]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/exit.c
mmap locking API: convert mmap_sem comments
[thirdparty/linux.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/exit.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/mmu_context.h>
70
71 static void __unhash_process(struct task_struct *p, bool group_dead)
72 {
73 nr_threads--;
74 detach_pid(p, PIDTYPE_PID);
75 if (group_dead) {
76 detach_pid(p, PIDTYPE_TGID);
77 detach_pid(p, PIDTYPE_PGID);
78 detach_pid(p, PIDTYPE_SID);
79
80 list_del_rcu(&p->tasks);
81 list_del_init(&p->sibling);
82 __this_cpu_dec(process_counts);
83 }
84 list_del_rcu(&p->thread_group);
85 list_del_rcu(&p->thread_node);
86 }
87
88 /*
89 * This function expects the tasklist_lock write-locked.
90 */
91 static void __exit_signal(struct task_struct *tsk)
92 {
93 struct signal_struct *sig = tsk->signal;
94 bool group_dead = thread_group_leader(tsk);
95 struct sighand_struct *sighand;
96 struct tty_struct *uninitialized_var(tty);
97 u64 utime, stime;
98
99 sighand = rcu_dereference_check(tsk->sighand,
100 lockdep_tasklist_lock_is_held());
101 spin_lock(&sighand->siglock);
102
103 #ifdef CONFIG_POSIX_TIMERS
104 posix_cpu_timers_exit(tsk);
105 if (group_dead)
106 posix_cpu_timers_exit_group(tsk);
107 #endif
108
109 if (group_dead) {
110 tty = sig->tty;
111 sig->tty = NULL;
112 } else {
113 /*
114 * If there is any task waiting for the group exit
115 * then notify it:
116 */
117 if (sig->notify_count > 0 && !--sig->notify_count)
118 wake_up_process(sig->group_exit_task);
119
120 if (tsk == sig->curr_target)
121 sig->curr_target = next_thread(tsk);
122 }
123
124 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
125 sizeof(unsigned long long));
126
127 /*
128 * Accumulate here the counters for all threads as they die. We could
129 * skip the group leader because it is the last user of signal_struct,
130 * but we want to avoid the race with thread_group_cputime() which can
131 * see the empty ->thread_head list.
132 */
133 task_cputime(tsk, &utime, &stime);
134 write_seqlock(&sig->stats_lock);
135 sig->utime += utime;
136 sig->stime += stime;
137 sig->gtime += task_gtime(tsk);
138 sig->min_flt += tsk->min_flt;
139 sig->maj_flt += tsk->maj_flt;
140 sig->nvcsw += tsk->nvcsw;
141 sig->nivcsw += tsk->nivcsw;
142 sig->inblock += task_io_get_inblock(tsk);
143 sig->oublock += task_io_get_oublock(tsk);
144 task_io_accounting_add(&sig->ioac, &tsk->ioac);
145 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
146 sig->nr_threads--;
147 __unhash_process(tsk, group_dead);
148 write_sequnlock(&sig->stats_lock);
149
150 /*
151 * Do this under ->siglock, we can race with another thread
152 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
153 */
154 flush_sigqueue(&tsk->pending);
155 tsk->sighand = NULL;
156 spin_unlock(&sighand->siglock);
157
158 __cleanup_sighand(sighand);
159 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
160 if (group_dead) {
161 flush_sigqueue(&sig->shared_pending);
162 tty_kref_put(tty);
163 }
164 }
165
166 static void delayed_put_task_struct(struct rcu_head *rhp)
167 {
168 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
169
170 perf_event_delayed_put(tsk);
171 trace_sched_process_free(tsk);
172 put_task_struct(tsk);
173 }
174
175 void put_task_struct_rcu_user(struct task_struct *task)
176 {
177 if (refcount_dec_and_test(&task->rcu_users))
178 call_rcu(&task->rcu, delayed_put_task_struct);
179 }
180
181 void release_task(struct task_struct *p)
182 {
183 struct task_struct *leader;
184 struct pid *thread_pid;
185 int zap_leader;
186 repeat:
187 /* don't need to get the RCU readlock here - the process is dead and
188 * can't be modifying its own credentials. But shut RCU-lockdep up */
189 rcu_read_lock();
190 atomic_dec(&__task_cred(p)->user->processes);
191 rcu_read_unlock();
192
193 cgroup_release(p);
194
195 write_lock_irq(&tasklist_lock);
196 ptrace_release_task(p);
197 thread_pid = get_pid(p->thread_pid);
198 __exit_signal(p);
199
200 /*
201 * If we are the last non-leader member of the thread
202 * group, and the leader is zombie, then notify the
203 * group leader's parent process. (if it wants notification.)
204 */
205 zap_leader = 0;
206 leader = p->group_leader;
207 if (leader != p && thread_group_empty(leader)
208 && leader->exit_state == EXIT_ZOMBIE) {
209 /*
210 * If we were the last child thread and the leader has
211 * exited already, and the leader's parent ignores SIGCHLD,
212 * then we are the one who should release the leader.
213 */
214 zap_leader = do_notify_parent(leader, leader->exit_signal);
215 if (zap_leader)
216 leader->exit_state = EXIT_DEAD;
217 }
218
219 write_unlock_irq(&tasklist_lock);
220 proc_flush_pid(thread_pid);
221 put_pid(thread_pid);
222 release_thread(p);
223 put_task_struct_rcu_user(p);
224
225 p = leader;
226 if (unlikely(zap_leader))
227 goto repeat;
228 }
229
230 int rcuwait_wake_up(struct rcuwait *w)
231 {
232 int ret = 0;
233 struct task_struct *task;
234
235 rcu_read_lock();
236
237 /*
238 * Order condition vs @task, such that everything prior to the load
239 * of @task is visible. This is the condition as to why the user called
240 * rcuwait_wake() in the first place. Pairs with set_current_state()
241 * barrier (A) in rcuwait_wait_event().
242 *
243 * WAIT WAKE
244 * [S] tsk = current [S] cond = true
245 * MB (A) MB (B)
246 * [L] cond [L] tsk
247 */
248 smp_mb(); /* (B) */
249
250 task = rcu_dereference(w->task);
251 if (task)
252 ret = wake_up_process(task);
253 rcu_read_unlock();
254
255 return ret;
256 }
257 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
258
259 /*
260 * Determine if a process group is "orphaned", according to the POSIX
261 * definition in 2.2.2.52. Orphaned process groups are not to be affected
262 * by terminal-generated stop signals. Newly orphaned process groups are
263 * to receive a SIGHUP and a SIGCONT.
264 *
265 * "I ask you, have you ever known what it is to be an orphan?"
266 */
267 static int will_become_orphaned_pgrp(struct pid *pgrp,
268 struct task_struct *ignored_task)
269 {
270 struct task_struct *p;
271
272 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
273 if ((p == ignored_task) ||
274 (p->exit_state && thread_group_empty(p)) ||
275 is_global_init(p->real_parent))
276 continue;
277
278 if (task_pgrp(p->real_parent) != pgrp &&
279 task_session(p->real_parent) == task_session(p))
280 return 0;
281 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
282
283 return 1;
284 }
285
286 int is_current_pgrp_orphaned(void)
287 {
288 int retval;
289
290 read_lock(&tasklist_lock);
291 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
292 read_unlock(&tasklist_lock);
293
294 return retval;
295 }
296
297 static bool has_stopped_jobs(struct pid *pgrp)
298 {
299 struct task_struct *p;
300
301 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
302 if (p->signal->flags & SIGNAL_STOP_STOPPED)
303 return true;
304 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
305
306 return false;
307 }
308
309 /*
310 * Check to see if any process groups have become orphaned as
311 * a result of our exiting, and if they have any stopped jobs,
312 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
313 */
314 static void
315 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
316 {
317 struct pid *pgrp = task_pgrp(tsk);
318 struct task_struct *ignored_task = tsk;
319
320 if (!parent)
321 /* exit: our father is in a different pgrp than
322 * we are and we were the only connection outside.
323 */
324 parent = tsk->real_parent;
325 else
326 /* reparent: our child is in a different pgrp than
327 * we are, and it was the only connection outside.
328 */
329 ignored_task = NULL;
330
331 if (task_pgrp(parent) != pgrp &&
332 task_session(parent) == task_session(tsk) &&
333 will_become_orphaned_pgrp(pgrp, ignored_task) &&
334 has_stopped_jobs(pgrp)) {
335 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
336 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
337 }
338 }
339
340 #ifdef CONFIG_MEMCG
341 /*
342 * A task is exiting. If it owned this mm, find a new owner for the mm.
343 */
344 void mm_update_next_owner(struct mm_struct *mm)
345 {
346 struct task_struct *c, *g, *p = current;
347
348 retry:
349 /*
350 * If the exiting or execing task is not the owner, it's
351 * someone else's problem.
352 */
353 if (mm->owner != p)
354 return;
355 /*
356 * The current owner is exiting/execing and there are no other
357 * candidates. Do not leave the mm pointing to a possibly
358 * freed task structure.
359 */
360 if (atomic_read(&mm->mm_users) <= 1) {
361 WRITE_ONCE(mm->owner, NULL);
362 return;
363 }
364
365 read_lock(&tasklist_lock);
366 /*
367 * Search in the children
368 */
369 list_for_each_entry(c, &p->children, sibling) {
370 if (c->mm == mm)
371 goto assign_new_owner;
372 }
373
374 /*
375 * Search in the siblings
376 */
377 list_for_each_entry(c, &p->real_parent->children, sibling) {
378 if (c->mm == mm)
379 goto assign_new_owner;
380 }
381
382 /*
383 * Search through everything else, we should not get here often.
384 */
385 for_each_process(g) {
386 if (g->flags & PF_KTHREAD)
387 continue;
388 for_each_thread(g, c) {
389 if (c->mm == mm)
390 goto assign_new_owner;
391 if (c->mm)
392 break;
393 }
394 }
395 read_unlock(&tasklist_lock);
396 /*
397 * We found no owner yet mm_users > 1: this implies that we are
398 * most likely racing with swapoff (try_to_unuse()) or /proc or
399 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
400 */
401 WRITE_ONCE(mm->owner, NULL);
402 return;
403
404 assign_new_owner:
405 BUG_ON(c == p);
406 get_task_struct(c);
407 /*
408 * The task_lock protects c->mm from changing.
409 * We always want mm->owner->mm == mm
410 */
411 task_lock(c);
412 /*
413 * Delay read_unlock() till we have the task_lock()
414 * to ensure that c does not slip away underneath us
415 */
416 read_unlock(&tasklist_lock);
417 if (c->mm != mm) {
418 task_unlock(c);
419 put_task_struct(c);
420 goto retry;
421 }
422 WRITE_ONCE(mm->owner, c);
423 task_unlock(c);
424 put_task_struct(c);
425 }
426 #endif /* CONFIG_MEMCG */
427
428 /*
429 * Turn us into a lazy TLB process if we
430 * aren't already..
431 */
432 static void exit_mm(void)
433 {
434 struct mm_struct *mm = current->mm;
435 struct core_state *core_state;
436
437 exit_mm_release(current, mm);
438 if (!mm)
439 return;
440 sync_mm_rss(mm);
441 /*
442 * Serialize with any possible pending coredump.
443 * We must hold mmap_lock around checking core_state
444 * and clearing tsk->mm. The core-inducing thread
445 * will increment ->nr_threads for each thread in the
446 * group with ->mm != NULL.
447 */
448 mmap_read_lock(mm);
449 core_state = mm->core_state;
450 if (core_state) {
451 struct core_thread self;
452
453 mmap_read_unlock(mm);
454
455 self.task = current;
456 self.next = xchg(&core_state->dumper.next, &self);
457 /*
458 * Implies mb(), the result of xchg() must be visible
459 * to core_state->dumper.
460 */
461 if (atomic_dec_and_test(&core_state->nr_threads))
462 complete(&core_state->startup);
463
464 for (;;) {
465 set_current_state(TASK_UNINTERRUPTIBLE);
466 if (!self.task) /* see coredump_finish() */
467 break;
468 freezable_schedule();
469 }
470 __set_current_state(TASK_RUNNING);
471 mmap_read_lock(mm);
472 }
473 mmgrab(mm);
474 BUG_ON(mm != current->active_mm);
475 /* more a memory barrier than a real lock */
476 task_lock(current);
477 current->mm = NULL;
478 mmap_read_unlock(mm);
479 enter_lazy_tlb(mm, current);
480 task_unlock(current);
481 mm_update_next_owner(mm);
482 mmput(mm);
483 if (test_thread_flag(TIF_MEMDIE))
484 exit_oom_victim();
485 }
486
487 static struct task_struct *find_alive_thread(struct task_struct *p)
488 {
489 struct task_struct *t;
490
491 for_each_thread(p, t) {
492 if (!(t->flags & PF_EXITING))
493 return t;
494 }
495 return NULL;
496 }
497
498 static struct task_struct *find_child_reaper(struct task_struct *father,
499 struct list_head *dead)
500 __releases(&tasklist_lock)
501 __acquires(&tasklist_lock)
502 {
503 struct pid_namespace *pid_ns = task_active_pid_ns(father);
504 struct task_struct *reaper = pid_ns->child_reaper;
505 struct task_struct *p, *n;
506
507 if (likely(reaper != father))
508 return reaper;
509
510 reaper = find_alive_thread(father);
511 if (reaper) {
512 pid_ns->child_reaper = reaper;
513 return reaper;
514 }
515
516 write_unlock_irq(&tasklist_lock);
517
518 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
519 list_del_init(&p->ptrace_entry);
520 release_task(p);
521 }
522
523 zap_pid_ns_processes(pid_ns);
524 write_lock_irq(&tasklist_lock);
525
526 return father;
527 }
528
529 /*
530 * When we die, we re-parent all our children, and try to:
531 * 1. give them to another thread in our thread group, if such a member exists
532 * 2. give it to the first ancestor process which prctl'd itself as a
533 * child_subreaper for its children (like a service manager)
534 * 3. give it to the init process (PID 1) in our pid namespace
535 */
536 static struct task_struct *find_new_reaper(struct task_struct *father,
537 struct task_struct *child_reaper)
538 {
539 struct task_struct *thread, *reaper;
540
541 thread = find_alive_thread(father);
542 if (thread)
543 return thread;
544
545 if (father->signal->has_child_subreaper) {
546 unsigned int ns_level = task_pid(father)->level;
547 /*
548 * Find the first ->is_child_subreaper ancestor in our pid_ns.
549 * We can't check reaper != child_reaper to ensure we do not
550 * cross the namespaces, the exiting parent could be injected
551 * by setns() + fork().
552 * We check pid->level, this is slightly more efficient than
553 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
554 */
555 for (reaper = father->real_parent;
556 task_pid(reaper)->level == ns_level;
557 reaper = reaper->real_parent) {
558 if (reaper == &init_task)
559 break;
560 if (!reaper->signal->is_child_subreaper)
561 continue;
562 thread = find_alive_thread(reaper);
563 if (thread)
564 return thread;
565 }
566 }
567
568 return child_reaper;
569 }
570
571 /*
572 * Any that need to be release_task'd are put on the @dead list.
573 */
574 static void reparent_leader(struct task_struct *father, struct task_struct *p,
575 struct list_head *dead)
576 {
577 if (unlikely(p->exit_state == EXIT_DEAD))
578 return;
579
580 /* We don't want people slaying init. */
581 p->exit_signal = SIGCHLD;
582
583 /* If it has exited notify the new parent about this child's death. */
584 if (!p->ptrace &&
585 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
586 if (do_notify_parent(p, p->exit_signal)) {
587 p->exit_state = EXIT_DEAD;
588 list_add(&p->ptrace_entry, dead);
589 }
590 }
591
592 kill_orphaned_pgrp(p, father);
593 }
594
595 /*
596 * This does two things:
597 *
598 * A. Make init inherit all the child processes
599 * B. Check to see if any process groups have become orphaned
600 * as a result of our exiting, and if they have any stopped
601 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
602 */
603 static void forget_original_parent(struct task_struct *father,
604 struct list_head *dead)
605 {
606 struct task_struct *p, *t, *reaper;
607
608 if (unlikely(!list_empty(&father->ptraced)))
609 exit_ptrace(father, dead);
610
611 /* Can drop and reacquire tasklist_lock */
612 reaper = find_child_reaper(father, dead);
613 if (list_empty(&father->children))
614 return;
615
616 reaper = find_new_reaper(father, reaper);
617 list_for_each_entry(p, &father->children, sibling) {
618 for_each_thread(p, t) {
619 RCU_INIT_POINTER(t->real_parent, reaper);
620 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
621 if (likely(!t->ptrace))
622 t->parent = t->real_parent;
623 if (t->pdeath_signal)
624 group_send_sig_info(t->pdeath_signal,
625 SEND_SIG_NOINFO, t,
626 PIDTYPE_TGID);
627 }
628 /*
629 * If this is a threaded reparent there is no need to
630 * notify anyone anything has happened.
631 */
632 if (!same_thread_group(reaper, father))
633 reparent_leader(father, p, dead);
634 }
635 list_splice_tail_init(&father->children, &reaper->children);
636 }
637
638 /*
639 * Send signals to all our closest relatives so that they know
640 * to properly mourn us..
641 */
642 static void exit_notify(struct task_struct *tsk, int group_dead)
643 {
644 bool autoreap;
645 struct task_struct *p, *n;
646 LIST_HEAD(dead);
647
648 write_lock_irq(&tasklist_lock);
649 forget_original_parent(tsk, &dead);
650
651 if (group_dead)
652 kill_orphaned_pgrp(tsk->group_leader, NULL);
653
654 tsk->exit_state = EXIT_ZOMBIE;
655 if (unlikely(tsk->ptrace)) {
656 int sig = thread_group_leader(tsk) &&
657 thread_group_empty(tsk) &&
658 !ptrace_reparented(tsk) ?
659 tsk->exit_signal : SIGCHLD;
660 autoreap = do_notify_parent(tsk, sig);
661 } else if (thread_group_leader(tsk)) {
662 autoreap = thread_group_empty(tsk) &&
663 do_notify_parent(tsk, tsk->exit_signal);
664 } else {
665 autoreap = true;
666 }
667
668 if (autoreap) {
669 tsk->exit_state = EXIT_DEAD;
670 list_add(&tsk->ptrace_entry, &dead);
671 }
672
673 /* mt-exec, de_thread() is waiting for group leader */
674 if (unlikely(tsk->signal->notify_count < 0))
675 wake_up_process(tsk->signal->group_exit_task);
676 write_unlock_irq(&tasklist_lock);
677
678 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
679 list_del_init(&p->ptrace_entry);
680 release_task(p);
681 }
682 }
683
684 #ifdef CONFIG_DEBUG_STACK_USAGE
685 static void check_stack_usage(void)
686 {
687 static DEFINE_SPINLOCK(low_water_lock);
688 static int lowest_to_date = THREAD_SIZE;
689 unsigned long free;
690
691 free = stack_not_used(current);
692
693 if (free >= lowest_to_date)
694 return;
695
696 spin_lock(&low_water_lock);
697 if (free < lowest_to_date) {
698 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
699 current->comm, task_pid_nr(current), free);
700 lowest_to_date = free;
701 }
702 spin_unlock(&low_water_lock);
703 }
704 #else
705 static inline void check_stack_usage(void) {}
706 #endif
707
708 void __noreturn do_exit(long code)
709 {
710 struct task_struct *tsk = current;
711 int group_dead;
712
713 /*
714 * We can get here from a kernel oops, sometimes with preemption off.
715 * Start by checking for critical errors.
716 * Then fix up important state like USER_DS and preemption.
717 * Then do everything else.
718 */
719
720 WARN_ON(blk_needs_flush_plug(tsk));
721
722 if (unlikely(in_interrupt()))
723 panic("Aiee, killing interrupt handler!");
724 if (unlikely(!tsk->pid))
725 panic("Attempted to kill the idle task!");
726
727 /*
728 * If do_exit is called because this processes oopsed, it's possible
729 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
730 * continuing. Amongst other possible reasons, this is to prevent
731 * mm_release()->clear_child_tid() from writing to a user-controlled
732 * kernel address.
733 */
734 set_fs(USER_DS);
735
736 if (unlikely(in_atomic())) {
737 pr_info("note: %s[%d] exited with preempt_count %d\n",
738 current->comm, task_pid_nr(current),
739 preempt_count());
740 preempt_count_set(PREEMPT_ENABLED);
741 }
742
743 profile_task_exit(tsk);
744 kcov_task_exit(tsk);
745
746 ptrace_event(PTRACE_EVENT_EXIT, code);
747
748 validate_creds_for_do_exit(tsk);
749
750 /*
751 * We're taking recursive faults here in do_exit. Safest is to just
752 * leave this task alone and wait for reboot.
753 */
754 if (unlikely(tsk->flags & PF_EXITING)) {
755 pr_alert("Fixing recursive fault but reboot is needed!\n");
756 futex_exit_recursive(tsk);
757 set_current_state(TASK_UNINTERRUPTIBLE);
758 schedule();
759 }
760
761 exit_signals(tsk); /* sets PF_EXITING */
762
763 /* sync mm's RSS info before statistics gathering */
764 if (tsk->mm)
765 sync_mm_rss(tsk->mm);
766 acct_update_integrals(tsk);
767 group_dead = atomic_dec_and_test(&tsk->signal->live);
768 if (group_dead) {
769 /*
770 * If the last thread of global init has exited, panic
771 * immediately to get a useable coredump.
772 */
773 if (unlikely(is_global_init(tsk)))
774 panic("Attempted to kill init! exitcode=0x%08x\n",
775 tsk->signal->group_exit_code ?: (int)code);
776
777 #ifdef CONFIG_POSIX_TIMERS
778 hrtimer_cancel(&tsk->signal->real_timer);
779 exit_itimers(tsk->signal);
780 #endif
781 if (tsk->mm)
782 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
783 }
784 acct_collect(code, group_dead);
785 if (group_dead)
786 tty_audit_exit();
787 audit_free(tsk);
788
789 tsk->exit_code = code;
790 taskstats_exit(tsk, group_dead);
791
792 exit_mm();
793
794 if (group_dead)
795 acct_process();
796 trace_sched_process_exit(tsk);
797
798 exit_sem(tsk);
799 exit_shm(tsk);
800 exit_files(tsk);
801 exit_fs(tsk);
802 if (group_dead)
803 disassociate_ctty(1);
804 exit_task_namespaces(tsk);
805 exit_task_work(tsk);
806 exit_thread(tsk);
807 exit_umh(tsk);
808
809 /*
810 * Flush inherited counters to the parent - before the parent
811 * gets woken up by child-exit notifications.
812 *
813 * because of cgroup mode, must be called before cgroup_exit()
814 */
815 perf_event_exit_task(tsk);
816
817 sched_autogroup_exit_task(tsk);
818 cgroup_exit(tsk);
819
820 /*
821 * FIXME: do that only when needed, using sched_exit tracepoint
822 */
823 flush_ptrace_hw_breakpoint(tsk);
824
825 exit_tasks_rcu_start();
826 exit_notify(tsk, group_dead);
827 proc_exit_connector(tsk);
828 mpol_put_task_policy(tsk);
829 #ifdef CONFIG_FUTEX
830 if (unlikely(current->pi_state_cache))
831 kfree(current->pi_state_cache);
832 #endif
833 /*
834 * Make sure we are holding no locks:
835 */
836 debug_check_no_locks_held();
837
838 if (tsk->io_context)
839 exit_io_context(tsk);
840
841 if (tsk->splice_pipe)
842 free_pipe_info(tsk->splice_pipe);
843
844 if (tsk->task_frag.page)
845 put_page(tsk->task_frag.page);
846
847 validate_creds_for_do_exit(tsk);
848
849 check_stack_usage();
850 preempt_disable();
851 if (tsk->nr_dirtied)
852 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
853 exit_rcu();
854 exit_tasks_rcu_finish();
855
856 lockdep_free_task(tsk);
857 do_task_dead();
858 }
859 EXPORT_SYMBOL_GPL(do_exit);
860
861 void complete_and_exit(struct completion *comp, long code)
862 {
863 if (comp)
864 complete(comp);
865
866 do_exit(code);
867 }
868 EXPORT_SYMBOL(complete_and_exit);
869
870 SYSCALL_DEFINE1(exit, int, error_code)
871 {
872 do_exit((error_code&0xff)<<8);
873 }
874
875 /*
876 * Take down every thread in the group. This is called by fatal signals
877 * as well as by sys_exit_group (below).
878 */
879 void
880 do_group_exit(int exit_code)
881 {
882 struct signal_struct *sig = current->signal;
883
884 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
885
886 if (signal_group_exit(sig))
887 exit_code = sig->group_exit_code;
888 else if (!thread_group_empty(current)) {
889 struct sighand_struct *const sighand = current->sighand;
890
891 spin_lock_irq(&sighand->siglock);
892 if (signal_group_exit(sig))
893 /* Another thread got here before we took the lock. */
894 exit_code = sig->group_exit_code;
895 else {
896 sig->group_exit_code = exit_code;
897 sig->flags = SIGNAL_GROUP_EXIT;
898 zap_other_threads(current);
899 }
900 spin_unlock_irq(&sighand->siglock);
901 }
902
903 do_exit(exit_code);
904 /* NOTREACHED */
905 }
906
907 /*
908 * this kills every thread in the thread group. Note that any externally
909 * wait4()-ing process will get the correct exit code - even if this
910 * thread is not the thread group leader.
911 */
912 SYSCALL_DEFINE1(exit_group, int, error_code)
913 {
914 do_group_exit((error_code & 0xff) << 8);
915 /* NOTREACHED */
916 return 0;
917 }
918
919 struct waitid_info {
920 pid_t pid;
921 uid_t uid;
922 int status;
923 int cause;
924 };
925
926 struct wait_opts {
927 enum pid_type wo_type;
928 int wo_flags;
929 struct pid *wo_pid;
930
931 struct waitid_info *wo_info;
932 int wo_stat;
933 struct rusage *wo_rusage;
934
935 wait_queue_entry_t child_wait;
936 int notask_error;
937 };
938
939 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
940 {
941 return wo->wo_type == PIDTYPE_MAX ||
942 task_pid_type(p, wo->wo_type) == wo->wo_pid;
943 }
944
945 static int
946 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
947 {
948 if (!eligible_pid(wo, p))
949 return 0;
950
951 /*
952 * Wait for all children (clone and not) if __WALL is set or
953 * if it is traced by us.
954 */
955 if (ptrace || (wo->wo_flags & __WALL))
956 return 1;
957
958 /*
959 * Otherwise, wait for clone children *only* if __WCLONE is set;
960 * otherwise, wait for non-clone children *only*.
961 *
962 * Note: a "clone" child here is one that reports to its parent
963 * using a signal other than SIGCHLD, or a non-leader thread which
964 * we can only see if it is traced by us.
965 */
966 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
967 return 0;
968
969 return 1;
970 }
971
972 /*
973 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
974 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
975 * the lock and this task is uninteresting. If we return nonzero, we have
976 * released the lock and the system call should return.
977 */
978 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
979 {
980 int state, status;
981 pid_t pid = task_pid_vnr(p);
982 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
983 struct waitid_info *infop;
984
985 if (!likely(wo->wo_flags & WEXITED))
986 return 0;
987
988 if (unlikely(wo->wo_flags & WNOWAIT)) {
989 status = p->exit_code;
990 get_task_struct(p);
991 read_unlock(&tasklist_lock);
992 sched_annotate_sleep();
993 if (wo->wo_rusage)
994 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
995 put_task_struct(p);
996 goto out_info;
997 }
998 /*
999 * Move the task's state to DEAD/TRACE, only one thread can do this.
1000 */
1001 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1002 EXIT_TRACE : EXIT_DEAD;
1003 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1004 return 0;
1005 /*
1006 * We own this thread, nobody else can reap it.
1007 */
1008 read_unlock(&tasklist_lock);
1009 sched_annotate_sleep();
1010
1011 /*
1012 * Check thread_group_leader() to exclude the traced sub-threads.
1013 */
1014 if (state == EXIT_DEAD && thread_group_leader(p)) {
1015 struct signal_struct *sig = p->signal;
1016 struct signal_struct *psig = current->signal;
1017 unsigned long maxrss;
1018 u64 tgutime, tgstime;
1019
1020 /*
1021 * The resource counters for the group leader are in its
1022 * own task_struct. Those for dead threads in the group
1023 * are in its signal_struct, as are those for the child
1024 * processes it has previously reaped. All these
1025 * accumulate in the parent's signal_struct c* fields.
1026 *
1027 * We don't bother to take a lock here to protect these
1028 * p->signal fields because the whole thread group is dead
1029 * and nobody can change them.
1030 *
1031 * psig->stats_lock also protects us from our sub-theads
1032 * which can reap other children at the same time. Until
1033 * we change k_getrusage()-like users to rely on this lock
1034 * we have to take ->siglock as well.
1035 *
1036 * We use thread_group_cputime_adjusted() to get times for
1037 * the thread group, which consolidates times for all threads
1038 * in the group including the group leader.
1039 */
1040 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1041 spin_lock_irq(&current->sighand->siglock);
1042 write_seqlock(&psig->stats_lock);
1043 psig->cutime += tgutime + sig->cutime;
1044 psig->cstime += tgstime + sig->cstime;
1045 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1046 psig->cmin_flt +=
1047 p->min_flt + sig->min_flt + sig->cmin_flt;
1048 psig->cmaj_flt +=
1049 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1050 psig->cnvcsw +=
1051 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1052 psig->cnivcsw +=
1053 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1054 psig->cinblock +=
1055 task_io_get_inblock(p) +
1056 sig->inblock + sig->cinblock;
1057 psig->coublock +=
1058 task_io_get_oublock(p) +
1059 sig->oublock + sig->coublock;
1060 maxrss = max(sig->maxrss, sig->cmaxrss);
1061 if (psig->cmaxrss < maxrss)
1062 psig->cmaxrss = maxrss;
1063 task_io_accounting_add(&psig->ioac, &p->ioac);
1064 task_io_accounting_add(&psig->ioac, &sig->ioac);
1065 write_sequnlock(&psig->stats_lock);
1066 spin_unlock_irq(&current->sighand->siglock);
1067 }
1068
1069 if (wo->wo_rusage)
1070 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1071 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1072 ? p->signal->group_exit_code : p->exit_code;
1073 wo->wo_stat = status;
1074
1075 if (state == EXIT_TRACE) {
1076 write_lock_irq(&tasklist_lock);
1077 /* We dropped tasklist, ptracer could die and untrace */
1078 ptrace_unlink(p);
1079
1080 /* If parent wants a zombie, don't release it now */
1081 state = EXIT_ZOMBIE;
1082 if (do_notify_parent(p, p->exit_signal))
1083 state = EXIT_DEAD;
1084 p->exit_state = state;
1085 write_unlock_irq(&tasklist_lock);
1086 }
1087 if (state == EXIT_DEAD)
1088 release_task(p);
1089
1090 out_info:
1091 infop = wo->wo_info;
1092 if (infop) {
1093 if ((status & 0x7f) == 0) {
1094 infop->cause = CLD_EXITED;
1095 infop->status = status >> 8;
1096 } else {
1097 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1098 infop->status = status & 0x7f;
1099 }
1100 infop->pid = pid;
1101 infop->uid = uid;
1102 }
1103
1104 return pid;
1105 }
1106
1107 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1108 {
1109 if (ptrace) {
1110 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1111 return &p->exit_code;
1112 } else {
1113 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1114 return &p->signal->group_exit_code;
1115 }
1116 return NULL;
1117 }
1118
1119 /**
1120 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1121 * @wo: wait options
1122 * @ptrace: is the wait for ptrace
1123 * @p: task to wait for
1124 *
1125 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1126 *
1127 * CONTEXT:
1128 * read_lock(&tasklist_lock), which is released if return value is
1129 * non-zero. Also, grabs and releases @p->sighand->siglock.
1130 *
1131 * RETURNS:
1132 * 0 if wait condition didn't exist and search for other wait conditions
1133 * should continue. Non-zero return, -errno on failure and @p's pid on
1134 * success, implies that tasklist_lock is released and wait condition
1135 * search should terminate.
1136 */
1137 static int wait_task_stopped(struct wait_opts *wo,
1138 int ptrace, struct task_struct *p)
1139 {
1140 struct waitid_info *infop;
1141 int exit_code, *p_code, why;
1142 uid_t uid = 0; /* unneeded, required by compiler */
1143 pid_t pid;
1144
1145 /*
1146 * Traditionally we see ptrace'd stopped tasks regardless of options.
1147 */
1148 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1149 return 0;
1150
1151 if (!task_stopped_code(p, ptrace))
1152 return 0;
1153
1154 exit_code = 0;
1155 spin_lock_irq(&p->sighand->siglock);
1156
1157 p_code = task_stopped_code(p, ptrace);
1158 if (unlikely(!p_code))
1159 goto unlock_sig;
1160
1161 exit_code = *p_code;
1162 if (!exit_code)
1163 goto unlock_sig;
1164
1165 if (!unlikely(wo->wo_flags & WNOWAIT))
1166 *p_code = 0;
1167
1168 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1169 unlock_sig:
1170 spin_unlock_irq(&p->sighand->siglock);
1171 if (!exit_code)
1172 return 0;
1173
1174 /*
1175 * Now we are pretty sure this task is interesting.
1176 * Make sure it doesn't get reaped out from under us while we
1177 * give up the lock and then examine it below. We don't want to
1178 * keep holding onto the tasklist_lock while we call getrusage and
1179 * possibly take page faults for user memory.
1180 */
1181 get_task_struct(p);
1182 pid = task_pid_vnr(p);
1183 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1184 read_unlock(&tasklist_lock);
1185 sched_annotate_sleep();
1186 if (wo->wo_rusage)
1187 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1188 put_task_struct(p);
1189
1190 if (likely(!(wo->wo_flags & WNOWAIT)))
1191 wo->wo_stat = (exit_code << 8) | 0x7f;
1192
1193 infop = wo->wo_info;
1194 if (infop) {
1195 infop->cause = why;
1196 infop->status = exit_code;
1197 infop->pid = pid;
1198 infop->uid = uid;
1199 }
1200 return pid;
1201 }
1202
1203 /*
1204 * Handle do_wait work for one task in a live, non-stopped state.
1205 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1206 * the lock and this task is uninteresting. If we return nonzero, we have
1207 * released the lock and the system call should return.
1208 */
1209 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1210 {
1211 struct waitid_info *infop;
1212 pid_t pid;
1213 uid_t uid;
1214
1215 if (!unlikely(wo->wo_flags & WCONTINUED))
1216 return 0;
1217
1218 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1219 return 0;
1220
1221 spin_lock_irq(&p->sighand->siglock);
1222 /* Re-check with the lock held. */
1223 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1224 spin_unlock_irq(&p->sighand->siglock);
1225 return 0;
1226 }
1227 if (!unlikely(wo->wo_flags & WNOWAIT))
1228 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1229 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1230 spin_unlock_irq(&p->sighand->siglock);
1231
1232 pid = task_pid_vnr(p);
1233 get_task_struct(p);
1234 read_unlock(&tasklist_lock);
1235 sched_annotate_sleep();
1236 if (wo->wo_rusage)
1237 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1238 put_task_struct(p);
1239
1240 infop = wo->wo_info;
1241 if (!infop) {
1242 wo->wo_stat = 0xffff;
1243 } else {
1244 infop->cause = CLD_CONTINUED;
1245 infop->pid = pid;
1246 infop->uid = uid;
1247 infop->status = SIGCONT;
1248 }
1249 return pid;
1250 }
1251
1252 /*
1253 * Consider @p for a wait by @parent.
1254 *
1255 * -ECHILD should be in ->notask_error before the first call.
1256 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1257 * Returns zero if the search for a child should continue;
1258 * then ->notask_error is 0 if @p is an eligible child,
1259 * or still -ECHILD.
1260 */
1261 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1262 struct task_struct *p)
1263 {
1264 /*
1265 * We can race with wait_task_zombie() from another thread.
1266 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1267 * can't confuse the checks below.
1268 */
1269 int exit_state = READ_ONCE(p->exit_state);
1270 int ret;
1271
1272 if (unlikely(exit_state == EXIT_DEAD))
1273 return 0;
1274
1275 ret = eligible_child(wo, ptrace, p);
1276 if (!ret)
1277 return ret;
1278
1279 if (unlikely(exit_state == EXIT_TRACE)) {
1280 /*
1281 * ptrace == 0 means we are the natural parent. In this case
1282 * we should clear notask_error, debugger will notify us.
1283 */
1284 if (likely(!ptrace))
1285 wo->notask_error = 0;
1286 return 0;
1287 }
1288
1289 if (likely(!ptrace) && unlikely(p->ptrace)) {
1290 /*
1291 * If it is traced by its real parent's group, just pretend
1292 * the caller is ptrace_do_wait() and reap this child if it
1293 * is zombie.
1294 *
1295 * This also hides group stop state from real parent; otherwise
1296 * a single stop can be reported twice as group and ptrace stop.
1297 * If a ptracer wants to distinguish these two events for its
1298 * own children it should create a separate process which takes
1299 * the role of real parent.
1300 */
1301 if (!ptrace_reparented(p))
1302 ptrace = 1;
1303 }
1304
1305 /* slay zombie? */
1306 if (exit_state == EXIT_ZOMBIE) {
1307 /* we don't reap group leaders with subthreads */
1308 if (!delay_group_leader(p)) {
1309 /*
1310 * A zombie ptracee is only visible to its ptracer.
1311 * Notification and reaping will be cascaded to the
1312 * real parent when the ptracer detaches.
1313 */
1314 if (unlikely(ptrace) || likely(!p->ptrace))
1315 return wait_task_zombie(wo, p);
1316 }
1317
1318 /*
1319 * Allow access to stopped/continued state via zombie by
1320 * falling through. Clearing of notask_error is complex.
1321 *
1322 * When !@ptrace:
1323 *
1324 * If WEXITED is set, notask_error should naturally be
1325 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1326 * so, if there are live subthreads, there are events to
1327 * wait for. If all subthreads are dead, it's still safe
1328 * to clear - this function will be called again in finite
1329 * amount time once all the subthreads are released and
1330 * will then return without clearing.
1331 *
1332 * When @ptrace:
1333 *
1334 * Stopped state is per-task and thus can't change once the
1335 * target task dies. Only continued and exited can happen.
1336 * Clear notask_error if WCONTINUED | WEXITED.
1337 */
1338 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1339 wo->notask_error = 0;
1340 } else {
1341 /*
1342 * @p is alive and it's gonna stop, continue or exit, so
1343 * there always is something to wait for.
1344 */
1345 wo->notask_error = 0;
1346 }
1347
1348 /*
1349 * Wait for stopped. Depending on @ptrace, different stopped state
1350 * is used and the two don't interact with each other.
1351 */
1352 ret = wait_task_stopped(wo, ptrace, p);
1353 if (ret)
1354 return ret;
1355
1356 /*
1357 * Wait for continued. There's only one continued state and the
1358 * ptracer can consume it which can confuse the real parent. Don't
1359 * use WCONTINUED from ptracer. You don't need or want it.
1360 */
1361 return wait_task_continued(wo, p);
1362 }
1363
1364 /*
1365 * Do the work of do_wait() for one thread in the group, @tsk.
1366 *
1367 * -ECHILD should be in ->notask_error before the first call.
1368 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1369 * Returns zero if the search for a child should continue; then
1370 * ->notask_error is 0 if there were any eligible children,
1371 * or still -ECHILD.
1372 */
1373 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1374 {
1375 struct task_struct *p;
1376
1377 list_for_each_entry(p, &tsk->children, sibling) {
1378 int ret = wait_consider_task(wo, 0, p);
1379
1380 if (ret)
1381 return ret;
1382 }
1383
1384 return 0;
1385 }
1386
1387 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1388 {
1389 struct task_struct *p;
1390
1391 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1392 int ret = wait_consider_task(wo, 1, p);
1393
1394 if (ret)
1395 return ret;
1396 }
1397
1398 return 0;
1399 }
1400
1401 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1402 int sync, void *key)
1403 {
1404 struct wait_opts *wo = container_of(wait, struct wait_opts,
1405 child_wait);
1406 struct task_struct *p = key;
1407
1408 if (!eligible_pid(wo, p))
1409 return 0;
1410
1411 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1412 return 0;
1413
1414 return default_wake_function(wait, mode, sync, key);
1415 }
1416
1417 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1418 {
1419 __wake_up_sync_key(&parent->signal->wait_chldexit,
1420 TASK_INTERRUPTIBLE, p);
1421 }
1422
1423 static long do_wait(struct wait_opts *wo)
1424 {
1425 struct task_struct *tsk;
1426 int retval;
1427
1428 trace_sched_process_wait(wo->wo_pid);
1429
1430 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1431 wo->child_wait.private = current;
1432 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1433 repeat:
1434 /*
1435 * If there is nothing that can match our criteria, just get out.
1436 * We will clear ->notask_error to zero if we see any child that
1437 * might later match our criteria, even if we are not able to reap
1438 * it yet.
1439 */
1440 wo->notask_error = -ECHILD;
1441 if ((wo->wo_type < PIDTYPE_MAX) &&
1442 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1443 goto notask;
1444
1445 set_current_state(TASK_INTERRUPTIBLE);
1446 read_lock(&tasklist_lock);
1447 tsk = current;
1448 do {
1449 retval = do_wait_thread(wo, tsk);
1450 if (retval)
1451 goto end;
1452
1453 retval = ptrace_do_wait(wo, tsk);
1454 if (retval)
1455 goto end;
1456
1457 if (wo->wo_flags & __WNOTHREAD)
1458 break;
1459 } while_each_thread(current, tsk);
1460 read_unlock(&tasklist_lock);
1461
1462 notask:
1463 retval = wo->notask_error;
1464 if (!retval && !(wo->wo_flags & WNOHANG)) {
1465 retval = -ERESTARTSYS;
1466 if (!signal_pending(current)) {
1467 schedule();
1468 goto repeat;
1469 }
1470 }
1471 end:
1472 __set_current_state(TASK_RUNNING);
1473 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1474 return retval;
1475 }
1476
1477 static struct pid *pidfd_get_pid(unsigned int fd)
1478 {
1479 struct fd f;
1480 struct pid *pid;
1481
1482 f = fdget(fd);
1483 if (!f.file)
1484 return ERR_PTR(-EBADF);
1485
1486 pid = pidfd_pid(f.file);
1487 if (!IS_ERR(pid))
1488 get_pid(pid);
1489
1490 fdput(f);
1491 return pid;
1492 }
1493
1494 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1495 int options, struct rusage *ru)
1496 {
1497 struct wait_opts wo;
1498 struct pid *pid = NULL;
1499 enum pid_type type;
1500 long ret;
1501
1502 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1503 __WNOTHREAD|__WCLONE|__WALL))
1504 return -EINVAL;
1505 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1506 return -EINVAL;
1507
1508 switch (which) {
1509 case P_ALL:
1510 type = PIDTYPE_MAX;
1511 break;
1512 case P_PID:
1513 type = PIDTYPE_PID;
1514 if (upid <= 0)
1515 return -EINVAL;
1516
1517 pid = find_get_pid(upid);
1518 break;
1519 case P_PGID:
1520 type = PIDTYPE_PGID;
1521 if (upid < 0)
1522 return -EINVAL;
1523
1524 if (upid)
1525 pid = find_get_pid(upid);
1526 else
1527 pid = get_task_pid(current, PIDTYPE_PGID);
1528 break;
1529 case P_PIDFD:
1530 type = PIDTYPE_PID;
1531 if (upid < 0)
1532 return -EINVAL;
1533
1534 pid = pidfd_get_pid(upid);
1535 if (IS_ERR(pid))
1536 return PTR_ERR(pid);
1537 break;
1538 default:
1539 return -EINVAL;
1540 }
1541
1542 wo.wo_type = type;
1543 wo.wo_pid = pid;
1544 wo.wo_flags = options;
1545 wo.wo_info = infop;
1546 wo.wo_rusage = ru;
1547 ret = do_wait(&wo);
1548
1549 put_pid(pid);
1550 return ret;
1551 }
1552
1553 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1554 infop, int, options, struct rusage __user *, ru)
1555 {
1556 struct rusage r;
1557 struct waitid_info info = {.status = 0};
1558 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1559 int signo = 0;
1560
1561 if (err > 0) {
1562 signo = SIGCHLD;
1563 err = 0;
1564 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1565 return -EFAULT;
1566 }
1567 if (!infop)
1568 return err;
1569
1570 if (!user_write_access_begin(infop, sizeof(*infop)))
1571 return -EFAULT;
1572
1573 unsafe_put_user(signo, &infop->si_signo, Efault);
1574 unsafe_put_user(0, &infop->si_errno, Efault);
1575 unsafe_put_user(info.cause, &infop->si_code, Efault);
1576 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1577 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1578 unsafe_put_user(info.status, &infop->si_status, Efault);
1579 user_write_access_end();
1580 return err;
1581 Efault:
1582 user_write_access_end();
1583 return -EFAULT;
1584 }
1585
1586 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1587 struct rusage *ru)
1588 {
1589 struct wait_opts wo;
1590 struct pid *pid = NULL;
1591 enum pid_type type;
1592 long ret;
1593
1594 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1595 __WNOTHREAD|__WCLONE|__WALL))
1596 return -EINVAL;
1597
1598 /* -INT_MIN is not defined */
1599 if (upid == INT_MIN)
1600 return -ESRCH;
1601
1602 if (upid == -1)
1603 type = PIDTYPE_MAX;
1604 else if (upid < 0) {
1605 type = PIDTYPE_PGID;
1606 pid = find_get_pid(-upid);
1607 } else if (upid == 0) {
1608 type = PIDTYPE_PGID;
1609 pid = get_task_pid(current, PIDTYPE_PGID);
1610 } else /* upid > 0 */ {
1611 type = PIDTYPE_PID;
1612 pid = find_get_pid(upid);
1613 }
1614
1615 wo.wo_type = type;
1616 wo.wo_pid = pid;
1617 wo.wo_flags = options | WEXITED;
1618 wo.wo_info = NULL;
1619 wo.wo_stat = 0;
1620 wo.wo_rusage = ru;
1621 ret = do_wait(&wo);
1622 put_pid(pid);
1623 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1624 ret = -EFAULT;
1625
1626 return ret;
1627 }
1628
1629 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1630 int, options, struct rusage __user *, ru)
1631 {
1632 struct rusage r;
1633 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1634
1635 if (err > 0) {
1636 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1637 return -EFAULT;
1638 }
1639 return err;
1640 }
1641
1642 #ifdef __ARCH_WANT_SYS_WAITPID
1643
1644 /*
1645 * sys_waitpid() remains for compatibility. waitpid() should be
1646 * implemented by calling sys_wait4() from libc.a.
1647 */
1648 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1649 {
1650 return kernel_wait4(pid, stat_addr, options, NULL);
1651 }
1652
1653 #endif
1654
1655 #ifdef CONFIG_COMPAT
1656 COMPAT_SYSCALL_DEFINE4(wait4,
1657 compat_pid_t, pid,
1658 compat_uint_t __user *, stat_addr,
1659 int, options,
1660 struct compat_rusage __user *, ru)
1661 {
1662 struct rusage r;
1663 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1664 if (err > 0) {
1665 if (ru && put_compat_rusage(&r, ru))
1666 return -EFAULT;
1667 }
1668 return err;
1669 }
1670
1671 COMPAT_SYSCALL_DEFINE5(waitid,
1672 int, which, compat_pid_t, pid,
1673 struct compat_siginfo __user *, infop, int, options,
1674 struct compat_rusage __user *, uru)
1675 {
1676 struct rusage ru;
1677 struct waitid_info info = {.status = 0};
1678 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1679 int signo = 0;
1680 if (err > 0) {
1681 signo = SIGCHLD;
1682 err = 0;
1683 if (uru) {
1684 /* kernel_waitid() overwrites everything in ru */
1685 if (COMPAT_USE_64BIT_TIME)
1686 err = copy_to_user(uru, &ru, sizeof(ru));
1687 else
1688 err = put_compat_rusage(&ru, uru);
1689 if (err)
1690 return -EFAULT;
1691 }
1692 }
1693
1694 if (!infop)
1695 return err;
1696
1697 if (!user_write_access_begin(infop, sizeof(*infop)))
1698 return -EFAULT;
1699
1700 unsafe_put_user(signo, &infop->si_signo, Efault);
1701 unsafe_put_user(0, &infop->si_errno, Efault);
1702 unsafe_put_user(info.cause, &infop->si_code, Efault);
1703 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1704 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1705 unsafe_put_user(info.status, &infop->si_status, Efault);
1706 user_write_access_end();
1707 return err;
1708 Efault:
1709 user_write_access_end();
1710 return -EFAULT;
1711 }
1712 #endif
1713
1714 __weak void abort(void)
1715 {
1716 BUG();
1717
1718 /* if that doesn't kill us, halt */
1719 panic("Oops failed to kill thread");
1720 }
1721 EXPORT_SYMBOL(abort);