]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/fork.c
signal: Guarantee that SIGNAL_GROUP_EXIT is set on process exit
[thirdparty/linux.git] / kernel / fork.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/mm_inline.h>
46 #include <linux/vmacache.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 #include <linux/bpf.h>
100 #include <linux/sched/mm.h>
101
102 #include <asm/pgalloc.h>
103 #include <linux/uaccess.h>
104 #include <asm/mmu_context.h>
105 #include <asm/cacheflush.h>
106 #include <asm/tlbflush.h>
107
108 #include <trace/events/sched.h>
109
110 #define CREATE_TRACE_POINTS
111 #include <trace/events/task.h>
112
113 /*
114 * Minimum number of threads to boot the kernel
115 */
116 #define MIN_THREADS 20
117
118 /*
119 * Maximum number of threads
120 */
121 #define MAX_THREADS FUTEX_TID_MASK
122
123 /*
124 * Protected counters by write_lock_irq(&tasklist_lock)
125 */
126 unsigned long total_forks; /* Handle normal Linux uptimes. */
127 int nr_threads; /* The idle threads do not count.. */
128
129 static int max_threads; /* tunable limit on nr_threads */
130
131 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
132
133 static const char * const resident_page_types[] = {
134 NAMED_ARRAY_INDEX(MM_FILEPAGES),
135 NAMED_ARRAY_INDEX(MM_ANONPAGES),
136 NAMED_ARRAY_INDEX(MM_SWAPENTS),
137 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
138 };
139
140 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
141
142 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
143
144 #ifdef CONFIG_PROVE_RCU
145 int lockdep_tasklist_lock_is_held(void)
146 {
147 return lockdep_is_held(&tasklist_lock);
148 }
149 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
150 #endif /* #ifdef CONFIG_PROVE_RCU */
151
152 int nr_processes(void)
153 {
154 int cpu;
155 int total = 0;
156
157 for_each_possible_cpu(cpu)
158 total += per_cpu(process_counts, cpu);
159
160 return total;
161 }
162
163 void __weak arch_release_task_struct(struct task_struct *tsk)
164 {
165 }
166
167 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
168 static struct kmem_cache *task_struct_cachep;
169
170 static inline struct task_struct *alloc_task_struct_node(int node)
171 {
172 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
173 }
174
175 static inline void free_task_struct(struct task_struct *tsk)
176 {
177 kmem_cache_free(task_struct_cachep, tsk);
178 }
179 #endif
180
181 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
182
183 /*
184 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
185 * kmemcache based allocator.
186 */
187 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
188
189 # ifdef CONFIG_VMAP_STACK
190 /*
191 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
192 * flush. Try to minimize the number of calls by caching stacks.
193 */
194 #define NR_CACHED_STACKS 2
195 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
196
197 struct vm_stack {
198 struct rcu_head rcu;
199 struct vm_struct *stack_vm_area;
200 };
201
202 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
203 {
204 unsigned int i;
205
206 for (i = 0; i < NR_CACHED_STACKS; i++) {
207 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
208 continue;
209 return true;
210 }
211 return false;
212 }
213
214 static void thread_stack_free_rcu(struct rcu_head *rh)
215 {
216 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
217
218 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
219 return;
220
221 vfree(vm_stack);
222 }
223
224 static void thread_stack_delayed_free(struct task_struct *tsk)
225 {
226 struct vm_stack *vm_stack = tsk->stack;
227
228 vm_stack->stack_vm_area = tsk->stack_vm_area;
229 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
230 }
231
232 static int free_vm_stack_cache(unsigned int cpu)
233 {
234 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
235 int i;
236
237 for (i = 0; i < NR_CACHED_STACKS; i++) {
238 struct vm_struct *vm_stack = cached_vm_stacks[i];
239
240 if (!vm_stack)
241 continue;
242
243 vfree(vm_stack->addr);
244 cached_vm_stacks[i] = NULL;
245 }
246
247 return 0;
248 }
249
250 static int memcg_charge_kernel_stack(struct vm_struct *vm)
251 {
252 int i;
253 int ret;
254
255 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
256 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
257
258 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
259 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
260 if (ret)
261 goto err;
262 }
263 return 0;
264 err:
265 /*
266 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
267 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
268 * ignore this page.
269 */
270 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
271 memcg_kmem_uncharge_page(vm->pages[i], 0);
272 return ret;
273 }
274
275 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
276 {
277 struct vm_struct *vm;
278 void *stack;
279 int i;
280
281 for (i = 0; i < NR_CACHED_STACKS; i++) {
282 struct vm_struct *s;
283
284 s = this_cpu_xchg(cached_stacks[i], NULL);
285
286 if (!s)
287 continue;
288
289 /* Reset stack metadata. */
290 kasan_unpoison_range(s->addr, THREAD_SIZE);
291
292 stack = kasan_reset_tag(s->addr);
293
294 /* Clear stale pointers from reused stack. */
295 memset(stack, 0, THREAD_SIZE);
296
297 if (memcg_charge_kernel_stack(s)) {
298 vfree(s->addr);
299 return -ENOMEM;
300 }
301
302 tsk->stack_vm_area = s;
303 tsk->stack = stack;
304 return 0;
305 }
306
307 /*
308 * Allocated stacks are cached and later reused by new threads,
309 * so memcg accounting is performed manually on assigning/releasing
310 * stacks to tasks. Drop __GFP_ACCOUNT.
311 */
312 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
313 VMALLOC_START, VMALLOC_END,
314 THREADINFO_GFP & ~__GFP_ACCOUNT,
315 PAGE_KERNEL,
316 0, node, __builtin_return_address(0));
317 if (!stack)
318 return -ENOMEM;
319
320 vm = find_vm_area(stack);
321 if (memcg_charge_kernel_stack(vm)) {
322 vfree(stack);
323 return -ENOMEM;
324 }
325 /*
326 * We can't call find_vm_area() in interrupt context, and
327 * free_thread_stack() can be called in interrupt context,
328 * so cache the vm_struct.
329 */
330 tsk->stack_vm_area = vm;
331 stack = kasan_reset_tag(stack);
332 tsk->stack = stack;
333 return 0;
334 }
335
336 static void free_thread_stack(struct task_struct *tsk)
337 {
338 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
339 thread_stack_delayed_free(tsk);
340
341 tsk->stack = NULL;
342 tsk->stack_vm_area = NULL;
343 }
344
345 # else /* !CONFIG_VMAP_STACK */
346
347 static void thread_stack_free_rcu(struct rcu_head *rh)
348 {
349 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
350 }
351
352 static void thread_stack_delayed_free(struct task_struct *tsk)
353 {
354 struct rcu_head *rh = tsk->stack;
355
356 call_rcu(rh, thread_stack_free_rcu);
357 }
358
359 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
360 {
361 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
362 THREAD_SIZE_ORDER);
363
364 if (likely(page)) {
365 tsk->stack = kasan_reset_tag(page_address(page));
366 return 0;
367 }
368 return -ENOMEM;
369 }
370
371 static void free_thread_stack(struct task_struct *tsk)
372 {
373 thread_stack_delayed_free(tsk);
374 tsk->stack = NULL;
375 }
376
377 # endif /* CONFIG_VMAP_STACK */
378 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
379
380 static struct kmem_cache *thread_stack_cache;
381
382 static void thread_stack_free_rcu(struct rcu_head *rh)
383 {
384 kmem_cache_free(thread_stack_cache, rh);
385 }
386
387 static void thread_stack_delayed_free(struct task_struct *tsk)
388 {
389 struct rcu_head *rh = tsk->stack;
390
391 call_rcu(rh, thread_stack_free_rcu);
392 }
393
394 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
395 {
396 unsigned long *stack;
397 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
398 stack = kasan_reset_tag(stack);
399 tsk->stack = stack;
400 return stack ? 0 : -ENOMEM;
401 }
402
403 static void free_thread_stack(struct task_struct *tsk)
404 {
405 thread_stack_delayed_free(tsk);
406 tsk->stack = NULL;
407 }
408
409 void thread_stack_cache_init(void)
410 {
411 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
412 THREAD_SIZE, THREAD_SIZE, 0, 0,
413 THREAD_SIZE, NULL);
414 BUG_ON(thread_stack_cache == NULL);
415 }
416
417 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
418 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
419
420 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
421 {
422 unsigned long *stack;
423
424 stack = arch_alloc_thread_stack_node(tsk, node);
425 tsk->stack = stack;
426 return stack ? 0 : -ENOMEM;
427 }
428
429 static void free_thread_stack(struct task_struct *tsk)
430 {
431 arch_free_thread_stack(tsk);
432 tsk->stack = NULL;
433 }
434
435 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
436
437 /* SLAB cache for signal_struct structures (tsk->signal) */
438 static struct kmem_cache *signal_cachep;
439
440 /* SLAB cache for sighand_struct structures (tsk->sighand) */
441 struct kmem_cache *sighand_cachep;
442
443 /* SLAB cache for files_struct structures (tsk->files) */
444 struct kmem_cache *files_cachep;
445
446 /* SLAB cache for fs_struct structures (tsk->fs) */
447 struct kmem_cache *fs_cachep;
448
449 /* SLAB cache for vm_area_struct structures */
450 static struct kmem_cache *vm_area_cachep;
451
452 /* SLAB cache for mm_struct structures (tsk->mm) */
453 static struct kmem_cache *mm_cachep;
454
455 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
456 {
457 struct vm_area_struct *vma;
458
459 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
460 if (vma)
461 vma_init(vma, mm);
462 return vma;
463 }
464
465 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
466 {
467 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
468
469 if (new) {
470 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
471 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
472 /*
473 * orig->shared.rb may be modified concurrently, but the clone
474 * will be reinitialized.
475 */
476 *new = data_race(*orig);
477 INIT_LIST_HEAD(&new->anon_vma_chain);
478 new->vm_next = new->vm_prev = NULL;
479 dup_anon_vma_name(orig, new);
480 }
481 return new;
482 }
483
484 void vm_area_free(struct vm_area_struct *vma)
485 {
486 free_anon_vma_name(vma);
487 kmem_cache_free(vm_area_cachep, vma);
488 }
489
490 static void account_kernel_stack(struct task_struct *tsk, int account)
491 {
492 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
493 struct vm_struct *vm = task_stack_vm_area(tsk);
494 int i;
495
496 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
497 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
498 account * (PAGE_SIZE / 1024));
499 } else {
500 void *stack = task_stack_page(tsk);
501
502 /* All stack pages are in the same node. */
503 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
504 account * (THREAD_SIZE / 1024));
505 }
506 }
507
508 void exit_task_stack_account(struct task_struct *tsk)
509 {
510 account_kernel_stack(tsk, -1);
511
512 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
513 struct vm_struct *vm;
514 int i;
515
516 vm = task_stack_vm_area(tsk);
517 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
518 memcg_kmem_uncharge_page(vm->pages[i], 0);
519 }
520 }
521
522 static void release_task_stack(struct task_struct *tsk)
523 {
524 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
525 return; /* Better to leak the stack than to free prematurely */
526
527 free_thread_stack(tsk);
528 }
529
530 #ifdef CONFIG_THREAD_INFO_IN_TASK
531 void put_task_stack(struct task_struct *tsk)
532 {
533 if (refcount_dec_and_test(&tsk->stack_refcount))
534 release_task_stack(tsk);
535 }
536 #endif
537
538 void free_task(struct task_struct *tsk)
539 {
540 release_user_cpus_ptr(tsk);
541 scs_release(tsk);
542
543 #ifndef CONFIG_THREAD_INFO_IN_TASK
544 /*
545 * The task is finally done with both the stack and thread_info,
546 * so free both.
547 */
548 release_task_stack(tsk);
549 #else
550 /*
551 * If the task had a separate stack allocation, it should be gone
552 * by now.
553 */
554 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
555 #endif
556 rt_mutex_debug_task_free(tsk);
557 ftrace_graph_exit_task(tsk);
558 arch_release_task_struct(tsk);
559 if (tsk->flags & PF_KTHREAD)
560 free_kthread_struct(tsk);
561 free_task_struct(tsk);
562 }
563 EXPORT_SYMBOL(free_task);
564
565 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
566 {
567 struct file *exe_file;
568
569 exe_file = get_mm_exe_file(oldmm);
570 RCU_INIT_POINTER(mm->exe_file, exe_file);
571 /*
572 * We depend on the oldmm having properly denied write access to the
573 * exe_file already.
574 */
575 if (exe_file && deny_write_access(exe_file))
576 pr_warn_once("deny_write_access() failed in %s\n", __func__);
577 }
578
579 #ifdef CONFIG_MMU
580 static __latent_entropy int dup_mmap(struct mm_struct *mm,
581 struct mm_struct *oldmm)
582 {
583 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
584 struct rb_node **rb_link, *rb_parent;
585 int retval;
586 unsigned long charge;
587 LIST_HEAD(uf);
588
589 uprobe_start_dup_mmap();
590 if (mmap_write_lock_killable(oldmm)) {
591 retval = -EINTR;
592 goto fail_uprobe_end;
593 }
594 flush_cache_dup_mm(oldmm);
595 uprobe_dup_mmap(oldmm, mm);
596 /*
597 * Not linked in yet - no deadlock potential:
598 */
599 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
600
601 /* No ordering required: file already has been exposed. */
602 dup_mm_exe_file(mm, oldmm);
603
604 mm->total_vm = oldmm->total_vm;
605 mm->data_vm = oldmm->data_vm;
606 mm->exec_vm = oldmm->exec_vm;
607 mm->stack_vm = oldmm->stack_vm;
608
609 rb_link = &mm->mm_rb.rb_node;
610 rb_parent = NULL;
611 pprev = &mm->mmap;
612 retval = ksm_fork(mm, oldmm);
613 if (retval)
614 goto out;
615 khugepaged_fork(mm, oldmm);
616
617 prev = NULL;
618 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
619 struct file *file;
620
621 if (mpnt->vm_flags & VM_DONTCOPY) {
622 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
623 continue;
624 }
625 charge = 0;
626 /*
627 * Don't duplicate many vmas if we've been oom-killed (for
628 * example)
629 */
630 if (fatal_signal_pending(current)) {
631 retval = -EINTR;
632 goto out;
633 }
634 if (mpnt->vm_flags & VM_ACCOUNT) {
635 unsigned long len = vma_pages(mpnt);
636
637 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
638 goto fail_nomem;
639 charge = len;
640 }
641 tmp = vm_area_dup(mpnt);
642 if (!tmp)
643 goto fail_nomem;
644 retval = vma_dup_policy(mpnt, tmp);
645 if (retval)
646 goto fail_nomem_policy;
647 tmp->vm_mm = mm;
648 retval = dup_userfaultfd(tmp, &uf);
649 if (retval)
650 goto fail_nomem_anon_vma_fork;
651 if (tmp->vm_flags & VM_WIPEONFORK) {
652 /*
653 * VM_WIPEONFORK gets a clean slate in the child.
654 * Don't prepare anon_vma until fault since we don't
655 * copy page for current vma.
656 */
657 tmp->anon_vma = NULL;
658 } else if (anon_vma_fork(tmp, mpnt))
659 goto fail_nomem_anon_vma_fork;
660 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
661 file = tmp->vm_file;
662 if (file) {
663 struct address_space *mapping = file->f_mapping;
664
665 get_file(file);
666 i_mmap_lock_write(mapping);
667 if (tmp->vm_flags & VM_SHARED)
668 mapping_allow_writable(mapping);
669 flush_dcache_mmap_lock(mapping);
670 /* insert tmp into the share list, just after mpnt */
671 vma_interval_tree_insert_after(tmp, mpnt,
672 &mapping->i_mmap);
673 flush_dcache_mmap_unlock(mapping);
674 i_mmap_unlock_write(mapping);
675 }
676
677 /*
678 * Clear hugetlb-related page reserves for children. This only
679 * affects MAP_PRIVATE mappings. Faults generated by the child
680 * are not guaranteed to succeed, even if read-only
681 */
682 if (is_vm_hugetlb_page(tmp))
683 reset_vma_resv_huge_pages(tmp);
684
685 /*
686 * Link in the new vma and copy the page table entries.
687 */
688 *pprev = tmp;
689 pprev = &tmp->vm_next;
690 tmp->vm_prev = prev;
691 prev = tmp;
692
693 __vma_link_rb(mm, tmp, rb_link, rb_parent);
694 rb_link = &tmp->vm_rb.rb_right;
695 rb_parent = &tmp->vm_rb;
696
697 mm->map_count++;
698 if (!(tmp->vm_flags & VM_WIPEONFORK))
699 retval = copy_page_range(tmp, mpnt);
700
701 if (tmp->vm_ops && tmp->vm_ops->open)
702 tmp->vm_ops->open(tmp);
703
704 if (retval)
705 goto out;
706 }
707 /* a new mm has just been created */
708 retval = arch_dup_mmap(oldmm, mm);
709 out:
710 mmap_write_unlock(mm);
711 flush_tlb_mm(oldmm);
712 mmap_write_unlock(oldmm);
713 dup_userfaultfd_complete(&uf);
714 fail_uprobe_end:
715 uprobe_end_dup_mmap();
716 return retval;
717 fail_nomem_anon_vma_fork:
718 mpol_put(vma_policy(tmp));
719 fail_nomem_policy:
720 vm_area_free(tmp);
721 fail_nomem:
722 retval = -ENOMEM;
723 vm_unacct_memory(charge);
724 goto out;
725 }
726
727 static inline int mm_alloc_pgd(struct mm_struct *mm)
728 {
729 mm->pgd = pgd_alloc(mm);
730 if (unlikely(!mm->pgd))
731 return -ENOMEM;
732 return 0;
733 }
734
735 static inline void mm_free_pgd(struct mm_struct *mm)
736 {
737 pgd_free(mm, mm->pgd);
738 }
739 #else
740 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
741 {
742 mmap_write_lock(oldmm);
743 dup_mm_exe_file(mm, oldmm);
744 mmap_write_unlock(oldmm);
745 return 0;
746 }
747 #define mm_alloc_pgd(mm) (0)
748 #define mm_free_pgd(mm)
749 #endif /* CONFIG_MMU */
750
751 static void check_mm(struct mm_struct *mm)
752 {
753 int i;
754
755 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
756 "Please make sure 'struct resident_page_types[]' is updated as well");
757
758 for (i = 0; i < NR_MM_COUNTERS; i++) {
759 long x = atomic_long_read(&mm->rss_stat.count[i]);
760
761 if (unlikely(x))
762 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
763 mm, resident_page_types[i], x);
764 }
765
766 if (mm_pgtables_bytes(mm))
767 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
768 mm_pgtables_bytes(mm));
769
770 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
771 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
772 #endif
773 }
774
775 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
776 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
777
778 /*
779 * Called when the last reference to the mm
780 * is dropped: either by a lazy thread or by
781 * mmput. Free the page directory and the mm.
782 */
783 void __mmdrop(struct mm_struct *mm)
784 {
785 BUG_ON(mm == &init_mm);
786 WARN_ON_ONCE(mm == current->mm);
787 WARN_ON_ONCE(mm == current->active_mm);
788 mm_free_pgd(mm);
789 destroy_context(mm);
790 mmu_notifier_subscriptions_destroy(mm);
791 check_mm(mm);
792 put_user_ns(mm->user_ns);
793 mm_pasid_drop(mm);
794 free_mm(mm);
795 }
796 EXPORT_SYMBOL_GPL(__mmdrop);
797
798 static void mmdrop_async_fn(struct work_struct *work)
799 {
800 struct mm_struct *mm;
801
802 mm = container_of(work, struct mm_struct, async_put_work);
803 __mmdrop(mm);
804 }
805
806 static void mmdrop_async(struct mm_struct *mm)
807 {
808 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
809 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
810 schedule_work(&mm->async_put_work);
811 }
812 }
813
814 static inline void free_signal_struct(struct signal_struct *sig)
815 {
816 taskstats_tgid_free(sig);
817 sched_autogroup_exit(sig);
818 /*
819 * __mmdrop is not safe to call from softirq context on x86 due to
820 * pgd_dtor so postpone it to the async context
821 */
822 if (sig->oom_mm)
823 mmdrop_async(sig->oom_mm);
824 kmem_cache_free(signal_cachep, sig);
825 }
826
827 static inline void put_signal_struct(struct signal_struct *sig)
828 {
829 if (refcount_dec_and_test(&sig->sigcnt))
830 free_signal_struct(sig);
831 }
832
833 void __put_task_struct(struct task_struct *tsk)
834 {
835 WARN_ON(!tsk->exit_state);
836 WARN_ON(refcount_read(&tsk->usage));
837 WARN_ON(tsk == current);
838
839 io_uring_free(tsk);
840 cgroup_free(tsk);
841 task_numa_free(tsk, true);
842 security_task_free(tsk);
843 bpf_task_storage_free(tsk);
844 exit_creds(tsk);
845 delayacct_tsk_free(tsk);
846 put_signal_struct(tsk->signal);
847 sched_core_free(tsk);
848 free_task(tsk);
849 }
850 EXPORT_SYMBOL_GPL(__put_task_struct);
851
852 void __init __weak arch_task_cache_init(void) { }
853
854 /*
855 * set_max_threads
856 */
857 static void set_max_threads(unsigned int max_threads_suggested)
858 {
859 u64 threads;
860 unsigned long nr_pages = totalram_pages();
861
862 /*
863 * The number of threads shall be limited such that the thread
864 * structures may only consume a small part of the available memory.
865 */
866 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
867 threads = MAX_THREADS;
868 else
869 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
870 (u64) THREAD_SIZE * 8UL);
871
872 if (threads > max_threads_suggested)
873 threads = max_threads_suggested;
874
875 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
876 }
877
878 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
879 /* Initialized by the architecture: */
880 int arch_task_struct_size __read_mostly;
881 #endif
882
883 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
884 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
885 {
886 /* Fetch thread_struct whitelist for the architecture. */
887 arch_thread_struct_whitelist(offset, size);
888
889 /*
890 * Handle zero-sized whitelist or empty thread_struct, otherwise
891 * adjust offset to position of thread_struct in task_struct.
892 */
893 if (unlikely(*size == 0))
894 *offset = 0;
895 else
896 *offset += offsetof(struct task_struct, thread);
897 }
898 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
899
900 void __init fork_init(void)
901 {
902 int i;
903 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
904 #ifndef ARCH_MIN_TASKALIGN
905 #define ARCH_MIN_TASKALIGN 0
906 #endif
907 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
908 unsigned long useroffset, usersize;
909
910 /* create a slab on which task_structs can be allocated */
911 task_struct_whitelist(&useroffset, &usersize);
912 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
913 arch_task_struct_size, align,
914 SLAB_PANIC|SLAB_ACCOUNT,
915 useroffset, usersize, NULL);
916 #endif
917
918 /* do the arch specific task caches init */
919 arch_task_cache_init();
920
921 set_max_threads(MAX_THREADS);
922
923 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
924 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
925 init_task.signal->rlim[RLIMIT_SIGPENDING] =
926 init_task.signal->rlim[RLIMIT_NPROC];
927
928 for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++)
929 init_user_ns.ucount_max[i] = max_threads/2;
930
931 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
932 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
933 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
934 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
935
936 #ifdef CONFIG_VMAP_STACK
937 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
938 NULL, free_vm_stack_cache);
939 #endif
940
941 scs_init();
942
943 lockdep_init_task(&init_task);
944 uprobes_init();
945 }
946
947 int __weak arch_dup_task_struct(struct task_struct *dst,
948 struct task_struct *src)
949 {
950 *dst = *src;
951 return 0;
952 }
953
954 void set_task_stack_end_magic(struct task_struct *tsk)
955 {
956 unsigned long *stackend;
957
958 stackend = end_of_stack(tsk);
959 *stackend = STACK_END_MAGIC; /* for overflow detection */
960 }
961
962 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
963 {
964 struct task_struct *tsk;
965 int err;
966
967 if (node == NUMA_NO_NODE)
968 node = tsk_fork_get_node(orig);
969 tsk = alloc_task_struct_node(node);
970 if (!tsk)
971 return NULL;
972
973 err = arch_dup_task_struct(tsk, orig);
974 if (err)
975 goto free_tsk;
976
977 err = alloc_thread_stack_node(tsk, node);
978 if (err)
979 goto free_tsk;
980
981 #ifdef CONFIG_THREAD_INFO_IN_TASK
982 refcount_set(&tsk->stack_refcount, 1);
983 #endif
984 account_kernel_stack(tsk, 1);
985
986 err = scs_prepare(tsk, node);
987 if (err)
988 goto free_stack;
989
990 #ifdef CONFIG_SECCOMP
991 /*
992 * We must handle setting up seccomp filters once we're under
993 * the sighand lock in case orig has changed between now and
994 * then. Until then, filter must be NULL to avoid messing up
995 * the usage counts on the error path calling free_task.
996 */
997 tsk->seccomp.filter = NULL;
998 #endif
999
1000 setup_thread_stack(tsk, orig);
1001 clear_user_return_notifier(tsk);
1002 clear_tsk_need_resched(tsk);
1003 set_task_stack_end_magic(tsk);
1004 clear_syscall_work_syscall_user_dispatch(tsk);
1005
1006 #ifdef CONFIG_STACKPROTECTOR
1007 tsk->stack_canary = get_random_canary();
1008 #endif
1009 if (orig->cpus_ptr == &orig->cpus_mask)
1010 tsk->cpus_ptr = &tsk->cpus_mask;
1011 dup_user_cpus_ptr(tsk, orig, node);
1012
1013 /*
1014 * One for the user space visible state that goes away when reaped.
1015 * One for the scheduler.
1016 */
1017 refcount_set(&tsk->rcu_users, 2);
1018 /* One for the rcu users */
1019 refcount_set(&tsk->usage, 1);
1020 #ifdef CONFIG_BLK_DEV_IO_TRACE
1021 tsk->btrace_seq = 0;
1022 #endif
1023 tsk->splice_pipe = NULL;
1024 tsk->task_frag.page = NULL;
1025 tsk->wake_q.next = NULL;
1026 tsk->worker_private = NULL;
1027
1028 kcov_task_init(tsk);
1029 kmap_local_fork(tsk);
1030
1031 #ifdef CONFIG_FAULT_INJECTION
1032 tsk->fail_nth = 0;
1033 #endif
1034
1035 #ifdef CONFIG_BLK_CGROUP
1036 tsk->throttle_queue = NULL;
1037 tsk->use_memdelay = 0;
1038 #endif
1039
1040 #ifdef CONFIG_IOMMU_SVA
1041 tsk->pasid_activated = 0;
1042 #endif
1043
1044 #ifdef CONFIG_MEMCG
1045 tsk->active_memcg = NULL;
1046 #endif
1047
1048 #ifdef CONFIG_CPU_SUP_INTEL
1049 tsk->reported_split_lock = 0;
1050 #endif
1051
1052 return tsk;
1053
1054 free_stack:
1055 exit_task_stack_account(tsk);
1056 free_thread_stack(tsk);
1057 free_tsk:
1058 free_task_struct(tsk);
1059 return NULL;
1060 }
1061
1062 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1063
1064 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1065
1066 static int __init coredump_filter_setup(char *s)
1067 {
1068 default_dump_filter =
1069 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1070 MMF_DUMP_FILTER_MASK;
1071 return 1;
1072 }
1073
1074 __setup("coredump_filter=", coredump_filter_setup);
1075
1076 #include <linux/init_task.h>
1077
1078 static void mm_init_aio(struct mm_struct *mm)
1079 {
1080 #ifdef CONFIG_AIO
1081 spin_lock_init(&mm->ioctx_lock);
1082 mm->ioctx_table = NULL;
1083 #endif
1084 }
1085
1086 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1087 struct task_struct *p)
1088 {
1089 #ifdef CONFIG_MEMCG
1090 if (mm->owner == p)
1091 WRITE_ONCE(mm->owner, NULL);
1092 #endif
1093 }
1094
1095 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1096 {
1097 #ifdef CONFIG_MEMCG
1098 mm->owner = p;
1099 #endif
1100 }
1101
1102 static void mm_init_uprobes_state(struct mm_struct *mm)
1103 {
1104 #ifdef CONFIG_UPROBES
1105 mm->uprobes_state.xol_area = NULL;
1106 #endif
1107 }
1108
1109 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1110 struct user_namespace *user_ns)
1111 {
1112 mm->mmap = NULL;
1113 mm->mm_rb = RB_ROOT;
1114 mm->vmacache_seqnum = 0;
1115 atomic_set(&mm->mm_users, 1);
1116 atomic_set(&mm->mm_count, 1);
1117 seqcount_init(&mm->write_protect_seq);
1118 mmap_init_lock(mm);
1119 INIT_LIST_HEAD(&mm->mmlist);
1120 mm_pgtables_bytes_init(mm);
1121 mm->map_count = 0;
1122 mm->locked_vm = 0;
1123 atomic64_set(&mm->pinned_vm, 0);
1124 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1125 spin_lock_init(&mm->page_table_lock);
1126 spin_lock_init(&mm->arg_lock);
1127 mm_init_cpumask(mm);
1128 mm_init_aio(mm);
1129 mm_init_owner(mm, p);
1130 mm_pasid_init(mm);
1131 RCU_INIT_POINTER(mm->exe_file, NULL);
1132 mmu_notifier_subscriptions_init(mm);
1133 init_tlb_flush_pending(mm);
1134 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1135 mm->pmd_huge_pte = NULL;
1136 #endif
1137 mm_init_uprobes_state(mm);
1138 hugetlb_count_init(mm);
1139
1140 if (current->mm) {
1141 mm->flags = current->mm->flags & MMF_INIT_MASK;
1142 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1143 } else {
1144 mm->flags = default_dump_filter;
1145 mm->def_flags = 0;
1146 }
1147
1148 if (mm_alloc_pgd(mm))
1149 goto fail_nopgd;
1150
1151 if (init_new_context(p, mm))
1152 goto fail_nocontext;
1153
1154 mm->user_ns = get_user_ns(user_ns);
1155 return mm;
1156
1157 fail_nocontext:
1158 mm_free_pgd(mm);
1159 fail_nopgd:
1160 free_mm(mm);
1161 return NULL;
1162 }
1163
1164 /*
1165 * Allocate and initialize an mm_struct.
1166 */
1167 struct mm_struct *mm_alloc(void)
1168 {
1169 struct mm_struct *mm;
1170
1171 mm = allocate_mm();
1172 if (!mm)
1173 return NULL;
1174
1175 memset(mm, 0, sizeof(*mm));
1176 return mm_init(mm, current, current_user_ns());
1177 }
1178
1179 static inline void __mmput(struct mm_struct *mm)
1180 {
1181 VM_BUG_ON(atomic_read(&mm->mm_users));
1182
1183 uprobe_clear_state(mm);
1184 exit_aio(mm);
1185 ksm_exit(mm);
1186 khugepaged_exit(mm); /* must run before exit_mmap */
1187 exit_mmap(mm);
1188 mm_put_huge_zero_page(mm);
1189 set_mm_exe_file(mm, NULL);
1190 if (!list_empty(&mm->mmlist)) {
1191 spin_lock(&mmlist_lock);
1192 list_del(&mm->mmlist);
1193 spin_unlock(&mmlist_lock);
1194 }
1195 if (mm->binfmt)
1196 module_put(mm->binfmt->module);
1197 mmdrop(mm);
1198 }
1199
1200 /*
1201 * Decrement the use count and release all resources for an mm.
1202 */
1203 void mmput(struct mm_struct *mm)
1204 {
1205 might_sleep();
1206
1207 if (atomic_dec_and_test(&mm->mm_users))
1208 __mmput(mm);
1209 }
1210 EXPORT_SYMBOL_GPL(mmput);
1211
1212 #ifdef CONFIG_MMU
1213 static void mmput_async_fn(struct work_struct *work)
1214 {
1215 struct mm_struct *mm = container_of(work, struct mm_struct,
1216 async_put_work);
1217
1218 __mmput(mm);
1219 }
1220
1221 void mmput_async(struct mm_struct *mm)
1222 {
1223 if (atomic_dec_and_test(&mm->mm_users)) {
1224 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1225 schedule_work(&mm->async_put_work);
1226 }
1227 }
1228 #endif
1229
1230 /**
1231 * set_mm_exe_file - change a reference to the mm's executable file
1232 *
1233 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1234 *
1235 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1236 * invocations: in mmput() nobody alive left, in execve task is single
1237 * threaded.
1238 *
1239 * Can only fail if new_exe_file != NULL.
1240 */
1241 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1242 {
1243 struct file *old_exe_file;
1244
1245 /*
1246 * It is safe to dereference the exe_file without RCU as
1247 * this function is only called if nobody else can access
1248 * this mm -- see comment above for justification.
1249 */
1250 old_exe_file = rcu_dereference_raw(mm->exe_file);
1251
1252 if (new_exe_file) {
1253 /*
1254 * We expect the caller (i.e., sys_execve) to already denied
1255 * write access, so this is unlikely to fail.
1256 */
1257 if (unlikely(deny_write_access(new_exe_file)))
1258 return -EACCES;
1259 get_file(new_exe_file);
1260 }
1261 rcu_assign_pointer(mm->exe_file, new_exe_file);
1262 if (old_exe_file) {
1263 allow_write_access(old_exe_file);
1264 fput(old_exe_file);
1265 }
1266 return 0;
1267 }
1268
1269 /**
1270 * replace_mm_exe_file - replace a reference to the mm's executable file
1271 *
1272 * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1273 * dealing with concurrent invocation and without grabbing the mmap lock in
1274 * write mode.
1275 *
1276 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1277 */
1278 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1279 {
1280 struct vm_area_struct *vma;
1281 struct file *old_exe_file;
1282 int ret = 0;
1283
1284 /* Forbid mm->exe_file change if old file still mapped. */
1285 old_exe_file = get_mm_exe_file(mm);
1286 if (old_exe_file) {
1287 mmap_read_lock(mm);
1288 for (vma = mm->mmap; vma && !ret; vma = vma->vm_next) {
1289 if (!vma->vm_file)
1290 continue;
1291 if (path_equal(&vma->vm_file->f_path,
1292 &old_exe_file->f_path))
1293 ret = -EBUSY;
1294 }
1295 mmap_read_unlock(mm);
1296 fput(old_exe_file);
1297 if (ret)
1298 return ret;
1299 }
1300
1301 /* set the new file, lockless */
1302 ret = deny_write_access(new_exe_file);
1303 if (ret)
1304 return -EACCES;
1305 get_file(new_exe_file);
1306
1307 old_exe_file = xchg(&mm->exe_file, new_exe_file);
1308 if (old_exe_file) {
1309 /*
1310 * Don't race with dup_mmap() getting the file and disallowing
1311 * write access while someone might open the file writable.
1312 */
1313 mmap_read_lock(mm);
1314 allow_write_access(old_exe_file);
1315 fput(old_exe_file);
1316 mmap_read_unlock(mm);
1317 }
1318 return 0;
1319 }
1320
1321 /**
1322 * get_mm_exe_file - acquire a reference to the mm's executable file
1323 *
1324 * Returns %NULL if mm has no associated executable file.
1325 * User must release file via fput().
1326 */
1327 struct file *get_mm_exe_file(struct mm_struct *mm)
1328 {
1329 struct file *exe_file;
1330
1331 rcu_read_lock();
1332 exe_file = rcu_dereference(mm->exe_file);
1333 if (exe_file && !get_file_rcu(exe_file))
1334 exe_file = NULL;
1335 rcu_read_unlock();
1336 return exe_file;
1337 }
1338
1339 /**
1340 * get_task_exe_file - acquire a reference to the task's executable file
1341 *
1342 * Returns %NULL if task's mm (if any) has no associated executable file or
1343 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1344 * User must release file via fput().
1345 */
1346 struct file *get_task_exe_file(struct task_struct *task)
1347 {
1348 struct file *exe_file = NULL;
1349 struct mm_struct *mm;
1350
1351 task_lock(task);
1352 mm = task->mm;
1353 if (mm) {
1354 if (!(task->flags & PF_KTHREAD))
1355 exe_file = get_mm_exe_file(mm);
1356 }
1357 task_unlock(task);
1358 return exe_file;
1359 }
1360
1361 /**
1362 * get_task_mm - acquire a reference to the task's mm
1363 *
1364 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1365 * this kernel workthread has transiently adopted a user mm with use_mm,
1366 * to do its AIO) is not set and if so returns a reference to it, after
1367 * bumping up the use count. User must release the mm via mmput()
1368 * after use. Typically used by /proc and ptrace.
1369 */
1370 struct mm_struct *get_task_mm(struct task_struct *task)
1371 {
1372 struct mm_struct *mm;
1373
1374 task_lock(task);
1375 mm = task->mm;
1376 if (mm) {
1377 if (task->flags & PF_KTHREAD)
1378 mm = NULL;
1379 else
1380 mmget(mm);
1381 }
1382 task_unlock(task);
1383 return mm;
1384 }
1385 EXPORT_SYMBOL_GPL(get_task_mm);
1386
1387 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1388 {
1389 struct mm_struct *mm;
1390 int err;
1391
1392 err = down_read_killable(&task->signal->exec_update_lock);
1393 if (err)
1394 return ERR_PTR(err);
1395
1396 mm = get_task_mm(task);
1397 if (mm && mm != current->mm &&
1398 !ptrace_may_access(task, mode)) {
1399 mmput(mm);
1400 mm = ERR_PTR(-EACCES);
1401 }
1402 up_read(&task->signal->exec_update_lock);
1403
1404 return mm;
1405 }
1406
1407 static void complete_vfork_done(struct task_struct *tsk)
1408 {
1409 struct completion *vfork;
1410
1411 task_lock(tsk);
1412 vfork = tsk->vfork_done;
1413 if (likely(vfork)) {
1414 tsk->vfork_done = NULL;
1415 complete(vfork);
1416 }
1417 task_unlock(tsk);
1418 }
1419
1420 static int wait_for_vfork_done(struct task_struct *child,
1421 struct completion *vfork)
1422 {
1423 int killed;
1424
1425 freezer_do_not_count();
1426 cgroup_enter_frozen();
1427 killed = wait_for_completion_killable(vfork);
1428 cgroup_leave_frozen(false);
1429 freezer_count();
1430
1431 if (killed) {
1432 task_lock(child);
1433 child->vfork_done = NULL;
1434 task_unlock(child);
1435 }
1436
1437 put_task_struct(child);
1438 return killed;
1439 }
1440
1441 /* Please note the differences between mmput and mm_release.
1442 * mmput is called whenever we stop holding onto a mm_struct,
1443 * error success whatever.
1444 *
1445 * mm_release is called after a mm_struct has been removed
1446 * from the current process.
1447 *
1448 * This difference is important for error handling, when we
1449 * only half set up a mm_struct for a new process and need to restore
1450 * the old one. Because we mmput the new mm_struct before
1451 * restoring the old one. . .
1452 * Eric Biederman 10 January 1998
1453 */
1454 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1455 {
1456 uprobe_free_utask(tsk);
1457
1458 /* Get rid of any cached register state */
1459 deactivate_mm(tsk, mm);
1460
1461 /*
1462 * Signal userspace if we're not exiting with a core dump
1463 * because we want to leave the value intact for debugging
1464 * purposes.
1465 */
1466 if (tsk->clear_child_tid) {
1467 if (atomic_read(&mm->mm_users) > 1) {
1468 /*
1469 * We don't check the error code - if userspace has
1470 * not set up a proper pointer then tough luck.
1471 */
1472 put_user(0, tsk->clear_child_tid);
1473 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1474 1, NULL, NULL, 0, 0);
1475 }
1476 tsk->clear_child_tid = NULL;
1477 }
1478
1479 /*
1480 * All done, finally we can wake up parent and return this mm to him.
1481 * Also kthread_stop() uses this completion for synchronization.
1482 */
1483 if (tsk->vfork_done)
1484 complete_vfork_done(tsk);
1485 }
1486
1487 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1488 {
1489 futex_exit_release(tsk);
1490 mm_release(tsk, mm);
1491 }
1492
1493 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1494 {
1495 futex_exec_release(tsk);
1496 mm_release(tsk, mm);
1497 }
1498
1499 /**
1500 * dup_mm() - duplicates an existing mm structure
1501 * @tsk: the task_struct with which the new mm will be associated.
1502 * @oldmm: the mm to duplicate.
1503 *
1504 * Allocates a new mm structure and duplicates the provided @oldmm structure
1505 * content into it.
1506 *
1507 * Return: the duplicated mm or NULL on failure.
1508 */
1509 static struct mm_struct *dup_mm(struct task_struct *tsk,
1510 struct mm_struct *oldmm)
1511 {
1512 struct mm_struct *mm;
1513 int err;
1514
1515 mm = allocate_mm();
1516 if (!mm)
1517 goto fail_nomem;
1518
1519 memcpy(mm, oldmm, sizeof(*mm));
1520
1521 if (!mm_init(mm, tsk, mm->user_ns))
1522 goto fail_nomem;
1523
1524 err = dup_mmap(mm, oldmm);
1525 if (err)
1526 goto free_pt;
1527
1528 mm->hiwater_rss = get_mm_rss(mm);
1529 mm->hiwater_vm = mm->total_vm;
1530
1531 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1532 goto free_pt;
1533
1534 return mm;
1535
1536 free_pt:
1537 /* don't put binfmt in mmput, we haven't got module yet */
1538 mm->binfmt = NULL;
1539 mm_init_owner(mm, NULL);
1540 mmput(mm);
1541
1542 fail_nomem:
1543 return NULL;
1544 }
1545
1546 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1547 {
1548 struct mm_struct *mm, *oldmm;
1549
1550 tsk->min_flt = tsk->maj_flt = 0;
1551 tsk->nvcsw = tsk->nivcsw = 0;
1552 #ifdef CONFIG_DETECT_HUNG_TASK
1553 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1554 tsk->last_switch_time = 0;
1555 #endif
1556
1557 tsk->mm = NULL;
1558 tsk->active_mm = NULL;
1559
1560 /*
1561 * Are we cloning a kernel thread?
1562 *
1563 * We need to steal a active VM for that..
1564 */
1565 oldmm = current->mm;
1566 if (!oldmm)
1567 return 0;
1568
1569 /* initialize the new vmacache entries */
1570 vmacache_flush(tsk);
1571
1572 if (clone_flags & CLONE_VM) {
1573 mmget(oldmm);
1574 mm = oldmm;
1575 } else {
1576 mm = dup_mm(tsk, current->mm);
1577 if (!mm)
1578 return -ENOMEM;
1579 }
1580
1581 tsk->mm = mm;
1582 tsk->active_mm = mm;
1583 return 0;
1584 }
1585
1586 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1587 {
1588 struct fs_struct *fs = current->fs;
1589 if (clone_flags & CLONE_FS) {
1590 /* tsk->fs is already what we want */
1591 spin_lock(&fs->lock);
1592 if (fs->in_exec) {
1593 spin_unlock(&fs->lock);
1594 return -EAGAIN;
1595 }
1596 fs->users++;
1597 spin_unlock(&fs->lock);
1598 return 0;
1599 }
1600 tsk->fs = copy_fs_struct(fs);
1601 if (!tsk->fs)
1602 return -ENOMEM;
1603 return 0;
1604 }
1605
1606 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1607 {
1608 struct files_struct *oldf, *newf;
1609 int error = 0;
1610
1611 /*
1612 * A background process may not have any files ...
1613 */
1614 oldf = current->files;
1615 if (!oldf)
1616 goto out;
1617
1618 if (clone_flags & CLONE_FILES) {
1619 atomic_inc(&oldf->count);
1620 goto out;
1621 }
1622
1623 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1624 if (!newf)
1625 goto out;
1626
1627 tsk->files = newf;
1628 error = 0;
1629 out:
1630 return error;
1631 }
1632
1633 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1634 {
1635 struct sighand_struct *sig;
1636
1637 if (clone_flags & CLONE_SIGHAND) {
1638 refcount_inc(&current->sighand->count);
1639 return 0;
1640 }
1641 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1642 RCU_INIT_POINTER(tsk->sighand, sig);
1643 if (!sig)
1644 return -ENOMEM;
1645
1646 refcount_set(&sig->count, 1);
1647 spin_lock_irq(&current->sighand->siglock);
1648 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1649 spin_unlock_irq(&current->sighand->siglock);
1650
1651 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1652 if (clone_flags & CLONE_CLEAR_SIGHAND)
1653 flush_signal_handlers(tsk, 0);
1654
1655 return 0;
1656 }
1657
1658 void __cleanup_sighand(struct sighand_struct *sighand)
1659 {
1660 if (refcount_dec_and_test(&sighand->count)) {
1661 signalfd_cleanup(sighand);
1662 /*
1663 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1664 * without an RCU grace period, see __lock_task_sighand().
1665 */
1666 kmem_cache_free(sighand_cachep, sighand);
1667 }
1668 }
1669
1670 /*
1671 * Initialize POSIX timer handling for a thread group.
1672 */
1673 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1674 {
1675 struct posix_cputimers *pct = &sig->posix_cputimers;
1676 unsigned long cpu_limit;
1677
1678 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1679 posix_cputimers_group_init(pct, cpu_limit);
1680 }
1681
1682 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1683 {
1684 struct signal_struct *sig;
1685
1686 if (clone_flags & CLONE_THREAD)
1687 return 0;
1688
1689 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1690 tsk->signal = sig;
1691 if (!sig)
1692 return -ENOMEM;
1693
1694 sig->nr_threads = 1;
1695 sig->quick_threads = 1;
1696 atomic_set(&sig->live, 1);
1697 refcount_set(&sig->sigcnt, 1);
1698
1699 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1700 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1701 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1702
1703 init_waitqueue_head(&sig->wait_chldexit);
1704 sig->curr_target = tsk;
1705 init_sigpending(&sig->shared_pending);
1706 INIT_HLIST_HEAD(&sig->multiprocess);
1707 seqlock_init(&sig->stats_lock);
1708 prev_cputime_init(&sig->prev_cputime);
1709
1710 #ifdef CONFIG_POSIX_TIMERS
1711 INIT_LIST_HEAD(&sig->posix_timers);
1712 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1713 sig->real_timer.function = it_real_fn;
1714 #endif
1715
1716 task_lock(current->group_leader);
1717 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1718 task_unlock(current->group_leader);
1719
1720 posix_cpu_timers_init_group(sig);
1721
1722 tty_audit_fork(sig);
1723 sched_autogroup_fork(sig);
1724
1725 sig->oom_score_adj = current->signal->oom_score_adj;
1726 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1727
1728 mutex_init(&sig->cred_guard_mutex);
1729 init_rwsem(&sig->exec_update_lock);
1730
1731 return 0;
1732 }
1733
1734 static void copy_seccomp(struct task_struct *p)
1735 {
1736 #ifdef CONFIG_SECCOMP
1737 /*
1738 * Must be called with sighand->lock held, which is common to
1739 * all threads in the group. Holding cred_guard_mutex is not
1740 * needed because this new task is not yet running and cannot
1741 * be racing exec.
1742 */
1743 assert_spin_locked(&current->sighand->siglock);
1744
1745 /* Ref-count the new filter user, and assign it. */
1746 get_seccomp_filter(current);
1747 p->seccomp = current->seccomp;
1748
1749 /*
1750 * Explicitly enable no_new_privs here in case it got set
1751 * between the task_struct being duplicated and holding the
1752 * sighand lock. The seccomp state and nnp must be in sync.
1753 */
1754 if (task_no_new_privs(current))
1755 task_set_no_new_privs(p);
1756
1757 /*
1758 * If the parent gained a seccomp mode after copying thread
1759 * flags and between before we held the sighand lock, we have
1760 * to manually enable the seccomp thread flag here.
1761 */
1762 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1763 set_task_syscall_work(p, SECCOMP);
1764 #endif
1765 }
1766
1767 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1768 {
1769 current->clear_child_tid = tidptr;
1770
1771 return task_pid_vnr(current);
1772 }
1773
1774 static void rt_mutex_init_task(struct task_struct *p)
1775 {
1776 raw_spin_lock_init(&p->pi_lock);
1777 #ifdef CONFIG_RT_MUTEXES
1778 p->pi_waiters = RB_ROOT_CACHED;
1779 p->pi_top_task = NULL;
1780 p->pi_blocked_on = NULL;
1781 #endif
1782 }
1783
1784 static inline void init_task_pid_links(struct task_struct *task)
1785 {
1786 enum pid_type type;
1787
1788 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1789 INIT_HLIST_NODE(&task->pid_links[type]);
1790 }
1791
1792 static inline void
1793 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1794 {
1795 if (type == PIDTYPE_PID)
1796 task->thread_pid = pid;
1797 else
1798 task->signal->pids[type] = pid;
1799 }
1800
1801 static inline void rcu_copy_process(struct task_struct *p)
1802 {
1803 #ifdef CONFIG_PREEMPT_RCU
1804 p->rcu_read_lock_nesting = 0;
1805 p->rcu_read_unlock_special.s = 0;
1806 p->rcu_blocked_node = NULL;
1807 INIT_LIST_HEAD(&p->rcu_node_entry);
1808 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1809 #ifdef CONFIG_TASKS_RCU
1810 p->rcu_tasks_holdout = false;
1811 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1812 p->rcu_tasks_idle_cpu = -1;
1813 #endif /* #ifdef CONFIG_TASKS_RCU */
1814 #ifdef CONFIG_TASKS_TRACE_RCU
1815 p->trc_reader_nesting = 0;
1816 p->trc_reader_special.s = 0;
1817 INIT_LIST_HEAD(&p->trc_holdout_list);
1818 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1819 }
1820
1821 struct pid *pidfd_pid(const struct file *file)
1822 {
1823 if (file->f_op == &pidfd_fops)
1824 return file->private_data;
1825
1826 return ERR_PTR(-EBADF);
1827 }
1828
1829 static int pidfd_release(struct inode *inode, struct file *file)
1830 {
1831 struct pid *pid = file->private_data;
1832
1833 file->private_data = NULL;
1834 put_pid(pid);
1835 return 0;
1836 }
1837
1838 #ifdef CONFIG_PROC_FS
1839 /**
1840 * pidfd_show_fdinfo - print information about a pidfd
1841 * @m: proc fdinfo file
1842 * @f: file referencing a pidfd
1843 *
1844 * Pid:
1845 * This function will print the pid that a given pidfd refers to in the
1846 * pid namespace of the procfs instance.
1847 * If the pid namespace of the process is not a descendant of the pid
1848 * namespace of the procfs instance 0 will be shown as its pid. This is
1849 * similar to calling getppid() on a process whose parent is outside of
1850 * its pid namespace.
1851 *
1852 * NSpid:
1853 * If pid namespaces are supported then this function will also print
1854 * the pid of a given pidfd refers to for all descendant pid namespaces
1855 * starting from the current pid namespace of the instance, i.e. the
1856 * Pid field and the first entry in the NSpid field will be identical.
1857 * If the pid namespace of the process is not a descendant of the pid
1858 * namespace of the procfs instance 0 will be shown as its first NSpid
1859 * entry and no others will be shown.
1860 * Note that this differs from the Pid and NSpid fields in
1861 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1862 * the pid namespace of the procfs instance. The difference becomes
1863 * obvious when sending around a pidfd between pid namespaces from a
1864 * different branch of the tree, i.e. where no ancestral relation is
1865 * present between the pid namespaces:
1866 * - create two new pid namespaces ns1 and ns2 in the initial pid
1867 * namespace (also take care to create new mount namespaces in the
1868 * new pid namespace and mount procfs)
1869 * - create a process with a pidfd in ns1
1870 * - send pidfd from ns1 to ns2
1871 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1872 * have exactly one entry, which is 0
1873 */
1874 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1875 {
1876 struct pid *pid = f->private_data;
1877 struct pid_namespace *ns;
1878 pid_t nr = -1;
1879
1880 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1881 ns = proc_pid_ns(file_inode(m->file)->i_sb);
1882 nr = pid_nr_ns(pid, ns);
1883 }
1884
1885 seq_put_decimal_ll(m, "Pid:\t", nr);
1886
1887 #ifdef CONFIG_PID_NS
1888 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1889 if (nr > 0) {
1890 int i;
1891
1892 /* If nr is non-zero it means that 'pid' is valid and that
1893 * ns, i.e. the pid namespace associated with the procfs
1894 * instance, is in the pid namespace hierarchy of pid.
1895 * Start at one below the already printed level.
1896 */
1897 for (i = ns->level + 1; i <= pid->level; i++)
1898 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1899 }
1900 #endif
1901 seq_putc(m, '\n');
1902 }
1903 #endif
1904
1905 /*
1906 * Poll support for process exit notification.
1907 */
1908 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1909 {
1910 struct pid *pid = file->private_data;
1911 __poll_t poll_flags = 0;
1912
1913 poll_wait(file, &pid->wait_pidfd, pts);
1914
1915 /*
1916 * Inform pollers only when the whole thread group exits.
1917 * If the thread group leader exits before all other threads in the
1918 * group, then poll(2) should block, similar to the wait(2) family.
1919 */
1920 if (thread_group_exited(pid))
1921 poll_flags = EPOLLIN | EPOLLRDNORM;
1922
1923 return poll_flags;
1924 }
1925
1926 const struct file_operations pidfd_fops = {
1927 .release = pidfd_release,
1928 .poll = pidfd_poll,
1929 #ifdef CONFIG_PROC_FS
1930 .show_fdinfo = pidfd_show_fdinfo,
1931 #endif
1932 };
1933
1934 static void __delayed_free_task(struct rcu_head *rhp)
1935 {
1936 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1937
1938 free_task(tsk);
1939 }
1940
1941 static __always_inline void delayed_free_task(struct task_struct *tsk)
1942 {
1943 if (IS_ENABLED(CONFIG_MEMCG))
1944 call_rcu(&tsk->rcu, __delayed_free_task);
1945 else
1946 free_task(tsk);
1947 }
1948
1949 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1950 {
1951 /* Skip if kernel thread */
1952 if (!tsk->mm)
1953 return;
1954
1955 /* Skip if spawning a thread or using vfork */
1956 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1957 return;
1958
1959 /* We need to synchronize with __set_oom_adj */
1960 mutex_lock(&oom_adj_mutex);
1961 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1962 /* Update the values in case they were changed after copy_signal */
1963 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1964 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1965 mutex_unlock(&oom_adj_mutex);
1966 }
1967
1968 /*
1969 * This creates a new process as a copy of the old one,
1970 * but does not actually start it yet.
1971 *
1972 * It copies the registers, and all the appropriate
1973 * parts of the process environment (as per the clone
1974 * flags). The actual kick-off is left to the caller.
1975 */
1976 static __latent_entropy struct task_struct *copy_process(
1977 struct pid *pid,
1978 int trace,
1979 int node,
1980 struct kernel_clone_args *args)
1981 {
1982 int pidfd = -1, retval;
1983 struct task_struct *p;
1984 struct multiprocess_signals delayed;
1985 struct file *pidfile = NULL;
1986 const u64 clone_flags = args->flags;
1987 struct nsproxy *nsp = current->nsproxy;
1988
1989 /*
1990 * Don't allow sharing the root directory with processes in a different
1991 * namespace
1992 */
1993 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1994 return ERR_PTR(-EINVAL);
1995
1996 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1997 return ERR_PTR(-EINVAL);
1998
1999 /*
2000 * Thread groups must share signals as well, and detached threads
2001 * can only be started up within the thread group.
2002 */
2003 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2004 return ERR_PTR(-EINVAL);
2005
2006 /*
2007 * Shared signal handlers imply shared VM. By way of the above,
2008 * thread groups also imply shared VM. Blocking this case allows
2009 * for various simplifications in other code.
2010 */
2011 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2012 return ERR_PTR(-EINVAL);
2013
2014 /*
2015 * Siblings of global init remain as zombies on exit since they are
2016 * not reaped by their parent (swapper). To solve this and to avoid
2017 * multi-rooted process trees, prevent global and container-inits
2018 * from creating siblings.
2019 */
2020 if ((clone_flags & CLONE_PARENT) &&
2021 current->signal->flags & SIGNAL_UNKILLABLE)
2022 return ERR_PTR(-EINVAL);
2023
2024 /*
2025 * If the new process will be in a different pid or user namespace
2026 * do not allow it to share a thread group with the forking task.
2027 */
2028 if (clone_flags & CLONE_THREAD) {
2029 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2030 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2031 return ERR_PTR(-EINVAL);
2032 }
2033
2034 /*
2035 * If the new process will be in a different time namespace
2036 * do not allow it to share VM or a thread group with the forking task.
2037 */
2038 if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
2039 if (nsp->time_ns != nsp->time_ns_for_children)
2040 return ERR_PTR(-EINVAL);
2041 }
2042
2043 if (clone_flags & CLONE_PIDFD) {
2044 /*
2045 * - CLONE_DETACHED is blocked so that we can potentially
2046 * reuse it later for CLONE_PIDFD.
2047 * - CLONE_THREAD is blocked until someone really needs it.
2048 */
2049 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2050 return ERR_PTR(-EINVAL);
2051 }
2052
2053 /*
2054 * Force any signals received before this point to be delivered
2055 * before the fork happens. Collect up signals sent to multiple
2056 * processes that happen during the fork and delay them so that
2057 * they appear to happen after the fork.
2058 */
2059 sigemptyset(&delayed.signal);
2060 INIT_HLIST_NODE(&delayed.node);
2061
2062 spin_lock_irq(&current->sighand->siglock);
2063 if (!(clone_flags & CLONE_THREAD))
2064 hlist_add_head(&delayed.node, &current->signal->multiprocess);
2065 recalc_sigpending();
2066 spin_unlock_irq(&current->sighand->siglock);
2067 retval = -ERESTARTNOINTR;
2068 if (task_sigpending(current))
2069 goto fork_out;
2070
2071 retval = -ENOMEM;
2072 p = dup_task_struct(current, node);
2073 if (!p)
2074 goto fork_out;
2075 p->flags &= ~PF_KTHREAD;
2076 if (args->kthread)
2077 p->flags |= PF_KTHREAD;
2078 if (args->io_thread) {
2079 /*
2080 * Mark us an IO worker, and block any signal that isn't
2081 * fatal or STOP
2082 */
2083 p->flags |= PF_IO_WORKER;
2084 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2085 }
2086
2087 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2088 /*
2089 * Clear TID on mm_release()?
2090 */
2091 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2092
2093 ftrace_graph_init_task(p);
2094
2095 rt_mutex_init_task(p);
2096
2097 lockdep_assert_irqs_enabled();
2098 #ifdef CONFIG_PROVE_LOCKING
2099 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2100 #endif
2101 retval = copy_creds(p, clone_flags);
2102 if (retval < 0)
2103 goto bad_fork_free;
2104
2105 retval = -EAGAIN;
2106 if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2107 if (p->real_cred->user != INIT_USER &&
2108 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2109 goto bad_fork_cleanup_count;
2110 }
2111 current->flags &= ~PF_NPROC_EXCEEDED;
2112
2113 /*
2114 * If multiple threads are within copy_process(), then this check
2115 * triggers too late. This doesn't hurt, the check is only there
2116 * to stop root fork bombs.
2117 */
2118 retval = -EAGAIN;
2119 if (data_race(nr_threads >= max_threads))
2120 goto bad_fork_cleanup_count;
2121
2122 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2123 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2124 p->flags |= PF_FORKNOEXEC;
2125 INIT_LIST_HEAD(&p->children);
2126 INIT_LIST_HEAD(&p->sibling);
2127 rcu_copy_process(p);
2128 p->vfork_done = NULL;
2129 spin_lock_init(&p->alloc_lock);
2130
2131 init_sigpending(&p->pending);
2132
2133 p->utime = p->stime = p->gtime = 0;
2134 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2135 p->utimescaled = p->stimescaled = 0;
2136 #endif
2137 prev_cputime_init(&p->prev_cputime);
2138
2139 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2140 seqcount_init(&p->vtime.seqcount);
2141 p->vtime.starttime = 0;
2142 p->vtime.state = VTIME_INACTIVE;
2143 #endif
2144
2145 #ifdef CONFIG_IO_URING
2146 p->io_uring = NULL;
2147 #endif
2148
2149 #if defined(SPLIT_RSS_COUNTING)
2150 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2151 #endif
2152
2153 p->default_timer_slack_ns = current->timer_slack_ns;
2154
2155 #ifdef CONFIG_PSI
2156 p->psi_flags = 0;
2157 #endif
2158
2159 task_io_accounting_init(&p->ioac);
2160 acct_clear_integrals(p);
2161
2162 posix_cputimers_init(&p->posix_cputimers);
2163
2164 p->io_context = NULL;
2165 audit_set_context(p, NULL);
2166 cgroup_fork(p);
2167 if (args->kthread) {
2168 if (!set_kthread_struct(p))
2169 goto bad_fork_cleanup_delayacct;
2170 }
2171 #ifdef CONFIG_NUMA
2172 p->mempolicy = mpol_dup(p->mempolicy);
2173 if (IS_ERR(p->mempolicy)) {
2174 retval = PTR_ERR(p->mempolicy);
2175 p->mempolicy = NULL;
2176 goto bad_fork_cleanup_delayacct;
2177 }
2178 #endif
2179 #ifdef CONFIG_CPUSETS
2180 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2181 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2182 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2183 #endif
2184 #ifdef CONFIG_TRACE_IRQFLAGS
2185 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2186 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2187 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2188 p->softirqs_enabled = 1;
2189 p->softirq_context = 0;
2190 #endif
2191
2192 p->pagefault_disabled = 0;
2193
2194 #ifdef CONFIG_LOCKDEP
2195 lockdep_init_task(p);
2196 #endif
2197
2198 #ifdef CONFIG_DEBUG_MUTEXES
2199 p->blocked_on = NULL; /* not blocked yet */
2200 #endif
2201 #ifdef CONFIG_BCACHE
2202 p->sequential_io = 0;
2203 p->sequential_io_avg = 0;
2204 #endif
2205 #ifdef CONFIG_BPF_SYSCALL
2206 RCU_INIT_POINTER(p->bpf_storage, NULL);
2207 p->bpf_ctx = NULL;
2208 #endif
2209
2210 /* Perform scheduler related setup. Assign this task to a CPU. */
2211 retval = sched_fork(clone_flags, p);
2212 if (retval)
2213 goto bad_fork_cleanup_policy;
2214
2215 retval = perf_event_init_task(p, clone_flags);
2216 if (retval)
2217 goto bad_fork_cleanup_policy;
2218 retval = audit_alloc(p);
2219 if (retval)
2220 goto bad_fork_cleanup_perf;
2221 /* copy all the process information */
2222 shm_init_task(p);
2223 retval = security_task_alloc(p, clone_flags);
2224 if (retval)
2225 goto bad_fork_cleanup_audit;
2226 retval = copy_semundo(clone_flags, p);
2227 if (retval)
2228 goto bad_fork_cleanup_security;
2229 retval = copy_files(clone_flags, p);
2230 if (retval)
2231 goto bad_fork_cleanup_semundo;
2232 retval = copy_fs(clone_flags, p);
2233 if (retval)
2234 goto bad_fork_cleanup_files;
2235 retval = copy_sighand(clone_flags, p);
2236 if (retval)
2237 goto bad_fork_cleanup_fs;
2238 retval = copy_signal(clone_flags, p);
2239 if (retval)
2240 goto bad_fork_cleanup_sighand;
2241 retval = copy_mm(clone_flags, p);
2242 if (retval)
2243 goto bad_fork_cleanup_signal;
2244 retval = copy_namespaces(clone_flags, p);
2245 if (retval)
2246 goto bad_fork_cleanup_mm;
2247 retval = copy_io(clone_flags, p);
2248 if (retval)
2249 goto bad_fork_cleanup_namespaces;
2250 retval = copy_thread(p, args);
2251 if (retval)
2252 goto bad_fork_cleanup_io;
2253
2254 stackleak_task_init(p);
2255
2256 if (pid != &init_struct_pid) {
2257 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2258 args->set_tid_size);
2259 if (IS_ERR(pid)) {
2260 retval = PTR_ERR(pid);
2261 goto bad_fork_cleanup_thread;
2262 }
2263 }
2264
2265 /*
2266 * This has to happen after we've potentially unshared the file
2267 * descriptor table (so that the pidfd doesn't leak into the child
2268 * if the fd table isn't shared).
2269 */
2270 if (clone_flags & CLONE_PIDFD) {
2271 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2272 if (retval < 0)
2273 goto bad_fork_free_pid;
2274
2275 pidfd = retval;
2276
2277 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2278 O_RDWR | O_CLOEXEC);
2279 if (IS_ERR(pidfile)) {
2280 put_unused_fd(pidfd);
2281 retval = PTR_ERR(pidfile);
2282 goto bad_fork_free_pid;
2283 }
2284 get_pid(pid); /* held by pidfile now */
2285
2286 retval = put_user(pidfd, args->pidfd);
2287 if (retval)
2288 goto bad_fork_put_pidfd;
2289 }
2290
2291 #ifdef CONFIG_BLOCK
2292 p->plug = NULL;
2293 #endif
2294 futex_init_task(p);
2295
2296 /*
2297 * sigaltstack should be cleared when sharing the same VM
2298 */
2299 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2300 sas_ss_reset(p);
2301
2302 /*
2303 * Syscall tracing and stepping should be turned off in the
2304 * child regardless of CLONE_PTRACE.
2305 */
2306 user_disable_single_step(p);
2307 clear_task_syscall_work(p, SYSCALL_TRACE);
2308 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2309 clear_task_syscall_work(p, SYSCALL_EMU);
2310 #endif
2311 clear_tsk_latency_tracing(p);
2312
2313 /* ok, now we should be set up.. */
2314 p->pid = pid_nr(pid);
2315 if (clone_flags & CLONE_THREAD) {
2316 p->group_leader = current->group_leader;
2317 p->tgid = current->tgid;
2318 } else {
2319 p->group_leader = p;
2320 p->tgid = p->pid;
2321 }
2322
2323 p->nr_dirtied = 0;
2324 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2325 p->dirty_paused_when = 0;
2326
2327 p->pdeath_signal = 0;
2328 INIT_LIST_HEAD(&p->thread_group);
2329 p->task_works = NULL;
2330 clear_posix_cputimers_work(p);
2331
2332 #ifdef CONFIG_KRETPROBES
2333 p->kretprobe_instances.first = NULL;
2334 #endif
2335 #ifdef CONFIG_RETHOOK
2336 p->rethooks.first = NULL;
2337 #endif
2338
2339 /*
2340 * Ensure that the cgroup subsystem policies allow the new process to be
2341 * forked. It should be noted that the new process's css_set can be changed
2342 * between here and cgroup_post_fork() if an organisation operation is in
2343 * progress.
2344 */
2345 retval = cgroup_can_fork(p, args);
2346 if (retval)
2347 goto bad_fork_put_pidfd;
2348
2349 /*
2350 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2351 * the new task on the correct runqueue. All this *before* the task
2352 * becomes visible.
2353 *
2354 * This isn't part of ->can_fork() because while the re-cloning is
2355 * cgroup specific, it unconditionally needs to place the task on a
2356 * runqueue.
2357 */
2358 sched_cgroup_fork(p, args);
2359
2360 /*
2361 * From this point on we must avoid any synchronous user-space
2362 * communication until we take the tasklist-lock. In particular, we do
2363 * not want user-space to be able to predict the process start-time by
2364 * stalling fork(2) after we recorded the start_time but before it is
2365 * visible to the system.
2366 */
2367
2368 p->start_time = ktime_get_ns();
2369 p->start_boottime = ktime_get_boottime_ns();
2370
2371 /*
2372 * Make it visible to the rest of the system, but dont wake it up yet.
2373 * Need tasklist lock for parent etc handling!
2374 */
2375 write_lock_irq(&tasklist_lock);
2376
2377 /* CLONE_PARENT re-uses the old parent */
2378 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2379 p->real_parent = current->real_parent;
2380 p->parent_exec_id = current->parent_exec_id;
2381 if (clone_flags & CLONE_THREAD)
2382 p->exit_signal = -1;
2383 else
2384 p->exit_signal = current->group_leader->exit_signal;
2385 } else {
2386 p->real_parent = current;
2387 p->parent_exec_id = current->self_exec_id;
2388 p->exit_signal = args->exit_signal;
2389 }
2390
2391 klp_copy_process(p);
2392
2393 sched_core_fork(p);
2394
2395 spin_lock(&current->sighand->siglock);
2396
2397 /*
2398 * Copy seccomp details explicitly here, in case they were changed
2399 * before holding sighand lock.
2400 */
2401 copy_seccomp(p);
2402
2403 rseq_fork(p, clone_flags);
2404
2405 /* Don't start children in a dying pid namespace */
2406 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2407 retval = -ENOMEM;
2408 goto bad_fork_cancel_cgroup;
2409 }
2410
2411 /* Let kill terminate clone/fork in the middle */
2412 if (fatal_signal_pending(current)) {
2413 retval = -EINTR;
2414 goto bad_fork_cancel_cgroup;
2415 }
2416
2417 init_task_pid_links(p);
2418 if (likely(p->pid)) {
2419 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2420
2421 init_task_pid(p, PIDTYPE_PID, pid);
2422 if (thread_group_leader(p)) {
2423 init_task_pid(p, PIDTYPE_TGID, pid);
2424 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2425 init_task_pid(p, PIDTYPE_SID, task_session(current));
2426
2427 if (is_child_reaper(pid)) {
2428 ns_of_pid(pid)->child_reaper = p;
2429 p->signal->flags |= SIGNAL_UNKILLABLE;
2430 }
2431 p->signal->shared_pending.signal = delayed.signal;
2432 p->signal->tty = tty_kref_get(current->signal->tty);
2433 /*
2434 * Inherit has_child_subreaper flag under the same
2435 * tasklist_lock with adding child to the process tree
2436 * for propagate_has_child_subreaper optimization.
2437 */
2438 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2439 p->real_parent->signal->is_child_subreaper;
2440 list_add_tail(&p->sibling, &p->real_parent->children);
2441 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2442 attach_pid(p, PIDTYPE_TGID);
2443 attach_pid(p, PIDTYPE_PGID);
2444 attach_pid(p, PIDTYPE_SID);
2445 __this_cpu_inc(process_counts);
2446 } else {
2447 current->signal->nr_threads++;
2448 current->signal->quick_threads++;
2449 atomic_inc(&current->signal->live);
2450 refcount_inc(&current->signal->sigcnt);
2451 task_join_group_stop(p);
2452 list_add_tail_rcu(&p->thread_group,
2453 &p->group_leader->thread_group);
2454 list_add_tail_rcu(&p->thread_node,
2455 &p->signal->thread_head);
2456 }
2457 attach_pid(p, PIDTYPE_PID);
2458 nr_threads++;
2459 }
2460 total_forks++;
2461 hlist_del_init(&delayed.node);
2462 spin_unlock(&current->sighand->siglock);
2463 syscall_tracepoint_update(p);
2464 write_unlock_irq(&tasklist_lock);
2465
2466 if (pidfile)
2467 fd_install(pidfd, pidfile);
2468
2469 proc_fork_connector(p);
2470 sched_post_fork(p);
2471 cgroup_post_fork(p, args);
2472 perf_event_fork(p);
2473
2474 trace_task_newtask(p, clone_flags);
2475 uprobe_copy_process(p, clone_flags);
2476
2477 copy_oom_score_adj(clone_flags, p);
2478
2479 return p;
2480
2481 bad_fork_cancel_cgroup:
2482 sched_core_free(p);
2483 spin_unlock(&current->sighand->siglock);
2484 write_unlock_irq(&tasklist_lock);
2485 cgroup_cancel_fork(p, args);
2486 bad_fork_put_pidfd:
2487 if (clone_flags & CLONE_PIDFD) {
2488 fput(pidfile);
2489 put_unused_fd(pidfd);
2490 }
2491 bad_fork_free_pid:
2492 if (pid != &init_struct_pid)
2493 free_pid(pid);
2494 bad_fork_cleanup_thread:
2495 exit_thread(p);
2496 bad_fork_cleanup_io:
2497 if (p->io_context)
2498 exit_io_context(p);
2499 bad_fork_cleanup_namespaces:
2500 exit_task_namespaces(p);
2501 bad_fork_cleanup_mm:
2502 if (p->mm) {
2503 mm_clear_owner(p->mm, p);
2504 mmput(p->mm);
2505 }
2506 bad_fork_cleanup_signal:
2507 if (!(clone_flags & CLONE_THREAD))
2508 free_signal_struct(p->signal);
2509 bad_fork_cleanup_sighand:
2510 __cleanup_sighand(p->sighand);
2511 bad_fork_cleanup_fs:
2512 exit_fs(p); /* blocking */
2513 bad_fork_cleanup_files:
2514 exit_files(p); /* blocking */
2515 bad_fork_cleanup_semundo:
2516 exit_sem(p);
2517 bad_fork_cleanup_security:
2518 security_task_free(p);
2519 bad_fork_cleanup_audit:
2520 audit_free(p);
2521 bad_fork_cleanup_perf:
2522 perf_event_free_task(p);
2523 bad_fork_cleanup_policy:
2524 lockdep_free_task(p);
2525 #ifdef CONFIG_NUMA
2526 mpol_put(p->mempolicy);
2527 #endif
2528 bad_fork_cleanup_delayacct:
2529 delayacct_tsk_free(p);
2530 bad_fork_cleanup_count:
2531 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2532 exit_creds(p);
2533 bad_fork_free:
2534 WRITE_ONCE(p->__state, TASK_DEAD);
2535 exit_task_stack_account(p);
2536 put_task_stack(p);
2537 delayed_free_task(p);
2538 fork_out:
2539 spin_lock_irq(&current->sighand->siglock);
2540 hlist_del_init(&delayed.node);
2541 spin_unlock_irq(&current->sighand->siglock);
2542 return ERR_PTR(retval);
2543 }
2544
2545 static inline void init_idle_pids(struct task_struct *idle)
2546 {
2547 enum pid_type type;
2548
2549 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2550 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2551 init_task_pid(idle, type, &init_struct_pid);
2552 }
2553 }
2554
2555 static int idle_dummy(void *dummy)
2556 {
2557 /* This function is never called */
2558 return 0;
2559 }
2560
2561 struct task_struct * __init fork_idle(int cpu)
2562 {
2563 struct task_struct *task;
2564 struct kernel_clone_args args = {
2565 .flags = CLONE_VM,
2566 .fn = &idle_dummy,
2567 .fn_arg = NULL,
2568 .kthread = 1,
2569 .idle = 1,
2570 };
2571
2572 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2573 if (!IS_ERR(task)) {
2574 init_idle_pids(task);
2575 init_idle(task, cpu);
2576 }
2577
2578 return task;
2579 }
2580
2581 struct mm_struct *copy_init_mm(void)
2582 {
2583 return dup_mm(NULL, &init_mm);
2584 }
2585
2586 /*
2587 * This is like kernel_clone(), but shaved down and tailored to just
2588 * creating io_uring workers. It returns a created task, or an error pointer.
2589 * The returned task is inactive, and the caller must fire it up through
2590 * wake_up_new_task(p). All signals are blocked in the created task.
2591 */
2592 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2593 {
2594 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2595 CLONE_IO;
2596 struct kernel_clone_args args = {
2597 .flags = ((lower_32_bits(flags) | CLONE_VM |
2598 CLONE_UNTRACED) & ~CSIGNAL),
2599 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2600 .fn = fn,
2601 .fn_arg = arg,
2602 .io_thread = 1,
2603 };
2604
2605 return copy_process(NULL, 0, node, &args);
2606 }
2607
2608 /*
2609 * Ok, this is the main fork-routine.
2610 *
2611 * It copies the process, and if successful kick-starts
2612 * it and waits for it to finish using the VM if required.
2613 *
2614 * args->exit_signal is expected to be checked for sanity by the caller.
2615 */
2616 pid_t kernel_clone(struct kernel_clone_args *args)
2617 {
2618 u64 clone_flags = args->flags;
2619 struct completion vfork;
2620 struct pid *pid;
2621 struct task_struct *p;
2622 int trace = 0;
2623 pid_t nr;
2624
2625 /*
2626 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2627 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2628 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2629 * field in struct clone_args and it still doesn't make sense to have
2630 * them both point at the same memory location. Performing this check
2631 * here has the advantage that we don't need to have a separate helper
2632 * to check for legacy clone().
2633 */
2634 if ((args->flags & CLONE_PIDFD) &&
2635 (args->flags & CLONE_PARENT_SETTID) &&
2636 (args->pidfd == args->parent_tid))
2637 return -EINVAL;
2638
2639 /*
2640 * Determine whether and which event to report to ptracer. When
2641 * called from kernel_thread or CLONE_UNTRACED is explicitly
2642 * requested, no event is reported; otherwise, report if the event
2643 * for the type of forking is enabled.
2644 */
2645 if (!(clone_flags & CLONE_UNTRACED)) {
2646 if (clone_flags & CLONE_VFORK)
2647 trace = PTRACE_EVENT_VFORK;
2648 else if (args->exit_signal != SIGCHLD)
2649 trace = PTRACE_EVENT_CLONE;
2650 else
2651 trace = PTRACE_EVENT_FORK;
2652
2653 if (likely(!ptrace_event_enabled(current, trace)))
2654 trace = 0;
2655 }
2656
2657 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2658 add_latent_entropy();
2659
2660 if (IS_ERR(p))
2661 return PTR_ERR(p);
2662
2663 /*
2664 * Do this prior waking up the new thread - the thread pointer
2665 * might get invalid after that point, if the thread exits quickly.
2666 */
2667 trace_sched_process_fork(current, p);
2668
2669 pid = get_task_pid(p, PIDTYPE_PID);
2670 nr = pid_vnr(pid);
2671
2672 if (clone_flags & CLONE_PARENT_SETTID)
2673 put_user(nr, args->parent_tid);
2674
2675 if (clone_flags & CLONE_VFORK) {
2676 p->vfork_done = &vfork;
2677 init_completion(&vfork);
2678 get_task_struct(p);
2679 }
2680
2681 wake_up_new_task(p);
2682
2683 /* forking complete and child started to run, tell ptracer */
2684 if (unlikely(trace))
2685 ptrace_event_pid(trace, pid);
2686
2687 if (clone_flags & CLONE_VFORK) {
2688 if (!wait_for_vfork_done(p, &vfork))
2689 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2690 }
2691
2692 put_pid(pid);
2693 return nr;
2694 }
2695
2696 /*
2697 * Create a kernel thread.
2698 */
2699 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2700 {
2701 struct kernel_clone_args args = {
2702 .flags = ((lower_32_bits(flags) | CLONE_VM |
2703 CLONE_UNTRACED) & ~CSIGNAL),
2704 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2705 .fn = fn,
2706 .fn_arg = arg,
2707 .kthread = 1,
2708 };
2709
2710 return kernel_clone(&args);
2711 }
2712
2713 /*
2714 * Create a user mode thread.
2715 */
2716 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2717 {
2718 struct kernel_clone_args args = {
2719 .flags = ((lower_32_bits(flags) | CLONE_VM |
2720 CLONE_UNTRACED) & ~CSIGNAL),
2721 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2722 .fn = fn,
2723 .fn_arg = arg,
2724 };
2725
2726 return kernel_clone(&args);
2727 }
2728
2729 #ifdef __ARCH_WANT_SYS_FORK
2730 SYSCALL_DEFINE0(fork)
2731 {
2732 #ifdef CONFIG_MMU
2733 struct kernel_clone_args args = {
2734 .exit_signal = SIGCHLD,
2735 };
2736
2737 return kernel_clone(&args);
2738 #else
2739 /* can not support in nommu mode */
2740 return -EINVAL;
2741 #endif
2742 }
2743 #endif
2744
2745 #ifdef __ARCH_WANT_SYS_VFORK
2746 SYSCALL_DEFINE0(vfork)
2747 {
2748 struct kernel_clone_args args = {
2749 .flags = CLONE_VFORK | CLONE_VM,
2750 .exit_signal = SIGCHLD,
2751 };
2752
2753 return kernel_clone(&args);
2754 }
2755 #endif
2756
2757 #ifdef __ARCH_WANT_SYS_CLONE
2758 #ifdef CONFIG_CLONE_BACKWARDS
2759 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2760 int __user *, parent_tidptr,
2761 unsigned long, tls,
2762 int __user *, child_tidptr)
2763 #elif defined(CONFIG_CLONE_BACKWARDS2)
2764 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2765 int __user *, parent_tidptr,
2766 int __user *, child_tidptr,
2767 unsigned long, tls)
2768 #elif defined(CONFIG_CLONE_BACKWARDS3)
2769 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2770 int, stack_size,
2771 int __user *, parent_tidptr,
2772 int __user *, child_tidptr,
2773 unsigned long, tls)
2774 #else
2775 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2776 int __user *, parent_tidptr,
2777 int __user *, child_tidptr,
2778 unsigned long, tls)
2779 #endif
2780 {
2781 struct kernel_clone_args args = {
2782 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2783 .pidfd = parent_tidptr,
2784 .child_tid = child_tidptr,
2785 .parent_tid = parent_tidptr,
2786 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2787 .stack = newsp,
2788 .tls = tls,
2789 };
2790
2791 return kernel_clone(&args);
2792 }
2793 #endif
2794
2795 #ifdef __ARCH_WANT_SYS_CLONE3
2796
2797 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2798 struct clone_args __user *uargs,
2799 size_t usize)
2800 {
2801 int err;
2802 struct clone_args args;
2803 pid_t *kset_tid = kargs->set_tid;
2804
2805 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2806 CLONE_ARGS_SIZE_VER0);
2807 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2808 CLONE_ARGS_SIZE_VER1);
2809 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2810 CLONE_ARGS_SIZE_VER2);
2811 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2812
2813 if (unlikely(usize > PAGE_SIZE))
2814 return -E2BIG;
2815 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2816 return -EINVAL;
2817
2818 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2819 if (err)
2820 return err;
2821
2822 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2823 return -EINVAL;
2824
2825 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2826 return -EINVAL;
2827
2828 if (unlikely(args.set_tid && args.set_tid_size == 0))
2829 return -EINVAL;
2830
2831 /*
2832 * Verify that higher 32bits of exit_signal are unset and that
2833 * it is a valid signal
2834 */
2835 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2836 !valid_signal(args.exit_signal)))
2837 return -EINVAL;
2838
2839 if ((args.flags & CLONE_INTO_CGROUP) &&
2840 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2841 return -EINVAL;
2842
2843 *kargs = (struct kernel_clone_args){
2844 .flags = args.flags,
2845 .pidfd = u64_to_user_ptr(args.pidfd),
2846 .child_tid = u64_to_user_ptr(args.child_tid),
2847 .parent_tid = u64_to_user_ptr(args.parent_tid),
2848 .exit_signal = args.exit_signal,
2849 .stack = args.stack,
2850 .stack_size = args.stack_size,
2851 .tls = args.tls,
2852 .set_tid_size = args.set_tid_size,
2853 .cgroup = args.cgroup,
2854 };
2855
2856 if (args.set_tid &&
2857 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2858 (kargs->set_tid_size * sizeof(pid_t))))
2859 return -EFAULT;
2860
2861 kargs->set_tid = kset_tid;
2862
2863 return 0;
2864 }
2865
2866 /**
2867 * clone3_stack_valid - check and prepare stack
2868 * @kargs: kernel clone args
2869 *
2870 * Verify that the stack arguments userspace gave us are sane.
2871 * In addition, set the stack direction for userspace since it's easy for us to
2872 * determine.
2873 */
2874 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2875 {
2876 if (kargs->stack == 0) {
2877 if (kargs->stack_size > 0)
2878 return false;
2879 } else {
2880 if (kargs->stack_size == 0)
2881 return false;
2882
2883 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2884 return false;
2885
2886 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2887 kargs->stack += kargs->stack_size;
2888 #endif
2889 }
2890
2891 return true;
2892 }
2893
2894 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2895 {
2896 /* Verify that no unknown flags are passed along. */
2897 if (kargs->flags &
2898 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2899 return false;
2900
2901 /*
2902 * - make the CLONE_DETACHED bit reusable for clone3
2903 * - make the CSIGNAL bits reusable for clone3
2904 */
2905 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2906 return false;
2907
2908 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2909 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2910 return false;
2911
2912 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2913 kargs->exit_signal)
2914 return false;
2915
2916 if (!clone3_stack_valid(kargs))
2917 return false;
2918
2919 return true;
2920 }
2921
2922 /**
2923 * clone3 - create a new process with specific properties
2924 * @uargs: argument structure
2925 * @size: size of @uargs
2926 *
2927 * clone3() is the extensible successor to clone()/clone2().
2928 * It takes a struct as argument that is versioned by its size.
2929 *
2930 * Return: On success, a positive PID for the child process.
2931 * On error, a negative errno number.
2932 */
2933 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2934 {
2935 int err;
2936
2937 struct kernel_clone_args kargs;
2938 pid_t set_tid[MAX_PID_NS_LEVEL];
2939
2940 kargs.set_tid = set_tid;
2941
2942 err = copy_clone_args_from_user(&kargs, uargs, size);
2943 if (err)
2944 return err;
2945
2946 if (!clone3_args_valid(&kargs))
2947 return -EINVAL;
2948
2949 return kernel_clone(&kargs);
2950 }
2951 #endif
2952
2953 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2954 {
2955 struct task_struct *leader, *parent, *child;
2956 int res;
2957
2958 read_lock(&tasklist_lock);
2959 leader = top = top->group_leader;
2960 down:
2961 for_each_thread(leader, parent) {
2962 list_for_each_entry(child, &parent->children, sibling) {
2963 res = visitor(child, data);
2964 if (res) {
2965 if (res < 0)
2966 goto out;
2967 leader = child;
2968 goto down;
2969 }
2970 up:
2971 ;
2972 }
2973 }
2974
2975 if (leader != top) {
2976 child = leader;
2977 parent = child->real_parent;
2978 leader = parent->group_leader;
2979 goto up;
2980 }
2981 out:
2982 read_unlock(&tasklist_lock);
2983 }
2984
2985 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2986 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2987 #endif
2988
2989 static void sighand_ctor(void *data)
2990 {
2991 struct sighand_struct *sighand = data;
2992
2993 spin_lock_init(&sighand->siglock);
2994 init_waitqueue_head(&sighand->signalfd_wqh);
2995 }
2996
2997 void __init proc_caches_init(void)
2998 {
2999 unsigned int mm_size;
3000
3001 sighand_cachep = kmem_cache_create("sighand_cache",
3002 sizeof(struct sighand_struct), 0,
3003 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3004 SLAB_ACCOUNT, sighand_ctor);
3005 signal_cachep = kmem_cache_create("signal_cache",
3006 sizeof(struct signal_struct), 0,
3007 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3008 NULL);
3009 files_cachep = kmem_cache_create("files_cache",
3010 sizeof(struct files_struct), 0,
3011 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3012 NULL);
3013 fs_cachep = kmem_cache_create("fs_cache",
3014 sizeof(struct fs_struct), 0,
3015 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3016 NULL);
3017
3018 /*
3019 * The mm_cpumask is located at the end of mm_struct, and is
3020 * dynamically sized based on the maximum CPU number this system
3021 * can have, taking hotplug into account (nr_cpu_ids).
3022 */
3023 mm_size = sizeof(struct mm_struct) + cpumask_size();
3024
3025 mm_cachep = kmem_cache_create_usercopy("mm_struct",
3026 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3027 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3028 offsetof(struct mm_struct, saved_auxv),
3029 sizeof_field(struct mm_struct, saved_auxv),
3030 NULL);
3031 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3032 mmap_init();
3033 nsproxy_cache_init();
3034 }
3035
3036 /*
3037 * Check constraints on flags passed to the unshare system call.
3038 */
3039 static int check_unshare_flags(unsigned long unshare_flags)
3040 {
3041 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3042 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3043 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3044 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3045 CLONE_NEWTIME))
3046 return -EINVAL;
3047 /*
3048 * Not implemented, but pretend it works if there is nothing
3049 * to unshare. Note that unsharing the address space or the
3050 * signal handlers also need to unshare the signal queues (aka
3051 * CLONE_THREAD).
3052 */
3053 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3054 if (!thread_group_empty(current))
3055 return -EINVAL;
3056 }
3057 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3058 if (refcount_read(&current->sighand->count) > 1)
3059 return -EINVAL;
3060 }
3061 if (unshare_flags & CLONE_VM) {
3062 if (!current_is_single_threaded())
3063 return -EINVAL;
3064 }
3065
3066 return 0;
3067 }
3068
3069 /*
3070 * Unshare the filesystem structure if it is being shared
3071 */
3072 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3073 {
3074 struct fs_struct *fs = current->fs;
3075
3076 if (!(unshare_flags & CLONE_FS) || !fs)
3077 return 0;
3078
3079 /* don't need lock here; in the worst case we'll do useless copy */
3080 if (fs->users == 1)
3081 return 0;
3082
3083 *new_fsp = copy_fs_struct(fs);
3084 if (!*new_fsp)
3085 return -ENOMEM;
3086
3087 return 0;
3088 }
3089
3090 /*
3091 * Unshare file descriptor table if it is being shared
3092 */
3093 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3094 struct files_struct **new_fdp)
3095 {
3096 struct files_struct *fd = current->files;
3097 int error = 0;
3098
3099 if ((unshare_flags & CLONE_FILES) &&
3100 (fd && atomic_read(&fd->count) > 1)) {
3101 *new_fdp = dup_fd(fd, max_fds, &error);
3102 if (!*new_fdp)
3103 return error;
3104 }
3105
3106 return 0;
3107 }
3108
3109 /*
3110 * unshare allows a process to 'unshare' part of the process
3111 * context which was originally shared using clone. copy_*
3112 * functions used by kernel_clone() cannot be used here directly
3113 * because they modify an inactive task_struct that is being
3114 * constructed. Here we are modifying the current, active,
3115 * task_struct.
3116 */
3117 int ksys_unshare(unsigned long unshare_flags)
3118 {
3119 struct fs_struct *fs, *new_fs = NULL;
3120 struct files_struct *new_fd = NULL;
3121 struct cred *new_cred = NULL;
3122 struct nsproxy *new_nsproxy = NULL;
3123 int do_sysvsem = 0;
3124 int err;
3125
3126 /*
3127 * If unsharing a user namespace must also unshare the thread group
3128 * and unshare the filesystem root and working directories.
3129 */
3130 if (unshare_flags & CLONE_NEWUSER)
3131 unshare_flags |= CLONE_THREAD | CLONE_FS;
3132 /*
3133 * If unsharing vm, must also unshare signal handlers.
3134 */
3135 if (unshare_flags & CLONE_VM)
3136 unshare_flags |= CLONE_SIGHAND;
3137 /*
3138 * If unsharing a signal handlers, must also unshare the signal queues.
3139 */
3140 if (unshare_flags & CLONE_SIGHAND)
3141 unshare_flags |= CLONE_THREAD;
3142 /*
3143 * If unsharing namespace, must also unshare filesystem information.
3144 */
3145 if (unshare_flags & CLONE_NEWNS)
3146 unshare_flags |= CLONE_FS;
3147
3148 err = check_unshare_flags(unshare_flags);
3149 if (err)
3150 goto bad_unshare_out;
3151 /*
3152 * CLONE_NEWIPC must also detach from the undolist: after switching
3153 * to a new ipc namespace, the semaphore arrays from the old
3154 * namespace are unreachable.
3155 */
3156 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3157 do_sysvsem = 1;
3158 err = unshare_fs(unshare_flags, &new_fs);
3159 if (err)
3160 goto bad_unshare_out;
3161 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3162 if (err)
3163 goto bad_unshare_cleanup_fs;
3164 err = unshare_userns(unshare_flags, &new_cred);
3165 if (err)
3166 goto bad_unshare_cleanup_fd;
3167 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3168 new_cred, new_fs);
3169 if (err)
3170 goto bad_unshare_cleanup_cred;
3171
3172 if (new_cred) {
3173 err = set_cred_ucounts(new_cred);
3174 if (err)
3175 goto bad_unshare_cleanup_cred;
3176 }
3177
3178 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3179 if (do_sysvsem) {
3180 /*
3181 * CLONE_SYSVSEM is equivalent to sys_exit().
3182 */
3183 exit_sem(current);
3184 }
3185 if (unshare_flags & CLONE_NEWIPC) {
3186 /* Orphan segments in old ns (see sem above). */
3187 exit_shm(current);
3188 shm_init_task(current);
3189 }
3190
3191 if (new_nsproxy)
3192 switch_task_namespaces(current, new_nsproxy);
3193
3194 task_lock(current);
3195
3196 if (new_fs) {
3197 fs = current->fs;
3198 spin_lock(&fs->lock);
3199 current->fs = new_fs;
3200 if (--fs->users)
3201 new_fs = NULL;
3202 else
3203 new_fs = fs;
3204 spin_unlock(&fs->lock);
3205 }
3206
3207 if (new_fd)
3208 swap(current->files, new_fd);
3209
3210 task_unlock(current);
3211
3212 if (new_cred) {
3213 /* Install the new user namespace */
3214 commit_creds(new_cred);
3215 new_cred = NULL;
3216 }
3217 }
3218
3219 perf_event_namespaces(current);
3220
3221 bad_unshare_cleanup_cred:
3222 if (new_cred)
3223 put_cred(new_cred);
3224 bad_unshare_cleanup_fd:
3225 if (new_fd)
3226 put_files_struct(new_fd);
3227
3228 bad_unshare_cleanup_fs:
3229 if (new_fs)
3230 free_fs_struct(new_fs);
3231
3232 bad_unshare_out:
3233 return err;
3234 }
3235
3236 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3237 {
3238 return ksys_unshare(unshare_flags);
3239 }
3240
3241 /*
3242 * Helper to unshare the files of the current task.
3243 * We don't want to expose copy_files internals to
3244 * the exec layer of the kernel.
3245 */
3246
3247 int unshare_files(void)
3248 {
3249 struct task_struct *task = current;
3250 struct files_struct *old, *copy = NULL;
3251 int error;
3252
3253 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3254 if (error || !copy)
3255 return error;
3256
3257 old = task->files;
3258 task_lock(task);
3259 task->files = copy;
3260 task_unlock(task);
3261 put_files_struct(old);
3262 return 0;
3263 }
3264
3265 int sysctl_max_threads(struct ctl_table *table, int write,
3266 void *buffer, size_t *lenp, loff_t *ppos)
3267 {
3268 struct ctl_table t;
3269 int ret;
3270 int threads = max_threads;
3271 int min = 1;
3272 int max = MAX_THREADS;
3273
3274 t = *table;
3275 t.data = &threads;
3276 t.extra1 = &min;
3277 t.extra2 = &max;
3278
3279 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3280 if (ret || !write)
3281 return ret;
3282
3283 max_threads = threads;
3284
3285 return 0;
3286 }