]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/kprobes.c
Merge tag 'mmc-v5.3-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[thirdparty/linux.git] / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Kernel Probes (KProbes)
4 * kernel/kprobes.c
5 *
6 * Copyright (C) IBM Corporation, 2002, 2004
7 *
8 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9 * Probes initial implementation (includes suggestions from
10 * Rusty Russell).
11 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12 * hlists and exceptions notifier as suggested by Andi Kleen.
13 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14 * interface to access function arguments.
15 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16 * exceptions notifier to be first on the priority list.
17 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19 * <prasanna@in.ibm.com> added function-return probes.
20 */
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
38
39 #include <asm/sections.h>
40 #include <asm/cacheflush.h>
41 #include <asm/errno.h>
42 #include <linux/uaccess.h>
43
44 #define KPROBE_HASH_BITS 6
45 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
46
47
48 static int kprobes_initialized;
49 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
50 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
51
52 /* NOTE: change this value only with kprobe_mutex held */
53 static bool kprobes_all_disarmed;
54
55 /* This protects kprobe_table and optimizing_list */
56 static DEFINE_MUTEX(kprobe_mutex);
57 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
58 static struct {
59 raw_spinlock_t lock ____cacheline_aligned_in_smp;
60 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
61
62 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
63 unsigned int __unused)
64 {
65 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
66 }
67
68 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
69 {
70 return &(kretprobe_table_locks[hash].lock);
71 }
72
73 /* Blacklist -- list of struct kprobe_blacklist_entry */
74 static LIST_HEAD(kprobe_blacklist);
75
76 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
77 /*
78 * kprobe->ainsn.insn points to the copy of the instruction to be
79 * single-stepped. x86_64, POWER4 and above have no-exec support and
80 * stepping on the instruction on a vmalloced/kmalloced/data page
81 * is a recipe for disaster
82 */
83 struct kprobe_insn_page {
84 struct list_head list;
85 kprobe_opcode_t *insns; /* Page of instruction slots */
86 struct kprobe_insn_cache *cache;
87 int nused;
88 int ngarbage;
89 char slot_used[];
90 };
91
92 #define KPROBE_INSN_PAGE_SIZE(slots) \
93 (offsetof(struct kprobe_insn_page, slot_used) + \
94 (sizeof(char) * (slots)))
95
96 static int slots_per_page(struct kprobe_insn_cache *c)
97 {
98 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
99 }
100
101 enum kprobe_slot_state {
102 SLOT_CLEAN = 0,
103 SLOT_DIRTY = 1,
104 SLOT_USED = 2,
105 };
106
107 void __weak *alloc_insn_page(void)
108 {
109 return module_alloc(PAGE_SIZE);
110 }
111
112 void __weak free_insn_page(void *page)
113 {
114 module_memfree(page);
115 }
116
117 struct kprobe_insn_cache kprobe_insn_slots = {
118 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
119 .alloc = alloc_insn_page,
120 .free = free_insn_page,
121 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
122 .insn_size = MAX_INSN_SIZE,
123 .nr_garbage = 0,
124 };
125 static int collect_garbage_slots(struct kprobe_insn_cache *c);
126
127 /**
128 * __get_insn_slot() - Find a slot on an executable page for an instruction.
129 * We allocate an executable page if there's no room on existing ones.
130 */
131 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
132 {
133 struct kprobe_insn_page *kip;
134 kprobe_opcode_t *slot = NULL;
135
136 /* Since the slot array is not protected by rcu, we need a mutex */
137 mutex_lock(&c->mutex);
138 retry:
139 rcu_read_lock();
140 list_for_each_entry_rcu(kip, &c->pages, list) {
141 if (kip->nused < slots_per_page(c)) {
142 int i;
143 for (i = 0; i < slots_per_page(c); i++) {
144 if (kip->slot_used[i] == SLOT_CLEAN) {
145 kip->slot_used[i] = SLOT_USED;
146 kip->nused++;
147 slot = kip->insns + (i * c->insn_size);
148 rcu_read_unlock();
149 goto out;
150 }
151 }
152 /* kip->nused is broken. Fix it. */
153 kip->nused = slots_per_page(c);
154 WARN_ON(1);
155 }
156 }
157 rcu_read_unlock();
158
159 /* If there are any garbage slots, collect it and try again. */
160 if (c->nr_garbage && collect_garbage_slots(c) == 0)
161 goto retry;
162
163 /* All out of space. Need to allocate a new page. */
164 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
165 if (!kip)
166 goto out;
167
168 /*
169 * Use module_alloc so this page is within +/- 2GB of where the
170 * kernel image and loaded module images reside. This is required
171 * so x86_64 can correctly handle the %rip-relative fixups.
172 */
173 kip->insns = c->alloc();
174 if (!kip->insns) {
175 kfree(kip);
176 goto out;
177 }
178 INIT_LIST_HEAD(&kip->list);
179 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
180 kip->slot_used[0] = SLOT_USED;
181 kip->nused = 1;
182 kip->ngarbage = 0;
183 kip->cache = c;
184 list_add_rcu(&kip->list, &c->pages);
185 slot = kip->insns;
186 out:
187 mutex_unlock(&c->mutex);
188 return slot;
189 }
190
191 /* Return 1 if all garbages are collected, otherwise 0. */
192 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
193 {
194 kip->slot_used[idx] = SLOT_CLEAN;
195 kip->nused--;
196 if (kip->nused == 0) {
197 /*
198 * Page is no longer in use. Free it unless
199 * it's the last one. We keep the last one
200 * so as not to have to set it up again the
201 * next time somebody inserts a probe.
202 */
203 if (!list_is_singular(&kip->list)) {
204 list_del_rcu(&kip->list);
205 synchronize_rcu();
206 kip->cache->free(kip->insns);
207 kfree(kip);
208 }
209 return 1;
210 }
211 return 0;
212 }
213
214 static int collect_garbage_slots(struct kprobe_insn_cache *c)
215 {
216 struct kprobe_insn_page *kip, *next;
217
218 /* Ensure no-one is interrupted on the garbages */
219 synchronize_rcu();
220
221 list_for_each_entry_safe(kip, next, &c->pages, list) {
222 int i;
223 if (kip->ngarbage == 0)
224 continue;
225 kip->ngarbage = 0; /* we will collect all garbages */
226 for (i = 0; i < slots_per_page(c); i++) {
227 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
228 break;
229 }
230 }
231 c->nr_garbage = 0;
232 return 0;
233 }
234
235 void __free_insn_slot(struct kprobe_insn_cache *c,
236 kprobe_opcode_t *slot, int dirty)
237 {
238 struct kprobe_insn_page *kip;
239 long idx;
240
241 mutex_lock(&c->mutex);
242 rcu_read_lock();
243 list_for_each_entry_rcu(kip, &c->pages, list) {
244 idx = ((long)slot - (long)kip->insns) /
245 (c->insn_size * sizeof(kprobe_opcode_t));
246 if (idx >= 0 && idx < slots_per_page(c))
247 goto out;
248 }
249 /* Could not find this slot. */
250 WARN_ON(1);
251 kip = NULL;
252 out:
253 rcu_read_unlock();
254 /* Mark and sweep: this may sleep */
255 if (kip) {
256 /* Check double free */
257 WARN_ON(kip->slot_used[idx] != SLOT_USED);
258 if (dirty) {
259 kip->slot_used[idx] = SLOT_DIRTY;
260 kip->ngarbage++;
261 if (++c->nr_garbage > slots_per_page(c))
262 collect_garbage_slots(c);
263 } else {
264 collect_one_slot(kip, idx);
265 }
266 }
267 mutex_unlock(&c->mutex);
268 }
269
270 /*
271 * Check given address is on the page of kprobe instruction slots.
272 * This will be used for checking whether the address on a stack
273 * is on a text area or not.
274 */
275 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
276 {
277 struct kprobe_insn_page *kip;
278 bool ret = false;
279
280 rcu_read_lock();
281 list_for_each_entry_rcu(kip, &c->pages, list) {
282 if (addr >= (unsigned long)kip->insns &&
283 addr < (unsigned long)kip->insns + PAGE_SIZE) {
284 ret = true;
285 break;
286 }
287 }
288 rcu_read_unlock();
289
290 return ret;
291 }
292
293 #ifdef CONFIG_OPTPROBES
294 /* For optimized_kprobe buffer */
295 struct kprobe_insn_cache kprobe_optinsn_slots = {
296 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
297 .alloc = alloc_insn_page,
298 .free = free_insn_page,
299 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
300 /* .insn_size is initialized later */
301 .nr_garbage = 0,
302 };
303 #endif
304 #endif
305
306 /* We have preemption disabled.. so it is safe to use __ versions */
307 static inline void set_kprobe_instance(struct kprobe *kp)
308 {
309 __this_cpu_write(kprobe_instance, kp);
310 }
311
312 static inline void reset_kprobe_instance(void)
313 {
314 __this_cpu_write(kprobe_instance, NULL);
315 }
316
317 /*
318 * This routine is called either:
319 * - under the kprobe_mutex - during kprobe_[un]register()
320 * OR
321 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
322 */
323 struct kprobe *get_kprobe(void *addr)
324 {
325 struct hlist_head *head;
326 struct kprobe *p;
327
328 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
329 hlist_for_each_entry_rcu(p, head, hlist) {
330 if (p->addr == addr)
331 return p;
332 }
333
334 return NULL;
335 }
336 NOKPROBE_SYMBOL(get_kprobe);
337
338 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
339
340 /* Return true if the kprobe is an aggregator */
341 static inline int kprobe_aggrprobe(struct kprobe *p)
342 {
343 return p->pre_handler == aggr_pre_handler;
344 }
345
346 /* Return true(!0) if the kprobe is unused */
347 static inline int kprobe_unused(struct kprobe *p)
348 {
349 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
350 list_empty(&p->list);
351 }
352
353 /*
354 * Keep all fields in the kprobe consistent
355 */
356 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
357 {
358 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
359 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
360 }
361
362 #ifdef CONFIG_OPTPROBES
363 /* NOTE: change this value only with kprobe_mutex held */
364 static bool kprobes_allow_optimization;
365
366 /*
367 * Call all pre_handler on the list, but ignores its return value.
368 * This must be called from arch-dep optimized caller.
369 */
370 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
371 {
372 struct kprobe *kp;
373
374 list_for_each_entry_rcu(kp, &p->list, list) {
375 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
376 set_kprobe_instance(kp);
377 kp->pre_handler(kp, regs);
378 }
379 reset_kprobe_instance();
380 }
381 }
382 NOKPROBE_SYMBOL(opt_pre_handler);
383
384 /* Free optimized instructions and optimized_kprobe */
385 static void free_aggr_kprobe(struct kprobe *p)
386 {
387 struct optimized_kprobe *op;
388
389 op = container_of(p, struct optimized_kprobe, kp);
390 arch_remove_optimized_kprobe(op);
391 arch_remove_kprobe(p);
392 kfree(op);
393 }
394
395 /* Return true(!0) if the kprobe is ready for optimization. */
396 static inline int kprobe_optready(struct kprobe *p)
397 {
398 struct optimized_kprobe *op;
399
400 if (kprobe_aggrprobe(p)) {
401 op = container_of(p, struct optimized_kprobe, kp);
402 return arch_prepared_optinsn(&op->optinsn);
403 }
404
405 return 0;
406 }
407
408 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
409 static inline int kprobe_disarmed(struct kprobe *p)
410 {
411 struct optimized_kprobe *op;
412
413 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
414 if (!kprobe_aggrprobe(p))
415 return kprobe_disabled(p);
416
417 op = container_of(p, struct optimized_kprobe, kp);
418
419 return kprobe_disabled(p) && list_empty(&op->list);
420 }
421
422 /* Return true(!0) if the probe is queued on (un)optimizing lists */
423 static int kprobe_queued(struct kprobe *p)
424 {
425 struct optimized_kprobe *op;
426
427 if (kprobe_aggrprobe(p)) {
428 op = container_of(p, struct optimized_kprobe, kp);
429 if (!list_empty(&op->list))
430 return 1;
431 }
432 return 0;
433 }
434
435 /*
436 * Return an optimized kprobe whose optimizing code replaces
437 * instructions including addr (exclude breakpoint).
438 */
439 static struct kprobe *get_optimized_kprobe(unsigned long addr)
440 {
441 int i;
442 struct kprobe *p = NULL;
443 struct optimized_kprobe *op;
444
445 /* Don't check i == 0, since that is a breakpoint case. */
446 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
447 p = get_kprobe((void *)(addr - i));
448
449 if (p && kprobe_optready(p)) {
450 op = container_of(p, struct optimized_kprobe, kp);
451 if (arch_within_optimized_kprobe(op, addr))
452 return p;
453 }
454
455 return NULL;
456 }
457
458 /* Optimization staging list, protected by kprobe_mutex */
459 static LIST_HEAD(optimizing_list);
460 static LIST_HEAD(unoptimizing_list);
461 static LIST_HEAD(freeing_list);
462
463 static void kprobe_optimizer(struct work_struct *work);
464 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
465 #define OPTIMIZE_DELAY 5
466
467 /*
468 * Optimize (replace a breakpoint with a jump) kprobes listed on
469 * optimizing_list.
470 */
471 static void do_optimize_kprobes(void)
472 {
473 /*
474 * The optimization/unoptimization refers online_cpus via
475 * stop_machine() and cpu-hotplug modifies online_cpus.
476 * And same time, text_mutex will be held in cpu-hotplug and here.
477 * This combination can cause a deadlock (cpu-hotplug try to lock
478 * text_mutex but stop_machine can not be done because online_cpus
479 * has been changed)
480 * To avoid this deadlock, caller must have locked cpu hotplug
481 * for preventing cpu-hotplug outside of text_mutex locking.
482 */
483 lockdep_assert_cpus_held();
484
485 /* Optimization never be done when disarmed */
486 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
487 list_empty(&optimizing_list))
488 return;
489
490 mutex_lock(&text_mutex);
491 arch_optimize_kprobes(&optimizing_list);
492 mutex_unlock(&text_mutex);
493 }
494
495 /*
496 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
497 * if need) kprobes listed on unoptimizing_list.
498 */
499 static void do_unoptimize_kprobes(void)
500 {
501 struct optimized_kprobe *op, *tmp;
502
503 /* See comment in do_optimize_kprobes() */
504 lockdep_assert_cpus_held();
505
506 /* Unoptimization must be done anytime */
507 if (list_empty(&unoptimizing_list))
508 return;
509
510 mutex_lock(&text_mutex);
511 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
512 /* Loop free_list for disarming */
513 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
514 /* Disarm probes if marked disabled */
515 if (kprobe_disabled(&op->kp))
516 arch_disarm_kprobe(&op->kp);
517 if (kprobe_unused(&op->kp)) {
518 /*
519 * Remove unused probes from hash list. After waiting
520 * for synchronization, these probes are reclaimed.
521 * (reclaiming is done by do_free_cleaned_kprobes.)
522 */
523 hlist_del_rcu(&op->kp.hlist);
524 } else
525 list_del_init(&op->list);
526 }
527 mutex_unlock(&text_mutex);
528 }
529
530 /* Reclaim all kprobes on the free_list */
531 static void do_free_cleaned_kprobes(void)
532 {
533 struct optimized_kprobe *op, *tmp;
534
535 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
536 list_del_init(&op->list);
537 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
538 /*
539 * This must not happen, but if there is a kprobe
540 * still in use, keep it on kprobes hash list.
541 */
542 continue;
543 }
544 free_aggr_kprobe(&op->kp);
545 }
546 }
547
548 /* Start optimizer after OPTIMIZE_DELAY passed */
549 static void kick_kprobe_optimizer(void)
550 {
551 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
552 }
553
554 /* Kprobe jump optimizer */
555 static void kprobe_optimizer(struct work_struct *work)
556 {
557 mutex_lock(&kprobe_mutex);
558 cpus_read_lock();
559 /* Lock modules while optimizing kprobes */
560 mutex_lock(&module_mutex);
561
562 /*
563 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
564 * kprobes before waiting for quiesence period.
565 */
566 do_unoptimize_kprobes();
567
568 /*
569 * Step 2: Wait for quiesence period to ensure all potentially
570 * preempted tasks to have normally scheduled. Because optprobe
571 * may modify multiple instructions, there is a chance that Nth
572 * instruction is preempted. In that case, such tasks can return
573 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
574 * Note that on non-preemptive kernel, this is transparently converted
575 * to synchronoze_sched() to wait for all interrupts to have completed.
576 */
577 synchronize_rcu_tasks();
578
579 /* Step 3: Optimize kprobes after quiesence period */
580 do_optimize_kprobes();
581
582 /* Step 4: Free cleaned kprobes after quiesence period */
583 do_free_cleaned_kprobes();
584
585 mutex_unlock(&module_mutex);
586 cpus_read_unlock();
587 mutex_unlock(&kprobe_mutex);
588
589 /* Step 5: Kick optimizer again if needed */
590 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
591 kick_kprobe_optimizer();
592 }
593
594 /* Wait for completing optimization and unoptimization */
595 void wait_for_kprobe_optimizer(void)
596 {
597 mutex_lock(&kprobe_mutex);
598
599 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
600 mutex_unlock(&kprobe_mutex);
601
602 /* this will also make optimizing_work execute immmediately */
603 flush_delayed_work(&optimizing_work);
604 /* @optimizing_work might not have been queued yet, relax */
605 cpu_relax();
606
607 mutex_lock(&kprobe_mutex);
608 }
609
610 mutex_unlock(&kprobe_mutex);
611 }
612
613 /* Optimize kprobe if p is ready to be optimized */
614 static void optimize_kprobe(struct kprobe *p)
615 {
616 struct optimized_kprobe *op;
617
618 /* Check if the kprobe is disabled or not ready for optimization. */
619 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
620 (kprobe_disabled(p) || kprobes_all_disarmed))
621 return;
622
623 /* kprobes with post_handler can not be optimized */
624 if (p->post_handler)
625 return;
626
627 op = container_of(p, struct optimized_kprobe, kp);
628
629 /* Check there is no other kprobes at the optimized instructions */
630 if (arch_check_optimized_kprobe(op) < 0)
631 return;
632
633 /* Check if it is already optimized. */
634 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
635 return;
636 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
637
638 if (!list_empty(&op->list))
639 /* This is under unoptimizing. Just dequeue the probe */
640 list_del_init(&op->list);
641 else {
642 list_add(&op->list, &optimizing_list);
643 kick_kprobe_optimizer();
644 }
645 }
646
647 /* Short cut to direct unoptimizing */
648 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
649 {
650 lockdep_assert_cpus_held();
651 arch_unoptimize_kprobe(op);
652 if (kprobe_disabled(&op->kp))
653 arch_disarm_kprobe(&op->kp);
654 }
655
656 /* Unoptimize a kprobe if p is optimized */
657 static void unoptimize_kprobe(struct kprobe *p, bool force)
658 {
659 struct optimized_kprobe *op;
660
661 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
662 return; /* This is not an optprobe nor optimized */
663
664 op = container_of(p, struct optimized_kprobe, kp);
665 if (!kprobe_optimized(p)) {
666 /* Unoptimized or unoptimizing case */
667 if (force && !list_empty(&op->list)) {
668 /*
669 * Only if this is unoptimizing kprobe and forced,
670 * forcibly unoptimize it. (No need to unoptimize
671 * unoptimized kprobe again :)
672 */
673 list_del_init(&op->list);
674 force_unoptimize_kprobe(op);
675 }
676 return;
677 }
678
679 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
680 if (!list_empty(&op->list)) {
681 /* Dequeue from the optimization queue */
682 list_del_init(&op->list);
683 return;
684 }
685 /* Optimized kprobe case */
686 if (force)
687 /* Forcibly update the code: this is a special case */
688 force_unoptimize_kprobe(op);
689 else {
690 list_add(&op->list, &unoptimizing_list);
691 kick_kprobe_optimizer();
692 }
693 }
694
695 /* Cancel unoptimizing for reusing */
696 static int reuse_unused_kprobe(struct kprobe *ap)
697 {
698 struct optimized_kprobe *op;
699
700 /*
701 * Unused kprobe MUST be on the way of delayed unoptimizing (means
702 * there is still a relative jump) and disabled.
703 */
704 op = container_of(ap, struct optimized_kprobe, kp);
705 WARN_ON_ONCE(list_empty(&op->list));
706 /* Enable the probe again */
707 ap->flags &= ~KPROBE_FLAG_DISABLED;
708 /* Optimize it again (remove from op->list) */
709 if (!kprobe_optready(ap))
710 return -EINVAL;
711
712 optimize_kprobe(ap);
713 return 0;
714 }
715
716 /* Remove optimized instructions */
717 static void kill_optimized_kprobe(struct kprobe *p)
718 {
719 struct optimized_kprobe *op;
720
721 op = container_of(p, struct optimized_kprobe, kp);
722 if (!list_empty(&op->list))
723 /* Dequeue from the (un)optimization queue */
724 list_del_init(&op->list);
725 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
726
727 if (kprobe_unused(p)) {
728 /* Enqueue if it is unused */
729 list_add(&op->list, &freeing_list);
730 /*
731 * Remove unused probes from the hash list. After waiting
732 * for synchronization, this probe is reclaimed.
733 * (reclaiming is done by do_free_cleaned_kprobes().)
734 */
735 hlist_del_rcu(&op->kp.hlist);
736 }
737
738 /* Don't touch the code, because it is already freed. */
739 arch_remove_optimized_kprobe(op);
740 }
741
742 static inline
743 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
744 {
745 if (!kprobe_ftrace(p))
746 arch_prepare_optimized_kprobe(op, p);
747 }
748
749 /* Try to prepare optimized instructions */
750 static void prepare_optimized_kprobe(struct kprobe *p)
751 {
752 struct optimized_kprobe *op;
753
754 op = container_of(p, struct optimized_kprobe, kp);
755 __prepare_optimized_kprobe(op, p);
756 }
757
758 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
759 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
760 {
761 struct optimized_kprobe *op;
762
763 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
764 if (!op)
765 return NULL;
766
767 INIT_LIST_HEAD(&op->list);
768 op->kp.addr = p->addr;
769 __prepare_optimized_kprobe(op, p);
770
771 return &op->kp;
772 }
773
774 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
775
776 /*
777 * Prepare an optimized_kprobe and optimize it
778 * NOTE: p must be a normal registered kprobe
779 */
780 static void try_to_optimize_kprobe(struct kprobe *p)
781 {
782 struct kprobe *ap;
783 struct optimized_kprobe *op;
784
785 /* Impossible to optimize ftrace-based kprobe */
786 if (kprobe_ftrace(p))
787 return;
788
789 /* For preparing optimization, jump_label_text_reserved() is called */
790 cpus_read_lock();
791 jump_label_lock();
792 mutex_lock(&text_mutex);
793
794 ap = alloc_aggr_kprobe(p);
795 if (!ap)
796 goto out;
797
798 op = container_of(ap, struct optimized_kprobe, kp);
799 if (!arch_prepared_optinsn(&op->optinsn)) {
800 /* If failed to setup optimizing, fallback to kprobe */
801 arch_remove_optimized_kprobe(op);
802 kfree(op);
803 goto out;
804 }
805
806 init_aggr_kprobe(ap, p);
807 optimize_kprobe(ap); /* This just kicks optimizer thread */
808
809 out:
810 mutex_unlock(&text_mutex);
811 jump_label_unlock();
812 cpus_read_unlock();
813 }
814
815 #ifdef CONFIG_SYSCTL
816 static void optimize_all_kprobes(void)
817 {
818 struct hlist_head *head;
819 struct kprobe *p;
820 unsigned int i;
821
822 mutex_lock(&kprobe_mutex);
823 /* If optimization is already allowed, just return */
824 if (kprobes_allow_optimization)
825 goto out;
826
827 cpus_read_lock();
828 kprobes_allow_optimization = true;
829 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
830 head = &kprobe_table[i];
831 hlist_for_each_entry_rcu(p, head, hlist)
832 if (!kprobe_disabled(p))
833 optimize_kprobe(p);
834 }
835 cpus_read_unlock();
836 printk(KERN_INFO "Kprobes globally optimized\n");
837 out:
838 mutex_unlock(&kprobe_mutex);
839 }
840
841 static void unoptimize_all_kprobes(void)
842 {
843 struct hlist_head *head;
844 struct kprobe *p;
845 unsigned int i;
846
847 mutex_lock(&kprobe_mutex);
848 /* If optimization is already prohibited, just return */
849 if (!kprobes_allow_optimization) {
850 mutex_unlock(&kprobe_mutex);
851 return;
852 }
853
854 cpus_read_lock();
855 kprobes_allow_optimization = false;
856 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
857 head = &kprobe_table[i];
858 hlist_for_each_entry_rcu(p, head, hlist) {
859 if (!kprobe_disabled(p))
860 unoptimize_kprobe(p, false);
861 }
862 }
863 cpus_read_unlock();
864 mutex_unlock(&kprobe_mutex);
865
866 /* Wait for unoptimizing completion */
867 wait_for_kprobe_optimizer();
868 printk(KERN_INFO "Kprobes globally unoptimized\n");
869 }
870
871 static DEFINE_MUTEX(kprobe_sysctl_mutex);
872 int sysctl_kprobes_optimization;
873 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
874 void __user *buffer, size_t *length,
875 loff_t *ppos)
876 {
877 int ret;
878
879 mutex_lock(&kprobe_sysctl_mutex);
880 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
881 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
882
883 if (sysctl_kprobes_optimization)
884 optimize_all_kprobes();
885 else
886 unoptimize_all_kprobes();
887 mutex_unlock(&kprobe_sysctl_mutex);
888
889 return ret;
890 }
891 #endif /* CONFIG_SYSCTL */
892
893 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
894 static void __arm_kprobe(struct kprobe *p)
895 {
896 struct kprobe *_p;
897
898 /* Check collision with other optimized kprobes */
899 _p = get_optimized_kprobe((unsigned long)p->addr);
900 if (unlikely(_p))
901 /* Fallback to unoptimized kprobe */
902 unoptimize_kprobe(_p, true);
903
904 arch_arm_kprobe(p);
905 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
906 }
907
908 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
909 static void __disarm_kprobe(struct kprobe *p, bool reopt)
910 {
911 struct kprobe *_p;
912
913 /* Try to unoptimize */
914 unoptimize_kprobe(p, kprobes_all_disarmed);
915
916 if (!kprobe_queued(p)) {
917 arch_disarm_kprobe(p);
918 /* If another kprobe was blocked, optimize it. */
919 _p = get_optimized_kprobe((unsigned long)p->addr);
920 if (unlikely(_p) && reopt)
921 optimize_kprobe(_p);
922 }
923 /* TODO: reoptimize others after unoptimized this probe */
924 }
925
926 #else /* !CONFIG_OPTPROBES */
927
928 #define optimize_kprobe(p) do {} while (0)
929 #define unoptimize_kprobe(p, f) do {} while (0)
930 #define kill_optimized_kprobe(p) do {} while (0)
931 #define prepare_optimized_kprobe(p) do {} while (0)
932 #define try_to_optimize_kprobe(p) do {} while (0)
933 #define __arm_kprobe(p) arch_arm_kprobe(p)
934 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
935 #define kprobe_disarmed(p) kprobe_disabled(p)
936 #define wait_for_kprobe_optimizer() do {} while (0)
937
938 static int reuse_unused_kprobe(struct kprobe *ap)
939 {
940 /*
941 * If the optimized kprobe is NOT supported, the aggr kprobe is
942 * released at the same time that the last aggregated kprobe is
943 * unregistered.
944 * Thus there should be no chance to reuse unused kprobe.
945 */
946 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
947 return -EINVAL;
948 }
949
950 static void free_aggr_kprobe(struct kprobe *p)
951 {
952 arch_remove_kprobe(p);
953 kfree(p);
954 }
955
956 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
957 {
958 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
959 }
960 #endif /* CONFIG_OPTPROBES */
961
962 #ifdef CONFIG_KPROBES_ON_FTRACE
963 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
964 .func = kprobe_ftrace_handler,
965 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
966 };
967 static int kprobe_ftrace_enabled;
968
969 /* Must ensure p->addr is really on ftrace */
970 static int prepare_kprobe(struct kprobe *p)
971 {
972 if (!kprobe_ftrace(p))
973 return arch_prepare_kprobe(p);
974
975 return arch_prepare_kprobe_ftrace(p);
976 }
977
978 /* Caller must lock kprobe_mutex */
979 static int arm_kprobe_ftrace(struct kprobe *p)
980 {
981 int ret = 0;
982
983 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
984 (unsigned long)p->addr, 0, 0);
985 if (ret) {
986 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
987 p->addr, ret);
988 return ret;
989 }
990
991 if (kprobe_ftrace_enabled == 0) {
992 ret = register_ftrace_function(&kprobe_ftrace_ops);
993 if (ret) {
994 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
995 goto err_ftrace;
996 }
997 }
998
999 kprobe_ftrace_enabled++;
1000 return ret;
1001
1002 err_ftrace:
1003 /*
1004 * Note: Since kprobe_ftrace_ops has IPMODIFY set, and ftrace requires a
1005 * non-empty filter_hash for IPMODIFY ops, we're safe from an accidental
1006 * empty filter_hash which would undesirably trace all functions.
1007 */
1008 ftrace_set_filter_ip(&kprobe_ftrace_ops, (unsigned long)p->addr, 1, 0);
1009 return ret;
1010 }
1011
1012 /* Caller must lock kprobe_mutex */
1013 static int disarm_kprobe_ftrace(struct kprobe *p)
1014 {
1015 int ret = 0;
1016
1017 if (kprobe_ftrace_enabled == 1) {
1018 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1019 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1020 return ret;
1021 }
1022
1023 kprobe_ftrace_enabled--;
1024
1025 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1026 (unsigned long)p->addr, 1, 0);
1027 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1028 p->addr, ret);
1029 return ret;
1030 }
1031 #else /* !CONFIG_KPROBES_ON_FTRACE */
1032 #define prepare_kprobe(p) arch_prepare_kprobe(p)
1033 #define arm_kprobe_ftrace(p) (-ENODEV)
1034 #define disarm_kprobe_ftrace(p) (-ENODEV)
1035 #endif
1036
1037 /* Arm a kprobe with text_mutex */
1038 static int arm_kprobe(struct kprobe *kp)
1039 {
1040 if (unlikely(kprobe_ftrace(kp)))
1041 return arm_kprobe_ftrace(kp);
1042
1043 cpus_read_lock();
1044 mutex_lock(&text_mutex);
1045 __arm_kprobe(kp);
1046 mutex_unlock(&text_mutex);
1047 cpus_read_unlock();
1048
1049 return 0;
1050 }
1051
1052 /* Disarm a kprobe with text_mutex */
1053 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1054 {
1055 if (unlikely(kprobe_ftrace(kp)))
1056 return disarm_kprobe_ftrace(kp);
1057
1058 cpus_read_lock();
1059 mutex_lock(&text_mutex);
1060 __disarm_kprobe(kp, reopt);
1061 mutex_unlock(&text_mutex);
1062 cpus_read_unlock();
1063
1064 return 0;
1065 }
1066
1067 /*
1068 * Aggregate handlers for multiple kprobes support - these handlers
1069 * take care of invoking the individual kprobe handlers on p->list
1070 */
1071 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1072 {
1073 struct kprobe *kp;
1074
1075 list_for_each_entry_rcu(kp, &p->list, list) {
1076 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1077 set_kprobe_instance(kp);
1078 if (kp->pre_handler(kp, regs))
1079 return 1;
1080 }
1081 reset_kprobe_instance();
1082 }
1083 return 0;
1084 }
1085 NOKPROBE_SYMBOL(aggr_pre_handler);
1086
1087 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1088 unsigned long flags)
1089 {
1090 struct kprobe *kp;
1091
1092 list_for_each_entry_rcu(kp, &p->list, list) {
1093 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1094 set_kprobe_instance(kp);
1095 kp->post_handler(kp, regs, flags);
1096 reset_kprobe_instance();
1097 }
1098 }
1099 }
1100 NOKPROBE_SYMBOL(aggr_post_handler);
1101
1102 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1103 int trapnr)
1104 {
1105 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1106
1107 /*
1108 * if we faulted "during" the execution of a user specified
1109 * probe handler, invoke just that probe's fault handler
1110 */
1111 if (cur && cur->fault_handler) {
1112 if (cur->fault_handler(cur, regs, trapnr))
1113 return 1;
1114 }
1115 return 0;
1116 }
1117 NOKPROBE_SYMBOL(aggr_fault_handler);
1118
1119 /* Walks the list and increments nmissed count for multiprobe case */
1120 void kprobes_inc_nmissed_count(struct kprobe *p)
1121 {
1122 struct kprobe *kp;
1123 if (!kprobe_aggrprobe(p)) {
1124 p->nmissed++;
1125 } else {
1126 list_for_each_entry_rcu(kp, &p->list, list)
1127 kp->nmissed++;
1128 }
1129 return;
1130 }
1131 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1132
1133 void recycle_rp_inst(struct kretprobe_instance *ri,
1134 struct hlist_head *head)
1135 {
1136 struct kretprobe *rp = ri->rp;
1137
1138 /* remove rp inst off the rprobe_inst_table */
1139 hlist_del(&ri->hlist);
1140 INIT_HLIST_NODE(&ri->hlist);
1141 if (likely(rp)) {
1142 raw_spin_lock(&rp->lock);
1143 hlist_add_head(&ri->hlist, &rp->free_instances);
1144 raw_spin_unlock(&rp->lock);
1145 } else
1146 /* Unregistering */
1147 hlist_add_head(&ri->hlist, head);
1148 }
1149 NOKPROBE_SYMBOL(recycle_rp_inst);
1150
1151 void kretprobe_hash_lock(struct task_struct *tsk,
1152 struct hlist_head **head, unsigned long *flags)
1153 __acquires(hlist_lock)
1154 {
1155 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1156 raw_spinlock_t *hlist_lock;
1157
1158 *head = &kretprobe_inst_table[hash];
1159 hlist_lock = kretprobe_table_lock_ptr(hash);
1160 raw_spin_lock_irqsave(hlist_lock, *flags);
1161 }
1162 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1163
1164 static void kretprobe_table_lock(unsigned long hash,
1165 unsigned long *flags)
1166 __acquires(hlist_lock)
1167 {
1168 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1169 raw_spin_lock_irqsave(hlist_lock, *flags);
1170 }
1171 NOKPROBE_SYMBOL(kretprobe_table_lock);
1172
1173 void kretprobe_hash_unlock(struct task_struct *tsk,
1174 unsigned long *flags)
1175 __releases(hlist_lock)
1176 {
1177 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1178 raw_spinlock_t *hlist_lock;
1179
1180 hlist_lock = kretprobe_table_lock_ptr(hash);
1181 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1182 }
1183 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1184
1185 static void kretprobe_table_unlock(unsigned long hash,
1186 unsigned long *flags)
1187 __releases(hlist_lock)
1188 {
1189 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1190 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1191 }
1192 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1193
1194 /*
1195 * This function is called from finish_task_switch when task tk becomes dead,
1196 * so that we can recycle any function-return probe instances associated
1197 * with this task. These left over instances represent probed functions
1198 * that have been called but will never return.
1199 */
1200 void kprobe_flush_task(struct task_struct *tk)
1201 {
1202 struct kretprobe_instance *ri;
1203 struct hlist_head *head, empty_rp;
1204 struct hlist_node *tmp;
1205 unsigned long hash, flags = 0;
1206
1207 if (unlikely(!kprobes_initialized))
1208 /* Early boot. kretprobe_table_locks not yet initialized. */
1209 return;
1210
1211 INIT_HLIST_HEAD(&empty_rp);
1212 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1213 head = &kretprobe_inst_table[hash];
1214 kretprobe_table_lock(hash, &flags);
1215 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1216 if (ri->task == tk)
1217 recycle_rp_inst(ri, &empty_rp);
1218 }
1219 kretprobe_table_unlock(hash, &flags);
1220 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1221 hlist_del(&ri->hlist);
1222 kfree(ri);
1223 }
1224 }
1225 NOKPROBE_SYMBOL(kprobe_flush_task);
1226
1227 static inline void free_rp_inst(struct kretprobe *rp)
1228 {
1229 struct kretprobe_instance *ri;
1230 struct hlist_node *next;
1231
1232 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1233 hlist_del(&ri->hlist);
1234 kfree(ri);
1235 }
1236 }
1237
1238 static void cleanup_rp_inst(struct kretprobe *rp)
1239 {
1240 unsigned long flags, hash;
1241 struct kretprobe_instance *ri;
1242 struct hlist_node *next;
1243 struct hlist_head *head;
1244
1245 /* No race here */
1246 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1247 kretprobe_table_lock(hash, &flags);
1248 head = &kretprobe_inst_table[hash];
1249 hlist_for_each_entry_safe(ri, next, head, hlist) {
1250 if (ri->rp == rp)
1251 ri->rp = NULL;
1252 }
1253 kretprobe_table_unlock(hash, &flags);
1254 }
1255 free_rp_inst(rp);
1256 }
1257 NOKPROBE_SYMBOL(cleanup_rp_inst);
1258
1259 /* Add the new probe to ap->list */
1260 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1261 {
1262 if (p->post_handler)
1263 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1264
1265 list_add_rcu(&p->list, &ap->list);
1266 if (p->post_handler && !ap->post_handler)
1267 ap->post_handler = aggr_post_handler;
1268
1269 return 0;
1270 }
1271
1272 /*
1273 * Fill in the required fields of the "manager kprobe". Replace the
1274 * earlier kprobe in the hlist with the manager kprobe
1275 */
1276 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1277 {
1278 /* Copy p's insn slot to ap */
1279 copy_kprobe(p, ap);
1280 flush_insn_slot(ap);
1281 ap->addr = p->addr;
1282 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1283 ap->pre_handler = aggr_pre_handler;
1284 ap->fault_handler = aggr_fault_handler;
1285 /* We don't care the kprobe which has gone. */
1286 if (p->post_handler && !kprobe_gone(p))
1287 ap->post_handler = aggr_post_handler;
1288
1289 INIT_LIST_HEAD(&ap->list);
1290 INIT_HLIST_NODE(&ap->hlist);
1291
1292 list_add_rcu(&p->list, &ap->list);
1293 hlist_replace_rcu(&p->hlist, &ap->hlist);
1294 }
1295
1296 /*
1297 * This is the second or subsequent kprobe at the address - handle
1298 * the intricacies
1299 */
1300 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1301 {
1302 int ret = 0;
1303 struct kprobe *ap = orig_p;
1304
1305 cpus_read_lock();
1306
1307 /* For preparing optimization, jump_label_text_reserved() is called */
1308 jump_label_lock();
1309 mutex_lock(&text_mutex);
1310
1311 if (!kprobe_aggrprobe(orig_p)) {
1312 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1313 ap = alloc_aggr_kprobe(orig_p);
1314 if (!ap) {
1315 ret = -ENOMEM;
1316 goto out;
1317 }
1318 init_aggr_kprobe(ap, orig_p);
1319 } else if (kprobe_unused(ap)) {
1320 /* This probe is going to die. Rescue it */
1321 ret = reuse_unused_kprobe(ap);
1322 if (ret)
1323 goto out;
1324 }
1325
1326 if (kprobe_gone(ap)) {
1327 /*
1328 * Attempting to insert new probe at the same location that
1329 * had a probe in the module vaddr area which already
1330 * freed. So, the instruction slot has already been
1331 * released. We need a new slot for the new probe.
1332 */
1333 ret = arch_prepare_kprobe(ap);
1334 if (ret)
1335 /*
1336 * Even if fail to allocate new slot, don't need to
1337 * free aggr_probe. It will be used next time, or
1338 * freed by unregister_kprobe.
1339 */
1340 goto out;
1341
1342 /* Prepare optimized instructions if possible. */
1343 prepare_optimized_kprobe(ap);
1344
1345 /*
1346 * Clear gone flag to prevent allocating new slot again, and
1347 * set disabled flag because it is not armed yet.
1348 */
1349 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1350 | KPROBE_FLAG_DISABLED;
1351 }
1352
1353 /* Copy ap's insn slot to p */
1354 copy_kprobe(ap, p);
1355 ret = add_new_kprobe(ap, p);
1356
1357 out:
1358 mutex_unlock(&text_mutex);
1359 jump_label_unlock();
1360 cpus_read_unlock();
1361
1362 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1363 ap->flags &= ~KPROBE_FLAG_DISABLED;
1364 if (!kprobes_all_disarmed) {
1365 /* Arm the breakpoint again. */
1366 ret = arm_kprobe(ap);
1367 if (ret) {
1368 ap->flags |= KPROBE_FLAG_DISABLED;
1369 list_del_rcu(&p->list);
1370 synchronize_rcu();
1371 }
1372 }
1373 }
1374 return ret;
1375 }
1376
1377 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1378 {
1379 /* The __kprobes marked functions and entry code must not be probed */
1380 return addr >= (unsigned long)__kprobes_text_start &&
1381 addr < (unsigned long)__kprobes_text_end;
1382 }
1383
1384 static bool __within_kprobe_blacklist(unsigned long addr)
1385 {
1386 struct kprobe_blacklist_entry *ent;
1387
1388 if (arch_within_kprobe_blacklist(addr))
1389 return true;
1390 /*
1391 * If there exists a kprobe_blacklist, verify and
1392 * fail any probe registration in the prohibited area
1393 */
1394 list_for_each_entry(ent, &kprobe_blacklist, list) {
1395 if (addr >= ent->start_addr && addr < ent->end_addr)
1396 return true;
1397 }
1398 return false;
1399 }
1400
1401 bool within_kprobe_blacklist(unsigned long addr)
1402 {
1403 char symname[KSYM_NAME_LEN], *p;
1404
1405 if (__within_kprobe_blacklist(addr))
1406 return true;
1407
1408 /* Check if the address is on a suffixed-symbol */
1409 if (!lookup_symbol_name(addr, symname)) {
1410 p = strchr(symname, '.');
1411 if (!p)
1412 return false;
1413 *p = '\0';
1414 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1415 if (addr)
1416 return __within_kprobe_blacklist(addr);
1417 }
1418 return false;
1419 }
1420
1421 /*
1422 * If we have a symbol_name argument, look it up and add the offset field
1423 * to it. This way, we can specify a relative address to a symbol.
1424 * This returns encoded errors if it fails to look up symbol or invalid
1425 * combination of parameters.
1426 */
1427 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1428 const char *symbol_name, unsigned int offset)
1429 {
1430 if ((symbol_name && addr) || (!symbol_name && !addr))
1431 goto invalid;
1432
1433 if (symbol_name) {
1434 addr = kprobe_lookup_name(symbol_name, offset);
1435 if (!addr)
1436 return ERR_PTR(-ENOENT);
1437 }
1438
1439 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1440 if (addr)
1441 return addr;
1442
1443 invalid:
1444 return ERR_PTR(-EINVAL);
1445 }
1446
1447 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1448 {
1449 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1450 }
1451
1452 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1453 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1454 {
1455 struct kprobe *ap, *list_p;
1456
1457 ap = get_kprobe(p->addr);
1458 if (unlikely(!ap))
1459 return NULL;
1460
1461 if (p != ap) {
1462 list_for_each_entry_rcu(list_p, &ap->list, list)
1463 if (list_p == p)
1464 /* kprobe p is a valid probe */
1465 goto valid;
1466 return NULL;
1467 }
1468 valid:
1469 return ap;
1470 }
1471
1472 /* Return error if the kprobe is being re-registered */
1473 static inline int check_kprobe_rereg(struct kprobe *p)
1474 {
1475 int ret = 0;
1476
1477 mutex_lock(&kprobe_mutex);
1478 if (__get_valid_kprobe(p))
1479 ret = -EINVAL;
1480 mutex_unlock(&kprobe_mutex);
1481
1482 return ret;
1483 }
1484
1485 int __weak arch_check_ftrace_location(struct kprobe *p)
1486 {
1487 unsigned long ftrace_addr;
1488
1489 ftrace_addr = ftrace_location((unsigned long)p->addr);
1490 if (ftrace_addr) {
1491 #ifdef CONFIG_KPROBES_ON_FTRACE
1492 /* Given address is not on the instruction boundary */
1493 if ((unsigned long)p->addr != ftrace_addr)
1494 return -EILSEQ;
1495 p->flags |= KPROBE_FLAG_FTRACE;
1496 #else /* !CONFIG_KPROBES_ON_FTRACE */
1497 return -EINVAL;
1498 #endif
1499 }
1500 return 0;
1501 }
1502
1503 static int check_kprobe_address_safe(struct kprobe *p,
1504 struct module **probed_mod)
1505 {
1506 int ret;
1507
1508 ret = arch_check_ftrace_location(p);
1509 if (ret)
1510 return ret;
1511 jump_label_lock();
1512 preempt_disable();
1513
1514 /* Ensure it is not in reserved area nor out of text */
1515 if (!kernel_text_address((unsigned long) p->addr) ||
1516 within_kprobe_blacklist((unsigned long) p->addr) ||
1517 jump_label_text_reserved(p->addr, p->addr)) {
1518 ret = -EINVAL;
1519 goto out;
1520 }
1521
1522 /* Check if are we probing a module */
1523 *probed_mod = __module_text_address((unsigned long) p->addr);
1524 if (*probed_mod) {
1525 /*
1526 * We must hold a refcount of the probed module while updating
1527 * its code to prohibit unexpected unloading.
1528 */
1529 if (unlikely(!try_module_get(*probed_mod))) {
1530 ret = -ENOENT;
1531 goto out;
1532 }
1533
1534 /*
1535 * If the module freed .init.text, we couldn't insert
1536 * kprobes in there.
1537 */
1538 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1539 (*probed_mod)->state != MODULE_STATE_COMING) {
1540 module_put(*probed_mod);
1541 *probed_mod = NULL;
1542 ret = -ENOENT;
1543 }
1544 }
1545 out:
1546 preempt_enable();
1547 jump_label_unlock();
1548
1549 return ret;
1550 }
1551
1552 int register_kprobe(struct kprobe *p)
1553 {
1554 int ret;
1555 struct kprobe *old_p;
1556 struct module *probed_mod;
1557 kprobe_opcode_t *addr;
1558
1559 /* Adjust probe address from symbol */
1560 addr = kprobe_addr(p);
1561 if (IS_ERR(addr))
1562 return PTR_ERR(addr);
1563 p->addr = addr;
1564
1565 ret = check_kprobe_rereg(p);
1566 if (ret)
1567 return ret;
1568
1569 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1570 p->flags &= KPROBE_FLAG_DISABLED;
1571 p->nmissed = 0;
1572 INIT_LIST_HEAD(&p->list);
1573
1574 ret = check_kprobe_address_safe(p, &probed_mod);
1575 if (ret)
1576 return ret;
1577
1578 mutex_lock(&kprobe_mutex);
1579
1580 old_p = get_kprobe(p->addr);
1581 if (old_p) {
1582 /* Since this may unoptimize old_p, locking text_mutex. */
1583 ret = register_aggr_kprobe(old_p, p);
1584 goto out;
1585 }
1586
1587 cpus_read_lock();
1588 /* Prevent text modification */
1589 mutex_lock(&text_mutex);
1590 ret = prepare_kprobe(p);
1591 mutex_unlock(&text_mutex);
1592 cpus_read_unlock();
1593 if (ret)
1594 goto out;
1595
1596 INIT_HLIST_NODE(&p->hlist);
1597 hlist_add_head_rcu(&p->hlist,
1598 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1599
1600 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1601 ret = arm_kprobe(p);
1602 if (ret) {
1603 hlist_del_rcu(&p->hlist);
1604 synchronize_rcu();
1605 goto out;
1606 }
1607 }
1608
1609 /* Try to optimize kprobe */
1610 try_to_optimize_kprobe(p);
1611 out:
1612 mutex_unlock(&kprobe_mutex);
1613
1614 if (probed_mod)
1615 module_put(probed_mod);
1616
1617 return ret;
1618 }
1619 EXPORT_SYMBOL_GPL(register_kprobe);
1620
1621 /* Check if all probes on the aggrprobe are disabled */
1622 static int aggr_kprobe_disabled(struct kprobe *ap)
1623 {
1624 struct kprobe *kp;
1625
1626 list_for_each_entry_rcu(kp, &ap->list, list)
1627 if (!kprobe_disabled(kp))
1628 /*
1629 * There is an active probe on the list.
1630 * We can't disable this ap.
1631 */
1632 return 0;
1633
1634 return 1;
1635 }
1636
1637 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1638 static struct kprobe *__disable_kprobe(struct kprobe *p)
1639 {
1640 struct kprobe *orig_p;
1641 int ret;
1642
1643 /* Get an original kprobe for return */
1644 orig_p = __get_valid_kprobe(p);
1645 if (unlikely(orig_p == NULL))
1646 return ERR_PTR(-EINVAL);
1647
1648 if (!kprobe_disabled(p)) {
1649 /* Disable probe if it is a child probe */
1650 if (p != orig_p)
1651 p->flags |= KPROBE_FLAG_DISABLED;
1652
1653 /* Try to disarm and disable this/parent probe */
1654 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1655 /*
1656 * If kprobes_all_disarmed is set, orig_p
1657 * should have already been disarmed, so
1658 * skip unneed disarming process.
1659 */
1660 if (!kprobes_all_disarmed) {
1661 ret = disarm_kprobe(orig_p, true);
1662 if (ret) {
1663 p->flags &= ~KPROBE_FLAG_DISABLED;
1664 return ERR_PTR(ret);
1665 }
1666 }
1667 orig_p->flags |= KPROBE_FLAG_DISABLED;
1668 }
1669 }
1670
1671 return orig_p;
1672 }
1673
1674 /*
1675 * Unregister a kprobe without a scheduler synchronization.
1676 */
1677 static int __unregister_kprobe_top(struct kprobe *p)
1678 {
1679 struct kprobe *ap, *list_p;
1680
1681 /* Disable kprobe. This will disarm it if needed. */
1682 ap = __disable_kprobe(p);
1683 if (IS_ERR(ap))
1684 return PTR_ERR(ap);
1685
1686 if (ap == p)
1687 /*
1688 * This probe is an independent(and non-optimized) kprobe
1689 * (not an aggrprobe). Remove from the hash list.
1690 */
1691 goto disarmed;
1692
1693 /* Following process expects this probe is an aggrprobe */
1694 WARN_ON(!kprobe_aggrprobe(ap));
1695
1696 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1697 /*
1698 * !disarmed could be happen if the probe is under delayed
1699 * unoptimizing.
1700 */
1701 goto disarmed;
1702 else {
1703 /* If disabling probe has special handlers, update aggrprobe */
1704 if (p->post_handler && !kprobe_gone(p)) {
1705 list_for_each_entry_rcu(list_p, &ap->list, list) {
1706 if ((list_p != p) && (list_p->post_handler))
1707 goto noclean;
1708 }
1709 ap->post_handler = NULL;
1710 }
1711 noclean:
1712 /*
1713 * Remove from the aggrprobe: this path will do nothing in
1714 * __unregister_kprobe_bottom().
1715 */
1716 list_del_rcu(&p->list);
1717 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1718 /*
1719 * Try to optimize this probe again, because post
1720 * handler may have been changed.
1721 */
1722 optimize_kprobe(ap);
1723 }
1724 return 0;
1725
1726 disarmed:
1727 hlist_del_rcu(&ap->hlist);
1728 return 0;
1729 }
1730
1731 static void __unregister_kprobe_bottom(struct kprobe *p)
1732 {
1733 struct kprobe *ap;
1734
1735 if (list_empty(&p->list))
1736 /* This is an independent kprobe */
1737 arch_remove_kprobe(p);
1738 else if (list_is_singular(&p->list)) {
1739 /* This is the last child of an aggrprobe */
1740 ap = list_entry(p->list.next, struct kprobe, list);
1741 list_del(&p->list);
1742 free_aggr_kprobe(ap);
1743 }
1744 /* Otherwise, do nothing. */
1745 }
1746
1747 int register_kprobes(struct kprobe **kps, int num)
1748 {
1749 int i, ret = 0;
1750
1751 if (num <= 0)
1752 return -EINVAL;
1753 for (i = 0; i < num; i++) {
1754 ret = register_kprobe(kps[i]);
1755 if (ret < 0) {
1756 if (i > 0)
1757 unregister_kprobes(kps, i);
1758 break;
1759 }
1760 }
1761 return ret;
1762 }
1763 EXPORT_SYMBOL_GPL(register_kprobes);
1764
1765 void unregister_kprobe(struct kprobe *p)
1766 {
1767 unregister_kprobes(&p, 1);
1768 }
1769 EXPORT_SYMBOL_GPL(unregister_kprobe);
1770
1771 void unregister_kprobes(struct kprobe **kps, int num)
1772 {
1773 int i;
1774
1775 if (num <= 0)
1776 return;
1777 mutex_lock(&kprobe_mutex);
1778 for (i = 0; i < num; i++)
1779 if (__unregister_kprobe_top(kps[i]) < 0)
1780 kps[i]->addr = NULL;
1781 mutex_unlock(&kprobe_mutex);
1782
1783 synchronize_rcu();
1784 for (i = 0; i < num; i++)
1785 if (kps[i]->addr)
1786 __unregister_kprobe_bottom(kps[i]);
1787 }
1788 EXPORT_SYMBOL_GPL(unregister_kprobes);
1789
1790 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1791 unsigned long val, void *data)
1792 {
1793 return NOTIFY_DONE;
1794 }
1795 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1796
1797 static struct notifier_block kprobe_exceptions_nb = {
1798 .notifier_call = kprobe_exceptions_notify,
1799 .priority = 0x7fffffff /* we need to be notified first */
1800 };
1801
1802 unsigned long __weak arch_deref_entry_point(void *entry)
1803 {
1804 return (unsigned long)entry;
1805 }
1806
1807 #ifdef CONFIG_KRETPROBES
1808 /*
1809 * This kprobe pre_handler is registered with every kretprobe. When probe
1810 * hits it will set up the return probe.
1811 */
1812 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1813 {
1814 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1815 unsigned long hash, flags = 0;
1816 struct kretprobe_instance *ri;
1817
1818 /*
1819 * To avoid deadlocks, prohibit return probing in NMI contexts,
1820 * just skip the probe and increase the (inexact) 'nmissed'
1821 * statistical counter, so that the user is informed that
1822 * something happened:
1823 */
1824 if (unlikely(in_nmi())) {
1825 rp->nmissed++;
1826 return 0;
1827 }
1828
1829 /* TODO: consider to only swap the RA after the last pre_handler fired */
1830 hash = hash_ptr(current, KPROBE_HASH_BITS);
1831 raw_spin_lock_irqsave(&rp->lock, flags);
1832 if (!hlist_empty(&rp->free_instances)) {
1833 ri = hlist_entry(rp->free_instances.first,
1834 struct kretprobe_instance, hlist);
1835 hlist_del(&ri->hlist);
1836 raw_spin_unlock_irqrestore(&rp->lock, flags);
1837
1838 ri->rp = rp;
1839 ri->task = current;
1840
1841 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1842 raw_spin_lock_irqsave(&rp->lock, flags);
1843 hlist_add_head(&ri->hlist, &rp->free_instances);
1844 raw_spin_unlock_irqrestore(&rp->lock, flags);
1845 return 0;
1846 }
1847
1848 arch_prepare_kretprobe(ri, regs);
1849
1850 /* XXX(hch): why is there no hlist_move_head? */
1851 INIT_HLIST_NODE(&ri->hlist);
1852 kretprobe_table_lock(hash, &flags);
1853 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1854 kretprobe_table_unlock(hash, &flags);
1855 } else {
1856 rp->nmissed++;
1857 raw_spin_unlock_irqrestore(&rp->lock, flags);
1858 }
1859 return 0;
1860 }
1861 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1862
1863 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1864 {
1865 return !offset;
1866 }
1867
1868 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1869 {
1870 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1871
1872 if (IS_ERR(kp_addr))
1873 return false;
1874
1875 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1876 !arch_kprobe_on_func_entry(offset))
1877 return false;
1878
1879 return true;
1880 }
1881
1882 int register_kretprobe(struct kretprobe *rp)
1883 {
1884 int ret = 0;
1885 struct kretprobe_instance *inst;
1886 int i;
1887 void *addr;
1888
1889 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1890 return -EINVAL;
1891
1892 if (kretprobe_blacklist_size) {
1893 addr = kprobe_addr(&rp->kp);
1894 if (IS_ERR(addr))
1895 return PTR_ERR(addr);
1896
1897 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1898 if (kretprobe_blacklist[i].addr == addr)
1899 return -EINVAL;
1900 }
1901 }
1902
1903 rp->kp.pre_handler = pre_handler_kretprobe;
1904 rp->kp.post_handler = NULL;
1905 rp->kp.fault_handler = NULL;
1906
1907 /* Pre-allocate memory for max kretprobe instances */
1908 if (rp->maxactive <= 0) {
1909 #ifdef CONFIG_PREEMPT
1910 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1911 #else
1912 rp->maxactive = num_possible_cpus();
1913 #endif
1914 }
1915 raw_spin_lock_init(&rp->lock);
1916 INIT_HLIST_HEAD(&rp->free_instances);
1917 for (i = 0; i < rp->maxactive; i++) {
1918 inst = kmalloc(sizeof(struct kretprobe_instance) +
1919 rp->data_size, GFP_KERNEL);
1920 if (inst == NULL) {
1921 free_rp_inst(rp);
1922 return -ENOMEM;
1923 }
1924 INIT_HLIST_NODE(&inst->hlist);
1925 hlist_add_head(&inst->hlist, &rp->free_instances);
1926 }
1927
1928 rp->nmissed = 0;
1929 /* Establish function entry probe point */
1930 ret = register_kprobe(&rp->kp);
1931 if (ret != 0)
1932 free_rp_inst(rp);
1933 return ret;
1934 }
1935 EXPORT_SYMBOL_GPL(register_kretprobe);
1936
1937 int register_kretprobes(struct kretprobe **rps, int num)
1938 {
1939 int ret = 0, i;
1940
1941 if (num <= 0)
1942 return -EINVAL;
1943 for (i = 0; i < num; i++) {
1944 ret = register_kretprobe(rps[i]);
1945 if (ret < 0) {
1946 if (i > 0)
1947 unregister_kretprobes(rps, i);
1948 break;
1949 }
1950 }
1951 return ret;
1952 }
1953 EXPORT_SYMBOL_GPL(register_kretprobes);
1954
1955 void unregister_kretprobe(struct kretprobe *rp)
1956 {
1957 unregister_kretprobes(&rp, 1);
1958 }
1959 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1960
1961 void unregister_kretprobes(struct kretprobe **rps, int num)
1962 {
1963 int i;
1964
1965 if (num <= 0)
1966 return;
1967 mutex_lock(&kprobe_mutex);
1968 for (i = 0; i < num; i++)
1969 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1970 rps[i]->kp.addr = NULL;
1971 mutex_unlock(&kprobe_mutex);
1972
1973 synchronize_rcu();
1974 for (i = 0; i < num; i++) {
1975 if (rps[i]->kp.addr) {
1976 __unregister_kprobe_bottom(&rps[i]->kp);
1977 cleanup_rp_inst(rps[i]);
1978 }
1979 }
1980 }
1981 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1982
1983 #else /* CONFIG_KRETPROBES */
1984 int register_kretprobe(struct kretprobe *rp)
1985 {
1986 return -ENOSYS;
1987 }
1988 EXPORT_SYMBOL_GPL(register_kretprobe);
1989
1990 int register_kretprobes(struct kretprobe **rps, int num)
1991 {
1992 return -ENOSYS;
1993 }
1994 EXPORT_SYMBOL_GPL(register_kretprobes);
1995
1996 void unregister_kretprobe(struct kretprobe *rp)
1997 {
1998 }
1999 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2000
2001 void unregister_kretprobes(struct kretprobe **rps, int num)
2002 {
2003 }
2004 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2005
2006 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2007 {
2008 return 0;
2009 }
2010 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2011
2012 #endif /* CONFIG_KRETPROBES */
2013
2014 /* Set the kprobe gone and remove its instruction buffer. */
2015 static void kill_kprobe(struct kprobe *p)
2016 {
2017 struct kprobe *kp;
2018
2019 p->flags |= KPROBE_FLAG_GONE;
2020 if (kprobe_aggrprobe(p)) {
2021 /*
2022 * If this is an aggr_kprobe, we have to list all the
2023 * chained probes and mark them GONE.
2024 */
2025 list_for_each_entry_rcu(kp, &p->list, list)
2026 kp->flags |= KPROBE_FLAG_GONE;
2027 p->post_handler = NULL;
2028 kill_optimized_kprobe(p);
2029 }
2030 /*
2031 * Here, we can remove insn_slot safely, because no thread calls
2032 * the original probed function (which will be freed soon) any more.
2033 */
2034 arch_remove_kprobe(p);
2035 }
2036
2037 /* Disable one kprobe */
2038 int disable_kprobe(struct kprobe *kp)
2039 {
2040 int ret = 0;
2041 struct kprobe *p;
2042
2043 mutex_lock(&kprobe_mutex);
2044
2045 /* Disable this kprobe */
2046 p = __disable_kprobe(kp);
2047 if (IS_ERR(p))
2048 ret = PTR_ERR(p);
2049
2050 mutex_unlock(&kprobe_mutex);
2051 return ret;
2052 }
2053 EXPORT_SYMBOL_GPL(disable_kprobe);
2054
2055 /* Enable one kprobe */
2056 int enable_kprobe(struct kprobe *kp)
2057 {
2058 int ret = 0;
2059 struct kprobe *p;
2060
2061 mutex_lock(&kprobe_mutex);
2062
2063 /* Check whether specified probe is valid. */
2064 p = __get_valid_kprobe(kp);
2065 if (unlikely(p == NULL)) {
2066 ret = -EINVAL;
2067 goto out;
2068 }
2069
2070 if (kprobe_gone(kp)) {
2071 /* This kprobe has gone, we couldn't enable it. */
2072 ret = -EINVAL;
2073 goto out;
2074 }
2075
2076 if (p != kp)
2077 kp->flags &= ~KPROBE_FLAG_DISABLED;
2078
2079 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2080 p->flags &= ~KPROBE_FLAG_DISABLED;
2081 ret = arm_kprobe(p);
2082 if (ret)
2083 p->flags |= KPROBE_FLAG_DISABLED;
2084 }
2085 out:
2086 mutex_unlock(&kprobe_mutex);
2087 return ret;
2088 }
2089 EXPORT_SYMBOL_GPL(enable_kprobe);
2090
2091 /* Caller must NOT call this in usual path. This is only for critical case */
2092 void dump_kprobe(struct kprobe *kp)
2093 {
2094 pr_err("Dumping kprobe:\n");
2095 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2096 kp->symbol_name, kp->offset, kp->addr);
2097 }
2098 NOKPROBE_SYMBOL(dump_kprobe);
2099
2100 int kprobe_add_ksym_blacklist(unsigned long entry)
2101 {
2102 struct kprobe_blacklist_entry *ent;
2103 unsigned long offset = 0, size = 0;
2104
2105 if (!kernel_text_address(entry) ||
2106 !kallsyms_lookup_size_offset(entry, &size, &offset))
2107 return -EINVAL;
2108
2109 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2110 if (!ent)
2111 return -ENOMEM;
2112 ent->start_addr = entry;
2113 ent->end_addr = entry + size;
2114 INIT_LIST_HEAD(&ent->list);
2115 list_add_tail(&ent->list, &kprobe_blacklist);
2116
2117 return (int)size;
2118 }
2119
2120 /* Add all symbols in given area into kprobe blacklist */
2121 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2122 {
2123 unsigned long entry;
2124 int ret = 0;
2125
2126 for (entry = start; entry < end; entry += ret) {
2127 ret = kprobe_add_ksym_blacklist(entry);
2128 if (ret < 0)
2129 return ret;
2130 if (ret == 0) /* In case of alias symbol */
2131 ret = 1;
2132 }
2133 return 0;
2134 }
2135
2136 int __init __weak arch_populate_kprobe_blacklist(void)
2137 {
2138 return 0;
2139 }
2140
2141 /*
2142 * Lookup and populate the kprobe_blacklist.
2143 *
2144 * Unlike the kretprobe blacklist, we'll need to determine
2145 * the range of addresses that belong to the said functions,
2146 * since a kprobe need not necessarily be at the beginning
2147 * of a function.
2148 */
2149 static int __init populate_kprobe_blacklist(unsigned long *start,
2150 unsigned long *end)
2151 {
2152 unsigned long entry;
2153 unsigned long *iter;
2154 int ret;
2155
2156 for (iter = start; iter < end; iter++) {
2157 entry = arch_deref_entry_point((void *)*iter);
2158 ret = kprobe_add_ksym_blacklist(entry);
2159 if (ret == -EINVAL)
2160 continue;
2161 if (ret < 0)
2162 return ret;
2163 }
2164
2165 /* Symbols in __kprobes_text are blacklisted */
2166 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2167 (unsigned long)__kprobes_text_end);
2168
2169 return ret ? : arch_populate_kprobe_blacklist();
2170 }
2171
2172 /* Module notifier call back, checking kprobes on the module */
2173 static int kprobes_module_callback(struct notifier_block *nb,
2174 unsigned long val, void *data)
2175 {
2176 struct module *mod = data;
2177 struct hlist_head *head;
2178 struct kprobe *p;
2179 unsigned int i;
2180 int checkcore = (val == MODULE_STATE_GOING);
2181
2182 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2183 return NOTIFY_DONE;
2184
2185 /*
2186 * When MODULE_STATE_GOING was notified, both of module .text and
2187 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2188 * notified, only .init.text section would be freed. We need to
2189 * disable kprobes which have been inserted in the sections.
2190 */
2191 mutex_lock(&kprobe_mutex);
2192 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2193 head = &kprobe_table[i];
2194 hlist_for_each_entry_rcu(p, head, hlist)
2195 if (within_module_init((unsigned long)p->addr, mod) ||
2196 (checkcore &&
2197 within_module_core((unsigned long)p->addr, mod))) {
2198 /*
2199 * The vaddr this probe is installed will soon
2200 * be vfreed buy not synced to disk. Hence,
2201 * disarming the breakpoint isn't needed.
2202 *
2203 * Note, this will also move any optimized probes
2204 * that are pending to be removed from their
2205 * corresponding lists to the freeing_list and
2206 * will not be touched by the delayed
2207 * kprobe_optimizer work handler.
2208 */
2209 kill_kprobe(p);
2210 }
2211 }
2212 mutex_unlock(&kprobe_mutex);
2213 return NOTIFY_DONE;
2214 }
2215
2216 static struct notifier_block kprobe_module_nb = {
2217 .notifier_call = kprobes_module_callback,
2218 .priority = 0
2219 };
2220
2221 /* Markers of _kprobe_blacklist section */
2222 extern unsigned long __start_kprobe_blacklist[];
2223 extern unsigned long __stop_kprobe_blacklist[];
2224
2225 static int __init init_kprobes(void)
2226 {
2227 int i, err = 0;
2228
2229 /* FIXME allocate the probe table, currently defined statically */
2230 /* initialize all list heads */
2231 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2232 INIT_HLIST_HEAD(&kprobe_table[i]);
2233 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2234 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2235 }
2236
2237 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2238 __stop_kprobe_blacklist);
2239 if (err) {
2240 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2241 pr_err("Please take care of using kprobes.\n");
2242 }
2243
2244 if (kretprobe_blacklist_size) {
2245 /* lookup the function address from its name */
2246 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2247 kretprobe_blacklist[i].addr =
2248 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2249 if (!kretprobe_blacklist[i].addr)
2250 printk("kretprobe: lookup failed: %s\n",
2251 kretprobe_blacklist[i].name);
2252 }
2253 }
2254
2255 #if defined(CONFIG_OPTPROBES)
2256 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2257 /* Init kprobe_optinsn_slots */
2258 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2259 #endif
2260 /* By default, kprobes can be optimized */
2261 kprobes_allow_optimization = true;
2262 #endif
2263
2264 /* By default, kprobes are armed */
2265 kprobes_all_disarmed = false;
2266
2267 err = arch_init_kprobes();
2268 if (!err)
2269 err = register_die_notifier(&kprobe_exceptions_nb);
2270 if (!err)
2271 err = register_module_notifier(&kprobe_module_nb);
2272
2273 kprobes_initialized = (err == 0);
2274
2275 if (!err)
2276 init_test_probes();
2277 return err;
2278 }
2279 subsys_initcall(init_kprobes);
2280
2281 #ifdef CONFIG_DEBUG_FS
2282 static void report_probe(struct seq_file *pi, struct kprobe *p,
2283 const char *sym, int offset, char *modname, struct kprobe *pp)
2284 {
2285 char *kprobe_type;
2286 void *addr = p->addr;
2287
2288 if (p->pre_handler == pre_handler_kretprobe)
2289 kprobe_type = "r";
2290 else
2291 kprobe_type = "k";
2292
2293 if (!kallsyms_show_value())
2294 addr = NULL;
2295
2296 if (sym)
2297 seq_printf(pi, "%px %s %s+0x%x %s ",
2298 addr, kprobe_type, sym, offset,
2299 (modname ? modname : " "));
2300 else /* try to use %pS */
2301 seq_printf(pi, "%px %s %pS ",
2302 addr, kprobe_type, p->addr);
2303
2304 if (!pp)
2305 pp = p;
2306 seq_printf(pi, "%s%s%s%s\n",
2307 (kprobe_gone(p) ? "[GONE]" : ""),
2308 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2309 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2310 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2311 }
2312
2313 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2314 {
2315 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2316 }
2317
2318 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2319 {
2320 (*pos)++;
2321 if (*pos >= KPROBE_TABLE_SIZE)
2322 return NULL;
2323 return pos;
2324 }
2325
2326 static void kprobe_seq_stop(struct seq_file *f, void *v)
2327 {
2328 /* Nothing to do */
2329 }
2330
2331 static int show_kprobe_addr(struct seq_file *pi, void *v)
2332 {
2333 struct hlist_head *head;
2334 struct kprobe *p, *kp;
2335 const char *sym = NULL;
2336 unsigned int i = *(loff_t *) v;
2337 unsigned long offset = 0;
2338 char *modname, namebuf[KSYM_NAME_LEN];
2339
2340 head = &kprobe_table[i];
2341 preempt_disable();
2342 hlist_for_each_entry_rcu(p, head, hlist) {
2343 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2344 &offset, &modname, namebuf);
2345 if (kprobe_aggrprobe(p)) {
2346 list_for_each_entry_rcu(kp, &p->list, list)
2347 report_probe(pi, kp, sym, offset, modname, p);
2348 } else
2349 report_probe(pi, p, sym, offset, modname, NULL);
2350 }
2351 preempt_enable();
2352 return 0;
2353 }
2354
2355 static const struct seq_operations kprobes_seq_ops = {
2356 .start = kprobe_seq_start,
2357 .next = kprobe_seq_next,
2358 .stop = kprobe_seq_stop,
2359 .show = show_kprobe_addr
2360 };
2361
2362 static int kprobes_open(struct inode *inode, struct file *filp)
2363 {
2364 return seq_open(filp, &kprobes_seq_ops);
2365 }
2366
2367 static const struct file_operations debugfs_kprobes_operations = {
2368 .open = kprobes_open,
2369 .read = seq_read,
2370 .llseek = seq_lseek,
2371 .release = seq_release,
2372 };
2373
2374 /* kprobes/blacklist -- shows which functions can not be probed */
2375 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2376 {
2377 return seq_list_start(&kprobe_blacklist, *pos);
2378 }
2379
2380 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2381 {
2382 return seq_list_next(v, &kprobe_blacklist, pos);
2383 }
2384
2385 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2386 {
2387 struct kprobe_blacklist_entry *ent =
2388 list_entry(v, struct kprobe_blacklist_entry, list);
2389
2390 /*
2391 * If /proc/kallsyms is not showing kernel address, we won't
2392 * show them here either.
2393 */
2394 if (!kallsyms_show_value())
2395 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2396 (void *)ent->start_addr);
2397 else
2398 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2399 (void *)ent->end_addr, (void *)ent->start_addr);
2400 return 0;
2401 }
2402
2403 static const struct seq_operations kprobe_blacklist_seq_ops = {
2404 .start = kprobe_blacklist_seq_start,
2405 .next = kprobe_blacklist_seq_next,
2406 .stop = kprobe_seq_stop, /* Reuse void function */
2407 .show = kprobe_blacklist_seq_show,
2408 };
2409
2410 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2411 {
2412 return seq_open(filp, &kprobe_blacklist_seq_ops);
2413 }
2414
2415 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2416 .open = kprobe_blacklist_open,
2417 .read = seq_read,
2418 .llseek = seq_lseek,
2419 .release = seq_release,
2420 };
2421
2422 static int arm_all_kprobes(void)
2423 {
2424 struct hlist_head *head;
2425 struct kprobe *p;
2426 unsigned int i, total = 0, errors = 0;
2427 int err, ret = 0;
2428
2429 mutex_lock(&kprobe_mutex);
2430
2431 /* If kprobes are armed, just return */
2432 if (!kprobes_all_disarmed)
2433 goto already_enabled;
2434
2435 /*
2436 * optimize_kprobe() called by arm_kprobe() checks
2437 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2438 * arm_kprobe.
2439 */
2440 kprobes_all_disarmed = false;
2441 /* Arming kprobes doesn't optimize kprobe itself */
2442 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2443 head = &kprobe_table[i];
2444 /* Arm all kprobes on a best-effort basis */
2445 hlist_for_each_entry_rcu(p, head, hlist) {
2446 if (!kprobe_disabled(p)) {
2447 err = arm_kprobe(p);
2448 if (err) {
2449 errors++;
2450 ret = err;
2451 }
2452 total++;
2453 }
2454 }
2455 }
2456
2457 if (errors)
2458 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2459 errors, total);
2460 else
2461 pr_info("Kprobes globally enabled\n");
2462
2463 already_enabled:
2464 mutex_unlock(&kprobe_mutex);
2465 return ret;
2466 }
2467
2468 static int disarm_all_kprobes(void)
2469 {
2470 struct hlist_head *head;
2471 struct kprobe *p;
2472 unsigned int i, total = 0, errors = 0;
2473 int err, ret = 0;
2474
2475 mutex_lock(&kprobe_mutex);
2476
2477 /* If kprobes are already disarmed, just return */
2478 if (kprobes_all_disarmed) {
2479 mutex_unlock(&kprobe_mutex);
2480 return 0;
2481 }
2482
2483 kprobes_all_disarmed = true;
2484
2485 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2486 head = &kprobe_table[i];
2487 /* Disarm all kprobes on a best-effort basis */
2488 hlist_for_each_entry_rcu(p, head, hlist) {
2489 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2490 err = disarm_kprobe(p, false);
2491 if (err) {
2492 errors++;
2493 ret = err;
2494 }
2495 total++;
2496 }
2497 }
2498 }
2499
2500 if (errors)
2501 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2502 errors, total);
2503 else
2504 pr_info("Kprobes globally disabled\n");
2505
2506 mutex_unlock(&kprobe_mutex);
2507
2508 /* Wait for disarming all kprobes by optimizer */
2509 wait_for_kprobe_optimizer();
2510
2511 return ret;
2512 }
2513
2514 /*
2515 * XXX: The debugfs bool file interface doesn't allow for callbacks
2516 * when the bool state is switched. We can reuse that facility when
2517 * available
2518 */
2519 static ssize_t read_enabled_file_bool(struct file *file,
2520 char __user *user_buf, size_t count, loff_t *ppos)
2521 {
2522 char buf[3];
2523
2524 if (!kprobes_all_disarmed)
2525 buf[0] = '1';
2526 else
2527 buf[0] = '0';
2528 buf[1] = '\n';
2529 buf[2] = 0x00;
2530 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2531 }
2532
2533 static ssize_t write_enabled_file_bool(struct file *file,
2534 const char __user *user_buf, size_t count, loff_t *ppos)
2535 {
2536 char buf[32];
2537 size_t buf_size;
2538 int ret = 0;
2539
2540 buf_size = min(count, (sizeof(buf)-1));
2541 if (copy_from_user(buf, user_buf, buf_size))
2542 return -EFAULT;
2543
2544 buf[buf_size] = '\0';
2545 switch (buf[0]) {
2546 case 'y':
2547 case 'Y':
2548 case '1':
2549 ret = arm_all_kprobes();
2550 break;
2551 case 'n':
2552 case 'N':
2553 case '0':
2554 ret = disarm_all_kprobes();
2555 break;
2556 default:
2557 return -EINVAL;
2558 }
2559
2560 if (ret)
2561 return ret;
2562
2563 return count;
2564 }
2565
2566 static const struct file_operations fops_kp = {
2567 .read = read_enabled_file_bool,
2568 .write = write_enabled_file_bool,
2569 .llseek = default_llseek,
2570 };
2571
2572 static int __init debugfs_kprobe_init(void)
2573 {
2574 struct dentry *dir;
2575 unsigned int value = 1;
2576
2577 dir = debugfs_create_dir("kprobes", NULL);
2578
2579 debugfs_create_file("list", 0400, dir, NULL,
2580 &debugfs_kprobes_operations);
2581
2582 debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2583
2584 debugfs_create_file("blacklist", 0400, dir, NULL,
2585 &debugfs_kprobe_blacklist_ops);
2586
2587 return 0;
2588 }
2589
2590 late_initcall(debugfs_kprobe_init);
2591 #endif /* CONFIG_DEBUG_FS */