]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/fork.c
Merge tag 'drm-misc-fixes-2019-05-29' of git://anongit.freedesktop.org/drm/drm-misc...
[thirdparty/linux.git] / kernel / fork.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/hmm.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/vmacache.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/blkdev.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97
98 #include <asm/pgtable.h>
99 #include <asm/pgalloc.h>
100 #include <linux/uaccess.h>
101 #include <asm/mmu_context.h>
102 #include <asm/cacheflush.h>
103 #include <asm/tlbflush.h>
104
105 #include <trace/events/sched.h>
106
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/task.h>
109
110 /*
111 * Minimum number of threads to boot the kernel
112 */
113 #define MIN_THREADS 20
114
115 /*
116 * Maximum number of threads
117 */
118 #define MAX_THREADS FUTEX_TID_MASK
119
120 /*
121 * Protected counters by write_lock_irq(&tasklist_lock)
122 */
123 unsigned long total_forks; /* Handle normal Linux uptimes. */
124 int nr_threads; /* The idle threads do not count.. */
125
126 int max_threads; /* tunable limit on nr_threads */
127
128 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
129
130 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
131
132 #ifdef CONFIG_PROVE_RCU
133 int lockdep_tasklist_lock_is_held(void)
134 {
135 return lockdep_is_held(&tasklist_lock);
136 }
137 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
138 #endif /* #ifdef CONFIG_PROVE_RCU */
139
140 int nr_processes(void)
141 {
142 int cpu;
143 int total = 0;
144
145 for_each_possible_cpu(cpu)
146 total += per_cpu(process_counts, cpu);
147
148 return total;
149 }
150
151 void __weak arch_release_task_struct(struct task_struct *tsk)
152 {
153 }
154
155 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
156 static struct kmem_cache *task_struct_cachep;
157
158 static inline struct task_struct *alloc_task_struct_node(int node)
159 {
160 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
161 }
162
163 static inline void free_task_struct(struct task_struct *tsk)
164 {
165 kmem_cache_free(task_struct_cachep, tsk);
166 }
167 #endif
168
169 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
170
171 /*
172 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
173 * kmemcache based allocator.
174 */
175 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
176
177 #ifdef CONFIG_VMAP_STACK
178 /*
179 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
180 * flush. Try to minimize the number of calls by caching stacks.
181 */
182 #define NR_CACHED_STACKS 2
183 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
184
185 static int free_vm_stack_cache(unsigned int cpu)
186 {
187 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
188 int i;
189
190 for (i = 0; i < NR_CACHED_STACKS; i++) {
191 struct vm_struct *vm_stack = cached_vm_stacks[i];
192
193 if (!vm_stack)
194 continue;
195
196 vfree(vm_stack->addr);
197 cached_vm_stacks[i] = NULL;
198 }
199
200 return 0;
201 }
202 #endif
203
204 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
205 {
206 #ifdef CONFIG_VMAP_STACK
207 void *stack;
208 int i;
209
210 for (i = 0; i < NR_CACHED_STACKS; i++) {
211 struct vm_struct *s;
212
213 s = this_cpu_xchg(cached_stacks[i], NULL);
214
215 if (!s)
216 continue;
217
218 /* Clear stale pointers from reused stack. */
219 memset(s->addr, 0, THREAD_SIZE);
220
221 tsk->stack_vm_area = s;
222 tsk->stack = s->addr;
223 return s->addr;
224 }
225
226 /*
227 * Allocated stacks are cached and later reused by new threads,
228 * so memcg accounting is performed manually on assigning/releasing
229 * stacks to tasks. Drop __GFP_ACCOUNT.
230 */
231 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
232 VMALLOC_START, VMALLOC_END,
233 THREADINFO_GFP & ~__GFP_ACCOUNT,
234 PAGE_KERNEL,
235 0, node, __builtin_return_address(0));
236
237 /*
238 * We can't call find_vm_area() in interrupt context, and
239 * free_thread_stack() can be called in interrupt context,
240 * so cache the vm_struct.
241 */
242 if (stack) {
243 tsk->stack_vm_area = find_vm_area(stack);
244 tsk->stack = stack;
245 }
246 return stack;
247 #else
248 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
249 THREAD_SIZE_ORDER);
250
251 return page ? page_address(page) : NULL;
252 #endif
253 }
254
255 static inline void free_thread_stack(struct task_struct *tsk)
256 {
257 #ifdef CONFIG_VMAP_STACK
258 struct vm_struct *vm = task_stack_vm_area(tsk);
259
260 if (vm) {
261 int i;
262
263 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
264 mod_memcg_page_state(vm->pages[i],
265 MEMCG_KERNEL_STACK_KB,
266 -(int)(PAGE_SIZE / 1024));
267
268 memcg_kmem_uncharge(vm->pages[i], 0);
269 }
270
271 for (i = 0; i < NR_CACHED_STACKS; i++) {
272 if (this_cpu_cmpxchg(cached_stacks[i],
273 NULL, tsk->stack_vm_area) != NULL)
274 continue;
275
276 return;
277 }
278
279 vfree_atomic(tsk->stack);
280 return;
281 }
282 #endif
283
284 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
285 }
286 # else
287 static struct kmem_cache *thread_stack_cache;
288
289 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
290 int node)
291 {
292 unsigned long *stack;
293 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
294 tsk->stack = stack;
295 return stack;
296 }
297
298 static void free_thread_stack(struct task_struct *tsk)
299 {
300 kmem_cache_free(thread_stack_cache, tsk->stack);
301 }
302
303 void thread_stack_cache_init(void)
304 {
305 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
306 THREAD_SIZE, THREAD_SIZE, 0, 0,
307 THREAD_SIZE, NULL);
308 BUG_ON(thread_stack_cache == NULL);
309 }
310 # endif
311 #endif
312
313 /* SLAB cache for signal_struct structures (tsk->signal) */
314 static struct kmem_cache *signal_cachep;
315
316 /* SLAB cache for sighand_struct structures (tsk->sighand) */
317 struct kmem_cache *sighand_cachep;
318
319 /* SLAB cache for files_struct structures (tsk->files) */
320 struct kmem_cache *files_cachep;
321
322 /* SLAB cache for fs_struct structures (tsk->fs) */
323 struct kmem_cache *fs_cachep;
324
325 /* SLAB cache for vm_area_struct structures */
326 static struct kmem_cache *vm_area_cachep;
327
328 /* SLAB cache for mm_struct structures (tsk->mm) */
329 static struct kmem_cache *mm_cachep;
330
331 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
332 {
333 struct vm_area_struct *vma;
334
335 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
336 if (vma)
337 vma_init(vma, mm);
338 return vma;
339 }
340
341 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
342 {
343 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
344
345 if (new) {
346 *new = *orig;
347 INIT_LIST_HEAD(&new->anon_vma_chain);
348 }
349 return new;
350 }
351
352 void vm_area_free(struct vm_area_struct *vma)
353 {
354 kmem_cache_free(vm_area_cachep, vma);
355 }
356
357 static void account_kernel_stack(struct task_struct *tsk, int account)
358 {
359 void *stack = task_stack_page(tsk);
360 struct vm_struct *vm = task_stack_vm_area(tsk);
361
362 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
363
364 if (vm) {
365 int i;
366
367 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
368
369 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
370 mod_zone_page_state(page_zone(vm->pages[i]),
371 NR_KERNEL_STACK_KB,
372 PAGE_SIZE / 1024 * account);
373 }
374 } else {
375 /*
376 * All stack pages are in the same zone and belong to the
377 * same memcg.
378 */
379 struct page *first_page = virt_to_page(stack);
380
381 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
382 THREAD_SIZE / 1024 * account);
383
384 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
385 account * (THREAD_SIZE / 1024));
386 }
387 }
388
389 static int memcg_charge_kernel_stack(struct task_struct *tsk)
390 {
391 #ifdef CONFIG_VMAP_STACK
392 struct vm_struct *vm = task_stack_vm_area(tsk);
393 int ret;
394
395 if (vm) {
396 int i;
397
398 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
399 /*
400 * If memcg_kmem_charge() fails, page->mem_cgroup
401 * pointer is NULL, and both memcg_kmem_uncharge()
402 * and mod_memcg_page_state() in free_thread_stack()
403 * will ignore this page. So it's safe.
404 */
405 ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
406 if (ret)
407 return ret;
408
409 mod_memcg_page_state(vm->pages[i],
410 MEMCG_KERNEL_STACK_KB,
411 PAGE_SIZE / 1024);
412 }
413 }
414 #endif
415 return 0;
416 }
417
418 static void release_task_stack(struct task_struct *tsk)
419 {
420 if (WARN_ON(tsk->state != TASK_DEAD))
421 return; /* Better to leak the stack than to free prematurely */
422
423 account_kernel_stack(tsk, -1);
424 free_thread_stack(tsk);
425 tsk->stack = NULL;
426 #ifdef CONFIG_VMAP_STACK
427 tsk->stack_vm_area = NULL;
428 #endif
429 }
430
431 #ifdef CONFIG_THREAD_INFO_IN_TASK
432 void put_task_stack(struct task_struct *tsk)
433 {
434 if (refcount_dec_and_test(&tsk->stack_refcount))
435 release_task_stack(tsk);
436 }
437 #endif
438
439 void free_task(struct task_struct *tsk)
440 {
441 #ifndef CONFIG_THREAD_INFO_IN_TASK
442 /*
443 * The task is finally done with both the stack and thread_info,
444 * so free both.
445 */
446 release_task_stack(tsk);
447 #else
448 /*
449 * If the task had a separate stack allocation, it should be gone
450 * by now.
451 */
452 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
453 #endif
454 rt_mutex_debug_task_free(tsk);
455 ftrace_graph_exit_task(tsk);
456 put_seccomp_filter(tsk);
457 arch_release_task_struct(tsk);
458 if (tsk->flags & PF_KTHREAD)
459 free_kthread_struct(tsk);
460 free_task_struct(tsk);
461 }
462 EXPORT_SYMBOL(free_task);
463
464 #ifdef CONFIG_MMU
465 static __latent_entropy int dup_mmap(struct mm_struct *mm,
466 struct mm_struct *oldmm)
467 {
468 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
469 struct rb_node **rb_link, *rb_parent;
470 int retval;
471 unsigned long charge;
472 LIST_HEAD(uf);
473
474 uprobe_start_dup_mmap();
475 if (down_write_killable(&oldmm->mmap_sem)) {
476 retval = -EINTR;
477 goto fail_uprobe_end;
478 }
479 flush_cache_dup_mm(oldmm);
480 uprobe_dup_mmap(oldmm, mm);
481 /*
482 * Not linked in yet - no deadlock potential:
483 */
484 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
485
486 /* No ordering required: file already has been exposed. */
487 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
488
489 mm->total_vm = oldmm->total_vm;
490 mm->data_vm = oldmm->data_vm;
491 mm->exec_vm = oldmm->exec_vm;
492 mm->stack_vm = oldmm->stack_vm;
493
494 rb_link = &mm->mm_rb.rb_node;
495 rb_parent = NULL;
496 pprev = &mm->mmap;
497 retval = ksm_fork(mm, oldmm);
498 if (retval)
499 goto out;
500 retval = khugepaged_fork(mm, oldmm);
501 if (retval)
502 goto out;
503
504 prev = NULL;
505 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
506 struct file *file;
507
508 if (mpnt->vm_flags & VM_DONTCOPY) {
509 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
510 continue;
511 }
512 charge = 0;
513 /*
514 * Don't duplicate many vmas if we've been oom-killed (for
515 * example)
516 */
517 if (fatal_signal_pending(current)) {
518 retval = -EINTR;
519 goto out;
520 }
521 if (mpnt->vm_flags & VM_ACCOUNT) {
522 unsigned long len = vma_pages(mpnt);
523
524 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
525 goto fail_nomem;
526 charge = len;
527 }
528 tmp = vm_area_dup(mpnt);
529 if (!tmp)
530 goto fail_nomem;
531 retval = vma_dup_policy(mpnt, tmp);
532 if (retval)
533 goto fail_nomem_policy;
534 tmp->vm_mm = mm;
535 retval = dup_userfaultfd(tmp, &uf);
536 if (retval)
537 goto fail_nomem_anon_vma_fork;
538 if (tmp->vm_flags & VM_WIPEONFORK) {
539 /* VM_WIPEONFORK gets a clean slate in the child. */
540 tmp->anon_vma = NULL;
541 if (anon_vma_prepare(tmp))
542 goto fail_nomem_anon_vma_fork;
543 } else if (anon_vma_fork(tmp, mpnt))
544 goto fail_nomem_anon_vma_fork;
545 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
546 tmp->vm_next = tmp->vm_prev = NULL;
547 file = tmp->vm_file;
548 if (file) {
549 struct inode *inode = file_inode(file);
550 struct address_space *mapping = file->f_mapping;
551
552 get_file(file);
553 if (tmp->vm_flags & VM_DENYWRITE)
554 atomic_dec(&inode->i_writecount);
555 i_mmap_lock_write(mapping);
556 if (tmp->vm_flags & VM_SHARED)
557 atomic_inc(&mapping->i_mmap_writable);
558 flush_dcache_mmap_lock(mapping);
559 /* insert tmp into the share list, just after mpnt */
560 vma_interval_tree_insert_after(tmp, mpnt,
561 &mapping->i_mmap);
562 flush_dcache_mmap_unlock(mapping);
563 i_mmap_unlock_write(mapping);
564 }
565
566 /*
567 * Clear hugetlb-related page reserves for children. This only
568 * affects MAP_PRIVATE mappings. Faults generated by the child
569 * are not guaranteed to succeed, even if read-only
570 */
571 if (is_vm_hugetlb_page(tmp))
572 reset_vma_resv_huge_pages(tmp);
573
574 /*
575 * Link in the new vma and copy the page table entries.
576 */
577 *pprev = tmp;
578 pprev = &tmp->vm_next;
579 tmp->vm_prev = prev;
580 prev = tmp;
581
582 __vma_link_rb(mm, tmp, rb_link, rb_parent);
583 rb_link = &tmp->vm_rb.rb_right;
584 rb_parent = &tmp->vm_rb;
585
586 mm->map_count++;
587 if (!(tmp->vm_flags & VM_WIPEONFORK))
588 retval = copy_page_range(mm, oldmm, mpnt);
589
590 if (tmp->vm_ops && tmp->vm_ops->open)
591 tmp->vm_ops->open(tmp);
592
593 if (retval)
594 goto out;
595 }
596 /* a new mm has just been created */
597 retval = arch_dup_mmap(oldmm, mm);
598 out:
599 up_write(&mm->mmap_sem);
600 flush_tlb_mm(oldmm);
601 up_write(&oldmm->mmap_sem);
602 dup_userfaultfd_complete(&uf);
603 fail_uprobe_end:
604 uprobe_end_dup_mmap();
605 return retval;
606 fail_nomem_anon_vma_fork:
607 mpol_put(vma_policy(tmp));
608 fail_nomem_policy:
609 vm_area_free(tmp);
610 fail_nomem:
611 retval = -ENOMEM;
612 vm_unacct_memory(charge);
613 goto out;
614 }
615
616 static inline int mm_alloc_pgd(struct mm_struct *mm)
617 {
618 mm->pgd = pgd_alloc(mm);
619 if (unlikely(!mm->pgd))
620 return -ENOMEM;
621 return 0;
622 }
623
624 static inline void mm_free_pgd(struct mm_struct *mm)
625 {
626 pgd_free(mm, mm->pgd);
627 }
628 #else
629 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
630 {
631 down_write(&oldmm->mmap_sem);
632 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
633 up_write(&oldmm->mmap_sem);
634 return 0;
635 }
636 #define mm_alloc_pgd(mm) (0)
637 #define mm_free_pgd(mm)
638 #endif /* CONFIG_MMU */
639
640 static void check_mm(struct mm_struct *mm)
641 {
642 int i;
643
644 for (i = 0; i < NR_MM_COUNTERS; i++) {
645 long x = atomic_long_read(&mm->rss_stat.count[i]);
646
647 if (unlikely(x))
648 printk(KERN_ALERT "BUG: Bad rss-counter state "
649 "mm:%p idx:%d val:%ld\n", mm, i, x);
650 }
651
652 if (mm_pgtables_bytes(mm))
653 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
654 mm_pgtables_bytes(mm));
655
656 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
657 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
658 #endif
659 }
660
661 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
662 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
663
664 /*
665 * Called when the last reference to the mm
666 * is dropped: either by a lazy thread or by
667 * mmput. Free the page directory and the mm.
668 */
669 void __mmdrop(struct mm_struct *mm)
670 {
671 BUG_ON(mm == &init_mm);
672 WARN_ON_ONCE(mm == current->mm);
673 WARN_ON_ONCE(mm == current->active_mm);
674 mm_free_pgd(mm);
675 destroy_context(mm);
676 hmm_mm_destroy(mm);
677 mmu_notifier_mm_destroy(mm);
678 check_mm(mm);
679 put_user_ns(mm->user_ns);
680 free_mm(mm);
681 }
682 EXPORT_SYMBOL_GPL(__mmdrop);
683
684 static void mmdrop_async_fn(struct work_struct *work)
685 {
686 struct mm_struct *mm;
687
688 mm = container_of(work, struct mm_struct, async_put_work);
689 __mmdrop(mm);
690 }
691
692 static void mmdrop_async(struct mm_struct *mm)
693 {
694 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
695 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
696 schedule_work(&mm->async_put_work);
697 }
698 }
699
700 static inline void free_signal_struct(struct signal_struct *sig)
701 {
702 taskstats_tgid_free(sig);
703 sched_autogroup_exit(sig);
704 /*
705 * __mmdrop is not safe to call from softirq context on x86 due to
706 * pgd_dtor so postpone it to the async context
707 */
708 if (sig->oom_mm)
709 mmdrop_async(sig->oom_mm);
710 kmem_cache_free(signal_cachep, sig);
711 }
712
713 static inline void put_signal_struct(struct signal_struct *sig)
714 {
715 if (refcount_dec_and_test(&sig->sigcnt))
716 free_signal_struct(sig);
717 }
718
719 void __put_task_struct(struct task_struct *tsk)
720 {
721 WARN_ON(!tsk->exit_state);
722 WARN_ON(refcount_read(&tsk->usage));
723 WARN_ON(tsk == current);
724
725 cgroup_free(tsk);
726 task_numa_free(tsk);
727 security_task_free(tsk);
728 exit_creds(tsk);
729 delayacct_tsk_free(tsk);
730 put_signal_struct(tsk->signal);
731
732 if (!profile_handoff_task(tsk))
733 free_task(tsk);
734 }
735 EXPORT_SYMBOL_GPL(__put_task_struct);
736
737 void __init __weak arch_task_cache_init(void) { }
738
739 /*
740 * set_max_threads
741 */
742 static void set_max_threads(unsigned int max_threads_suggested)
743 {
744 u64 threads;
745 unsigned long nr_pages = totalram_pages();
746
747 /*
748 * The number of threads shall be limited such that the thread
749 * structures may only consume a small part of the available memory.
750 */
751 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
752 threads = MAX_THREADS;
753 else
754 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
755 (u64) THREAD_SIZE * 8UL);
756
757 if (threads > max_threads_suggested)
758 threads = max_threads_suggested;
759
760 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
761 }
762
763 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
764 /* Initialized by the architecture: */
765 int arch_task_struct_size __read_mostly;
766 #endif
767
768 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
769 {
770 /* Fetch thread_struct whitelist for the architecture. */
771 arch_thread_struct_whitelist(offset, size);
772
773 /*
774 * Handle zero-sized whitelist or empty thread_struct, otherwise
775 * adjust offset to position of thread_struct in task_struct.
776 */
777 if (unlikely(*size == 0))
778 *offset = 0;
779 else
780 *offset += offsetof(struct task_struct, thread);
781 }
782
783 void __init fork_init(void)
784 {
785 int i;
786 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
787 #ifndef ARCH_MIN_TASKALIGN
788 #define ARCH_MIN_TASKALIGN 0
789 #endif
790 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
791 unsigned long useroffset, usersize;
792
793 /* create a slab on which task_structs can be allocated */
794 task_struct_whitelist(&useroffset, &usersize);
795 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
796 arch_task_struct_size, align,
797 SLAB_PANIC|SLAB_ACCOUNT,
798 useroffset, usersize, NULL);
799 #endif
800
801 /* do the arch specific task caches init */
802 arch_task_cache_init();
803
804 set_max_threads(MAX_THREADS);
805
806 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
807 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
808 init_task.signal->rlim[RLIMIT_SIGPENDING] =
809 init_task.signal->rlim[RLIMIT_NPROC];
810
811 for (i = 0; i < UCOUNT_COUNTS; i++) {
812 init_user_ns.ucount_max[i] = max_threads/2;
813 }
814
815 #ifdef CONFIG_VMAP_STACK
816 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
817 NULL, free_vm_stack_cache);
818 #endif
819
820 lockdep_init_task(&init_task);
821 uprobes_init();
822 }
823
824 int __weak arch_dup_task_struct(struct task_struct *dst,
825 struct task_struct *src)
826 {
827 *dst = *src;
828 return 0;
829 }
830
831 void set_task_stack_end_magic(struct task_struct *tsk)
832 {
833 unsigned long *stackend;
834
835 stackend = end_of_stack(tsk);
836 *stackend = STACK_END_MAGIC; /* for overflow detection */
837 }
838
839 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
840 {
841 struct task_struct *tsk;
842 unsigned long *stack;
843 struct vm_struct *stack_vm_area __maybe_unused;
844 int err;
845
846 if (node == NUMA_NO_NODE)
847 node = tsk_fork_get_node(orig);
848 tsk = alloc_task_struct_node(node);
849 if (!tsk)
850 return NULL;
851
852 stack = alloc_thread_stack_node(tsk, node);
853 if (!stack)
854 goto free_tsk;
855
856 if (memcg_charge_kernel_stack(tsk))
857 goto free_stack;
858
859 stack_vm_area = task_stack_vm_area(tsk);
860
861 err = arch_dup_task_struct(tsk, orig);
862
863 /*
864 * arch_dup_task_struct() clobbers the stack-related fields. Make
865 * sure they're properly initialized before using any stack-related
866 * functions again.
867 */
868 tsk->stack = stack;
869 #ifdef CONFIG_VMAP_STACK
870 tsk->stack_vm_area = stack_vm_area;
871 #endif
872 #ifdef CONFIG_THREAD_INFO_IN_TASK
873 refcount_set(&tsk->stack_refcount, 1);
874 #endif
875
876 if (err)
877 goto free_stack;
878
879 #ifdef CONFIG_SECCOMP
880 /*
881 * We must handle setting up seccomp filters once we're under
882 * the sighand lock in case orig has changed between now and
883 * then. Until then, filter must be NULL to avoid messing up
884 * the usage counts on the error path calling free_task.
885 */
886 tsk->seccomp.filter = NULL;
887 #endif
888
889 setup_thread_stack(tsk, orig);
890 clear_user_return_notifier(tsk);
891 clear_tsk_need_resched(tsk);
892 set_task_stack_end_magic(tsk);
893
894 #ifdef CONFIG_STACKPROTECTOR
895 tsk->stack_canary = get_random_canary();
896 #endif
897
898 /*
899 * One for us, one for whoever does the "release_task()" (usually
900 * parent)
901 */
902 refcount_set(&tsk->usage, 2);
903 #ifdef CONFIG_BLK_DEV_IO_TRACE
904 tsk->btrace_seq = 0;
905 #endif
906 tsk->splice_pipe = NULL;
907 tsk->task_frag.page = NULL;
908 tsk->wake_q.next = NULL;
909
910 account_kernel_stack(tsk, 1);
911
912 kcov_task_init(tsk);
913
914 #ifdef CONFIG_FAULT_INJECTION
915 tsk->fail_nth = 0;
916 #endif
917
918 #ifdef CONFIG_BLK_CGROUP
919 tsk->throttle_queue = NULL;
920 tsk->use_memdelay = 0;
921 #endif
922
923 #ifdef CONFIG_MEMCG
924 tsk->active_memcg = NULL;
925 #endif
926 return tsk;
927
928 free_stack:
929 free_thread_stack(tsk);
930 free_tsk:
931 free_task_struct(tsk);
932 return NULL;
933 }
934
935 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
936
937 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
938
939 static int __init coredump_filter_setup(char *s)
940 {
941 default_dump_filter =
942 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
943 MMF_DUMP_FILTER_MASK;
944 return 1;
945 }
946
947 __setup("coredump_filter=", coredump_filter_setup);
948
949 #include <linux/init_task.h>
950
951 static void mm_init_aio(struct mm_struct *mm)
952 {
953 #ifdef CONFIG_AIO
954 spin_lock_init(&mm->ioctx_lock);
955 mm->ioctx_table = NULL;
956 #endif
957 }
958
959 static __always_inline void mm_clear_owner(struct mm_struct *mm,
960 struct task_struct *p)
961 {
962 #ifdef CONFIG_MEMCG
963 if (mm->owner == p)
964 WRITE_ONCE(mm->owner, NULL);
965 #endif
966 }
967
968 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
969 {
970 #ifdef CONFIG_MEMCG
971 mm->owner = p;
972 #endif
973 }
974
975 static void mm_init_uprobes_state(struct mm_struct *mm)
976 {
977 #ifdef CONFIG_UPROBES
978 mm->uprobes_state.xol_area = NULL;
979 #endif
980 }
981
982 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
983 struct user_namespace *user_ns)
984 {
985 mm->mmap = NULL;
986 mm->mm_rb = RB_ROOT;
987 mm->vmacache_seqnum = 0;
988 atomic_set(&mm->mm_users, 1);
989 atomic_set(&mm->mm_count, 1);
990 init_rwsem(&mm->mmap_sem);
991 INIT_LIST_HEAD(&mm->mmlist);
992 mm->core_state = NULL;
993 mm_pgtables_bytes_init(mm);
994 mm->map_count = 0;
995 mm->locked_vm = 0;
996 atomic64_set(&mm->pinned_vm, 0);
997 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
998 spin_lock_init(&mm->page_table_lock);
999 spin_lock_init(&mm->arg_lock);
1000 mm_init_cpumask(mm);
1001 mm_init_aio(mm);
1002 mm_init_owner(mm, p);
1003 RCU_INIT_POINTER(mm->exe_file, NULL);
1004 mmu_notifier_mm_init(mm);
1005 hmm_mm_init(mm);
1006 init_tlb_flush_pending(mm);
1007 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1008 mm->pmd_huge_pte = NULL;
1009 #endif
1010 mm_init_uprobes_state(mm);
1011
1012 if (current->mm) {
1013 mm->flags = current->mm->flags & MMF_INIT_MASK;
1014 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1015 } else {
1016 mm->flags = default_dump_filter;
1017 mm->def_flags = 0;
1018 }
1019
1020 if (mm_alloc_pgd(mm))
1021 goto fail_nopgd;
1022
1023 if (init_new_context(p, mm))
1024 goto fail_nocontext;
1025
1026 mm->user_ns = get_user_ns(user_ns);
1027 return mm;
1028
1029 fail_nocontext:
1030 mm_free_pgd(mm);
1031 fail_nopgd:
1032 free_mm(mm);
1033 return NULL;
1034 }
1035
1036 /*
1037 * Allocate and initialize an mm_struct.
1038 */
1039 struct mm_struct *mm_alloc(void)
1040 {
1041 struct mm_struct *mm;
1042
1043 mm = allocate_mm();
1044 if (!mm)
1045 return NULL;
1046
1047 memset(mm, 0, sizeof(*mm));
1048 return mm_init(mm, current, current_user_ns());
1049 }
1050
1051 static inline void __mmput(struct mm_struct *mm)
1052 {
1053 VM_BUG_ON(atomic_read(&mm->mm_users));
1054
1055 uprobe_clear_state(mm);
1056 exit_aio(mm);
1057 ksm_exit(mm);
1058 khugepaged_exit(mm); /* must run before exit_mmap */
1059 exit_mmap(mm);
1060 mm_put_huge_zero_page(mm);
1061 set_mm_exe_file(mm, NULL);
1062 if (!list_empty(&mm->mmlist)) {
1063 spin_lock(&mmlist_lock);
1064 list_del(&mm->mmlist);
1065 spin_unlock(&mmlist_lock);
1066 }
1067 if (mm->binfmt)
1068 module_put(mm->binfmt->module);
1069 mmdrop(mm);
1070 }
1071
1072 /*
1073 * Decrement the use count and release all resources for an mm.
1074 */
1075 void mmput(struct mm_struct *mm)
1076 {
1077 might_sleep();
1078
1079 if (atomic_dec_and_test(&mm->mm_users))
1080 __mmput(mm);
1081 }
1082 EXPORT_SYMBOL_GPL(mmput);
1083
1084 #ifdef CONFIG_MMU
1085 static void mmput_async_fn(struct work_struct *work)
1086 {
1087 struct mm_struct *mm = container_of(work, struct mm_struct,
1088 async_put_work);
1089
1090 __mmput(mm);
1091 }
1092
1093 void mmput_async(struct mm_struct *mm)
1094 {
1095 if (atomic_dec_and_test(&mm->mm_users)) {
1096 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1097 schedule_work(&mm->async_put_work);
1098 }
1099 }
1100 #endif
1101
1102 /**
1103 * set_mm_exe_file - change a reference to the mm's executable file
1104 *
1105 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1106 *
1107 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1108 * invocations: in mmput() nobody alive left, in execve task is single
1109 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1110 * mm->exe_file, but does so without using set_mm_exe_file() in order
1111 * to do avoid the need for any locks.
1112 */
1113 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1114 {
1115 struct file *old_exe_file;
1116
1117 /*
1118 * It is safe to dereference the exe_file without RCU as
1119 * this function is only called if nobody else can access
1120 * this mm -- see comment above for justification.
1121 */
1122 old_exe_file = rcu_dereference_raw(mm->exe_file);
1123
1124 if (new_exe_file)
1125 get_file(new_exe_file);
1126 rcu_assign_pointer(mm->exe_file, new_exe_file);
1127 if (old_exe_file)
1128 fput(old_exe_file);
1129 }
1130
1131 /**
1132 * get_mm_exe_file - acquire a reference to the mm's executable file
1133 *
1134 * Returns %NULL if mm has no associated executable file.
1135 * User must release file via fput().
1136 */
1137 struct file *get_mm_exe_file(struct mm_struct *mm)
1138 {
1139 struct file *exe_file;
1140
1141 rcu_read_lock();
1142 exe_file = rcu_dereference(mm->exe_file);
1143 if (exe_file && !get_file_rcu(exe_file))
1144 exe_file = NULL;
1145 rcu_read_unlock();
1146 return exe_file;
1147 }
1148 EXPORT_SYMBOL(get_mm_exe_file);
1149
1150 /**
1151 * get_task_exe_file - acquire a reference to the task's executable file
1152 *
1153 * Returns %NULL if task's mm (if any) has no associated executable file or
1154 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1155 * User must release file via fput().
1156 */
1157 struct file *get_task_exe_file(struct task_struct *task)
1158 {
1159 struct file *exe_file = NULL;
1160 struct mm_struct *mm;
1161
1162 task_lock(task);
1163 mm = task->mm;
1164 if (mm) {
1165 if (!(task->flags & PF_KTHREAD))
1166 exe_file = get_mm_exe_file(mm);
1167 }
1168 task_unlock(task);
1169 return exe_file;
1170 }
1171 EXPORT_SYMBOL(get_task_exe_file);
1172
1173 /**
1174 * get_task_mm - acquire a reference to the task's mm
1175 *
1176 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1177 * this kernel workthread has transiently adopted a user mm with use_mm,
1178 * to do its AIO) is not set and if so returns a reference to it, after
1179 * bumping up the use count. User must release the mm via mmput()
1180 * after use. Typically used by /proc and ptrace.
1181 */
1182 struct mm_struct *get_task_mm(struct task_struct *task)
1183 {
1184 struct mm_struct *mm;
1185
1186 task_lock(task);
1187 mm = task->mm;
1188 if (mm) {
1189 if (task->flags & PF_KTHREAD)
1190 mm = NULL;
1191 else
1192 mmget(mm);
1193 }
1194 task_unlock(task);
1195 return mm;
1196 }
1197 EXPORT_SYMBOL_GPL(get_task_mm);
1198
1199 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1200 {
1201 struct mm_struct *mm;
1202 int err;
1203
1204 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1205 if (err)
1206 return ERR_PTR(err);
1207
1208 mm = get_task_mm(task);
1209 if (mm && mm != current->mm &&
1210 !ptrace_may_access(task, mode)) {
1211 mmput(mm);
1212 mm = ERR_PTR(-EACCES);
1213 }
1214 mutex_unlock(&task->signal->cred_guard_mutex);
1215
1216 return mm;
1217 }
1218
1219 static void complete_vfork_done(struct task_struct *tsk)
1220 {
1221 struct completion *vfork;
1222
1223 task_lock(tsk);
1224 vfork = tsk->vfork_done;
1225 if (likely(vfork)) {
1226 tsk->vfork_done = NULL;
1227 complete(vfork);
1228 }
1229 task_unlock(tsk);
1230 }
1231
1232 static int wait_for_vfork_done(struct task_struct *child,
1233 struct completion *vfork)
1234 {
1235 int killed;
1236
1237 freezer_do_not_count();
1238 cgroup_enter_frozen();
1239 killed = wait_for_completion_killable(vfork);
1240 cgroup_leave_frozen(false);
1241 freezer_count();
1242
1243 if (killed) {
1244 task_lock(child);
1245 child->vfork_done = NULL;
1246 task_unlock(child);
1247 }
1248
1249 put_task_struct(child);
1250 return killed;
1251 }
1252
1253 /* Please note the differences between mmput and mm_release.
1254 * mmput is called whenever we stop holding onto a mm_struct,
1255 * error success whatever.
1256 *
1257 * mm_release is called after a mm_struct has been removed
1258 * from the current process.
1259 *
1260 * This difference is important for error handling, when we
1261 * only half set up a mm_struct for a new process and need to restore
1262 * the old one. Because we mmput the new mm_struct before
1263 * restoring the old one. . .
1264 * Eric Biederman 10 January 1998
1265 */
1266 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1267 {
1268 /* Get rid of any futexes when releasing the mm */
1269 #ifdef CONFIG_FUTEX
1270 if (unlikely(tsk->robust_list)) {
1271 exit_robust_list(tsk);
1272 tsk->robust_list = NULL;
1273 }
1274 #ifdef CONFIG_COMPAT
1275 if (unlikely(tsk->compat_robust_list)) {
1276 compat_exit_robust_list(tsk);
1277 tsk->compat_robust_list = NULL;
1278 }
1279 #endif
1280 if (unlikely(!list_empty(&tsk->pi_state_list)))
1281 exit_pi_state_list(tsk);
1282 #endif
1283
1284 uprobe_free_utask(tsk);
1285
1286 /* Get rid of any cached register state */
1287 deactivate_mm(tsk, mm);
1288
1289 /*
1290 * Signal userspace if we're not exiting with a core dump
1291 * because we want to leave the value intact for debugging
1292 * purposes.
1293 */
1294 if (tsk->clear_child_tid) {
1295 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1296 atomic_read(&mm->mm_users) > 1) {
1297 /*
1298 * We don't check the error code - if userspace has
1299 * not set up a proper pointer then tough luck.
1300 */
1301 put_user(0, tsk->clear_child_tid);
1302 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1303 1, NULL, NULL, 0, 0);
1304 }
1305 tsk->clear_child_tid = NULL;
1306 }
1307
1308 /*
1309 * All done, finally we can wake up parent and return this mm to him.
1310 * Also kthread_stop() uses this completion for synchronization.
1311 */
1312 if (tsk->vfork_done)
1313 complete_vfork_done(tsk);
1314 }
1315
1316 /**
1317 * dup_mm() - duplicates an existing mm structure
1318 * @tsk: the task_struct with which the new mm will be associated.
1319 * @oldmm: the mm to duplicate.
1320 *
1321 * Allocates a new mm structure and duplicates the provided @oldmm structure
1322 * content into it.
1323 *
1324 * Return: the duplicated mm or NULL on failure.
1325 */
1326 static struct mm_struct *dup_mm(struct task_struct *tsk,
1327 struct mm_struct *oldmm)
1328 {
1329 struct mm_struct *mm;
1330 int err;
1331
1332 mm = allocate_mm();
1333 if (!mm)
1334 goto fail_nomem;
1335
1336 memcpy(mm, oldmm, sizeof(*mm));
1337
1338 if (!mm_init(mm, tsk, mm->user_ns))
1339 goto fail_nomem;
1340
1341 err = dup_mmap(mm, oldmm);
1342 if (err)
1343 goto free_pt;
1344
1345 mm->hiwater_rss = get_mm_rss(mm);
1346 mm->hiwater_vm = mm->total_vm;
1347
1348 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1349 goto free_pt;
1350
1351 return mm;
1352
1353 free_pt:
1354 /* don't put binfmt in mmput, we haven't got module yet */
1355 mm->binfmt = NULL;
1356 mm_init_owner(mm, NULL);
1357 mmput(mm);
1358
1359 fail_nomem:
1360 return NULL;
1361 }
1362
1363 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1364 {
1365 struct mm_struct *mm, *oldmm;
1366 int retval;
1367
1368 tsk->min_flt = tsk->maj_flt = 0;
1369 tsk->nvcsw = tsk->nivcsw = 0;
1370 #ifdef CONFIG_DETECT_HUNG_TASK
1371 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1372 tsk->last_switch_time = 0;
1373 #endif
1374
1375 tsk->mm = NULL;
1376 tsk->active_mm = NULL;
1377
1378 /*
1379 * Are we cloning a kernel thread?
1380 *
1381 * We need to steal a active VM for that..
1382 */
1383 oldmm = current->mm;
1384 if (!oldmm)
1385 return 0;
1386
1387 /* initialize the new vmacache entries */
1388 vmacache_flush(tsk);
1389
1390 if (clone_flags & CLONE_VM) {
1391 mmget(oldmm);
1392 mm = oldmm;
1393 goto good_mm;
1394 }
1395
1396 retval = -ENOMEM;
1397 mm = dup_mm(tsk, current->mm);
1398 if (!mm)
1399 goto fail_nomem;
1400
1401 good_mm:
1402 tsk->mm = mm;
1403 tsk->active_mm = mm;
1404 return 0;
1405
1406 fail_nomem:
1407 return retval;
1408 }
1409
1410 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1411 {
1412 struct fs_struct *fs = current->fs;
1413 if (clone_flags & CLONE_FS) {
1414 /* tsk->fs is already what we want */
1415 spin_lock(&fs->lock);
1416 if (fs->in_exec) {
1417 spin_unlock(&fs->lock);
1418 return -EAGAIN;
1419 }
1420 fs->users++;
1421 spin_unlock(&fs->lock);
1422 return 0;
1423 }
1424 tsk->fs = copy_fs_struct(fs);
1425 if (!tsk->fs)
1426 return -ENOMEM;
1427 return 0;
1428 }
1429
1430 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1431 {
1432 struct files_struct *oldf, *newf;
1433 int error = 0;
1434
1435 /*
1436 * A background process may not have any files ...
1437 */
1438 oldf = current->files;
1439 if (!oldf)
1440 goto out;
1441
1442 if (clone_flags & CLONE_FILES) {
1443 atomic_inc(&oldf->count);
1444 goto out;
1445 }
1446
1447 newf = dup_fd(oldf, &error);
1448 if (!newf)
1449 goto out;
1450
1451 tsk->files = newf;
1452 error = 0;
1453 out:
1454 return error;
1455 }
1456
1457 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1458 {
1459 #ifdef CONFIG_BLOCK
1460 struct io_context *ioc = current->io_context;
1461 struct io_context *new_ioc;
1462
1463 if (!ioc)
1464 return 0;
1465 /*
1466 * Share io context with parent, if CLONE_IO is set
1467 */
1468 if (clone_flags & CLONE_IO) {
1469 ioc_task_link(ioc);
1470 tsk->io_context = ioc;
1471 } else if (ioprio_valid(ioc->ioprio)) {
1472 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1473 if (unlikely(!new_ioc))
1474 return -ENOMEM;
1475
1476 new_ioc->ioprio = ioc->ioprio;
1477 put_io_context(new_ioc);
1478 }
1479 #endif
1480 return 0;
1481 }
1482
1483 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1484 {
1485 struct sighand_struct *sig;
1486
1487 if (clone_flags & CLONE_SIGHAND) {
1488 refcount_inc(&current->sighand->count);
1489 return 0;
1490 }
1491 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1492 rcu_assign_pointer(tsk->sighand, sig);
1493 if (!sig)
1494 return -ENOMEM;
1495
1496 refcount_set(&sig->count, 1);
1497 spin_lock_irq(&current->sighand->siglock);
1498 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1499 spin_unlock_irq(&current->sighand->siglock);
1500 return 0;
1501 }
1502
1503 void __cleanup_sighand(struct sighand_struct *sighand)
1504 {
1505 if (refcount_dec_and_test(&sighand->count)) {
1506 signalfd_cleanup(sighand);
1507 /*
1508 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1509 * without an RCU grace period, see __lock_task_sighand().
1510 */
1511 kmem_cache_free(sighand_cachep, sighand);
1512 }
1513 }
1514
1515 #ifdef CONFIG_POSIX_TIMERS
1516 /*
1517 * Initialize POSIX timer handling for a thread group.
1518 */
1519 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1520 {
1521 unsigned long cpu_limit;
1522
1523 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1524 if (cpu_limit != RLIM_INFINITY) {
1525 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1526 sig->cputimer.running = true;
1527 }
1528
1529 /* The timer lists. */
1530 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1531 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1532 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1533 }
1534 #else
1535 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1536 #endif
1537
1538 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1539 {
1540 struct signal_struct *sig;
1541
1542 if (clone_flags & CLONE_THREAD)
1543 return 0;
1544
1545 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1546 tsk->signal = sig;
1547 if (!sig)
1548 return -ENOMEM;
1549
1550 sig->nr_threads = 1;
1551 atomic_set(&sig->live, 1);
1552 refcount_set(&sig->sigcnt, 1);
1553
1554 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1555 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1556 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1557
1558 init_waitqueue_head(&sig->wait_chldexit);
1559 sig->curr_target = tsk;
1560 init_sigpending(&sig->shared_pending);
1561 INIT_HLIST_HEAD(&sig->multiprocess);
1562 seqlock_init(&sig->stats_lock);
1563 prev_cputime_init(&sig->prev_cputime);
1564
1565 #ifdef CONFIG_POSIX_TIMERS
1566 INIT_LIST_HEAD(&sig->posix_timers);
1567 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1568 sig->real_timer.function = it_real_fn;
1569 #endif
1570
1571 task_lock(current->group_leader);
1572 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1573 task_unlock(current->group_leader);
1574
1575 posix_cpu_timers_init_group(sig);
1576
1577 tty_audit_fork(sig);
1578 sched_autogroup_fork(sig);
1579
1580 sig->oom_score_adj = current->signal->oom_score_adj;
1581 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1582
1583 mutex_init(&sig->cred_guard_mutex);
1584
1585 return 0;
1586 }
1587
1588 static void copy_seccomp(struct task_struct *p)
1589 {
1590 #ifdef CONFIG_SECCOMP
1591 /*
1592 * Must be called with sighand->lock held, which is common to
1593 * all threads in the group. Holding cred_guard_mutex is not
1594 * needed because this new task is not yet running and cannot
1595 * be racing exec.
1596 */
1597 assert_spin_locked(&current->sighand->siglock);
1598
1599 /* Ref-count the new filter user, and assign it. */
1600 get_seccomp_filter(current);
1601 p->seccomp = current->seccomp;
1602
1603 /*
1604 * Explicitly enable no_new_privs here in case it got set
1605 * between the task_struct being duplicated and holding the
1606 * sighand lock. The seccomp state and nnp must be in sync.
1607 */
1608 if (task_no_new_privs(current))
1609 task_set_no_new_privs(p);
1610
1611 /*
1612 * If the parent gained a seccomp mode after copying thread
1613 * flags and between before we held the sighand lock, we have
1614 * to manually enable the seccomp thread flag here.
1615 */
1616 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1617 set_tsk_thread_flag(p, TIF_SECCOMP);
1618 #endif
1619 }
1620
1621 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1622 {
1623 current->clear_child_tid = tidptr;
1624
1625 return task_pid_vnr(current);
1626 }
1627
1628 static void rt_mutex_init_task(struct task_struct *p)
1629 {
1630 raw_spin_lock_init(&p->pi_lock);
1631 #ifdef CONFIG_RT_MUTEXES
1632 p->pi_waiters = RB_ROOT_CACHED;
1633 p->pi_top_task = NULL;
1634 p->pi_blocked_on = NULL;
1635 #endif
1636 }
1637
1638 #ifdef CONFIG_POSIX_TIMERS
1639 /*
1640 * Initialize POSIX timer handling for a single task.
1641 */
1642 static void posix_cpu_timers_init(struct task_struct *tsk)
1643 {
1644 tsk->cputime_expires.prof_exp = 0;
1645 tsk->cputime_expires.virt_exp = 0;
1646 tsk->cputime_expires.sched_exp = 0;
1647 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1648 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1649 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1650 }
1651 #else
1652 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1653 #endif
1654
1655 static inline void init_task_pid_links(struct task_struct *task)
1656 {
1657 enum pid_type type;
1658
1659 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1660 INIT_HLIST_NODE(&task->pid_links[type]);
1661 }
1662 }
1663
1664 static inline void
1665 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1666 {
1667 if (type == PIDTYPE_PID)
1668 task->thread_pid = pid;
1669 else
1670 task->signal->pids[type] = pid;
1671 }
1672
1673 static inline void rcu_copy_process(struct task_struct *p)
1674 {
1675 #ifdef CONFIG_PREEMPT_RCU
1676 p->rcu_read_lock_nesting = 0;
1677 p->rcu_read_unlock_special.s = 0;
1678 p->rcu_blocked_node = NULL;
1679 INIT_LIST_HEAD(&p->rcu_node_entry);
1680 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1681 #ifdef CONFIG_TASKS_RCU
1682 p->rcu_tasks_holdout = false;
1683 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1684 p->rcu_tasks_idle_cpu = -1;
1685 #endif /* #ifdef CONFIG_TASKS_RCU */
1686 }
1687
1688 static int pidfd_release(struct inode *inode, struct file *file)
1689 {
1690 struct pid *pid = file->private_data;
1691
1692 file->private_data = NULL;
1693 put_pid(pid);
1694 return 0;
1695 }
1696
1697 #ifdef CONFIG_PROC_FS
1698 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1699 {
1700 struct pid_namespace *ns = proc_pid_ns(file_inode(m->file));
1701 struct pid *pid = f->private_data;
1702
1703 seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns));
1704 seq_putc(m, '\n');
1705 }
1706 #endif
1707
1708 const struct file_operations pidfd_fops = {
1709 .release = pidfd_release,
1710 #ifdef CONFIG_PROC_FS
1711 .show_fdinfo = pidfd_show_fdinfo,
1712 #endif
1713 };
1714
1715 /**
1716 * pidfd_create() - Create a new pid file descriptor.
1717 *
1718 * @pid: struct pid that the pidfd will reference
1719 *
1720 * This creates a new pid file descriptor with the O_CLOEXEC flag set.
1721 *
1722 * Note, that this function can only be called after the fd table has
1723 * been unshared to avoid leaking the pidfd to the new process.
1724 *
1725 * Return: On success, a cloexec pidfd is returned.
1726 * On error, a negative errno number will be returned.
1727 */
1728 static int pidfd_create(struct pid *pid)
1729 {
1730 int fd;
1731
1732 fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
1733 O_RDWR | O_CLOEXEC);
1734 if (fd < 0)
1735 put_pid(pid);
1736
1737 return fd;
1738 }
1739
1740 static void __delayed_free_task(struct rcu_head *rhp)
1741 {
1742 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1743
1744 free_task(tsk);
1745 }
1746
1747 static __always_inline void delayed_free_task(struct task_struct *tsk)
1748 {
1749 if (IS_ENABLED(CONFIG_MEMCG))
1750 call_rcu(&tsk->rcu, __delayed_free_task);
1751 else
1752 free_task(tsk);
1753 }
1754
1755 /*
1756 * This creates a new process as a copy of the old one,
1757 * but does not actually start it yet.
1758 *
1759 * It copies the registers, and all the appropriate
1760 * parts of the process environment (as per the clone
1761 * flags). The actual kick-off is left to the caller.
1762 */
1763 static __latent_entropy struct task_struct *copy_process(
1764 unsigned long clone_flags,
1765 unsigned long stack_start,
1766 unsigned long stack_size,
1767 int __user *parent_tidptr,
1768 int __user *child_tidptr,
1769 struct pid *pid,
1770 int trace,
1771 unsigned long tls,
1772 int node)
1773 {
1774 int pidfd = -1, retval;
1775 struct task_struct *p;
1776 struct multiprocess_signals delayed;
1777
1778 /*
1779 * Don't allow sharing the root directory with processes in a different
1780 * namespace
1781 */
1782 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1783 return ERR_PTR(-EINVAL);
1784
1785 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1786 return ERR_PTR(-EINVAL);
1787
1788 /*
1789 * Thread groups must share signals as well, and detached threads
1790 * can only be started up within the thread group.
1791 */
1792 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1793 return ERR_PTR(-EINVAL);
1794
1795 /*
1796 * Shared signal handlers imply shared VM. By way of the above,
1797 * thread groups also imply shared VM. Blocking this case allows
1798 * for various simplifications in other code.
1799 */
1800 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1801 return ERR_PTR(-EINVAL);
1802
1803 /*
1804 * Siblings of global init remain as zombies on exit since they are
1805 * not reaped by their parent (swapper). To solve this and to avoid
1806 * multi-rooted process trees, prevent global and container-inits
1807 * from creating siblings.
1808 */
1809 if ((clone_flags & CLONE_PARENT) &&
1810 current->signal->flags & SIGNAL_UNKILLABLE)
1811 return ERR_PTR(-EINVAL);
1812
1813 /*
1814 * If the new process will be in a different pid or user namespace
1815 * do not allow it to share a thread group with the forking task.
1816 */
1817 if (clone_flags & CLONE_THREAD) {
1818 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1819 (task_active_pid_ns(current) !=
1820 current->nsproxy->pid_ns_for_children))
1821 return ERR_PTR(-EINVAL);
1822 }
1823
1824 if (clone_flags & CLONE_PIDFD) {
1825 int reserved;
1826
1827 /*
1828 * - CLONE_PARENT_SETTID is useless for pidfds and also
1829 * parent_tidptr is used to return pidfds.
1830 * - CLONE_DETACHED is blocked so that we can potentially
1831 * reuse it later for CLONE_PIDFD.
1832 * - CLONE_THREAD is blocked until someone really needs it.
1833 */
1834 if (clone_flags &
1835 (CLONE_DETACHED | CLONE_PARENT_SETTID | CLONE_THREAD))
1836 return ERR_PTR(-EINVAL);
1837
1838 /*
1839 * Verify that parent_tidptr is sane so we can potentially
1840 * reuse it later.
1841 */
1842 if (get_user(reserved, parent_tidptr))
1843 return ERR_PTR(-EFAULT);
1844
1845 if (reserved != 0)
1846 return ERR_PTR(-EINVAL);
1847 }
1848
1849 /*
1850 * Force any signals received before this point to be delivered
1851 * before the fork happens. Collect up signals sent to multiple
1852 * processes that happen during the fork and delay them so that
1853 * they appear to happen after the fork.
1854 */
1855 sigemptyset(&delayed.signal);
1856 INIT_HLIST_NODE(&delayed.node);
1857
1858 spin_lock_irq(&current->sighand->siglock);
1859 if (!(clone_flags & CLONE_THREAD))
1860 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1861 recalc_sigpending();
1862 spin_unlock_irq(&current->sighand->siglock);
1863 retval = -ERESTARTNOINTR;
1864 if (signal_pending(current))
1865 goto fork_out;
1866
1867 retval = -ENOMEM;
1868 p = dup_task_struct(current, node);
1869 if (!p)
1870 goto fork_out;
1871
1872 /*
1873 * This _must_ happen before we call free_task(), i.e. before we jump
1874 * to any of the bad_fork_* labels. This is to avoid freeing
1875 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1876 * kernel threads (PF_KTHREAD).
1877 */
1878 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1879 /*
1880 * Clear TID on mm_release()?
1881 */
1882 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1883
1884 ftrace_graph_init_task(p);
1885
1886 rt_mutex_init_task(p);
1887
1888 #ifdef CONFIG_PROVE_LOCKING
1889 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1890 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1891 #endif
1892 retval = -EAGAIN;
1893 if (atomic_read(&p->real_cred->user->processes) >=
1894 task_rlimit(p, RLIMIT_NPROC)) {
1895 if (p->real_cred->user != INIT_USER &&
1896 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1897 goto bad_fork_free;
1898 }
1899 current->flags &= ~PF_NPROC_EXCEEDED;
1900
1901 retval = copy_creds(p, clone_flags);
1902 if (retval < 0)
1903 goto bad_fork_free;
1904
1905 /*
1906 * If multiple threads are within copy_process(), then this check
1907 * triggers too late. This doesn't hurt, the check is only there
1908 * to stop root fork bombs.
1909 */
1910 retval = -EAGAIN;
1911 if (nr_threads >= max_threads)
1912 goto bad_fork_cleanup_count;
1913
1914 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1915 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1916 p->flags |= PF_FORKNOEXEC;
1917 INIT_LIST_HEAD(&p->children);
1918 INIT_LIST_HEAD(&p->sibling);
1919 rcu_copy_process(p);
1920 p->vfork_done = NULL;
1921 spin_lock_init(&p->alloc_lock);
1922
1923 init_sigpending(&p->pending);
1924
1925 p->utime = p->stime = p->gtime = 0;
1926 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1927 p->utimescaled = p->stimescaled = 0;
1928 #endif
1929 prev_cputime_init(&p->prev_cputime);
1930
1931 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1932 seqcount_init(&p->vtime.seqcount);
1933 p->vtime.starttime = 0;
1934 p->vtime.state = VTIME_INACTIVE;
1935 #endif
1936
1937 #if defined(SPLIT_RSS_COUNTING)
1938 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1939 #endif
1940
1941 p->default_timer_slack_ns = current->timer_slack_ns;
1942
1943 #ifdef CONFIG_PSI
1944 p->psi_flags = 0;
1945 #endif
1946
1947 task_io_accounting_init(&p->ioac);
1948 acct_clear_integrals(p);
1949
1950 posix_cpu_timers_init(p);
1951
1952 p->io_context = NULL;
1953 audit_set_context(p, NULL);
1954 cgroup_fork(p);
1955 #ifdef CONFIG_NUMA
1956 p->mempolicy = mpol_dup(p->mempolicy);
1957 if (IS_ERR(p->mempolicy)) {
1958 retval = PTR_ERR(p->mempolicy);
1959 p->mempolicy = NULL;
1960 goto bad_fork_cleanup_threadgroup_lock;
1961 }
1962 #endif
1963 #ifdef CONFIG_CPUSETS
1964 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1965 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1966 seqcount_init(&p->mems_allowed_seq);
1967 #endif
1968 #ifdef CONFIG_TRACE_IRQFLAGS
1969 p->irq_events = 0;
1970 p->hardirqs_enabled = 0;
1971 p->hardirq_enable_ip = 0;
1972 p->hardirq_enable_event = 0;
1973 p->hardirq_disable_ip = _THIS_IP_;
1974 p->hardirq_disable_event = 0;
1975 p->softirqs_enabled = 1;
1976 p->softirq_enable_ip = _THIS_IP_;
1977 p->softirq_enable_event = 0;
1978 p->softirq_disable_ip = 0;
1979 p->softirq_disable_event = 0;
1980 p->hardirq_context = 0;
1981 p->softirq_context = 0;
1982 #endif
1983
1984 p->pagefault_disabled = 0;
1985
1986 #ifdef CONFIG_LOCKDEP
1987 p->lockdep_depth = 0; /* no locks held yet */
1988 p->curr_chain_key = 0;
1989 p->lockdep_recursion = 0;
1990 lockdep_init_task(p);
1991 #endif
1992
1993 #ifdef CONFIG_DEBUG_MUTEXES
1994 p->blocked_on = NULL; /* not blocked yet */
1995 #endif
1996 #ifdef CONFIG_BCACHE
1997 p->sequential_io = 0;
1998 p->sequential_io_avg = 0;
1999 #endif
2000
2001 /* Perform scheduler related setup. Assign this task to a CPU. */
2002 retval = sched_fork(clone_flags, p);
2003 if (retval)
2004 goto bad_fork_cleanup_policy;
2005
2006 retval = perf_event_init_task(p);
2007 if (retval)
2008 goto bad_fork_cleanup_policy;
2009 retval = audit_alloc(p);
2010 if (retval)
2011 goto bad_fork_cleanup_perf;
2012 /* copy all the process information */
2013 shm_init_task(p);
2014 retval = security_task_alloc(p, clone_flags);
2015 if (retval)
2016 goto bad_fork_cleanup_audit;
2017 retval = copy_semundo(clone_flags, p);
2018 if (retval)
2019 goto bad_fork_cleanup_security;
2020 retval = copy_files(clone_flags, p);
2021 if (retval)
2022 goto bad_fork_cleanup_semundo;
2023 retval = copy_fs(clone_flags, p);
2024 if (retval)
2025 goto bad_fork_cleanup_files;
2026 retval = copy_sighand(clone_flags, p);
2027 if (retval)
2028 goto bad_fork_cleanup_fs;
2029 retval = copy_signal(clone_flags, p);
2030 if (retval)
2031 goto bad_fork_cleanup_sighand;
2032 retval = copy_mm(clone_flags, p);
2033 if (retval)
2034 goto bad_fork_cleanup_signal;
2035 retval = copy_namespaces(clone_flags, p);
2036 if (retval)
2037 goto bad_fork_cleanup_mm;
2038 retval = copy_io(clone_flags, p);
2039 if (retval)
2040 goto bad_fork_cleanup_namespaces;
2041 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
2042 if (retval)
2043 goto bad_fork_cleanup_io;
2044
2045 stackleak_task_init(p);
2046
2047 if (pid != &init_struct_pid) {
2048 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
2049 if (IS_ERR(pid)) {
2050 retval = PTR_ERR(pid);
2051 goto bad_fork_cleanup_thread;
2052 }
2053 }
2054
2055 /*
2056 * This has to happen after we've potentially unshared the file
2057 * descriptor table (so that the pidfd doesn't leak into the child
2058 * if the fd table isn't shared).
2059 */
2060 if (clone_flags & CLONE_PIDFD) {
2061 retval = pidfd_create(pid);
2062 if (retval < 0)
2063 goto bad_fork_free_pid;
2064
2065 pidfd = retval;
2066 retval = put_user(pidfd, parent_tidptr);
2067 if (retval)
2068 goto bad_fork_put_pidfd;
2069 }
2070
2071 #ifdef CONFIG_BLOCK
2072 p->plug = NULL;
2073 #endif
2074 #ifdef CONFIG_FUTEX
2075 p->robust_list = NULL;
2076 #ifdef CONFIG_COMPAT
2077 p->compat_robust_list = NULL;
2078 #endif
2079 INIT_LIST_HEAD(&p->pi_state_list);
2080 p->pi_state_cache = NULL;
2081 #endif
2082 /*
2083 * sigaltstack should be cleared when sharing the same VM
2084 */
2085 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2086 sas_ss_reset(p);
2087
2088 /*
2089 * Syscall tracing and stepping should be turned off in the
2090 * child regardless of CLONE_PTRACE.
2091 */
2092 user_disable_single_step(p);
2093 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2094 #ifdef TIF_SYSCALL_EMU
2095 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2096 #endif
2097 clear_tsk_latency_tracing(p);
2098
2099 /* ok, now we should be set up.. */
2100 p->pid = pid_nr(pid);
2101 if (clone_flags & CLONE_THREAD) {
2102 p->exit_signal = -1;
2103 p->group_leader = current->group_leader;
2104 p->tgid = current->tgid;
2105 } else {
2106 if (clone_flags & CLONE_PARENT)
2107 p->exit_signal = current->group_leader->exit_signal;
2108 else
2109 p->exit_signal = (clone_flags & CSIGNAL);
2110 p->group_leader = p;
2111 p->tgid = p->pid;
2112 }
2113
2114 p->nr_dirtied = 0;
2115 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2116 p->dirty_paused_when = 0;
2117
2118 p->pdeath_signal = 0;
2119 INIT_LIST_HEAD(&p->thread_group);
2120 p->task_works = NULL;
2121
2122 cgroup_threadgroup_change_begin(current);
2123 /*
2124 * Ensure that the cgroup subsystem policies allow the new process to be
2125 * forked. It should be noted the the new process's css_set can be changed
2126 * between here and cgroup_post_fork() if an organisation operation is in
2127 * progress.
2128 */
2129 retval = cgroup_can_fork(p);
2130 if (retval)
2131 goto bad_fork_cgroup_threadgroup_change_end;
2132
2133 /*
2134 * From this point on we must avoid any synchronous user-space
2135 * communication until we take the tasklist-lock. In particular, we do
2136 * not want user-space to be able to predict the process start-time by
2137 * stalling fork(2) after we recorded the start_time but before it is
2138 * visible to the system.
2139 */
2140
2141 p->start_time = ktime_get_ns();
2142 p->real_start_time = ktime_get_boot_ns();
2143
2144 /*
2145 * Make it visible to the rest of the system, but dont wake it up yet.
2146 * Need tasklist lock for parent etc handling!
2147 */
2148 write_lock_irq(&tasklist_lock);
2149
2150 /* CLONE_PARENT re-uses the old parent */
2151 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2152 p->real_parent = current->real_parent;
2153 p->parent_exec_id = current->parent_exec_id;
2154 } else {
2155 p->real_parent = current;
2156 p->parent_exec_id = current->self_exec_id;
2157 }
2158
2159 klp_copy_process(p);
2160
2161 spin_lock(&current->sighand->siglock);
2162
2163 /*
2164 * Copy seccomp details explicitly here, in case they were changed
2165 * before holding sighand lock.
2166 */
2167 copy_seccomp(p);
2168
2169 rseq_fork(p, clone_flags);
2170
2171 /* Don't start children in a dying pid namespace */
2172 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2173 retval = -ENOMEM;
2174 goto bad_fork_cancel_cgroup;
2175 }
2176
2177 /* Let kill terminate clone/fork in the middle */
2178 if (fatal_signal_pending(current)) {
2179 retval = -EINTR;
2180 goto bad_fork_cancel_cgroup;
2181 }
2182
2183
2184 init_task_pid_links(p);
2185 if (likely(p->pid)) {
2186 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2187
2188 init_task_pid(p, PIDTYPE_PID, pid);
2189 if (thread_group_leader(p)) {
2190 init_task_pid(p, PIDTYPE_TGID, pid);
2191 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2192 init_task_pid(p, PIDTYPE_SID, task_session(current));
2193
2194 if (is_child_reaper(pid)) {
2195 ns_of_pid(pid)->child_reaper = p;
2196 p->signal->flags |= SIGNAL_UNKILLABLE;
2197 }
2198 p->signal->shared_pending.signal = delayed.signal;
2199 p->signal->tty = tty_kref_get(current->signal->tty);
2200 /*
2201 * Inherit has_child_subreaper flag under the same
2202 * tasklist_lock with adding child to the process tree
2203 * for propagate_has_child_subreaper optimization.
2204 */
2205 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2206 p->real_parent->signal->is_child_subreaper;
2207 list_add_tail(&p->sibling, &p->real_parent->children);
2208 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2209 attach_pid(p, PIDTYPE_TGID);
2210 attach_pid(p, PIDTYPE_PGID);
2211 attach_pid(p, PIDTYPE_SID);
2212 __this_cpu_inc(process_counts);
2213 } else {
2214 current->signal->nr_threads++;
2215 atomic_inc(&current->signal->live);
2216 refcount_inc(&current->signal->sigcnt);
2217 task_join_group_stop(p);
2218 list_add_tail_rcu(&p->thread_group,
2219 &p->group_leader->thread_group);
2220 list_add_tail_rcu(&p->thread_node,
2221 &p->signal->thread_head);
2222 }
2223 attach_pid(p, PIDTYPE_PID);
2224 nr_threads++;
2225 }
2226 total_forks++;
2227 hlist_del_init(&delayed.node);
2228 spin_unlock(&current->sighand->siglock);
2229 syscall_tracepoint_update(p);
2230 write_unlock_irq(&tasklist_lock);
2231
2232 proc_fork_connector(p);
2233 cgroup_post_fork(p);
2234 cgroup_threadgroup_change_end(current);
2235 perf_event_fork(p);
2236
2237 trace_task_newtask(p, clone_flags);
2238 uprobe_copy_process(p, clone_flags);
2239
2240 return p;
2241
2242 bad_fork_cancel_cgroup:
2243 spin_unlock(&current->sighand->siglock);
2244 write_unlock_irq(&tasklist_lock);
2245 cgroup_cancel_fork(p);
2246 bad_fork_cgroup_threadgroup_change_end:
2247 cgroup_threadgroup_change_end(current);
2248 bad_fork_put_pidfd:
2249 if (clone_flags & CLONE_PIDFD)
2250 ksys_close(pidfd);
2251 bad_fork_free_pid:
2252 if (pid != &init_struct_pid)
2253 free_pid(pid);
2254 bad_fork_cleanup_thread:
2255 exit_thread(p);
2256 bad_fork_cleanup_io:
2257 if (p->io_context)
2258 exit_io_context(p);
2259 bad_fork_cleanup_namespaces:
2260 exit_task_namespaces(p);
2261 bad_fork_cleanup_mm:
2262 if (p->mm) {
2263 mm_clear_owner(p->mm, p);
2264 mmput(p->mm);
2265 }
2266 bad_fork_cleanup_signal:
2267 if (!(clone_flags & CLONE_THREAD))
2268 free_signal_struct(p->signal);
2269 bad_fork_cleanup_sighand:
2270 __cleanup_sighand(p->sighand);
2271 bad_fork_cleanup_fs:
2272 exit_fs(p); /* blocking */
2273 bad_fork_cleanup_files:
2274 exit_files(p); /* blocking */
2275 bad_fork_cleanup_semundo:
2276 exit_sem(p);
2277 bad_fork_cleanup_security:
2278 security_task_free(p);
2279 bad_fork_cleanup_audit:
2280 audit_free(p);
2281 bad_fork_cleanup_perf:
2282 perf_event_free_task(p);
2283 bad_fork_cleanup_policy:
2284 lockdep_free_task(p);
2285 #ifdef CONFIG_NUMA
2286 mpol_put(p->mempolicy);
2287 bad_fork_cleanup_threadgroup_lock:
2288 #endif
2289 delayacct_tsk_free(p);
2290 bad_fork_cleanup_count:
2291 atomic_dec(&p->cred->user->processes);
2292 exit_creds(p);
2293 bad_fork_free:
2294 p->state = TASK_DEAD;
2295 put_task_stack(p);
2296 delayed_free_task(p);
2297 fork_out:
2298 spin_lock_irq(&current->sighand->siglock);
2299 hlist_del_init(&delayed.node);
2300 spin_unlock_irq(&current->sighand->siglock);
2301 return ERR_PTR(retval);
2302 }
2303
2304 static inline void init_idle_pids(struct task_struct *idle)
2305 {
2306 enum pid_type type;
2307
2308 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2309 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2310 init_task_pid(idle, type, &init_struct_pid);
2311 }
2312 }
2313
2314 struct task_struct *fork_idle(int cpu)
2315 {
2316 struct task_struct *task;
2317 task = copy_process(CLONE_VM, 0, 0, NULL, NULL, &init_struct_pid, 0, 0,
2318 cpu_to_node(cpu));
2319 if (!IS_ERR(task)) {
2320 init_idle_pids(task);
2321 init_idle(task, cpu);
2322 }
2323
2324 return task;
2325 }
2326
2327 struct mm_struct *copy_init_mm(void)
2328 {
2329 return dup_mm(NULL, &init_mm);
2330 }
2331
2332 /*
2333 * Ok, this is the main fork-routine.
2334 *
2335 * It copies the process, and if successful kick-starts
2336 * it and waits for it to finish using the VM if required.
2337 */
2338 long _do_fork(unsigned long clone_flags,
2339 unsigned long stack_start,
2340 unsigned long stack_size,
2341 int __user *parent_tidptr,
2342 int __user *child_tidptr,
2343 unsigned long tls)
2344 {
2345 struct completion vfork;
2346 struct pid *pid;
2347 struct task_struct *p;
2348 int trace = 0;
2349 long nr;
2350
2351 /*
2352 * Determine whether and which event to report to ptracer. When
2353 * called from kernel_thread or CLONE_UNTRACED is explicitly
2354 * requested, no event is reported; otherwise, report if the event
2355 * for the type of forking is enabled.
2356 */
2357 if (!(clone_flags & CLONE_UNTRACED)) {
2358 if (clone_flags & CLONE_VFORK)
2359 trace = PTRACE_EVENT_VFORK;
2360 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2361 trace = PTRACE_EVENT_CLONE;
2362 else
2363 trace = PTRACE_EVENT_FORK;
2364
2365 if (likely(!ptrace_event_enabled(current, trace)))
2366 trace = 0;
2367 }
2368
2369 p = copy_process(clone_flags, stack_start, stack_size, parent_tidptr,
2370 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2371 add_latent_entropy();
2372
2373 if (IS_ERR(p))
2374 return PTR_ERR(p);
2375
2376 /*
2377 * Do this prior waking up the new thread - the thread pointer
2378 * might get invalid after that point, if the thread exits quickly.
2379 */
2380 trace_sched_process_fork(current, p);
2381
2382 pid = get_task_pid(p, PIDTYPE_PID);
2383 nr = pid_vnr(pid);
2384
2385 if (clone_flags & CLONE_PARENT_SETTID)
2386 put_user(nr, parent_tidptr);
2387
2388 if (clone_flags & CLONE_VFORK) {
2389 p->vfork_done = &vfork;
2390 init_completion(&vfork);
2391 get_task_struct(p);
2392 }
2393
2394 wake_up_new_task(p);
2395
2396 /* forking complete and child started to run, tell ptracer */
2397 if (unlikely(trace))
2398 ptrace_event_pid(trace, pid);
2399
2400 if (clone_flags & CLONE_VFORK) {
2401 if (!wait_for_vfork_done(p, &vfork))
2402 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2403 }
2404
2405 put_pid(pid);
2406 return nr;
2407 }
2408
2409 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2410 /* For compatibility with architectures that call do_fork directly rather than
2411 * using the syscall entry points below. */
2412 long do_fork(unsigned long clone_flags,
2413 unsigned long stack_start,
2414 unsigned long stack_size,
2415 int __user *parent_tidptr,
2416 int __user *child_tidptr)
2417 {
2418 return _do_fork(clone_flags, stack_start, stack_size,
2419 parent_tidptr, child_tidptr, 0);
2420 }
2421 #endif
2422
2423 /*
2424 * Create a kernel thread.
2425 */
2426 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2427 {
2428 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2429 (unsigned long)arg, NULL, NULL, 0);
2430 }
2431
2432 #ifdef __ARCH_WANT_SYS_FORK
2433 SYSCALL_DEFINE0(fork)
2434 {
2435 #ifdef CONFIG_MMU
2436 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2437 #else
2438 /* can not support in nommu mode */
2439 return -EINVAL;
2440 #endif
2441 }
2442 #endif
2443
2444 #ifdef __ARCH_WANT_SYS_VFORK
2445 SYSCALL_DEFINE0(vfork)
2446 {
2447 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2448 0, NULL, NULL, 0);
2449 }
2450 #endif
2451
2452 #ifdef __ARCH_WANT_SYS_CLONE
2453 #ifdef CONFIG_CLONE_BACKWARDS
2454 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2455 int __user *, parent_tidptr,
2456 unsigned long, tls,
2457 int __user *, child_tidptr)
2458 #elif defined(CONFIG_CLONE_BACKWARDS2)
2459 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2460 int __user *, parent_tidptr,
2461 int __user *, child_tidptr,
2462 unsigned long, tls)
2463 #elif defined(CONFIG_CLONE_BACKWARDS3)
2464 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2465 int, stack_size,
2466 int __user *, parent_tidptr,
2467 int __user *, child_tidptr,
2468 unsigned long, tls)
2469 #else
2470 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2471 int __user *, parent_tidptr,
2472 int __user *, child_tidptr,
2473 unsigned long, tls)
2474 #endif
2475 {
2476 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2477 }
2478 #endif
2479
2480 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2481 {
2482 struct task_struct *leader, *parent, *child;
2483 int res;
2484
2485 read_lock(&tasklist_lock);
2486 leader = top = top->group_leader;
2487 down:
2488 for_each_thread(leader, parent) {
2489 list_for_each_entry(child, &parent->children, sibling) {
2490 res = visitor(child, data);
2491 if (res) {
2492 if (res < 0)
2493 goto out;
2494 leader = child;
2495 goto down;
2496 }
2497 up:
2498 ;
2499 }
2500 }
2501
2502 if (leader != top) {
2503 child = leader;
2504 parent = child->real_parent;
2505 leader = parent->group_leader;
2506 goto up;
2507 }
2508 out:
2509 read_unlock(&tasklist_lock);
2510 }
2511
2512 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2513 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2514 #endif
2515
2516 static void sighand_ctor(void *data)
2517 {
2518 struct sighand_struct *sighand = data;
2519
2520 spin_lock_init(&sighand->siglock);
2521 init_waitqueue_head(&sighand->signalfd_wqh);
2522 }
2523
2524 void __init proc_caches_init(void)
2525 {
2526 unsigned int mm_size;
2527
2528 sighand_cachep = kmem_cache_create("sighand_cache",
2529 sizeof(struct sighand_struct), 0,
2530 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2531 SLAB_ACCOUNT, sighand_ctor);
2532 signal_cachep = kmem_cache_create("signal_cache",
2533 sizeof(struct signal_struct), 0,
2534 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2535 NULL);
2536 files_cachep = kmem_cache_create("files_cache",
2537 sizeof(struct files_struct), 0,
2538 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2539 NULL);
2540 fs_cachep = kmem_cache_create("fs_cache",
2541 sizeof(struct fs_struct), 0,
2542 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2543 NULL);
2544
2545 /*
2546 * The mm_cpumask is located at the end of mm_struct, and is
2547 * dynamically sized based on the maximum CPU number this system
2548 * can have, taking hotplug into account (nr_cpu_ids).
2549 */
2550 mm_size = sizeof(struct mm_struct) + cpumask_size();
2551
2552 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2553 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2554 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2555 offsetof(struct mm_struct, saved_auxv),
2556 sizeof_field(struct mm_struct, saved_auxv),
2557 NULL);
2558 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2559 mmap_init();
2560 nsproxy_cache_init();
2561 }
2562
2563 /*
2564 * Check constraints on flags passed to the unshare system call.
2565 */
2566 static int check_unshare_flags(unsigned long unshare_flags)
2567 {
2568 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2569 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2570 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2571 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2572 return -EINVAL;
2573 /*
2574 * Not implemented, but pretend it works if there is nothing
2575 * to unshare. Note that unsharing the address space or the
2576 * signal handlers also need to unshare the signal queues (aka
2577 * CLONE_THREAD).
2578 */
2579 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2580 if (!thread_group_empty(current))
2581 return -EINVAL;
2582 }
2583 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2584 if (refcount_read(&current->sighand->count) > 1)
2585 return -EINVAL;
2586 }
2587 if (unshare_flags & CLONE_VM) {
2588 if (!current_is_single_threaded())
2589 return -EINVAL;
2590 }
2591
2592 return 0;
2593 }
2594
2595 /*
2596 * Unshare the filesystem structure if it is being shared
2597 */
2598 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2599 {
2600 struct fs_struct *fs = current->fs;
2601
2602 if (!(unshare_flags & CLONE_FS) || !fs)
2603 return 0;
2604
2605 /* don't need lock here; in the worst case we'll do useless copy */
2606 if (fs->users == 1)
2607 return 0;
2608
2609 *new_fsp = copy_fs_struct(fs);
2610 if (!*new_fsp)
2611 return -ENOMEM;
2612
2613 return 0;
2614 }
2615
2616 /*
2617 * Unshare file descriptor table if it is being shared
2618 */
2619 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2620 {
2621 struct files_struct *fd = current->files;
2622 int error = 0;
2623
2624 if ((unshare_flags & CLONE_FILES) &&
2625 (fd && atomic_read(&fd->count) > 1)) {
2626 *new_fdp = dup_fd(fd, &error);
2627 if (!*new_fdp)
2628 return error;
2629 }
2630
2631 return 0;
2632 }
2633
2634 /*
2635 * unshare allows a process to 'unshare' part of the process
2636 * context which was originally shared using clone. copy_*
2637 * functions used by do_fork() cannot be used here directly
2638 * because they modify an inactive task_struct that is being
2639 * constructed. Here we are modifying the current, active,
2640 * task_struct.
2641 */
2642 int ksys_unshare(unsigned long unshare_flags)
2643 {
2644 struct fs_struct *fs, *new_fs = NULL;
2645 struct files_struct *fd, *new_fd = NULL;
2646 struct cred *new_cred = NULL;
2647 struct nsproxy *new_nsproxy = NULL;
2648 int do_sysvsem = 0;
2649 int err;
2650
2651 /*
2652 * If unsharing a user namespace must also unshare the thread group
2653 * and unshare the filesystem root and working directories.
2654 */
2655 if (unshare_flags & CLONE_NEWUSER)
2656 unshare_flags |= CLONE_THREAD | CLONE_FS;
2657 /*
2658 * If unsharing vm, must also unshare signal handlers.
2659 */
2660 if (unshare_flags & CLONE_VM)
2661 unshare_flags |= CLONE_SIGHAND;
2662 /*
2663 * If unsharing a signal handlers, must also unshare the signal queues.
2664 */
2665 if (unshare_flags & CLONE_SIGHAND)
2666 unshare_flags |= CLONE_THREAD;
2667 /*
2668 * If unsharing namespace, must also unshare filesystem information.
2669 */
2670 if (unshare_flags & CLONE_NEWNS)
2671 unshare_flags |= CLONE_FS;
2672
2673 err = check_unshare_flags(unshare_flags);
2674 if (err)
2675 goto bad_unshare_out;
2676 /*
2677 * CLONE_NEWIPC must also detach from the undolist: after switching
2678 * to a new ipc namespace, the semaphore arrays from the old
2679 * namespace are unreachable.
2680 */
2681 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2682 do_sysvsem = 1;
2683 err = unshare_fs(unshare_flags, &new_fs);
2684 if (err)
2685 goto bad_unshare_out;
2686 err = unshare_fd(unshare_flags, &new_fd);
2687 if (err)
2688 goto bad_unshare_cleanup_fs;
2689 err = unshare_userns(unshare_flags, &new_cred);
2690 if (err)
2691 goto bad_unshare_cleanup_fd;
2692 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2693 new_cred, new_fs);
2694 if (err)
2695 goto bad_unshare_cleanup_cred;
2696
2697 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2698 if (do_sysvsem) {
2699 /*
2700 * CLONE_SYSVSEM is equivalent to sys_exit().
2701 */
2702 exit_sem(current);
2703 }
2704 if (unshare_flags & CLONE_NEWIPC) {
2705 /* Orphan segments in old ns (see sem above). */
2706 exit_shm(current);
2707 shm_init_task(current);
2708 }
2709
2710 if (new_nsproxy)
2711 switch_task_namespaces(current, new_nsproxy);
2712
2713 task_lock(current);
2714
2715 if (new_fs) {
2716 fs = current->fs;
2717 spin_lock(&fs->lock);
2718 current->fs = new_fs;
2719 if (--fs->users)
2720 new_fs = NULL;
2721 else
2722 new_fs = fs;
2723 spin_unlock(&fs->lock);
2724 }
2725
2726 if (new_fd) {
2727 fd = current->files;
2728 current->files = new_fd;
2729 new_fd = fd;
2730 }
2731
2732 task_unlock(current);
2733
2734 if (new_cred) {
2735 /* Install the new user namespace */
2736 commit_creds(new_cred);
2737 new_cred = NULL;
2738 }
2739 }
2740
2741 perf_event_namespaces(current);
2742
2743 bad_unshare_cleanup_cred:
2744 if (new_cred)
2745 put_cred(new_cred);
2746 bad_unshare_cleanup_fd:
2747 if (new_fd)
2748 put_files_struct(new_fd);
2749
2750 bad_unshare_cleanup_fs:
2751 if (new_fs)
2752 free_fs_struct(new_fs);
2753
2754 bad_unshare_out:
2755 return err;
2756 }
2757
2758 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2759 {
2760 return ksys_unshare(unshare_flags);
2761 }
2762
2763 /*
2764 * Helper to unshare the files of the current task.
2765 * We don't want to expose copy_files internals to
2766 * the exec layer of the kernel.
2767 */
2768
2769 int unshare_files(struct files_struct **displaced)
2770 {
2771 struct task_struct *task = current;
2772 struct files_struct *copy = NULL;
2773 int error;
2774
2775 error = unshare_fd(CLONE_FILES, &copy);
2776 if (error || !copy) {
2777 *displaced = NULL;
2778 return error;
2779 }
2780 *displaced = task->files;
2781 task_lock(task);
2782 task->files = copy;
2783 task_unlock(task);
2784 return 0;
2785 }
2786
2787 int sysctl_max_threads(struct ctl_table *table, int write,
2788 void __user *buffer, size_t *lenp, loff_t *ppos)
2789 {
2790 struct ctl_table t;
2791 int ret;
2792 int threads = max_threads;
2793 int min = MIN_THREADS;
2794 int max = MAX_THREADS;
2795
2796 t = *table;
2797 t.data = &threads;
2798 t.extra1 = &min;
2799 t.extra2 = &max;
2800
2801 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2802 if (ret || !write)
2803 return ret;
2804
2805 set_max_threads(threads);
2806
2807 return 0;
2808 }