]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/kprobes.c
Merge tag 'x86-fpu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[thirdparty/linux.git] / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Kernel Probes (KProbes)
4 * kernel/kprobes.c
5 *
6 * Copyright (C) IBM Corporation, 2002, 2004
7 *
8 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9 * Probes initial implementation (includes suggestions from
10 * Rusty Russell).
11 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12 * hlists and exceptions notifier as suggested by Andi Kleen.
13 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14 * interface to access function arguments.
15 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16 * exceptions notifier to be first on the priority list.
17 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19 * <prasanna@in.ibm.com> added function-return probes.
20 */
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
38
39 #include <asm/sections.h>
40 #include <asm/cacheflush.h>
41 #include <asm/errno.h>
42 #include <linux/uaccess.h>
43
44 #define KPROBE_HASH_BITS 6
45 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
46
47
48 static int kprobes_initialized;
49 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
50 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
51
52 /* NOTE: change this value only with kprobe_mutex held */
53 static bool kprobes_all_disarmed;
54
55 /* This protects kprobe_table and optimizing_list */
56 static DEFINE_MUTEX(kprobe_mutex);
57 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
58 static struct {
59 raw_spinlock_t lock ____cacheline_aligned_in_smp;
60 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
61
62 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
63 unsigned int __unused)
64 {
65 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
66 }
67
68 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
69 {
70 return &(kretprobe_table_locks[hash].lock);
71 }
72
73 /* Blacklist -- list of struct kprobe_blacklist_entry */
74 static LIST_HEAD(kprobe_blacklist);
75
76 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
77 /*
78 * kprobe->ainsn.insn points to the copy of the instruction to be
79 * single-stepped. x86_64, POWER4 and above have no-exec support and
80 * stepping on the instruction on a vmalloced/kmalloced/data page
81 * is a recipe for disaster
82 */
83 struct kprobe_insn_page {
84 struct list_head list;
85 kprobe_opcode_t *insns; /* Page of instruction slots */
86 struct kprobe_insn_cache *cache;
87 int nused;
88 int ngarbage;
89 char slot_used[];
90 };
91
92 #define KPROBE_INSN_PAGE_SIZE(slots) \
93 (offsetof(struct kprobe_insn_page, slot_used) + \
94 (sizeof(char) * (slots)))
95
96 static int slots_per_page(struct kprobe_insn_cache *c)
97 {
98 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
99 }
100
101 enum kprobe_slot_state {
102 SLOT_CLEAN = 0,
103 SLOT_DIRTY = 1,
104 SLOT_USED = 2,
105 };
106
107 void __weak *alloc_insn_page(void)
108 {
109 return module_alloc(PAGE_SIZE);
110 }
111
112 void __weak free_insn_page(void *page)
113 {
114 module_memfree(page);
115 }
116
117 struct kprobe_insn_cache kprobe_insn_slots = {
118 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
119 .alloc = alloc_insn_page,
120 .free = free_insn_page,
121 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
122 .insn_size = MAX_INSN_SIZE,
123 .nr_garbage = 0,
124 };
125 static int collect_garbage_slots(struct kprobe_insn_cache *c);
126
127 /**
128 * __get_insn_slot() - Find a slot on an executable page for an instruction.
129 * We allocate an executable page if there's no room on existing ones.
130 */
131 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
132 {
133 struct kprobe_insn_page *kip;
134 kprobe_opcode_t *slot = NULL;
135
136 /* Since the slot array is not protected by rcu, we need a mutex */
137 mutex_lock(&c->mutex);
138 retry:
139 rcu_read_lock();
140 list_for_each_entry_rcu(kip, &c->pages, list) {
141 if (kip->nused < slots_per_page(c)) {
142 int i;
143 for (i = 0; i < slots_per_page(c); i++) {
144 if (kip->slot_used[i] == SLOT_CLEAN) {
145 kip->slot_used[i] = SLOT_USED;
146 kip->nused++;
147 slot = kip->insns + (i * c->insn_size);
148 rcu_read_unlock();
149 goto out;
150 }
151 }
152 /* kip->nused is broken. Fix it. */
153 kip->nused = slots_per_page(c);
154 WARN_ON(1);
155 }
156 }
157 rcu_read_unlock();
158
159 /* If there are any garbage slots, collect it and try again. */
160 if (c->nr_garbage && collect_garbage_slots(c) == 0)
161 goto retry;
162
163 /* All out of space. Need to allocate a new page. */
164 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
165 if (!kip)
166 goto out;
167
168 /*
169 * Use module_alloc so this page is within +/- 2GB of where the
170 * kernel image and loaded module images reside. This is required
171 * so x86_64 can correctly handle the %rip-relative fixups.
172 */
173 kip->insns = c->alloc();
174 if (!kip->insns) {
175 kfree(kip);
176 goto out;
177 }
178 INIT_LIST_HEAD(&kip->list);
179 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
180 kip->slot_used[0] = SLOT_USED;
181 kip->nused = 1;
182 kip->ngarbage = 0;
183 kip->cache = c;
184 list_add_rcu(&kip->list, &c->pages);
185 slot = kip->insns;
186 out:
187 mutex_unlock(&c->mutex);
188 return slot;
189 }
190
191 /* Return 1 if all garbages are collected, otherwise 0. */
192 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
193 {
194 kip->slot_used[idx] = SLOT_CLEAN;
195 kip->nused--;
196 if (kip->nused == 0) {
197 /*
198 * Page is no longer in use. Free it unless
199 * it's the last one. We keep the last one
200 * so as not to have to set it up again the
201 * next time somebody inserts a probe.
202 */
203 if (!list_is_singular(&kip->list)) {
204 list_del_rcu(&kip->list);
205 synchronize_rcu();
206 kip->cache->free(kip->insns);
207 kfree(kip);
208 }
209 return 1;
210 }
211 return 0;
212 }
213
214 static int collect_garbage_slots(struct kprobe_insn_cache *c)
215 {
216 struct kprobe_insn_page *kip, *next;
217
218 /* Ensure no-one is interrupted on the garbages */
219 synchronize_rcu();
220
221 list_for_each_entry_safe(kip, next, &c->pages, list) {
222 int i;
223 if (kip->ngarbage == 0)
224 continue;
225 kip->ngarbage = 0; /* we will collect all garbages */
226 for (i = 0; i < slots_per_page(c); i++) {
227 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
228 break;
229 }
230 }
231 c->nr_garbage = 0;
232 return 0;
233 }
234
235 void __free_insn_slot(struct kprobe_insn_cache *c,
236 kprobe_opcode_t *slot, int dirty)
237 {
238 struct kprobe_insn_page *kip;
239 long idx;
240
241 mutex_lock(&c->mutex);
242 rcu_read_lock();
243 list_for_each_entry_rcu(kip, &c->pages, list) {
244 idx = ((long)slot - (long)kip->insns) /
245 (c->insn_size * sizeof(kprobe_opcode_t));
246 if (idx >= 0 && idx < slots_per_page(c))
247 goto out;
248 }
249 /* Could not find this slot. */
250 WARN_ON(1);
251 kip = NULL;
252 out:
253 rcu_read_unlock();
254 /* Mark and sweep: this may sleep */
255 if (kip) {
256 /* Check double free */
257 WARN_ON(kip->slot_used[idx] != SLOT_USED);
258 if (dirty) {
259 kip->slot_used[idx] = SLOT_DIRTY;
260 kip->ngarbage++;
261 if (++c->nr_garbage > slots_per_page(c))
262 collect_garbage_slots(c);
263 } else {
264 collect_one_slot(kip, idx);
265 }
266 }
267 mutex_unlock(&c->mutex);
268 }
269
270 /*
271 * Check given address is on the page of kprobe instruction slots.
272 * This will be used for checking whether the address on a stack
273 * is on a text area or not.
274 */
275 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
276 {
277 struct kprobe_insn_page *kip;
278 bool ret = false;
279
280 rcu_read_lock();
281 list_for_each_entry_rcu(kip, &c->pages, list) {
282 if (addr >= (unsigned long)kip->insns &&
283 addr < (unsigned long)kip->insns + PAGE_SIZE) {
284 ret = true;
285 break;
286 }
287 }
288 rcu_read_unlock();
289
290 return ret;
291 }
292
293 #ifdef CONFIG_OPTPROBES
294 /* For optimized_kprobe buffer */
295 struct kprobe_insn_cache kprobe_optinsn_slots = {
296 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
297 .alloc = alloc_insn_page,
298 .free = free_insn_page,
299 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
300 /* .insn_size is initialized later */
301 .nr_garbage = 0,
302 };
303 #endif
304 #endif
305
306 /* We have preemption disabled.. so it is safe to use __ versions */
307 static inline void set_kprobe_instance(struct kprobe *kp)
308 {
309 __this_cpu_write(kprobe_instance, kp);
310 }
311
312 static inline void reset_kprobe_instance(void)
313 {
314 __this_cpu_write(kprobe_instance, NULL);
315 }
316
317 /*
318 * This routine is called either:
319 * - under the kprobe_mutex - during kprobe_[un]register()
320 * OR
321 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
322 */
323 struct kprobe *get_kprobe(void *addr)
324 {
325 struct hlist_head *head;
326 struct kprobe *p;
327
328 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
329 hlist_for_each_entry_rcu(p, head, hlist) {
330 if (p->addr == addr)
331 return p;
332 }
333
334 return NULL;
335 }
336 NOKPROBE_SYMBOL(get_kprobe);
337
338 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
339
340 /* Return true if the kprobe is an aggregator */
341 static inline int kprobe_aggrprobe(struct kprobe *p)
342 {
343 return p->pre_handler == aggr_pre_handler;
344 }
345
346 /* Return true(!0) if the kprobe is unused */
347 static inline int kprobe_unused(struct kprobe *p)
348 {
349 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
350 list_empty(&p->list);
351 }
352
353 /*
354 * Keep all fields in the kprobe consistent
355 */
356 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
357 {
358 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
359 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
360 }
361
362 #ifdef CONFIG_OPTPROBES
363 /* NOTE: change this value only with kprobe_mutex held */
364 static bool kprobes_allow_optimization;
365
366 /*
367 * Call all pre_handler on the list, but ignores its return value.
368 * This must be called from arch-dep optimized caller.
369 */
370 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
371 {
372 struct kprobe *kp;
373
374 list_for_each_entry_rcu(kp, &p->list, list) {
375 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
376 set_kprobe_instance(kp);
377 kp->pre_handler(kp, regs);
378 }
379 reset_kprobe_instance();
380 }
381 }
382 NOKPROBE_SYMBOL(opt_pre_handler);
383
384 /* Free optimized instructions and optimized_kprobe */
385 static void free_aggr_kprobe(struct kprobe *p)
386 {
387 struct optimized_kprobe *op;
388
389 op = container_of(p, struct optimized_kprobe, kp);
390 arch_remove_optimized_kprobe(op);
391 arch_remove_kprobe(p);
392 kfree(op);
393 }
394
395 /* Return true(!0) if the kprobe is ready for optimization. */
396 static inline int kprobe_optready(struct kprobe *p)
397 {
398 struct optimized_kprobe *op;
399
400 if (kprobe_aggrprobe(p)) {
401 op = container_of(p, struct optimized_kprobe, kp);
402 return arch_prepared_optinsn(&op->optinsn);
403 }
404
405 return 0;
406 }
407
408 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
409 static inline int kprobe_disarmed(struct kprobe *p)
410 {
411 struct optimized_kprobe *op;
412
413 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
414 if (!kprobe_aggrprobe(p))
415 return kprobe_disabled(p);
416
417 op = container_of(p, struct optimized_kprobe, kp);
418
419 return kprobe_disabled(p) && list_empty(&op->list);
420 }
421
422 /* Return true(!0) if the probe is queued on (un)optimizing lists */
423 static int kprobe_queued(struct kprobe *p)
424 {
425 struct optimized_kprobe *op;
426
427 if (kprobe_aggrprobe(p)) {
428 op = container_of(p, struct optimized_kprobe, kp);
429 if (!list_empty(&op->list))
430 return 1;
431 }
432 return 0;
433 }
434
435 /*
436 * Return an optimized kprobe whose optimizing code replaces
437 * instructions including addr (exclude breakpoint).
438 */
439 static struct kprobe *get_optimized_kprobe(unsigned long addr)
440 {
441 int i;
442 struct kprobe *p = NULL;
443 struct optimized_kprobe *op;
444
445 /* Don't check i == 0, since that is a breakpoint case. */
446 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
447 p = get_kprobe((void *)(addr - i));
448
449 if (p && kprobe_optready(p)) {
450 op = container_of(p, struct optimized_kprobe, kp);
451 if (arch_within_optimized_kprobe(op, addr))
452 return p;
453 }
454
455 return NULL;
456 }
457
458 /* Optimization staging list, protected by kprobe_mutex */
459 static LIST_HEAD(optimizing_list);
460 static LIST_HEAD(unoptimizing_list);
461 static LIST_HEAD(freeing_list);
462
463 static void kprobe_optimizer(struct work_struct *work);
464 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
465 #define OPTIMIZE_DELAY 5
466
467 /*
468 * Optimize (replace a breakpoint with a jump) kprobes listed on
469 * optimizing_list.
470 */
471 static void do_optimize_kprobes(void)
472 {
473 lockdep_assert_held(&text_mutex);
474 /*
475 * The optimization/unoptimization refers online_cpus via
476 * stop_machine() and cpu-hotplug modifies online_cpus.
477 * And same time, text_mutex will be held in cpu-hotplug and here.
478 * This combination can cause a deadlock (cpu-hotplug try to lock
479 * text_mutex but stop_machine can not be done because online_cpus
480 * has been changed)
481 * To avoid this deadlock, caller must have locked cpu hotplug
482 * for preventing cpu-hotplug outside of text_mutex locking.
483 */
484 lockdep_assert_cpus_held();
485
486 /* Optimization never be done when disarmed */
487 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
488 list_empty(&optimizing_list))
489 return;
490
491 arch_optimize_kprobes(&optimizing_list);
492 }
493
494 /*
495 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
496 * if need) kprobes listed on unoptimizing_list.
497 */
498 static void do_unoptimize_kprobes(void)
499 {
500 struct optimized_kprobe *op, *tmp;
501
502 lockdep_assert_held(&text_mutex);
503 /* See comment in do_optimize_kprobes() */
504 lockdep_assert_cpus_held();
505
506 /* Unoptimization must be done anytime */
507 if (list_empty(&unoptimizing_list))
508 return;
509
510 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
511 /* Loop free_list for disarming */
512 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
513 /* Switching from detour code to origin */
514 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
515 /* Disarm probes if marked disabled */
516 if (kprobe_disabled(&op->kp))
517 arch_disarm_kprobe(&op->kp);
518 if (kprobe_unused(&op->kp)) {
519 /*
520 * Remove unused probes from hash list. After waiting
521 * for synchronization, these probes are reclaimed.
522 * (reclaiming is done by do_free_cleaned_kprobes.)
523 */
524 hlist_del_rcu(&op->kp.hlist);
525 } else
526 list_del_init(&op->list);
527 }
528 }
529
530 /* Reclaim all kprobes on the free_list */
531 static void do_free_cleaned_kprobes(void)
532 {
533 struct optimized_kprobe *op, *tmp;
534
535 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
536 list_del_init(&op->list);
537 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
538 /*
539 * This must not happen, but if there is a kprobe
540 * still in use, keep it on kprobes hash list.
541 */
542 continue;
543 }
544 free_aggr_kprobe(&op->kp);
545 }
546 }
547
548 /* Start optimizer after OPTIMIZE_DELAY passed */
549 static void kick_kprobe_optimizer(void)
550 {
551 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
552 }
553
554 /* Kprobe jump optimizer */
555 static void kprobe_optimizer(struct work_struct *work)
556 {
557 mutex_lock(&kprobe_mutex);
558 cpus_read_lock();
559 mutex_lock(&text_mutex);
560 /* Lock modules while optimizing kprobes */
561 mutex_lock(&module_mutex);
562
563 /*
564 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
565 * kprobes before waiting for quiesence period.
566 */
567 do_unoptimize_kprobes();
568
569 /*
570 * Step 2: Wait for quiesence period to ensure all potentially
571 * preempted tasks to have normally scheduled. Because optprobe
572 * may modify multiple instructions, there is a chance that Nth
573 * instruction is preempted. In that case, such tasks can return
574 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
575 * Note that on non-preemptive kernel, this is transparently converted
576 * to synchronoze_sched() to wait for all interrupts to have completed.
577 */
578 synchronize_rcu_tasks();
579
580 /* Step 3: Optimize kprobes after quiesence period */
581 do_optimize_kprobes();
582
583 /* Step 4: Free cleaned kprobes after quiesence period */
584 do_free_cleaned_kprobes();
585
586 mutex_unlock(&module_mutex);
587 mutex_unlock(&text_mutex);
588 cpus_read_unlock();
589 mutex_unlock(&kprobe_mutex);
590
591 /* Step 5: Kick optimizer again if needed */
592 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
593 kick_kprobe_optimizer();
594 }
595
596 /* Wait for completing optimization and unoptimization */
597 void wait_for_kprobe_optimizer(void)
598 {
599 mutex_lock(&kprobe_mutex);
600
601 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
602 mutex_unlock(&kprobe_mutex);
603
604 /* this will also make optimizing_work execute immmediately */
605 flush_delayed_work(&optimizing_work);
606 /* @optimizing_work might not have been queued yet, relax */
607 cpu_relax();
608
609 mutex_lock(&kprobe_mutex);
610 }
611
612 mutex_unlock(&kprobe_mutex);
613 }
614
615 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
616 {
617 struct optimized_kprobe *_op;
618
619 list_for_each_entry(_op, &unoptimizing_list, list) {
620 if (op == _op)
621 return true;
622 }
623
624 return false;
625 }
626
627 /* Optimize kprobe if p is ready to be optimized */
628 static void optimize_kprobe(struct kprobe *p)
629 {
630 struct optimized_kprobe *op;
631
632 /* Check if the kprobe is disabled or not ready for optimization. */
633 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
634 (kprobe_disabled(p) || kprobes_all_disarmed))
635 return;
636
637 /* kprobes with post_handler can not be optimized */
638 if (p->post_handler)
639 return;
640
641 op = container_of(p, struct optimized_kprobe, kp);
642
643 /* Check there is no other kprobes at the optimized instructions */
644 if (arch_check_optimized_kprobe(op) < 0)
645 return;
646
647 /* Check if it is already optimized. */
648 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
649 if (optprobe_queued_unopt(op)) {
650 /* This is under unoptimizing. Just dequeue the probe */
651 list_del_init(&op->list);
652 }
653 return;
654 }
655 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
656
657 /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
658 if (WARN_ON_ONCE(!list_empty(&op->list)))
659 return;
660
661 list_add(&op->list, &optimizing_list);
662 kick_kprobe_optimizer();
663 }
664
665 /* Short cut to direct unoptimizing */
666 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
667 {
668 lockdep_assert_cpus_held();
669 arch_unoptimize_kprobe(op);
670 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
671 if (kprobe_disabled(&op->kp))
672 arch_disarm_kprobe(&op->kp);
673 }
674
675 /* Unoptimize a kprobe if p is optimized */
676 static void unoptimize_kprobe(struct kprobe *p, bool force)
677 {
678 struct optimized_kprobe *op;
679
680 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
681 return; /* This is not an optprobe nor optimized */
682
683 op = container_of(p, struct optimized_kprobe, kp);
684 if (!kprobe_optimized(p))
685 return;
686
687 if (!list_empty(&op->list)) {
688 if (optprobe_queued_unopt(op)) {
689 /* Queued in unoptimizing queue */
690 if (force) {
691 /*
692 * Forcibly unoptimize the kprobe here, and queue it
693 * in the freeing list for release afterwards.
694 */
695 force_unoptimize_kprobe(op);
696 list_move(&op->list, &freeing_list);
697 }
698 } else {
699 /* Dequeue from the optimizing queue */
700 list_del_init(&op->list);
701 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
702 }
703 return;
704 }
705
706 /* Optimized kprobe case */
707 if (force) {
708 /* Forcibly update the code: this is a special case */
709 force_unoptimize_kprobe(op);
710 } else {
711 list_add(&op->list, &unoptimizing_list);
712 kick_kprobe_optimizer();
713 }
714 }
715
716 /* Cancel unoptimizing for reusing */
717 static int reuse_unused_kprobe(struct kprobe *ap)
718 {
719 struct optimized_kprobe *op;
720
721 /*
722 * Unused kprobe MUST be on the way of delayed unoptimizing (means
723 * there is still a relative jump) and disabled.
724 */
725 op = container_of(ap, struct optimized_kprobe, kp);
726 WARN_ON_ONCE(list_empty(&op->list));
727 /* Enable the probe again */
728 ap->flags &= ~KPROBE_FLAG_DISABLED;
729 /* Optimize it again (remove from op->list) */
730 if (!kprobe_optready(ap))
731 return -EINVAL;
732
733 optimize_kprobe(ap);
734 return 0;
735 }
736
737 /* Remove optimized instructions */
738 static void kill_optimized_kprobe(struct kprobe *p)
739 {
740 struct optimized_kprobe *op;
741
742 op = container_of(p, struct optimized_kprobe, kp);
743 if (!list_empty(&op->list))
744 /* Dequeue from the (un)optimization queue */
745 list_del_init(&op->list);
746 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
747
748 if (kprobe_unused(p)) {
749 /* Enqueue if it is unused */
750 list_add(&op->list, &freeing_list);
751 /*
752 * Remove unused probes from the hash list. After waiting
753 * for synchronization, this probe is reclaimed.
754 * (reclaiming is done by do_free_cleaned_kprobes().)
755 */
756 hlist_del_rcu(&op->kp.hlist);
757 }
758
759 /* Don't touch the code, because it is already freed. */
760 arch_remove_optimized_kprobe(op);
761 }
762
763 static inline
764 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
765 {
766 if (!kprobe_ftrace(p))
767 arch_prepare_optimized_kprobe(op, p);
768 }
769
770 /* Try to prepare optimized instructions */
771 static void prepare_optimized_kprobe(struct kprobe *p)
772 {
773 struct optimized_kprobe *op;
774
775 op = container_of(p, struct optimized_kprobe, kp);
776 __prepare_optimized_kprobe(op, p);
777 }
778
779 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
780 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
781 {
782 struct optimized_kprobe *op;
783
784 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
785 if (!op)
786 return NULL;
787
788 INIT_LIST_HEAD(&op->list);
789 op->kp.addr = p->addr;
790 __prepare_optimized_kprobe(op, p);
791
792 return &op->kp;
793 }
794
795 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
796
797 /*
798 * Prepare an optimized_kprobe and optimize it
799 * NOTE: p must be a normal registered kprobe
800 */
801 static void try_to_optimize_kprobe(struct kprobe *p)
802 {
803 struct kprobe *ap;
804 struct optimized_kprobe *op;
805
806 /* Impossible to optimize ftrace-based kprobe */
807 if (kprobe_ftrace(p))
808 return;
809
810 /* For preparing optimization, jump_label_text_reserved() is called */
811 cpus_read_lock();
812 jump_label_lock();
813 mutex_lock(&text_mutex);
814
815 ap = alloc_aggr_kprobe(p);
816 if (!ap)
817 goto out;
818
819 op = container_of(ap, struct optimized_kprobe, kp);
820 if (!arch_prepared_optinsn(&op->optinsn)) {
821 /* If failed to setup optimizing, fallback to kprobe */
822 arch_remove_optimized_kprobe(op);
823 kfree(op);
824 goto out;
825 }
826
827 init_aggr_kprobe(ap, p);
828 optimize_kprobe(ap); /* This just kicks optimizer thread */
829
830 out:
831 mutex_unlock(&text_mutex);
832 jump_label_unlock();
833 cpus_read_unlock();
834 }
835
836 #ifdef CONFIG_SYSCTL
837 static void optimize_all_kprobes(void)
838 {
839 struct hlist_head *head;
840 struct kprobe *p;
841 unsigned int i;
842
843 mutex_lock(&kprobe_mutex);
844 /* If optimization is already allowed, just return */
845 if (kprobes_allow_optimization)
846 goto out;
847
848 cpus_read_lock();
849 kprobes_allow_optimization = true;
850 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
851 head = &kprobe_table[i];
852 hlist_for_each_entry_rcu(p, head, hlist)
853 if (!kprobe_disabled(p))
854 optimize_kprobe(p);
855 }
856 cpus_read_unlock();
857 printk(KERN_INFO "Kprobes globally optimized\n");
858 out:
859 mutex_unlock(&kprobe_mutex);
860 }
861
862 static void unoptimize_all_kprobes(void)
863 {
864 struct hlist_head *head;
865 struct kprobe *p;
866 unsigned int i;
867
868 mutex_lock(&kprobe_mutex);
869 /* If optimization is already prohibited, just return */
870 if (!kprobes_allow_optimization) {
871 mutex_unlock(&kprobe_mutex);
872 return;
873 }
874
875 cpus_read_lock();
876 kprobes_allow_optimization = false;
877 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
878 head = &kprobe_table[i];
879 hlist_for_each_entry_rcu(p, head, hlist) {
880 if (!kprobe_disabled(p))
881 unoptimize_kprobe(p, false);
882 }
883 }
884 cpus_read_unlock();
885 mutex_unlock(&kprobe_mutex);
886
887 /* Wait for unoptimizing completion */
888 wait_for_kprobe_optimizer();
889 printk(KERN_INFO "Kprobes globally unoptimized\n");
890 }
891
892 static DEFINE_MUTEX(kprobe_sysctl_mutex);
893 int sysctl_kprobes_optimization;
894 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
895 void __user *buffer, size_t *length,
896 loff_t *ppos)
897 {
898 int ret;
899
900 mutex_lock(&kprobe_sysctl_mutex);
901 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
902 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
903
904 if (sysctl_kprobes_optimization)
905 optimize_all_kprobes();
906 else
907 unoptimize_all_kprobes();
908 mutex_unlock(&kprobe_sysctl_mutex);
909
910 return ret;
911 }
912 #endif /* CONFIG_SYSCTL */
913
914 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
915 static void __arm_kprobe(struct kprobe *p)
916 {
917 struct kprobe *_p;
918
919 /* Check collision with other optimized kprobes */
920 _p = get_optimized_kprobe((unsigned long)p->addr);
921 if (unlikely(_p))
922 /* Fallback to unoptimized kprobe */
923 unoptimize_kprobe(_p, true);
924
925 arch_arm_kprobe(p);
926 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
927 }
928
929 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
930 static void __disarm_kprobe(struct kprobe *p, bool reopt)
931 {
932 struct kprobe *_p;
933
934 /* Try to unoptimize */
935 unoptimize_kprobe(p, kprobes_all_disarmed);
936
937 if (!kprobe_queued(p)) {
938 arch_disarm_kprobe(p);
939 /* If another kprobe was blocked, optimize it. */
940 _p = get_optimized_kprobe((unsigned long)p->addr);
941 if (unlikely(_p) && reopt)
942 optimize_kprobe(_p);
943 }
944 /* TODO: reoptimize others after unoptimized this probe */
945 }
946
947 #else /* !CONFIG_OPTPROBES */
948
949 #define optimize_kprobe(p) do {} while (0)
950 #define unoptimize_kprobe(p, f) do {} while (0)
951 #define kill_optimized_kprobe(p) do {} while (0)
952 #define prepare_optimized_kprobe(p) do {} while (0)
953 #define try_to_optimize_kprobe(p) do {} while (0)
954 #define __arm_kprobe(p) arch_arm_kprobe(p)
955 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
956 #define kprobe_disarmed(p) kprobe_disabled(p)
957 #define wait_for_kprobe_optimizer() do {} while (0)
958
959 static int reuse_unused_kprobe(struct kprobe *ap)
960 {
961 /*
962 * If the optimized kprobe is NOT supported, the aggr kprobe is
963 * released at the same time that the last aggregated kprobe is
964 * unregistered.
965 * Thus there should be no chance to reuse unused kprobe.
966 */
967 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
968 return -EINVAL;
969 }
970
971 static void free_aggr_kprobe(struct kprobe *p)
972 {
973 arch_remove_kprobe(p);
974 kfree(p);
975 }
976
977 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
978 {
979 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
980 }
981 #endif /* CONFIG_OPTPROBES */
982
983 #ifdef CONFIG_KPROBES_ON_FTRACE
984 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
985 .func = kprobe_ftrace_handler,
986 .flags = FTRACE_OPS_FL_SAVE_REGS,
987 };
988
989 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
990 .func = kprobe_ftrace_handler,
991 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
992 };
993
994 static int kprobe_ipmodify_enabled;
995 static int kprobe_ftrace_enabled;
996
997 /* Must ensure p->addr is really on ftrace */
998 static int prepare_kprobe(struct kprobe *p)
999 {
1000 if (!kprobe_ftrace(p))
1001 return arch_prepare_kprobe(p);
1002
1003 return arch_prepare_kprobe_ftrace(p);
1004 }
1005
1006 /* Caller must lock kprobe_mutex */
1007 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1008 int *cnt)
1009 {
1010 int ret = 0;
1011
1012 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1013 if (ret) {
1014 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1015 p->addr, ret);
1016 return ret;
1017 }
1018
1019 if (*cnt == 0) {
1020 ret = register_ftrace_function(ops);
1021 if (ret) {
1022 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1023 goto err_ftrace;
1024 }
1025 }
1026
1027 (*cnt)++;
1028 return ret;
1029
1030 err_ftrace:
1031 /*
1032 * At this point, sinec ops is not registered, we should be sefe from
1033 * registering empty filter.
1034 */
1035 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1036 return ret;
1037 }
1038
1039 static int arm_kprobe_ftrace(struct kprobe *p)
1040 {
1041 bool ipmodify = (p->post_handler != NULL);
1042
1043 return __arm_kprobe_ftrace(p,
1044 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1045 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1046 }
1047
1048 /* Caller must lock kprobe_mutex */
1049 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1050 int *cnt)
1051 {
1052 int ret = 0;
1053
1054 if (*cnt == 1) {
1055 ret = unregister_ftrace_function(ops);
1056 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1057 return ret;
1058 }
1059
1060 (*cnt)--;
1061
1062 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1063 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1064 p->addr, ret);
1065 return ret;
1066 }
1067
1068 static int disarm_kprobe_ftrace(struct kprobe *p)
1069 {
1070 bool ipmodify = (p->post_handler != NULL);
1071
1072 return __disarm_kprobe_ftrace(p,
1073 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1074 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1075 }
1076 #else /* !CONFIG_KPROBES_ON_FTRACE */
1077 #define prepare_kprobe(p) arch_prepare_kprobe(p)
1078 #define arm_kprobe_ftrace(p) (-ENODEV)
1079 #define disarm_kprobe_ftrace(p) (-ENODEV)
1080 #endif
1081
1082 /* Arm a kprobe with text_mutex */
1083 static int arm_kprobe(struct kprobe *kp)
1084 {
1085 if (unlikely(kprobe_ftrace(kp)))
1086 return arm_kprobe_ftrace(kp);
1087
1088 cpus_read_lock();
1089 mutex_lock(&text_mutex);
1090 __arm_kprobe(kp);
1091 mutex_unlock(&text_mutex);
1092 cpus_read_unlock();
1093
1094 return 0;
1095 }
1096
1097 /* Disarm a kprobe with text_mutex */
1098 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1099 {
1100 if (unlikely(kprobe_ftrace(kp)))
1101 return disarm_kprobe_ftrace(kp);
1102
1103 cpus_read_lock();
1104 mutex_lock(&text_mutex);
1105 __disarm_kprobe(kp, reopt);
1106 mutex_unlock(&text_mutex);
1107 cpus_read_unlock();
1108
1109 return 0;
1110 }
1111
1112 /*
1113 * Aggregate handlers for multiple kprobes support - these handlers
1114 * take care of invoking the individual kprobe handlers on p->list
1115 */
1116 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1117 {
1118 struct kprobe *kp;
1119
1120 list_for_each_entry_rcu(kp, &p->list, list) {
1121 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1122 set_kprobe_instance(kp);
1123 if (kp->pre_handler(kp, regs))
1124 return 1;
1125 }
1126 reset_kprobe_instance();
1127 }
1128 return 0;
1129 }
1130 NOKPROBE_SYMBOL(aggr_pre_handler);
1131
1132 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1133 unsigned long flags)
1134 {
1135 struct kprobe *kp;
1136
1137 list_for_each_entry_rcu(kp, &p->list, list) {
1138 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1139 set_kprobe_instance(kp);
1140 kp->post_handler(kp, regs, flags);
1141 reset_kprobe_instance();
1142 }
1143 }
1144 }
1145 NOKPROBE_SYMBOL(aggr_post_handler);
1146
1147 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1148 int trapnr)
1149 {
1150 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1151
1152 /*
1153 * if we faulted "during" the execution of a user specified
1154 * probe handler, invoke just that probe's fault handler
1155 */
1156 if (cur && cur->fault_handler) {
1157 if (cur->fault_handler(cur, regs, trapnr))
1158 return 1;
1159 }
1160 return 0;
1161 }
1162 NOKPROBE_SYMBOL(aggr_fault_handler);
1163
1164 /* Walks the list and increments nmissed count for multiprobe case */
1165 void kprobes_inc_nmissed_count(struct kprobe *p)
1166 {
1167 struct kprobe *kp;
1168 if (!kprobe_aggrprobe(p)) {
1169 p->nmissed++;
1170 } else {
1171 list_for_each_entry_rcu(kp, &p->list, list)
1172 kp->nmissed++;
1173 }
1174 return;
1175 }
1176 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1177
1178 void recycle_rp_inst(struct kretprobe_instance *ri,
1179 struct hlist_head *head)
1180 {
1181 struct kretprobe *rp = ri->rp;
1182
1183 /* remove rp inst off the rprobe_inst_table */
1184 hlist_del(&ri->hlist);
1185 INIT_HLIST_NODE(&ri->hlist);
1186 if (likely(rp)) {
1187 raw_spin_lock(&rp->lock);
1188 hlist_add_head(&ri->hlist, &rp->free_instances);
1189 raw_spin_unlock(&rp->lock);
1190 } else
1191 /* Unregistering */
1192 hlist_add_head(&ri->hlist, head);
1193 }
1194 NOKPROBE_SYMBOL(recycle_rp_inst);
1195
1196 void kretprobe_hash_lock(struct task_struct *tsk,
1197 struct hlist_head **head, unsigned long *flags)
1198 __acquires(hlist_lock)
1199 {
1200 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1201 raw_spinlock_t *hlist_lock;
1202
1203 *head = &kretprobe_inst_table[hash];
1204 hlist_lock = kretprobe_table_lock_ptr(hash);
1205 raw_spin_lock_irqsave(hlist_lock, *flags);
1206 }
1207 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1208
1209 static void kretprobe_table_lock(unsigned long hash,
1210 unsigned long *flags)
1211 __acquires(hlist_lock)
1212 {
1213 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1214 raw_spin_lock_irqsave(hlist_lock, *flags);
1215 }
1216 NOKPROBE_SYMBOL(kretprobe_table_lock);
1217
1218 void kretprobe_hash_unlock(struct task_struct *tsk,
1219 unsigned long *flags)
1220 __releases(hlist_lock)
1221 {
1222 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1223 raw_spinlock_t *hlist_lock;
1224
1225 hlist_lock = kretprobe_table_lock_ptr(hash);
1226 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1227 }
1228 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1229
1230 static void kretprobe_table_unlock(unsigned long hash,
1231 unsigned long *flags)
1232 __releases(hlist_lock)
1233 {
1234 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1235 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1236 }
1237 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1238
1239 /*
1240 * This function is called from finish_task_switch when task tk becomes dead,
1241 * so that we can recycle any function-return probe instances associated
1242 * with this task. These left over instances represent probed functions
1243 * that have been called but will never return.
1244 */
1245 void kprobe_flush_task(struct task_struct *tk)
1246 {
1247 struct kretprobe_instance *ri;
1248 struct hlist_head *head, empty_rp;
1249 struct hlist_node *tmp;
1250 unsigned long hash, flags = 0;
1251
1252 if (unlikely(!kprobes_initialized))
1253 /* Early boot. kretprobe_table_locks not yet initialized. */
1254 return;
1255
1256 INIT_HLIST_HEAD(&empty_rp);
1257 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1258 head = &kretprobe_inst_table[hash];
1259 kretprobe_table_lock(hash, &flags);
1260 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1261 if (ri->task == tk)
1262 recycle_rp_inst(ri, &empty_rp);
1263 }
1264 kretprobe_table_unlock(hash, &flags);
1265 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1266 hlist_del(&ri->hlist);
1267 kfree(ri);
1268 }
1269 }
1270 NOKPROBE_SYMBOL(kprobe_flush_task);
1271
1272 static inline void free_rp_inst(struct kretprobe *rp)
1273 {
1274 struct kretprobe_instance *ri;
1275 struct hlist_node *next;
1276
1277 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1278 hlist_del(&ri->hlist);
1279 kfree(ri);
1280 }
1281 }
1282
1283 static void cleanup_rp_inst(struct kretprobe *rp)
1284 {
1285 unsigned long flags, hash;
1286 struct kretprobe_instance *ri;
1287 struct hlist_node *next;
1288 struct hlist_head *head;
1289
1290 /* No race here */
1291 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1292 kretprobe_table_lock(hash, &flags);
1293 head = &kretprobe_inst_table[hash];
1294 hlist_for_each_entry_safe(ri, next, head, hlist) {
1295 if (ri->rp == rp)
1296 ri->rp = NULL;
1297 }
1298 kretprobe_table_unlock(hash, &flags);
1299 }
1300 free_rp_inst(rp);
1301 }
1302 NOKPROBE_SYMBOL(cleanup_rp_inst);
1303
1304 /* Add the new probe to ap->list */
1305 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1306 {
1307 if (p->post_handler)
1308 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1309
1310 list_add_rcu(&p->list, &ap->list);
1311 if (p->post_handler && !ap->post_handler)
1312 ap->post_handler = aggr_post_handler;
1313
1314 return 0;
1315 }
1316
1317 /*
1318 * Fill in the required fields of the "manager kprobe". Replace the
1319 * earlier kprobe in the hlist with the manager kprobe
1320 */
1321 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1322 {
1323 /* Copy p's insn slot to ap */
1324 copy_kprobe(p, ap);
1325 flush_insn_slot(ap);
1326 ap->addr = p->addr;
1327 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1328 ap->pre_handler = aggr_pre_handler;
1329 ap->fault_handler = aggr_fault_handler;
1330 /* We don't care the kprobe which has gone. */
1331 if (p->post_handler && !kprobe_gone(p))
1332 ap->post_handler = aggr_post_handler;
1333
1334 INIT_LIST_HEAD(&ap->list);
1335 INIT_HLIST_NODE(&ap->hlist);
1336
1337 list_add_rcu(&p->list, &ap->list);
1338 hlist_replace_rcu(&p->hlist, &ap->hlist);
1339 }
1340
1341 /*
1342 * This is the second or subsequent kprobe at the address - handle
1343 * the intricacies
1344 */
1345 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1346 {
1347 int ret = 0;
1348 struct kprobe *ap = orig_p;
1349
1350 cpus_read_lock();
1351
1352 /* For preparing optimization, jump_label_text_reserved() is called */
1353 jump_label_lock();
1354 mutex_lock(&text_mutex);
1355
1356 if (!kprobe_aggrprobe(orig_p)) {
1357 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1358 ap = alloc_aggr_kprobe(orig_p);
1359 if (!ap) {
1360 ret = -ENOMEM;
1361 goto out;
1362 }
1363 init_aggr_kprobe(ap, orig_p);
1364 } else if (kprobe_unused(ap)) {
1365 /* This probe is going to die. Rescue it */
1366 ret = reuse_unused_kprobe(ap);
1367 if (ret)
1368 goto out;
1369 }
1370
1371 if (kprobe_gone(ap)) {
1372 /*
1373 * Attempting to insert new probe at the same location that
1374 * had a probe in the module vaddr area which already
1375 * freed. So, the instruction slot has already been
1376 * released. We need a new slot for the new probe.
1377 */
1378 ret = arch_prepare_kprobe(ap);
1379 if (ret)
1380 /*
1381 * Even if fail to allocate new slot, don't need to
1382 * free aggr_probe. It will be used next time, or
1383 * freed by unregister_kprobe.
1384 */
1385 goto out;
1386
1387 /* Prepare optimized instructions if possible. */
1388 prepare_optimized_kprobe(ap);
1389
1390 /*
1391 * Clear gone flag to prevent allocating new slot again, and
1392 * set disabled flag because it is not armed yet.
1393 */
1394 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1395 | KPROBE_FLAG_DISABLED;
1396 }
1397
1398 /* Copy ap's insn slot to p */
1399 copy_kprobe(ap, p);
1400 ret = add_new_kprobe(ap, p);
1401
1402 out:
1403 mutex_unlock(&text_mutex);
1404 jump_label_unlock();
1405 cpus_read_unlock();
1406
1407 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1408 ap->flags &= ~KPROBE_FLAG_DISABLED;
1409 if (!kprobes_all_disarmed) {
1410 /* Arm the breakpoint again. */
1411 ret = arm_kprobe(ap);
1412 if (ret) {
1413 ap->flags |= KPROBE_FLAG_DISABLED;
1414 list_del_rcu(&p->list);
1415 synchronize_rcu();
1416 }
1417 }
1418 }
1419 return ret;
1420 }
1421
1422 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1423 {
1424 /* The __kprobes marked functions and entry code must not be probed */
1425 return addr >= (unsigned long)__kprobes_text_start &&
1426 addr < (unsigned long)__kprobes_text_end;
1427 }
1428
1429 static bool __within_kprobe_blacklist(unsigned long addr)
1430 {
1431 struct kprobe_blacklist_entry *ent;
1432
1433 if (arch_within_kprobe_blacklist(addr))
1434 return true;
1435 /*
1436 * If there exists a kprobe_blacklist, verify and
1437 * fail any probe registration in the prohibited area
1438 */
1439 list_for_each_entry(ent, &kprobe_blacklist, list) {
1440 if (addr >= ent->start_addr && addr < ent->end_addr)
1441 return true;
1442 }
1443 return false;
1444 }
1445
1446 bool within_kprobe_blacklist(unsigned long addr)
1447 {
1448 char symname[KSYM_NAME_LEN], *p;
1449
1450 if (__within_kprobe_blacklist(addr))
1451 return true;
1452
1453 /* Check if the address is on a suffixed-symbol */
1454 if (!lookup_symbol_name(addr, symname)) {
1455 p = strchr(symname, '.');
1456 if (!p)
1457 return false;
1458 *p = '\0';
1459 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1460 if (addr)
1461 return __within_kprobe_blacklist(addr);
1462 }
1463 return false;
1464 }
1465
1466 /*
1467 * If we have a symbol_name argument, look it up and add the offset field
1468 * to it. This way, we can specify a relative address to a symbol.
1469 * This returns encoded errors if it fails to look up symbol or invalid
1470 * combination of parameters.
1471 */
1472 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1473 const char *symbol_name, unsigned int offset)
1474 {
1475 if ((symbol_name && addr) || (!symbol_name && !addr))
1476 goto invalid;
1477
1478 if (symbol_name) {
1479 addr = kprobe_lookup_name(symbol_name, offset);
1480 if (!addr)
1481 return ERR_PTR(-ENOENT);
1482 }
1483
1484 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1485 if (addr)
1486 return addr;
1487
1488 invalid:
1489 return ERR_PTR(-EINVAL);
1490 }
1491
1492 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1493 {
1494 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1495 }
1496
1497 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1498 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1499 {
1500 struct kprobe *ap, *list_p;
1501
1502 ap = get_kprobe(p->addr);
1503 if (unlikely(!ap))
1504 return NULL;
1505
1506 if (p != ap) {
1507 list_for_each_entry_rcu(list_p, &ap->list, list)
1508 if (list_p == p)
1509 /* kprobe p is a valid probe */
1510 goto valid;
1511 return NULL;
1512 }
1513 valid:
1514 return ap;
1515 }
1516
1517 /* Return error if the kprobe is being re-registered */
1518 static inline int check_kprobe_rereg(struct kprobe *p)
1519 {
1520 int ret = 0;
1521
1522 mutex_lock(&kprobe_mutex);
1523 if (__get_valid_kprobe(p))
1524 ret = -EINVAL;
1525 mutex_unlock(&kprobe_mutex);
1526
1527 return ret;
1528 }
1529
1530 int __weak arch_check_ftrace_location(struct kprobe *p)
1531 {
1532 unsigned long ftrace_addr;
1533
1534 ftrace_addr = ftrace_location((unsigned long)p->addr);
1535 if (ftrace_addr) {
1536 #ifdef CONFIG_KPROBES_ON_FTRACE
1537 /* Given address is not on the instruction boundary */
1538 if ((unsigned long)p->addr != ftrace_addr)
1539 return -EILSEQ;
1540 p->flags |= KPROBE_FLAG_FTRACE;
1541 #else /* !CONFIG_KPROBES_ON_FTRACE */
1542 return -EINVAL;
1543 #endif
1544 }
1545 return 0;
1546 }
1547
1548 static int check_kprobe_address_safe(struct kprobe *p,
1549 struct module **probed_mod)
1550 {
1551 int ret;
1552
1553 ret = arch_check_ftrace_location(p);
1554 if (ret)
1555 return ret;
1556 jump_label_lock();
1557 preempt_disable();
1558
1559 /* Ensure it is not in reserved area nor out of text */
1560 if (!kernel_text_address((unsigned long) p->addr) ||
1561 within_kprobe_blacklist((unsigned long) p->addr) ||
1562 jump_label_text_reserved(p->addr, p->addr) ||
1563 find_bug((unsigned long)p->addr)) {
1564 ret = -EINVAL;
1565 goto out;
1566 }
1567
1568 /* Check if are we probing a module */
1569 *probed_mod = __module_text_address((unsigned long) p->addr);
1570 if (*probed_mod) {
1571 /*
1572 * We must hold a refcount of the probed module while updating
1573 * its code to prohibit unexpected unloading.
1574 */
1575 if (unlikely(!try_module_get(*probed_mod))) {
1576 ret = -ENOENT;
1577 goto out;
1578 }
1579
1580 /*
1581 * If the module freed .init.text, we couldn't insert
1582 * kprobes in there.
1583 */
1584 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1585 (*probed_mod)->state != MODULE_STATE_COMING) {
1586 module_put(*probed_mod);
1587 *probed_mod = NULL;
1588 ret = -ENOENT;
1589 }
1590 }
1591 out:
1592 preempt_enable();
1593 jump_label_unlock();
1594
1595 return ret;
1596 }
1597
1598 int register_kprobe(struct kprobe *p)
1599 {
1600 int ret;
1601 struct kprobe *old_p;
1602 struct module *probed_mod;
1603 kprobe_opcode_t *addr;
1604
1605 /* Adjust probe address from symbol */
1606 addr = kprobe_addr(p);
1607 if (IS_ERR(addr))
1608 return PTR_ERR(addr);
1609 p->addr = addr;
1610
1611 ret = check_kprobe_rereg(p);
1612 if (ret)
1613 return ret;
1614
1615 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1616 p->flags &= KPROBE_FLAG_DISABLED;
1617 p->nmissed = 0;
1618 INIT_LIST_HEAD(&p->list);
1619
1620 ret = check_kprobe_address_safe(p, &probed_mod);
1621 if (ret)
1622 return ret;
1623
1624 mutex_lock(&kprobe_mutex);
1625
1626 old_p = get_kprobe(p->addr);
1627 if (old_p) {
1628 /* Since this may unoptimize old_p, locking text_mutex. */
1629 ret = register_aggr_kprobe(old_p, p);
1630 goto out;
1631 }
1632
1633 cpus_read_lock();
1634 /* Prevent text modification */
1635 mutex_lock(&text_mutex);
1636 ret = prepare_kprobe(p);
1637 mutex_unlock(&text_mutex);
1638 cpus_read_unlock();
1639 if (ret)
1640 goto out;
1641
1642 INIT_HLIST_NODE(&p->hlist);
1643 hlist_add_head_rcu(&p->hlist,
1644 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1645
1646 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1647 ret = arm_kprobe(p);
1648 if (ret) {
1649 hlist_del_rcu(&p->hlist);
1650 synchronize_rcu();
1651 goto out;
1652 }
1653 }
1654
1655 /* Try to optimize kprobe */
1656 try_to_optimize_kprobe(p);
1657 out:
1658 mutex_unlock(&kprobe_mutex);
1659
1660 if (probed_mod)
1661 module_put(probed_mod);
1662
1663 return ret;
1664 }
1665 EXPORT_SYMBOL_GPL(register_kprobe);
1666
1667 /* Check if all probes on the aggrprobe are disabled */
1668 static int aggr_kprobe_disabled(struct kprobe *ap)
1669 {
1670 struct kprobe *kp;
1671
1672 list_for_each_entry_rcu(kp, &ap->list, list)
1673 if (!kprobe_disabled(kp))
1674 /*
1675 * There is an active probe on the list.
1676 * We can't disable this ap.
1677 */
1678 return 0;
1679
1680 return 1;
1681 }
1682
1683 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1684 static struct kprobe *__disable_kprobe(struct kprobe *p)
1685 {
1686 struct kprobe *orig_p;
1687 int ret;
1688
1689 /* Get an original kprobe for return */
1690 orig_p = __get_valid_kprobe(p);
1691 if (unlikely(orig_p == NULL))
1692 return ERR_PTR(-EINVAL);
1693
1694 if (!kprobe_disabled(p)) {
1695 /* Disable probe if it is a child probe */
1696 if (p != orig_p)
1697 p->flags |= KPROBE_FLAG_DISABLED;
1698
1699 /* Try to disarm and disable this/parent probe */
1700 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1701 /*
1702 * If kprobes_all_disarmed is set, orig_p
1703 * should have already been disarmed, so
1704 * skip unneed disarming process.
1705 */
1706 if (!kprobes_all_disarmed) {
1707 ret = disarm_kprobe(orig_p, true);
1708 if (ret) {
1709 p->flags &= ~KPROBE_FLAG_DISABLED;
1710 return ERR_PTR(ret);
1711 }
1712 }
1713 orig_p->flags |= KPROBE_FLAG_DISABLED;
1714 }
1715 }
1716
1717 return orig_p;
1718 }
1719
1720 /*
1721 * Unregister a kprobe without a scheduler synchronization.
1722 */
1723 static int __unregister_kprobe_top(struct kprobe *p)
1724 {
1725 struct kprobe *ap, *list_p;
1726
1727 /* Disable kprobe. This will disarm it if needed. */
1728 ap = __disable_kprobe(p);
1729 if (IS_ERR(ap))
1730 return PTR_ERR(ap);
1731
1732 if (ap == p)
1733 /*
1734 * This probe is an independent(and non-optimized) kprobe
1735 * (not an aggrprobe). Remove from the hash list.
1736 */
1737 goto disarmed;
1738
1739 /* Following process expects this probe is an aggrprobe */
1740 WARN_ON(!kprobe_aggrprobe(ap));
1741
1742 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1743 /*
1744 * !disarmed could be happen if the probe is under delayed
1745 * unoptimizing.
1746 */
1747 goto disarmed;
1748 else {
1749 /* If disabling probe has special handlers, update aggrprobe */
1750 if (p->post_handler && !kprobe_gone(p)) {
1751 list_for_each_entry_rcu(list_p, &ap->list, list) {
1752 if ((list_p != p) && (list_p->post_handler))
1753 goto noclean;
1754 }
1755 ap->post_handler = NULL;
1756 }
1757 noclean:
1758 /*
1759 * Remove from the aggrprobe: this path will do nothing in
1760 * __unregister_kprobe_bottom().
1761 */
1762 list_del_rcu(&p->list);
1763 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1764 /*
1765 * Try to optimize this probe again, because post
1766 * handler may have been changed.
1767 */
1768 optimize_kprobe(ap);
1769 }
1770 return 0;
1771
1772 disarmed:
1773 hlist_del_rcu(&ap->hlist);
1774 return 0;
1775 }
1776
1777 static void __unregister_kprobe_bottom(struct kprobe *p)
1778 {
1779 struct kprobe *ap;
1780
1781 if (list_empty(&p->list))
1782 /* This is an independent kprobe */
1783 arch_remove_kprobe(p);
1784 else if (list_is_singular(&p->list)) {
1785 /* This is the last child of an aggrprobe */
1786 ap = list_entry(p->list.next, struct kprobe, list);
1787 list_del(&p->list);
1788 free_aggr_kprobe(ap);
1789 }
1790 /* Otherwise, do nothing. */
1791 }
1792
1793 int register_kprobes(struct kprobe **kps, int num)
1794 {
1795 int i, ret = 0;
1796
1797 if (num <= 0)
1798 return -EINVAL;
1799 for (i = 0; i < num; i++) {
1800 ret = register_kprobe(kps[i]);
1801 if (ret < 0) {
1802 if (i > 0)
1803 unregister_kprobes(kps, i);
1804 break;
1805 }
1806 }
1807 return ret;
1808 }
1809 EXPORT_SYMBOL_GPL(register_kprobes);
1810
1811 void unregister_kprobe(struct kprobe *p)
1812 {
1813 unregister_kprobes(&p, 1);
1814 }
1815 EXPORT_SYMBOL_GPL(unregister_kprobe);
1816
1817 void unregister_kprobes(struct kprobe **kps, int num)
1818 {
1819 int i;
1820
1821 if (num <= 0)
1822 return;
1823 mutex_lock(&kprobe_mutex);
1824 for (i = 0; i < num; i++)
1825 if (__unregister_kprobe_top(kps[i]) < 0)
1826 kps[i]->addr = NULL;
1827 mutex_unlock(&kprobe_mutex);
1828
1829 synchronize_rcu();
1830 for (i = 0; i < num; i++)
1831 if (kps[i]->addr)
1832 __unregister_kprobe_bottom(kps[i]);
1833 }
1834 EXPORT_SYMBOL_GPL(unregister_kprobes);
1835
1836 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1837 unsigned long val, void *data)
1838 {
1839 return NOTIFY_DONE;
1840 }
1841 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1842
1843 static struct notifier_block kprobe_exceptions_nb = {
1844 .notifier_call = kprobe_exceptions_notify,
1845 .priority = 0x7fffffff /* we need to be notified first */
1846 };
1847
1848 unsigned long __weak arch_deref_entry_point(void *entry)
1849 {
1850 return (unsigned long)entry;
1851 }
1852
1853 #ifdef CONFIG_KRETPROBES
1854 /*
1855 * This kprobe pre_handler is registered with every kretprobe. When probe
1856 * hits it will set up the return probe.
1857 */
1858 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1859 {
1860 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1861 unsigned long hash, flags = 0;
1862 struct kretprobe_instance *ri;
1863
1864 /*
1865 * To avoid deadlocks, prohibit return probing in NMI contexts,
1866 * just skip the probe and increase the (inexact) 'nmissed'
1867 * statistical counter, so that the user is informed that
1868 * something happened:
1869 */
1870 if (unlikely(in_nmi())) {
1871 rp->nmissed++;
1872 return 0;
1873 }
1874
1875 /* TODO: consider to only swap the RA after the last pre_handler fired */
1876 hash = hash_ptr(current, KPROBE_HASH_BITS);
1877 raw_spin_lock_irqsave(&rp->lock, flags);
1878 if (!hlist_empty(&rp->free_instances)) {
1879 ri = hlist_entry(rp->free_instances.first,
1880 struct kretprobe_instance, hlist);
1881 hlist_del(&ri->hlist);
1882 raw_spin_unlock_irqrestore(&rp->lock, flags);
1883
1884 ri->rp = rp;
1885 ri->task = current;
1886
1887 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1888 raw_spin_lock_irqsave(&rp->lock, flags);
1889 hlist_add_head(&ri->hlist, &rp->free_instances);
1890 raw_spin_unlock_irqrestore(&rp->lock, flags);
1891 return 0;
1892 }
1893
1894 arch_prepare_kretprobe(ri, regs);
1895
1896 /* XXX(hch): why is there no hlist_move_head? */
1897 INIT_HLIST_NODE(&ri->hlist);
1898 kretprobe_table_lock(hash, &flags);
1899 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1900 kretprobe_table_unlock(hash, &flags);
1901 } else {
1902 rp->nmissed++;
1903 raw_spin_unlock_irqrestore(&rp->lock, flags);
1904 }
1905 return 0;
1906 }
1907 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1908
1909 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1910 {
1911 return !offset;
1912 }
1913
1914 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1915 {
1916 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1917
1918 if (IS_ERR(kp_addr))
1919 return false;
1920
1921 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1922 !arch_kprobe_on_func_entry(offset))
1923 return false;
1924
1925 return true;
1926 }
1927
1928 int register_kretprobe(struct kretprobe *rp)
1929 {
1930 int ret = 0;
1931 struct kretprobe_instance *inst;
1932 int i;
1933 void *addr;
1934
1935 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1936 return -EINVAL;
1937
1938 if (kretprobe_blacklist_size) {
1939 addr = kprobe_addr(&rp->kp);
1940 if (IS_ERR(addr))
1941 return PTR_ERR(addr);
1942
1943 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1944 if (kretprobe_blacklist[i].addr == addr)
1945 return -EINVAL;
1946 }
1947 }
1948
1949 rp->kp.pre_handler = pre_handler_kretprobe;
1950 rp->kp.post_handler = NULL;
1951 rp->kp.fault_handler = NULL;
1952
1953 /* Pre-allocate memory for max kretprobe instances */
1954 if (rp->maxactive <= 0) {
1955 #ifdef CONFIG_PREEMPTION
1956 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1957 #else
1958 rp->maxactive = num_possible_cpus();
1959 #endif
1960 }
1961 raw_spin_lock_init(&rp->lock);
1962 INIT_HLIST_HEAD(&rp->free_instances);
1963 for (i = 0; i < rp->maxactive; i++) {
1964 inst = kmalloc(sizeof(struct kretprobe_instance) +
1965 rp->data_size, GFP_KERNEL);
1966 if (inst == NULL) {
1967 free_rp_inst(rp);
1968 return -ENOMEM;
1969 }
1970 INIT_HLIST_NODE(&inst->hlist);
1971 hlist_add_head(&inst->hlist, &rp->free_instances);
1972 }
1973
1974 rp->nmissed = 0;
1975 /* Establish function entry probe point */
1976 ret = register_kprobe(&rp->kp);
1977 if (ret != 0)
1978 free_rp_inst(rp);
1979 return ret;
1980 }
1981 EXPORT_SYMBOL_GPL(register_kretprobe);
1982
1983 int register_kretprobes(struct kretprobe **rps, int num)
1984 {
1985 int ret = 0, i;
1986
1987 if (num <= 0)
1988 return -EINVAL;
1989 for (i = 0; i < num; i++) {
1990 ret = register_kretprobe(rps[i]);
1991 if (ret < 0) {
1992 if (i > 0)
1993 unregister_kretprobes(rps, i);
1994 break;
1995 }
1996 }
1997 return ret;
1998 }
1999 EXPORT_SYMBOL_GPL(register_kretprobes);
2000
2001 void unregister_kretprobe(struct kretprobe *rp)
2002 {
2003 unregister_kretprobes(&rp, 1);
2004 }
2005 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2006
2007 void unregister_kretprobes(struct kretprobe **rps, int num)
2008 {
2009 int i;
2010
2011 if (num <= 0)
2012 return;
2013 mutex_lock(&kprobe_mutex);
2014 for (i = 0; i < num; i++)
2015 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2016 rps[i]->kp.addr = NULL;
2017 mutex_unlock(&kprobe_mutex);
2018
2019 synchronize_rcu();
2020 for (i = 0; i < num; i++) {
2021 if (rps[i]->kp.addr) {
2022 __unregister_kprobe_bottom(&rps[i]->kp);
2023 cleanup_rp_inst(rps[i]);
2024 }
2025 }
2026 }
2027 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2028
2029 #else /* CONFIG_KRETPROBES */
2030 int register_kretprobe(struct kretprobe *rp)
2031 {
2032 return -ENOSYS;
2033 }
2034 EXPORT_SYMBOL_GPL(register_kretprobe);
2035
2036 int register_kretprobes(struct kretprobe **rps, int num)
2037 {
2038 return -ENOSYS;
2039 }
2040 EXPORT_SYMBOL_GPL(register_kretprobes);
2041
2042 void unregister_kretprobe(struct kretprobe *rp)
2043 {
2044 }
2045 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2046
2047 void unregister_kretprobes(struct kretprobe **rps, int num)
2048 {
2049 }
2050 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2051
2052 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2053 {
2054 return 0;
2055 }
2056 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2057
2058 #endif /* CONFIG_KRETPROBES */
2059
2060 /* Set the kprobe gone and remove its instruction buffer. */
2061 static void kill_kprobe(struct kprobe *p)
2062 {
2063 struct kprobe *kp;
2064
2065 p->flags |= KPROBE_FLAG_GONE;
2066 if (kprobe_aggrprobe(p)) {
2067 /*
2068 * If this is an aggr_kprobe, we have to list all the
2069 * chained probes and mark them GONE.
2070 */
2071 list_for_each_entry_rcu(kp, &p->list, list)
2072 kp->flags |= KPROBE_FLAG_GONE;
2073 p->post_handler = NULL;
2074 kill_optimized_kprobe(p);
2075 }
2076 /*
2077 * Here, we can remove insn_slot safely, because no thread calls
2078 * the original probed function (which will be freed soon) any more.
2079 */
2080 arch_remove_kprobe(p);
2081 }
2082
2083 /* Disable one kprobe */
2084 int disable_kprobe(struct kprobe *kp)
2085 {
2086 int ret = 0;
2087 struct kprobe *p;
2088
2089 mutex_lock(&kprobe_mutex);
2090
2091 /* Disable this kprobe */
2092 p = __disable_kprobe(kp);
2093 if (IS_ERR(p))
2094 ret = PTR_ERR(p);
2095
2096 mutex_unlock(&kprobe_mutex);
2097 return ret;
2098 }
2099 EXPORT_SYMBOL_GPL(disable_kprobe);
2100
2101 /* Enable one kprobe */
2102 int enable_kprobe(struct kprobe *kp)
2103 {
2104 int ret = 0;
2105 struct kprobe *p;
2106
2107 mutex_lock(&kprobe_mutex);
2108
2109 /* Check whether specified probe is valid. */
2110 p = __get_valid_kprobe(kp);
2111 if (unlikely(p == NULL)) {
2112 ret = -EINVAL;
2113 goto out;
2114 }
2115
2116 if (kprobe_gone(kp)) {
2117 /* This kprobe has gone, we couldn't enable it. */
2118 ret = -EINVAL;
2119 goto out;
2120 }
2121
2122 if (p != kp)
2123 kp->flags &= ~KPROBE_FLAG_DISABLED;
2124
2125 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2126 p->flags &= ~KPROBE_FLAG_DISABLED;
2127 ret = arm_kprobe(p);
2128 if (ret)
2129 p->flags |= KPROBE_FLAG_DISABLED;
2130 }
2131 out:
2132 mutex_unlock(&kprobe_mutex);
2133 return ret;
2134 }
2135 EXPORT_SYMBOL_GPL(enable_kprobe);
2136
2137 /* Caller must NOT call this in usual path. This is only for critical case */
2138 void dump_kprobe(struct kprobe *kp)
2139 {
2140 pr_err("Dumping kprobe:\n");
2141 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2142 kp->symbol_name, kp->offset, kp->addr);
2143 }
2144 NOKPROBE_SYMBOL(dump_kprobe);
2145
2146 int kprobe_add_ksym_blacklist(unsigned long entry)
2147 {
2148 struct kprobe_blacklist_entry *ent;
2149 unsigned long offset = 0, size = 0;
2150
2151 if (!kernel_text_address(entry) ||
2152 !kallsyms_lookup_size_offset(entry, &size, &offset))
2153 return -EINVAL;
2154
2155 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2156 if (!ent)
2157 return -ENOMEM;
2158 ent->start_addr = entry;
2159 ent->end_addr = entry + size;
2160 INIT_LIST_HEAD(&ent->list);
2161 list_add_tail(&ent->list, &kprobe_blacklist);
2162
2163 return (int)size;
2164 }
2165
2166 /* Add all symbols in given area into kprobe blacklist */
2167 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2168 {
2169 unsigned long entry;
2170 int ret = 0;
2171
2172 for (entry = start; entry < end; entry += ret) {
2173 ret = kprobe_add_ksym_blacklist(entry);
2174 if (ret < 0)
2175 return ret;
2176 if (ret == 0) /* In case of alias symbol */
2177 ret = 1;
2178 }
2179 return 0;
2180 }
2181
2182 /* Remove all symbols in given area from kprobe blacklist */
2183 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2184 {
2185 struct kprobe_blacklist_entry *ent, *n;
2186
2187 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2188 if (ent->start_addr < start || ent->start_addr >= end)
2189 continue;
2190 list_del(&ent->list);
2191 kfree(ent);
2192 }
2193 }
2194
2195 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2196 {
2197 kprobe_remove_area_blacklist(entry, entry + 1);
2198 }
2199
2200 int __init __weak arch_populate_kprobe_blacklist(void)
2201 {
2202 return 0;
2203 }
2204
2205 /*
2206 * Lookup and populate the kprobe_blacklist.
2207 *
2208 * Unlike the kretprobe blacklist, we'll need to determine
2209 * the range of addresses that belong to the said functions,
2210 * since a kprobe need not necessarily be at the beginning
2211 * of a function.
2212 */
2213 static int __init populate_kprobe_blacklist(unsigned long *start,
2214 unsigned long *end)
2215 {
2216 unsigned long entry;
2217 unsigned long *iter;
2218 int ret;
2219
2220 for (iter = start; iter < end; iter++) {
2221 entry = arch_deref_entry_point((void *)*iter);
2222 ret = kprobe_add_ksym_blacklist(entry);
2223 if (ret == -EINVAL)
2224 continue;
2225 if (ret < 0)
2226 return ret;
2227 }
2228
2229 /* Symbols in __kprobes_text are blacklisted */
2230 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2231 (unsigned long)__kprobes_text_end);
2232 if (ret)
2233 return ret;
2234
2235 /* Symbols in noinstr section are blacklisted */
2236 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2237 (unsigned long)__noinstr_text_end);
2238
2239 return ret ? : arch_populate_kprobe_blacklist();
2240 }
2241
2242 static void add_module_kprobe_blacklist(struct module *mod)
2243 {
2244 unsigned long start, end;
2245 int i;
2246
2247 if (mod->kprobe_blacklist) {
2248 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2249 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2250 }
2251
2252 start = (unsigned long)mod->kprobes_text_start;
2253 if (start) {
2254 end = start + mod->kprobes_text_size;
2255 kprobe_add_area_blacklist(start, end);
2256 }
2257
2258 start = (unsigned long)mod->noinstr_text_start;
2259 if (start) {
2260 end = start + mod->noinstr_text_size;
2261 kprobe_add_area_blacklist(start, end);
2262 }
2263 }
2264
2265 static void remove_module_kprobe_blacklist(struct module *mod)
2266 {
2267 unsigned long start, end;
2268 int i;
2269
2270 if (mod->kprobe_blacklist) {
2271 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2272 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2273 }
2274
2275 start = (unsigned long)mod->kprobes_text_start;
2276 if (start) {
2277 end = start + mod->kprobes_text_size;
2278 kprobe_remove_area_blacklist(start, end);
2279 }
2280
2281 start = (unsigned long)mod->noinstr_text_start;
2282 if (start) {
2283 end = start + mod->noinstr_text_size;
2284 kprobe_remove_area_blacklist(start, end);
2285 }
2286 }
2287
2288 /* Module notifier call back, checking kprobes on the module */
2289 static int kprobes_module_callback(struct notifier_block *nb,
2290 unsigned long val, void *data)
2291 {
2292 struct module *mod = data;
2293 struct hlist_head *head;
2294 struct kprobe *p;
2295 unsigned int i;
2296 int checkcore = (val == MODULE_STATE_GOING);
2297
2298 if (val == MODULE_STATE_COMING) {
2299 mutex_lock(&kprobe_mutex);
2300 add_module_kprobe_blacklist(mod);
2301 mutex_unlock(&kprobe_mutex);
2302 }
2303 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2304 return NOTIFY_DONE;
2305
2306 /*
2307 * When MODULE_STATE_GOING was notified, both of module .text and
2308 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2309 * notified, only .init.text section would be freed. We need to
2310 * disable kprobes which have been inserted in the sections.
2311 */
2312 mutex_lock(&kprobe_mutex);
2313 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2314 head = &kprobe_table[i];
2315 hlist_for_each_entry_rcu(p, head, hlist)
2316 if (within_module_init((unsigned long)p->addr, mod) ||
2317 (checkcore &&
2318 within_module_core((unsigned long)p->addr, mod))) {
2319 /*
2320 * The vaddr this probe is installed will soon
2321 * be vfreed buy not synced to disk. Hence,
2322 * disarming the breakpoint isn't needed.
2323 *
2324 * Note, this will also move any optimized probes
2325 * that are pending to be removed from their
2326 * corresponding lists to the freeing_list and
2327 * will not be touched by the delayed
2328 * kprobe_optimizer work handler.
2329 */
2330 kill_kprobe(p);
2331 }
2332 }
2333 if (val == MODULE_STATE_GOING)
2334 remove_module_kprobe_blacklist(mod);
2335 mutex_unlock(&kprobe_mutex);
2336 return NOTIFY_DONE;
2337 }
2338
2339 static struct notifier_block kprobe_module_nb = {
2340 .notifier_call = kprobes_module_callback,
2341 .priority = 0
2342 };
2343
2344 /* Markers of _kprobe_blacklist section */
2345 extern unsigned long __start_kprobe_blacklist[];
2346 extern unsigned long __stop_kprobe_blacklist[];
2347
2348 static int __init init_kprobes(void)
2349 {
2350 int i, err = 0;
2351
2352 /* FIXME allocate the probe table, currently defined statically */
2353 /* initialize all list heads */
2354 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2355 INIT_HLIST_HEAD(&kprobe_table[i]);
2356 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2357 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2358 }
2359
2360 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2361 __stop_kprobe_blacklist);
2362 if (err) {
2363 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2364 pr_err("Please take care of using kprobes.\n");
2365 }
2366
2367 if (kretprobe_blacklist_size) {
2368 /* lookup the function address from its name */
2369 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2370 kretprobe_blacklist[i].addr =
2371 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2372 if (!kretprobe_blacklist[i].addr)
2373 printk("kretprobe: lookup failed: %s\n",
2374 kretprobe_blacklist[i].name);
2375 }
2376 }
2377
2378 #if defined(CONFIG_OPTPROBES)
2379 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2380 /* Init kprobe_optinsn_slots */
2381 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2382 #endif
2383 /* By default, kprobes can be optimized */
2384 kprobes_allow_optimization = true;
2385 #endif
2386
2387 /* By default, kprobes are armed */
2388 kprobes_all_disarmed = false;
2389
2390 err = arch_init_kprobes();
2391 if (!err)
2392 err = register_die_notifier(&kprobe_exceptions_nb);
2393 if (!err)
2394 err = register_module_notifier(&kprobe_module_nb);
2395
2396 kprobes_initialized = (err == 0);
2397
2398 if (!err)
2399 init_test_probes();
2400 return err;
2401 }
2402 subsys_initcall(init_kprobes);
2403
2404 #ifdef CONFIG_DEBUG_FS
2405 static void report_probe(struct seq_file *pi, struct kprobe *p,
2406 const char *sym, int offset, char *modname, struct kprobe *pp)
2407 {
2408 char *kprobe_type;
2409 void *addr = p->addr;
2410
2411 if (p->pre_handler == pre_handler_kretprobe)
2412 kprobe_type = "r";
2413 else
2414 kprobe_type = "k";
2415
2416 if (!kallsyms_show_value())
2417 addr = NULL;
2418
2419 if (sym)
2420 seq_printf(pi, "%px %s %s+0x%x %s ",
2421 addr, kprobe_type, sym, offset,
2422 (modname ? modname : " "));
2423 else /* try to use %pS */
2424 seq_printf(pi, "%px %s %pS ",
2425 addr, kprobe_type, p->addr);
2426
2427 if (!pp)
2428 pp = p;
2429 seq_printf(pi, "%s%s%s%s\n",
2430 (kprobe_gone(p) ? "[GONE]" : ""),
2431 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2432 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2433 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2434 }
2435
2436 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2437 {
2438 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2439 }
2440
2441 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2442 {
2443 (*pos)++;
2444 if (*pos >= KPROBE_TABLE_SIZE)
2445 return NULL;
2446 return pos;
2447 }
2448
2449 static void kprobe_seq_stop(struct seq_file *f, void *v)
2450 {
2451 /* Nothing to do */
2452 }
2453
2454 static int show_kprobe_addr(struct seq_file *pi, void *v)
2455 {
2456 struct hlist_head *head;
2457 struct kprobe *p, *kp;
2458 const char *sym = NULL;
2459 unsigned int i = *(loff_t *) v;
2460 unsigned long offset = 0;
2461 char *modname, namebuf[KSYM_NAME_LEN];
2462
2463 head = &kprobe_table[i];
2464 preempt_disable();
2465 hlist_for_each_entry_rcu(p, head, hlist) {
2466 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2467 &offset, &modname, namebuf);
2468 if (kprobe_aggrprobe(p)) {
2469 list_for_each_entry_rcu(kp, &p->list, list)
2470 report_probe(pi, kp, sym, offset, modname, p);
2471 } else
2472 report_probe(pi, p, sym, offset, modname, NULL);
2473 }
2474 preempt_enable();
2475 return 0;
2476 }
2477
2478 static const struct seq_operations kprobes_seq_ops = {
2479 .start = kprobe_seq_start,
2480 .next = kprobe_seq_next,
2481 .stop = kprobe_seq_stop,
2482 .show = show_kprobe_addr
2483 };
2484
2485 static int kprobes_open(struct inode *inode, struct file *filp)
2486 {
2487 return seq_open(filp, &kprobes_seq_ops);
2488 }
2489
2490 static const struct file_operations debugfs_kprobes_operations = {
2491 .open = kprobes_open,
2492 .read = seq_read,
2493 .llseek = seq_lseek,
2494 .release = seq_release,
2495 };
2496
2497 /* kprobes/blacklist -- shows which functions can not be probed */
2498 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2499 {
2500 mutex_lock(&kprobe_mutex);
2501 return seq_list_start(&kprobe_blacklist, *pos);
2502 }
2503
2504 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2505 {
2506 return seq_list_next(v, &kprobe_blacklist, pos);
2507 }
2508
2509 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2510 {
2511 struct kprobe_blacklist_entry *ent =
2512 list_entry(v, struct kprobe_blacklist_entry, list);
2513
2514 /*
2515 * If /proc/kallsyms is not showing kernel address, we won't
2516 * show them here either.
2517 */
2518 if (!kallsyms_show_value())
2519 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2520 (void *)ent->start_addr);
2521 else
2522 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2523 (void *)ent->end_addr, (void *)ent->start_addr);
2524 return 0;
2525 }
2526
2527 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2528 {
2529 mutex_unlock(&kprobe_mutex);
2530 }
2531
2532 static const struct seq_operations kprobe_blacklist_seq_ops = {
2533 .start = kprobe_blacklist_seq_start,
2534 .next = kprobe_blacklist_seq_next,
2535 .stop = kprobe_blacklist_seq_stop,
2536 .show = kprobe_blacklist_seq_show,
2537 };
2538
2539 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2540 {
2541 return seq_open(filp, &kprobe_blacklist_seq_ops);
2542 }
2543
2544 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2545 .open = kprobe_blacklist_open,
2546 .read = seq_read,
2547 .llseek = seq_lseek,
2548 .release = seq_release,
2549 };
2550
2551 static int arm_all_kprobes(void)
2552 {
2553 struct hlist_head *head;
2554 struct kprobe *p;
2555 unsigned int i, total = 0, errors = 0;
2556 int err, ret = 0;
2557
2558 mutex_lock(&kprobe_mutex);
2559
2560 /* If kprobes are armed, just return */
2561 if (!kprobes_all_disarmed)
2562 goto already_enabled;
2563
2564 /*
2565 * optimize_kprobe() called by arm_kprobe() checks
2566 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2567 * arm_kprobe.
2568 */
2569 kprobes_all_disarmed = false;
2570 /* Arming kprobes doesn't optimize kprobe itself */
2571 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2572 head = &kprobe_table[i];
2573 /* Arm all kprobes on a best-effort basis */
2574 hlist_for_each_entry_rcu(p, head, hlist) {
2575 if (!kprobe_disabled(p)) {
2576 err = arm_kprobe(p);
2577 if (err) {
2578 errors++;
2579 ret = err;
2580 }
2581 total++;
2582 }
2583 }
2584 }
2585
2586 if (errors)
2587 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2588 errors, total);
2589 else
2590 pr_info("Kprobes globally enabled\n");
2591
2592 already_enabled:
2593 mutex_unlock(&kprobe_mutex);
2594 return ret;
2595 }
2596
2597 static int disarm_all_kprobes(void)
2598 {
2599 struct hlist_head *head;
2600 struct kprobe *p;
2601 unsigned int i, total = 0, errors = 0;
2602 int err, ret = 0;
2603
2604 mutex_lock(&kprobe_mutex);
2605
2606 /* If kprobes are already disarmed, just return */
2607 if (kprobes_all_disarmed) {
2608 mutex_unlock(&kprobe_mutex);
2609 return 0;
2610 }
2611
2612 kprobes_all_disarmed = true;
2613
2614 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2615 head = &kprobe_table[i];
2616 /* Disarm all kprobes on a best-effort basis */
2617 hlist_for_each_entry_rcu(p, head, hlist) {
2618 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2619 err = disarm_kprobe(p, false);
2620 if (err) {
2621 errors++;
2622 ret = err;
2623 }
2624 total++;
2625 }
2626 }
2627 }
2628
2629 if (errors)
2630 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2631 errors, total);
2632 else
2633 pr_info("Kprobes globally disabled\n");
2634
2635 mutex_unlock(&kprobe_mutex);
2636
2637 /* Wait for disarming all kprobes by optimizer */
2638 wait_for_kprobe_optimizer();
2639
2640 return ret;
2641 }
2642
2643 /*
2644 * XXX: The debugfs bool file interface doesn't allow for callbacks
2645 * when the bool state is switched. We can reuse that facility when
2646 * available
2647 */
2648 static ssize_t read_enabled_file_bool(struct file *file,
2649 char __user *user_buf, size_t count, loff_t *ppos)
2650 {
2651 char buf[3];
2652
2653 if (!kprobes_all_disarmed)
2654 buf[0] = '1';
2655 else
2656 buf[0] = '0';
2657 buf[1] = '\n';
2658 buf[2] = 0x00;
2659 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2660 }
2661
2662 static ssize_t write_enabled_file_bool(struct file *file,
2663 const char __user *user_buf, size_t count, loff_t *ppos)
2664 {
2665 char buf[32];
2666 size_t buf_size;
2667 int ret = 0;
2668
2669 buf_size = min(count, (sizeof(buf)-1));
2670 if (copy_from_user(buf, user_buf, buf_size))
2671 return -EFAULT;
2672
2673 buf[buf_size] = '\0';
2674 switch (buf[0]) {
2675 case 'y':
2676 case 'Y':
2677 case '1':
2678 ret = arm_all_kprobes();
2679 break;
2680 case 'n':
2681 case 'N':
2682 case '0':
2683 ret = disarm_all_kprobes();
2684 break;
2685 default:
2686 return -EINVAL;
2687 }
2688
2689 if (ret)
2690 return ret;
2691
2692 return count;
2693 }
2694
2695 static const struct file_operations fops_kp = {
2696 .read = read_enabled_file_bool,
2697 .write = write_enabled_file_bool,
2698 .llseek = default_llseek,
2699 };
2700
2701 static int __init debugfs_kprobe_init(void)
2702 {
2703 struct dentry *dir;
2704 unsigned int value = 1;
2705
2706 dir = debugfs_create_dir("kprobes", NULL);
2707
2708 debugfs_create_file("list", 0400, dir, NULL,
2709 &debugfs_kprobes_operations);
2710
2711 debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2712
2713 debugfs_create_file("blacklist", 0400, dir, NULL,
2714 &debugfs_kprobe_blacklist_ops);
2715
2716 return 0;
2717 }
2718
2719 late_initcall(debugfs_kprobe_init);
2720 #endif /* CONFIG_DEBUG_FS */