]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/fork.c
io_uring: reset -EBUSY error when io sq thread is waken up
[thirdparty/linux.git] / kernel / fork.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97
98 #include <asm/pgtable.h>
99 #include <asm/pgalloc.h>
100 #include <linux/uaccess.h>
101 #include <asm/mmu_context.h>
102 #include <asm/cacheflush.h>
103 #include <asm/tlbflush.h>
104
105 #include <trace/events/sched.h>
106
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/task.h>
109
110 /*
111 * Minimum number of threads to boot the kernel
112 */
113 #define MIN_THREADS 20
114
115 /*
116 * Maximum number of threads
117 */
118 #define MAX_THREADS FUTEX_TID_MASK
119
120 /*
121 * Protected counters by write_lock_irq(&tasklist_lock)
122 */
123 unsigned long total_forks; /* Handle normal Linux uptimes. */
124 int nr_threads; /* The idle threads do not count.. */
125
126 static int max_threads; /* tunable limit on nr_threads */
127
128 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
129
130 static const char * const resident_page_types[] = {
131 NAMED_ARRAY_INDEX(MM_FILEPAGES),
132 NAMED_ARRAY_INDEX(MM_ANONPAGES),
133 NAMED_ARRAY_INDEX(MM_SWAPENTS),
134 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
135 };
136
137 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
138
139 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
140
141 #ifdef CONFIG_PROVE_RCU
142 int lockdep_tasklist_lock_is_held(void)
143 {
144 return lockdep_is_held(&tasklist_lock);
145 }
146 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
147 #endif /* #ifdef CONFIG_PROVE_RCU */
148
149 int nr_processes(void)
150 {
151 int cpu;
152 int total = 0;
153
154 for_each_possible_cpu(cpu)
155 total += per_cpu(process_counts, cpu);
156
157 return total;
158 }
159
160 void __weak arch_release_task_struct(struct task_struct *tsk)
161 {
162 }
163
164 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
165 static struct kmem_cache *task_struct_cachep;
166
167 static inline struct task_struct *alloc_task_struct_node(int node)
168 {
169 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
170 }
171
172 static inline void free_task_struct(struct task_struct *tsk)
173 {
174 kmem_cache_free(task_struct_cachep, tsk);
175 }
176 #endif
177
178 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
179
180 /*
181 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
182 * kmemcache based allocator.
183 */
184 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
185
186 #ifdef CONFIG_VMAP_STACK
187 /*
188 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
189 * flush. Try to minimize the number of calls by caching stacks.
190 */
191 #define NR_CACHED_STACKS 2
192 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
193
194 static int free_vm_stack_cache(unsigned int cpu)
195 {
196 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
197 int i;
198
199 for (i = 0; i < NR_CACHED_STACKS; i++) {
200 struct vm_struct *vm_stack = cached_vm_stacks[i];
201
202 if (!vm_stack)
203 continue;
204
205 vfree(vm_stack->addr);
206 cached_vm_stacks[i] = NULL;
207 }
208
209 return 0;
210 }
211 #endif
212
213 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
214 {
215 #ifdef CONFIG_VMAP_STACK
216 void *stack;
217 int i;
218
219 for (i = 0; i < NR_CACHED_STACKS; i++) {
220 struct vm_struct *s;
221
222 s = this_cpu_xchg(cached_stacks[i], NULL);
223
224 if (!s)
225 continue;
226
227 /* Clear the KASAN shadow of the stack. */
228 kasan_unpoison_shadow(s->addr, THREAD_SIZE);
229
230 /* Clear stale pointers from reused stack. */
231 memset(s->addr, 0, THREAD_SIZE);
232
233 tsk->stack_vm_area = s;
234 tsk->stack = s->addr;
235 return s->addr;
236 }
237
238 /*
239 * Allocated stacks are cached and later reused by new threads,
240 * so memcg accounting is performed manually on assigning/releasing
241 * stacks to tasks. Drop __GFP_ACCOUNT.
242 */
243 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
244 VMALLOC_START, VMALLOC_END,
245 THREADINFO_GFP & ~__GFP_ACCOUNT,
246 PAGE_KERNEL,
247 0, node, __builtin_return_address(0));
248
249 /*
250 * We can't call find_vm_area() in interrupt context, and
251 * free_thread_stack() can be called in interrupt context,
252 * so cache the vm_struct.
253 */
254 if (stack) {
255 tsk->stack_vm_area = find_vm_area(stack);
256 tsk->stack = stack;
257 }
258 return stack;
259 #else
260 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
261 THREAD_SIZE_ORDER);
262
263 if (likely(page)) {
264 tsk->stack = page_address(page);
265 return tsk->stack;
266 }
267 return NULL;
268 #endif
269 }
270
271 static inline void free_thread_stack(struct task_struct *tsk)
272 {
273 #ifdef CONFIG_VMAP_STACK
274 struct vm_struct *vm = task_stack_vm_area(tsk);
275
276 if (vm) {
277 int i;
278
279 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
280 mod_memcg_page_state(vm->pages[i],
281 MEMCG_KERNEL_STACK_KB,
282 -(int)(PAGE_SIZE / 1024));
283
284 memcg_kmem_uncharge_page(vm->pages[i], 0);
285 }
286
287 for (i = 0; i < NR_CACHED_STACKS; i++) {
288 if (this_cpu_cmpxchg(cached_stacks[i],
289 NULL, tsk->stack_vm_area) != NULL)
290 continue;
291
292 return;
293 }
294
295 vfree_atomic(tsk->stack);
296 return;
297 }
298 #endif
299
300 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
301 }
302 # else
303 static struct kmem_cache *thread_stack_cache;
304
305 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
306 int node)
307 {
308 unsigned long *stack;
309 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
310 tsk->stack = stack;
311 return stack;
312 }
313
314 static void free_thread_stack(struct task_struct *tsk)
315 {
316 kmem_cache_free(thread_stack_cache, tsk->stack);
317 }
318
319 void thread_stack_cache_init(void)
320 {
321 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
322 THREAD_SIZE, THREAD_SIZE, 0, 0,
323 THREAD_SIZE, NULL);
324 BUG_ON(thread_stack_cache == NULL);
325 }
326 # endif
327 #endif
328
329 /* SLAB cache for signal_struct structures (tsk->signal) */
330 static struct kmem_cache *signal_cachep;
331
332 /* SLAB cache for sighand_struct structures (tsk->sighand) */
333 struct kmem_cache *sighand_cachep;
334
335 /* SLAB cache for files_struct structures (tsk->files) */
336 struct kmem_cache *files_cachep;
337
338 /* SLAB cache for fs_struct structures (tsk->fs) */
339 struct kmem_cache *fs_cachep;
340
341 /* SLAB cache for vm_area_struct structures */
342 static struct kmem_cache *vm_area_cachep;
343
344 /* SLAB cache for mm_struct structures (tsk->mm) */
345 static struct kmem_cache *mm_cachep;
346
347 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
348 {
349 struct vm_area_struct *vma;
350
351 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
352 if (vma)
353 vma_init(vma, mm);
354 return vma;
355 }
356
357 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
358 {
359 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
360
361 if (new) {
362 *new = *orig;
363 INIT_LIST_HEAD(&new->anon_vma_chain);
364 new->vm_next = new->vm_prev = NULL;
365 }
366 return new;
367 }
368
369 void vm_area_free(struct vm_area_struct *vma)
370 {
371 kmem_cache_free(vm_area_cachep, vma);
372 }
373
374 static void account_kernel_stack(struct task_struct *tsk, int account)
375 {
376 void *stack = task_stack_page(tsk);
377 struct vm_struct *vm = task_stack_vm_area(tsk);
378
379 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
380
381 if (vm) {
382 int i;
383
384 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
385
386 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
387 mod_zone_page_state(page_zone(vm->pages[i]),
388 NR_KERNEL_STACK_KB,
389 PAGE_SIZE / 1024 * account);
390 }
391 } else {
392 /*
393 * All stack pages are in the same zone and belong to the
394 * same memcg.
395 */
396 struct page *first_page = virt_to_page(stack);
397
398 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
399 THREAD_SIZE / 1024 * account);
400
401 mod_memcg_obj_state(stack, MEMCG_KERNEL_STACK_KB,
402 account * (THREAD_SIZE / 1024));
403 }
404 }
405
406 static int memcg_charge_kernel_stack(struct task_struct *tsk)
407 {
408 #ifdef CONFIG_VMAP_STACK
409 struct vm_struct *vm = task_stack_vm_area(tsk);
410 int ret;
411
412 if (vm) {
413 int i;
414
415 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
416 /*
417 * If memcg_kmem_charge_page() fails, page->mem_cgroup
418 * pointer is NULL, and both memcg_kmem_uncharge_page()
419 * and mod_memcg_page_state() in free_thread_stack()
420 * will ignore this page. So it's safe.
421 */
422 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
423 0);
424 if (ret)
425 return ret;
426
427 mod_memcg_page_state(vm->pages[i],
428 MEMCG_KERNEL_STACK_KB,
429 PAGE_SIZE / 1024);
430 }
431 }
432 #endif
433 return 0;
434 }
435
436 static void release_task_stack(struct task_struct *tsk)
437 {
438 if (WARN_ON(tsk->state != TASK_DEAD))
439 return; /* Better to leak the stack than to free prematurely */
440
441 account_kernel_stack(tsk, -1);
442 free_thread_stack(tsk);
443 tsk->stack = NULL;
444 #ifdef CONFIG_VMAP_STACK
445 tsk->stack_vm_area = NULL;
446 #endif
447 }
448
449 #ifdef CONFIG_THREAD_INFO_IN_TASK
450 void put_task_stack(struct task_struct *tsk)
451 {
452 if (refcount_dec_and_test(&tsk->stack_refcount))
453 release_task_stack(tsk);
454 }
455 #endif
456
457 void free_task(struct task_struct *tsk)
458 {
459 #ifndef CONFIG_THREAD_INFO_IN_TASK
460 /*
461 * The task is finally done with both the stack and thread_info,
462 * so free both.
463 */
464 release_task_stack(tsk);
465 #else
466 /*
467 * If the task had a separate stack allocation, it should be gone
468 * by now.
469 */
470 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
471 #endif
472 rt_mutex_debug_task_free(tsk);
473 ftrace_graph_exit_task(tsk);
474 put_seccomp_filter(tsk);
475 arch_release_task_struct(tsk);
476 if (tsk->flags & PF_KTHREAD)
477 free_kthread_struct(tsk);
478 free_task_struct(tsk);
479 }
480 EXPORT_SYMBOL(free_task);
481
482 #ifdef CONFIG_MMU
483 static __latent_entropy int dup_mmap(struct mm_struct *mm,
484 struct mm_struct *oldmm)
485 {
486 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
487 struct rb_node **rb_link, *rb_parent;
488 int retval;
489 unsigned long charge;
490 LIST_HEAD(uf);
491
492 uprobe_start_dup_mmap();
493 if (down_write_killable(&oldmm->mmap_sem)) {
494 retval = -EINTR;
495 goto fail_uprobe_end;
496 }
497 flush_cache_dup_mm(oldmm);
498 uprobe_dup_mmap(oldmm, mm);
499 /*
500 * Not linked in yet - no deadlock potential:
501 */
502 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
503
504 /* No ordering required: file already has been exposed. */
505 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
506
507 mm->total_vm = oldmm->total_vm;
508 mm->data_vm = oldmm->data_vm;
509 mm->exec_vm = oldmm->exec_vm;
510 mm->stack_vm = oldmm->stack_vm;
511
512 rb_link = &mm->mm_rb.rb_node;
513 rb_parent = NULL;
514 pprev = &mm->mmap;
515 retval = ksm_fork(mm, oldmm);
516 if (retval)
517 goto out;
518 retval = khugepaged_fork(mm, oldmm);
519 if (retval)
520 goto out;
521
522 prev = NULL;
523 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
524 struct file *file;
525
526 if (mpnt->vm_flags & VM_DONTCOPY) {
527 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
528 continue;
529 }
530 charge = 0;
531 /*
532 * Don't duplicate many vmas if we've been oom-killed (for
533 * example)
534 */
535 if (fatal_signal_pending(current)) {
536 retval = -EINTR;
537 goto out;
538 }
539 if (mpnt->vm_flags & VM_ACCOUNT) {
540 unsigned long len = vma_pages(mpnt);
541
542 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
543 goto fail_nomem;
544 charge = len;
545 }
546 tmp = vm_area_dup(mpnt);
547 if (!tmp)
548 goto fail_nomem;
549 retval = vma_dup_policy(mpnt, tmp);
550 if (retval)
551 goto fail_nomem_policy;
552 tmp->vm_mm = mm;
553 retval = dup_userfaultfd(tmp, &uf);
554 if (retval)
555 goto fail_nomem_anon_vma_fork;
556 if (tmp->vm_flags & VM_WIPEONFORK) {
557 /*
558 * VM_WIPEONFORK gets a clean slate in the child.
559 * Don't prepare anon_vma until fault since we don't
560 * copy page for current vma.
561 */
562 tmp->anon_vma = NULL;
563 } else if (anon_vma_fork(tmp, mpnt))
564 goto fail_nomem_anon_vma_fork;
565 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
566 file = tmp->vm_file;
567 if (file) {
568 struct inode *inode = file_inode(file);
569 struct address_space *mapping = file->f_mapping;
570
571 get_file(file);
572 if (tmp->vm_flags & VM_DENYWRITE)
573 atomic_dec(&inode->i_writecount);
574 i_mmap_lock_write(mapping);
575 if (tmp->vm_flags & VM_SHARED)
576 atomic_inc(&mapping->i_mmap_writable);
577 flush_dcache_mmap_lock(mapping);
578 /* insert tmp into the share list, just after mpnt */
579 vma_interval_tree_insert_after(tmp, mpnt,
580 &mapping->i_mmap);
581 flush_dcache_mmap_unlock(mapping);
582 i_mmap_unlock_write(mapping);
583 }
584
585 /*
586 * Clear hugetlb-related page reserves for children. This only
587 * affects MAP_PRIVATE mappings. Faults generated by the child
588 * are not guaranteed to succeed, even if read-only
589 */
590 if (is_vm_hugetlb_page(tmp))
591 reset_vma_resv_huge_pages(tmp);
592
593 /*
594 * Link in the new vma and copy the page table entries.
595 */
596 *pprev = tmp;
597 pprev = &tmp->vm_next;
598 tmp->vm_prev = prev;
599 prev = tmp;
600
601 __vma_link_rb(mm, tmp, rb_link, rb_parent);
602 rb_link = &tmp->vm_rb.rb_right;
603 rb_parent = &tmp->vm_rb;
604
605 mm->map_count++;
606 if (!(tmp->vm_flags & VM_WIPEONFORK))
607 retval = copy_page_range(mm, oldmm, mpnt);
608
609 if (tmp->vm_ops && tmp->vm_ops->open)
610 tmp->vm_ops->open(tmp);
611
612 if (retval)
613 goto out;
614 }
615 /* a new mm has just been created */
616 retval = arch_dup_mmap(oldmm, mm);
617 out:
618 up_write(&mm->mmap_sem);
619 flush_tlb_mm(oldmm);
620 up_write(&oldmm->mmap_sem);
621 dup_userfaultfd_complete(&uf);
622 fail_uprobe_end:
623 uprobe_end_dup_mmap();
624 return retval;
625 fail_nomem_anon_vma_fork:
626 mpol_put(vma_policy(tmp));
627 fail_nomem_policy:
628 vm_area_free(tmp);
629 fail_nomem:
630 retval = -ENOMEM;
631 vm_unacct_memory(charge);
632 goto out;
633 }
634
635 static inline int mm_alloc_pgd(struct mm_struct *mm)
636 {
637 mm->pgd = pgd_alloc(mm);
638 if (unlikely(!mm->pgd))
639 return -ENOMEM;
640 return 0;
641 }
642
643 static inline void mm_free_pgd(struct mm_struct *mm)
644 {
645 pgd_free(mm, mm->pgd);
646 }
647 #else
648 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
649 {
650 down_write(&oldmm->mmap_sem);
651 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
652 up_write(&oldmm->mmap_sem);
653 return 0;
654 }
655 #define mm_alloc_pgd(mm) (0)
656 #define mm_free_pgd(mm)
657 #endif /* CONFIG_MMU */
658
659 static void check_mm(struct mm_struct *mm)
660 {
661 int i;
662
663 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
664 "Please make sure 'struct resident_page_types[]' is updated as well");
665
666 for (i = 0; i < NR_MM_COUNTERS; i++) {
667 long x = atomic_long_read(&mm->rss_stat.count[i]);
668
669 if (unlikely(x))
670 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
671 mm, resident_page_types[i], x);
672 }
673
674 if (mm_pgtables_bytes(mm))
675 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
676 mm_pgtables_bytes(mm));
677
678 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
679 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
680 #endif
681 }
682
683 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
684 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
685
686 /*
687 * Called when the last reference to the mm
688 * is dropped: either by a lazy thread or by
689 * mmput. Free the page directory and the mm.
690 */
691 void __mmdrop(struct mm_struct *mm)
692 {
693 BUG_ON(mm == &init_mm);
694 WARN_ON_ONCE(mm == current->mm);
695 WARN_ON_ONCE(mm == current->active_mm);
696 mm_free_pgd(mm);
697 destroy_context(mm);
698 mmu_notifier_subscriptions_destroy(mm);
699 check_mm(mm);
700 put_user_ns(mm->user_ns);
701 free_mm(mm);
702 }
703 EXPORT_SYMBOL_GPL(__mmdrop);
704
705 static void mmdrop_async_fn(struct work_struct *work)
706 {
707 struct mm_struct *mm;
708
709 mm = container_of(work, struct mm_struct, async_put_work);
710 __mmdrop(mm);
711 }
712
713 static void mmdrop_async(struct mm_struct *mm)
714 {
715 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
716 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
717 schedule_work(&mm->async_put_work);
718 }
719 }
720
721 static inline void free_signal_struct(struct signal_struct *sig)
722 {
723 taskstats_tgid_free(sig);
724 sched_autogroup_exit(sig);
725 /*
726 * __mmdrop is not safe to call from softirq context on x86 due to
727 * pgd_dtor so postpone it to the async context
728 */
729 if (sig->oom_mm)
730 mmdrop_async(sig->oom_mm);
731 kmem_cache_free(signal_cachep, sig);
732 }
733
734 static inline void put_signal_struct(struct signal_struct *sig)
735 {
736 if (refcount_dec_and_test(&sig->sigcnt))
737 free_signal_struct(sig);
738 }
739
740 void __put_task_struct(struct task_struct *tsk)
741 {
742 WARN_ON(!tsk->exit_state);
743 WARN_ON(refcount_read(&tsk->usage));
744 WARN_ON(tsk == current);
745
746 cgroup_free(tsk);
747 task_numa_free(tsk, true);
748 security_task_free(tsk);
749 exit_creds(tsk);
750 delayacct_tsk_free(tsk);
751 put_signal_struct(tsk->signal);
752
753 if (!profile_handoff_task(tsk))
754 free_task(tsk);
755 }
756 EXPORT_SYMBOL_GPL(__put_task_struct);
757
758 void __init __weak arch_task_cache_init(void) { }
759
760 /*
761 * set_max_threads
762 */
763 static void set_max_threads(unsigned int max_threads_suggested)
764 {
765 u64 threads;
766 unsigned long nr_pages = totalram_pages();
767
768 /*
769 * The number of threads shall be limited such that the thread
770 * structures may only consume a small part of the available memory.
771 */
772 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
773 threads = MAX_THREADS;
774 else
775 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
776 (u64) THREAD_SIZE * 8UL);
777
778 if (threads > max_threads_suggested)
779 threads = max_threads_suggested;
780
781 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
782 }
783
784 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
785 /* Initialized by the architecture: */
786 int arch_task_struct_size __read_mostly;
787 #endif
788
789 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
790 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
791 {
792 /* Fetch thread_struct whitelist for the architecture. */
793 arch_thread_struct_whitelist(offset, size);
794
795 /*
796 * Handle zero-sized whitelist or empty thread_struct, otherwise
797 * adjust offset to position of thread_struct in task_struct.
798 */
799 if (unlikely(*size == 0))
800 *offset = 0;
801 else
802 *offset += offsetof(struct task_struct, thread);
803 }
804 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
805
806 void __init fork_init(void)
807 {
808 int i;
809 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
810 #ifndef ARCH_MIN_TASKALIGN
811 #define ARCH_MIN_TASKALIGN 0
812 #endif
813 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
814 unsigned long useroffset, usersize;
815
816 /* create a slab on which task_structs can be allocated */
817 task_struct_whitelist(&useroffset, &usersize);
818 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
819 arch_task_struct_size, align,
820 SLAB_PANIC|SLAB_ACCOUNT,
821 useroffset, usersize, NULL);
822 #endif
823
824 /* do the arch specific task caches init */
825 arch_task_cache_init();
826
827 set_max_threads(MAX_THREADS);
828
829 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
830 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
831 init_task.signal->rlim[RLIMIT_SIGPENDING] =
832 init_task.signal->rlim[RLIMIT_NPROC];
833
834 for (i = 0; i < UCOUNT_COUNTS; i++) {
835 init_user_ns.ucount_max[i] = max_threads/2;
836 }
837
838 #ifdef CONFIG_VMAP_STACK
839 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
840 NULL, free_vm_stack_cache);
841 #endif
842
843 lockdep_init_task(&init_task);
844 uprobes_init();
845 }
846
847 int __weak arch_dup_task_struct(struct task_struct *dst,
848 struct task_struct *src)
849 {
850 *dst = *src;
851 return 0;
852 }
853
854 void set_task_stack_end_magic(struct task_struct *tsk)
855 {
856 unsigned long *stackend;
857
858 stackend = end_of_stack(tsk);
859 *stackend = STACK_END_MAGIC; /* for overflow detection */
860 }
861
862 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
863 {
864 struct task_struct *tsk;
865 unsigned long *stack;
866 struct vm_struct *stack_vm_area __maybe_unused;
867 int err;
868
869 if (node == NUMA_NO_NODE)
870 node = tsk_fork_get_node(orig);
871 tsk = alloc_task_struct_node(node);
872 if (!tsk)
873 return NULL;
874
875 stack = alloc_thread_stack_node(tsk, node);
876 if (!stack)
877 goto free_tsk;
878
879 if (memcg_charge_kernel_stack(tsk))
880 goto free_stack;
881
882 stack_vm_area = task_stack_vm_area(tsk);
883
884 err = arch_dup_task_struct(tsk, orig);
885
886 /*
887 * arch_dup_task_struct() clobbers the stack-related fields. Make
888 * sure they're properly initialized before using any stack-related
889 * functions again.
890 */
891 tsk->stack = stack;
892 #ifdef CONFIG_VMAP_STACK
893 tsk->stack_vm_area = stack_vm_area;
894 #endif
895 #ifdef CONFIG_THREAD_INFO_IN_TASK
896 refcount_set(&tsk->stack_refcount, 1);
897 #endif
898
899 if (err)
900 goto free_stack;
901
902 #ifdef CONFIG_SECCOMP
903 /*
904 * We must handle setting up seccomp filters once we're under
905 * the sighand lock in case orig has changed between now and
906 * then. Until then, filter must be NULL to avoid messing up
907 * the usage counts on the error path calling free_task.
908 */
909 tsk->seccomp.filter = NULL;
910 #endif
911
912 setup_thread_stack(tsk, orig);
913 clear_user_return_notifier(tsk);
914 clear_tsk_need_resched(tsk);
915 set_task_stack_end_magic(tsk);
916
917 #ifdef CONFIG_STACKPROTECTOR
918 tsk->stack_canary = get_random_canary();
919 #endif
920 if (orig->cpus_ptr == &orig->cpus_mask)
921 tsk->cpus_ptr = &tsk->cpus_mask;
922
923 /*
924 * One for the user space visible state that goes away when reaped.
925 * One for the scheduler.
926 */
927 refcount_set(&tsk->rcu_users, 2);
928 /* One for the rcu users */
929 refcount_set(&tsk->usage, 1);
930 #ifdef CONFIG_BLK_DEV_IO_TRACE
931 tsk->btrace_seq = 0;
932 #endif
933 tsk->splice_pipe = NULL;
934 tsk->task_frag.page = NULL;
935 tsk->wake_q.next = NULL;
936
937 account_kernel_stack(tsk, 1);
938
939 kcov_task_init(tsk);
940
941 #ifdef CONFIG_FAULT_INJECTION
942 tsk->fail_nth = 0;
943 #endif
944
945 #ifdef CONFIG_BLK_CGROUP
946 tsk->throttle_queue = NULL;
947 tsk->use_memdelay = 0;
948 #endif
949
950 #ifdef CONFIG_MEMCG
951 tsk->active_memcg = NULL;
952 #endif
953 return tsk;
954
955 free_stack:
956 free_thread_stack(tsk);
957 free_tsk:
958 free_task_struct(tsk);
959 return NULL;
960 }
961
962 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
963
964 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
965
966 static int __init coredump_filter_setup(char *s)
967 {
968 default_dump_filter =
969 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
970 MMF_DUMP_FILTER_MASK;
971 return 1;
972 }
973
974 __setup("coredump_filter=", coredump_filter_setup);
975
976 #include <linux/init_task.h>
977
978 static void mm_init_aio(struct mm_struct *mm)
979 {
980 #ifdef CONFIG_AIO
981 spin_lock_init(&mm->ioctx_lock);
982 mm->ioctx_table = NULL;
983 #endif
984 }
985
986 static __always_inline void mm_clear_owner(struct mm_struct *mm,
987 struct task_struct *p)
988 {
989 #ifdef CONFIG_MEMCG
990 if (mm->owner == p)
991 WRITE_ONCE(mm->owner, NULL);
992 #endif
993 }
994
995 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
996 {
997 #ifdef CONFIG_MEMCG
998 mm->owner = p;
999 #endif
1000 }
1001
1002 static void mm_init_uprobes_state(struct mm_struct *mm)
1003 {
1004 #ifdef CONFIG_UPROBES
1005 mm->uprobes_state.xol_area = NULL;
1006 #endif
1007 }
1008
1009 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1010 struct user_namespace *user_ns)
1011 {
1012 mm->mmap = NULL;
1013 mm->mm_rb = RB_ROOT;
1014 mm->vmacache_seqnum = 0;
1015 atomic_set(&mm->mm_users, 1);
1016 atomic_set(&mm->mm_count, 1);
1017 init_rwsem(&mm->mmap_sem);
1018 INIT_LIST_HEAD(&mm->mmlist);
1019 mm->core_state = NULL;
1020 mm_pgtables_bytes_init(mm);
1021 mm->map_count = 0;
1022 mm->locked_vm = 0;
1023 atomic64_set(&mm->pinned_vm, 0);
1024 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1025 spin_lock_init(&mm->page_table_lock);
1026 spin_lock_init(&mm->arg_lock);
1027 mm_init_cpumask(mm);
1028 mm_init_aio(mm);
1029 mm_init_owner(mm, p);
1030 RCU_INIT_POINTER(mm->exe_file, NULL);
1031 mmu_notifier_subscriptions_init(mm);
1032 init_tlb_flush_pending(mm);
1033 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1034 mm->pmd_huge_pte = NULL;
1035 #endif
1036 mm_init_uprobes_state(mm);
1037
1038 if (current->mm) {
1039 mm->flags = current->mm->flags & MMF_INIT_MASK;
1040 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1041 } else {
1042 mm->flags = default_dump_filter;
1043 mm->def_flags = 0;
1044 }
1045
1046 if (mm_alloc_pgd(mm))
1047 goto fail_nopgd;
1048
1049 if (init_new_context(p, mm))
1050 goto fail_nocontext;
1051
1052 mm->user_ns = get_user_ns(user_ns);
1053 return mm;
1054
1055 fail_nocontext:
1056 mm_free_pgd(mm);
1057 fail_nopgd:
1058 free_mm(mm);
1059 return NULL;
1060 }
1061
1062 /*
1063 * Allocate and initialize an mm_struct.
1064 */
1065 struct mm_struct *mm_alloc(void)
1066 {
1067 struct mm_struct *mm;
1068
1069 mm = allocate_mm();
1070 if (!mm)
1071 return NULL;
1072
1073 memset(mm, 0, sizeof(*mm));
1074 return mm_init(mm, current, current_user_ns());
1075 }
1076
1077 static inline void __mmput(struct mm_struct *mm)
1078 {
1079 VM_BUG_ON(atomic_read(&mm->mm_users));
1080
1081 uprobe_clear_state(mm);
1082 exit_aio(mm);
1083 ksm_exit(mm);
1084 khugepaged_exit(mm); /* must run before exit_mmap */
1085 exit_mmap(mm);
1086 mm_put_huge_zero_page(mm);
1087 set_mm_exe_file(mm, NULL);
1088 if (!list_empty(&mm->mmlist)) {
1089 spin_lock(&mmlist_lock);
1090 list_del(&mm->mmlist);
1091 spin_unlock(&mmlist_lock);
1092 }
1093 if (mm->binfmt)
1094 module_put(mm->binfmt->module);
1095 mmdrop(mm);
1096 }
1097
1098 /*
1099 * Decrement the use count and release all resources for an mm.
1100 */
1101 void mmput(struct mm_struct *mm)
1102 {
1103 might_sleep();
1104
1105 if (atomic_dec_and_test(&mm->mm_users))
1106 __mmput(mm);
1107 }
1108 EXPORT_SYMBOL_GPL(mmput);
1109
1110 #ifdef CONFIG_MMU
1111 static void mmput_async_fn(struct work_struct *work)
1112 {
1113 struct mm_struct *mm = container_of(work, struct mm_struct,
1114 async_put_work);
1115
1116 __mmput(mm);
1117 }
1118
1119 void mmput_async(struct mm_struct *mm)
1120 {
1121 if (atomic_dec_and_test(&mm->mm_users)) {
1122 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1123 schedule_work(&mm->async_put_work);
1124 }
1125 }
1126 #endif
1127
1128 /**
1129 * set_mm_exe_file - change a reference to the mm's executable file
1130 *
1131 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1132 *
1133 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1134 * invocations: in mmput() nobody alive left, in execve task is single
1135 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1136 * mm->exe_file, but does so without using set_mm_exe_file() in order
1137 * to do avoid the need for any locks.
1138 */
1139 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1140 {
1141 struct file *old_exe_file;
1142
1143 /*
1144 * It is safe to dereference the exe_file without RCU as
1145 * this function is only called if nobody else can access
1146 * this mm -- see comment above for justification.
1147 */
1148 old_exe_file = rcu_dereference_raw(mm->exe_file);
1149
1150 if (new_exe_file)
1151 get_file(new_exe_file);
1152 rcu_assign_pointer(mm->exe_file, new_exe_file);
1153 if (old_exe_file)
1154 fput(old_exe_file);
1155 }
1156
1157 /**
1158 * get_mm_exe_file - acquire a reference to the mm's executable file
1159 *
1160 * Returns %NULL if mm has no associated executable file.
1161 * User must release file via fput().
1162 */
1163 struct file *get_mm_exe_file(struct mm_struct *mm)
1164 {
1165 struct file *exe_file;
1166
1167 rcu_read_lock();
1168 exe_file = rcu_dereference(mm->exe_file);
1169 if (exe_file && !get_file_rcu(exe_file))
1170 exe_file = NULL;
1171 rcu_read_unlock();
1172 return exe_file;
1173 }
1174 EXPORT_SYMBOL(get_mm_exe_file);
1175
1176 /**
1177 * get_task_exe_file - acquire a reference to the task's executable file
1178 *
1179 * Returns %NULL if task's mm (if any) has no associated executable file or
1180 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1181 * User must release file via fput().
1182 */
1183 struct file *get_task_exe_file(struct task_struct *task)
1184 {
1185 struct file *exe_file = NULL;
1186 struct mm_struct *mm;
1187
1188 task_lock(task);
1189 mm = task->mm;
1190 if (mm) {
1191 if (!(task->flags & PF_KTHREAD))
1192 exe_file = get_mm_exe_file(mm);
1193 }
1194 task_unlock(task);
1195 return exe_file;
1196 }
1197 EXPORT_SYMBOL(get_task_exe_file);
1198
1199 /**
1200 * get_task_mm - acquire a reference to the task's mm
1201 *
1202 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1203 * this kernel workthread has transiently adopted a user mm with use_mm,
1204 * to do its AIO) is not set and if so returns a reference to it, after
1205 * bumping up the use count. User must release the mm via mmput()
1206 * after use. Typically used by /proc and ptrace.
1207 */
1208 struct mm_struct *get_task_mm(struct task_struct *task)
1209 {
1210 struct mm_struct *mm;
1211
1212 task_lock(task);
1213 mm = task->mm;
1214 if (mm) {
1215 if (task->flags & PF_KTHREAD)
1216 mm = NULL;
1217 else
1218 mmget(mm);
1219 }
1220 task_unlock(task);
1221 return mm;
1222 }
1223 EXPORT_SYMBOL_GPL(get_task_mm);
1224
1225 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1226 {
1227 struct mm_struct *mm;
1228 int err;
1229
1230 err = mutex_lock_killable(&task->signal->exec_update_mutex);
1231 if (err)
1232 return ERR_PTR(err);
1233
1234 mm = get_task_mm(task);
1235 if (mm && mm != current->mm &&
1236 !ptrace_may_access(task, mode)) {
1237 mmput(mm);
1238 mm = ERR_PTR(-EACCES);
1239 }
1240 mutex_unlock(&task->signal->exec_update_mutex);
1241
1242 return mm;
1243 }
1244
1245 static void complete_vfork_done(struct task_struct *tsk)
1246 {
1247 struct completion *vfork;
1248
1249 task_lock(tsk);
1250 vfork = tsk->vfork_done;
1251 if (likely(vfork)) {
1252 tsk->vfork_done = NULL;
1253 complete(vfork);
1254 }
1255 task_unlock(tsk);
1256 }
1257
1258 static int wait_for_vfork_done(struct task_struct *child,
1259 struct completion *vfork)
1260 {
1261 int killed;
1262
1263 freezer_do_not_count();
1264 cgroup_enter_frozen();
1265 killed = wait_for_completion_killable(vfork);
1266 cgroup_leave_frozen(false);
1267 freezer_count();
1268
1269 if (killed) {
1270 task_lock(child);
1271 child->vfork_done = NULL;
1272 task_unlock(child);
1273 }
1274
1275 put_task_struct(child);
1276 return killed;
1277 }
1278
1279 /* Please note the differences between mmput and mm_release.
1280 * mmput is called whenever we stop holding onto a mm_struct,
1281 * error success whatever.
1282 *
1283 * mm_release is called after a mm_struct has been removed
1284 * from the current process.
1285 *
1286 * This difference is important for error handling, when we
1287 * only half set up a mm_struct for a new process and need to restore
1288 * the old one. Because we mmput the new mm_struct before
1289 * restoring the old one. . .
1290 * Eric Biederman 10 January 1998
1291 */
1292 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1293 {
1294 uprobe_free_utask(tsk);
1295
1296 /* Get rid of any cached register state */
1297 deactivate_mm(tsk, mm);
1298
1299 /*
1300 * Signal userspace if we're not exiting with a core dump
1301 * because we want to leave the value intact for debugging
1302 * purposes.
1303 */
1304 if (tsk->clear_child_tid) {
1305 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1306 atomic_read(&mm->mm_users) > 1) {
1307 /*
1308 * We don't check the error code - if userspace has
1309 * not set up a proper pointer then tough luck.
1310 */
1311 put_user(0, tsk->clear_child_tid);
1312 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1313 1, NULL, NULL, 0, 0);
1314 }
1315 tsk->clear_child_tid = NULL;
1316 }
1317
1318 /*
1319 * All done, finally we can wake up parent and return this mm to him.
1320 * Also kthread_stop() uses this completion for synchronization.
1321 */
1322 if (tsk->vfork_done)
1323 complete_vfork_done(tsk);
1324 }
1325
1326 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1327 {
1328 futex_exit_release(tsk);
1329 mm_release(tsk, mm);
1330 }
1331
1332 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1333 {
1334 futex_exec_release(tsk);
1335 mm_release(tsk, mm);
1336 }
1337
1338 /**
1339 * dup_mm() - duplicates an existing mm structure
1340 * @tsk: the task_struct with which the new mm will be associated.
1341 * @oldmm: the mm to duplicate.
1342 *
1343 * Allocates a new mm structure and duplicates the provided @oldmm structure
1344 * content into it.
1345 *
1346 * Return: the duplicated mm or NULL on failure.
1347 */
1348 static struct mm_struct *dup_mm(struct task_struct *tsk,
1349 struct mm_struct *oldmm)
1350 {
1351 struct mm_struct *mm;
1352 int err;
1353
1354 mm = allocate_mm();
1355 if (!mm)
1356 goto fail_nomem;
1357
1358 memcpy(mm, oldmm, sizeof(*mm));
1359
1360 if (!mm_init(mm, tsk, mm->user_ns))
1361 goto fail_nomem;
1362
1363 err = dup_mmap(mm, oldmm);
1364 if (err)
1365 goto free_pt;
1366
1367 mm->hiwater_rss = get_mm_rss(mm);
1368 mm->hiwater_vm = mm->total_vm;
1369
1370 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1371 goto free_pt;
1372
1373 return mm;
1374
1375 free_pt:
1376 /* don't put binfmt in mmput, we haven't got module yet */
1377 mm->binfmt = NULL;
1378 mm_init_owner(mm, NULL);
1379 mmput(mm);
1380
1381 fail_nomem:
1382 return NULL;
1383 }
1384
1385 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1386 {
1387 struct mm_struct *mm, *oldmm;
1388 int retval;
1389
1390 tsk->min_flt = tsk->maj_flt = 0;
1391 tsk->nvcsw = tsk->nivcsw = 0;
1392 #ifdef CONFIG_DETECT_HUNG_TASK
1393 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1394 tsk->last_switch_time = 0;
1395 #endif
1396
1397 tsk->mm = NULL;
1398 tsk->active_mm = NULL;
1399
1400 /*
1401 * Are we cloning a kernel thread?
1402 *
1403 * We need to steal a active VM for that..
1404 */
1405 oldmm = current->mm;
1406 if (!oldmm)
1407 return 0;
1408
1409 /* initialize the new vmacache entries */
1410 vmacache_flush(tsk);
1411
1412 if (clone_flags & CLONE_VM) {
1413 mmget(oldmm);
1414 mm = oldmm;
1415 goto good_mm;
1416 }
1417
1418 retval = -ENOMEM;
1419 mm = dup_mm(tsk, current->mm);
1420 if (!mm)
1421 goto fail_nomem;
1422
1423 good_mm:
1424 tsk->mm = mm;
1425 tsk->active_mm = mm;
1426 return 0;
1427
1428 fail_nomem:
1429 return retval;
1430 }
1431
1432 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1433 {
1434 struct fs_struct *fs = current->fs;
1435 if (clone_flags & CLONE_FS) {
1436 /* tsk->fs is already what we want */
1437 spin_lock(&fs->lock);
1438 if (fs->in_exec) {
1439 spin_unlock(&fs->lock);
1440 return -EAGAIN;
1441 }
1442 fs->users++;
1443 spin_unlock(&fs->lock);
1444 return 0;
1445 }
1446 tsk->fs = copy_fs_struct(fs);
1447 if (!tsk->fs)
1448 return -ENOMEM;
1449 return 0;
1450 }
1451
1452 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1453 {
1454 struct files_struct *oldf, *newf;
1455 int error = 0;
1456
1457 /*
1458 * A background process may not have any files ...
1459 */
1460 oldf = current->files;
1461 if (!oldf)
1462 goto out;
1463
1464 if (clone_flags & CLONE_FILES) {
1465 atomic_inc(&oldf->count);
1466 goto out;
1467 }
1468
1469 newf = dup_fd(oldf, &error);
1470 if (!newf)
1471 goto out;
1472
1473 tsk->files = newf;
1474 error = 0;
1475 out:
1476 return error;
1477 }
1478
1479 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1480 {
1481 #ifdef CONFIG_BLOCK
1482 struct io_context *ioc = current->io_context;
1483 struct io_context *new_ioc;
1484
1485 if (!ioc)
1486 return 0;
1487 /*
1488 * Share io context with parent, if CLONE_IO is set
1489 */
1490 if (clone_flags & CLONE_IO) {
1491 ioc_task_link(ioc);
1492 tsk->io_context = ioc;
1493 } else if (ioprio_valid(ioc->ioprio)) {
1494 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1495 if (unlikely(!new_ioc))
1496 return -ENOMEM;
1497
1498 new_ioc->ioprio = ioc->ioprio;
1499 put_io_context(new_ioc);
1500 }
1501 #endif
1502 return 0;
1503 }
1504
1505 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1506 {
1507 struct sighand_struct *sig;
1508
1509 if (clone_flags & CLONE_SIGHAND) {
1510 refcount_inc(&current->sighand->count);
1511 return 0;
1512 }
1513 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1514 RCU_INIT_POINTER(tsk->sighand, sig);
1515 if (!sig)
1516 return -ENOMEM;
1517
1518 refcount_set(&sig->count, 1);
1519 spin_lock_irq(&current->sighand->siglock);
1520 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1521 spin_unlock_irq(&current->sighand->siglock);
1522
1523 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1524 if (clone_flags & CLONE_CLEAR_SIGHAND)
1525 flush_signal_handlers(tsk, 0);
1526
1527 return 0;
1528 }
1529
1530 void __cleanup_sighand(struct sighand_struct *sighand)
1531 {
1532 if (refcount_dec_and_test(&sighand->count)) {
1533 signalfd_cleanup(sighand);
1534 /*
1535 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1536 * without an RCU grace period, see __lock_task_sighand().
1537 */
1538 kmem_cache_free(sighand_cachep, sighand);
1539 }
1540 }
1541
1542 /*
1543 * Initialize POSIX timer handling for a thread group.
1544 */
1545 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1546 {
1547 struct posix_cputimers *pct = &sig->posix_cputimers;
1548 unsigned long cpu_limit;
1549
1550 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1551 posix_cputimers_group_init(pct, cpu_limit);
1552 }
1553
1554 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1555 {
1556 struct signal_struct *sig;
1557
1558 if (clone_flags & CLONE_THREAD)
1559 return 0;
1560
1561 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1562 tsk->signal = sig;
1563 if (!sig)
1564 return -ENOMEM;
1565
1566 sig->nr_threads = 1;
1567 atomic_set(&sig->live, 1);
1568 refcount_set(&sig->sigcnt, 1);
1569
1570 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1571 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1572 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1573
1574 init_waitqueue_head(&sig->wait_chldexit);
1575 sig->curr_target = tsk;
1576 init_sigpending(&sig->shared_pending);
1577 INIT_HLIST_HEAD(&sig->multiprocess);
1578 seqlock_init(&sig->stats_lock);
1579 prev_cputime_init(&sig->prev_cputime);
1580
1581 #ifdef CONFIG_POSIX_TIMERS
1582 INIT_LIST_HEAD(&sig->posix_timers);
1583 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1584 sig->real_timer.function = it_real_fn;
1585 #endif
1586
1587 task_lock(current->group_leader);
1588 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1589 task_unlock(current->group_leader);
1590
1591 posix_cpu_timers_init_group(sig);
1592
1593 tty_audit_fork(sig);
1594 sched_autogroup_fork(sig);
1595
1596 sig->oom_score_adj = current->signal->oom_score_adj;
1597 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1598
1599 mutex_init(&sig->cred_guard_mutex);
1600 mutex_init(&sig->exec_update_mutex);
1601
1602 return 0;
1603 }
1604
1605 static void copy_seccomp(struct task_struct *p)
1606 {
1607 #ifdef CONFIG_SECCOMP
1608 /*
1609 * Must be called with sighand->lock held, which is common to
1610 * all threads in the group. Holding cred_guard_mutex is not
1611 * needed because this new task is not yet running and cannot
1612 * be racing exec.
1613 */
1614 assert_spin_locked(&current->sighand->siglock);
1615
1616 /* Ref-count the new filter user, and assign it. */
1617 get_seccomp_filter(current);
1618 p->seccomp = current->seccomp;
1619
1620 /*
1621 * Explicitly enable no_new_privs here in case it got set
1622 * between the task_struct being duplicated and holding the
1623 * sighand lock. The seccomp state and nnp must be in sync.
1624 */
1625 if (task_no_new_privs(current))
1626 task_set_no_new_privs(p);
1627
1628 /*
1629 * If the parent gained a seccomp mode after copying thread
1630 * flags and between before we held the sighand lock, we have
1631 * to manually enable the seccomp thread flag here.
1632 */
1633 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1634 set_tsk_thread_flag(p, TIF_SECCOMP);
1635 #endif
1636 }
1637
1638 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1639 {
1640 current->clear_child_tid = tidptr;
1641
1642 return task_pid_vnr(current);
1643 }
1644
1645 static void rt_mutex_init_task(struct task_struct *p)
1646 {
1647 raw_spin_lock_init(&p->pi_lock);
1648 #ifdef CONFIG_RT_MUTEXES
1649 p->pi_waiters = RB_ROOT_CACHED;
1650 p->pi_top_task = NULL;
1651 p->pi_blocked_on = NULL;
1652 #endif
1653 }
1654
1655 static inline void init_task_pid_links(struct task_struct *task)
1656 {
1657 enum pid_type type;
1658
1659 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1660 INIT_HLIST_NODE(&task->pid_links[type]);
1661 }
1662 }
1663
1664 static inline void
1665 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1666 {
1667 if (type == PIDTYPE_PID)
1668 task->thread_pid = pid;
1669 else
1670 task->signal->pids[type] = pid;
1671 }
1672
1673 static inline void rcu_copy_process(struct task_struct *p)
1674 {
1675 #ifdef CONFIG_PREEMPT_RCU
1676 p->rcu_read_lock_nesting = 0;
1677 p->rcu_read_unlock_special.s = 0;
1678 p->rcu_blocked_node = NULL;
1679 INIT_LIST_HEAD(&p->rcu_node_entry);
1680 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1681 #ifdef CONFIG_TASKS_RCU
1682 p->rcu_tasks_holdout = false;
1683 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1684 p->rcu_tasks_idle_cpu = -1;
1685 #endif /* #ifdef CONFIG_TASKS_RCU */
1686 }
1687
1688 struct pid *pidfd_pid(const struct file *file)
1689 {
1690 if (file->f_op == &pidfd_fops)
1691 return file->private_data;
1692
1693 return ERR_PTR(-EBADF);
1694 }
1695
1696 static int pidfd_release(struct inode *inode, struct file *file)
1697 {
1698 struct pid *pid = file->private_data;
1699
1700 file->private_data = NULL;
1701 put_pid(pid);
1702 return 0;
1703 }
1704
1705 #ifdef CONFIG_PROC_FS
1706 /**
1707 * pidfd_show_fdinfo - print information about a pidfd
1708 * @m: proc fdinfo file
1709 * @f: file referencing a pidfd
1710 *
1711 * Pid:
1712 * This function will print the pid that a given pidfd refers to in the
1713 * pid namespace of the procfs instance.
1714 * If the pid namespace of the process is not a descendant of the pid
1715 * namespace of the procfs instance 0 will be shown as its pid. This is
1716 * similar to calling getppid() on a process whose parent is outside of
1717 * its pid namespace.
1718 *
1719 * NSpid:
1720 * If pid namespaces are supported then this function will also print
1721 * the pid of a given pidfd refers to for all descendant pid namespaces
1722 * starting from the current pid namespace of the instance, i.e. the
1723 * Pid field and the first entry in the NSpid field will be identical.
1724 * If the pid namespace of the process is not a descendant of the pid
1725 * namespace of the procfs instance 0 will be shown as its first NSpid
1726 * entry and no others will be shown.
1727 * Note that this differs from the Pid and NSpid fields in
1728 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1729 * the pid namespace of the procfs instance. The difference becomes
1730 * obvious when sending around a pidfd between pid namespaces from a
1731 * different branch of the tree, i.e. where no ancestoral relation is
1732 * present between the pid namespaces:
1733 * - create two new pid namespaces ns1 and ns2 in the initial pid
1734 * namespace (also take care to create new mount namespaces in the
1735 * new pid namespace and mount procfs)
1736 * - create a process with a pidfd in ns1
1737 * - send pidfd from ns1 to ns2
1738 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1739 * have exactly one entry, which is 0
1740 */
1741 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1742 {
1743 struct pid *pid = f->private_data;
1744 struct pid_namespace *ns;
1745 pid_t nr = -1;
1746
1747 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1748 ns = proc_pid_ns(file_inode(m->file));
1749 nr = pid_nr_ns(pid, ns);
1750 }
1751
1752 seq_put_decimal_ll(m, "Pid:\t", nr);
1753
1754 #ifdef CONFIG_PID_NS
1755 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1756 if (nr > 0) {
1757 int i;
1758
1759 /* If nr is non-zero it means that 'pid' is valid and that
1760 * ns, i.e. the pid namespace associated with the procfs
1761 * instance, is in the pid namespace hierarchy of pid.
1762 * Start at one below the already printed level.
1763 */
1764 for (i = ns->level + 1; i <= pid->level; i++)
1765 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1766 }
1767 #endif
1768 seq_putc(m, '\n');
1769 }
1770 #endif
1771
1772 /*
1773 * Poll support for process exit notification.
1774 */
1775 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1776 {
1777 struct task_struct *task;
1778 struct pid *pid = file->private_data;
1779 __poll_t poll_flags = 0;
1780
1781 poll_wait(file, &pid->wait_pidfd, pts);
1782
1783 rcu_read_lock();
1784 task = pid_task(pid, PIDTYPE_PID);
1785 /*
1786 * Inform pollers only when the whole thread group exits.
1787 * If the thread group leader exits before all other threads in the
1788 * group, then poll(2) should block, similar to the wait(2) family.
1789 */
1790 if (!task || (task->exit_state && thread_group_empty(task)))
1791 poll_flags = EPOLLIN | EPOLLRDNORM;
1792 rcu_read_unlock();
1793
1794 return poll_flags;
1795 }
1796
1797 const struct file_operations pidfd_fops = {
1798 .release = pidfd_release,
1799 .poll = pidfd_poll,
1800 #ifdef CONFIG_PROC_FS
1801 .show_fdinfo = pidfd_show_fdinfo,
1802 #endif
1803 };
1804
1805 static void __delayed_free_task(struct rcu_head *rhp)
1806 {
1807 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1808
1809 free_task(tsk);
1810 }
1811
1812 static __always_inline void delayed_free_task(struct task_struct *tsk)
1813 {
1814 if (IS_ENABLED(CONFIG_MEMCG))
1815 call_rcu(&tsk->rcu, __delayed_free_task);
1816 else
1817 free_task(tsk);
1818 }
1819
1820 /*
1821 * This creates a new process as a copy of the old one,
1822 * but does not actually start it yet.
1823 *
1824 * It copies the registers, and all the appropriate
1825 * parts of the process environment (as per the clone
1826 * flags). The actual kick-off is left to the caller.
1827 */
1828 static __latent_entropy struct task_struct *copy_process(
1829 struct pid *pid,
1830 int trace,
1831 int node,
1832 struct kernel_clone_args *args)
1833 {
1834 int pidfd = -1, retval;
1835 struct task_struct *p;
1836 struct multiprocess_signals delayed;
1837 struct file *pidfile = NULL;
1838 u64 clone_flags = args->flags;
1839 struct nsproxy *nsp = current->nsproxy;
1840
1841 /*
1842 * Don't allow sharing the root directory with processes in a different
1843 * namespace
1844 */
1845 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1846 return ERR_PTR(-EINVAL);
1847
1848 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1849 return ERR_PTR(-EINVAL);
1850
1851 /*
1852 * Thread groups must share signals as well, and detached threads
1853 * can only be started up within the thread group.
1854 */
1855 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1856 return ERR_PTR(-EINVAL);
1857
1858 /*
1859 * Shared signal handlers imply shared VM. By way of the above,
1860 * thread groups also imply shared VM. Blocking this case allows
1861 * for various simplifications in other code.
1862 */
1863 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1864 return ERR_PTR(-EINVAL);
1865
1866 /*
1867 * Siblings of global init remain as zombies on exit since they are
1868 * not reaped by their parent (swapper). To solve this and to avoid
1869 * multi-rooted process trees, prevent global and container-inits
1870 * from creating siblings.
1871 */
1872 if ((clone_flags & CLONE_PARENT) &&
1873 current->signal->flags & SIGNAL_UNKILLABLE)
1874 return ERR_PTR(-EINVAL);
1875
1876 /*
1877 * If the new process will be in a different pid or user namespace
1878 * do not allow it to share a thread group with the forking task.
1879 */
1880 if (clone_flags & CLONE_THREAD) {
1881 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1882 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1883 return ERR_PTR(-EINVAL);
1884 }
1885
1886 /*
1887 * If the new process will be in a different time namespace
1888 * do not allow it to share VM or a thread group with the forking task.
1889 */
1890 if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1891 if (nsp->time_ns != nsp->time_ns_for_children)
1892 return ERR_PTR(-EINVAL);
1893 }
1894
1895 if (clone_flags & CLONE_PIDFD) {
1896 /*
1897 * - CLONE_DETACHED is blocked so that we can potentially
1898 * reuse it later for CLONE_PIDFD.
1899 * - CLONE_THREAD is blocked until someone really needs it.
1900 */
1901 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1902 return ERR_PTR(-EINVAL);
1903 }
1904
1905 /*
1906 * Force any signals received before this point to be delivered
1907 * before the fork happens. Collect up signals sent to multiple
1908 * processes that happen during the fork and delay them so that
1909 * they appear to happen after the fork.
1910 */
1911 sigemptyset(&delayed.signal);
1912 INIT_HLIST_NODE(&delayed.node);
1913
1914 spin_lock_irq(&current->sighand->siglock);
1915 if (!(clone_flags & CLONE_THREAD))
1916 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1917 recalc_sigpending();
1918 spin_unlock_irq(&current->sighand->siglock);
1919 retval = -ERESTARTNOINTR;
1920 if (signal_pending(current))
1921 goto fork_out;
1922
1923 retval = -ENOMEM;
1924 p = dup_task_struct(current, node);
1925 if (!p)
1926 goto fork_out;
1927
1928 /*
1929 * This _must_ happen before we call free_task(), i.e. before we jump
1930 * to any of the bad_fork_* labels. This is to avoid freeing
1931 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1932 * kernel threads (PF_KTHREAD).
1933 */
1934 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1935 /*
1936 * Clear TID on mm_release()?
1937 */
1938 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1939
1940 ftrace_graph_init_task(p);
1941
1942 rt_mutex_init_task(p);
1943
1944 #ifdef CONFIG_PROVE_LOCKING
1945 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1946 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1947 #endif
1948 retval = -EAGAIN;
1949 if (atomic_read(&p->real_cred->user->processes) >=
1950 task_rlimit(p, RLIMIT_NPROC)) {
1951 if (p->real_cred->user != INIT_USER &&
1952 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1953 goto bad_fork_free;
1954 }
1955 current->flags &= ~PF_NPROC_EXCEEDED;
1956
1957 retval = copy_creds(p, clone_flags);
1958 if (retval < 0)
1959 goto bad_fork_free;
1960
1961 /*
1962 * If multiple threads are within copy_process(), then this check
1963 * triggers too late. This doesn't hurt, the check is only there
1964 * to stop root fork bombs.
1965 */
1966 retval = -EAGAIN;
1967 if (nr_threads >= max_threads)
1968 goto bad_fork_cleanup_count;
1969
1970 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1971 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1972 p->flags |= PF_FORKNOEXEC;
1973 INIT_LIST_HEAD(&p->children);
1974 INIT_LIST_HEAD(&p->sibling);
1975 rcu_copy_process(p);
1976 p->vfork_done = NULL;
1977 spin_lock_init(&p->alloc_lock);
1978
1979 init_sigpending(&p->pending);
1980
1981 p->utime = p->stime = p->gtime = 0;
1982 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1983 p->utimescaled = p->stimescaled = 0;
1984 #endif
1985 prev_cputime_init(&p->prev_cputime);
1986
1987 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1988 seqcount_init(&p->vtime.seqcount);
1989 p->vtime.starttime = 0;
1990 p->vtime.state = VTIME_INACTIVE;
1991 #endif
1992
1993 #if defined(SPLIT_RSS_COUNTING)
1994 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1995 #endif
1996
1997 p->default_timer_slack_ns = current->timer_slack_ns;
1998
1999 #ifdef CONFIG_PSI
2000 p->psi_flags = 0;
2001 #endif
2002
2003 task_io_accounting_init(&p->ioac);
2004 acct_clear_integrals(p);
2005
2006 posix_cputimers_init(&p->posix_cputimers);
2007
2008 p->io_context = NULL;
2009 audit_set_context(p, NULL);
2010 cgroup_fork(p);
2011 #ifdef CONFIG_NUMA
2012 p->mempolicy = mpol_dup(p->mempolicy);
2013 if (IS_ERR(p->mempolicy)) {
2014 retval = PTR_ERR(p->mempolicy);
2015 p->mempolicy = NULL;
2016 goto bad_fork_cleanup_threadgroup_lock;
2017 }
2018 #endif
2019 #ifdef CONFIG_CPUSETS
2020 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2021 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2022 seqcount_init(&p->mems_allowed_seq);
2023 #endif
2024 #ifdef CONFIG_TRACE_IRQFLAGS
2025 p->irq_events = 0;
2026 p->hardirqs_enabled = 0;
2027 p->hardirq_enable_ip = 0;
2028 p->hardirq_enable_event = 0;
2029 p->hardirq_disable_ip = _THIS_IP_;
2030 p->hardirq_disable_event = 0;
2031 p->softirqs_enabled = 1;
2032 p->softirq_enable_ip = _THIS_IP_;
2033 p->softirq_enable_event = 0;
2034 p->softirq_disable_ip = 0;
2035 p->softirq_disable_event = 0;
2036 p->hardirq_context = 0;
2037 p->softirq_context = 0;
2038 #endif
2039
2040 p->pagefault_disabled = 0;
2041
2042 #ifdef CONFIG_LOCKDEP
2043 lockdep_init_task(p);
2044 #endif
2045
2046 #ifdef CONFIG_DEBUG_MUTEXES
2047 p->blocked_on = NULL; /* not blocked yet */
2048 #endif
2049 #ifdef CONFIG_BCACHE
2050 p->sequential_io = 0;
2051 p->sequential_io_avg = 0;
2052 #endif
2053
2054 /* Perform scheduler related setup. Assign this task to a CPU. */
2055 retval = sched_fork(clone_flags, p);
2056 if (retval)
2057 goto bad_fork_cleanup_policy;
2058
2059 retval = perf_event_init_task(p);
2060 if (retval)
2061 goto bad_fork_cleanup_policy;
2062 retval = audit_alloc(p);
2063 if (retval)
2064 goto bad_fork_cleanup_perf;
2065 /* copy all the process information */
2066 shm_init_task(p);
2067 retval = security_task_alloc(p, clone_flags);
2068 if (retval)
2069 goto bad_fork_cleanup_audit;
2070 retval = copy_semundo(clone_flags, p);
2071 if (retval)
2072 goto bad_fork_cleanup_security;
2073 retval = copy_files(clone_flags, p);
2074 if (retval)
2075 goto bad_fork_cleanup_semundo;
2076 retval = copy_fs(clone_flags, p);
2077 if (retval)
2078 goto bad_fork_cleanup_files;
2079 retval = copy_sighand(clone_flags, p);
2080 if (retval)
2081 goto bad_fork_cleanup_fs;
2082 retval = copy_signal(clone_flags, p);
2083 if (retval)
2084 goto bad_fork_cleanup_sighand;
2085 retval = copy_mm(clone_flags, p);
2086 if (retval)
2087 goto bad_fork_cleanup_signal;
2088 retval = copy_namespaces(clone_flags, p);
2089 if (retval)
2090 goto bad_fork_cleanup_mm;
2091 retval = copy_io(clone_flags, p);
2092 if (retval)
2093 goto bad_fork_cleanup_namespaces;
2094 retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2095 args->tls);
2096 if (retval)
2097 goto bad_fork_cleanup_io;
2098
2099 stackleak_task_init(p);
2100
2101 if (pid != &init_struct_pid) {
2102 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2103 args->set_tid_size);
2104 if (IS_ERR(pid)) {
2105 retval = PTR_ERR(pid);
2106 goto bad_fork_cleanup_thread;
2107 }
2108 }
2109
2110 /*
2111 * This has to happen after we've potentially unshared the file
2112 * descriptor table (so that the pidfd doesn't leak into the child
2113 * if the fd table isn't shared).
2114 */
2115 if (clone_flags & CLONE_PIDFD) {
2116 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2117 if (retval < 0)
2118 goto bad_fork_free_pid;
2119
2120 pidfd = retval;
2121
2122 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2123 O_RDWR | O_CLOEXEC);
2124 if (IS_ERR(pidfile)) {
2125 put_unused_fd(pidfd);
2126 retval = PTR_ERR(pidfile);
2127 goto bad_fork_free_pid;
2128 }
2129 get_pid(pid); /* held by pidfile now */
2130
2131 retval = put_user(pidfd, args->pidfd);
2132 if (retval)
2133 goto bad_fork_put_pidfd;
2134 }
2135
2136 #ifdef CONFIG_BLOCK
2137 p->plug = NULL;
2138 #endif
2139 futex_init_task(p);
2140
2141 /*
2142 * sigaltstack should be cleared when sharing the same VM
2143 */
2144 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2145 sas_ss_reset(p);
2146
2147 /*
2148 * Syscall tracing and stepping should be turned off in the
2149 * child regardless of CLONE_PTRACE.
2150 */
2151 user_disable_single_step(p);
2152 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2153 #ifdef TIF_SYSCALL_EMU
2154 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2155 #endif
2156 clear_tsk_latency_tracing(p);
2157
2158 /* ok, now we should be set up.. */
2159 p->pid = pid_nr(pid);
2160 if (clone_flags & CLONE_THREAD) {
2161 p->exit_signal = -1;
2162 p->group_leader = current->group_leader;
2163 p->tgid = current->tgid;
2164 } else {
2165 if (clone_flags & CLONE_PARENT)
2166 p->exit_signal = current->group_leader->exit_signal;
2167 else
2168 p->exit_signal = args->exit_signal;
2169 p->group_leader = p;
2170 p->tgid = p->pid;
2171 }
2172
2173 p->nr_dirtied = 0;
2174 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2175 p->dirty_paused_when = 0;
2176
2177 p->pdeath_signal = 0;
2178 INIT_LIST_HEAD(&p->thread_group);
2179 p->task_works = NULL;
2180
2181 /*
2182 * Ensure that the cgroup subsystem policies allow the new process to be
2183 * forked. It should be noted the the new process's css_set can be changed
2184 * between here and cgroup_post_fork() if an organisation operation is in
2185 * progress.
2186 */
2187 retval = cgroup_can_fork(p, args);
2188 if (retval)
2189 goto bad_fork_put_pidfd;
2190
2191 /*
2192 * From this point on we must avoid any synchronous user-space
2193 * communication until we take the tasklist-lock. In particular, we do
2194 * not want user-space to be able to predict the process start-time by
2195 * stalling fork(2) after we recorded the start_time but before it is
2196 * visible to the system.
2197 */
2198
2199 p->start_time = ktime_get_ns();
2200 p->start_boottime = ktime_get_boottime_ns();
2201
2202 /*
2203 * Make it visible to the rest of the system, but dont wake it up yet.
2204 * Need tasklist lock for parent etc handling!
2205 */
2206 write_lock_irq(&tasklist_lock);
2207
2208 /* CLONE_PARENT re-uses the old parent */
2209 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2210 p->real_parent = current->real_parent;
2211 p->parent_exec_id = current->parent_exec_id;
2212 } else {
2213 p->real_parent = current;
2214 p->parent_exec_id = current->self_exec_id;
2215 }
2216
2217 klp_copy_process(p);
2218
2219 spin_lock(&current->sighand->siglock);
2220
2221 /*
2222 * Copy seccomp details explicitly here, in case they were changed
2223 * before holding sighand lock.
2224 */
2225 copy_seccomp(p);
2226
2227 rseq_fork(p, clone_flags);
2228
2229 /* Don't start children in a dying pid namespace */
2230 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2231 retval = -ENOMEM;
2232 goto bad_fork_cancel_cgroup;
2233 }
2234
2235 /* Let kill terminate clone/fork in the middle */
2236 if (fatal_signal_pending(current)) {
2237 retval = -EINTR;
2238 goto bad_fork_cancel_cgroup;
2239 }
2240
2241 /* past the last point of failure */
2242 if (pidfile)
2243 fd_install(pidfd, pidfile);
2244
2245 init_task_pid_links(p);
2246 if (likely(p->pid)) {
2247 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2248
2249 init_task_pid(p, PIDTYPE_PID, pid);
2250 if (thread_group_leader(p)) {
2251 init_task_pid(p, PIDTYPE_TGID, pid);
2252 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2253 init_task_pid(p, PIDTYPE_SID, task_session(current));
2254
2255 if (is_child_reaper(pid)) {
2256 ns_of_pid(pid)->child_reaper = p;
2257 p->signal->flags |= SIGNAL_UNKILLABLE;
2258 }
2259 p->signal->shared_pending.signal = delayed.signal;
2260 p->signal->tty = tty_kref_get(current->signal->tty);
2261 /*
2262 * Inherit has_child_subreaper flag under the same
2263 * tasklist_lock with adding child to the process tree
2264 * for propagate_has_child_subreaper optimization.
2265 */
2266 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2267 p->real_parent->signal->is_child_subreaper;
2268 list_add_tail(&p->sibling, &p->real_parent->children);
2269 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2270 attach_pid(p, PIDTYPE_TGID);
2271 attach_pid(p, PIDTYPE_PGID);
2272 attach_pid(p, PIDTYPE_SID);
2273 __this_cpu_inc(process_counts);
2274 } else {
2275 current->signal->nr_threads++;
2276 atomic_inc(&current->signal->live);
2277 refcount_inc(&current->signal->sigcnt);
2278 task_join_group_stop(p);
2279 list_add_tail_rcu(&p->thread_group,
2280 &p->group_leader->thread_group);
2281 list_add_tail_rcu(&p->thread_node,
2282 &p->signal->thread_head);
2283 }
2284 attach_pid(p, PIDTYPE_PID);
2285 nr_threads++;
2286 }
2287 total_forks++;
2288 hlist_del_init(&delayed.node);
2289 spin_unlock(&current->sighand->siglock);
2290 syscall_tracepoint_update(p);
2291 write_unlock_irq(&tasklist_lock);
2292
2293 proc_fork_connector(p);
2294 cgroup_post_fork(p, args);
2295 perf_event_fork(p);
2296
2297 trace_task_newtask(p, clone_flags);
2298 uprobe_copy_process(p, clone_flags);
2299
2300 return p;
2301
2302 bad_fork_cancel_cgroup:
2303 spin_unlock(&current->sighand->siglock);
2304 write_unlock_irq(&tasklist_lock);
2305 cgroup_cancel_fork(p, args);
2306 bad_fork_put_pidfd:
2307 if (clone_flags & CLONE_PIDFD) {
2308 fput(pidfile);
2309 put_unused_fd(pidfd);
2310 }
2311 bad_fork_free_pid:
2312 if (pid != &init_struct_pid)
2313 free_pid(pid);
2314 bad_fork_cleanup_thread:
2315 exit_thread(p);
2316 bad_fork_cleanup_io:
2317 if (p->io_context)
2318 exit_io_context(p);
2319 bad_fork_cleanup_namespaces:
2320 exit_task_namespaces(p);
2321 bad_fork_cleanup_mm:
2322 if (p->mm) {
2323 mm_clear_owner(p->mm, p);
2324 mmput(p->mm);
2325 }
2326 bad_fork_cleanup_signal:
2327 if (!(clone_flags & CLONE_THREAD))
2328 free_signal_struct(p->signal);
2329 bad_fork_cleanup_sighand:
2330 __cleanup_sighand(p->sighand);
2331 bad_fork_cleanup_fs:
2332 exit_fs(p); /* blocking */
2333 bad_fork_cleanup_files:
2334 exit_files(p); /* blocking */
2335 bad_fork_cleanup_semundo:
2336 exit_sem(p);
2337 bad_fork_cleanup_security:
2338 security_task_free(p);
2339 bad_fork_cleanup_audit:
2340 audit_free(p);
2341 bad_fork_cleanup_perf:
2342 perf_event_free_task(p);
2343 bad_fork_cleanup_policy:
2344 lockdep_free_task(p);
2345 #ifdef CONFIG_NUMA
2346 mpol_put(p->mempolicy);
2347 bad_fork_cleanup_threadgroup_lock:
2348 #endif
2349 delayacct_tsk_free(p);
2350 bad_fork_cleanup_count:
2351 atomic_dec(&p->cred->user->processes);
2352 exit_creds(p);
2353 bad_fork_free:
2354 p->state = TASK_DEAD;
2355 put_task_stack(p);
2356 delayed_free_task(p);
2357 fork_out:
2358 spin_lock_irq(&current->sighand->siglock);
2359 hlist_del_init(&delayed.node);
2360 spin_unlock_irq(&current->sighand->siglock);
2361 return ERR_PTR(retval);
2362 }
2363
2364 static inline void init_idle_pids(struct task_struct *idle)
2365 {
2366 enum pid_type type;
2367
2368 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2369 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2370 init_task_pid(idle, type, &init_struct_pid);
2371 }
2372 }
2373
2374 struct task_struct *fork_idle(int cpu)
2375 {
2376 struct task_struct *task;
2377 struct kernel_clone_args args = {
2378 .flags = CLONE_VM,
2379 };
2380
2381 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2382 if (!IS_ERR(task)) {
2383 init_idle_pids(task);
2384 init_idle(task, cpu);
2385 }
2386
2387 return task;
2388 }
2389
2390 struct mm_struct *copy_init_mm(void)
2391 {
2392 return dup_mm(NULL, &init_mm);
2393 }
2394
2395 /*
2396 * Ok, this is the main fork-routine.
2397 *
2398 * It copies the process, and if successful kick-starts
2399 * it and waits for it to finish using the VM if required.
2400 *
2401 * args->exit_signal is expected to be checked for sanity by the caller.
2402 */
2403 long _do_fork(struct kernel_clone_args *args)
2404 {
2405 u64 clone_flags = args->flags;
2406 struct completion vfork;
2407 struct pid *pid;
2408 struct task_struct *p;
2409 int trace = 0;
2410 long nr;
2411
2412 /*
2413 * Determine whether and which event to report to ptracer. When
2414 * called from kernel_thread or CLONE_UNTRACED is explicitly
2415 * requested, no event is reported; otherwise, report if the event
2416 * for the type of forking is enabled.
2417 */
2418 if (!(clone_flags & CLONE_UNTRACED)) {
2419 if (clone_flags & CLONE_VFORK)
2420 trace = PTRACE_EVENT_VFORK;
2421 else if (args->exit_signal != SIGCHLD)
2422 trace = PTRACE_EVENT_CLONE;
2423 else
2424 trace = PTRACE_EVENT_FORK;
2425
2426 if (likely(!ptrace_event_enabled(current, trace)))
2427 trace = 0;
2428 }
2429
2430 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2431 add_latent_entropy();
2432
2433 if (IS_ERR(p))
2434 return PTR_ERR(p);
2435
2436 /*
2437 * Do this prior waking up the new thread - the thread pointer
2438 * might get invalid after that point, if the thread exits quickly.
2439 */
2440 trace_sched_process_fork(current, p);
2441
2442 pid = get_task_pid(p, PIDTYPE_PID);
2443 nr = pid_vnr(pid);
2444
2445 if (clone_flags & CLONE_PARENT_SETTID)
2446 put_user(nr, args->parent_tid);
2447
2448 if (clone_flags & CLONE_VFORK) {
2449 p->vfork_done = &vfork;
2450 init_completion(&vfork);
2451 get_task_struct(p);
2452 }
2453
2454 wake_up_new_task(p);
2455
2456 /* forking complete and child started to run, tell ptracer */
2457 if (unlikely(trace))
2458 ptrace_event_pid(trace, pid);
2459
2460 if (clone_flags & CLONE_VFORK) {
2461 if (!wait_for_vfork_done(p, &vfork))
2462 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2463 }
2464
2465 put_pid(pid);
2466 return nr;
2467 }
2468
2469 bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2470 {
2471 /* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2472 if ((kargs->flags & CLONE_PIDFD) &&
2473 (kargs->flags & CLONE_PARENT_SETTID))
2474 return false;
2475
2476 return true;
2477 }
2478
2479 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2480 /* For compatibility with architectures that call do_fork directly rather than
2481 * using the syscall entry points below. */
2482 long do_fork(unsigned long clone_flags,
2483 unsigned long stack_start,
2484 unsigned long stack_size,
2485 int __user *parent_tidptr,
2486 int __user *child_tidptr)
2487 {
2488 struct kernel_clone_args args = {
2489 .flags = (clone_flags & ~CSIGNAL),
2490 .pidfd = parent_tidptr,
2491 .child_tid = child_tidptr,
2492 .parent_tid = parent_tidptr,
2493 .exit_signal = (clone_flags & CSIGNAL),
2494 .stack = stack_start,
2495 .stack_size = stack_size,
2496 };
2497
2498 if (!legacy_clone_args_valid(&args))
2499 return -EINVAL;
2500
2501 return _do_fork(&args);
2502 }
2503 #endif
2504
2505 /*
2506 * Create a kernel thread.
2507 */
2508 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2509 {
2510 struct kernel_clone_args args = {
2511 .flags = ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2512 .exit_signal = (flags & CSIGNAL),
2513 .stack = (unsigned long)fn,
2514 .stack_size = (unsigned long)arg,
2515 };
2516
2517 return _do_fork(&args);
2518 }
2519
2520 #ifdef __ARCH_WANT_SYS_FORK
2521 SYSCALL_DEFINE0(fork)
2522 {
2523 #ifdef CONFIG_MMU
2524 struct kernel_clone_args args = {
2525 .exit_signal = SIGCHLD,
2526 };
2527
2528 return _do_fork(&args);
2529 #else
2530 /* can not support in nommu mode */
2531 return -EINVAL;
2532 #endif
2533 }
2534 #endif
2535
2536 #ifdef __ARCH_WANT_SYS_VFORK
2537 SYSCALL_DEFINE0(vfork)
2538 {
2539 struct kernel_clone_args args = {
2540 .flags = CLONE_VFORK | CLONE_VM,
2541 .exit_signal = SIGCHLD,
2542 };
2543
2544 return _do_fork(&args);
2545 }
2546 #endif
2547
2548 #ifdef __ARCH_WANT_SYS_CLONE
2549 #ifdef CONFIG_CLONE_BACKWARDS
2550 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2551 int __user *, parent_tidptr,
2552 unsigned long, tls,
2553 int __user *, child_tidptr)
2554 #elif defined(CONFIG_CLONE_BACKWARDS2)
2555 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2556 int __user *, parent_tidptr,
2557 int __user *, child_tidptr,
2558 unsigned long, tls)
2559 #elif defined(CONFIG_CLONE_BACKWARDS3)
2560 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2561 int, stack_size,
2562 int __user *, parent_tidptr,
2563 int __user *, child_tidptr,
2564 unsigned long, tls)
2565 #else
2566 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2567 int __user *, parent_tidptr,
2568 int __user *, child_tidptr,
2569 unsigned long, tls)
2570 #endif
2571 {
2572 struct kernel_clone_args args = {
2573 .flags = (clone_flags & ~CSIGNAL),
2574 .pidfd = parent_tidptr,
2575 .child_tid = child_tidptr,
2576 .parent_tid = parent_tidptr,
2577 .exit_signal = (clone_flags & CSIGNAL),
2578 .stack = newsp,
2579 .tls = tls,
2580 };
2581
2582 if (!legacy_clone_args_valid(&args))
2583 return -EINVAL;
2584
2585 return _do_fork(&args);
2586 }
2587 #endif
2588
2589 #ifdef __ARCH_WANT_SYS_CLONE3
2590
2591 /*
2592 * copy_thread implementations handle CLONE_SETTLS by reading the TLS value from
2593 * the registers containing the syscall arguments for clone. This doesn't work
2594 * with clone3 since the TLS value is passed in clone_args instead.
2595 */
2596 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2597 #error clone3 requires copy_thread_tls support in arch
2598 #endif
2599
2600 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2601 struct clone_args __user *uargs,
2602 size_t usize)
2603 {
2604 int err;
2605 struct clone_args args;
2606 pid_t *kset_tid = kargs->set_tid;
2607
2608 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2609 CLONE_ARGS_SIZE_VER0);
2610 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2611 CLONE_ARGS_SIZE_VER1);
2612 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2613 CLONE_ARGS_SIZE_VER2);
2614 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2615
2616 if (unlikely(usize > PAGE_SIZE))
2617 return -E2BIG;
2618 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2619 return -EINVAL;
2620
2621 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2622 if (err)
2623 return err;
2624
2625 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2626 return -EINVAL;
2627
2628 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2629 return -EINVAL;
2630
2631 if (unlikely(args.set_tid && args.set_tid_size == 0))
2632 return -EINVAL;
2633
2634 /*
2635 * Verify that higher 32bits of exit_signal are unset and that
2636 * it is a valid signal
2637 */
2638 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2639 !valid_signal(args.exit_signal)))
2640 return -EINVAL;
2641
2642 if ((args.flags & CLONE_INTO_CGROUP) &&
2643 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2644 return -EINVAL;
2645
2646 *kargs = (struct kernel_clone_args){
2647 .flags = args.flags,
2648 .pidfd = u64_to_user_ptr(args.pidfd),
2649 .child_tid = u64_to_user_ptr(args.child_tid),
2650 .parent_tid = u64_to_user_ptr(args.parent_tid),
2651 .exit_signal = args.exit_signal,
2652 .stack = args.stack,
2653 .stack_size = args.stack_size,
2654 .tls = args.tls,
2655 .set_tid_size = args.set_tid_size,
2656 .cgroup = args.cgroup,
2657 };
2658
2659 if (args.set_tid &&
2660 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2661 (kargs->set_tid_size * sizeof(pid_t))))
2662 return -EFAULT;
2663
2664 kargs->set_tid = kset_tid;
2665
2666 return 0;
2667 }
2668
2669 /**
2670 * clone3_stack_valid - check and prepare stack
2671 * @kargs: kernel clone args
2672 *
2673 * Verify that the stack arguments userspace gave us are sane.
2674 * In addition, set the stack direction for userspace since it's easy for us to
2675 * determine.
2676 */
2677 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2678 {
2679 if (kargs->stack == 0) {
2680 if (kargs->stack_size > 0)
2681 return false;
2682 } else {
2683 if (kargs->stack_size == 0)
2684 return false;
2685
2686 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2687 return false;
2688
2689 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2690 kargs->stack += kargs->stack_size;
2691 #endif
2692 }
2693
2694 return true;
2695 }
2696
2697 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2698 {
2699 /* Verify that no unknown flags are passed along. */
2700 if (kargs->flags &
2701 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2702 return false;
2703
2704 /*
2705 * - make the CLONE_DETACHED bit reuseable for clone3
2706 * - make the CSIGNAL bits reuseable for clone3
2707 */
2708 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2709 return false;
2710
2711 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2712 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2713 return false;
2714
2715 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2716 kargs->exit_signal)
2717 return false;
2718
2719 if (!clone3_stack_valid(kargs))
2720 return false;
2721
2722 return true;
2723 }
2724
2725 /**
2726 * clone3 - create a new process with specific properties
2727 * @uargs: argument structure
2728 * @size: size of @uargs
2729 *
2730 * clone3() is the extensible successor to clone()/clone2().
2731 * It takes a struct as argument that is versioned by its size.
2732 *
2733 * Return: On success, a positive PID for the child process.
2734 * On error, a negative errno number.
2735 */
2736 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2737 {
2738 int err;
2739
2740 struct kernel_clone_args kargs;
2741 pid_t set_tid[MAX_PID_NS_LEVEL];
2742
2743 kargs.set_tid = set_tid;
2744
2745 err = copy_clone_args_from_user(&kargs, uargs, size);
2746 if (err)
2747 return err;
2748
2749 if (!clone3_args_valid(&kargs))
2750 return -EINVAL;
2751
2752 return _do_fork(&kargs);
2753 }
2754 #endif
2755
2756 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2757 {
2758 struct task_struct *leader, *parent, *child;
2759 int res;
2760
2761 read_lock(&tasklist_lock);
2762 leader = top = top->group_leader;
2763 down:
2764 for_each_thread(leader, parent) {
2765 list_for_each_entry(child, &parent->children, sibling) {
2766 res = visitor(child, data);
2767 if (res) {
2768 if (res < 0)
2769 goto out;
2770 leader = child;
2771 goto down;
2772 }
2773 up:
2774 ;
2775 }
2776 }
2777
2778 if (leader != top) {
2779 child = leader;
2780 parent = child->real_parent;
2781 leader = parent->group_leader;
2782 goto up;
2783 }
2784 out:
2785 read_unlock(&tasklist_lock);
2786 }
2787
2788 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2789 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2790 #endif
2791
2792 static void sighand_ctor(void *data)
2793 {
2794 struct sighand_struct *sighand = data;
2795
2796 spin_lock_init(&sighand->siglock);
2797 init_waitqueue_head(&sighand->signalfd_wqh);
2798 }
2799
2800 void __init proc_caches_init(void)
2801 {
2802 unsigned int mm_size;
2803
2804 sighand_cachep = kmem_cache_create("sighand_cache",
2805 sizeof(struct sighand_struct), 0,
2806 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2807 SLAB_ACCOUNT, sighand_ctor);
2808 signal_cachep = kmem_cache_create("signal_cache",
2809 sizeof(struct signal_struct), 0,
2810 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2811 NULL);
2812 files_cachep = kmem_cache_create("files_cache",
2813 sizeof(struct files_struct), 0,
2814 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2815 NULL);
2816 fs_cachep = kmem_cache_create("fs_cache",
2817 sizeof(struct fs_struct), 0,
2818 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2819 NULL);
2820
2821 /*
2822 * The mm_cpumask is located at the end of mm_struct, and is
2823 * dynamically sized based on the maximum CPU number this system
2824 * can have, taking hotplug into account (nr_cpu_ids).
2825 */
2826 mm_size = sizeof(struct mm_struct) + cpumask_size();
2827
2828 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2829 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2830 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2831 offsetof(struct mm_struct, saved_auxv),
2832 sizeof_field(struct mm_struct, saved_auxv),
2833 NULL);
2834 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2835 mmap_init();
2836 nsproxy_cache_init();
2837 }
2838
2839 /*
2840 * Check constraints on flags passed to the unshare system call.
2841 */
2842 static int check_unshare_flags(unsigned long unshare_flags)
2843 {
2844 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2845 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2846 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2847 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2848 CLONE_NEWTIME))
2849 return -EINVAL;
2850 /*
2851 * Not implemented, but pretend it works if there is nothing
2852 * to unshare. Note that unsharing the address space or the
2853 * signal handlers also need to unshare the signal queues (aka
2854 * CLONE_THREAD).
2855 */
2856 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2857 if (!thread_group_empty(current))
2858 return -EINVAL;
2859 }
2860 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2861 if (refcount_read(&current->sighand->count) > 1)
2862 return -EINVAL;
2863 }
2864 if (unshare_flags & CLONE_VM) {
2865 if (!current_is_single_threaded())
2866 return -EINVAL;
2867 }
2868
2869 return 0;
2870 }
2871
2872 /*
2873 * Unshare the filesystem structure if it is being shared
2874 */
2875 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2876 {
2877 struct fs_struct *fs = current->fs;
2878
2879 if (!(unshare_flags & CLONE_FS) || !fs)
2880 return 0;
2881
2882 /* don't need lock here; in the worst case we'll do useless copy */
2883 if (fs->users == 1)
2884 return 0;
2885
2886 *new_fsp = copy_fs_struct(fs);
2887 if (!*new_fsp)
2888 return -ENOMEM;
2889
2890 return 0;
2891 }
2892
2893 /*
2894 * Unshare file descriptor table if it is being shared
2895 */
2896 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2897 {
2898 struct files_struct *fd = current->files;
2899 int error = 0;
2900
2901 if ((unshare_flags & CLONE_FILES) &&
2902 (fd && atomic_read(&fd->count) > 1)) {
2903 *new_fdp = dup_fd(fd, &error);
2904 if (!*new_fdp)
2905 return error;
2906 }
2907
2908 return 0;
2909 }
2910
2911 /*
2912 * unshare allows a process to 'unshare' part of the process
2913 * context which was originally shared using clone. copy_*
2914 * functions used by do_fork() cannot be used here directly
2915 * because they modify an inactive task_struct that is being
2916 * constructed. Here we are modifying the current, active,
2917 * task_struct.
2918 */
2919 int ksys_unshare(unsigned long unshare_flags)
2920 {
2921 struct fs_struct *fs, *new_fs = NULL;
2922 struct files_struct *fd, *new_fd = NULL;
2923 struct cred *new_cred = NULL;
2924 struct nsproxy *new_nsproxy = NULL;
2925 int do_sysvsem = 0;
2926 int err;
2927
2928 /*
2929 * If unsharing a user namespace must also unshare the thread group
2930 * and unshare the filesystem root and working directories.
2931 */
2932 if (unshare_flags & CLONE_NEWUSER)
2933 unshare_flags |= CLONE_THREAD | CLONE_FS;
2934 /*
2935 * If unsharing vm, must also unshare signal handlers.
2936 */
2937 if (unshare_flags & CLONE_VM)
2938 unshare_flags |= CLONE_SIGHAND;
2939 /*
2940 * If unsharing a signal handlers, must also unshare the signal queues.
2941 */
2942 if (unshare_flags & CLONE_SIGHAND)
2943 unshare_flags |= CLONE_THREAD;
2944 /*
2945 * If unsharing namespace, must also unshare filesystem information.
2946 */
2947 if (unshare_flags & CLONE_NEWNS)
2948 unshare_flags |= CLONE_FS;
2949
2950 err = check_unshare_flags(unshare_flags);
2951 if (err)
2952 goto bad_unshare_out;
2953 /*
2954 * CLONE_NEWIPC must also detach from the undolist: after switching
2955 * to a new ipc namespace, the semaphore arrays from the old
2956 * namespace are unreachable.
2957 */
2958 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2959 do_sysvsem = 1;
2960 err = unshare_fs(unshare_flags, &new_fs);
2961 if (err)
2962 goto bad_unshare_out;
2963 err = unshare_fd(unshare_flags, &new_fd);
2964 if (err)
2965 goto bad_unshare_cleanup_fs;
2966 err = unshare_userns(unshare_flags, &new_cred);
2967 if (err)
2968 goto bad_unshare_cleanup_fd;
2969 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2970 new_cred, new_fs);
2971 if (err)
2972 goto bad_unshare_cleanup_cred;
2973
2974 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2975 if (do_sysvsem) {
2976 /*
2977 * CLONE_SYSVSEM is equivalent to sys_exit().
2978 */
2979 exit_sem(current);
2980 }
2981 if (unshare_flags & CLONE_NEWIPC) {
2982 /* Orphan segments in old ns (see sem above). */
2983 exit_shm(current);
2984 shm_init_task(current);
2985 }
2986
2987 if (new_nsproxy)
2988 switch_task_namespaces(current, new_nsproxy);
2989
2990 task_lock(current);
2991
2992 if (new_fs) {
2993 fs = current->fs;
2994 spin_lock(&fs->lock);
2995 current->fs = new_fs;
2996 if (--fs->users)
2997 new_fs = NULL;
2998 else
2999 new_fs = fs;
3000 spin_unlock(&fs->lock);
3001 }
3002
3003 if (new_fd) {
3004 fd = current->files;
3005 current->files = new_fd;
3006 new_fd = fd;
3007 }
3008
3009 task_unlock(current);
3010
3011 if (new_cred) {
3012 /* Install the new user namespace */
3013 commit_creds(new_cred);
3014 new_cred = NULL;
3015 }
3016 }
3017
3018 perf_event_namespaces(current);
3019
3020 bad_unshare_cleanup_cred:
3021 if (new_cred)
3022 put_cred(new_cred);
3023 bad_unshare_cleanup_fd:
3024 if (new_fd)
3025 put_files_struct(new_fd);
3026
3027 bad_unshare_cleanup_fs:
3028 if (new_fs)
3029 free_fs_struct(new_fs);
3030
3031 bad_unshare_out:
3032 return err;
3033 }
3034
3035 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3036 {
3037 return ksys_unshare(unshare_flags);
3038 }
3039
3040 /*
3041 * Helper to unshare the files of the current task.
3042 * We don't want to expose copy_files internals to
3043 * the exec layer of the kernel.
3044 */
3045
3046 int unshare_files(struct files_struct **displaced)
3047 {
3048 struct task_struct *task = current;
3049 struct files_struct *copy = NULL;
3050 int error;
3051
3052 error = unshare_fd(CLONE_FILES, &copy);
3053 if (error || !copy) {
3054 *displaced = NULL;
3055 return error;
3056 }
3057 *displaced = task->files;
3058 task_lock(task);
3059 task->files = copy;
3060 task_unlock(task);
3061 return 0;
3062 }
3063
3064 int sysctl_max_threads(struct ctl_table *table, int write,
3065 void __user *buffer, size_t *lenp, loff_t *ppos)
3066 {
3067 struct ctl_table t;
3068 int ret;
3069 int threads = max_threads;
3070 int min = 1;
3071 int max = MAX_THREADS;
3072
3073 t = *table;
3074 t.data = &threads;
3075 t.extra1 = &min;
3076 t.extra2 = &max;
3077
3078 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3079 if (ret || !write)
3080 return ret;
3081
3082 max_threads = threads;
3083
3084 return 0;
3085 }