if (ret)
909 return ret;
910
911 /*
912 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
913 * the task can hit this breakpoint right after __replace_page().
914 */
915 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
916 if (first_uprobe)
917 set_bit(MMF_HAS_UPROBES, &mm->flags);
918
919 ret = set_swbp(&uprobe->arch, mm, vaddr);
920 if (!ret)
921 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
922 else if (first_uprobe)
923 clear_bit(MMF_HAS_UPROBES, &mm->flags);
924
925 return ret;
926 }
927
928 static int
929 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
930 {
931 set_bit(MMF_RECALC_UPROBES, &mm->flags);
932 return set_orig_insn(&uprobe->arch, mm, vaddr);
933 }
934
935 static inline bool uprobe_is_active(struct uprobe *uprobe)
936 {
937 return !RB_EMPTY_NODE(&uprobe->rb_node);
938 }
939 /*
940 * There could be threads that have already hit the breakpoint. They
941 * will recheck the current insn and restart if find_uprobe() fails.
942 * See find_active_uprobe().
943 */
944 static void delete_uprobe(struct uprobe *uprobe)
945 {
946 if (WARN_ON(!uprobe_is_active(uprobe)))
947 return;
948
949 spin_lock(&uprobes_treelock);
950 rb_erase(&uprobe->rb_node, &uprobes_tree);
951 spin_unlock(&uprobes_treelock);
952 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
953 put_uprobe(uprobe);
954 }
955
956 struct map_info {
957 struct map_info *next;
958 struct mm_struct *mm;
959 unsigned long vaddr;
960 };
961
962 static inline struct map_info *free_map_info(struct map_info *info)
963 {
964 struct map_info *next = info->next;
965 kfree(info);
966 return next;
967 }
968
969 static struct map_info *
970 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
971 {
972 unsigned long pgoff = offset >> PAGE_SHIFT;
973 struct vm_area_struct *vma;
974 struct map_info *curr = NULL;
975 struct map_info *prev = NULL;
976 struct map_info *info;
977 int more = 0;
978
979 again:
980 i_mmap_lock_read(mapping);
981 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
982 if (!valid_vma(vma, is_register))
983 continue;
984
985 if (!prev && !more) {
986 /*
987 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
988 * reclaim. This is optimistic, no harm done if it fails.
989 */
990 prev = kmalloc(sizeof(struct map_info),
991 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
992 if (prev)
993 prev->next = NULL;
994 }
995 if (!prev) {
996 more++;
997 continue;
998 }
999
1000 if (!mmget_not_zero(vma->vm_mm))
1001 continue;
1002
1003 info = prev;
1004 prev = prev->next;
1005 info->next = curr;
1006 curr = info;
1007
1008 info->mm = vma->vm_mm;
1009 info->vaddr = offset_to_vaddr(vma, offset);
1010 }
1011 i_mmap_unlock_read(mapping);
1012
1013 if (!more)
1014 goto out;
1015
1016 prev = curr;
1017 while (curr) {
1018 mmput(curr->mm);
1019 curr = curr->next;
1020 }
1021
1022 do {
1023 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1024 if (!info) {
1025 curr = ERR_PTR(-ENOMEM);
1026 goto out;
1027 }
1028 info->next = prev;
1029 prev = info;
1030 } while (--more);
1031
1032 goto again;
1033 out:
1034 while (prev)
1035 prev = free_map_info(prev);
1036 return curr;
1037 }
1038
1039 static int
1040 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1041 {
1042 bool is_register = !!new;
1043 struct map_info *info;
1044 int err = 0;
1045
1046 percpu_down_write(&dup_mmap_sem);
1047 info = build_map_info(uprobe->inode->i_mapping,
1048 uprobe->offset, is_register);
1049 if (IS_ERR(info)) {
1050 err = PTR_ERR(info);
1051 goto out;
1052 }
1053
1054 while (info) {
1055 struct mm_struct *mm = info->mm;
1056 struct vm_area_struct *vma;
1057
1058 if (err && is_register)
1059 goto free;
1060
1061 mmap_write_lock(mm);
1062 vma = find_vma(mm, info->vaddr);
1063 if (!vma || !valid_vma(vma, is_register) ||
1064 file_inode(vma->vm_file) != uprobe->inode)
1065 goto unlock;
1066
1067 if (vma->vm_start > info->vaddr ||
1068 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1069 goto unlock;
1070
1071 if (is_register) {
1072 /* consult only the "caller", new consumer. */
1073 if (consumer_filter(new,
1074 UPROBE_FILTER_REGISTER, mm))
1075 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1076 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1077 if (!filter_chain(uprobe,
1078 UPROBE_FILTER_UNREGISTER, mm))
1079 err |= remove_breakpoint(uprobe, mm, info->vaddr);
1080 }
1081
1082 unlock:
1083 mmap_write_unlock(mm);
1084 free:
1085 mmput(mm);
1086 info = free_map_info(info);
1087 }
1088 out:
1089 percpu_up_write(&dup_mmap_sem);
1090 return err;
1091 }
1092
1093 static void
1094 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1095 {
1096 int err;
1097
1098 if (WARN_ON(!consumer_del(uprobe, uc)))
1099 return;
1100
1101 err = register_for_each_vma(uprobe, NULL);
1102 /* TODO : cant unregister? schedule a worker thread */
1103 if (!uprobe->consumers && !err)
1104 delete_uprobe(uprobe);
1105 }
1106
1107 /*
1108 * uprobe_unregister - unregister an already registered probe.
1109 * @inode: the file in which the probe has to be removed.
1110 * @offset: offset from the start of the file.
1111 * @uc: identify which probe if multiple probes are colocated.
1112 */
1113 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1114 {
1115 struct uprobe *uprobe;
1116
1117 uprobe = find_uprobe(inode, offset);
1118 if (WARN_ON(!uprobe))
1119 return;
1120
1121 down_write(&uprobe->register_rwsem);
1122 __uprobe_unregister(uprobe, uc);
1123 up_write(&uprobe->register_rwsem);
1124 put_uprobe(uprobe);
1125 }
1126 EXPORT_SYMBOL_GPL(uprobe_unregister);
1127
1128 /*
1129 * __uprobe_register - register a probe
1130 * @inode: the file in which the probe has to be placed.
1131 * @offset: offset from the start of the file.
1132 * @uc: information on howto handle the probe..
1133 *
1134 * Apart from the access refcount, __uprobe_register() takes a creation
1135 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1136 * inserted into the rbtree (i.e first consumer for a @inode:@offset
1137 * tuple). Creation refcount stops uprobe_unregister from freeing the
1138 * @uprobe even before the register operation is complete. Creation
1139 * refcount is released when the last @uc for the @uprobe
1140 * unregisters. Caller of __uprobe_register() is required to keep @inode
1141 * (and the containing mount) referenced.
1142 *
1143 * Return errno if it cannot successully install probes
1144 * else return 0 (success)
1145 */
1146 static int __uprobe_register(struct inode *inode, loff_t offset,
1147 loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1148 {
1149 struct uprobe *uprobe;
1150 int ret;
1151
1152 /* Uprobe must have at least one set consumer */
1153 if (!uc->handler && !uc->ret_handler)
1154 return -EINVAL;
1155
1156 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1157 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1158 return -EIO;
1159 /* Racy, just to catch the obvious mistakes */
1160 if (offset > i_size_read(inode))
1161 return -EINVAL;
1162
1163 retry:
1164 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1165 if (!uprobe)
1166 return -ENOMEM;
1167 if (IS_ERR(uprobe))
1168 return PTR_ERR(uprobe);
1169
1170 /*
1171 * We can race with uprobe_unregister()->delete_uprobe().
1172 * Check uprobe_is_active() and retry if it is false.
1173 */
1174 down_write(&uprobe->register_rwsem);
1175 ret = -EAGAIN;
1176 if (likely(uprobe_is_active(uprobe))) {
1177 consumer_add(uprobe, uc);
1178 ret = register_for_each_vma(uprobe, uc);
1179 if (ret)
1180 __uprobe_unregister(uprobe, uc);
1181 }
1182 up_write(&uprobe->register_rwsem);
1183 put_uprobe(uprobe);
1184
1185 if (unlikely(ret == -EAGAIN))
1186 goto retry;
1187 return ret;
1188 }
1189
1190 int uprobe_register(struct inode *inode, loff_t offset,
1191 struct uprobe_consumer *uc)
1192 {
1193 return __uprobe_register(inode, offset, 0, uc);
1194 }
1195 EXPORT_SYMBOL_GPL(uprobe_register);
1196
1197 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1198 loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1199 {
1200 return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1201 }
1202 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1203
1204 /*
1205 * uprobe_apply - unregister an already registered probe.
1206 * @inode: the file in which the probe has to be removed.
1207 * @offset: offset from the start of the file.
1208 * @uc: consumer which wants to add more or remove some breakpoints
1209 * @add: add or remove the breakpoints
1210 */
1211 int uprobe_apply(struct inode *inode, loff_t offset,
1212 struct uprobe_consumer *uc, bool add)
1213 {
1214 struct uprobe *uprobe;
1215 struct uprobe_consumer *con;
1216 int ret = -ENOENT;
1217
1218 uprobe = find_uprobe(inode, offset);
1219 if (WARN_ON(!uprobe))
1220 return ret;
1221
1222 down_write(&uprobe->register_rwsem);
1223 for (con = uprobe->consumers; con && con != uc ; con = con->next)
1224 ;
1225 if (con)
1226 ret = register_for_each_vma(uprobe, add ? uc : NULL);
1227 up_write(&uprobe->register_rwsem);
1228 put_uprobe(uprobe);
1229
1230 return ret;
1231 }
1232
1233 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1234 {
1235 struct vm_area_struct *vma;
1236 int err = 0;
1237
1238 mmap_read_lock(mm);
1239 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1240 unsigned long vaddr;
1241 loff_t offset;
1242
1243 if (!valid_vma(vma, false) ||
1244 file_inode(vma->vm_file) != uprobe->inode)
1245 continue;
1246
1247 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1248 if (uprobe->offset < offset ||
1249 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1250 continue;
1251
1252 vaddr = offset_to_vaddr(vma, uprobe->offset);
1253 err |= remove_breakpoint(uprobe, mm, vaddr);
1254 }
1255 mmap_read_unlock(mm);
1256
1257 return err;
1258 }
1259
1260 static struct rb_node *
1261 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1262 {
1263 struct rb_node *n = uprobes_tree.rb_node;
1264
1265 while (n) {
1266 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1267
1268 if (inode < u->inode) {
1269 n = n->rb_left;
1270 } else if (inode > u->inode) {
1271 n = n->rb_right;
1272 } else {
1273 if (max < u->offset)
1274 n = n->rb_left;
1275 else if (min > u->offset)
1276 n = n->rb_right;
1277 else
1278 break;
1279 }
1280 }
1281
1282 return n;
1283 }
1284
1285 /*
1286 * For a given range in vma, build a list of probes that need to be inserted.
1287 */
1288 static void build_probe_list(struct inode *inode,
1289 struct vm_area_struct *vma,
1290 unsigned long start, unsigned long end,
1291 struct list_head *head)
1292 {
1293 loff_t min, max;
1294 struct rb_node *n, *t;
1295 struct uprobe *u;
1296
1297 INIT_LIST_HEAD(head);
1298 min = vaddr_to_offset(vma, start);
1299 max = min + (end - start) - 1;
1300
1301 spin_lock(&uprobes_treelock);
1302 n = find_node_in_range(inode, min, max);
1303 if (n) {
1304 for (t = n; t; t = rb_prev(t)) {
1305 u = rb_entry(t, struct uprobe, rb_node);
1306 if (u->inode != inode || u->offset < min)
1307 break;
1308 list_add(&u->pending_list, head);
1309 get_uprobe(u);
1310 }
1311 for (t = n; (t = rb_next(t)); ) {
1312 u = rb_entry(t, struct uprobe, rb_node);
1313 if (u->inode != inode || u->offset > max)
1314 break;
1315 list_add(&u->pending_list, head);
1316 get_uprobe(u);
1317 }
1318 }
1319 spin_unlock(&uprobes_treelock);
1320 }
1321
1322 /* @vma contains reference counter, not the probed instruction. */
1323 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1324 {
1325 struct list_head *pos, *q;
1326 struct delayed_uprobe *du;
1327 unsigned long vaddr;
1328 int ret = 0, err = 0;
1329
1330 mutex_lock(&delayed_uprobe_lock);
1331 list_for_each_safe(pos, q, &delayed_uprobe_list) {
1332 du = list_entry(pos, struct delayed_uprobe, list);
1333
1334 if (du->mm != vma->vm_mm ||
1335 !valid_ref_ctr_vma(du->uprobe, vma))
1336 continue;
1337
1338 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1339 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1340 if (ret) {
1341 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1342 if (!err)
1343 err = ret;
1344 }
1345 delayed_uprobe_delete(du);
1346 }
1347 mutex_unlock(&delayed_uprobe_lock);
1348 return err;
1349 }
1350
1351 /*
1352 * Called from mmap_region/vma_adjust with mm->mmap_lock acquired.
1353 *
1354 * Currently we ignore all errors and always return 0, the callers
1355 * can't handle the failure anyway.
1356 */
1357 int uprobe_mmap(struct vm_area_struct *vma)
1358 {
1359 struct list_head tmp_list;
1360 struct uprobe *uprobe, *u;
1361 struct inode *inode;
1362
1363 if (no_uprobe_events())
1364 return 0;
1365
1366 if (vma->vm_file &&
1367 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1368 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1369 delayed_ref_ctr_inc(vma);
1370
1371 if (!valid_vma(vma, true))
1372 return 0;
1373
1374 inode = file_inode(vma->vm_file);
1375 if (!inode)
1376 return 0;
1377
1378 mutex_lock(uprobes_mmap_hash(inode));
1379 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1380 /*
1381 * We can race with uprobe_unregister(), this uprobe can be already
1382 * removed. But in this case filter_chain() must return false, all
1383 * consumers have gone away.
1384 */
1385 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1386 if (!fatal_signal_pending(current) &&
1387 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1388 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1389 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1390 }
1391 put_uprobe(uprobe);
1392 }
1393 mutex_unlock(uprobes_mmap_hash(inode));
1394
1395 return 0;
1396 }
1397
1398 static bool
1399 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1400 {
1401 loff_t min, max;
1402 struct inode *inode;
1403 struct rb_node *n;
1404
1405 inode = file_inode(vma->vm_file);
1406
1407 min = vaddr_to_offset(vma, start);
1408 max = min + (end - start) - 1;
1409
1410 spin_lock(&uprobes_treelock);
1411 n = find_node_in_range(inode, min, max);
1412 spin_unlock(&uprobes_treelock);
1413
1414 return !!n;
1415 }
1416
1417 /*
1418 * Called in context of a munmap of a vma.
1419 */
1420 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1421 {
1422 if (no_uprobe_events() || !valid_vma(vma, false))
1423 return;
1424
1425 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1426 return;
1427
1428 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1429 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1430 return;
1431
1432 if (vma_has_uprobes(vma, start, end))
1433 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1434 }
1435
1436 /* Slot allocation for XOL */
1437 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1438 {
1439 struct vm_area_struct *vma;
1440 int ret;
1441
1442 if (mmap_write_lock_killable(mm))
1443 return -EINTR;
1444
1445 if (mm->uprobes_state.xol_area) {
1446 ret = -EALREADY;
1447 goto fail;
1448 }
1449
1450 if (!area->vaddr) {
1451 /* Try to map as high as possible, this is only a hint. */
1452 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1453 PAGE_SIZE, 0, 0);
1454 if (IS_ERR_VALUE(area->vaddr)) {
1455 ret = area->vaddr;
1456 goto fail;
1457 }
1458 }
1459
1460 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1461 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1462 &area->xol_mapping);
1463 if (IS_ERR(vma)) {
1464 ret = PTR_ERR(vma);
1465 goto fail;
1466 }
1467
1468 ret = 0;
1469 /* pairs with get_xol_area() */
1470 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1471 fail:
1472 mmap_write_unlock(mm);
1473
1474 return ret;
1475 }
1476
1477 static struct xol_area *__create_xol_area(unsigned long vaddr)
1478 {
1479 struct mm_struct *mm = current->mm;
1480 uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1481 struct xol_area *area;
1482
1483 area = kmalloc(sizeof(*area), GFP_KERNEL);
1484 if (unlikely(!area))
1485 goto out;
1486
1487 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1488 GFP_KERNEL);
1489 if (!area->bitmap)
1490 goto free_area;
1491
1492 area->xol_mapping.name = "[uprobes]";
1493 area->xol_mapping.fault = NULL;
1494 area->xol_mapping.pages = area->pages;
1495 area->pages[0] = alloc_page(GFP_HIGHUSER);
1496 if (!area->pages[0])
1497 goto free_bitmap;
1498 area->pages[1] = NULL;
1499
1500 area->vaddr = vaddr;
1501 init_waitqueue_head(&area->wq);
1502 /* Reserve the 1st slot for get_trampoline_vaddr() */
1503 set_bit(0, area->bitmap);
1504 atomic_set(&area->slot_count, 1);
1505 arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1506
1507 if (!xol_add_vma(mm, area))
1508 return area;
1509
1510 __free_page(area->pages[0]);
1511 free_bitmap:
1512 kfree(area->bitmap);
1513 free_area:
1514 kfree(area);
1515 out:
1516 return NULL;
1517 }
1518
1519 /*
1520 * get_xol_area - Allocate process's xol_area if necessary.
1521 * This area will be used for storing instructions for execution out of line.
1522 *
1523 * Returns the allocated area or NULL.
1524 */
1525 static struct xol_area *get_xol_area(void)
1526 {
1527 struct mm_struct *mm = current->mm;
1528 struct xol_area *area;
1529
1530 if (!mm->uprobes_state.xol_area)
1531 __create_xol_area(0);
1532
1533 /* Pairs with xol_add_vma() smp_store_release() */
1534 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1535 return area;
1536 }
1537
1538 /*
1539 * uprobe_clear_state - Free the area allocated for slots.
1540 */
1541 void uprobe_clear_state(struct mm_struct *mm)
1542 {
1543 struct xol_area *area = mm->uprobes_state.xol_area;
1544
1545 mutex_lock(&delayed_uprobe_lock);
1546 delayed_uprobe_remove(NULL, mm);
1547 mutex_unlock(&delayed_uprobe_lock);
1548
1549 if (!area)
1550 return;
1551
1552 put_page(area->pages[0]);
1553 kfree(area->bitmap);
1554 kfree(area);
1555 }
1556
1557 void uprobe_start_dup_mmap(void)
1558 {
1559 percpu_down_read(&dup_mmap_sem);
1560 }
1561
1562 void uprobe_end_dup_mmap(void)
1563 {
1564 percpu_up_read(&dup_mmap_sem);
1565 }
1566
1567 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1568 {
1569 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1570 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1571 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1572 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1573 }
1574 }
1575
1576 /*
1577 * - search for a free slot.
1578 */
1579 static unsigned long xol_take_insn_slot(struct xol_area *area)
1580 {
1581 unsigned long slot_addr;
1582 int slot_nr;
1583
1584 do {
1585 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1586 if (slot_nr < UINSNS_PER_PAGE) {
1587 if (!test_and_set_bit(slot_nr, area->bitmap))
1588 break;
1589
1590 slot_nr = UINSNS_PER_PAGE;
1591 continue;
1592 }
1593 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1594 } while (slot_nr >= UINSNS_PER_PAGE);
1595
1596 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1597 atomic_inc(&area->slot_count);
1598
1599 return slot_addr;
1600 }
1601
1602 /*
1603 * xol_get_insn_slot - allocate a slot for xol.
1604 * Returns the allocated slot address or 0.
1605 */
1606 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1607 {
1608 struct xol_area *area;
1609 unsigned long xol_vaddr;
1610
1611 area = get_xol_area();
1612 if (!area)
1613 return 0;
1614
1615 xol_vaddr = xol_take_insn_slot(area);
1616 if (unlikely(!xol_vaddr))
1617 return 0;
1618
1619 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1620 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1621
1622 return xol_vaddr;
1623 }
1624
1625 /*
1626 * xol_free_insn_slot - If slot was earlier allocated by
1627 * @xol_get_insn_slot(), make the slot available for
1628 * subsequent requests.
1629 */
1630 static void xol_free_insn_slot(struct task_struct *tsk)
1631 {
1632 struct xol_area *area;
1633 unsigned long vma_end;
1634 unsigned long slot_addr;
1635
1636 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1637 return;
1638
1639 slot_addr = tsk->utask->xol_vaddr;
1640 if (unlikely(!slot_addr))
1641 return;
1642
1643 area = tsk->mm->uprobes_state.xol_area;
1644 vma_end = area->vaddr + PAGE_SIZE;
1645 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1646 unsigned long offset;
1647 int slot_nr;
1648
1649 offset = slot_addr - area->vaddr;
1650 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1651 if (slot_nr >= UINSNS_PER_PAGE)
1652 return;
1653
1654 clear_bit(slot_nr, area->bitmap);
1655 atomic_dec(&area->slot_count);
1656 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1657 if (waitqueue_active(&area->wq))
1658 wake_up(&area->wq);
1659
1660 tsk->utask->xol_vaddr = 0;
1661 }
1662 }
1663
1664 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1665 void *src, unsigned long len)
1666 {
1667 /* Initialize the slot */
1668 copy_to_page(page, vaddr, src, len);
1669
1670 /*
1671 * We probably need flush_icache_user_page() but it needs vma.
1672 * This should work on most of architectures by default. If
1673 * architecture needs to do something different it can define
1674 * its own version of the function.
1675 */
1676 flush_dcache_page(page);
1677 }
1678
1679 /**
1680 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1681 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1682 * instruction.
1683 * Return the address of the breakpoint instruction.
1684 */
1685 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1686 {
1687 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1688 }
1689
1690 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1691 {
1692 struct uprobe_task *utask = current->utask;
1693
1694 if (unlikely(utask && utask->active_uprobe))
1695 return utask->vaddr;
1696
1697 return instruction_pointer(regs);
1698 }
1699
1700 static struct return_instance *free_ret_instance(struct return_instance *ri)
1701 {
1702 struct return_instance *next = ri->next;
1703 put_uprobe(ri->uprobe);
1704 kfree(ri);
1705 return next;
1706 }
1707
1708 /*
1709 * Called with no locks held.
1710 * Called in context of an exiting or an exec-ing thread.
1711 */
1712 void uprobe_free_utask(struct task_struct *t)
1713 {
1714 struct uprobe_task *utask = t->utask;
1715 struct return_instance *ri;
1716
1717 if (!utask)
1718 return;
1719
1720 if (utask->active_uprobe)
1721 put_uprobe(utask->active_uprobe);
1722
1723 ri = utask->return_instances;
1724 while (ri)
1725 ri = free_ret_instance(ri);
1726
1727 xol_free_insn_slot(t);
1728 kfree(utask);
1729 t->utask = NULL;
1730 }
1731
1732 /*
1733 * Allocate a uprobe_task object for the task if if necessary.
1734 * Called when the thread hits a breakpoint.
1735 *
1736 * Returns:
1737 * - pointer to new uprobe_task on success
1738 * - NULL otherwise
1739 */
1740 static struct uprobe_task *get_utask(void)
1741 {
1742 if (!current->utask)
1743 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1744 return current->utask;
1745 }
1746
1747 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1748 {
1749 struct uprobe_task *n_utask;
1750 struct return_instance **p, *o, *n;
1751
1752 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1753 if (!n_utask)
1754 return -ENOMEM;
1755 t->utask = n_utask;
1756
1757 p = &n_utask->return_instances;
1758 for (o = o_utask->return_instances; o; o = o->next) {
1759 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1760 if (!n)
1761 return -ENOMEM;
1762
1763 *n = *o;
1764 get_uprobe(n->uprobe);
1765 n->next = NULL;
1766
1767 *p = n;
1768 p = &n->next;
1769 n_utask->depth++;
1770 }
1771
1772 return 0;
1773 }
1774
1775 static void uprobe_warn(struct task_struct *t, const char *msg)
1776 {
1777 pr_warn("uprobe: %s:%d failed to %s\n",
1778 current->comm, current->pid, msg);
1779 }
1780
1781 static void dup_xol_work(struct callback_head *work)
1782 {
1783 if (current->flags & PF_EXITING)
1784 return;
1785
1786 if (!__create_xol_area(current->utask->dup_xol_addr) &&
1787 !fatal_signal_pending(current))
1788 uprobe_warn(current, "dup xol area");
1789 }
1790
1791 /*
1792 * Called in context of a new clone/fork from copy_process.
1793 */
1794 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1795 {
1796 struct uprobe_task *utask = current->utask;
1797 struct mm_struct *mm = current->mm;
1798 struct xol_area *area;
1799
1800 t->utask = NULL;
1801
1802 if (!utask || !utask->return_instances)
1803 return;
1804
1805 if (mm == t->mm && !(flags & CLONE_VFORK))
1806 return;
1807
1808 if (dup_utask(t, utask))
1809 return uprobe_warn(t, "dup ret instances");
1810
1811 /* The task can fork() after dup_xol_work() fails */
1812 area = mm->uprobes_state.xol_area;
1813 if (!area)
1814 return uprobe_warn(t, "dup xol area");
1815
1816 if (mm == t->mm)
1817 return;
1818
1819 t->utask->dup_xol_addr = area->vaddr;
1820 init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1821 task_work_add(t, &t->utask->dup_xol_work, true);
1822 }
1823
1824 /*
1825 * Current area->vaddr notion assume the trampoline address is always
1826 * equal area->vaddr.
1827 *
1828 * Returns -1 in case the xol_area is not allocated.
1829 */
1830 static unsigned long get_trampoline_vaddr(void)
1831 {
1832 struct xol_area *area;
1833 unsigned long trampoline_vaddr = -1;
1834
1835 /* Pairs with xol_add_vma() smp_store_release() */
1836 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1837 if (area)
1838 trampoline_vaddr = area->vaddr;
1839
1840 return trampoline_vaddr;
1841 }
1842
1843 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1844 struct pt_regs *regs)
1845 {
1846 struct return_instance *ri = utask->return_instances;
1847 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1848
1849 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1850 ri = free_ret_instance(ri);
1851 utask->depth--;
1852 }
1853 utask->return_instances = ri;
1854 }
1855
1856 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1857 {
1858 struct return_instance *ri;
1859 struct uprobe_task *utask;
1860 unsigned long orig_ret_vaddr, trampoline_vaddr;
1861 bool chained;
1862
1863 if (!get_xol_area())
1864 return;
1865
1866 utask = get_utask();
1867 if (!utask)
1868 return;
1869
1870 if (utask->depth >= MAX_URETPROBE_DEPTH) {
1871 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1872 " nestedness limit pid/tgid=%d/%d\n",
1873 current->pid, current->tgid);
1874 return;
1875 }
1876
1877 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1878 if (!ri)
1879 return;
1880
1881 trampoline_vaddr = get_trampoline_vaddr();
1882 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1883 if (orig_ret_vaddr == -1)
1884 goto fail;
1885
1886 /* drop the entries invalidated by longjmp() */
1887 chained = (orig_ret_vaddr == trampoline_vaddr);
1888 cleanup_return_instances(utask, chained, regs);
1889
1890 /*
1891 * We don't want to keep trampoline address in stack, rather keep the
1892 * original return address of first caller thru all the consequent
1893 * instances. This also makes breakpoint unwrapping easier.
1894 */
1895 if (chained) {
1896 if (!utask->return_instances) {
1897 /*
1898 * This situation is not possible. Likely we have an
1899 * attack from user-space.
1900 */
1901 uprobe_warn(current, "handle tail call");
1902 goto fail;
1903 }
1904 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1905 }
1906
1907 ri->uprobe = get_uprobe(uprobe);
1908 ri->func = instruction_pointer(regs);
1909 ri->stack = user_stack_pointer(regs);
1910 ri->orig_ret_vaddr = orig_ret_vaddr;
1911 ri->chained = chained;
1912
1913 utask->depth++;
1914 ri->next = utask->return_instances;
1915 utask->return_instances = ri;
1916
1917 return;
1918 fail:
1919 kfree(ri);
1920 }
1921
1922 /* Prepare to single-step probed instruction out of line. */
1923 static int
1924 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1925 {
1926 struct uprobe_task *utask;
1927 unsigned long xol_vaddr;
1928 int err;
1929
1930 utask = get_utask();
1931 if (!utask)
1932 return -ENOMEM;
1933
1934 xol_vaddr = xol_get_insn_slot(uprobe);
1935 if (!xol_vaddr)
1936 return -ENOMEM;
1937
1938 utask->xol_vaddr = xol_vaddr;
1939 utask->vaddr = bp_vaddr;
1940
1941 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1942 if (unlikely(err)) {
1943 xol_free_insn_slot(current);
1944 return err;
1945 }
1946
1947 utask->active_uprobe = uprobe;
1948 utask->state = UTASK_SSTEP;
1949 return 0;
1950 }
1951
1952 /*
1953 * If we are singlestepping, then ensure this thread is not connected to
1954 * non-fatal signals until completion of singlestep. When xol insn itself
1955 * triggers the signal, restart the original insn even if the task is
1956 * already SIGKILL'ed (since coredump should report the correct ip). This
1957 * is even more important if the task has a handler for SIGSEGV/etc, The
1958 * _same_ instruction should be repeated again after return from the signal
1959 * handler, and SSTEP can never finish in this case.
1960 */
1961 bool uprobe_deny_signal(void)
1962 {
1963 struct task_struct *t = current;
1964 struct uprobe_task *utask = t->utask;
1965
1966 if (likely(!utask || !utask->active_uprobe))
1967 return false;
1968
1969 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1970
1971 if (signal_pending(t)) {
1972 spin_lock_irq(&t->sighand->siglock);
1973 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1974 spin_unlock_irq(&t->sighand->siglock);
1975
1976 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1977 utask->state = UTASK_SSTEP_TRAPPED;
1978 set_tsk_thread_flag(t, TIF_UPROBE);
1979 }
1980 }
1981
1982 return true;
1983 }
1984
1985 static void mmf_recalc_uprobes(struct mm_struct *mm)
1986 {
1987 struct vm_area_struct *vma;
1988
1989 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1990 if (!valid_vma(vma, false))
1991 continue;
1992 /*
1993 * This is not strictly accurate, we can race with
1994 * uprobe_unregister() and see the already removed
1995 * uprobe if delete_uprobe() was not yet called.
1996 * Or this uprobe can be filtered out.
1997 */
1998 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1999 return;
2000 }
2001
2002 clear_bit(MMF_HAS_UPROBES, &mm->flags);
2003 }
2004
2005 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2006 {
2007 struct page *page;
2008 uprobe_opcode_t opcode;
2009 int result;
2010
2011 pagefault_disable();
2012 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2013 pagefault_enable();
2014
2015 if (likely(result == 0))
2016 goto out;
2017
2018 /*
2019 * The NULL 'tsk' here ensures that any faults that occur here
2020 * will not be accounted to the task. 'mm' *is* current->mm,
2021 * but we treat this as a 'remote' access since it is
2022 * essentially a kernel access to the memory.
2023 */
2024 result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
2025 NULL, NULL);
2026 if (result < 0)
2027 return result;
2028
2029 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2030 put_page(page);
2031 out:
2032 /* This needs to return true for any variant of the trap insn */
2033 return is_trap_insn(&opcode);
2034 }
2035
2036 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2037 {
2038 struct mm_struct *mm = current->mm;
2039 struct uprobe *uprobe = NULL;
2040 struct vm_area_struct *vma;
2041
2042 mmap_read_lock(mm);
2043 vma = find_vma(mm, bp_vaddr);
2044 if (vma && vma->vm_start <= bp_vaddr) {
2045 if (valid_vma(vma, false)) {
2046 struct inode *inode = file_inode(vma->vm_file);
2047 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2048
2049 uprobe = find_uprobe(inode, offset);
2050 }
2051
2052 if (!uprobe)
2053 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
2054 } else {
2055 *is_swbp = -EFAULT;
2056 }
2057
2058 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2059 mmf_recalc_uprobes(mm);
2060 mmap_read_unlock(mm);
2061
2062 return uprobe;
2063 }
2064
2065 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2066 {
2067 struct uprobe_consumer *uc;
2068 int remove = UPROBE_HANDLER_REMOVE;
2069 bool need_prep = false; /* prepare return uprobe, when needed */
2070
2071 down_read(&uprobe->register_rwsem);
2072 for (uc = uprobe->consumers; uc; uc = uc->next) {
2073 int rc = 0;
2074
2075 if (uc->handler) {
2076 rc = uc->handler(uc, regs);
2077 WARN(rc & ~UPROBE_HANDLER_MASK,
2078 "bad rc=0x%x from %ps()\n", rc, uc->handler);
2079 }
2080
2081 if (uc->ret_handler)
2082 need_prep = true;
2083
2084 remove &= rc;
2085 }
2086
2087 if (need_prep && !remove)
2088 prepare_uretprobe(uprobe, regs); /* put bp at return */
2089
2090 if (remove && uprobe->consumers) {
2091 WARN_ON(!uprobe_is_active(uprobe));
2092 unapply_uprobe(uprobe, current->mm);
2093 }
2094 up_read(&uprobe->register_rwsem);
2095 }
2096
2097 static void
2098 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2099 {
2100 struct uprobe *uprobe = ri->uprobe;
2101 struct uprobe_consumer *uc;
2102
2103 down_read(&uprobe->register_rwsem);
2104 for (uc = uprobe->consumers; uc; uc = uc->next) {
2105 if (uc->ret_handler)
2106 uc->ret_handler(uc, ri->func, regs);
2107 }
2108 up_read(&uprobe->register_rwsem);
2109 }
2110
2111 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2112 {
2113 bool chained;
2114
2115 do {
2116 chained = ri->chained;
2117 ri = ri->next; /* can't be NULL if chained */
2118 } while (chained);
2119
2120 return ri;
2121 }
2122
2123 static void handle_trampoline(struct pt_regs *regs)
2124 {
2125 struct uprobe_task *utask;
2126 struct return_instance *ri, *next;
2127 bool valid;
2128
2129 utask = current->utask;
2130 if (!utask)
2131 goto sigill;
2132
2133 ri = utask->return_instances;
2134 if (!ri)
2135 goto sigill;
2136
2137 do {
2138 /*
2139 * We should throw out the frames invalidated by longjmp().
2140 * If this chain is valid, then the next one should be alive
2141 * or NULL; the latter case means that nobody but ri->func
2142 * could hit this trampoline on return. TODO: sigaltstack().
2143 */
2144 next = find_next_ret_chain(ri);
2145 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2146
2147 instruction_pointer_set(regs, ri->orig_ret_vaddr);
2148 do {
2149 if (valid)
2150 handle_uretprobe_chain(ri, regs);
2151 ri = free_ret_instance(ri);
2152 utask->depth--;
2153 } while (ri != next);
2154 } while (!valid);
2155
2156 utask->return_instances = ri;
2157 return;
2158
2159 sigill:
2160 uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2161 force_sig(SIGILL);
2162
2163 }
2164
2165 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2166 {
2167 return false;
2168 }
2169
2170 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2171 struct pt_regs *regs)
2172 {
2173 return true;
2174 }
2175
2176 /*
2177 * Run handler and ask thread to singlestep.
2178 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2179 */
2180 static void handle_swbp(struct pt_regs *regs)
2181 {
2182 struct uprobe *uprobe;
2183 unsigned long bp_vaddr;
2184 int uninitialized_var(is_swbp);
2185
2186 bp_vaddr = uprobe_get_swbp_addr(regs);
2187 if (bp_vaddr == get_trampoline_vaddr())
2188 return handle_trampoline(regs);
2189
2190 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2191 if (!uprobe) {
2192 if (is_swbp > 0) {
2193 /* No matching uprobe; signal SIGTRAP. */
2194 send_sig(SIGTRAP, current, 0);
2195 } else {
2196 /*
2197 * Either we raced with uprobe_unregister() or we can't
2198 * access this memory. The latter is only possible if
2199 * another thread plays with our ->mm. In both cases
2200 * we can simply restart. If this vma was unmapped we
2201 * can pretend this insn was not executed yet and get
2202 * the (correct) SIGSEGV after restart.
2203 */
2204 instruction_pointer_set(regs, bp_vaddr);
2205 }
2206 return;
2207 }
2208
2209 /* change it in advance for ->handler() and restart */
2210 instruction_pointer_set(regs, bp_vaddr);
2211
2212 /*
2213 * TODO: move copy_insn/etc into _register and remove this hack.
2214 * After we hit the bp, _unregister + _register can install the
2215 * new and not-yet-analyzed uprobe at the same address, restart.
2216 */
2217 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2218 goto out;
2219
2220 /*
2221 * Pairs with the smp_wmb() in prepare_uprobe().
2222 *
2223 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2224 * we must also see the stores to &uprobe->arch performed by the
2225 * prepare_uprobe() call.
2226 */
2227 smp_rmb();
2228
2229 /* Tracing handlers use ->utask to communicate with fetch methods */
2230 if (!get_utask())
2231 goto out;
2232
2233 if (arch_uprobe_ignore(&uprobe->arch, regs))
2234 goto out;
2235
2236 handler_chain(uprobe, regs);
2237
2238 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2239 goto out;
2240
2241 if (!pre_ssout(uprobe, regs, bp_vaddr))
2242 return;
2243
2244 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2245 out:
2246 put_uprobe(uprobe);
2247 }
2248
2249 /*
2250 * Perform required fix-ups and disable singlestep.
2251 * Allow pending signals to take effect.
2252 */
2253 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2254 {
2255 struct uprobe *uprobe;
2256 int err = 0;
2257
2258 uprobe = utask->active_uprobe;
2259 if (utask->state == UTASK_SSTEP_ACK)
2260 err = arch_uprobe_post_xol(&uprobe->arch, regs);
2261 else if (utask->state == UTASK_SSTEP_TRAPPED)
2262 arch_uprobe_abort_xol(&uprobe->arch, regs);
2263 else
2264 WARN_ON_ONCE(1);
2265
2266 put_uprobe(uprobe);
2267 utask->active_uprobe = NULL;
2268 utask->state = UTASK_RUNNING;
2269 xol_free_insn_slot(current);
2270
2271 spin_lock_irq(&current->sighand->siglock);
2272 recalc_sigpending(); /* see uprobe_deny_signal() */
2273 spin_unlock_irq(&current->sighand->siglock);
2274
2275 if (unlikely(err)) {
2276 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2277 force_sig(SIGILL);
2278 }
2279 }
2280
2281 /*
2282 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2283 * allows the thread to return from interrupt. After that handle_swbp()
2284 * sets utask->active_uprobe.
2285 *
2286 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2287 * and allows the thread to return from interrupt.
2288 *
2289 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2290 * uprobe_notify_resume().
2291 */
2292 void uprobe_notify_resume(struct pt_regs *regs)
2293 {
2294 struct uprobe_task *utask;
2295
2296 clear_thread_flag(TIF_UPROBE);
2297
2298 utask = current->utask;
2299 if (utask && utask->active_uprobe)
2300 handle_singlestep(utask, regs);
2301 else
2302 handle_swbp(regs);
2303 }
2304
2305 /*
2306 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2307 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2308 */
2309 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2310 {
2311 if (!current->mm)
2312 return 0;
2313
2314 if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2315 (!current->utask || !current->utask->return_instances))
2316 return 0;
2317
2318 set_thread_flag(TIF_UPROBE);
2319 return 1;
2320 }
2321
2322 /*
2323 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2324 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2325 */
2326 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2327 {
2328 struct uprobe_task *utask = current->utask;
2329
2330 if (!current->mm || !utask || !utask->active_uprobe)
2331 /* task is currently not uprobed */
2332 return 0;
2333
2334 utask->state = UTASK_SSTEP_ACK;
2335 set_thread_flag(TIF_UPROBE);
2336 return 1;
2337 }
2338
2339 static struct notifier_block uprobe_exception_nb = {
2340 .notifier_call = arch_uprobe_exception_notify,
2341 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
2342 };
2343
2344 void __init uprobes_init(void)
2345 {
2346 int i;
2347
2348 for (i = 0; i < UPROBES_HASH_SZ; i++)
2349 mutex_init(&uprobes_mmap_mutex[i]);
2350
2351 BUG_ON(register_die_notifier(&uprobe_exception_nb));
2352 }