]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - kernel/exit.c
Bluetooth: btusb: Some Qualcomm Bluetooth adapters stop working
[thirdparty/kernel/linux.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/exit.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/mmu_context.h>
70
71 static void __unhash_process(struct task_struct *p, bool group_dead)
72 {
73 nr_threads--;
74 detach_pid(p, PIDTYPE_PID);
75 if (group_dead) {
76 detach_pid(p, PIDTYPE_TGID);
77 detach_pid(p, PIDTYPE_PGID);
78 detach_pid(p, PIDTYPE_SID);
79
80 list_del_rcu(&p->tasks);
81 list_del_init(&p->sibling);
82 __this_cpu_dec(process_counts);
83 }
84 list_del_rcu(&p->thread_group);
85 list_del_rcu(&p->thread_node);
86 }
87
88 /*
89 * This function expects the tasklist_lock write-locked.
90 */
91 static void __exit_signal(struct task_struct *tsk)
92 {
93 struct signal_struct *sig = tsk->signal;
94 bool group_dead = thread_group_leader(tsk);
95 struct sighand_struct *sighand;
96 struct tty_struct *tty;
97 u64 utime, stime;
98
99 sighand = rcu_dereference_check(tsk->sighand,
100 lockdep_tasklist_lock_is_held());
101 spin_lock(&sighand->siglock);
102
103 #ifdef CONFIG_POSIX_TIMERS
104 posix_cpu_timers_exit(tsk);
105 if (group_dead)
106 posix_cpu_timers_exit_group(tsk);
107 #endif
108
109 if (group_dead) {
110 tty = sig->tty;
111 sig->tty = NULL;
112 } else {
113 /*
114 * If there is any task waiting for the group exit
115 * then notify it:
116 */
117 if (sig->notify_count > 0 && !--sig->notify_count)
118 wake_up_process(sig->group_exit_task);
119
120 if (tsk == sig->curr_target)
121 sig->curr_target = next_thread(tsk);
122 }
123
124 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
125 sizeof(unsigned long long));
126
127 /*
128 * Accumulate here the counters for all threads as they die. We could
129 * skip the group leader because it is the last user of signal_struct,
130 * but we want to avoid the race with thread_group_cputime() which can
131 * see the empty ->thread_head list.
132 */
133 task_cputime(tsk, &utime, &stime);
134 write_seqlock(&sig->stats_lock);
135 sig->utime += utime;
136 sig->stime += stime;
137 sig->gtime += task_gtime(tsk);
138 sig->min_flt += tsk->min_flt;
139 sig->maj_flt += tsk->maj_flt;
140 sig->nvcsw += tsk->nvcsw;
141 sig->nivcsw += tsk->nivcsw;
142 sig->inblock += task_io_get_inblock(tsk);
143 sig->oublock += task_io_get_oublock(tsk);
144 task_io_accounting_add(&sig->ioac, &tsk->ioac);
145 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
146 sig->nr_threads--;
147 __unhash_process(tsk, group_dead);
148 write_sequnlock(&sig->stats_lock);
149
150 /*
151 * Do this under ->siglock, we can race with another thread
152 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
153 */
154 flush_sigqueue(&tsk->pending);
155 tsk->sighand = NULL;
156 spin_unlock(&sighand->siglock);
157
158 __cleanup_sighand(sighand);
159 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
160 if (group_dead) {
161 flush_sigqueue(&sig->shared_pending);
162 tty_kref_put(tty);
163 }
164 }
165
166 static void delayed_put_task_struct(struct rcu_head *rhp)
167 {
168 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
169
170 perf_event_delayed_put(tsk);
171 trace_sched_process_free(tsk);
172 put_task_struct(tsk);
173 }
174
175 void put_task_struct_rcu_user(struct task_struct *task)
176 {
177 if (refcount_dec_and_test(&task->rcu_users))
178 call_rcu(&task->rcu, delayed_put_task_struct);
179 }
180
181 void release_task(struct task_struct *p)
182 {
183 struct task_struct *leader;
184 struct pid *thread_pid;
185 int zap_leader;
186 repeat:
187 /* don't need to get the RCU readlock here - the process is dead and
188 * can't be modifying its own credentials. But shut RCU-lockdep up */
189 rcu_read_lock();
190 atomic_dec(&__task_cred(p)->user->processes);
191 rcu_read_unlock();
192
193 cgroup_release(p);
194
195 write_lock_irq(&tasklist_lock);
196 ptrace_release_task(p);
197 thread_pid = get_pid(p->thread_pid);
198 __exit_signal(p);
199
200 /*
201 * If we are the last non-leader member of the thread
202 * group, and the leader is zombie, then notify the
203 * group leader's parent process. (if it wants notification.)
204 */
205 zap_leader = 0;
206 leader = p->group_leader;
207 if (leader != p && thread_group_empty(leader)
208 && leader->exit_state == EXIT_ZOMBIE) {
209 /*
210 * If we were the last child thread and the leader has
211 * exited already, and the leader's parent ignores SIGCHLD,
212 * then we are the one who should release the leader.
213 */
214 zap_leader = do_notify_parent(leader, leader->exit_signal);
215 if (zap_leader)
216 leader->exit_state = EXIT_DEAD;
217 }
218
219 write_unlock_irq(&tasklist_lock);
220 seccomp_filter_release(p);
221 proc_flush_pid(thread_pid);
222 put_pid(thread_pid);
223 release_thread(p);
224 put_task_struct_rcu_user(p);
225
226 p = leader;
227 if (unlikely(zap_leader))
228 goto repeat;
229 }
230
231 int rcuwait_wake_up(struct rcuwait *w)
232 {
233 int ret = 0;
234 struct task_struct *task;
235
236 rcu_read_lock();
237
238 /*
239 * Order condition vs @task, such that everything prior to the load
240 * of @task is visible. This is the condition as to why the user called
241 * rcuwait_wake() in the first place. Pairs with set_current_state()
242 * barrier (A) in rcuwait_wait_event().
243 *
244 * WAIT WAKE
245 * [S] tsk = current [S] cond = true
246 * MB (A) MB (B)
247 * [L] cond [L] tsk
248 */
249 smp_mb(); /* (B) */
250
251 task = rcu_dereference(w->task);
252 if (task)
253 ret = wake_up_process(task);
254 rcu_read_unlock();
255
256 return ret;
257 }
258 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
259
260 /*
261 * Determine if a process group is "orphaned", according to the POSIX
262 * definition in 2.2.2.52. Orphaned process groups are not to be affected
263 * by terminal-generated stop signals. Newly orphaned process groups are
264 * to receive a SIGHUP and a SIGCONT.
265 *
266 * "I ask you, have you ever known what it is to be an orphan?"
267 */
268 static int will_become_orphaned_pgrp(struct pid *pgrp,
269 struct task_struct *ignored_task)
270 {
271 struct task_struct *p;
272
273 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
274 if ((p == ignored_task) ||
275 (p->exit_state && thread_group_empty(p)) ||
276 is_global_init(p->real_parent))
277 continue;
278
279 if (task_pgrp(p->real_parent) != pgrp &&
280 task_session(p->real_parent) == task_session(p))
281 return 0;
282 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
283
284 return 1;
285 }
286
287 int is_current_pgrp_orphaned(void)
288 {
289 int retval;
290
291 read_lock(&tasklist_lock);
292 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
293 read_unlock(&tasklist_lock);
294
295 return retval;
296 }
297
298 static bool has_stopped_jobs(struct pid *pgrp)
299 {
300 struct task_struct *p;
301
302 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
303 if (p->signal->flags & SIGNAL_STOP_STOPPED)
304 return true;
305 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
306
307 return false;
308 }
309
310 /*
311 * Check to see if any process groups have become orphaned as
312 * a result of our exiting, and if they have any stopped jobs,
313 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
314 */
315 static void
316 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
317 {
318 struct pid *pgrp = task_pgrp(tsk);
319 struct task_struct *ignored_task = tsk;
320
321 if (!parent)
322 /* exit: our father is in a different pgrp than
323 * we are and we were the only connection outside.
324 */
325 parent = tsk->real_parent;
326 else
327 /* reparent: our child is in a different pgrp than
328 * we are, and it was the only connection outside.
329 */
330 ignored_task = NULL;
331
332 if (task_pgrp(parent) != pgrp &&
333 task_session(parent) == task_session(tsk) &&
334 will_become_orphaned_pgrp(pgrp, ignored_task) &&
335 has_stopped_jobs(pgrp)) {
336 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
337 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
338 }
339 }
340
341 #ifdef CONFIG_MEMCG
342 /*
343 * A task is exiting. If it owned this mm, find a new owner for the mm.
344 */
345 void mm_update_next_owner(struct mm_struct *mm)
346 {
347 struct task_struct *c, *g, *p = current;
348
349 retry:
350 /*
351 * If the exiting or execing task is not the owner, it's
352 * someone else's problem.
353 */
354 if (mm->owner != p)
355 return;
356 /*
357 * The current owner is exiting/execing and there are no other
358 * candidates. Do not leave the mm pointing to a possibly
359 * freed task structure.
360 */
361 if (atomic_read(&mm->mm_users) <= 1) {
362 WRITE_ONCE(mm->owner, NULL);
363 return;
364 }
365
366 read_lock(&tasklist_lock);
367 /*
368 * Search in the children
369 */
370 list_for_each_entry(c, &p->children, sibling) {
371 if (c->mm == mm)
372 goto assign_new_owner;
373 }
374
375 /*
376 * Search in the siblings
377 */
378 list_for_each_entry(c, &p->real_parent->children, sibling) {
379 if (c->mm == mm)
380 goto assign_new_owner;
381 }
382
383 /*
384 * Search through everything else, we should not get here often.
385 */
386 for_each_process(g) {
387 if (g->flags & PF_KTHREAD)
388 continue;
389 for_each_thread(g, c) {
390 if (c->mm == mm)
391 goto assign_new_owner;
392 if (c->mm)
393 break;
394 }
395 }
396 read_unlock(&tasklist_lock);
397 /*
398 * We found no owner yet mm_users > 1: this implies that we are
399 * most likely racing with swapoff (try_to_unuse()) or /proc or
400 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
401 */
402 WRITE_ONCE(mm->owner, NULL);
403 return;
404
405 assign_new_owner:
406 BUG_ON(c == p);
407 get_task_struct(c);
408 /*
409 * The task_lock protects c->mm from changing.
410 * We always want mm->owner->mm == mm
411 */
412 task_lock(c);
413 /*
414 * Delay read_unlock() till we have the task_lock()
415 * to ensure that c does not slip away underneath us
416 */
417 read_unlock(&tasklist_lock);
418 if (c->mm != mm) {
419 task_unlock(c);
420 put_task_struct(c);
421 goto retry;
422 }
423 WRITE_ONCE(mm->owner, c);
424 task_unlock(c);
425 put_task_struct(c);
426 }
427 #endif /* CONFIG_MEMCG */
428
429 /*
430 * Turn us into a lazy TLB process if we
431 * aren't already..
432 */
433 static void exit_mm(void)
434 {
435 struct mm_struct *mm = current->mm;
436 struct core_state *core_state;
437
438 exit_mm_release(current, mm);
439 if (!mm)
440 return;
441 sync_mm_rss(mm);
442 /*
443 * Serialize with any possible pending coredump.
444 * We must hold mmap_lock around checking core_state
445 * and clearing tsk->mm. The core-inducing thread
446 * will increment ->nr_threads for each thread in the
447 * group with ->mm != NULL.
448 */
449 mmap_read_lock(mm);
450 core_state = mm->core_state;
451 if (core_state) {
452 struct core_thread self;
453
454 mmap_read_unlock(mm);
455
456 self.task = current;
457 if (self.task->flags & PF_SIGNALED)
458 self.next = xchg(&core_state->dumper.next, &self);
459 else
460 self.task = NULL;
461 /*
462 * Implies mb(), the result of xchg() must be visible
463 * to core_state->dumper.
464 */
465 if (atomic_dec_and_test(&core_state->nr_threads))
466 complete(&core_state->startup);
467
468 for (;;) {
469 set_current_state(TASK_UNINTERRUPTIBLE);
470 if (!self.task) /* see coredump_finish() */
471 break;
472 freezable_schedule();
473 }
474 __set_current_state(TASK_RUNNING);
475 mmap_read_lock(mm);
476 }
477 mmgrab(mm);
478 BUG_ON(mm != current->active_mm);
479 /* more a memory barrier than a real lock */
480 task_lock(current);
481 /*
482 * When a thread stops operating on an address space, the loop
483 * in membarrier_private_expedited() may not observe that
484 * tsk->mm, and the loop in membarrier_global_expedited() may
485 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
486 * rq->membarrier_state, so those would not issue an IPI.
487 * Membarrier requires a memory barrier after accessing
488 * user-space memory, before clearing tsk->mm or the
489 * rq->membarrier_state.
490 */
491 smp_mb__after_spinlock();
492 local_irq_disable();
493 current->mm = NULL;
494 membarrier_update_current_mm(NULL);
495 enter_lazy_tlb(mm, current);
496 local_irq_enable();
497 task_unlock(current);
498 mmap_read_unlock(mm);
499 mm_update_next_owner(mm);
500 mmput(mm);
501 if (test_thread_flag(TIF_MEMDIE))
502 exit_oom_victim();
503 }
504
505 static struct task_struct *find_alive_thread(struct task_struct *p)
506 {
507 struct task_struct *t;
508
509 for_each_thread(p, t) {
510 if (!(t->flags & PF_EXITING))
511 return t;
512 }
513 return NULL;
514 }
515
516 static struct task_struct *find_child_reaper(struct task_struct *father,
517 struct list_head *dead)
518 __releases(&tasklist_lock)
519 __acquires(&tasklist_lock)
520 {
521 struct pid_namespace *pid_ns = task_active_pid_ns(father);
522 struct task_struct *reaper = pid_ns->child_reaper;
523 struct task_struct *p, *n;
524
525 if (likely(reaper != father))
526 return reaper;
527
528 reaper = find_alive_thread(father);
529 if (reaper) {
530 pid_ns->child_reaper = reaper;
531 return reaper;
532 }
533
534 write_unlock_irq(&tasklist_lock);
535
536 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
537 list_del_init(&p->ptrace_entry);
538 release_task(p);
539 }
540
541 zap_pid_ns_processes(pid_ns);
542 write_lock_irq(&tasklist_lock);
543
544 return father;
545 }
546
547 /*
548 * When we die, we re-parent all our children, and try to:
549 * 1. give them to another thread in our thread group, if such a member exists
550 * 2. give it to the first ancestor process which prctl'd itself as a
551 * child_subreaper for its children (like a service manager)
552 * 3. give it to the init process (PID 1) in our pid namespace
553 */
554 static struct task_struct *find_new_reaper(struct task_struct *father,
555 struct task_struct *child_reaper)
556 {
557 struct task_struct *thread, *reaper;
558
559 thread = find_alive_thread(father);
560 if (thread)
561 return thread;
562
563 if (father->signal->has_child_subreaper) {
564 unsigned int ns_level = task_pid(father)->level;
565 /*
566 * Find the first ->is_child_subreaper ancestor in our pid_ns.
567 * We can't check reaper != child_reaper to ensure we do not
568 * cross the namespaces, the exiting parent could be injected
569 * by setns() + fork().
570 * We check pid->level, this is slightly more efficient than
571 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
572 */
573 for (reaper = father->real_parent;
574 task_pid(reaper)->level == ns_level;
575 reaper = reaper->real_parent) {
576 if (reaper == &init_task)
577 break;
578 if (!reaper->signal->is_child_subreaper)
579 continue;
580 thread = find_alive_thread(reaper);
581 if (thread)
582 return thread;
583 }
584 }
585
586 return child_reaper;
587 }
588
589 /*
590 * Any that need to be release_task'd are put on the @dead list.
591 */
592 static void reparent_leader(struct task_struct *father, struct task_struct *p,
593 struct list_head *dead)
594 {
595 if (unlikely(p->exit_state == EXIT_DEAD))
596 return;
597
598 /* We don't want people slaying init. */
599 p->exit_signal = SIGCHLD;
600
601 /* If it has exited notify the new parent about this child's death. */
602 if (!p->ptrace &&
603 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
604 if (do_notify_parent(p, p->exit_signal)) {
605 p->exit_state = EXIT_DEAD;
606 list_add(&p->ptrace_entry, dead);
607 }
608 }
609
610 kill_orphaned_pgrp(p, father);
611 }
612
613 /*
614 * This does two things:
615 *
616 * A. Make init inherit all the child processes
617 * B. Check to see if any process groups have become orphaned
618 * as a result of our exiting, and if they have any stopped
619 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
620 */
621 static void forget_original_parent(struct task_struct *father,
622 struct list_head *dead)
623 {
624 struct task_struct *p, *t, *reaper;
625
626 if (unlikely(!list_empty(&father->ptraced)))
627 exit_ptrace(father, dead);
628
629 /* Can drop and reacquire tasklist_lock */
630 reaper = find_child_reaper(father, dead);
631 if (list_empty(&father->children))
632 return;
633
634 reaper = find_new_reaper(father, reaper);
635 list_for_each_entry(p, &father->children, sibling) {
636 for_each_thread(p, t) {
637 RCU_INIT_POINTER(t->real_parent, reaper);
638 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
639 if (likely(!t->ptrace))
640 t->parent = t->real_parent;
641 if (t->pdeath_signal)
642 group_send_sig_info(t->pdeath_signal,
643 SEND_SIG_NOINFO, t,
644 PIDTYPE_TGID);
645 }
646 /*
647 * If this is a threaded reparent there is no need to
648 * notify anyone anything has happened.
649 */
650 if (!same_thread_group(reaper, father))
651 reparent_leader(father, p, dead);
652 }
653 list_splice_tail_init(&father->children, &reaper->children);
654 }
655
656 /*
657 * Send signals to all our closest relatives so that they know
658 * to properly mourn us..
659 */
660 static void exit_notify(struct task_struct *tsk, int group_dead)
661 {
662 bool autoreap;
663 struct task_struct *p, *n;
664 LIST_HEAD(dead);
665
666 write_lock_irq(&tasklist_lock);
667 forget_original_parent(tsk, &dead);
668
669 if (group_dead)
670 kill_orphaned_pgrp(tsk->group_leader, NULL);
671
672 tsk->exit_state = EXIT_ZOMBIE;
673 if (unlikely(tsk->ptrace)) {
674 int sig = thread_group_leader(tsk) &&
675 thread_group_empty(tsk) &&
676 !ptrace_reparented(tsk) ?
677 tsk->exit_signal : SIGCHLD;
678 autoreap = do_notify_parent(tsk, sig);
679 } else if (thread_group_leader(tsk)) {
680 autoreap = thread_group_empty(tsk) &&
681 do_notify_parent(tsk, tsk->exit_signal);
682 } else {
683 autoreap = true;
684 }
685
686 if (autoreap) {
687 tsk->exit_state = EXIT_DEAD;
688 list_add(&tsk->ptrace_entry, &dead);
689 }
690
691 /* mt-exec, de_thread() is waiting for group leader */
692 if (unlikely(tsk->signal->notify_count < 0))
693 wake_up_process(tsk->signal->group_exit_task);
694 write_unlock_irq(&tasklist_lock);
695
696 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
697 list_del_init(&p->ptrace_entry);
698 release_task(p);
699 }
700 }
701
702 #ifdef CONFIG_DEBUG_STACK_USAGE
703 static void check_stack_usage(void)
704 {
705 static DEFINE_SPINLOCK(low_water_lock);
706 static int lowest_to_date = THREAD_SIZE;
707 unsigned long free;
708
709 free = stack_not_used(current);
710
711 if (free >= lowest_to_date)
712 return;
713
714 spin_lock(&low_water_lock);
715 if (free < lowest_to_date) {
716 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
717 current->comm, task_pid_nr(current), free);
718 lowest_to_date = free;
719 }
720 spin_unlock(&low_water_lock);
721 }
722 #else
723 static inline void check_stack_usage(void) {}
724 #endif
725
726 void __noreturn do_exit(long code)
727 {
728 struct task_struct *tsk = current;
729 int group_dead;
730
731 /*
732 * We can get here from a kernel oops, sometimes with preemption off.
733 * Start by checking for critical errors.
734 * Then fix up important state like USER_DS and preemption.
735 * Then do everything else.
736 */
737
738 WARN_ON(blk_needs_flush_plug(tsk));
739
740 if (unlikely(in_interrupt()))
741 panic("Aiee, killing interrupt handler!");
742 if (unlikely(!tsk->pid))
743 panic("Attempted to kill the idle task!");
744
745 /*
746 * If do_exit is called because this processes oopsed, it's possible
747 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
748 * continuing. Amongst other possible reasons, this is to prevent
749 * mm_release()->clear_child_tid() from writing to a user-controlled
750 * kernel address.
751 */
752 force_uaccess_begin();
753
754 if (unlikely(in_atomic())) {
755 pr_info("note: %s[%d] exited with preempt_count %d\n",
756 current->comm, task_pid_nr(current),
757 preempt_count());
758 preempt_count_set(PREEMPT_ENABLED);
759 }
760
761 profile_task_exit(tsk);
762 kcov_task_exit(tsk);
763
764 ptrace_event(PTRACE_EVENT_EXIT, code);
765
766 validate_creds_for_do_exit(tsk);
767
768 /*
769 * We're taking recursive faults here in do_exit. Safest is to just
770 * leave this task alone and wait for reboot.
771 */
772 if (unlikely(tsk->flags & PF_EXITING)) {
773 pr_alert("Fixing recursive fault but reboot is needed!\n");
774 futex_exit_recursive(tsk);
775 set_current_state(TASK_UNINTERRUPTIBLE);
776 schedule();
777 }
778
779 exit_signals(tsk); /* sets PF_EXITING */
780
781 /* sync mm's RSS info before statistics gathering */
782 if (tsk->mm)
783 sync_mm_rss(tsk->mm);
784 acct_update_integrals(tsk);
785 group_dead = atomic_dec_and_test(&tsk->signal->live);
786 if (group_dead) {
787 /*
788 * If the last thread of global init has exited, panic
789 * immediately to get a useable coredump.
790 */
791 if (unlikely(is_global_init(tsk)))
792 panic("Attempted to kill init! exitcode=0x%08x\n",
793 tsk->signal->group_exit_code ?: (int)code);
794
795 #ifdef CONFIG_POSIX_TIMERS
796 hrtimer_cancel(&tsk->signal->real_timer);
797 exit_itimers(tsk->signal);
798 #endif
799 if (tsk->mm)
800 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
801 }
802 acct_collect(code, group_dead);
803 if (group_dead)
804 tty_audit_exit();
805 audit_free(tsk);
806
807 tsk->exit_code = code;
808 taskstats_exit(tsk, group_dead);
809
810 exit_mm();
811
812 if (group_dead)
813 acct_process();
814 trace_sched_process_exit(tsk);
815
816 exit_sem(tsk);
817 exit_shm(tsk);
818 exit_files(tsk);
819 exit_fs(tsk);
820 if (group_dead)
821 disassociate_ctty(1);
822 exit_task_namespaces(tsk);
823 exit_task_work(tsk);
824 exit_thread(tsk);
825
826 /*
827 * Flush inherited counters to the parent - before the parent
828 * gets woken up by child-exit notifications.
829 *
830 * because of cgroup mode, must be called before cgroup_exit()
831 */
832 perf_event_exit_task(tsk);
833
834 sched_autogroup_exit_task(tsk);
835 cgroup_exit(tsk);
836
837 /*
838 * FIXME: do that only when needed, using sched_exit tracepoint
839 */
840 flush_ptrace_hw_breakpoint(tsk);
841
842 exit_tasks_rcu_start();
843 exit_notify(tsk, group_dead);
844 proc_exit_connector(tsk);
845 mpol_put_task_policy(tsk);
846 #ifdef CONFIG_FUTEX
847 if (unlikely(current->pi_state_cache))
848 kfree(current->pi_state_cache);
849 #endif
850 /*
851 * Make sure we are holding no locks:
852 */
853 debug_check_no_locks_held();
854
855 if (tsk->io_context)
856 exit_io_context(tsk);
857
858 if (tsk->splice_pipe)
859 free_pipe_info(tsk->splice_pipe);
860
861 if (tsk->task_frag.page)
862 put_page(tsk->task_frag.page);
863
864 validate_creds_for_do_exit(tsk);
865
866 check_stack_usage();
867 preempt_disable();
868 if (tsk->nr_dirtied)
869 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
870 exit_rcu();
871 exit_tasks_rcu_finish();
872
873 lockdep_free_task(tsk);
874 do_task_dead();
875 }
876 EXPORT_SYMBOL_GPL(do_exit);
877
878 void complete_and_exit(struct completion *comp, long code)
879 {
880 if (comp)
881 complete(comp);
882
883 do_exit(code);
884 }
885 EXPORT_SYMBOL(complete_and_exit);
886
887 SYSCALL_DEFINE1(exit, int, error_code)
888 {
889 do_exit((error_code&0xff)<<8);
890 }
891
892 /*
893 * Take down every thread in the group. This is called by fatal signals
894 * as well as by sys_exit_group (below).
895 */
896 void
897 do_group_exit(int exit_code)
898 {
899 struct signal_struct *sig = current->signal;
900
901 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
902
903 if (signal_group_exit(sig))
904 exit_code = sig->group_exit_code;
905 else if (!thread_group_empty(current)) {
906 struct sighand_struct *const sighand = current->sighand;
907
908 spin_lock_irq(&sighand->siglock);
909 if (signal_group_exit(sig))
910 /* Another thread got here before we took the lock. */
911 exit_code = sig->group_exit_code;
912 else {
913 sig->group_exit_code = exit_code;
914 sig->flags = SIGNAL_GROUP_EXIT;
915 zap_other_threads(current);
916 }
917 spin_unlock_irq(&sighand->siglock);
918 }
919
920 do_exit(exit_code);
921 /* NOTREACHED */
922 }
923
924 /*
925 * this kills every thread in the thread group. Note that any externally
926 * wait4()-ing process will get the correct exit code - even if this
927 * thread is not the thread group leader.
928 */
929 SYSCALL_DEFINE1(exit_group, int, error_code)
930 {
931 do_group_exit((error_code & 0xff) << 8);
932 /* NOTREACHED */
933 return 0;
934 }
935
936 struct waitid_info {
937 pid_t pid;
938 uid_t uid;
939 int status;
940 int cause;
941 };
942
943 struct wait_opts {
944 enum pid_type wo_type;
945 int wo_flags;
946 struct pid *wo_pid;
947
948 struct waitid_info *wo_info;
949 int wo_stat;
950 struct rusage *wo_rusage;
951
952 wait_queue_entry_t child_wait;
953 int notask_error;
954 };
955
956 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
957 {
958 return wo->wo_type == PIDTYPE_MAX ||
959 task_pid_type(p, wo->wo_type) == wo->wo_pid;
960 }
961
962 static int
963 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
964 {
965 if (!eligible_pid(wo, p))
966 return 0;
967
968 /*
969 * Wait for all children (clone and not) if __WALL is set or
970 * if it is traced by us.
971 */
972 if (ptrace || (wo->wo_flags & __WALL))
973 return 1;
974
975 /*
976 * Otherwise, wait for clone children *only* if __WCLONE is set;
977 * otherwise, wait for non-clone children *only*.
978 *
979 * Note: a "clone" child here is one that reports to its parent
980 * using a signal other than SIGCHLD, or a non-leader thread which
981 * we can only see if it is traced by us.
982 */
983 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
984 return 0;
985
986 return 1;
987 }
988
989 /*
990 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
991 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
992 * the lock and this task is uninteresting. If we return nonzero, we have
993 * released the lock and the system call should return.
994 */
995 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
996 {
997 int state, status;
998 pid_t pid = task_pid_vnr(p);
999 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1000 struct waitid_info *infop;
1001
1002 if (!likely(wo->wo_flags & WEXITED))
1003 return 0;
1004
1005 if (unlikely(wo->wo_flags & WNOWAIT)) {
1006 status = p->exit_code;
1007 get_task_struct(p);
1008 read_unlock(&tasklist_lock);
1009 sched_annotate_sleep();
1010 if (wo->wo_rusage)
1011 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1012 put_task_struct(p);
1013 goto out_info;
1014 }
1015 /*
1016 * Move the task's state to DEAD/TRACE, only one thread can do this.
1017 */
1018 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1019 EXIT_TRACE : EXIT_DEAD;
1020 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1021 return 0;
1022 /*
1023 * We own this thread, nobody else can reap it.
1024 */
1025 read_unlock(&tasklist_lock);
1026 sched_annotate_sleep();
1027
1028 /*
1029 * Check thread_group_leader() to exclude the traced sub-threads.
1030 */
1031 if (state == EXIT_DEAD && thread_group_leader(p)) {
1032 struct signal_struct *sig = p->signal;
1033 struct signal_struct *psig = current->signal;
1034 unsigned long maxrss;
1035 u64 tgutime, tgstime;
1036
1037 /*
1038 * The resource counters for the group leader are in its
1039 * own task_struct. Those for dead threads in the group
1040 * are in its signal_struct, as are those for the child
1041 * processes it has previously reaped. All these
1042 * accumulate in the parent's signal_struct c* fields.
1043 *
1044 * We don't bother to take a lock here to protect these
1045 * p->signal fields because the whole thread group is dead
1046 * and nobody can change them.
1047 *
1048 * psig->stats_lock also protects us from our sub-theads
1049 * which can reap other children at the same time. Until
1050 * we change k_getrusage()-like users to rely on this lock
1051 * we have to take ->siglock as well.
1052 *
1053 * We use thread_group_cputime_adjusted() to get times for
1054 * the thread group, which consolidates times for all threads
1055 * in the group including the group leader.
1056 */
1057 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1058 spin_lock_irq(&current->sighand->siglock);
1059 write_seqlock(&psig->stats_lock);
1060 psig->cutime += tgutime + sig->cutime;
1061 psig->cstime += tgstime + sig->cstime;
1062 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1063 psig->cmin_flt +=
1064 p->min_flt + sig->min_flt + sig->cmin_flt;
1065 psig->cmaj_flt +=
1066 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1067 psig->cnvcsw +=
1068 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1069 psig->cnivcsw +=
1070 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1071 psig->cinblock +=
1072 task_io_get_inblock(p) +
1073 sig->inblock + sig->cinblock;
1074 psig->coublock +=
1075 task_io_get_oublock(p) +
1076 sig->oublock + sig->coublock;
1077 maxrss = max(sig->maxrss, sig->cmaxrss);
1078 if (psig->cmaxrss < maxrss)
1079 psig->cmaxrss = maxrss;
1080 task_io_accounting_add(&psig->ioac, &p->ioac);
1081 task_io_accounting_add(&psig->ioac, &sig->ioac);
1082 write_sequnlock(&psig->stats_lock);
1083 spin_unlock_irq(&current->sighand->siglock);
1084 }
1085
1086 if (wo->wo_rusage)
1087 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1088 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1089 ? p->signal->group_exit_code : p->exit_code;
1090 wo->wo_stat = status;
1091
1092 if (state == EXIT_TRACE) {
1093 write_lock_irq(&tasklist_lock);
1094 /* We dropped tasklist, ptracer could die and untrace */
1095 ptrace_unlink(p);
1096
1097 /* If parent wants a zombie, don't release it now */
1098 state = EXIT_ZOMBIE;
1099 if (do_notify_parent(p, p->exit_signal))
1100 state = EXIT_DEAD;
1101 p->exit_state = state;
1102 write_unlock_irq(&tasklist_lock);
1103 }
1104 if (state == EXIT_DEAD)
1105 release_task(p);
1106
1107 out_info:
1108 infop = wo->wo_info;
1109 if (infop) {
1110 if ((status & 0x7f) == 0) {
1111 infop->cause = CLD_EXITED;
1112 infop->status = status >> 8;
1113 } else {
1114 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1115 infop->status = status & 0x7f;
1116 }
1117 infop->pid = pid;
1118 infop->uid = uid;
1119 }
1120
1121 return pid;
1122 }
1123
1124 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1125 {
1126 if (ptrace) {
1127 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1128 return &p->exit_code;
1129 } else {
1130 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1131 return &p->signal->group_exit_code;
1132 }
1133 return NULL;
1134 }
1135
1136 /**
1137 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1138 * @wo: wait options
1139 * @ptrace: is the wait for ptrace
1140 * @p: task to wait for
1141 *
1142 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1143 *
1144 * CONTEXT:
1145 * read_lock(&tasklist_lock), which is released if return value is
1146 * non-zero. Also, grabs and releases @p->sighand->siglock.
1147 *
1148 * RETURNS:
1149 * 0 if wait condition didn't exist and search for other wait conditions
1150 * should continue. Non-zero return, -errno on failure and @p's pid on
1151 * success, implies that tasklist_lock is released and wait condition
1152 * search should terminate.
1153 */
1154 static int wait_task_stopped(struct wait_opts *wo,
1155 int ptrace, struct task_struct *p)
1156 {
1157 struct waitid_info *infop;
1158 int exit_code, *p_code, why;
1159 uid_t uid = 0; /* unneeded, required by compiler */
1160 pid_t pid;
1161
1162 /*
1163 * Traditionally we see ptrace'd stopped tasks regardless of options.
1164 */
1165 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1166 return 0;
1167
1168 if (!task_stopped_code(p, ptrace))
1169 return 0;
1170
1171 exit_code = 0;
1172 spin_lock_irq(&p->sighand->siglock);
1173
1174 p_code = task_stopped_code(p, ptrace);
1175 if (unlikely(!p_code))
1176 goto unlock_sig;
1177
1178 exit_code = *p_code;
1179 if (!exit_code)
1180 goto unlock_sig;
1181
1182 if (!unlikely(wo->wo_flags & WNOWAIT))
1183 *p_code = 0;
1184
1185 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1186 unlock_sig:
1187 spin_unlock_irq(&p->sighand->siglock);
1188 if (!exit_code)
1189 return 0;
1190
1191 /*
1192 * Now we are pretty sure this task is interesting.
1193 * Make sure it doesn't get reaped out from under us while we
1194 * give up the lock and then examine it below. We don't want to
1195 * keep holding onto the tasklist_lock while we call getrusage and
1196 * possibly take page faults for user memory.
1197 */
1198 get_task_struct(p);
1199 pid = task_pid_vnr(p);
1200 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1201 read_unlock(&tasklist_lock);
1202 sched_annotate_sleep();
1203 if (wo->wo_rusage)
1204 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1205 put_task_struct(p);
1206
1207 if (likely(!(wo->wo_flags & WNOWAIT)))
1208 wo->wo_stat = (exit_code << 8) | 0x7f;
1209
1210 infop = wo->wo_info;
1211 if (infop) {
1212 infop->cause = why;
1213 infop->status = exit_code;
1214 infop->pid = pid;
1215 infop->uid = uid;
1216 }
1217 return pid;
1218 }
1219
1220 /*
1221 * Handle do_wait work for one task in a live, non-stopped state.
1222 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1223 * the lock and this task is uninteresting. If we return nonzero, we have
1224 * released the lock and the system call should return.
1225 */
1226 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1227 {
1228 struct waitid_info *infop;
1229 pid_t pid;
1230 uid_t uid;
1231
1232 if (!unlikely(wo->wo_flags & WCONTINUED))
1233 return 0;
1234
1235 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1236 return 0;
1237
1238 spin_lock_irq(&p->sighand->siglock);
1239 /* Re-check with the lock held. */
1240 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1241 spin_unlock_irq(&p->sighand->siglock);
1242 return 0;
1243 }
1244 if (!unlikely(wo->wo_flags & WNOWAIT))
1245 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1246 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1247 spin_unlock_irq(&p->sighand->siglock);
1248
1249 pid = task_pid_vnr(p);
1250 get_task_struct(p);
1251 read_unlock(&tasklist_lock);
1252 sched_annotate_sleep();
1253 if (wo->wo_rusage)
1254 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1255 put_task_struct(p);
1256
1257 infop = wo->wo_info;
1258 if (!infop) {
1259 wo->wo_stat = 0xffff;
1260 } else {
1261 infop->cause = CLD_CONTINUED;
1262 infop->pid = pid;
1263 infop->uid = uid;
1264 infop->status = SIGCONT;
1265 }
1266 return pid;
1267 }
1268
1269 /*
1270 * Consider @p for a wait by @parent.
1271 *
1272 * -ECHILD should be in ->notask_error before the first call.
1273 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1274 * Returns zero if the search for a child should continue;
1275 * then ->notask_error is 0 if @p is an eligible child,
1276 * or still -ECHILD.
1277 */
1278 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1279 struct task_struct *p)
1280 {
1281 /*
1282 * We can race with wait_task_zombie() from another thread.
1283 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1284 * can't confuse the checks below.
1285 */
1286 int exit_state = READ_ONCE(p->exit_state);
1287 int ret;
1288
1289 if (unlikely(exit_state == EXIT_DEAD))
1290 return 0;
1291
1292 ret = eligible_child(wo, ptrace, p);
1293 if (!ret)
1294 return ret;
1295
1296 if (unlikely(exit_state == EXIT_TRACE)) {
1297 /*
1298 * ptrace == 0 means we are the natural parent. In this case
1299 * we should clear notask_error, debugger will notify us.
1300 */
1301 if (likely(!ptrace))
1302 wo->notask_error = 0;
1303 return 0;
1304 }
1305
1306 if (likely(!ptrace) && unlikely(p->ptrace)) {
1307 /*
1308 * If it is traced by its real parent's group, just pretend
1309 * the caller is ptrace_do_wait() and reap this child if it
1310 * is zombie.
1311 *
1312 * This also hides group stop state from real parent; otherwise
1313 * a single stop can be reported twice as group and ptrace stop.
1314 * If a ptracer wants to distinguish these two events for its
1315 * own children it should create a separate process which takes
1316 * the role of real parent.
1317 */
1318 if (!ptrace_reparented(p))
1319 ptrace = 1;
1320 }
1321
1322 /* slay zombie? */
1323 if (exit_state == EXIT_ZOMBIE) {
1324 /* we don't reap group leaders with subthreads */
1325 if (!delay_group_leader(p)) {
1326 /*
1327 * A zombie ptracee is only visible to its ptracer.
1328 * Notification and reaping will be cascaded to the
1329 * real parent when the ptracer detaches.
1330 */
1331 if (unlikely(ptrace) || likely(!p->ptrace))
1332 return wait_task_zombie(wo, p);
1333 }
1334
1335 /*
1336 * Allow access to stopped/continued state via zombie by
1337 * falling through. Clearing of notask_error is complex.
1338 *
1339 * When !@ptrace:
1340 *
1341 * If WEXITED is set, notask_error should naturally be
1342 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1343 * so, if there are live subthreads, there are events to
1344 * wait for. If all subthreads are dead, it's still safe
1345 * to clear - this function will be called again in finite
1346 * amount time once all the subthreads are released and
1347 * will then return without clearing.
1348 *
1349 * When @ptrace:
1350 *
1351 * Stopped state is per-task and thus can't change once the
1352 * target task dies. Only continued and exited can happen.
1353 * Clear notask_error if WCONTINUED | WEXITED.
1354 */
1355 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1356 wo->notask_error = 0;
1357 } else {
1358 /*
1359 * @p is alive and it's gonna stop, continue or exit, so
1360 * there always is something to wait for.
1361 */
1362 wo->notask_error = 0;
1363 }
1364
1365 /*
1366 * Wait for stopped. Depending on @ptrace, different stopped state
1367 * is used and the two don't interact with each other.
1368 */
1369 ret = wait_task_stopped(wo, ptrace, p);
1370 if (ret)
1371 return ret;
1372
1373 /*
1374 * Wait for continued. There's only one continued state and the
1375 * ptracer can consume it which can confuse the real parent. Don't
1376 * use WCONTINUED from ptracer. You don't need or want it.
1377 */
1378 return wait_task_continued(wo, p);
1379 }
1380
1381 /*
1382 * Do the work of do_wait() for one thread in the group, @tsk.
1383 *
1384 * -ECHILD should be in ->notask_error before the first call.
1385 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1386 * Returns zero if the search for a child should continue; then
1387 * ->notask_error is 0 if there were any eligible children,
1388 * or still -ECHILD.
1389 */
1390 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1391 {
1392 struct task_struct *p;
1393
1394 list_for_each_entry(p, &tsk->children, sibling) {
1395 int ret = wait_consider_task(wo, 0, p);
1396
1397 if (ret)
1398 return ret;
1399 }
1400
1401 return 0;
1402 }
1403
1404 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1405 {
1406 struct task_struct *p;
1407
1408 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1409 int ret = wait_consider_task(wo, 1, p);
1410
1411 if (ret)
1412 return ret;
1413 }
1414
1415 return 0;
1416 }
1417
1418 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1419 int sync, void *key)
1420 {
1421 struct wait_opts *wo = container_of(wait, struct wait_opts,
1422 child_wait);
1423 struct task_struct *p = key;
1424
1425 if (!eligible_pid(wo, p))
1426 return 0;
1427
1428 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1429 return 0;
1430
1431 return default_wake_function(wait, mode, sync, key);
1432 }
1433
1434 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1435 {
1436 __wake_up_sync_key(&parent->signal->wait_chldexit,
1437 TASK_INTERRUPTIBLE, p);
1438 }
1439
1440 static long do_wait(struct wait_opts *wo)
1441 {
1442 struct task_struct *tsk;
1443 int retval;
1444
1445 trace_sched_process_wait(wo->wo_pid);
1446
1447 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1448 wo->child_wait.private = current;
1449 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1450 repeat:
1451 /*
1452 * If there is nothing that can match our criteria, just get out.
1453 * We will clear ->notask_error to zero if we see any child that
1454 * might later match our criteria, even if we are not able to reap
1455 * it yet.
1456 */
1457 wo->notask_error = -ECHILD;
1458 if ((wo->wo_type < PIDTYPE_MAX) &&
1459 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1460 goto notask;
1461
1462 set_current_state(TASK_INTERRUPTIBLE);
1463 read_lock(&tasklist_lock);
1464 tsk = current;
1465 do {
1466 retval = do_wait_thread(wo, tsk);
1467 if (retval)
1468 goto end;
1469
1470 retval = ptrace_do_wait(wo, tsk);
1471 if (retval)
1472 goto end;
1473
1474 if (wo->wo_flags & __WNOTHREAD)
1475 break;
1476 } while_each_thread(current, tsk);
1477 read_unlock(&tasklist_lock);
1478
1479 notask:
1480 retval = wo->notask_error;
1481 if (!retval && !(wo->wo_flags & WNOHANG)) {
1482 retval = -ERESTARTSYS;
1483 if (!signal_pending(current)) {
1484 schedule();
1485 goto repeat;
1486 }
1487 }
1488 end:
1489 __set_current_state(TASK_RUNNING);
1490 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1491 return retval;
1492 }
1493
1494 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1495 int options, struct rusage *ru)
1496 {
1497 struct wait_opts wo;
1498 struct pid *pid = NULL;
1499 enum pid_type type;
1500 long ret;
1501 unsigned int f_flags = 0;
1502
1503 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1504 __WNOTHREAD|__WCLONE|__WALL))
1505 return -EINVAL;
1506 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1507 return -EINVAL;
1508
1509 switch (which) {
1510 case P_ALL:
1511 type = PIDTYPE_MAX;
1512 break;
1513 case P_PID:
1514 type = PIDTYPE_PID;
1515 if (upid <= 0)
1516 return -EINVAL;
1517
1518 pid = find_get_pid(upid);
1519 break;
1520 case P_PGID:
1521 type = PIDTYPE_PGID;
1522 if (upid < 0)
1523 return -EINVAL;
1524
1525 if (upid)
1526 pid = find_get_pid(upid);
1527 else
1528 pid = get_task_pid(current, PIDTYPE_PGID);
1529 break;
1530 case P_PIDFD:
1531 type = PIDTYPE_PID;
1532 if (upid < 0)
1533 return -EINVAL;
1534
1535 pid = pidfd_get_pid(upid, &f_flags);
1536 if (IS_ERR(pid))
1537 return PTR_ERR(pid);
1538
1539 break;
1540 default:
1541 return -EINVAL;
1542 }
1543
1544 wo.wo_type = type;
1545 wo.wo_pid = pid;
1546 wo.wo_flags = options;
1547 wo.wo_info = infop;
1548 wo.wo_rusage = ru;
1549 if (f_flags & O_NONBLOCK)
1550 wo.wo_flags |= WNOHANG;
1551
1552 ret = do_wait(&wo);
1553 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1554 ret = -EAGAIN;
1555
1556 put_pid(pid);
1557 return ret;
1558 }
1559
1560 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1561 infop, int, options, struct rusage __user *, ru)
1562 {
1563 struct rusage r;
1564 struct waitid_info info = {.status = 0};
1565 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1566 int signo = 0;
1567
1568 if (err > 0) {
1569 signo = SIGCHLD;
1570 err = 0;
1571 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1572 return -EFAULT;
1573 }
1574 if (!infop)
1575 return err;
1576
1577 if (!user_write_access_begin(infop, sizeof(*infop)))
1578 return -EFAULT;
1579
1580 unsafe_put_user(signo, &infop->si_signo, Efault);
1581 unsafe_put_user(0, &infop->si_errno, Efault);
1582 unsafe_put_user(info.cause, &infop->si_code, Efault);
1583 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1584 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1585 unsafe_put_user(info.status, &infop->si_status, Efault);
1586 user_write_access_end();
1587 return err;
1588 Efault:
1589 user_write_access_end();
1590 return -EFAULT;
1591 }
1592
1593 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1594 struct rusage *ru)
1595 {
1596 struct wait_opts wo;
1597 struct pid *pid = NULL;
1598 enum pid_type type;
1599 long ret;
1600
1601 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1602 __WNOTHREAD|__WCLONE|__WALL))
1603 return -EINVAL;
1604
1605 /* -INT_MIN is not defined */
1606 if (upid == INT_MIN)
1607 return -ESRCH;
1608
1609 if (upid == -1)
1610 type = PIDTYPE_MAX;
1611 else if (upid < 0) {
1612 type = PIDTYPE_PGID;
1613 pid = find_get_pid(-upid);
1614 } else if (upid == 0) {
1615 type = PIDTYPE_PGID;
1616 pid = get_task_pid(current, PIDTYPE_PGID);
1617 } else /* upid > 0 */ {
1618 type = PIDTYPE_PID;
1619 pid = find_get_pid(upid);
1620 }
1621
1622 wo.wo_type = type;
1623 wo.wo_pid = pid;
1624 wo.wo_flags = options | WEXITED;
1625 wo.wo_info = NULL;
1626 wo.wo_stat = 0;
1627 wo.wo_rusage = ru;
1628 ret = do_wait(&wo);
1629 put_pid(pid);
1630 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1631 ret = -EFAULT;
1632
1633 return ret;
1634 }
1635
1636 int kernel_wait(pid_t pid, int *stat)
1637 {
1638 struct wait_opts wo = {
1639 .wo_type = PIDTYPE_PID,
1640 .wo_pid = find_get_pid(pid),
1641 .wo_flags = WEXITED,
1642 };
1643 int ret;
1644
1645 ret = do_wait(&wo);
1646 if (ret > 0 && wo.wo_stat)
1647 *stat = wo.wo_stat;
1648 put_pid(wo.wo_pid);
1649 return ret;
1650 }
1651
1652 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1653 int, options, struct rusage __user *, ru)
1654 {
1655 struct rusage r;
1656 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1657
1658 if (err > 0) {
1659 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1660 return -EFAULT;
1661 }
1662 return err;
1663 }
1664
1665 #ifdef __ARCH_WANT_SYS_WAITPID
1666
1667 /*
1668 * sys_waitpid() remains for compatibility. waitpid() should be
1669 * implemented by calling sys_wait4() from libc.a.
1670 */
1671 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1672 {
1673 return kernel_wait4(pid, stat_addr, options, NULL);
1674 }
1675
1676 #endif
1677
1678 #ifdef CONFIG_COMPAT
1679 COMPAT_SYSCALL_DEFINE4(wait4,
1680 compat_pid_t, pid,
1681 compat_uint_t __user *, stat_addr,
1682 int, options,
1683 struct compat_rusage __user *, ru)
1684 {
1685 struct rusage r;
1686 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1687 if (err > 0) {
1688 if (ru && put_compat_rusage(&r, ru))
1689 return -EFAULT;
1690 }
1691 return err;
1692 }
1693
1694 COMPAT_SYSCALL_DEFINE5(waitid,
1695 int, which, compat_pid_t, pid,
1696 struct compat_siginfo __user *, infop, int, options,
1697 struct compat_rusage __user *, uru)
1698 {
1699 struct rusage ru;
1700 struct waitid_info info = {.status = 0};
1701 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1702 int signo = 0;
1703 if (err > 0) {
1704 signo = SIGCHLD;
1705 err = 0;
1706 if (uru) {
1707 /* kernel_waitid() overwrites everything in ru */
1708 if (COMPAT_USE_64BIT_TIME)
1709 err = copy_to_user(uru, &ru, sizeof(ru));
1710 else
1711 err = put_compat_rusage(&ru, uru);
1712 if (err)
1713 return -EFAULT;
1714 }
1715 }
1716
1717 if (!infop)
1718 return err;
1719
1720 if (!user_write_access_begin(infop, sizeof(*infop)))
1721 return -EFAULT;
1722
1723 unsafe_put_user(signo, &infop->si_signo, Efault);
1724 unsafe_put_user(0, &infop->si_errno, Efault);
1725 unsafe_put_user(info.cause, &infop->si_code, Efault);
1726 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1727 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1728 unsafe_put_user(info.status, &infop->si_status, Efault);
1729 user_write_access_end();
1730 return err;
1731 Efault:
1732 user_write_access_end();
1733 return -EFAULT;
1734 }
1735 #endif
1736
1737 /**
1738 * thread_group_exited - check that a thread group has exited
1739 * @pid: tgid of thread group to be checked.
1740 *
1741 * Test if the thread group represented by tgid has exited (all
1742 * threads are zombies, dead or completely gone).
1743 *
1744 * Return: true if the thread group has exited. false otherwise.
1745 */
1746 bool thread_group_exited(struct pid *pid)
1747 {
1748 struct task_struct *task;
1749 bool exited;
1750
1751 rcu_read_lock();
1752 task = pid_task(pid, PIDTYPE_PID);
1753 exited = !task ||
1754 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1755 rcu_read_unlock();
1756
1757 return exited;
1758 }
1759 EXPORT_SYMBOL(thread_group_exited);
1760
1761 __weak void abort(void)
1762 {
1763 BUG();
1764
1765 /* if that doesn't kill us, halt */
1766 panic("Oops failed to kill thread");
1767 }
1768 EXPORT_SYMBOL(abort);