]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - kernel/fork.c
Bluetooth: hidp: NUL terminate a string in the compat ioctl
[thirdparty/kernel/stable.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/perf_event.h>
81 #include <linux/posix-timers.h>
82 #include <linux/user-return-notifier.h>
83 #include <linux/oom.h>
84 #include <linux/khugepaged.h>
85 #include <linux/signalfd.h>
86 #include <linux/uprobes.h>
87 #include <linux/aio.h>
88 #include <linux/compiler.h>
89 #include <linux/sysctl.h>
90 #include <linux/kcov.h>
91 #include <linux/livepatch.h>
92 #include <linux/thread_info.h>
93 #include <linux/stackleak.h>
94
95 #include <asm/pgtable.h>
96 #include <asm/pgalloc.h>
97 #include <linux/uaccess.h>
98 #include <asm/mmu_context.h>
99 #include <asm/cacheflush.h>
100 #include <asm/tlbflush.h>
101
102 #include <trace/events/sched.h>
103
104 #define CREATE_TRACE_POINTS
105 #include <trace/events/task.h>
106
107 /*
108 * Minimum number of threads to boot the kernel
109 */
110 #define MIN_THREADS 20
111
112 /*
113 * Maximum number of threads
114 */
115 #define MAX_THREADS FUTEX_TID_MASK
116
117 /*
118 * Protected counters by write_lock_irq(&tasklist_lock)
119 */
120 unsigned long total_forks; /* Handle normal Linux uptimes. */
121 int nr_threads; /* The idle threads do not count.. */
122
123 int max_threads; /* tunable limit on nr_threads */
124
125 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
126
127 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
128
129 #ifdef CONFIG_PROVE_RCU
130 int lockdep_tasklist_lock_is_held(void)
131 {
132 return lockdep_is_held(&tasklist_lock);
133 }
134 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
135 #endif /* #ifdef CONFIG_PROVE_RCU */
136
137 int nr_processes(void)
138 {
139 int cpu;
140 int total = 0;
141
142 for_each_possible_cpu(cpu)
143 total += per_cpu(process_counts, cpu);
144
145 return total;
146 }
147
148 void __weak arch_release_task_struct(struct task_struct *tsk)
149 {
150 }
151
152 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
153 static struct kmem_cache *task_struct_cachep;
154
155 static inline struct task_struct *alloc_task_struct_node(int node)
156 {
157 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
158 }
159
160 static inline void free_task_struct(struct task_struct *tsk)
161 {
162 kmem_cache_free(task_struct_cachep, tsk);
163 }
164 #endif
165
166 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
167
168 /*
169 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
170 * kmemcache based allocator.
171 */
172 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
173
174 #ifdef CONFIG_VMAP_STACK
175 /*
176 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
177 * flush. Try to minimize the number of calls by caching stacks.
178 */
179 #define NR_CACHED_STACKS 2
180 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
181
182 static int free_vm_stack_cache(unsigned int cpu)
183 {
184 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
185 int i;
186
187 for (i = 0; i < NR_CACHED_STACKS; i++) {
188 struct vm_struct *vm_stack = cached_vm_stacks[i];
189
190 if (!vm_stack)
191 continue;
192
193 vfree(vm_stack->addr);
194 cached_vm_stacks[i] = NULL;
195 }
196
197 return 0;
198 }
199 #endif
200
201 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
202 {
203 #ifdef CONFIG_VMAP_STACK
204 void *stack;
205 int i;
206
207 for (i = 0; i < NR_CACHED_STACKS; i++) {
208 struct vm_struct *s;
209
210 s = this_cpu_xchg(cached_stacks[i], NULL);
211
212 if (!s)
213 continue;
214
215 /* Clear stale pointers from reused stack. */
216 memset(s->addr, 0, THREAD_SIZE);
217
218 tsk->stack_vm_area = s;
219 tsk->stack = s->addr;
220 return s->addr;
221 }
222
223 /*
224 * Allocated stacks are cached and later reused by new threads,
225 * so memcg accounting is performed manually on assigning/releasing
226 * stacks to tasks. Drop __GFP_ACCOUNT.
227 */
228 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
229 VMALLOC_START, VMALLOC_END,
230 THREADINFO_GFP & ~__GFP_ACCOUNT,
231 PAGE_KERNEL,
232 0, node, __builtin_return_address(0));
233
234 /*
235 * We can't call find_vm_area() in interrupt context, and
236 * free_thread_stack() can be called in interrupt context,
237 * so cache the vm_struct.
238 */
239 if (stack) {
240 tsk->stack_vm_area = find_vm_area(stack);
241 tsk->stack = stack;
242 }
243 return stack;
244 #else
245 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
246 THREAD_SIZE_ORDER);
247
248 if (likely(page)) {
249 tsk->stack = page_address(page);
250 return tsk->stack;
251 }
252 return NULL;
253 #endif
254 }
255
256 static inline void free_thread_stack(struct task_struct *tsk)
257 {
258 #ifdef CONFIG_VMAP_STACK
259 struct vm_struct *vm = task_stack_vm_area(tsk);
260
261 if (vm) {
262 int i;
263
264 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
265 mod_memcg_page_state(vm->pages[i],
266 MEMCG_KERNEL_STACK_KB,
267 -(int)(PAGE_SIZE / 1024));
268
269 memcg_kmem_uncharge(vm->pages[i], 0);
270 }
271
272 for (i = 0; i < NR_CACHED_STACKS; i++) {
273 if (this_cpu_cmpxchg(cached_stacks[i],
274 NULL, tsk->stack_vm_area) != NULL)
275 continue;
276
277 return;
278 }
279
280 vfree_atomic(tsk->stack);
281 return;
282 }
283 #endif
284
285 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
286 }
287 # else
288 static struct kmem_cache *thread_stack_cache;
289
290 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
291 int node)
292 {
293 unsigned long *stack;
294 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
295 tsk->stack = stack;
296 return stack;
297 }
298
299 static void free_thread_stack(struct task_struct *tsk)
300 {
301 kmem_cache_free(thread_stack_cache, tsk->stack);
302 }
303
304 void thread_stack_cache_init(void)
305 {
306 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
307 THREAD_SIZE, THREAD_SIZE, 0, 0,
308 THREAD_SIZE, NULL);
309 BUG_ON(thread_stack_cache == NULL);
310 }
311 # endif
312 #endif
313
314 /* SLAB cache for signal_struct structures (tsk->signal) */
315 static struct kmem_cache *signal_cachep;
316
317 /* SLAB cache for sighand_struct structures (tsk->sighand) */
318 struct kmem_cache *sighand_cachep;
319
320 /* SLAB cache for files_struct structures (tsk->files) */
321 struct kmem_cache *files_cachep;
322
323 /* SLAB cache for fs_struct structures (tsk->fs) */
324 struct kmem_cache *fs_cachep;
325
326 /* SLAB cache for vm_area_struct structures */
327 static struct kmem_cache *vm_area_cachep;
328
329 /* SLAB cache for mm_struct structures (tsk->mm) */
330 static struct kmem_cache *mm_cachep;
331
332 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
333 {
334 struct vm_area_struct *vma;
335
336 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
337 if (vma)
338 vma_init(vma, mm);
339 return vma;
340 }
341
342 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
343 {
344 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
345
346 if (new) {
347 *new = *orig;
348 INIT_LIST_HEAD(&new->anon_vma_chain);
349 }
350 return new;
351 }
352
353 void vm_area_free(struct vm_area_struct *vma)
354 {
355 kmem_cache_free(vm_area_cachep, vma);
356 }
357
358 static void account_kernel_stack(struct task_struct *tsk, int account)
359 {
360 void *stack = task_stack_page(tsk);
361 struct vm_struct *vm = task_stack_vm_area(tsk);
362
363 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
364
365 if (vm) {
366 int i;
367
368 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
369
370 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
371 mod_zone_page_state(page_zone(vm->pages[i]),
372 NR_KERNEL_STACK_KB,
373 PAGE_SIZE / 1024 * account);
374 }
375 } else {
376 /*
377 * All stack pages are in the same zone and belong to the
378 * same memcg.
379 */
380 struct page *first_page = virt_to_page(stack);
381
382 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
383 THREAD_SIZE / 1024 * account);
384
385 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
386 account * (THREAD_SIZE / 1024));
387 }
388 }
389
390 static int memcg_charge_kernel_stack(struct task_struct *tsk)
391 {
392 #ifdef CONFIG_VMAP_STACK
393 struct vm_struct *vm = task_stack_vm_area(tsk);
394 int ret;
395
396 if (vm) {
397 int i;
398
399 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
400 /*
401 * If memcg_kmem_charge() fails, page->mem_cgroup
402 * pointer is NULL, and both memcg_kmem_uncharge()
403 * and mod_memcg_page_state() in free_thread_stack()
404 * will ignore this page. So it's safe.
405 */
406 ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
407 if (ret)
408 return ret;
409
410 mod_memcg_page_state(vm->pages[i],
411 MEMCG_KERNEL_STACK_KB,
412 PAGE_SIZE / 1024);
413 }
414 }
415 #endif
416 return 0;
417 }
418
419 static void release_task_stack(struct task_struct *tsk)
420 {
421 if (WARN_ON(tsk->state != TASK_DEAD))
422 return; /* Better to leak the stack than to free prematurely */
423
424 account_kernel_stack(tsk, -1);
425 free_thread_stack(tsk);
426 tsk->stack = NULL;
427 #ifdef CONFIG_VMAP_STACK
428 tsk->stack_vm_area = NULL;
429 #endif
430 }
431
432 #ifdef CONFIG_THREAD_INFO_IN_TASK
433 void put_task_stack(struct task_struct *tsk)
434 {
435 if (refcount_dec_and_test(&tsk->stack_refcount))
436 release_task_stack(tsk);
437 }
438 #endif
439
440 void free_task(struct task_struct *tsk)
441 {
442 #ifndef CONFIG_THREAD_INFO_IN_TASK
443 /*
444 * The task is finally done with both the stack and thread_info,
445 * so free both.
446 */
447 release_task_stack(tsk);
448 #else
449 /*
450 * If the task had a separate stack allocation, it should be gone
451 * by now.
452 */
453 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
454 #endif
455 rt_mutex_debug_task_free(tsk);
456 ftrace_graph_exit_task(tsk);
457 put_seccomp_filter(tsk);
458 arch_release_task_struct(tsk);
459 if (tsk->flags & PF_KTHREAD)
460 free_kthread_struct(tsk);
461 free_task_struct(tsk);
462 }
463 EXPORT_SYMBOL(free_task);
464
465 #ifdef CONFIG_MMU
466 static __latent_entropy int dup_mmap(struct mm_struct *mm,
467 struct mm_struct *oldmm)
468 {
469 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
470 struct rb_node **rb_link, *rb_parent;
471 int retval;
472 unsigned long charge;
473 LIST_HEAD(uf);
474
475 uprobe_start_dup_mmap();
476 if (down_write_killable(&oldmm->mmap_sem)) {
477 retval = -EINTR;
478 goto fail_uprobe_end;
479 }
480 flush_cache_dup_mm(oldmm);
481 uprobe_dup_mmap(oldmm, mm);
482 /*
483 * Not linked in yet - no deadlock potential:
484 */
485 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
486
487 /* No ordering required: file already has been exposed. */
488 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
489
490 mm->total_vm = oldmm->total_vm;
491 mm->data_vm = oldmm->data_vm;
492 mm->exec_vm = oldmm->exec_vm;
493 mm->stack_vm = oldmm->stack_vm;
494
495 rb_link = &mm->mm_rb.rb_node;
496 rb_parent = NULL;
497 pprev = &mm->mmap;
498 retval = ksm_fork(mm, oldmm);
499 if (retval)
500 goto out;
501 retval = khugepaged_fork(mm, oldmm);
502 if (retval)
503 goto out;
504
505 prev = NULL;
506 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
507 struct file *file;
508
509 if (mpnt->vm_flags & VM_DONTCOPY) {
510 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
511 continue;
512 }
513 charge = 0;
514 /*
515 * Don't duplicate many vmas if we've been oom-killed (for
516 * example)
517 */
518 if (fatal_signal_pending(current)) {
519 retval = -EINTR;
520 goto out;
521 }
522 if (mpnt->vm_flags & VM_ACCOUNT) {
523 unsigned long len = vma_pages(mpnt);
524
525 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
526 goto fail_nomem;
527 charge = len;
528 }
529 tmp = vm_area_dup(mpnt);
530 if (!tmp)
531 goto fail_nomem;
532 retval = vma_dup_policy(mpnt, tmp);
533 if (retval)
534 goto fail_nomem_policy;
535 tmp->vm_mm = mm;
536 retval = dup_userfaultfd(tmp, &uf);
537 if (retval)
538 goto fail_nomem_anon_vma_fork;
539 if (tmp->vm_flags & VM_WIPEONFORK) {
540 /* VM_WIPEONFORK gets a clean slate in the child. */
541 tmp->anon_vma = NULL;
542 if (anon_vma_prepare(tmp))
543 goto fail_nomem_anon_vma_fork;
544 } else if (anon_vma_fork(tmp, mpnt))
545 goto fail_nomem_anon_vma_fork;
546 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
547 tmp->vm_next = tmp->vm_prev = NULL;
548 file = tmp->vm_file;
549 if (file) {
550 struct inode *inode = file_inode(file);
551 struct address_space *mapping = file->f_mapping;
552
553 get_file(file);
554 if (tmp->vm_flags & VM_DENYWRITE)
555 atomic_dec(&inode->i_writecount);
556 i_mmap_lock_write(mapping);
557 if (tmp->vm_flags & VM_SHARED)
558 atomic_inc(&mapping->i_mmap_writable);
559 flush_dcache_mmap_lock(mapping);
560 /* insert tmp into the share list, just after mpnt */
561 vma_interval_tree_insert_after(tmp, mpnt,
562 &mapping->i_mmap);
563 flush_dcache_mmap_unlock(mapping);
564 i_mmap_unlock_write(mapping);
565 }
566
567 /*
568 * Clear hugetlb-related page reserves for children. This only
569 * affects MAP_PRIVATE mappings. Faults generated by the child
570 * are not guaranteed to succeed, even if read-only
571 */
572 if (is_vm_hugetlb_page(tmp))
573 reset_vma_resv_huge_pages(tmp);
574
575 /*
576 * Link in the new vma and copy the page table entries.
577 */
578 *pprev = tmp;
579 pprev = &tmp->vm_next;
580 tmp->vm_prev = prev;
581 prev = tmp;
582
583 __vma_link_rb(mm, tmp, rb_link, rb_parent);
584 rb_link = &tmp->vm_rb.rb_right;
585 rb_parent = &tmp->vm_rb;
586
587 mm->map_count++;
588 if (!(tmp->vm_flags & VM_WIPEONFORK))
589 retval = copy_page_range(mm, oldmm, mpnt);
590
591 if (tmp->vm_ops && tmp->vm_ops->open)
592 tmp->vm_ops->open(tmp);
593
594 if (retval)
595 goto out;
596 }
597 /* a new mm has just been created */
598 retval = arch_dup_mmap(oldmm, mm);
599 out:
600 up_write(&mm->mmap_sem);
601 flush_tlb_mm(oldmm);
602 up_write(&oldmm->mmap_sem);
603 dup_userfaultfd_complete(&uf);
604 fail_uprobe_end:
605 uprobe_end_dup_mmap();
606 return retval;
607 fail_nomem_anon_vma_fork:
608 mpol_put(vma_policy(tmp));
609 fail_nomem_policy:
610 vm_area_free(tmp);
611 fail_nomem:
612 retval = -ENOMEM;
613 vm_unacct_memory(charge);
614 goto out;
615 }
616
617 static inline int mm_alloc_pgd(struct mm_struct *mm)
618 {
619 mm->pgd = pgd_alloc(mm);
620 if (unlikely(!mm->pgd))
621 return -ENOMEM;
622 return 0;
623 }
624
625 static inline void mm_free_pgd(struct mm_struct *mm)
626 {
627 pgd_free(mm, mm->pgd);
628 }
629 #else
630 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
631 {
632 down_write(&oldmm->mmap_sem);
633 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
634 up_write(&oldmm->mmap_sem);
635 return 0;
636 }
637 #define mm_alloc_pgd(mm) (0)
638 #define mm_free_pgd(mm)
639 #endif /* CONFIG_MMU */
640
641 static void check_mm(struct mm_struct *mm)
642 {
643 int i;
644
645 for (i = 0; i < NR_MM_COUNTERS; i++) {
646 long x = atomic_long_read(&mm->rss_stat.count[i]);
647
648 if (unlikely(x))
649 printk(KERN_ALERT "BUG: Bad rss-counter state "
650 "mm:%p idx:%d val:%ld\n", mm, i, x);
651 }
652
653 if (mm_pgtables_bytes(mm))
654 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
655 mm_pgtables_bytes(mm));
656
657 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
658 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
659 #endif
660 }
661
662 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
663 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
664
665 /*
666 * Called when the last reference to the mm
667 * is dropped: either by a lazy thread or by
668 * mmput. Free the page directory and the mm.
669 */
670 void __mmdrop(struct mm_struct *mm)
671 {
672 BUG_ON(mm == &init_mm);
673 WARN_ON_ONCE(mm == current->mm);
674 WARN_ON_ONCE(mm == current->active_mm);
675 mm_free_pgd(mm);
676 destroy_context(mm);
677 hmm_mm_destroy(mm);
678 mmu_notifier_mm_destroy(mm);
679 check_mm(mm);
680 put_user_ns(mm->user_ns);
681 free_mm(mm);
682 }
683 EXPORT_SYMBOL_GPL(__mmdrop);
684
685 static void mmdrop_async_fn(struct work_struct *work)
686 {
687 struct mm_struct *mm;
688
689 mm = container_of(work, struct mm_struct, async_put_work);
690 __mmdrop(mm);
691 }
692
693 static void mmdrop_async(struct mm_struct *mm)
694 {
695 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
696 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
697 schedule_work(&mm->async_put_work);
698 }
699 }
700
701 static inline void free_signal_struct(struct signal_struct *sig)
702 {
703 taskstats_tgid_free(sig);
704 sched_autogroup_exit(sig);
705 /*
706 * __mmdrop is not safe to call from softirq context on x86 due to
707 * pgd_dtor so postpone it to the async context
708 */
709 if (sig->oom_mm)
710 mmdrop_async(sig->oom_mm);
711 kmem_cache_free(signal_cachep, sig);
712 }
713
714 static inline void put_signal_struct(struct signal_struct *sig)
715 {
716 if (refcount_dec_and_test(&sig->sigcnt))
717 free_signal_struct(sig);
718 }
719
720 void __put_task_struct(struct task_struct *tsk)
721 {
722 WARN_ON(!tsk->exit_state);
723 WARN_ON(refcount_read(&tsk->usage));
724 WARN_ON(tsk == current);
725
726 cgroup_free(tsk);
727 task_numa_free(tsk);
728 security_task_free(tsk);
729 exit_creds(tsk);
730 delayacct_tsk_free(tsk);
731 put_signal_struct(tsk->signal);
732
733 if (!profile_handoff_task(tsk))
734 free_task(tsk);
735 }
736 EXPORT_SYMBOL_GPL(__put_task_struct);
737
738 void __init __weak arch_task_cache_init(void) { }
739
740 /*
741 * set_max_threads
742 */
743 static void set_max_threads(unsigned int max_threads_suggested)
744 {
745 u64 threads;
746 unsigned long nr_pages = totalram_pages();
747
748 /*
749 * The number of threads shall be limited such that the thread
750 * structures may only consume a small part of the available memory.
751 */
752 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
753 threads = MAX_THREADS;
754 else
755 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
756 (u64) THREAD_SIZE * 8UL);
757
758 if (threads > max_threads_suggested)
759 threads = max_threads_suggested;
760
761 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
762 }
763
764 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
765 /* Initialized by the architecture: */
766 int arch_task_struct_size __read_mostly;
767 #endif
768
769 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
770 {
771 /* Fetch thread_struct whitelist for the architecture. */
772 arch_thread_struct_whitelist(offset, size);
773
774 /*
775 * Handle zero-sized whitelist or empty thread_struct, otherwise
776 * adjust offset to position of thread_struct in task_struct.
777 */
778 if (unlikely(*size == 0))
779 *offset = 0;
780 else
781 *offset += offsetof(struct task_struct, thread);
782 }
783
784 void __init fork_init(void)
785 {
786 int i;
787 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
788 #ifndef ARCH_MIN_TASKALIGN
789 #define ARCH_MIN_TASKALIGN 0
790 #endif
791 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
792 unsigned long useroffset, usersize;
793
794 /* create a slab on which task_structs can be allocated */
795 task_struct_whitelist(&useroffset, &usersize);
796 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
797 arch_task_struct_size, align,
798 SLAB_PANIC|SLAB_ACCOUNT,
799 useroffset, usersize, NULL);
800 #endif
801
802 /* do the arch specific task caches init */
803 arch_task_cache_init();
804
805 set_max_threads(MAX_THREADS);
806
807 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
808 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
809 init_task.signal->rlim[RLIMIT_SIGPENDING] =
810 init_task.signal->rlim[RLIMIT_NPROC];
811
812 for (i = 0; i < UCOUNT_COUNTS; i++) {
813 init_user_ns.ucount_max[i] = max_threads/2;
814 }
815
816 #ifdef CONFIG_VMAP_STACK
817 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
818 NULL, free_vm_stack_cache);
819 #endif
820
821 lockdep_init_task(&init_task);
822 }
823
824 int __weak arch_dup_task_struct(struct task_struct *dst,
825 struct task_struct *src)
826 {
827 *dst = *src;
828 return 0;
829 }
830
831 void set_task_stack_end_magic(struct task_struct *tsk)
832 {
833 unsigned long *stackend;
834
835 stackend = end_of_stack(tsk);
836 *stackend = STACK_END_MAGIC; /* for overflow detection */
837 }
838
839 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
840 {
841 struct task_struct *tsk;
842 unsigned long *stack;
843 struct vm_struct *stack_vm_area __maybe_unused;
844 int err;
845
846 if (node == NUMA_NO_NODE)
847 node = tsk_fork_get_node(orig);
848 tsk = alloc_task_struct_node(node);
849 if (!tsk)
850 return NULL;
851
852 stack = alloc_thread_stack_node(tsk, node);
853 if (!stack)
854 goto free_tsk;
855
856 if (memcg_charge_kernel_stack(tsk))
857 goto free_stack;
858
859 stack_vm_area = task_stack_vm_area(tsk);
860
861 err = arch_dup_task_struct(tsk, orig);
862
863 /*
864 * arch_dup_task_struct() clobbers the stack-related fields. Make
865 * sure they're properly initialized before using any stack-related
866 * functions again.
867 */
868 tsk->stack = stack;
869 #ifdef CONFIG_VMAP_STACK
870 tsk->stack_vm_area = stack_vm_area;
871 #endif
872 #ifdef CONFIG_THREAD_INFO_IN_TASK
873 refcount_set(&tsk->stack_refcount, 1);
874 #endif
875
876 if (err)
877 goto free_stack;
878
879 #ifdef CONFIG_SECCOMP
880 /*
881 * We must handle setting up seccomp filters once we're under
882 * the sighand lock in case orig has changed between now and
883 * then. Until then, filter must be NULL to avoid messing up
884 * the usage counts on the error path calling free_task.
885 */
886 tsk->seccomp.filter = NULL;
887 #endif
888
889 setup_thread_stack(tsk, orig);
890 clear_user_return_notifier(tsk);
891 clear_tsk_need_resched(tsk);
892 set_task_stack_end_magic(tsk);
893
894 #ifdef CONFIG_STACKPROTECTOR
895 tsk->stack_canary = get_random_canary();
896 #endif
897
898 /*
899 * One for us, one for whoever does the "release_task()" (usually
900 * parent)
901 */
902 refcount_set(&tsk->usage, 2);
903 #ifdef CONFIG_BLK_DEV_IO_TRACE
904 tsk->btrace_seq = 0;
905 #endif
906 tsk->splice_pipe = NULL;
907 tsk->task_frag.page = NULL;
908 tsk->wake_q.next = NULL;
909
910 account_kernel_stack(tsk, 1);
911
912 kcov_task_init(tsk);
913
914 #ifdef CONFIG_FAULT_INJECTION
915 tsk->fail_nth = 0;
916 #endif
917
918 #ifdef CONFIG_BLK_CGROUP
919 tsk->throttle_queue = NULL;
920 tsk->use_memdelay = 0;
921 #endif
922
923 #ifdef CONFIG_MEMCG
924 tsk->active_memcg = NULL;
925 #endif
926 return tsk;
927
928 free_stack:
929 free_thread_stack(tsk);
930 free_tsk:
931 free_task_struct(tsk);
932 return NULL;
933 }
934
935 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
936
937 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
938
939 static int __init coredump_filter_setup(char *s)
940 {
941 default_dump_filter =
942 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
943 MMF_DUMP_FILTER_MASK;
944 return 1;
945 }
946
947 __setup("coredump_filter=", coredump_filter_setup);
948
949 #include <linux/init_task.h>
950
951 static void mm_init_aio(struct mm_struct *mm)
952 {
953 #ifdef CONFIG_AIO
954 spin_lock_init(&mm->ioctx_lock);
955 mm->ioctx_table = NULL;
956 #endif
957 }
958
959 static __always_inline void mm_clear_owner(struct mm_struct *mm,
960 struct task_struct *p)
961 {
962 #ifdef CONFIG_MEMCG
963 if (mm->owner == p)
964 WRITE_ONCE(mm->owner, NULL);
965 #endif
966 }
967
968 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
969 {
970 #ifdef CONFIG_MEMCG
971 mm->owner = p;
972 #endif
973 }
974
975 static void mm_init_uprobes_state(struct mm_struct *mm)
976 {
977 #ifdef CONFIG_UPROBES
978 mm->uprobes_state.xol_area = NULL;
979 #endif
980 }
981
982 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
983 struct user_namespace *user_ns)
984 {
985 mm->mmap = NULL;
986 mm->mm_rb = RB_ROOT;
987 mm->vmacache_seqnum = 0;
988 atomic_set(&mm->mm_users, 1);
989 atomic_set(&mm->mm_count, 1);
990 init_rwsem(&mm->mmap_sem);
991 INIT_LIST_HEAD(&mm->mmlist);
992 mm->core_state = NULL;
993 mm_pgtables_bytes_init(mm);
994 mm->map_count = 0;
995 mm->locked_vm = 0;
996 atomic64_set(&mm->pinned_vm, 0);
997 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
998 spin_lock_init(&mm->page_table_lock);
999 spin_lock_init(&mm->arg_lock);
1000 mm_init_cpumask(mm);
1001 mm_init_aio(mm);
1002 mm_init_owner(mm, p);
1003 RCU_INIT_POINTER(mm->exe_file, NULL);
1004 mmu_notifier_mm_init(mm);
1005 hmm_mm_init(mm);
1006 init_tlb_flush_pending(mm);
1007 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1008 mm->pmd_huge_pte = NULL;
1009 #endif
1010 mm_init_uprobes_state(mm);
1011
1012 if (current->mm) {
1013 mm->flags = current->mm->flags & MMF_INIT_MASK;
1014 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1015 } else {
1016 mm->flags = default_dump_filter;
1017 mm->def_flags = 0;
1018 }
1019
1020 if (mm_alloc_pgd(mm))
1021 goto fail_nopgd;
1022
1023 if (init_new_context(p, mm))
1024 goto fail_nocontext;
1025
1026 mm->user_ns = get_user_ns(user_ns);
1027 return mm;
1028
1029 fail_nocontext:
1030 mm_free_pgd(mm);
1031 fail_nopgd:
1032 free_mm(mm);
1033 return NULL;
1034 }
1035
1036 /*
1037 * Allocate and initialize an mm_struct.
1038 */
1039 struct mm_struct *mm_alloc(void)
1040 {
1041 struct mm_struct *mm;
1042
1043 mm = allocate_mm();
1044 if (!mm)
1045 return NULL;
1046
1047 memset(mm, 0, sizeof(*mm));
1048 return mm_init(mm, current, current_user_ns());
1049 }
1050
1051 static inline void __mmput(struct mm_struct *mm)
1052 {
1053 VM_BUG_ON(atomic_read(&mm->mm_users));
1054
1055 uprobe_clear_state(mm);
1056 exit_aio(mm);
1057 ksm_exit(mm);
1058 khugepaged_exit(mm); /* must run before exit_mmap */
1059 exit_mmap(mm);
1060 mm_put_huge_zero_page(mm);
1061 set_mm_exe_file(mm, NULL);
1062 if (!list_empty(&mm->mmlist)) {
1063 spin_lock(&mmlist_lock);
1064 list_del(&mm->mmlist);
1065 spin_unlock(&mmlist_lock);
1066 }
1067 if (mm->binfmt)
1068 module_put(mm->binfmt->module);
1069 mmdrop(mm);
1070 }
1071
1072 /*
1073 * Decrement the use count and release all resources for an mm.
1074 */
1075 void mmput(struct mm_struct *mm)
1076 {
1077 might_sleep();
1078
1079 if (atomic_dec_and_test(&mm->mm_users))
1080 __mmput(mm);
1081 }
1082 EXPORT_SYMBOL_GPL(mmput);
1083
1084 #ifdef CONFIG_MMU
1085 static void mmput_async_fn(struct work_struct *work)
1086 {
1087 struct mm_struct *mm = container_of(work, struct mm_struct,
1088 async_put_work);
1089
1090 __mmput(mm);
1091 }
1092
1093 void mmput_async(struct mm_struct *mm)
1094 {
1095 if (atomic_dec_and_test(&mm->mm_users)) {
1096 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1097 schedule_work(&mm->async_put_work);
1098 }
1099 }
1100 #endif
1101
1102 /**
1103 * set_mm_exe_file - change a reference to the mm's executable file
1104 *
1105 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1106 *
1107 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1108 * invocations: in mmput() nobody alive left, in execve task is single
1109 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1110 * mm->exe_file, but does so without using set_mm_exe_file() in order
1111 * to do avoid the need for any locks.
1112 */
1113 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1114 {
1115 struct file *old_exe_file;
1116
1117 /*
1118 * It is safe to dereference the exe_file without RCU as
1119 * this function is only called if nobody else can access
1120 * this mm -- see comment above for justification.
1121 */
1122 old_exe_file = rcu_dereference_raw(mm->exe_file);
1123
1124 if (new_exe_file)
1125 get_file(new_exe_file);
1126 rcu_assign_pointer(mm->exe_file, new_exe_file);
1127 if (old_exe_file)
1128 fput(old_exe_file);
1129 }
1130
1131 /**
1132 * get_mm_exe_file - acquire a reference to the mm's executable file
1133 *
1134 * Returns %NULL if mm has no associated executable file.
1135 * User must release file via fput().
1136 */
1137 struct file *get_mm_exe_file(struct mm_struct *mm)
1138 {
1139 struct file *exe_file;
1140
1141 rcu_read_lock();
1142 exe_file = rcu_dereference(mm->exe_file);
1143 if (exe_file && !get_file_rcu(exe_file))
1144 exe_file = NULL;
1145 rcu_read_unlock();
1146 return exe_file;
1147 }
1148 EXPORT_SYMBOL(get_mm_exe_file);
1149
1150 /**
1151 * get_task_exe_file - acquire a reference to the task's executable file
1152 *
1153 * Returns %NULL if task's mm (if any) has no associated executable file or
1154 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1155 * User must release file via fput().
1156 */
1157 struct file *get_task_exe_file(struct task_struct *task)
1158 {
1159 struct file *exe_file = NULL;
1160 struct mm_struct *mm;
1161
1162 task_lock(task);
1163 mm = task->mm;
1164 if (mm) {
1165 if (!(task->flags & PF_KTHREAD))
1166 exe_file = get_mm_exe_file(mm);
1167 }
1168 task_unlock(task);
1169 return exe_file;
1170 }
1171 EXPORT_SYMBOL(get_task_exe_file);
1172
1173 /**
1174 * get_task_mm - acquire a reference to the task's mm
1175 *
1176 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1177 * this kernel workthread has transiently adopted a user mm with use_mm,
1178 * to do its AIO) is not set and if so returns a reference to it, after
1179 * bumping up the use count. User must release the mm via mmput()
1180 * after use. Typically used by /proc and ptrace.
1181 */
1182 struct mm_struct *get_task_mm(struct task_struct *task)
1183 {
1184 struct mm_struct *mm;
1185
1186 task_lock(task);
1187 mm = task->mm;
1188 if (mm) {
1189 if (task->flags & PF_KTHREAD)
1190 mm = NULL;
1191 else
1192 mmget(mm);
1193 }
1194 task_unlock(task);
1195 return mm;
1196 }
1197 EXPORT_SYMBOL_GPL(get_task_mm);
1198
1199 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1200 {
1201 struct mm_struct *mm;
1202 int err;
1203
1204 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1205 if (err)
1206 return ERR_PTR(err);
1207
1208 mm = get_task_mm(task);
1209 if (mm && mm != current->mm &&
1210 !ptrace_may_access(task, mode)) {
1211 mmput(mm);
1212 mm = ERR_PTR(-EACCES);
1213 }
1214 mutex_unlock(&task->signal->cred_guard_mutex);
1215
1216 return mm;
1217 }
1218
1219 static void complete_vfork_done(struct task_struct *tsk)
1220 {
1221 struct completion *vfork;
1222
1223 task_lock(tsk);
1224 vfork = tsk->vfork_done;
1225 if (likely(vfork)) {
1226 tsk->vfork_done = NULL;
1227 complete(vfork);
1228 }
1229 task_unlock(tsk);
1230 }
1231
1232 static int wait_for_vfork_done(struct task_struct *child,
1233 struct completion *vfork)
1234 {
1235 int killed;
1236
1237 freezer_do_not_count();
1238 killed = wait_for_completion_killable(vfork);
1239 freezer_count();
1240
1241 if (killed) {
1242 task_lock(child);
1243 child->vfork_done = NULL;
1244 task_unlock(child);
1245 }
1246
1247 put_task_struct(child);
1248 return killed;
1249 }
1250
1251 /* Please note the differences between mmput and mm_release.
1252 * mmput is called whenever we stop holding onto a mm_struct,
1253 * error success whatever.
1254 *
1255 * mm_release is called after a mm_struct has been removed
1256 * from the current process.
1257 *
1258 * This difference is important for error handling, when we
1259 * only half set up a mm_struct for a new process and need to restore
1260 * the old one. Because we mmput the new mm_struct before
1261 * restoring the old one. . .
1262 * Eric Biederman 10 January 1998
1263 */
1264 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1265 {
1266 /* Get rid of any futexes when releasing the mm */
1267 #ifdef CONFIG_FUTEX
1268 if (unlikely(tsk->robust_list)) {
1269 exit_robust_list(tsk);
1270 tsk->robust_list = NULL;
1271 }
1272 #ifdef CONFIG_COMPAT
1273 if (unlikely(tsk->compat_robust_list)) {
1274 compat_exit_robust_list(tsk);
1275 tsk->compat_robust_list = NULL;
1276 }
1277 #endif
1278 if (unlikely(!list_empty(&tsk->pi_state_list)))
1279 exit_pi_state_list(tsk);
1280 #endif
1281
1282 uprobe_free_utask(tsk);
1283
1284 /* Get rid of any cached register state */
1285 deactivate_mm(tsk, mm);
1286
1287 /*
1288 * Signal userspace if we're not exiting with a core dump
1289 * because we want to leave the value intact for debugging
1290 * purposes.
1291 */
1292 if (tsk->clear_child_tid) {
1293 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1294 atomic_read(&mm->mm_users) > 1) {
1295 /*
1296 * We don't check the error code - if userspace has
1297 * not set up a proper pointer then tough luck.
1298 */
1299 put_user(0, tsk->clear_child_tid);
1300 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1301 1, NULL, NULL, 0, 0);
1302 }
1303 tsk->clear_child_tid = NULL;
1304 }
1305
1306 /*
1307 * All done, finally we can wake up parent and return this mm to him.
1308 * Also kthread_stop() uses this completion for synchronization.
1309 */
1310 if (tsk->vfork_done)
1311 complete_vfork_done(tsk);
1312 }
1313
1314 /*
1315 * Allocate a new mm structure and copy contents from the
1316 * mm structure of the passed in task structure.
1317 */
1318 static struct mm_struct *dup_mm(struct task_struct *tsk)
1319 {
1320 struct mm_struct *mm, *oldmm = current->mm;
1321 int err;
1322
1323 mm = allocate_mm();
1324 if (!mm)
1325 goto fail_nomem;
1326
1327 memcpy(mm, oldmm, sizeof(*mm));
1328
1329 if (!mm_init(mm, tsk, mm->user_ns))
1330 goto fail_nomem;
1331
1332 err = dup_mmap(mm, oldmm);
1333 if (err)
1334 goto free_pt;
1335
1336 mm->hiwater_rss = get_mm_rss(mm);
1337 mm->hiwater_vm = mm->total_vm;
1338
1339 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1340 goto free_pt;
1341
1342 return mm;
1343
1344 free_pt:
1345 /* don't put binfmt in mmput, we haven't got module yet */
1346 mm->binfmt = NULL;
1347 mm_init_owner(mm, NULL);
1348 mmput(mm);
1349
1350 fail_nomem:
1351 return NULL;
1352 }
1353
1354 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1355 {
1356 struct mm_struct *mm, *oldmm;
1357 int retval;
1358
1359 tsk->min_flt = tsk->maj_flt = 0;
1360 tsk->nvcsw = tsk->nivcsw = 0;
1361 #ifdef CONFIG_DETECT_HUNG_TASK
1362 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1363 tsk->last_switch_time = 0;
1364 #endif
1365
1366 tsk->mm = NULL;
1367 tsk->active_mm = NULL;
1368
1369 /*
1370 * Are we cloning a kernel thread?
1371 *
1372 * We need to steal a active VM for that..
1373 */
1374 oldmm = current->mm;
1375 if (!oldmm)
1376 return 0;
1377
1378 /* initialize the new vmacache entries */
1379 vmacache_flush(tsk);
1380
1381 if (clone_flags & CLONE_VM) {
1382 mmget(oldmm);
1383 mm = oldmm;
1384 goto good_mm;
1385 }
1386
1387 retval = -ENOMEM;
1388 mm = dup_mm(tsk);
1389 if (!mm)
1390 goto fail_nomem;
1391
1392 good_mm:
1393 tsk->mm = mm;
1394 tsk->active_mm = mm;
1395 return 0;
1396
1397 fail_nomem:
1398 return retval;
1399 }
1400
1401 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1402 {
1403 struct fs_struct *fs = current->fs;
1404 if (clone_flags & CLONE_FS) {
1405 /* tsk->fs is already what we want */
1406 spin_lock(&fs->lock);
1407 if (fs->in_exec) {
1408 spin_unlock(&fs->lock);
1409 return -EAGAIN;
1410 }
1411 fs->users++;
1412 spin_unlock(&fs->lock);
1413 return 0;
1414 }
1415 tsk->fs = copy_fs_struct(fs);
1416 if (!tsk->fs)
1417 return -ENOMEM;
1418 return 0;
1419 }
1420
1421 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1422 {
1423 struct files_struct *oldf, *newf;
1424 int error = 0;
1425
1426 /*
1427 * A background process may not have any files ...
1428 */
1429 oldf = current->files;
1430 if (!oldf)
1431 goto out;
1432
1433 if (clone_flags & CLONE_FILES) {
1434 atomic_inc(&oldf->count);
1435 goto out;
1436 }
1437
1438 newf = dup_fd(oldf, &error);
1439 if (!newf)
1440 goto out;
1441
1442 tsk->files = newf;
1443 error = 0;
1444 out:
1445 return error;
1446 }
1447
1448 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1449 {
1450 #ifdef CONFIG_BLOCK
1451 struct io_context *ioc = current->io_context;
1452 struct io_context *new_ioc;
1453
1454 if (!ioc)
1455 return 0;
1456 /*
1457 * Share io context with parent, if CLONE_IO is set
1458 */
1459 if (clone_flags & CLONE_IO) {
1460 ioc_task_link(ioc);
1461 tsk->io_context = ioc;
1462 } else if (ioprio_valid(ioc->ioprio)) {
1463 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1464 if (unlikely(!new_ioc))
1465 return -ENOMEM;
1466
1467 new_ioc->ioprio = ioc->ioprio;
1468 put_io_context(new_ioc);
1469 }
1470 #endif
1471 return 0;
1472 }
1473
1474 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1475 {
1476 struct sighand_struct *sig;
1477
1478 if (clone_flags & CLONE_SIGHAND) {
1479 refcount_inc(&current->sighand->count);
1480 return 0;
1481 }
1482 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1483 rcu_assign_pointer(tsk->sighand, sig);
1484 if (!sig)
1485 return -ENOMEM;
1486
1487 refcount_set(&sig->count, 1);
1488 spin_lock_irq(&current->sighand->siglock);
1489 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1490 spin_unlock_irq(&current->sighand->siglock);
1491 return 0;
1492 }
1493
1494 void __cleanup_sighand(struct sighand_struct *sighand)
1495 {
1496 if (refcount_dec_and_test(&sighand->count)) {
1497 signalfd_cleanup(sighand);
1498 /*
1499 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1500 * without an RCU grace period, see __lock_task_sighand().
1501 */
1502 kmem_cache_free(sighand_cachep, sighand);
1503 }
1504 }
1505
1506 #ifdef CONFIG_POSIX_TIMERS
1507 /*
1508 * Initialize POSIX timer handling for a thread group.
1509 */
1510 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1511 {
1512 unsigned long cpu_limit;
1513
1514 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1515 if (cpu_limit != RLIM_INFINITY) {
1516 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1517 sig->cputimer.running = true;
1518 }
1519
1520 /* The timer lists. */
1521 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1522 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1523 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1524 }
1525 #else
1526 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1527 #endif
1528
1529 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1530 {
1531 struct signal_struct *sig;
1532
1533 if (clone_flags & CLONE_THREAD)
1534 return 0;
1535
1536 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1537 tsk->signal = sig;
1538 if (!sig)
1539 return -ENOMEM;
1540
1541 sig->nr_threads = 1;
1542 atomic_set(&sig->live, 1);
1543 refcount_set(&sig->sigcnt, 1);
1544
1545 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1546 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1547 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1548
1549 init_waitqueue_head(&sig->wait_chldexit);
1550 sig->curr_target = tsk;
1551 init_sigpending(&sig->shared_pending);
1552 INIT_HLIST_HEAD(&sig->multiprocess);
1553 seqlock_init(&sig->stats_lock);
1554 prev_cputime_init(&sig->prev_cputime);
1555
1556 #ifdef CONFIG_POSIX_TIMERS
1557 INIT_LIST_HEAD(&sig->posix_timers);
1558 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1559 sig->real_timer.function = it_real_fn;
1560 #endif
1561
1562 task_lock(current->group_leader);
1563 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1564 task_unlock(current->group_leader);
1565
1566 posix_cpu_timers_init_group(sig);
1567
1568 tty_audit_fork(sig);
1569 sched_autogroup_fork(sig);
1570
1571 sig->oom_score_adj = current->signal->oom_score_adj;
1572 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1573
1574 mutex_init(&sig->cred_guard_mutex);
1575
1576 return 0;
1577 }
1578
1579 static void copy_seccomp(struct task_struct *p)
1580 {
1581 #ifdef CONFIG_SECCOMP
1582 /*
1583 * Must be called with sighand->lock held, which is common to
1584 * all threads in the group. Holding cred_guard_mutex is not
1585 * needed because this new task is not yet running and cannot
1586 * be racing exec.
1587 */
1588 assert_spin_locked(&current->sighand->siglock);
1589
1590 /* Ref-count the new filter user, and assign it. */
1591 get_seccomp_filter(current);
1592 p->seccomp = current->seccomp;
1593
1594 /*
1595 * Explicitly enable no_new_privs here in case it got set
1596 * between the task_struct being duplicated and holding the
1597 * sighand lock. The seccomp state and nnp must be in sync.
1598 */
1599 if (task_no_new_privs(current))
1600 task_set_no_new_privs(p);
1601
1602 /*
1603 * If the parent gained a seccomp mode after copying thread
1604 * flags and between before we held the sighand lock, we have
1605 * to manually enable the seccomp thread flag here.
1606 */
1607 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1608 set_tsk_thread_flag(p, TIF_SECCOMP);
1609 #endif
1610 }
1611
1612 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1613 {
1614 current->clear_child_tid = tidptr;
1615
1616 return task_pid_vnr(current);
1617 }
1618
1619 static void rt_mutex_init_task(struct task_struct *p)
1620 {
1621 raw_spin_lock_init(&p->pi_lock);
1622 #ifdef CONFIG_RT_MUTEXES
1623 p->pi_waiters = RB_ROOT_CACHED;
1624 p->pi_top_task = NULL;
1625 p->pi_blocked_on = NULL;
1626 #endif
1627 }
1628
1629 #ifdef CONFIG_POSIX_TIMERS
1630 /*
1631 * Initialize POSIX timer handling for a single task.
1632 */
1633 static void posix_cpu_timers_init(struct task_struct *tsk)
1634 {
1635 tsk->cputime_expires.prof_exp = 0;
1636 tsk->cputime_expires.virt_exp = 0;
1637 tsk->cputime_expires.sched_exp = 0;
1638 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1639 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1640 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1641 }
1642 #else
1643 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1644 #endif
1645
1646 static inline void init_task_pid_links(struct task_struct *task)
1647 {
1648 enum pid_type type;
1649
1650 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1651 INIT_HLIST_NODE(&task->pid_links[type]);
1652 }
1653 }
1654
1655 static inline void
1656 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1657 {
1658 if (type == PIDTYPE_PID)
1659 task->thread_pid = pid;
1660 else
1661 task->signal->pids[type] = pid;
1662 }
1663
1664 static inline void rcu_copy_process(struct task_struct *p)
1665 {
1666 #ifdef CONFIG_PREEMPT_RCU
1667 p->rcu_read_lock_nesting = 0;
1668 p->rcu_read_unlock_special.s = 0;
1669 p->rcu_blocked_node = NULL;
1670 INIT_LIST_HEAD(&p->rcu_node_entry);
1671 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1672 #ifdef CONFIG_TASKS_RCU
1673 p->rcu_tasks_holdout = false;
1674 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1675 p->rcu_tasks_idle_cpu = -1;
1676 #endif /* #ifdef CONFIG_TASKS_RCU */
1677 }
1678
1679 static void __delayed_free_task(struct rcu_head *rhp)
1680 {
1681 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1682
1683 free_task(tsk);
1684 }
1685
1686 static __always_inline void delayed_free_task(struct task_struct *tsk)
1687 {
1688 if (IS_ENABLED(CONFIG_MEMCG))
1689 call_rcu(&tsk->rcu, __delayed_free_task);
1690 else
1691 free_task(tsk);
1692 }
1693
1694 /*
1695 * This creates a new process as a copy of the old one,
1696 * but does not actually start it yet.
1697 *
1698 * It copies the registers, and all the appropriate
1699 * parts of the process environment (as per the clone
1700 * flags). The actual kick-off is left to the caller.
1701 */
1702 static __latent_entropy struct task_struct *copy_process(
1703 unsigned long clone_flags,
1704 unsigned long stack_start,
1705 unsigned long stack_size,
1706 int __user *child_tidptr,
1707 struct pid *pid,
1708 int trace,
1709 unsigned long tls,
1710 int node)
1711 {
1712 int retval;
1713 struct task_struct *p;
1714 struct multiprocess_signals delayed;
1715
1716 /*
1717 * Don't allow sharing the root directory with processes in a different
1718 * namespace
1719 */
1720 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1721 return ERR_PTR(-EINVAL);
1722
1723 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1724 return ERR_PTR(-EINVAL);
1725
1726 /*
1727 * Thread groups must share signals as well, and detached threads
1728 * can only be started up within the thread group.
1729 */
1730 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1731 return ERR_PTR(-EINVAL);
1732
1733 /*
1734 * Shared signal handlers imply shared VM. By way of the above,
1735 * thread groups also imply shared VM. Blocking this case allows
1736 * for various simplifications in other code.
1737 */
1738 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1739 return ERR_PTR(-EINVAL);
1740
1741 /*
1742 * Siblings of global init remain as zombies on exit since they are
1743 * not reaped by their parent (swapper). To solve this and to avoid
1744 * multi-rooted process trees, prevent global and container-inits
1745 * from creating siblings.
1746 */
1747 if ((clone_flags & CLONE_PARENT) &&
1748 current->signal->flags & SIGNAL_UNKILLABLE)
1749 return ERR_PTR(-EINVAL);
1750
1751 /*
1752 * If the new process will be in a different pid or user namespace
1753 * do not allow it to share a thread group with the forking task.
1754 */
1755 if (clone_flags & CLONE_THREAD) {
1756 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1757 (task_active_pid_ns(current) !=
1758 current->nsproxy->pid_ns_for_children))
1759 return ERR_PTR(-EINVAL);
1760 }
1761
1762 /*
1763 * Force any signals received before this point to be delivered
1764 * before the fork happens. Collect up signals sent to multiple
1765 * processes that happen during the fork and delay them so that
1766 * they appear to happen after the fork.
1767 */
1768 sigemptyset(&delayed.signal);
1769 INIT_HLIST_NODE(&delayed.node);
1770
1771 spin_lock_irq(&current->sighand->siglock);
1772 if (!(clone_flags & CLONE_THREAD))
1773 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1774 recalc_sigpending();
1775 spin_unlock_irq(&current->sighand->siglock);
1776 retval = -ERESTARTNOINTR;
1777 if (signal_pending(current))
1778 goto fork_out;
1779
1780 retval = -ENOMEM;
1781 p = dup_task_struct(current, node);
1782 if (!p)
1783 goto fork_out;
1784
1785 /*
1786 * This _must_ happen before we call free_task(), i.e. before we jump
1787 * to any of the bad_fork_* labels. This is to avoid freeing
1788 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1789 * kernel threads (PF_KTHREAD).
1790 */
1791 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1792 /*
1793 * Clear TID on mm_release()?
1794 */
1795 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1796
1797 ftrace_graph_init_task(p);
1798
1799 rt_mutex_init_task(p);
1800
1801 #ifdef CONFIG_PROVE_LOCKING
1802 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1803 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1804 #endif
1805 retval = -EAGAIN;
1806 if (atomic_read(&p->real_cred->user->processes) >=
1807 task_rlimit(p, RLIMIT_NPROC)) {
1808 if (p->real_cred->user != INIT_USER &&
1809 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1810 goto bad_fork_free;
1811 }
1812 current->flags &= ~PF_NPROC_EXCEEDED;
1813
1814 retval = copy_creds(p, clone_flags);
1815 if (retval < 0)
1816 goto bad_fork_free;
1817
1818 /*
1819 * If multiple threads are within copy_process(), then this check
1820 * triggers too late. This doesn't hurt, the check is only there
1821 * to stop root fork bombs.
1822 */
1823 retval = -EAGAIN;
1824 if (nr_threads >= max_threads)
1825 goto bad_fork_cleanup_count;
1826
1827 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1828 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1829 p->flags |= PF_FORKNOEXEC;
1830 INIT_LIST_HEAD(&p->children);
1831 INIT_LIST_HEAD(&p->sibling);
1832 rcu_copy_process(p);
1833 p->vfork_done = NULL;
1834 spin_lock_init(&p->alloc_lock);
1835
1836 init_sigpending(&p->pending);
1837
1838 p->utime = p->stime = p->gtime = 0;
1839 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1840 p->utimescaled = p->stimescaled = 0;
1841 #endif
1842 prev_cputime_init(&p->prev_cputime);
1843
1844 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1845 seqcount_init(&p->vtime.seqcount);
1846 p->vtime.starttime = 0;
1847 p->vtime.state = VTIME_INACTIVE;
1848 #endif
1849
1850 #if defined(SPLIT_RSS_COUNTING)
1851 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1852 #endif
1853
1854 p->default_timer_slack_ns = current->timer_slack_ns;
1855
1856 #ifdef CONFIG_PSI
1857 p->psi_flags = 0;
1858 #endif
1859
1860 task_io_accounting_init(&p->ioac);
1861 acct_clear_integrals(p);
1862
1863 posix_cpu_timers_init(p);
1864
1865 p->io_context = NULL;
1866 audit_set_context(p, NULL);
1867 cgroup_fork(p);
1868 #ifdef CONFIG_NUMA
1869 p->mempolicy = mpol_dup(p->mempolicy);
1870 if (IS_ERR(p->mempolicy)) {
1871 retval = PTR_ERR(p->mempolicy);
1872 p->mempolicy = NULL;
1873 goto bad_fork_cleanup_threadgroup_lock;
1874 }
1875 #endif
1876 #ifdef CONFIG_CPUSETS
1877 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1878 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1879 seqcount_init(&p->mems_allowed_seq);
1880 #endif
1881 #ifdef CONFIG_TRACE_IRQFLAGS
1882 p->irq_events = 0;
1883 p->hardirqs_enabled = 0;
1884 p->hardirq_enable_ip = 0;
1885 p->hardirq_enable_event = 0;
1886 p->hardirq_disable_ip = _THIS_IP_;
1887 p->hardirq_disable_event = 0;
1888 p->softirqs_enabled = 1;
1889 p->softirq_enable_ip = _THIS_IP_;
1890 p->softirq_enable_event = 0;
1891 p->softirq_disable_ip = 0;
1892 p->softirq_disable_event = 0;
1893 p->hardirq_context = 0;
1894 p->softirq_context = 0;
1895 #endif
1896
1897 p->pagefault_disabled = 0;
1898
1899 #ifdef CONFIG_LOCKDEP
1900 p->lockdep_depth = 0; /* no locks held yet */
1901 p->curr_chain_key = 0;
1902 p->lockdep_recursion = 0;
1903 lockdep_init_task(p);
1904 #endif
1905
1906 #ifdef CONFIG_DEBUG_MUTEXES
1907 p->blocked_on = NULL; /* not blocked yet */
1908 #endif
1909 #ifdef CONFIG_BCACHE
1910 p->sequential_io = 0;
1911 p->sequential_io_avg = 0;
1912 #endif
1913
1914 /* Perform scheduler related setup. Assign this task to a CPU. */
1915 retval = sched_fork(clone_flags, p);
1916 if (retval)
1917 goto bad_fork_cleanup_policy;
1918
1919 retval = perf_event_init_task(p);
1920 if (retval)
1921 goto bad_fork_cleanup_policy;
1922 retval = audit_alloc(p);
1923 if (retval)
1924 goto bad_fork_cleanup_perf;
1925 /* copy all the process information */
1926 shm_init_task(p);
1927 retval = security_task_alloc(p, clone_flags);
1928 if (retval)
1929 goto bad_fork_cleanup_audit;
1930 retval = copy_semundo(clone_flags, p);
1931 if (retval)
1932 goto bad_fork_cleanup_security;
1933 retval = copy_files(clone_flags, p);
1934 if (retval)
1935 goto bad_fork_cleanup_semundo;
1936 retval = copy_fs(clone_flags, p);
1937 if (retval)
1938 goto bad_fork_cleanup_files;
1939 retval = copy_sighand(clone_flags, p);
1940 if (retval)
1941 goto bad_fork_cleanup_fs;
1942 retval = copy_signal(clone_flags, p);
1943 if (retval)
1944 goto bad_fork_cleanup_sighand;
1945 retval = copy_mm(clone_flags, p);
1946 if (retval)
1947 goto bad_fork_cleanup_signal;
1948 retval = copy_namespaces(clone_flags, p);
1949 if (retval)
1950 goto bad_fork_cleanup_mm;
1951 retval = copy_io(clone_flags, p);
1952 if (retval)
1953 goto bad_fork_cleanup_namespaces;
1954 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1955 if (retval)
1956 goto bad_fork_cleanup_io;
1957
1958 stackleak_task_init(p);
1959
1960 if (pid != &init_struct_pid) {
1961 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1962 if (IS_ERR(pid)) {
1963 retval = PTR_ERR(pid);
1964 goto bad_fork_cleanup_thread;
1965 }
1966 }
1967
1968 #ifdef CONFIG_BLOCK
1969 p->plug = NULL;
1970 #endif
1971 #ifdef CONFIG_FUTEX
1972 p->robust_list = NULL;
1973 #ifdef CONFIG_COMPAT
1974 p->compat_robust_list = NULL;
1975 #endif
1976 INIT_LIST_HEAD(&p->pi_state_list);
1977 p->pi_state_cache = NULL;
1978 #endif
1979 /*
1980 * sigaltstack should be cleared when sharing the same VM
1981 */
1982 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1983 sas_ss_reset(p);
1984
1985 /*
1986 * Syscall tracing and stepping should be turned off in the
1987 * child regardless of CLONE_PTRACE.
1988 */
1989 user_disable_single_step(p);
1990 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1991 #ifdef TIF_SYSCALL_EMU
1992 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1993 #endif
1994 clear_all_latency_tracing(p);
1995
1996 /* ok, now we should be set up.. */
1997 p->pid = pid_nr(pid);
1998 if (clone_flags & CLONE_THREAD) {
1999 p->exit_signal = -1;
2000 p->group_leader = current->group_leader;
2001 p->tgid = current->tgid;
2002 } else {
2003 if (clone_flags & CLONE_PARENT)
2004 p->exit_signal = current->group_leader->exit_signal;
2005 else
2006 p->exit_signal = (clone_flags & CSIGNAL);
2007 p->group_leader = p;
2008 p->tgid = p->pid;
2009 }
2010
2011 p->nr_dirtied = 0;
2012 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2013 p->dirty_paused_when = 0;
2014
2015 p->pdeath_signal = 0;
2016 INIT_LIST_HEAD(&p->thread_group);
2017 p->task_works = NULL;
2018
2019 cgroup_threadgroup_change_begin(current);
2020 /*
2021 * Ensure that the cgroup subsystem policies allow the new process to be
2022 * forked. It should be noted the the new process's css_set can be changed
2023 * between here and cgroup_post_fork() if an organisation operation is in
2024 * progress.
2025 */
2026 retval = cgroup_can_fork(p);
2027 if (retval)
2028 goto bad_fork_free_pid;
2029
2030 /*
2031 * From this point on we must avoid any synchronous user-space
2032 * communication until we take the tasklist-lock. In particular, we do
2033 * not want user-space to be able to predict the process start-time by
2034 * stalling fork(2) after we recorded the start_time but before it is
2035 * visible to the system.
2036 */
2037
2038 p->start_time = ktime_get_ns();
2039 p->real_start_time = ktime_get_boot_ns();
2040
2041 /*
2042 * Make it visible to the rest of the system, but dont wake it up yet.
2043 * Need tasklist lock for parent etc handling!
2044 */
2045 write_lock_irq(&tasklist_lock);
2046
2047 /* CLONE_PARENT re-uses the old parent */
2048 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2049 p->real_parent = current->real_parent;
2050 p->parent_exec_id = current->parent_exec_id;
2051 } else {
2052 p->real_parent = current;
2053 p->parent_exec_id = current->self_exec_id;
2054 }
2055
2056 klp_copy_process(p);
2057
2058 spin_lock(&current->sighand->siglock);
2059
2060 /*
2061 * Copy seccomp details explicitly here, in case they were changed
2062 * before holding sighand lock.
2063 */
2064 copy_seccomp(p);
2065
2066 rseq_fork(p, clone_flags);
2067
2068 /* Don't start children in a dying pid namespace */
2069 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2070 retval = -ENOMEM;
2071 goto bad_fork_cancel_cgroup;
2072 }
2073
2074 /* Let kill terminate clone/fork in the middle */
2075 if (fatal_signal_pending(current)) {
2076 retval = -EINTR;
2077 goto bad_fork_cancel_cgroup;
2078 }
2079
2080
2081 init_task_pid_links(p);
2082 if (likely(p->pid)) {
2083 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2084
2085 init_task_pid(p, PIDTYPE_PID, pid);
2086 if (thread_group_leader(p)) {
2087 init_task_pid(p, PIDTYPE_TGID, pid);
2088 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2089 init_task_pid(p, PIDTYPE_SID, task_session(current));
2090
2091 if (is_child_reaper(pid)) {
2092 ns_of_pid(pid)->child_reaper = p;
2093 p->signal->flags |= SIGNAL_UNKILLABLE;
2094 }
2095 p->signal->shared_pending.signal = delayed.signal;
2096 p->signal->tty = tty_kref_get(current->signal->tty);
2097 /*
2098 * Inherit has_child_subreaper flag under the same
2099 * tasklist_lock with adding child to the process tree
2100 * for propagate_has_child_subreaper optimization.
2101 */
2102 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2103 p->real_parent->signal->is_child_subreaper;
2104 list_add_tail(&p->sibling, &p->real_parent->children);
2105 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2106 attach_pid(p, PIDTYPE_TGID);
2107 attach_pid(p, PIDTYPE_PGID);
2108 attach_pid(p, PIDTYPE_SID);
2109 __this_cpu_inc(process_counts);
2110 } else {
2111 current->signal->nr_threads++;
2112 atomic_inc(&current->signal->live);
2113 refcount_inc(&current->signal->sigcnt);
2114 task_join_group_stop(p);
2115 list_add_tail_rcu(&p->thread_group,
2116 &p->group_leader->thread_group);
2117 list_add_tail_rcu(&p->thread_node,
2118 &p->signal->thread_head);
2119 }
2120 attach_pid(p, PIDTYPE_PID);
2121 nr_threads++;
2122 }
2123 total_forks++;
2124 hlist_del_init(&delayed.node);
2125 spin_unlock(&current->sighand->siglock);
2126 syscall_tracepoint_update(p);
2127 write_unlock_irq(&tasklist_lock);
2128
2129 proc_fork_connector(p);
2130 cgroup_post_fork(p);
2131 cgroup_threadgroup_change_end(current);
2132 perf_event_fork(p);
2133
2134 trace_task_newtask(p, clone_flags);
2135 uprobe_copy_process(p, clone_flags);
2136
2137 return p;
2138
2139 bad_fork_cancel_cgroup:
2140 spin_unlock(&current->sighand->siglock);
2141 write_unlock_irq(&tasklist_lock);
2142 cgroup_cancel_fork(p);
2143 bad_fork_free_pid:
2144 cgroup_threadgroup_change_end(current);
2145 if (pid != &init_struct_pid)
2146 free_pid(pid);
2147 bad_fork_cleanup_thread:
2148 exit_thread(p);
2149 bad_fork_cleanup_io:
2150 if (p->io_context)
2151 exit_io_context(p);
2152 bad_fork_cleanup_namespaces:
2153 exit_task_namespaces(p);
2154 bad_fork_cleanup_mm:
2155 if (p->mm) {
2156 mm_clear_owner(p->mm, p);
2157 mmput(p->mm);
2158 }
2159 bad_fork_cleanup_signal:
2160 if (!(clone_flags & CLONE_THREAD))
2161 free_signal_struct(p->signal);
2162 bad_fork_cleanup_sighand:
2163 __cleanup_sighand(p->sighand);
2164 bad_fork_cleanup_fs:
2165 exit_fs(p); /* blocking */
2166 bad_fork_cleanup_files:
2167 exit_files(p); /* blocking */
2168 bad_fork_cleanup_semundo:
2169 exit_sem(p);
2170 bad_fork_cleanup_security:
2171 security_task_free(p);
2172 bad_fork_cleanup_audit:
2173 audit_free(p);
2174 bad_fork_cleanup_perf:
2175 perf_event_free_task(p);
2176 bad_fork_cleanup_policy:
2177 lockdep_free_task(p);
2178 #ifdef CONFIG_NUMA
2179 mpol_put(p->mempolicy);
2180 bad_fork_cleanup_threadgroup_lock:
2181 #endif
2182 delayacct_tsk_free(p);
2183 bad_fork_cleanup_count:
2184 atomic_dec(&p->cred->user->processes);
2185 exit_creds(p);
2186 bad_fork_free:
2187 p->state = TASK_DEAD;
2188 put_task_stack(p);
2189 delayed_free_task(p);
2190 fork_out:
2191 spin_lock_irq(&current->sighand->siglock);
2192 hlist_del_init(&delayed.node);
2193 spin_unlock_irq(&current->sighand->siglock);
2194 return ERR_PTR(retval);
2195 }
2196
2197 static inline void init_idle_pids(struct task_struct *idle)
2198 {
2199 enum pid_type type;
2200
2201 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2202 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2203 init_task_pid(idle, type, &init_struct_pid);
2204 }
2205 }
2206
2207 struct task_struct *fork_idle(int cpu)
2208 {
2209 struct task_struct *task;
2210 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2211 cpu_to_node(cpu));
2212 if (!IS_ERR(task)) {
2213 init_idle_pids(task);
2214 init_idle(task, cpu);
2215 }
2216
2217 return task;
2218 }
2219
2220 /*
2221 * Ok, this is the main fork-routine.
2222 *
2223 * It copies the process, and if successful kick-starts
2224 * it and waits for it to finish using the VM if required.
2225 */
2226 long _do_fork(unsigned long clone_flags,
2227 unsigned long stack_start,
2228 unsigned long stack_size,
2229 int __user *parent_tidptr,
2230 int __user *child_tidptr,
2231 unsigned long tls)
2232 {
2233 struct completion vfork;
2234 struct pid *pid;
2235 struct task_struct *p;
2236 int trace = 0;
2237 long nr;
2238
2239 /*
2240 * Determine whether and which event to report to ptracer. When
2241 * called from kernel_thread or CLONE_UNTRACED is explicitly
2242 * requested, no event is reported; otherwise, report if the event
2243 * for the type of forking is enabled.
2244 */
2245 if (!(clone_flags & CLONE_UNTRACED)) {
2246 if (clone_flags & CLONE_VFORK)
2247 trace = PTRACE_EVENT_VFORK;
2248 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2249 trace = PTRACE_EVENT_CLONE;
2250 else
2251 trace = PTRACE_EVENT_FORK;
2252
2253 if (likely(!ptrace_event_enabled(current, trace)))
2254 trace = 0;
2255 }
2256
2257 p = copy_process(clone_flags, stack_start, stack_size,
2258 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2259 add_latent_entropy();
2260
2261 if (IS_ERR(p))
2262 return PTR_ERR(p);
2263
2264 /*
2265 * Do this prior waking up the new thread - the thread pointer
2266 * might get invalid after that point, if the thread exits quickly.
2267 */
2268 trace_sched_process_fork(current, p);
2269
2270 pid = get_task_pid(p, PIDTYPE_PID);
2271 nr = pid_vnr(pid);
2272
2273 if (clone_flags & CLONE_PARENT_SETTID)
2274 put_user(nr, parent_tidptr);
2275
2276 if (clone_flags & CLONE_VFORK) {
2277 p->vfork_done = &vfork;
2278 init_completion(&vfork);
2279 get_task_struct(p);
2280 }
2281
2282 wake_up_new_task(p);
2283
2284 /* forking complete and child started to run, tell ptracer */
2285 if (unlikely(trace))
2286 ptrace_event_pid(trace, pid);
2287
2288 if (clone_flags & CLONE_VFORK) {
2289 if (!wait_for_vfork_done(p, &vfork))
2290 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2291 }
2292
2293 put_pid(pid);
2294 return nr;
2295 }
2296
2297 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2298 /* For compatibility with architectures that call do_fork directly rather than
2299 * using the syscall entry points below. */
2300 long do_fork(unsigned long clone_flags,
2301 unsigned long stack_start,
2302 unsigned long stack_size,
2303 int __user *parent_tidptr,
2304 int __user *child_tidptr)
2305 {
2306 return _do_fork(clone_flags, stack_start, stack_size,
2307 parent_tidptr, child_tidptr, 0);
2308 }
2309 #endif
2310
2311 /*
2312 * Create a kernel thread.
2313 */
2314 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2315 {
2316 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2317 (unsigned long)arg, NULL, NULL, 0);
2318 }
2319
2320 #ifdef __ARCH_WANT_SYS_FORK
2321 SYSCALL_DEFINE0(fork)
2322 {
2323 #ifdef CONFIG_MMU
2324 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2325 #else
2326 /* can not support in nommu mode */
2327 return -EINVAL;
2328 #endif
2329 }
2330 #endif
2331
2332 #ifdef __ARCH_WANT_SYS_VFORK
2333 SYSCALL_DEFINE0(vfork)
2334 {
2335 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2336 0, NULL, NULL, 0);
2337 }
2338 #endif
2339
2340 #ifdef __ARCH_WANT_SYS_CLONE
2341 #ifdef CONFIG_CLONE_BACKWARDS
2342 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2343 int __user *, parent_tidptr,
2344 unsigned long, tls,
2345 int __user *, child_tidptr)
2346 #elif defined(CONFIG_CLONE_BACKWARDS2)
2347 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2348 int __user *, parent_tidptr,
2349 int __user *, child_tidptr,
2350 unsigned long, tls)
2351 #elif defined(CONFIG_CLONE_BACKWARDS3)
2352 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2353 int, stack_size,
2354 int __user *, parent_tidptr,
2355 int __user *, child_tidptr,
2356 unsigned long, tls)
2357 #else
2358 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2359 int __user *, parent_tidptr,
2360 int __user *, child_tidptr,
2361 unsigned long, tls)
2362 #endif
2363 {
2364 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2365 }
2366 #endif
2367
2368 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2369 {
2370 struct task_struct *leader, *parent, *child;
2371 int res;
2372
2373 read_lock(&tasklist_lock);
2374 leader = top = top->group_leader;
2375 down:
2376 for_each_thread(leader, parent) {
2377 list_for_each_entry(child, &parent->children, sibling) {
2378 res = visitor(child, data);
2379 if (res) {
2380 if (res < 0)
2381 goto out;
2382 leader = child;
2383 goto down;
2384 }
2385 up:
2386 ;
2387 }
2388 }
2389
2390 if (leader != top) {
2391 child = leader;
2392 parent = child->real_parent;
2393 leader = parent->group_leader;
2394 goto up;
2395 }
2396 out:
2397 read_unlock(&tasklist_lock);
2398 }
2399
2400 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2401 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2402 #endif
2403
2404 static void sighand_ctor(void *data)
2405 {
2406 struct sighand_struct *sighand = data;
2407
2408 spin_lock_init(&sighand->siglock);
2409 init_waitqueue_head(&sighand->signalfd_wqh);
2410 }
2411
2412 void __init proc_caches_init(void)
2413 {
2414 unsigned int mm_size;
2415
2416 sighand_cachep = kmem_cache_create("sighand_cache",
2417 sizeof(struct sighand_struct), 0,
2418 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2419 SLAB_ACCOUNT, sighand_ctor);
2420 signal_cachep = kmem_cache_create("signal_cache",
2421 sizeof(struct signal_struct), 0,
2422 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2423 NULL);
2424 files_cachep = kmem_cache_create("files_cache",
2425 sizeof(struct files_struct), 0,
2426 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2427 NULL);
2428 fs_cachep = kmem_cache_create("fs_cache",
2429 sizeof(struct fs_struct), 0,
2430 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2431 NULL);
2432
2433 /*
2434 * The mm_cpumask is located at the end of mm_struct, and is
2435 * dynamically sized based on the maximum CPU number this system
2436 * can have, taking hotplug into account (nr_cpu_ids).
2437 */
2438 mm_size = sizeof(struct mm_struct) + cpumask_size();
2439
2440 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2441 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2442 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2443 offsetof(struct mm_struct, saved_auxv),
2444 sizeof_field(struct mm_struct, saved_auxv),
2445 NULL);
2446 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2447 mmap_init();
2448 nsproxy_cache_init();
2449 }
2450
2451 /*
2452 * Check constraints on flags passed to the unshare system call.
2453 */
2454 static int check_unshare_flags(unsigned long unshare_flags)
2455 {
2456 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2457 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2458 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2459 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2460 return -EINVAL;
2461 /*
2462 * Not implemented, but pretend it works if there is nothing
2463 * to unshare. Note that unsharing the address space or the
2464 * signal handlers also need to unshare the signal queues (aka
2465 * CLONE_THREAD).
2466 */
2467 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2468 if (!thread_group_empty(current))
2469 return -EINVAL;
2470 }
2471 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2472 if (refcount_read(&current->sighand->count) > 1)
2473 return -EINVAL;
2474 }
2475 if (unshare_flags & CLONE_VM) {
2476 if (!current_is_single_threaded())
2477 return -EINVAL;
2478 }
2479
2480 return 0;
2481 }
2482
2483 /*
2484 * Unshare the filesystem structure if it is being shared
2485 */
2486 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2487 {
2488 struct fs_struct *fs = current->fs;
2489
2490 if (!(unshare_flags & CLONE_FS) || !fs)
2491 return 0;
2492
2493 /* don't need lock here; in the worst case we'll do useless copy */
2494 if (fs->users == 1)
2495 return 0;
2496
2497 *new_fsp = copy_fs_struct(fs);
2498 if (!*new_fsp)
2499 return -ENOMEM;
2500
2501 return 0;
2502 }
2503
2504 /*
2505 * Unshare file descriptor table if it is being shared
2506 */
2507 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2508 {
2509 struct files_struct *fd = current->files;
2510 int error = 0;
2511
2512 if ((unshare_flags & CLONE_FILES) &&
2513 (fd && atomic_read(&fd->count) > 1)) {
2514 *new_fdp = dup_fd(fd, &error);
2515 if (!*new_fdp)
2516 return error;
2517 }
2518
2519 return 0;
2520 }
2521
2522 /*
2523 * unshare allows a process to 'unshare' part of the process
2524 * context which was originally shared using clone. copy_*
2525 * functions used by do_fork() cannot be used here directly
2526 * because they modify an inactive task_struct that is being
2527 * constructed. Here we are modifying the current, active,
2528 * task_struct.
2529 */
2530 int ksys_unshare(unsigned long unshare_flags)
2531 {
2532 struct fs_struct *fs, *new_fs = NULL;
2533 struct files_struct *fd, *new_fd = NULL;
2534 struct cred *new_cred = NULL;
2535 struct nsproxy *new_nsproxy = NULL;
2536 int do_sysvsem = 0;
2537 int err;
2538
2539 /*
2540 * If unsharing a user namespace must also unshare the thread group
2541 * and unshare the filesystem root and working directories.
2542 */
2543 if (unshare_flags & CLONE_NEWUSER)
2544 unshare_flags |= CLONE_THREAD | CLONE_FS;
2545 /*
2546 * If unsharing vm, must also unshare signal handlers.
2547 */
2548 if (unshare_flags & CLONE_VM)
2549 unshare_flags |= CLONE_SIGHAND;
2550 /*
2551 * If unsharing a signal handlers, must also unshare the signal queues.
2552 */
2553 if (unshare_flags & CLONE_SIGHAND)
2554 unshare_flags |= CLONE_THREAD;
2555 /*
2556 * If unsharing namespace, must also unshare filesystem information.
2557 */
2558 if (unshare_flags & CLONE_NEWNS)
2559 unshare_flags |= CLONE_FS;
2560
2561 err = check_unshare_flags(unshare_flags);
2562 if (err)
2563 goto bad_unshare_out;
2564 /*
2565 * CLONE_NEWIPC must also detach from the undolist: after switching
2566 * to a new ipc namespace, the semaphore arrays from the old
2567 * namespace are unreachable.
2568 */
2569 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2570 do_sysvsem = 1;
2571 err = unshare_fs(unshare_flags, &new_fs);
2572 if (err)
2573 goto bad_unshare_out;
2574 err = unshare_fd(unshare_flags, &new_fd);
2575 if (err)
2576 goto bad_unshare_cleanup_fs;
2577 err = unshare_userns(unshare_flags, &new_cred);
2578 if (err)
2579 goto bad_unshare_cleanup_fd;
2580 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2581 new_cred, new_fs);
2582 if (err)
2583 goto bad_unshare_cleanup_cred;
2584
2585 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2586 if (do_sysvsem) {
2587 /*
2588 * CLONE_SYSVSEM is equivalent to sys_exit().
2589 */
2590 exit_sem(current);
2591 }
2592 if (unshare_flags & CLONE_NEWIPC) {
2593 /* Orphan segments in old ns (see sem above). */
2594 exit_shm(current);
2595 shm_init_task(current);
2596 }
2597
2598 if (new_nsproxy)
2599 switch_task_namespaces(current, new_nsproxy);
2600
2601 task_lock(current);
2602
2603 if (new_fs) {
2604 fs = current->fs;
2605 spin_lock(&fs->lock);
2606 current->fs = new_fs;
2607 if (--fs->users)
2608 new_fs = NULL;
2609 else
2610 new_fs = fs;
2611 spin_unlock(&fs->lock);
2612 }
2613
2614 if (new_fd) {
2615 fd = current->files;
2616 current->files = new_fd;
2617 new_fd = fd;
2618 }
2619
2620 task_unlock(current);
2621
2622 if (new_cred) {
2623 /* Install the new user namespace */
2624 commit_creds(new_cred);
2625 new_cred = NULL;
2626 }
2627 }
2628
2629 perf_event_namespaces(current);
2630
2631 bad_unshare_cleanup_cred:
2632 if (new_cred)
2633 put_cred(new_cred);
2634 bad_unshare_cleanup_fd:
2635 if (new_fd)
2636 put_files_struct(new_fd);
2637
2638 bad_unshare_cleanup_fs:
2639 if (new_fs)
2640 free_fs_struct(new_fs);
2641
2642 bad_unshare_out:
2643 return err;
2644 }
2645
2646 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2647 {
2648 return ksys_unshare(unshare_flags);
2649 }
2650
2651 /*
2652 * Helper to unshare the files of the current task.
2653 * We don't want to expose copy_files internals to
2654 * the exec layer of the kernel.
2655 */
2656
2657 int unshare_files(struct files_struct **displaced)
2658 {
2659 struct task_struct *task = current;
2660 struct files_struct *copy = NULL;
2661 int error;
2662
2663 error = unshare_fd(CLONE_FILES, &copy);
2664 if (error || !copy) {
2665 *displaced = NULL;
2666 return error;
2667 }
2668 *displaced = task->files;
2669 task_lock(task);
2670 task->files = copy;
2671 task_unlock(task);
2672 return 0;
2673 }
2674
2675 int sysctl_max_threads(struct ctl_table *table, int write,
2676 void __user *buffer, size_t *lenp, loff_t *ppos)
2677 {
2678 struct ctl_table t;
2679 int ret;
2680 int threads = max_threads;
2681 int min = MIN_THREADS;
2682 int max = MAX_THREADS;
2683
2684 t = *table;
2685 t.data = &threads;
2686 t.extra1 = &min;
2687 t.extra2 = &max;
2688
2689 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2690 if (ret || !write)
2691 return ret;
2692
2693 set_max_threads(threads);
2694
2695 return 0;
2696 }