]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/exit.c
Merge tag 'x86-vdso-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/linux.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/exit.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/pgtable.h>
70 #include <asm/mmu_context.h>
71
72 static void __unhash_process(struct task_struct *p, bool group_dead)
73 {
74 nr_threads--;
75 detach_pid(p, PIDTYPE_PID);
76 if (group_dead) {
77 detach_pid(p, PIDTYPE_TGID);
78 detach_pid(p, PIDTYPE_PGID);
79 detach_pid(p, PIDTYPE_SID);
80
81 list_del_rcu(&p->tasks);
82 list_del_init(&p->sibling);
83 __this_cpu_dec(process_counts);
84 }
85 list_del_rcu(&p->thread_group);
86 list_del_rcu(&p->thread_node);
87 }
88
89 /*
90 * This function expects the tasklist_lock write-locked.
91 */
92 static void __exit_signal(struct task_struct *tsk)
93 {
94 struct signal_struct *sig = tsk->signal;
95 bool group_dead = thread_group_leader(tsk);
96 struct sighand_struct *sighand;
97 struct tty_struct *uninitialized_var(tty);
98 u64 utime, stime;
99
100 sighand = rcu_dereference_check(tsk->sighand,
101 lockdep_tasklist_lock_is_held());
102 spin_lock(&sighand->siglock);
103
104 #ifdef CONFIG_POSIX_TIMERS
105 posix_cpu_timers_exit(tsk);
106 if (group_dead)
107 posix_cpu_timers_exit_group(tsk);
108 #endif
109
110 if (group_dead) {
111 tty = sig->tty;
112 sig->tty = NULL;
113 } else {
114 /*
115 * If there is any task waiting for the group exit
116 * then notify it:
117 */
118 if (sig->notify_count > 0 && !--sig->notify_count)
119 wake_up_process(sig->group_exit_task);
120
121 if (tsk == sig->curr_target)
122 sig->curr_target = next_thread(tsk);
123 }
124
125 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
126 sizeof(unsigned long long));
127
128 /*
129 * Accumulate here the counters for all threads as they die. We could
130 * skip the group leader because it is the last user of signal_struct,
131 * but we want to avoid the race with thread_group_cputime() which can
132 * see the empty ->thread_head list.
133 */
134 task_cputime(tsk, &utime, &stime);
135 write_seqlock(&sig->stats_lock);
136 sig->utime += utime;
137 sig->stime += stime;
138 sig->gtime += task_gtime(tsk);
139 sig->min_flt += tsk->min_flt;
140 sig->maj_flt += tsk->maj_flt;
141 sig->nvcsw += tsk->nvcsw;
142 sig->nivcsw += tsk->nivcsw;
143 sig->inblock += task_io_get_inblock(tsk);
144 sig->oublock += task_io_get_oublock(tsk);
145 task_io_accounting_add(&sig->ioac, &tsk->ioac);
146 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
147 sig->nr_threads--;
148 __unhash_process(tsk, group_dead);
149 write_sequnlock(&sig->stats_lock);
150
151 /*
152 * Do this under ->siglock, we can race with another thread
153 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
154 */
155 flush_sigqueue(&tsk->pending);
156 tsk->sighand = NULL;
157 spin_unlock(&sighand->siglock);
158
159 __cleanup_sighand(sighand);
160 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
161 if (group_dead) {
162 flush_sigqueue(&sig->shared_pending);
163 tty_kref_put(tty);
164 }
165 }
166
167 static void delayed_put_task_struct(struct rcu_head *rhp)
168 {
169 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
170
171 perf_event_delayed_put(tsk);
172 trace_sched_process_free(tsk);
173 put_task_struct(tsk);
174 }
175
176 void put_task_struct_rcu_user(struct task_struct *task)
177 {
178 if (refcount_dec_and_test(&task->rcu_users))
179 call_rcu(&task->rcu, delayed_put_task_struct);
180 }
181
182 void release_task(struct task_struct *p)
183 {
184 struct task_struct *leader;
185 struct pid *thread_pid;
186 int zap_leader;
187 repeat:
188 /* don't need to get the RCU readlock here - the process is dead and
189 * can't be modifying its own credentials. But shut RCU-lockdep up */
190 rcu_read_lock();
191 atomic_dec(&__task_cred(p)->user->processes);
192 rcu_read_unlock();
193
194 cgroup_release(p);
195
196 write_lock_irq(&tasklist_lock);
197 ptrace_release_task(p);
198 thread_pid = get_pid(p->thread_pid);
199 __exit_signal(p);
200
201 /*
202 * If we are the last non-leader member of the thread
203 * group, and the leader is zombie, then notify the
204 * group leader's parent process. (if it wants notification.)
205 */
206 zap_leader = 0;
207 leader = p->group_leader;
208 if (leader != p && thread_group_empty(leader)
209 && leader->exit_state == EXIT_ZOMBIE) {
210 /*
211 * If we were the last child thread and the leader has
212 * exited already, and the leader's parent ignores SIGCHLD,
213 * then we are the one who should release the leader.
214 */
215 zap_leader = do_notify_parent(leader, leader->exit_signal);
216 if (zap_leader)
217 leader->exit_state = EXIT_DEAD;
218 }
219
220 write_unlock_irq(&tasklist_lock);
221 proc_flush_pid(thread_pid);
222 put_pid(thread_pid);
223 release_thread(p);
224 put_task_struct_rcu_user(p);
225
226 p = leader;
227 if (unlikely(zap_leader))
228 goto repeat;
229 }
230
231 void rcuwait_wake_up(struct rcuwait *w)
232 {
233 struct task_struct *task;
234
235 rcu_read_lock();
236
237 /*
238 * Order condition vs @task, such that everything prior to the load
239 * of @task is visible. This is the condition as to why the user called
240 * rcuwait_trywake() in the first place. Pairs with set_current_state()
241 * barrier (A) in rcuwait_wait_event().
242 *
243 * WAIT WAKE
244 * [S] tsk = current [S] cond = true
245 * MB (A) MB (B)
246 * [L] cond [L] tsk
247 */
248 smp_mb(); /* (B) */
249
250 task = rcu_dereference(w->task);
251 if (task)
252 wake_up_process(task);
253 rcu_read_unlock();
254 }
255 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
256
257 /*
258 * Determine if a process group is "orphaned", according to the POSIX
259 * definition in 2.2.2.52. Orphaned process groups are not to be affected
260 * by terminal-generated stop signals. Newly orphaned process groups are
261 * to receive a SIGHUP and a SIGCONT.
262 *
263 * "I ask you, have you ever known what it is to be an orphan?"
264 */
265 static int will_become_orphaned_pgrp(struct pid *pgrp,
266 struct task_struct *ignored_task)
267 {
268 struct task_struct *p;
269
270 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
271 if ((p == ignored_task) ||
272 (p->exit_state && thread_group_empty(p)) ||
273 is_global_init(p->real_parent))
274 continue;
275
276 if (task_pgrp(p->real_parent) != pgrp &&
277 task_session(p->real_parent) == task_session(p))
278 return 0;
279 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
280
281 return 1;
282 }
283
284 int is_current_pgrp_orphaned(void)
285 {
286 int retval;
287
288 read_lock(&tasklist_lock);
289 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
290 read_unlock(&tasklist_lock);
291
292 return retval;
293 }
294
295 static bool has_stopped_jobs(struct pid *pgrp)
296 {
297 struct task_struct *p;
298
299 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
300 if (p->signal->flags & SIGNAL_STOP_STOPPED)
301 return true;
302 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
303
304 return false;
305 }
306
307 /*
308 * Check to see if any process groups have become orphaned as
309 * a result of our exiting, and if they have any stopped jobs,
310 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
311 */
312 static void
313 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
314 {
315 struct pid *pgrp = task_pgrp(tsk);
316 struct task_struct *ignored_task = tsk;
317
318 if (!parent)
319 /* exit: our father is in a different pgrp than
320 * we are and we were the only connection outside.
321 */
322 parent = tsk->real_parent;
323 else
324 /* reparent: our child is in a different pgrp than
325 * we are, and it was the only connection outside.
326 */
327 ignored_task = NULL;
328
329 if (task_pgrp(parent) != pgrp &&
330 task_session(parent) == task_session(tsk) &&
331 will_become_orphaned_pgrp(pgrp, ignored_task) &&
332 has_stopped_jobs(pgrp)) {
333 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
334 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
335 }
336 }
337
338 #ifdef CONFIG_MEMCG
339 /*
340 * A task is exiting. If it owned this mm, find a new owner for the mm.
341 */
342 void mm_update_next_owner(struct mm_struct *mm)
343 {
344 struct task_struct *c, *g, *p = current;
345
346 retry:
347 /*
348 * If the exiting or execing task is not the owner, it's
349 * someone else's problem.
350 */
351 if (mm->owner != p)
352 return;
353 /*
354 * The current owner is exiting/execing and there are no other
355 * candidates. Do not leave the mm pointing to a possibly
356 * freed task structure.
357 */
358 if (atomic_read(&mm->mm_users) <= 1) {
359 WRITE_ONCE(mm->owner, NULL);
360 return;
361 }
362
363 read_lock(&tasklist_lock);
364 /*
365 * Search in the children
366 */
367 list_for_each_entry(c, &p->children, sibling) {
368 if (c->mm == mm)
369 goto assign_new_owner;
370 }
371
372 /*
373 * Search in the siblings
374 */
375 list_for_each_entry(c, &p->real_parent->children, sibling) {
376 if (c->mm == mm)
377 goto assign_new_owner;
378 }
379
380 /*
381 * Search through everything else, we should not get here often.
382 */
383 for_each_process(g) {
384 if (g->flags & PF_KTHREAD)
385 continue;
386 for_each_thread(g, c) {
387 if (c->mm == mm)
388 goto assign_new_owner;
389 if (c->mm)
390 break;
391 }
392 }
393 read_unlock(&tasklist_lock);
394 /*
395 * We found no owner yet mm_users > 1: this implies that we are
396 * most likely racing with swapoff (try_to_unuse()) or /proc or
397 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
398 */
399 WRITE_ONCE(mm->owner, NULL);
400 return;
401
402 assign_new_owner:
403 BUG_ON(c == p);
404 get_task_struct(c);
405 /*
406 * The task_lock protects c->mm from changing.
407 * We always want mm->owner->mm == mm
408 */
409 task_lock(c);
410 /*
411 * Delay read_unlock() till we have the task_lock()
412 * to ensure that c does not slip away underneath us
413 */
414 read_unlock(&tasklist_lock);
415 if (c->mm != mm) {
416 task_unlock(c);
417 put_task_struct(c);
418 goto retry;
419 }
420 WRITE_ONCE(mm->owner, c);
421 task_unlock(c);
422 put_task_struct(c);
423 }
424 #endif /* CONFIG_MEMCG */
425
426 /*
427 * Turn us into a lazy TLB process if we
428 * aren't already..
429 */
430 static void exit_mm(void)
431 {
432 struct mm_struct *mm = current->mm;
433 struct core_state *core_state;
434
435 exit_mm_release(current, mm);
436 if (!mm)
437 return;
438 sync_mm_rss(mm);
439 /*
440 * Serialize with any possible pending coredump.
441 * We must hold mmap_sem around checking core_state
442 * and clearing tsk->mm. The core-inducing thread
443 * will increment ->nr_threads for each thread in the
444 * group with ->mm != NULL.
445 */
446 down_read(&mm->mmap_sem);
447 core_state = mm->core_state;
448 if (core_state) {
449 struct core_thread self;
450
451 up_read(&mm->mmap_sem);
452
453 self.task = current;
454 self.next = xchg(&core_state->dumper.next, &self);
455 /*
456 * Implies mb(), the result of xchg() must be visible
457 * to core_state->dumper.
458 */
459 if (atomic_dec_and_test(&core_state->nr_threads))
460 complete(&core_state->startup);
461
462 for (;;) {
463 set_current_state(TASK_UNINTERRUPTIBLE);
464 if (!self.task) /* see coredump_finish() */
465 break;
466 freezable_schedule();
467 }
468 __set_current_state(TASK_RUNNING);
469 down_read(&mm->mmap_sem);
470 }
471 mmgrab(mm);
472 BUG_ON(mm != current->active_mm);
473 /* more a memory barrier than a real lock */
474 task_lock(current);
475 current->mm = NULL;
476 up_read(&mm->mmap_sem);
477 enter_lazy_tlb(mm, current);
478 task_unlock(current);
479 mm_update_next_owner(mm);
480 mmput(mm);
481 if (test_thread_flag(TIF_MEMDIE))
482 exit_oom_victim();
483 }
484
485 static struct task_struct *find_alive_thread(struct task_struct *p)
486 {
487 struct task_struct *t;
488
489 for_each_thread(p, t) {
490 if (!(t->flags & PF_EXITING))
491 return t;
492 }
493 return NULL;
494 }
495
496 static struct task_struct *find_child_reaper(struct task_struct *father,
497 struct list_head *dead)
498 __releases(&tasklist_lock)
499 __acquires(&tasklist_lock)
500 {
501 struct pid_namespace *pid_ns = task_active_pid_ns(father);
502 struct task_struct *reaper = pid_ns->child_reaper;
503 struct task_struct *p, *n;
504
505 if (likely(reaper != father))
506 return reaper;
507
508 reaper = find_alive_thread(father);
509 if (reaper) {
510 pid_ns->child_reaper = reaper;
511 return reaper;
512 }
513
514 write_unlock_irq(&tasklist_lock);
515
516 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
517 list_del_init(&p->ptrace_entry);
518 release_task(p);
519 }
520
521 zap_pid_ns_processes(pid_ns);
522 write_lock_irq(&tasklist_lock);
523
524 return father;
525 }
526
527 /*
528 * When we die, we re-parent all our children, and try to:
529 * 1. give them to another thread in our thread group, if such a member exists
530 * 2. give it to the first ancestor process which prctl'd itself as a
531 * child_subreaper for its children (like a service manager)
532 * 3. give it to the init process (PID 1) in our pid namespace
533 */
534 static struct task_struct *find_new_reaper(struct task_struct *father,
535 struct task_struct *child_reaper)
536 {
537 struct task_struct *thread, *reaper;
538
539 thread = find_alive_thread(father);
540 if (thread)
541 return thread;
542
543 if (father->signal->has_child_subreaper) {
544 unsigned int ns_level = task_pid(father)->level;
545 /*
546 * Find the first ->is_child_subreaper ancestor in our pid_ns.
547 * We can't check reaper != child_reaper to ensure we do not
548 * cross the namespaces, the exiting parent could be injected
549 * by setns() + fork().
550 * We check pid->level, this is slightly more efficient than
551 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
552 */
553 for (reaper = father->real_parent;
554 task_pid(reaper)->level == ns_level;
555 reaper = reaper->real_parent) {
556 if (reaper == &init_task)
557 break;
558 if (!reaper->signal->is_child_subreaper)
559 continue;
560 thread = find_alive_thread(reaper);
561 if (thread)
562 return thread;
563 }
564 }
565
566 return child_reaper;
567 }
568
569 /*
570 * Any that need to be release_task'd are put on the @dead list.
571 */
572 static void reparent_leader(struct task_struct *father, struct task_struct *p,
573 struct list_head *dead)
574 {
575 if (unlikely(p->exit_state == EXIT_DEAD))
576 return;
577
578 /* We don't want people slaying init. */
579 p->exit_signal = SIGCHLD;
580
581 /* If it has exited notify the new parent about this child's death. */
582 if (!p->ptrace &&
583 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
584 if (do_notify_parent(p, p->exit_signal)) {
585 p->exit_state = EXIT_DEAD;
586 list_add(&p->ptrace_entry, dead);
587 }
588 }
589
590 kill_orphaned_pgrp(p, father);
591 }
592
593 /*
594 * This does two things:
595 *
596 * A. Make init inherit all the child processes
597 * B. Check to see if any process groups have become orphaned
598 * as a result of our exiting, and if they have any stopped
599 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
600 */
601 static void forget_original_parent(struct task_struct *father,
602 struct list_head *dead)
603 {
604 struct task_struct *p, *t, *reaper;
605
606 if (unlikely(!list_empty(&father->ptraced)))
607 exit_ptrace(father, dead);
608
609 /* Can drop and reacquire tasklist_lock */
610 reaper = find_child_reaper(father, dead);
611 if (list_empty(&father->children))
612 return;
613
614 reaper = find_new_reaper(father, reaper);
615 list_for_each_entry(p, &father->children, sibling) {
616 for_each_thread(p, t) {
617 RCU_INIT_POINTER(t->real_parent, reaper);
618 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
619 if (likely(!t->ptrace))
620 t->parent = t->real_parent;
621 if (t->pdeath_signal)
622 group_send_sig_info(t->pdeath_signal,
623 SEND_SIG_NOINFO, t,
624 PIDTYPE_TGID);
625 }
626 /*
627 * If this is a threaded reparent there is no need to
628 * notify anyone anything has happened.
629 */
630 if (!same_thread_group(reaper, father))
631 reparent_leader(father, p, dead);
632 }
633 list_splice_tail_init(&father->children, &reaper->children);
634 }
635
636 /*
637 * Send signals to all our closest relatives so that they know
638 * to properly mourn us..
639 */
640 static void exit_notify(struct task_struct *tsk, int group_dead)
641 {
642 bool autoreap;
643 struct task_struct *p, *n;
644 LIST_HEAD(dead);
645
646 write_lock_irq(&tasklist_lock);
647 forget_original_parent(tsk, &dead);
648
649 if (group_dead)
650 kill_orphaned_pgrp(tsk->group_leader, NULL);
651
652 tsk->exit_state = EXIT_ZOMBIE;
653 if (unlikely(tsk->ptrace)) {
654 int sig = thread_group_leader(tsk) &&
655 thread_group_empty(tsk) &&
656 !ptrace_reparented(tsk) ?
657 tsk->exit_signal : SIGCHLD;
658 autoreap = do_notify_parent(tsk, sig);
659 } else if (thread_group_leader(tsk)) {
660 autoreap = thread_group_empty(tsk) &&
661 do_notify_parent(tsk, tsk->exit_signal);
662 } else {
663 autoreap = true;
664 }
665
666 if (autoreap) {
667 tsk->exit_state = EXIT_DEAD;
668 list_add(&tsk->ptrace_entry, &dead);
669 }
670
671 /* mt-exec, de_thread() is waiting for group leader */
672 if (unlikely(tsk->signal->notify_count < 0))
673 wake_up_process(tsk->signal->group_exit_task);
674 write_unlock_irq(&tasklist_lock);
675
676 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
677 list_del_init(&p->ptrace_entry);
678 release_task(p);
679 }
680 }
681
682 #ifdef CONFIG_DEBUG_STACK_USAGE
683 static void check_stack_usage(void)
684 {
685 static DEFINE_SPINLOCK(low_water_lock);
686 static int lowest_to_date = THREAD_SIZE;
687 unsigned long free;
688
689 free = stack_not_used(current);
690
691 if (free >= lowest_to_date)
692 return;
693
694 spin_lock(&low_water_lock);
695 if (free < lowest_to_date) {
696 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
697 current->comm, task_pid_nr(current), free);
698 lowest_to_date = free;
699 }
700 spin_unlock(&low_water_lock);
701 }
702 #else
703 static inline void check_stack_usage(void) {}
704 #endif
705
706 void __noreturn do_exit(long code)
707 {
708 struct task_struct *tsk = current;
709 int group_dead;
710
711 profile_task_exit(tsk);
712 kcov_task_exit(tsk);
713
714 WARN_ON(blk_needs_flush_plug(tsk));
715
716 if (unlikely(in_interrupt()))
717 panic("Aiee, killing interrupt handler!");
718 if (unlikely(!tsk->pid))
719 panic("Attempted to kill the idle task!");
720
721 /*
722 * If do_exit is called because this processes oopsed, it's possible
723 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
724 * continuing. Amongst other possible reasons, this is to prevent
725 * mm_release()->clear_child_tid() from writing to a user-controlled
726 * kernel address.
727 */
728 set_fs(USER_DS);
729
730 ptrace_event(PTRACE_EVENT_EXIT, code);
731
732 validate_creds_for_do_exit(tsk);
733
734 /*
735 * We're taking recursive faults here in do_exit. Safest is to just
736 * leave this task alone and wait for reboot.
737 */
738 if (unlikely(tsk->flags & PF_EXITING)) {
739 pr_alert("Fixing recursive fault but reboot is needed!\n");
740 futex_exit_recursive(tsk);
741 set_current_state(TASK_UNINTERRUPTIBLE);
742 schedule();
743 }
744
745 exit_signals(tsk); /* sets PF_EXITING */
746
747 if (unlikely(in_atomic())) {
748 pr_info("note: %s[%d] exited with preempt_count %d\n",
749 current->comm, task_pid_nr(current),
750 preempt_count());
751 preempt_count_set(PREEMPT_ENABLED);
752 }
753
754 /* sync mm's RSS info before statistics gathering */
755 if (tsk->mm)
756 sync_mm_rss(tsk->mm);
757 acct_update_integrals(tsk);
758 group_dead = atomic_dec_and_test(&tsk->signal->live);
759 if (group_dead) {
760 /*
761 * If the last thread of global init has exited, panic
762 * immediately to get a useable coredump.
763 */
764 if (unlikely(is_global_init(tsk)))
765 panic("Attempted to kill init! exitcode=0x%08x\n",
766 tsk->signal->group_exit_code ?: (int)code);
767
768 #ifdef CONFIG_POSIX_TIMERS
769 hrtimer_cancel(&tsk->signal->real_timer);
770 exit_itimers(tsk->signal);
771 #endif
772 if (tsk->mm)
773 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
774 }
775 acct_collect(code, group_dead);
776 if (group_dead)
777 tty_audit_exit();
778 audit_free(tsk);
779
780 tsk->exit_code = code;
781 taskstats_exit(tsk, group_dead);
782
783 exit_mm();
784
785 if (group_dead)
786 acct_process();
787 trace_sched_process_exit(tsk);
788
789 exit_sem(tsk);
790 exit_shm(tsk);
791 exit_files(tsk);
792 exit_fs(tsk);
793 if (group_dead)
794 disassociate_ctty(1);
795 exit_task_namespaces(tsk);
796 exit_task_work(tsk);
797 exit_thread(tsk);
798 exit_umh(tsk);
799
800 /*
801 * Flush inherited counters to the parent - before the parent
802 * gets woken up by child-exit notifications.
803 *
804 * because of cgroup mode, must be called before cgroup_exit()
805 */
806 perf_event_exit_task(tsk);
807
808 sched_autogroup_exit_task(tsk);
809 cgroup_exit(tsk);
810
811 /*
812 * FIXME: do that only when needed, using sched_exit tracepoint
813 */
814 flush_ptrace_hw_breakpoint(tsk);
815
816 exit_tasks_rcu_start();
817 exit_notify(tsk, group_dead);
818 proc_exit_connector(tsk);
819 mpol_put_task_policy(tsk);
820 #ifdef CONFIG_FUTEX
821 if (unlikely(current->pi_state_cache))
822 kfree(current->pi_state_cache);
823 #endif
824 /*
825 * Make sure we are holding no locks:
826 */
827 debug_check_no_locks_held();
828
829 if (tsk->io_context)
830 exit_io_context(tsk);
831
832 if (tsk->splice_pipe)
833 free_pipe_info(tsk->splice_pipe);
834
835 if (tsk->task_frag.page)
836 put_page(tsk->task_frag.page);
837
838 validate_creds_for_do_exit(tsk);
839
840 check_stack_usage();
841 preempt_disable();
842 if (tsk->nr_dirtied)
843 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
844 exit_rcu();
845 exit_tasks_rcu_finish();
846
847 lockdep_free_task(tsk);
848 do_task_dead();
849 }
850 EXPORT_SYMBOL_GPL(do_exit);
851
852 void complete_and_exit(struct completion *comp, long code)
853 {
854 if (comp)
855 complete(comp);
856
857 do_exit(code);
858 }
859 EXPORT_SYMBOL(complete_and_exit);
860
861 SYSCALL_DEFINE1(exit, int, error_code)
862 {
863 do_exit((error_code&0xff)<<8);
864 }
865
866 /*
867 * Take down every thread in the group. This is called by fatal signals
868 * as well as by sys_exit_group (below).
869 */
870 void
871 do_group_exit(int exit_code)
872 {
873 struct signal_struct *sig = current->signal;
874
875 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
876
877 if (signal_group_exit(sig))
878 exit_code = sig->group_exit_code;
879 else if (!thread_group_empty(current)) {
880 struct sighand_struct *const sighand = current->sighand;
881
882 spin_lock_irq(&sighand->siglock);
883 if (signal_group_exit(sig))
884 /* Another thread got here before we took the lock. */
885 exit_code = sig->group_exit_code;
886 else {
887 sig->group_exit_code = exit_code;
888 sig->flags = SIGNAL_GROUP_EXIT;
889 zap_other_threads(current);
890 }
891 spin_unlock_irq(&sighand->siglock);
892 }
893
894 do_exit(exit_code);
895 /* NOTREACHED */
896 }
897
898 /*
899 * this kills every thread in the thread group. Note that any externally
900 * wait4()-ing process will get the correct exit code - even if this
901 * thread is not the thread group leader.
902 */
903 SYSCALL_DEFINE1(exit_group, int, error_code)
904 {
905 do_group_exit((error_code & 0xff) << 8);
906 /* NOTREACHED */
907 return 0;
908 }
909
910 struct waitid_info {
911 pid_t pid;
912 uid_t uid;
913 int status;
914 int cause;
915 };
916
917 struct wait_opts {
918 enum pid_type wo_type;
919 int wo_flags;
920 struct pid *wo_pid;
921
922 struct waitid_info *wo_info;
923 int wo_stat;
924 struct rusage *wo_rusage;
925
926 wait_queue_entry_t child_wait;
927 int notask_error;
928 };
929
930 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
931 {
932 return wo->wo_type == PIDTYPE_MAX ||
933 task_pid_type(p, wo->wo_type) == wo->wo_pid;
934 }
935
936 static int
937 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
938 {
939 if (!eligible_pid(wo, p))
940 return 0;
941
942 /*
943 * Wait for all children (clone and not) if __WALL is set or
944 * if it is traced by us.
945 */
946 if (ptrace || (wo->wo_flags & __WALL))
947 return 1;
948
949 /*
950 * Otherwise, wait for clone children *only* if __WCLONE is set;
951 * otherwise, wait for non-clone children *only*.
952 *
953 * Note: a "clone" child here is one that reports to its parent
954 * using a signal other than SIGCHLD, or a non-leader thread which
955 * we can only see if it is traced by us.
956 */
957 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
958 return 0;
959
960 return 1;
961 }
962
963 /*
964 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
965 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
966 * the lock and this task is uninteresting. If we return nonzero, we have
967 * released the lock and the system call should return.
968 */
969 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
970 {
971 int state, status;
972 pid_t pid = task_pid_vnr(p);
973 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
974 struct waitid_info *infop;
975
976 if (!likely(wo->wo_flags & WEXITED))
977 return 0;
978
979 if (unlikely(wo->wo_flags & WNOWAIT)) {
980 status = p->exit_code;
981 get_task_struct(p);
982 read_unlock(&tasklist_lock);
983 sched_annotate_sleep();
984 if (wo->wo_rusage)
985 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
986 put_task_struct(p);
987 goto out_info;
988 }
989 /*
990 * Move the task's state to DEAD/TRACE, only one thread can do this.
991 */
992 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
993 EXIT_TRACE : EXIT_DEAD;
994 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
995 return 0;
996 /*
997 * We own this thread, nobody else can reap it.
998 */
999 read_unlock(&tasklist_lock);
1000 sched_annotate_sleep();
1001
1002 /*
1003 * Check thread_group_leader() to exclude the traced sub-threads.
1004 */
1005 if (state == EXIT_DEAD && thread_group_leader(p)) {
1006 struct signal_struct *sig = p->signal;
1007 struct signal_struct *psig = current->signal;
1008 unsigned long maxrss;
1009 u64 tgutime, tgstime;
1010
1011 /*
1012 * The resource counters for the group leader are in its
1013 * own task_struct. Those for dead threads in the group
1014 * are in its signal_struct, as are those for the child
1015 * processes it has previously reaped. All these
1016 * accumulate in the parent's signal_struct c* fields.
1017 *
1018 * We don't bother to take a lock here to protect these
1019 * p->signal fields because the whole thread group is dead
1020 * and nobody can change them.
1021 *
1022 * psig->stats_lock also protects us from our sub-theads
1023 * which can reap other children at the same time. Until
1024 * we change k_getrusage()-like users to rely on this lock
1025 * we have to take ->siglock as well.
1026 *
1027 * We use thread_group_cputime_adjusted() to get times for
1028 * the thread group, which consolidates times for all threads
1029 * in the group including the group leader.
1030 */
1031 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1032 spin_lock_irq(&current->sighand->siglock);
1033 write_seqlock(&psig->stats_lock);
1034 psig->cutime += tgutime + sig->cutime;
1035 psig->cstime += tgstime + sig->cstime;
1036 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1037 psig->cmin_flt +=
1038 p->min_flt + sig->min_flt + sig->cmin_flt;
1039 psig->cmaj_flt +=
1040 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1041 psig->cnvcsw +=
1042 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1043 psig->cnivcsw +=
1044 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1045 psig->cinblock +=
1046 task_io_get_inblock(p) +
1047 sig->inblock + sig->cinblock;
1048 psig->coublock +=
1049 task_io_get_oublock(p) +
1050 sig->oublock + sig->coublock;
1051 maxrss = max(sig->maxrss, sig->cmaxrss);
1052 if (psig->cmaxrss < maxrss)
1053 psig->cmaxrss = maxrss;
1054 task_io_accounting_add(&psig->ioac, &p->ioac);
1055 task_io_accounting_add(&psig->ioac, &sig->ioac);
1056 write_sequnlock(&psig->stats_lock);
1057 spin_unlock_irq(&current->sighand->siglock);
1058 }
1059
1060 if (wo->wo_rusage)
1061 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1062 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1063 ? p->signal->group_exit_code : p->exit_code;
1064 wo->wo_stat = status;
1065
1066 if (state == EXIT_TRACE) {
1067 write_lock_irq(&tasklist_lock);
1068 /* We dropped tasklist, ptracer could die and untrace */
1069 ptrace_unlink(p);
1070
1071 /* If parent wants a zombie, don't release it now */
1072 state = EXIT_ZOMBIE;
1073 if (do_notify_parent(p, p->exit_signal))
1074 state = EXIT_DEAD;
1075 p->exit_state = state;
1076 write_unlock_irq(&tasklist_lock);
1077 }
1078 if (state == EXIT_DEAD)
1079 release_task(p);
1080
1081 out_info:
1082 infop = wo->wo_info;
1083 if (infop) {
1084 if ((status & 0x7f) == 0) {
1085 infop->cause = CLD_EXITED;
1086 infop->status = status >> 8;
1087 } else {
1088 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1089 infop->status = status & 0x7f;
1090 }
1091 infop->pid = pid;
1092 infop->uid = uid;
1093 }
1094
1095 return pid;
1096 }
1097
1098 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1099 {
1100 if (ptrace) {
1101 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1102 return &p->exit_code;
1103 } else {
1104 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1105 return &p->signal->group_exit_code;
1106 }
1107 return NULL;
1108 }
1109
1110 /**
1111 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1112 * @wo: wait options
1113 * @ptrace: is the wait for ptrace
1114 * @p: task to wait for
1115 *
1116 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1117 *
1118 * CONTEXT:
1119 * read_lock(&tasklist_lock), which is released if return value is
1120 * non-zero. Also, grabs and releases @p->sighand->siglock.
1121 *
1122 * RETURNS:
1123 * 0 if wait condition didn't exist and search for other wait conditions
1124 * should continue. Non-zero return, -errno on failure and @p's pid on
1125 * success, implies that tasklist_lock is released and wait condition
1126 * search should terminate.
1127 */
1128 static int wait_task_stopped(struct wait_opts *wo,
1129 int ptrace, struct task_struct *p)
1130 {
1131 struct waitid_info *infop;
1132 int exit_code, *p_code, why;
1133 uid_t uid = 0; /* unneeded, required by compiler */
1134 pid_t pid;
1135
1136 /*
1137 * Traditionally we see ptrace'd stopped tasks regardless of options.
1138 */
1139 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1140 return 0;
1141
1142 if (!task_stopped_code(p, ptrace))
1143 return 0;
1144
1145 exit_code = 0;
1146 spin_lock_irq(&p->sighand->siglock);
1147
1148 p_code = task_stopped_code(p, ptrace);
1149 if (unlikely(!p_code))
1150 goto unlock_sig;
1151
1152 exit_code = *p_code;
1153 if (!exit_code)
1154 goto unlock_sig;
1155
1156 if (!unlikely(wo->wo_flags & WNOWAIT))
1157 *p_code = 0;
1158
1159 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1160 unlock_sig:
1161 spin_unlock_irq(&p->sighand->siglock);
1162 if (!exit_code)
1163 return 0;
1164
1165 /*
1166 * Now we are pretty sure this task is interesting.
1167 * Make sure it doesn't get reaped out from under us while we
1168 * give up the lock and then examine it below. We don't want to
1169 * keep holding onto the tasklist_lock while we call getrusage and
1170 * possibly take page faults for user memory.
1171 */
1172 get_task_struct(p);
1173 pid = task_pid_vnr(p);
1174 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1175 read_unlock(&tasklist_lock);
1176 sched_annotate_sleep();
1177 if (wo->wo_rusage)
1178 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1179 put_task_struct(p);
1180
1181 if (likely(!(wo->wo_flags & WNOWAIT)))
1182 wo->wo_stat = (exit_code << 8) | 0x7f;
1183
1184 infop = wo->wo_info;
1185 if (infop) {
1186 infop->cause = why;
1187 infop->status = exit_code;
1188 infop->pid = pid;
1189 infop->uid = uid;
1190 }
1191 return pid;
1192 }
1193
1194 /*
1195 * Handle do_wait work for one task in a live, non-stopped state.
1196 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1197 * the lock and this task is uninteresting. If we return nonzero, we have
1198 * released the lock and the system call should return.
1199 */
1200 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1201 {
1202 struct waitid_info *infop;
1203 pid_t pid;
1204 uid_t uid;
1205
1206 if (!unlikely(wo->wo_flags & WCONTINUED))
1207 return 0;
1208
1209 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1210 return 0;
1211
1212 spin_lock_irq(&p->sighand->siglock);
1213 /* Re-check with the lock held. */
1214 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1215 spin_unlock_irq(&p->sighand->siglock);
1216 return 0;
1217 }
1218 if (!unlikely(wo->wo_flags & WNOWAIT))
1219 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1220 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1221 spin_unlock_irq(&p->sighand->siglock);
1222
1223 pid = task_pid_vnr(p);
1224 get_task_struct(p);
1225 read_unlock(&tasklist_lock);
1226 sched_annotate_sleep();
1227 if (wo->wo_rusage)
1228 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1229 put_task_struct(p);
1230
1231 infop = wo->wo_info;
1232 if (!infop) {
1233 wo->wo_stat = 0xffff;
1234 } else {
1235 infop->cause = CLD_CONTINUED;
1236 infop->pid = pid;
1237 infop->uid = uid;
1238 infop->status = SIGCONT;
1239 }
1240 return pid;
1241 }
1242
1243 /*
1244 * Consider @p for a wait by @parent.
1245 *
1246 * -ECHILD should be in ->notask_error before the first call.
1247 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1248 * Returns zero if the search for a child should continue;
1249 * then ->notask_error is 0 if @p is an eligible child,
1250 * or still -ECHILD.
1251 */
1252 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1253 struct task_struct *p)
1254 {
1255 /*
1256 * We can race with wait_task_zombie() from another thread.
1257 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1258 * can't confuse the checks below.
1259 */
1260 int exit_state = READ_ONCE(p->exit_state);
1261 int ret;
1262
1263 if (unlikely(exit_state == EXIT_DEAD))
1264 return 0;
1265
1266 ret = eligible_child(wo, ptrace, p);
1267 if (!ret)
1268 return ret;
1269
1270 if (unlikely(exit_state == EXIT_TRACE)) {
1271 /*
1272 * ptrace == 0 means we are the natural parent. In this case
1273 * we should clear notask_error, debugger will notify us.
1274 */
1275 if (likely(!ptrace))
1276 wo->notask_error = 0;
1277 return 0;
1278 }
1279
1280 if (likely(!ptrace) && unlikely(p->ptrace)) {
1281 /*
1282 * If it is traced by its real parent's group, just pretend
1283 * the caller is ptrace_do_wait() and reap this child if it
1284 * is zombie.
1285 *
1286 * This also hides group stop state from real parent; otherwise
1287 * a single stop can be reported twice as group and ptrace stop.
1288 * If a ptracer wants to distinguish these two events for its
1289 * own children it should create a separate process which takes
1290 * the role of real parent.
1291 */
1292 if (!ptrace_reparented(p))
1293 ptrace = 1;
1294 }
1295
1296 /* slay zombie? */
1297 if (exit_state == EXIT_ZOMBIE) {
1298 /* we don't reap group leaders with subthreads */
1299 if (!delay_group_leader(p)) {
1300 /*
1301 * A zombie ptracee is only visible to its ptracer.
1302 * Notification and reaping will be cascaded to the
1303 * real parent when the ptracer detaches.
1304 */
1305 if (unlikely(ptrace) || likely(!p->ptrace))
1306 return wait_task_zombie(wo, p);
1307 }
1308
1309 /*
1310 * Allow access to stopped/continued state via zombie by
1311 * falling through. Clearing of notask_error is complex.
1312 *
1313 * When !@ptrace:
1314 *
1315 * If WEXITED is set, notask_error should naturally be
1316 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1317 * so, if there are live subthreads, there are events to
1318 * wait for. If all subthreads are dead, it's still safe
1319 * to clear - this function will be called again in finite
1320 * amount time once all the subthreads are released and
1321 * will then return without clearing.
1322 *
1323 * When @ptrace:
1324 *
1325 * Stopped state is per-task and thus can't change once the
1326 * target task dies. Only continued and exited can happen.
1327 * Clear notask_error if WCONTINUED | WEXITED.
1328 */
1329 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1330 wo->notask_error = 0;
1331 } else {
1332 /*
1333 * @p is alive and it's gonna stop, continue or exit, so
1334 * there always is something to wait for.
1335 */
1336 wo->notask_error = 0;
1337 }
1338
1339 /*
1340 * Wait for stopped. Depending on @ptrace, different stopped state
1341 * is used and the two don't interact with each other.
1342 */
1343 ret = wait_task_stopped(wo, ptrace, p);
1344 if (ret)
1345 return ret;
1346
1347 /*
1348 * Wait for continued. There's only one continued state and the
1349 * ptracer can consume it which can confuse the real parent. Don't
1350 * use WCONTINUED from ptracer. You don't need or want it.
1351 */
1352 return wait_task_continued(wo, p);
1353 }
1354
1355 /*
1356 * Do the work of do_wait() for one thread in the group, @tsk.
1357 *
1358 * -ECHILD should be in ->notask_error before the first call.
1359 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1360 * Returns zero if the search for a child should continue; then
1361 * ->notask_error is 0 if there were any eligible children,
1362 * or still -ECHILD.
1363 */
1364 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1365 {
1366 struct task_struct *p;
1367
1368 list_for_each_entry(p, &tsk->children, sibling) {
1369 int ret = wait_consider_task(wo, 0, p);
1370
1371 if (ret)
1372 return ret;
1373 }
1374
1375 return 0;
1376 }
1377
1378 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1379 {
1380 struct task_struct *p;
1381
1382 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1383 int ret = wait_consider_task(wo, 1, p);
1384
1385 if (ret)
1386 return ret;
1387 }
1388
1389 return 0;
1390 }
1391
1392 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1393 int sync, void *key)
1394 {
1395 struct wait_opts *wo = container_of(wait, struct wait_opts,
1396 child_wait);
1397 struct task_struct *p = key;
1398
1399 if (!eligible_pid(wo, p))
1400 return 0;
1401
1402 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1403 return 0;
1404
1405 return default_wake_function(wait, mode, sync, key);
1406 }
1407
1408 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1409 {
1410 __wake_up_sync_key(&parent->signal->wait_chldexit,
1411 TASK_INTERRUPTIBLE, p);
1412 }
1413
1414 static long do_wait(struct wait_opts *wo)
1415 {
1416 struct task_struct *tsk;
1417 int retval;
1418
1419 trace_sched_process_wait(wo->wo_pid);
1420
1421 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1422 wo->child_wait.private = current;
1423 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1424 repeat:
1425 /*
1426 * If there is nothing that can match our criteria, just get out.
1427 * We will clear ->notask_error to zero if we see any child that
1428 * might later match our criteria, even if we are not able to reap
1429 * it yet.
1430 */
1431 wo->notask_error = -ECHILD;
1432 if ((wo->wo_type < PIDTYPE_MAX) &&
1433 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1434 goto notask;
1435
1436 set_current_state(TASK_INTERRUPTIBLE);
1437 read_lock(&tasklist_lock);
1438 tsk = current;
1439 do {
1440 retval = do_wait_thread(wo, tsk);
1441 if (retval)
1442 goto end;
1443
1444 retval = ptrace_do_wait(wo, tsk);
1445 if (retval)
1446 goto end;
1447
1448 if (wo->wo_flags & __WNOTHREAD)
1449 break;
1450 } while_each_thread(current, tsk);
1451 read_unlock(&tasklist_lock);
1452
1453 notask:
1454 retval = wo->notask_error;
1455 if (!retval && !(wo->wo_flags & WNOHANG)) {
1456 retval = -ERESTARTSYS;
1457 if (!signal_pending(current)) {
1458 schedule();
1459 goto repeat;
1460 }
1461 }
1462 end:
1463 __set_current_state(TASK_RUNNING);
1464 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1465 return retval;
1466 }
1467
1468 static struct pid *pidfd_get_pid(unsigned int fd)
1469 {
1470 struct fd f;
1471 struct pid *pid;
1472
1473 f = fdget(fd);
1474 if (!f.file)
1475 return ERR_PTR(-EBADF);
1476
1477 pid = pidfd_pid(f.file);
1478 if (!IS_ERR(pid))
1479 get_pid(pid);
1480
1481 fdput(f);
1482 return pid;
1483 }
1484
1485 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1486 int options, struct rusage *ru)
1487 {
1488 struct wait_opts wo;
1489 struct pid *pid = NULL;
1490 enum pid_type type;
1491 long ret;
1492
1493 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1494 __WNOTHREAD|__WCLONE|__WALL))
1495 return -EINVAL;
1496 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1497 return -EINVAL;
1498
1499 switch (which) {
1500 case P_ALL:
1501 type = PIDTYPE_MAX;
1502 break;
1503 case P_PID:
1504 type = PIDTYPE_PID;
1505 if (upid <= 0)
1506 return -EINVAL;
1507
1508 pid = find_get_pid(upid);
1509 break;
1510 case P_PGID:
1511 type = PIDTYPE_PGID;
1512 if (upid < 0)
1513 return -EINVAL;
1514
1515 if (upid)
1516 pid = find_get_pid(upid);
1517 else
1518 pid = get_task_pid(current, PIDTYPE_PGID);
1519 break;
1520 case P_PIDFD:
1521 type = PIDTYPE_PID;
1522 if (upid < 0)
1523 return -EINVAL;
1524
1525 pid = pidfd_get_pid(upid);
1526 if (IS_ERR(pid))
1527 return PTR_ERR(pid);
1528 break;
1529 default:
1530 return -EINVAL;
1531 }
1532
1533 wo.wo_type = type;
1534 wo.wo_pid = pid;
1535 wo.wo_flags = options;
1536 wo.wo_info = infop;
1537 wo.wo_rusage = ru;
1538 ret = do_wait(&wo);
1539
1540 put_pid(pid);
1541 return ret;
1542 }
1543
1544 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1545 infop, int, options, struct rusage __user *, ru)
1546 {
1547 struct rusage r;
1548 struct waitid_info info = {.status = 0};
1549 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1550 int signo = 0;
1551
1552 if (err > 0) {
1553 signo = SIGCHLD;
1554 err = 0;
1555 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1556 return -EFAULT;
1557 }
1558 if (!infop)
1559 return err;
1560
1561 if (!user_access_begin(infop, sizeof(*infop)))
1562 return -EFAULT;
1563
1564 unsafe_put_user(signo, &infop->si_signo, Efault);
1565 unsafe_put_user(0, &infop->si_errno, Efault);
1566 unsafe_put_user(info.cause, &infop->si_code, Efault);
1567 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1568 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1569 unsafe_put_user(info.status, &infop->si_status, Efault);
1570 user_access_end();
1571 return err;
1572 Efault:
1573 user_access_end();
1574 return -EFAULT;
1575 }
1576
1577 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1578 struct rusage *ru)
1579 {
1580 struct wait_opts wo;
1581 struct pid *pid = NULL;
1582 enum pid_type type;
1583 long ret;
1584
1585 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1586 __WNOTHREAD|__WCLONE|__WALL))
1587 return -EINVAL;
1588
1589 /* -INT_MIN is not defined */
1590 if (upid == INT_MIN)
1591 return -ESRCH;
1592
1593 if (upid == -1)
1594 type = PIDTYPE_MAX;
1595 else if (upid < 0) {
1596 type = PIDTYPE_PGID;
1597 pid = find_get_pid(-upid);
1598 } else if (upid == 0) {
1599 type = PIDTYPE_PGID;
1600 pid = get_task_pid(current, PIDTYPE_PGID);
1601 } else /* upid > 0 */ {
1602 type = PIDTYPE_PID;
1603 pid = find_get_pid(upid);
1604 }
1605
1606 wo.wo_type = type;
1607 wo.wo_pid = pid;
1608 wo.wo_flags = options | WEXITED;
1609 wo.wo_info = NULL;
1610 wo.wo_stat = 0;
1611 wo.wo_rusage = ru;
1612 ret = do_wait(&wo);
1613 put_pid(pid);
1614 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1615 ret = -EFAULT;
1616
1617 return ret;
1618 }
1619
1620 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1621 int, options, struct rusage __user *, ru)
1622 {
1623 struct rusage r;
1624 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1625
1626 if (err > 0) {
1627 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1628 return -EFAULT;
1629 }
1630 return err;
1631 }
1632
1633 #ifdef __ARCH_WANT_SYS_WAITPID
1634
1635 /*
1636 * sys_waitpid() remains for compatibility. waitpid() should be
1637 * implemented by calling sys_wait4() from libc.a.
1638 */
1639 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1640 {
1641 return kernel_wait4(pid, stat_addr, options, NULL);
1642 }
1643
1644 #endif
1645
1646 #ifdef CONFIG_COMPAT
1647 COMPAT_SYSCALL_DEFINE4(wait4,
1648 compat_pid_t, pid,
1649 compat_uint_t __user *, stat_addr,
1650 int, options,
1651 struct compat_rusage __user *, ru)
1652 {
1653 struct rusage r;
1654 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1655 if (err > 0) {
1656 if (ru && put_compat_rusage(&r, ru))
1657 return -EFAULT;
1658 }
1659 return err;
1660 }
1661
1662 COMPAT_SYSCALL_DEFINE5(waitid,
1663 int, which, compat_pid_t, pid,
1664 struct compat_siginfo __user *, infop, int, options,
1665 struct compat_rusage __user *, uru)
1666 {
1667 struct rusage ru;
1668 struct waitid_info info = {.status = 0};
1669 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1670 int signo = 0;
1671 if (err > 0) {
1672 signo = SIGCHLD;
1673 err = 0;
1674 if (uru) {
1675 /* kernel_waitid() overwrites everything in ru */
1676 if (COMPAT_USE_64BIT_TIME)
1677 err = copy_to_user(uru, &ru, sizeof(ru));
1678 else
1679 err = put_compat_rusage(&ru, uru);
1680 if (err)
1681 return -EFAULT;
1682 }
1683 }
1684
1685 if (!infop)
1686 return err;
1687
1688 if (!user_access_begin(infop, sizeof(*infop)))
1689 return -EFAULT;
1690
1691 unsafe_put_user(signo, &infop->si_signo, Efault);
1692 unsafe_put_user(0, &infop->si_errno, Efault);
1693 unsafe_put_user(info.cause, &infop->si_code, Efault);
1694 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1695 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1696 unsafe_put_user(info.status, &infop->si_status, Efault);
1697 user_access_end();
1698 return err;
1699 Efault:
1700 user_access_end();
1701 return -EFAULT;
1702 }
1703 #endif
1704
1705 __weak void abort(void)
1706 {
1707 BUG();
1708
1709 /* if that doesn't kill us, halt */
1710 panic("Oops failed to kill thread");
1711 }
1712 EXPORT_SYMBOL(abort);