]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - kernel/kprobes.c
s390/qeth: fix VLAN attribute in bridge_hostnotify udev event
[thirdparty/kernel/linux.git] / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 static int kprobes_initialized;
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64
65 /* NOTE: change this value only with kprobe_mutex held */
66 static bool kprobes_all_disarmed;
67
68 /* This protects kprobe_table and optimizing_list */
69 static DEFINE_MUTEX(kprobe_mutex);
70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71 static struct {
72 raw_spinlock_t lock ____cacheline_aligned_in_smp;
73 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
74
75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76 unsigned int __unused)
77 {
78 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79 }
80
81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82 {
83 return &(kretprobe_table_locks[hash].lock);
84 }
85
86 /* Blacklist -- list of struct kprobe_blacklist_entry */
87 static LIST_HEAD(kprobe_blacklist);
88
89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90 /*
91 * kprobe->ainsn.insn points to the copy of the instruction to be
92 * single-stepped. x86_64, POWER4 and above have no-exec support and
93 * stepping on the instruction on a vmalloced/kmalloced/data page
94 * is a recipe for disaster
95 */
96 struct kprobe_insn_page {
97 struct list_head list;
98 kprobe_opcode_t *insns; /* Page of instruction slots */
99 struct kprobe_insn_cache *cache;
100 int nused;
101 int ngarbage;
102 char slot_used[];
103 };
104
105 #define KPROBE_INSN_PAGE_SIZE(slots) \
106 (offsetof(struct kprobe_insn_page, slot_used) + \
107 (sizeof(char) * (slots)))
108
109 static int slots_per_page(struct kprobe_insn_cache *c)
110 {
111 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112 }
113
114 enum kprobe_slot_state {
115 SLOT_CLEAN = 0,
116 SLOT_DIRTY = 1,
117 SLOT_USED = 2,
118 };
119
120 void __weak *alloc_insn_page(void)
121 {
122 return module_alloc(PAGE_SIZE);
123 }
124
125 void __weak free_insn_page(void *page)
126 {
127 module_memfree(page);
128 }
129
130 struct kprobe_insn_cache kprobe_insn_slots = {
131 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132 .alloc = alloc_insn_page,
133 .free = free_insn_page,
134 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 .insn_size = MAX_INSN_SIZE,
136 .nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140 /**
141 * __get_insn_slot() - Find a slot on an executable page for an instruction.
142 * We allocate an executable page if there's no room on existing ones.
143 */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146 struct kprobe_insn_page *kip;
147 kprobe_opcode_t *slot = NULL;
148
149 /* Since the slot array is not protected by rcu, we need a mutex */
150 mutex_lock(&c->mutex);
151 retry:
152 rcu_read_lock();
153 list_for_each_entry_rcu(kip, &c->pages, list) {
154 if (kip->nused < slots_per_page(c)) {
155 int i;
156 for (i = 0; i < slots_per_page(c); i++) {
157 if (kip->slot_used[i] == SLOT_CLEAN) {
158 kip->slot_used[i] = SLOT_USED;
159 kip->nused++;
160 slot = kip->insns + (i * c->insn_size);
161 rcu_read_unlock();
162 goto out;
163 }
164 }
165 /* kip->nused is broken. Fix it. */
166 kip->nused = slots_per_page(c);
167 WARN_ON(1);
168 }
169 }
170 rcu_read_unlock();
171
172 /* If there are any garbage slots, collect it and try again. */
173 if (c->nr_garbage && collect_garbage_slots(c) == 0)
174 goto retry;
175
176 /* All out of space. Need to allocate a new page. */
177 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178 if (!kip)
179 goto out;
180
181 /*
182 * Use module_alloc so this page is within +/- 2GB of where the
183 * kernel image and loaded module images reside. This is required
184 * so x86_64 can correctly handle the %rip-relative fixups.
185 */
186 kip->insns = c->alloc();
187 if (!kip->insns) {
188 kfree(kip);
189 goto out;
190 }
191 INIT_LIST_HEAD(&kip->list);
192 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193 kip->slot_used[0] = SLOT_USED;
194 kip->nused = 1;
195 kip->ngarbage = 0;
196 kip->cache = c;
197 list_add_rcu(&kip->list, &c->pages);
198 slot = kip->insns;
199 out:
200 mutex_unlock(&c->mutex);
201 return slot;
202 }
203
204 /* Return 1 if all garbages are collected, otherwise 0. */
205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207 kip->slot_used[idx] = SLOT_CLEAN;
208 kip->nused--;
209 if (kip->nused == 0) {
210 /*
211 * Page is no longer in use. Free it unless
212 * it's the last one. We keep the last one
213 * so as not to have to set it up again the
214 * next time somebody inserts a probe.
215 */
216 if (!list_is_singular(&kip->list)) {
217 list_del_rcu(&kip->list);
218 synchronize_rcu();
219 kip->cache->free(kip->insns);
220 kfree(kip);
221 }
222 return 1;
223 }
224 return 0;
225 }
226
227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
228 {
229 struct kprobe_insn_page *kip, *next;
230
231 /* Ensure no-one is interrupted on the garbages */
232 synchronize_rcu();
233
234 list_for_each_entry_safe(kip, next, &c->pages, list) {
235 int i;
236 if (kip->ngarbage == 0)
237 continue;
238 kip->ngarbage = 0; /* we will collect all garbages */
239 for (i = 0; i < slots_per_page(c); i++) {
240 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241 break;
242 }
243 }
244 c->nr_garbage = 0;
245 return 0;
246 }
247
248 void __free_insn_slot(struct kprobe_insn_cache *c,
249 kprobe_opcode_t *slot, int dirty)
250 {
251 struct kprobe_insn_page *kip;
252 long idx;
253
254 mutex_lock(&c->mutex);
255 rcu_read_lock();
256 list_for_each_entry_rcu(kip, &c->pages, list) {
257 idx = ((long)slot - (long)kip->insns) /
258 (c->insn_size * sizeof(kprobe_opcode_t));
259 if (idx >= 0 && idx < slots_per_page(c))
260 goto out;
261 }
262 /* Could not find this slot. */
263 WARN_ON(1);
264 kip = NULL;
265 out:
266 rcu_read_unlock();
267 /* Mark and sweep: this may sleep */
268 if (kip) {
269 /* Check double free */
270 WARN_ON(kip->slot_used[idx] != SLOT_USED);
271 if (dirty) {
272 kip->slot_used[idx] = SLOT_DIRTY;
273 kip->ngarbage++;
274 if (++c->nr_garbage > slots_per_page(c))
275 collect_garbage_slots(c);
276 } else {
277 collect_one_slot(kip, idx);
278 }
279 }
280 mutex_unlock(&c->mutex);
281 }
282
283 /*
284 * Check given address is on the page of kprobe instruction slots.
285 * This will be used for checking whether the address on a stack
286 * is on a text area or not.
287 */
288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289 {
290 struct kprobe_insn_page *kip;
291 bool ret = false;
292
293 rcu_read_lock();
294 list_for_each_entry_rcu(kip, &c->pages, list) {
295 if (addr >= (unsigned long)kip->insns &&
296 addr < (unsigned long)kip->insns + PAGE_SIZE) {
297 ret = true;
298 break;
299 }
300 }
301 rcu_read_unlock();
302
303 return ret;
304 }
305
306 #ifdef CONFIG_OPTPROBES
307 /* For optimized_kprobe buffer */
308 struct kprobe_insn_cache kprobe_optinsn_slots = {
309 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310 .alloc = alloc_insn_page,
311 .free = free_insn_page,
312 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313 /* .insn_size is initialized later */
314 .nr_garbage = 0,
315 };
316 #endif
317 #endif
318
319 /* We have preemption disabled.. so it is safe to use __ versions */
320 static inline void set_kprobe_instance(struct kprobe *kp)
321 {
322 __this_cpu_write(kprobe_instance, kp);
323 }
324
325 static inline void reset_kprobe_instance(void)
326 {
327 __this_cpu_write(kprobe_instance, NULL);
328 }
329
330 /*
331 * This routine is called either:
332 * - under the kprobe_mutex - during kprobe_[un]register()
333 * OR
334 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
335 */
336 struct kprobe *get_kprobe(void *addr)
337 {
338 struct hlist_head *head;
339 struct kprobe *p;
340
341 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342 hlist_for_each_entry_rcu(p, head, hlist) {
343 if (p->addr == addr)
344 return p;
345 }
346
347 return NULL;
348 }
349 NOKPROBE_SYMBOL(get_kprobe);
350
351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352
353 /* Return true if the kprobe is an aggregator */
354 static inline int kprobe_aggrprobe(struct kprobe *p)
355 {
356 return p->pre_handler == aggr_pre_handler;
357 }
358
359 /* Return true(!0) if the kprobe is unused */
360 static inline int kprobe_unused(struct kprobe *p)
361 {
362 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363 list_empty(&p->list);
364 }
365
366 /*
367 * Keep all fields in the kprobe consistent
368 */
369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370 {
371 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373 }
374
375 #ifdef CONFIG_OPTPROBES
376 /* NOTE: change this value only with kprobe_mutex held */
377 static bool kprobes_allow_optimization;
378
379 /*
380 * Call all pre_handler on the list, but ignores its return value.
381 * This must be called from arch-dep optimized caller.
382 */
383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384 {
385 struct kprobe *kp;
386
387 list_for_each_entry_rcu(kp, &p->list, list) {
388 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389 set_kprobe_instance(kp);
390 kp->pre_handler(kp, regs);
391 }
392 reset_kprobe_instance();
393 }
394 }
395 NOKPROBE_SYMBOL(opt_pre_handler);
396
397 /* Free optimized instructions and optimized_kprobe */
398 static void free_aggr_kprobe(struct kprobe *p)
399 {
400 struct optimized_kprobe *op;
401
402 op = container_of(p, struct optimized_kprobe, kp);
403 arch_remove_optimized_kprobe(op);
404 arch_remove_kprobe(p);
405 kfree(op);
406 }
407
408 /* Return true(!0) if the kprobe is ready for optimization. */
409 static inline int kprobe_optready(struct kprobe *p)
410 {
411 struct optimized_kprobe *op;
412
413 if (kprobe_aggrprobe(p)) {
414 op = container_of(p, struct optimized_kprobe, kp);
415 return arch_prepared_optinsn(&op->optinsn);
416 }
417
418 return 0;
419 }
420
421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422 static inline int kprobe_disarmed(struct kprobe *p)
423 {
424 struct optimized_kprobe *op;
425
426 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427 if (!kprobe_aggrprobe(p))
428 return kprobe_disabled(p);
429
430 op = container_of(p, struct optimized_kprobe, kp);
431
432 return kprobe_disabled(p) && list_empty(&op->list);
433 }
434
435 /* Return true(!0) if the probe is queued on (un)optimizing lists */
436 static int kprobe_queued(struct kprobe *p)
437 {
438 struct optimized_kprobe *op;
439
440 if (kprobe_aggrprobe(p)) {
441 op = container_of(p, struct optimized_kprobe, kp);
442 if (!list_empty(&op->list))
443 return 1;
444 }
445 return 0;
446 }
447
448 /*
449 * Return an optimized kprobe whose optimizing code replaces
450 * instructions including addr (exclude breakpoint).
451 */
452 static struct kprobe *get_optimized_kprobe(unsigned long addr)
453 {
454 int i;
455 struct kprobe *p = NULL;
456 struct optimized_kprobe *op;
457
458 /* Don't check i == 0, since that is a breakpoint case. */
459 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460 p = get_kprobe((void *)(addr - i));
461
462 if (p && kprobe_optready(p)) {
463 op = container_of(p, struct optimized_kprobe, kp);
464 if (arch_within_optimized_kprobe(op, addr))
465 return p;
466 }
467
468 return NULL;
469 }
470
471 /* Optimization staging list, protected by kprobe_mutex */
472 static LIST_HEAD(optimizing_list);
473 static LIST_HEAD(unoptimizing_list);
474 static LIST_HEAD(freeing_list);
475
476 static void kprobe_optimizer(struct work_struct *work);
477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478 #define OPTIMIZE_DELAY 5
479
480 /*
481 * Optimize (replace a breakpoint with a jump) kprobes listed on
482 * optimizing_list.
483 */
484 static void do_optimize_kprobes(void)
485 {
486 /*
487 * The optimization/unoptimization refers online_cpus via
488 * stop_machine() and cpu-hotplug modifies online_cpus.
489 * And same time, text_mutex will be held in cpu-hotplug and here.
490 * This combination can cause a deadlock (cpu-hotplug try to lock
491 * text_mutex but stop_machine can not be done because online_cpus
492 * has been changed)
493 * To avoid this deadlock, caller must have locked cpu hotplug
494 * for preventing cpu-hotplug outside of text_mutex locking.
495 */
496 lockdep_assert_cpus_held();
497
498 /* Optimization never be done when disarmed */
499 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
500 list_empty(&optimizing_list))
501 return;
502
503 mutex_lock(&text_mutex);
504 arch_optimize_kprobes(&optimizing_list);
505 mutex_unlock(&text_mutex);
506 }
507
508 /*
509 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
510 * if need) kprobes listed on unoptimizing_list.
511 */
512 static void do_unoptimize_kprobes(void)
513 {
514 struct optimized_kprobe *op, *tmp;
515
516 /* See comment in do_optimize_kprobes() */
517 lockdep_assert_cpus_held();
518
519 /* Unoptimization must be done anytime */
520 if (list_empty(&unoptimizing_list))
521 return;
522
523 mutex_lock(&text_mutex);
524 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
525 /* Loop free_list for disarming */
526 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
527 /* Disarm probes if marked disabled */
528 if (kprobe_disabled(&op->kp))
529 arch_disarm_kprobe(&op->kp);
530 if (kprobe_unused(&op->kp)) {
531 /*
532 * Remove unused probes from hash list. After waiting
533 * for synchronization, these probes are reclaimed.
534 * (reclaiming is done by do_free_cleaned_kprobes.)
535 */
536 hlist_del_rcu(&op->kp.hlist);
537 } else
538 list_del_init(&op->list);
539 }
540 mutex_unlock(&text_mutex);
541 }
542
543 /* Reclaim all kprobes on the free_list */
544 static void do_free_cleaned_kprobes(void)
545 {
546 struct optimized_kprobe *op, *tmp;
547
548 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549 list_del_init(&op->list);
550 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
551 /*
552 * This must not happen, but if there is a kprobe
553 * still in use, keep it on kprobes hash list.
554 */
555 continue;
556 }
557 free_aggr_kprobe(&op->kp);
558 }
559 }
560
561 /* Start optimizer after OPTIMIZE_DELAY passed */
562 static void kick_kprobe_optimizer(void)
563 {
564 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
565 }
566
567 /* Kprobe jump optimizer */
568 static void kprobe_optimizer(struct work_struct *work)
569 {
570 mutex_lock(&kprobe_mutex);
571 cpus_read_lock();
572 /* Lock modules while optimizing kprobes */
573 mutex_lock(&module_mutex);
574
575 /*
576 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
577 * kprobes before waiting for quiesence period.
578 */
579 do_unoptimize_kprobes();
580
581 /*
582 * Step 2: Wait for quiesence period to ensure all potentially
583 * preempted tasks to have normally scheduled. Because optprobe
584 * may modify multiple instructions, there is a chance that Nth
585 * instruction is preempted. In that case, such tasks can return
586 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
587 * Note that on non-preemptive kernel, this is transparently converted
588 * to synchronoze_sched() to wait for all interrupts to have completed.
589 */
590 synchronize_rcu_tasks();
591
592 /* Step 3: Optimize kprobes after quiesence period */
593 do_optimize_kprobes();
594
595 /* Step 4: Free cleaned kprobes after quiesence period */
596 do_free_cleaned_kprobes();
597
598 mutex_unlock(&module_mutex);
599 cpus_read_unlock();
600 mutex_unlock(&kprobe_mutex);
601
602 /* Step 5: Kick optimizer again if needed */
603 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
604 kick_kprobe_optimizer();
605 }
606
607 /* Wait for completing optimization and unoptimization */
608 void wait_for_kprobe_optimizer(void)
609 {
610 mutex_lock(&kprobe_mutex);
611
612 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
613 mutex_unlock(&kprobe_mutex);
614
615 /* this will also make optimizing_work execute immmediately */
616 flush_delayed_work(&optimizing_work);
617 /* @optimizing_work might not have been queued yet, relax */
618 cpu_relax();
619
620 mutex_lock(&kprobe_mutex);
621 }
622
623 mutex_unlock(&kprobe_mutex);
624 }
625
626 /* Optimize kprobe if p is ready to be optimized */
627 static void optimize_kprobe(struct kprobe *p)
628 {
629 struct optimized_kprobe *op;
630
631 /* Check if the kprobe is disabled or not ready for optimization. */
632 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
633 (kprobe_disabled(p) || kprobes_all_disarmed))
634 return;
635
636 /* kprobes with post_handler can not be optimized */
637 if (p->post_handler)
638 return;
639
640 op = container_of(p, struct optimized_kprobe, kp);
641
642 /* Check there is no other kprobes at the optimized instructions */
643 if (arch_check_optimized_kprobe(op) < 0)
644 return;
645
646 /* Check if it is already optimized. */
647 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
648 return;
649 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
650
651 if (!list_empty(&op->list))
652 /* This is under unoptimizing. Just dequeue the probe */
653 list_del_init(&op->list);
654 else {
655 list_add(&op->list, &optimizing_list);
656 kick_kprobe_optimizer();
657 }
658 }
659
660 /* Short cut to direct unoptimizing */
661 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
662 {
663 lockdep_assert_cpus_held();
664 arch_unoptimize_kprobe(op);
665 if (kprobe_disabled(&op->kp))
666 arch_disarm_kprobe(&op->kp);
667 }
668
669 /* Unoptimize a kprobe if p is optimized */
670 static void unoptimize_kprobe(struct kprobe *p, bool force)
671 {
672 struct optimized_kprobe *op;
673
674 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
675 return; /* This is not an optprobe nor optimized */
676
677 op = container_of(p, struct optimized_kprobe, kp);
678 if (!kprobe_optimized(p)) {
679 /* Unoptimized or unoptimizing case */
680 if (force && !list_empty(&op->list)) {
681 /*
682 * Only if this is unoptimizing kprobe and forced,
683 * forcibly unoptimize it. (No need to unoptimize
684 * unoptimized kprobe again :)
685 */
686 list_del_init(&op->list);
687 force_unoptimize_kprobe(op);
688 }
689 return;
690 }
691
692 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
693 if (!list_empty(&op->list)) {
694 /* Dequeue from the optimization queue */
695 list_del_init(&op->list);
696 return;
697 }
698 /* Optimized kprobe case */
699 if (force)
700 /* Forcibly update the code: this is a special case */
701 force_unoptimize_kprobe(op);
702 else {
703 list_add(&op->list, &unoptimizing_list);
704 kick_kprobe_optimizer();
705 }
706 }
707
708 /* Cancel unoptimizing for reusing */
709 static int reuse_unused_kprobe(struct kprobe *ap)
710 {
711 struct optimized_kprobe *op;
712
713 /*
714 * Unused kprobe MUST be on the way of delayed unoptimizing (means
715 * there is still a relative jump) and disabled.
716 */
717 op = container_of(ap, struct optimized_kprobe, kp);
718 WARN_ON_ONCE(list_empty(&op->list));
719 /* Enable the probe again */
720 ap->flags &= ~KPROBE_FLAG_DISABLED;
721 /* Optimize it again (remove from op->list) */
722 if (!kprobe_optready(ap))
723 return -EINVAL;
724
725 optimize_kprobe(ap);
726 return 0;
727 }
728
729 /* Remove optimized instructions */
730 static void kill_optimized_kprobe(struct kprobe *p)
731 {
732 struct optimized_kprobe *op;
733
734 op = container_of(p, struct optimized_kprobe, kp);
735 if (!list_empty(&op->list))
736 /* Dequeue from the (un)optimization queue */
737 list_del_init(&op->list);
738 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
739
740 if (kprobe_unused(p)) {
741 /* Enqueue if it is unused */
742 list_add(&op->list, &freeing_list);
743 /*
744 * Remove unused probes from the hash list. After waiting
745 * for synchronization, this probe is reclaimed.
746 * (reclaiming is done by do_free_cleaned_kprobes().)
747 */
748 hlist_del_rcu(&op->kp.hlist);
749 }
750
751 /* Don't touch the code, because it is already freed. */
752 arch_remove_optimized_kprobe(op);
753 }
754
755 static inline
756 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
757 {
758 if (!kprobe_ftrace(p))
759 arch_prepare_optimized_kprobe(op, p);
760 }
761
762 /* Try to prepare optimized instructions */
763 static void prepare_optimized_kprobe(struct kprobe *p)
764 {
765 struct optimized_kprobe *op;
766
767 op = container_of(p, struct optimized_kprobe, kp);
768 __prepare_optimized_kprobe(op, p);
769 }
770
771 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
772 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
773 {
774 struct optimized_kprobe *op;
775
776 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
777 if (!op)
778 return NULL;
779
780 INIT_LIST_HEAD(&op->list);
781 op->kp.addr = p->addr;
782 __prepare_optimized_kprobe(op, p);
783
784 return &op->kp;
785 }
786
787 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
788
789 /*
790 * Prepare an optimized_kprobe and optimize it
791 * NOTE: p must be a normal registered kprobe
792 */
793 static void try_to_optimize_kprobe(struct kprobe *p)
794 {
795 struct kprobe *ap;
796 struct optimized_kprobe *op;
797
798 /* Impossible to optimize ftrace-based kprobe */
799 if (kprobe_ftrace(p))
800 return;
801
802 /* For preparing optimization, jump_label_text_reserved() is called */
803 cpus_read_lock();
804 jump_label_lock();
805 mutex_lock(&text_mutex);
806
807 ap = alloc_aggr_kprobe(p);
808 if (!ap)
809 goto out;
810
811 op = container_of(ap, struct optimized_kprobe, kp);
812 if (!arch_prepared_optinsn(&op->optinsn)) {
813 /* If failed to setup optimizing, fallback to kprobe */
814 arch_remove_optimized_kprobe(op);
815 kfree(op);
816 goto out;
817 }
818
819 init_aggr_kprobe(ap, p);
820 optimize_kprobe(ap); /* This just kicks optimizer thread */
821
822 out:
823 mutex_unlock(&text_mutex);
824 jump_label_unlock();
825 cpus_read_unlock();
826 }
827
828 #ifdef CONFIG_SYSCTL
829 static void optimize_all_kprobes(void)
830 {
831 struct hlist_head *head;
832 struct kprobe *p;
833 unsigned int i;
834
835 mutex_lock(&kprobe_mutex);
836 /* If optimization is already allowed, just return */
837 if (kprobes_allow_optimization)
838 goto out;
839
840 cpus_read_lock();
841 kprobes_allow_optimization = true;
842 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
843 head = &kprobe_table[i];
844 hlist_for_each_entry_rcu(p, head, hlist)
845 if (!kprobe_disabled(p))
846 optimize_kprobe(p);
847 }
848 cpus_read_unlock();
849 printk(KERN_INFO "Kprobes globally optimized\n");
850 out:
851 mutex_unlock(&kprobe_mutex);
852 }
853
854 static void unoptimize_all_kprobes(void)
855 {
856 struct hlist_head *head;
857 struct kprobe *p;
858 unsigned int i;
859
860 mutex_lock(&kprobe_mutex);
861 /* If optimization is already prohibited, just return */
862 if (!kprobes_allow_optimization) {
863 mutex_unlock(&kprobe_mutex);
864 return;
865 }
866
867 cpus_read_lock();
868 kprobes_allow_optimization = false;
869 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
870 head = &kprobe_table[i];
871 hlist_for_each_entry_rcu(p, head, hlist) {
872 if (!kprobe_disabled(p))
873 unoptimize_kprobe(p, false);
874 }
875 }
876 cpus_read_unlock();
877 mutex_unlock(&kprobe_mutex);
878
879 /* Wait for unoptimizing completion */
880 wait_for_kprobe_optimizer();
881 printk(KERN_INFO "Kprobes globally unoptimized\n");
882 }
883
884 static DEFINE_MUTEX(kprobe_sysctl_mutex);
885 int sysctl_kprobes_optimization;
886 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
887 void __user *buffer, size_t *length,
888 loff_t *ppos)
889 {
890 int ret;
891
892 mutex_lock(&kprobe_sysctl_mutex);
893 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
894 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
895
896 if (sysctl_kprobes_optimization)
897 optimize_all_kprobes();
898 else
899 unoptimize_all_kprobes();
900 mutex_unlock(&kprobe_sysctl_mutex);
901
902 return ret;
903 }
904 #endif /* CONFIG_SYSCTL */
905
906 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
907 static void __arm_kprobe(struct kprobe *p)
908 {
909 struct kprobe *_p;
910
911 /* Check collision with other optimized kprobes */
912 _p = get_optimized_kprobe((unsigned long)p->addr);
913 if (unlikely(_p))
914 /* Fallback to unoptimized kprobe */
915 unoptimize_kprobe(_p, true);
916
917 arch_arm_kprobe(p);
918 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
919 }
920
921 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
922 static void __disarm_kprobe(struct kprobe *p, bool reopt)
923 {
924 struct kprobe *_p;
925
926 /* Try to unoptimize */
927 unoptimize_kprobe(p, kprobes_all_disarmed);
928
929 if (!kprobe_queued(p)) {
930 arch_disarm_kprobe(p);
931 /* If another kprobe was blocked, optimize it. */
932 _p = get_optimized_kprobe((unsigned long)p->addr);
933 if (unlikely(_p) && reopt)
934 optimize_kprobe(_p);
935 }
936 /* TODO: reoptimize others after unoptimized this probe */
937 }
938
939 #else /* !CONFIG_OPTPROBES */
940
941 #define optimize_kprobe(p) do {} while (0)
942 #define unoptimize_kprobe(p, f) do {} while (0)
943 #define kill_optimized_kprobe(p) do {} while (0)
944 #define prepare_optimized_kprobe(p) do {} while (0)
945 #define try_to_optimize_kprobe(p) do {} while (0)
946 #define __arm_kprobe(p) arch_arm_kprobe(p)
947 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
948 #define kprobe_disarmed(p) kprobe_disabled(p)
949 #define wait_for_kprobe_optimizer() do {} while (0)
950
951 static int reuse_unused_kprobe(struct kprobe *ap)
952 {
953 /*
954 * If the optimized kprobe is NOT supported, the aggr kprobe is
955 * released at the same time that the last aggregated kprobe is
956 * unregistered.
957 * Thus there should be no chance to reuse unused kprobe.
958 */
959 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
960 return -EINVAL;
961 }
962
963 static void free_aggr_kprobe(struct kprobe *p)
964 {
965 arch_remove_kprobe(p);
966 kfree(p);
967 }
968
969 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
970 {
971 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
972 }
973 #endif /* CONFIG_OPTPROBES */
974
975 #ifdef CONFIG_KPROBES_ON_FTRACE
976 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
977 .func = kprobe_ftrace_handler,
978 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
979 };
980 static int kprobe_ftrace_enabled;
981
982 /* Must ensure p->addr is really on ftrace */
983 static int prepare_kprobe(struct kprobe *p)
984 {
985 if (!kprobe_ftrace(p))
986 return arch_prepare_kprobe(p);
987
988 return arch_prepare_kprobe_ftrace(p);
989 }
990
991 /* Caller must lock kprobe_mutex */
992 static int arm_kprobe_ftrace(struct kprobe *p)
993 {
994 int ret = 0;
995
996 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
997 (unsigned long)p->addr, 0, 0);
998 if (ret) {
999 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1000 p->addr, ret);
1001 return ret;
1002 }
1003
1004 if (kprobe_ftrace_enabled == 0) {
1005 ret = register_ftrace_function(&kprobe_ftrace_ops);
1006 if (ret) {
1007 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1008 goto err_ftrace;
1009 }
1010 }
1011
1012 kprobe_ftrace_enabled++;
1013 return ret;
1014
1015 err_ftrace:
1016 /*
1017 * Note: Since kprobe_ftrace_ops has IPMODIFY set, and ftrace requires a
1018 * non-empty filter_hash for IPMODIFY ops, we're safe from an accidental
1019 * empty filter_hash which would undesirably trace all functions.
1020 */
1021 ftrace_set_filter_ip(&kprobe_ftrace_ops, (unsigned long)p->addr, 1, 0);
1022 return ret;
1023 }
1024
1025 /* Caller must lock kprobe_mutex */
1026 static int disarm_kprobe_ftrace(struct kprobe *p)
1027 {
1028 int ret = 0;
1029
1030 if (kprobe_ftrace_enabled == 1) {
1031 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1032 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1033 return ret;
1034 }
1035
1036 kprobe_ftrace_enabled--;
1037
1038 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1039 (unsigned long)p->addr, 1, 0);
1040 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1041 p->addr, ret);
1042 return ret;
1043 }
1044 #else /* !CONFIG_KPROBES_ON_FTRACE */
1045 #define prepare_kprobe(p) arch_prepare_kprobe(p)
1046 #define arm_kprobe_ftrace(p) (-ENODEV)
1047 #define disarm_kprobe_ftrace(p) (-ENODEV)
1048 #endif
1049
1050 /* Arm a kprobe with text_mutex */
1051 static int arm_kprobe(struct kprobe *kp)
1052 {
1053 if (unlikely(kprobe_ftrace(kp)))
1054 return arm_kprobe_ftrace(kp);
1055
1056 cpus_read_lock();
1057 mutex_lock(&text_mutex);
1058 __arm_kprobe(kp);
1059 mutex_unlock(&text_mutex);
1060 cpus_read_unlock();
1061
1062 return 0;
1063 }
1064
1065 /* Disarm a kprobe with text_mutex */
1066 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1067 {
1068 if (unlikely(kprobe_ftrace(kp)))
1069 return disarm_kprobe_ftrace(kp);
1070
1071 cpus_read_lock();
1072 mutex_lock(&text_mutex);
1073 __disarm_kprobe(kp, reopt);
1074 mutex_unlock(&text_mutex);
1075 cpus_read_unlock();
1076
1077 return 0;
1078 }
1079
1080 /*
1081 * Aggregate handlers for multiple kprobes support - these handlers
1082 * take care of invoking the individual kprobe handlers on p->list
1083 */
1084 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1085 {
1086 struct kprobe *kp;
1087
1088 list_for_each_entry_rcu(kp, &p->list, list) {
1089 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1090 set_kprobe_instance(kp);
1091 if (kp->pre_handler(kp, regs))
1092 return 1;
1093 }
1094 reset_kprobe_instance();
1095 }
1096 return 0;
1097 }
1098 NOKPROBE_SYMBOL(aggr_pre_handler);
1099
1100 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1101 unsigned long flags)
1102 {
1103 struct kprobe *kp;
1104
1105 list_for_each_entry_rcu(kp, &p->list, list) {
1106 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1107 set_kprobe_instance(kp);
1108 kp->post_handler(kp, regs, flags);
1109 reset_kprobe_instance();
1110 }
1111 }
1112 }
1113 NOKPROBE_SYMBOL(aggr_post_handler);
1114
1115 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1116 int trapnr)
1117 {
1118 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1119
1120 /*
1121 * if we faulted "during" the execution of a user specified
1122 * probe handler, invoke just that probe's fault handler
1123 */
1124 if (cur && cur->fault_handler) {
1125 if (cur->fault_handler(cur, regs, trapnr))
1126 return 1;
1127 }
1128 return 0;
1129 }
1130 NOKPROBE_SYMBOL(aggr_fault_handler);
1131
1132 /* Walks the list and increments nmissed count for multiprobe case */
1133 void kprobes_inc_nmissed_count(struct kprobe *p)
1134 {
1135 struct kprobe *kp;
1136 if (!kprobe_aggrprobe(p)) {
1137 p->nmissed++;
1138 } else {
1139 list_for_each_entry_rcu(kp, &p->list, list)
1140 kp->nmissed++;
1141 }
1142 return;
1143 }
1144 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1145
1146 void recycle_rp_inst(struct kretprobe_instance *ri,
1147 struct hlist_head *head)
1148 {
1149 struct kretprobe *rp = ri->rp;
1150
1151 /* remove rp inst off the rprobe_inst_table */
1152 hlist_del(&ri->hlist);
1153 INIT_HLIST_NODE(&ri->hlist);
1154 if (likely(rp)) {
1155 raw_spin_lock(&rp->lock);
1156 hlist_add_head(&ri->hlist, &rp->free_instances);
1157 raw_spin_unlock(&rp->lock);
1158 } else
1159 /* Unregistering */
1160 hlist_add_head(&ri->hlist, head);
1161 }
1162 NOKPROBE_SYMBOL(recycle_rp_inst);
1163
1164 void kretprobe_hash_lock(struct task_struct *tsk,
1165 struct hlist_head **head, unsigned long *flags)
1166 __acquires(hlist_lock)
1167 {
1168 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1169 raw_spinlock_t *hlist_lock;
1170
1171 *head = &kretprobe_inst_table[hash];
1172 hlist_lock = kretprobe_table_lock_ptr(hash);
1173 raw_spin_lock_irqsave(hlist_lock, *flags);
1174 }
1175 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1176
1177 static void kretprobe_table_lock(unsigned long hash,
1178 unsigned long *flags)
1179 __acquires(hlist_lock)
1180 {
1181 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1182 raw_spin_lock_irqsave(hlist_lock, *flags);
1183 }
1184 NOKPROBE_SYMBOL(kretprobe_table_lock);
1185
1186 void kretprobe_hash_unlock(struct task_struct *tsk,
1187 unsigned long *flags)
1188 __releases(hlist_lock)
1189 {
1190 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1191 raw_spinlock_t *hlist_lock;
1192
1193 hlist_lock = kretprobe_table_lock_ptr(hash);
1194 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1195 }
1196 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1197
1198 static void kretprobe_table_unlock(unsigned long hash,
1199 unsigned long *flags)
1200 __releases(hlist_lock)
1201 {
1202 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1203 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1204 }
1205 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1206
1207 /*
1208 * This function is called from finish_task_switch when task tk becomes dead,
1209 * so that we can recycle any function-return probe instances associated
1210 * with this task. These left over instances represent probed functions
1211 * that have been called but will never return.
1212 */
1213 void kprobe_flush_task(struct task_struct *tk)
1214 {
1215 struct kretprobe_instance *ri;
1216 struct hlist_head *head, empty_rp;
1217 struct hlist_node *tmp;
1218 unsigned long hash, flags = 0;
1219
1220 if (unlikely(!kprobes_initialized))
1221 /* Early boot. kretprobe_table_locks not yet initialized. */
1222 return;
1223
1224 INIT_HLIST_HEAD(&empty_rp);
1225 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1226 head = &kretprobe_inst_table[hash];
1227 kretprobe_table_lock(hash, &flags);
1228 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1229 if (ri->task == tk)
1230 recycle_rp_inst(ri, &empty_rp);
1231 }
1232 kretprobe_table_unlock(hash, &flags);
1233 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1234 hlist_del(&ri->hlist);
1235 kfree(ri);
1236 }
1237 }
1238 NOKPROBE_SYMBOL(kprobe_flush_task);
1239
1240 static inline void free_rp_inst(struct kretprobe *rp)
1241 {
1242 struct kretprobe_instance *ri;
1243 struct hlist_node *next;
1244
1245 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1246 hlist_del(&ri->hlist);
1247 kfree(ri);
1248 }
1249 }
1250
1251 static void cleanup_rp_inst(struct kretprobe *rp)
1252 {
1253 unsigned long flags, hash;
1254 struct kretprobe_instance *ri;
1255 struct hlist_node *next;
1256 struct hlist_head *head;
1257
1258 /* No race here */
1259 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1260 kretprobe_table_lock(hash, &flags);
1261 head = &kretprobe_inst_table[hash];
1262 hlist_for_each_entry_safe(ri, next, head, hlist) {
1263 if (ri->rp == rp)
1264 ri->rp = NULL;
1265 }
1266 kretprobe_table_unlock(hash, &flags);
1267 }
1268 free_rp_inst(rp);
1269 }
1270 NOKPROBE_SYMBOL(cleanup_rp_inst);
1271
1272 /* Add the new probe to ap->list */
1273 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1274 {
1275 if (p->post_handler)
1276 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1277
1278 list_add_rcu(&p->list, &ap->list);
1279 if (p->post_handler && !ap->post_handler)
1280 ap->post_handler = aggr_post_handler;
1281
1282 return 0;
1283 }
1284
1285 /*
1286 * Fill in the required fields of the "manager kprobe". Replace the
1287 * earlier kprobe in the hlist with the manager kprobe
1288 */
1289 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1290 {
1291 /* Copy p's insn slot to ap */
1292 copy_kprobe(p, ap);
1293 flush_insn_slot(ap);
1294 ap->addr = p->addr;
1295 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1296 ap->pre_handler = aggr_pre_handler;
1297 ap->fault_handler = aggr_fault_handler;
1298 /* We don't care the kprobe which has gone. */
1299 if (p->post_handler && !kprobe_gone(p))
1300 ap->post_handler = aggr_post_handler;
1301
1302 INIT_LIST_HEAD(&ap->list);
1303 INIT_HLIST_NODE(&ap->hlist);
1304
1305 list_add_rcu(&p->list, &ap->list);
1306 hlist_replace_rcu(&p->hlist, &ap->hlist);
1307 }
1308
1309 /*
1310 * This is the second or subsequent kprobe at the address - handle
1311 * the intricacies
1312 */
1313 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1314 {
1315 int ret = 0;
1316 struct kprobe *ap = orig_p;
1317
1318 cpus_read_lock();
1319
1320 /* For preparing optimization, jump_label_text_reserved() is called */
1321 jump_label_lock();
1322 mutex_lock(&text_mutex);
1323
1324 if (!kprobe_aggrprobe(orig_p)) {
1325 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1326 ap = alloc_aggr_kprobe(orig_p);
1327 if (!ap) {
1328 ret = -ENOMEM;
1329 goto out;
1330 }
1331 init_aggr_kprobe(ap, orig_p);
1332 } else if (kprobe_unused(ap)) {
1333 /* This probe is going to die. Rescue it */
1334 ret = reuse_unused_kprobe(ap);
1335 if (ret)
1336 goto out;
1337 }
1338
1339 if (kprobe_gone(ap)) {
1340 /*
1341 * Attempting to insert new probe at the same location that
1342 * had a probe in the module vaddr area which already
1343 * freed. So, the instruction slot has already been
1344 * released. We need a new slot for the new probe.
1345 */
1346 ret = arch_prepare_kprobe(ap);
1347 if (ret)
1348 /*
1349 * Even if fail to allocate new slot, don't need to
1350 * free aggr_probe. It will be used next time, or
1351 * freed by unregister_kprobe.
1352 */
1353 goto out;
1354
1355 /* Prepare optimized instructions if possible. */
1356 prepare_optimized_kprobe(ap);
1357
1358 /*
1359 * Clear gone flag to prevent allocating new slot again, and
1360 * set disabled flag because it is not armed yet.
1361 */
1362 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1363 | KPROBE_FLAG_DISABLED;
1364 }
1365
1366 /* Copy ap's insn slot to p */
1367 copy_kprobe(ap, p);
1368 ret = add_new_kprobe(ap, p);
1369
1370 out:
1371 mutex_unlock(&text_mutex);
1372 jump_label_unlock();
1373 cpus_read_unlock();
1374
1375 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1376 ap->flags &= ~KPROBE_FLAG_DISABLED;
1377 if (!kprobes_all_disarmed) {
1378 /* Arm the breakpoint again. */
1379 ret = arm_kprobe(ap);
1380 if (ret) {
1381 ap->flags |= KPROBE_FLAG_DISABLED;
1382 list_del_rcu(&p->list);
1383 synchronize_rcu();
1384 }
1385 }
1386 }
1387 return ret;
1388 }
1389
1390 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1391 {
1392 /* The __kprobes marked functions and entry code must not be probed */
1393 return addr >= (unsigned long)__kprobes_text_start &&
1394 addr < (unsigned long)__kprobes_text_end;
1395 }
1396
1397 static bool __within_kprobe_blacklist(unsigned long addr)
1398 {
1399 struct kprobe_blacklist_entry *ent;
1400
1401 if (arch_within_kprobe_blacklist(addr))
1402 return true;
1403 /*
1404 * If there exists a kprobe_blacklist, verify and
1405 * fail any probe registration in the prohibited area
1406 */
1407 list_for_each_entry(ent, &kprobe_blacklist, list) {
1408 if (addr >= ent->start_addr && addr < ent->end_addr)
1409 return true;
1410 }
1411 return false;
1412 }
1413
1414 bool within_kprobe_blacklist(unsigned long addr)
1415 {
1416 char symname[KSYM_NAME_LEN], *p;
1417
1418 if (__within_kprobe_blacklist(addr))
1419 return true;
1420
1421 /* Check if the address is on a suffixed-symbol */
1422 if (!lookup_symbol_name(addr, symname)) {
1423 p = strchr(symname, '.');
1424 if (!p)
1425 return false;
1426 *p = '\0';
1427 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1428 if (addr)
1429 return __within_kprobe_blacklist(addr);
1430 }
1431 return false;
1432 }
1433
1434 /*
1435 * If we have a symbol_name argument, look it up and add the offset field
1436 * to it. This way, we can specify a relative address to a symbol.
1437 * This returns encoded errors if it fails to look up symbol or invalid
1438 * combination of parameters.
1439 */
1440 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1441 const char *symbol_name, unsigned int offset)
1442 {
1443 if ((symbol_name && addr) || (!symbol_name && !addr))
1444 goto invalid;
1445
1446 if (symbol_name) {
1447 addr = kprobe_lookup_name(symbol_name, offset);
1448 if (!addr)
1449 return ERR_PTR(-ENOENT);
1450 }
1451
1452 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1453 if (addr)
1454 return addr;
1455
1456 invalid:
1457 return ERR_PTR(-EINVAL);
1458 }
1459
1460 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1461 {
1462 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1463 }
1464
1465 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1466 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1467 {
1468 struct kprobe *ap, *list_p;
1469
1470 ap = get_kprobe(p->addr);
1471 if (unlikely(!ap))
1472 return NULL;
1473
1474 if (p != ap) {
1475 list_for_each_entry_rcu(list_p, &ap->list, list)
1476 if (list_p == p)
1477 /* kprobe p is a valid probe */
1478 goto valid;
1479 return NULL;
1480 }
1481 valid:
1482 return ap;
1483 }
1484
1485 /* Return error if the kprobe is being re-registered */
1486 static inline int check_kprobe_rereg(struct kprobe *p)
1487 {
1488 int ret = 0;
1489
1490 mutex_lock(&kprobe_mutex);
1491 if (__get_valid_kprobe(p))
1492 ret = -EINVAL;
1493 mutex_unlock(&kprobe_mutex);
1494
1495 return ret;
1496 }
1497
1498 int __weak arch_check_ftrace_location(struct kprobe *p)
1499 {
1500 unsigned long ftrace_addr;
1501
1502 ftrace_addr = ftrace_location((unsigned long)p->addr);
1503 if (ftrace_addr) {
1504 #ifdef CONFIG_KPROBES_ON_FTRACE
1505 /* Given address is not on the instruction boundary */
1506 if ((unsigned long)p->addr != ftrace_addr)
1507 return -EILSEQ;
1508 p->flags |= KPROBE_FLAG_FTRACE;
1509 #else /* !CONFIG_KPROBES_ON_FTRACE */
1510 return -EINVAL;
1511 #endif
1512 }
1513 return 0;
1514 }
1515
1516 static int check_kprobe_address_safe(struct kprobe *p,
1517 struct module **probed_mod)
1518 {
1519 int ret;
1520
1521 ret = arch_check_ftrace_location(p);
1522 if (ret)
1523 return ret;
1524 jump_label_lock();
1525 preempt_disable();
1526
1527 /* Ensure it is not in reserved area nor out of text */
1528 if (!kernel_text_address((unsigned long) p->addr) ||
1529 within_kprobe_blacklist((unsigned long) p->addr) ||
1530 jump_label_text_reserved(p->addr, p->addr)) {
1531 ret = -EINVAL;
1532 goto out;
1533 }
1534
1535 /* Check if are we probing a module */
1536 *probed_mod = __module_text_address((unsigned long) p->addr);
1537 if (*probed_mod) {
1538 /*
1539 * We must hold a refcount of the probed module while updating
1540 * its code to prohibit unexpected unloading.
1541 */
1542 if (unlikely(!try_module_get(*probed_mod))) {
1543 ret = -ENOENT;
1544 goto out;
1545 }
1546
1547 /*
1548 * If the module freed .init.text, we couldn't insert
1549 * kprobes in there.
1550 */
1551 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1552 (*probed_mod)->state != MODULE_STATE_COMING) {
1553 module_put(*probed_mod);
1554 *probed_mod = NULL;
1555 ret = -ENOENT;
1556 }
1557 }
1558 out:
1559 preempt_enable();
1560 jump_label_unlock();
1561
1562 return ret;
1563 }
1564
1565 int register_kprobe(struct kprobe *p)
1566 {
1567 int ret;
1568 struct kprobe *old_p;
1569 struct module *probed_mod;
1570 kprobe_opcode_t *addr;
1571
1572 /* Adjust probe address from symbol */
1573 addr = kprobe_addr(p);
1574 if (IS_ERR(addr))
1575 return PTR_ERR(addr);
1576 p->addr = addr;
1577
1578 ret = check_kprobe_rereg(p);
1579 if (ret)
1580 return ret;
1581
1582 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1583 p->flags &= KPROBE_FLAG_DISABLED;
1584 p->nmissed = 0;
1585 INIT_LIST_HEAD(&p->list);
1586
1587 ret = check_kprobe_address_safe(p, &probed_mod);
1588 if (ret)
1589 return ret;
1590
1591 mutex_lock(&kprobe_mutex);
1592
1593 old_p = get_kprobe(p->addr);
1594 if (old_p) {
1595 /* Since this may unoptimize old_p, locking text_mutex. */
1596 ret = register_aggr_kprobe(old_p, p);
1597 goto out;
1598 }
1599
1600 cpus_read_lock();
1601 /* Prevent text modification */
1602 mutex_lock(&text_mutex);
1603 ret = prepare_kprobe(p);
1604 mutex_unlock(&text_mutex);
1605 cpus_read_unlock();
1606 if (ret)
1607 goto out;
1608
1609 INIT_HLIST_NODE(&p->hlist);
1610 hlist_add_head_rcu(&p->hlist,
1611 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1612
1613 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1614 ret = arm_kprobe(p);
1615 if (ret) {
1616 hlist_del_rcu(&p->hlist);
1617 synchronize_rcu();
1618 goto out;
1619 }
1620 }
1621
1622 /* Try to optimize kprobe */
1623 try_to_optimize_kprobe(p);
1624 out:
1625 mutex_unlock(&kprobe_mutex);
1626
1627 if (probed_mod)
1628 module_put(probed_mod);
1629
1630 return ret;
1631 }
1632 EXPORT_SYMBOL_GPL(register_kprobe);
1633
1634 /* Check if all probes on the aggrprobe are disabled */
1635 static int aggr_kprobe_disabled(struct kprobe *ap)
1636 {
1637 struct kprobe *kp;
1638
1639 list_for_each_entry_rcu(kp, &ap->list, list)
1640 if (!kprobe_disabled(kp))
1641 /*
1642 * There is an active probe on the list.
1643 * We can't disable this ap.
1644 */
1645 return 0;
1646
1647 return 1;
1648 }
1649
1650 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1651 static struct kprobe *__disable_kprobe(struct kprobe *p)
1652 {
1653 struct kprobe *orig_p;
1654 int ret;
1655
1656 /* Get an original kprobe for return */
1657 orig_p = __get_valid_kprobe(p);
1658 if (unlikely(orig_p == NULL))
1659 return ERR_PTR(-EINVAL);
1660
1661 if (!kprobe_disabled(p)) {
1662 /* Disable probe if it is a child probe */
1663 if (p != orig_p)
1664 p->flags |= KPROBE_FLAG_DISABLED;
1665
1666 /* Try to disarm and disable this/parent probe */
1667 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1668 /*
1669 * If kprobes_all_disarmed is set, orig_p
1670 * should have already been disarmed, so
1671 * skip unneed disarming process.
1672 */
1673 if (!kprobes_all_disarmed) {
1674 ret = disarm_kprobe(orig_p, true);
1675 if (ret) {
1676 p->flags &= ~KPROBE_FLAG_DISABLED;
1677 return ERR_PTR(ret);
1678 }
1679 }
1680 orig_p->flags |= KPROBE_FLAG_DISABLED;
1681 }
1682 }
1683
1684 return orig_p;
1685 }
1686
1687 /*
1688 * Unregister a kprobe without a scheduler synchronization.
1689 */
1690 static int __unregister_kprobe_top(struct kprobe *p)
1691 {
1692 struct kprobe *ap, *list_p;
1693
1694 /* Disable kprobe. This will disarm it if needed. */
1695 ap = __disable_kprobe(p);
1696 if (IS_ERR(ap))
1697 return PTR_ERR(ap);
1698
1699 if (ap == p)
1700 /*
1701 * This probe is an independent(and non-optimized) kprobe
1702 * (not an aggrprobe). Remove from the hash list.
1703 */
1704 goto disarmed;
1705
1706 /* Following process expects this probe is an aggrprobe */
1707 WARN_ON(!kprobe_aggrprobe(ap));
1708
1709 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1710 /*
1711 * !disarmed could be happen if the probe is under delayed
1712 * unoptimizing.
1713 */
1714 goto disarmed;
1715 else {
1716 /* If disabling probe has special handlers, update aggrprobe */
1717 if (p->post_handler && !kprobe_gone(p)) {
1718 list_for_each_entry_rcu(list_p, &ap->list, list) {
1719 if ((list_p != p) && (list_p->post_handler))
1720 goto noclean;
1721 }
1722 ap->post_handler = NULL;
1723 }
1724 noclean:
1725 /*
1726 * Remove from the aggrprobe: this path will do nothing in
1727 * __unregister_kprobe_bottom().
1728 */
1729 list_del_rcu(&p->list);
1730 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1731 /*
1732 * Try to optimize this probe again, because post
1733 * handler may have been changed.
1734 */
1735 optimize_kprobe(ap);
1736 }
1737 return 0;
1738
1739 disarmed:
1740 hlist_del_rcu(&ap->hlist);
1741 return 0;
1742 }
1743
1744 static void __unregister_kprobe_bottom(struct kprobe *p)
1745 {
1746 struct kprobe *ap;
1747
1748 if (list_empty(&p->list))
1749 /* This is an independent kprobe */
1750 arch_remove_kprobe(p);
1751 else if (list_is_singular(&p->list)) {
1752 /* This is the last child of an aggrprobe */
1753 ap = list_entry(p->list.next, struct kprobe, list);
1754 list_del(&p->list);
1755 free_aggr_kprobe(ap);
1756 }
1757 /* Otherwise, do nothing. */
1758 }
1759
1760 int register_kprobes(struct kprobe **kps, int num)
1761 {
1762 int i, ret = 0;
1763
1764 if (num <= 0)
1765 return -EINVAL;
1766 for (i = 0; i < num; i++) {
1767 ret = register_kprobe(kps[i]);
1768 if (ret < 0) {
1769 if (i > 0)
1770 unregister_kprobes(kps, i);
1771 break;
1772 }
1773 }
1774 return ret;
1775 }
1776 EXPORT_SYMBOL_GPL(register_kprobes);
1777
1778 void unregister_kprobe(struct kprobe *p)
1779 {
1780 unregister_kprobes(&p, 1);
1781 }
1782 EXPORT_SYMBOL_GPL(unregister_kprobe);
1783
1784 void unregister_kprobes(struct kprobe **kps, int num)
1785 {
1786 int i;
1787
1788 if (num <= 0)
1789 return;
1790 mutex_lock(&kprobe_mutex);
1791 for (i = 0; i < num; i++)
1792 if (__unregister_kprobe_top(kps[i]) < 0)
1793 kps[i]->addr = NULL;
1794 mutex_unlock(&kprobe_mutex);
1795
1796 synchronize_rcu();
1797 for (i = 0; i < num; i++)
1798 if (kps[i]->addr)
1799 __unregister_kprobe_bottom(kps[i]);
1800 }
1801 EXPORT_SYMBOL_GPL(unregister_kprobes);
1802
1803 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1804 unsigned long val, void *data)
1805 {
1806 return NOTIFY_DONE;
1807 }
1808 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1809
1810 static struct notifier_block kprobe_exceptions_nb = {
1811 .notifier_call = kprobe_exceptions_notify,
1812 .priority = 0x7fffffff /* we need to be notified first */
1813 };
1814
1815 unsigned long __weak arch_deref_entry_point(void *entry)
1816 {
1817 return (unsigned long)entry;
1818 }
1819
1820 #ifdef CONFIG_KRETPROBES
1821 /*
1822 * This kprobe pre_handler is registered with every kretprobe. When probe
1823 * hits it will set up the return probe.
1824 */
1825 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1826 {
1827 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1828 unsigned long hash, flags = 0;
1829 struct kretprobe_instance *ri;
1830
1831 /*
1832 * To avoid deadlocks, prohibit return probing in NMI contexts,
1833 * just skip the probe and increase the (inexact) 'nmissed'
1834 * statistical counter, so that the user is informed that
1835 * something happened:
1836 */
1837 if (unlikely(in_nmi())) {
1838 rp->nmissed++;
1839 return 0;
1840 }
1841
1842 /* TODO: consider to only swap the RA after the last pre_handler fired */
1843 hash = hash_ptr(current, KPROBE_HASH_BITS);
1844 raw_spin_lock_irqsave(&rp->lock, flags);
1845 if (!hlist_empty(&rp->free_instances)) {
1846 ri = hlist_entry(rp->free_instances.first,
1847 struct kretprobe_instance, hlist);
1848 hlist_del(&ri->hlist);
1849 raw_spin_unlock_irqrestore(&rp->lock, flags);
1850
1851 ri->rp = rp;
1852 ri->task = current;
1853
1854 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1855 raw_spin_lock_irqsave(&rp->lock, flags);
1856 hlist_add_head(&ri->hlist, &rp->free_instances);
1857 raw_spin_unlock_irqrestore(&rp->lock, flags);
1858 return 0;
1859 }
1860
1861 arch_prepare_kretprobe(ri, regs);
1862
1863 /* XXX(hch): why is there no hlist_move_head? */
1864 INIT_HLIST_NODE(&ri->hlist);
1865 kretprobe_table_lock(hash, &flags);
1866 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1867 kretprobe_table_unlock(hash, &flags);
1868 } else {
1869 rp->nmissed++;
1870 raw_spin_unlock_irqrestore(&rp->lock, flags);
1871 }
1872 return 0;
1873 }
1874 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1875
1876 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1877 {
1878 return !offset;
1879 }
1880
1881 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1882 {
1883 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1884
1885 if (IS_ERR(kp_addr))
1886 return false;
1887
1888 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1889 !arch_kprobe_on_func_entry(offset))
1890 return false;
1891
1892 return true;
1893 }
1894
1895 int register_kretprobe(struct kretprobe *rp)
1896 {
1897 int ret = 0;
1898 struct kretprobe_instance *inst;
1899 int i;
1900 void *addr;
1901
1902 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1903 return -EINVAL;
1904
1905 if (kretprobe_blacklist_size) {
1906 addr = kprobe_addr(&rp->kp);
1907 if (IS_ERR(addr))
1908 return PTR_ERR(addr);
1909
1910 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1911 if (kretprobe_blacklist[i].addr == addr)
1912 return -EINVAL;
1913 }
1914 }
1915
1916 rp->kp.pre_handler = pre_handler_kretprobe;
1917 rp->kp.post_handler = NULL;
1918 rp->kp.fault_handler = NULL;
1919
1920 /* Pre-allocate memory for max kretprobe instances */
1921 if (rp->maxactive <= 0) {
1922 #ifdef CONFIG_PREEMPT
1923 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1924 #else
1925 rp->maxactive = num_possible_cpus();
1926 #endif
1927 }
1928 raw_spin_lock_init(&rp->lock);
1929 INIT_HLIST_HEAD(&rp->free_instances);
1930 for (i = 0; i < rp->maxactive; i++) {
1931 inst = kmalloc(sizeof(struct kretprobe_instance) +
1932 rp->data_size, GFP_KERNEL);
1933 if (inst == NULL) {
1934 free_rp_inst(rp);
1935 return -ENOMEM;
1936 }
1937 INIT_HLIST_NODE(&inst->hlist);
1938 hlist_add_head(&inst->hlist, &rp->free_instances);
1939 }
1940
1941 rp->nmissed = 0;
1942 /* Establish function entry probe point */
1943 ret = register_kprobe(&rp->kp);
1944 if (ret != 0)
1945 free_rp_inst(rp);
1946 return ret;
1947 }
1948 EXPORT_SYMBOL_GPL(register_kretprobe);
1949
1950 int register_kretprobes(struct kretprobe **rps, int num)
1951 {
1952 int ret = 0, i;
1953
1954 if (num <= 0)
1955 return -EINVAL;
1956 for (i = 0; i < num; i++) {
1957 ret = register_kretprobe(rps[i]);
1958 if (ret < 0) {
1959 if (i > 0)
1960 unregister_kretprobes(rps, i);
1961 break;
1962 }
1963 }
1964 return ret;
1965 }
1966 EXPORT_SYMBOL_GPL(register_kretprobes);
1967
1968 void unregister_kretprobe(struct kretprobe *rp)
1969 {
1970 unregister_kretprobes(&rp, 1);
1971 }
1972 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1973
1974 void unregister_kretprobes(struct kretprobe **rps, int num)
1975 {
1976 int i;
1977
1978 if (num <= 0)
1979 return;
1980 mutex_lock(&kprobe_mutex);
1981 for (i = 0; i < num; i++)
1982 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1983 rps[i]->kp.addr = NULL;
1984 mutex_unlock(&kprobe_mutex);
1985
1986 synchronize_rcu();
1987 for (i = 0; i < num; i++) {
1988 if (rps[i]->kp.addr) {
1989 __unregister_kprobe_bottom(&rps[i]->kp);
1990 cleanup_rp_inst(rps[i]);
1991 }
1992 }
1993 }
1994 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1995
1996 #else /* CONFIG_KRETPROBES */
1997 int register_kretprobe(struct kretprobe *rp)
1998 {
1999 return -ENOSYS;
2000 }
2001 EXPORT_SYMBOL_GPL(register_kretprobe);
2002
2003 int register_kretprobes(struct kretprobe **rps, int num)
2004 {
2005 return -ENOSYS;
2006 }
2007 EXPORT_SYMBOL_GPL(register_kretprobes);
2008
2009 void unregister_kretprobe(struct kretprobe *rp)
2010 {
2011 }
2012 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2013
2014 void unregister_kretprobes(struct kretprobe **rps, int num)
2015 {
2016 }
2017 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2018
2019 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2020 {
2021 return 0;
2022 }
2023 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2024
2025 #endif /* CONFIG_KRETPROBES */
2026
2027 /* Set the kprobe gone and remove its instruction buffer. */
2028 static void kill_kprobe(struct kprobe *p)
2029 {
2030 struct kprobe *kp;
2031
2032 p->flags |= KPROBE_FLAG_GONE;
2033 if (kprobe_aggrprobe(p)) {
2034 /*
2035 * If this is an aggr_kprobe, we have to list all the
2036 * chained probes and mark them GONE.
2037 */
2038 list_for_each_entry_rcu(kp, &p->list, list)
2039 kp->flags |= KPROBE_FLAG_GONE;
2040 p->post_handler = NULL;
2041 kill_optimized_kprobe(p);
2042 }
2043 /*
2044 * Here, we can remove insn_slot safely, because no thread calls
2045 * the original probed function (which will be freed soon) any more.
2046 */
2047 arch_remove_kprobe(p);
2048 }
2049
2050 /* Disable one kprobe */
2051 int disable_kprobe(struct kprobe *kp)
2052 {
2053 int ret = 0;
2054 struct kprobe *p;
2055
2056 mutex_lock(&kprobe_mutex);
2057
2058 /* Disable this kprobe */
2059 p = __disable_kprobe(kp);
2060 if (IS_ERR(p))
2061 ret = PTR_ERR(p);
2062
2063 mutex_unlock(&kprobe_mutex);
2064 return ret;
2065 }
2066 EXPORT_SYMBOL_GPL(disable_kprobe);
2067
2068 /* Enable one kprobe */
2069 int enable_kprobe(struct kprobe *kp)
2070 {
2071 int ret = 0;
2072 struct kprobe *p;
2073
2074 mutex_lock(&kprobe_mutex);
2075
2076 /* Check whether specified probe is valid. */
2077 p = __get_valid_kprobe(kp);
2078 if (unlikely(p == NULL)) {
2079 ret = -EINVAL;
2080 goto out;
2081 }
2082
2083 if (kprobe_gone(kp)) {
2084 /* This kprobe has gone, we couldn't enable it. */
2085 ret = -EINVAL;
2086 goto out;
2087 }
2088
2089 if (p != kp)
2090 kp->flags &= ~KPROBE_FLAG_DISABLED;
2091
2092 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2093 p->flags &= ~KPROBE_FLAG_DISABLED;
2094 ret = arm_kprobe(p);
2095 if (ret)
2096 p->flags |= KPROBE_FLAG_DISABLED;
2097 }
2098 out:
2099 mutex_unlock(&kprobe_mutex);
2100 return ret;
2101 }
2102 EXPORT_SYMBOL_GPL(enable_kprobe);
2103
2104 /* Caller must NOT call this in usual path. This is only for critical case */
2105 void dump_kprobe(struct kprobe *kp)
2106 {
2107 pr_err("Dumping kprobe:\n");
2108 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2109 kp->symbol_name, kp->offset, kp->addr);
2110 }
2111 NOKPROBE_SYMBOL(dump_kprobe);
2112
2113 int kprobe_add_ksym_blacklist(unsigned long entry)
2114 {
2115 struct kprobe_blacklist_entry *ent;
2116 unsigned long offset = 0, size = 0;
2117
2118 if (!kernel_text_address(entry) ||
2119 !kallsyms_lookup_size_offset(entry, &size, &offset))
2120 return -EINVAL;
2121
2122 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2123 if (!ent)
2124 return -ENOMEM;
2125 ent->start_addr = entry;
2126 ent->end_addr = entry + size;
2127 INIT_LIST_HEAD(&ent->list);
2128 list_add_tail(&ent->list, &kprobe_blacklist);
2129
2130 return (int)size;
2131 }
2132
2133 /* Add all symbols in given area into kprobe blacklist */
2134 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2135 {
2136 unsigned long entry;
2137 int ret = 0;
2138
2139 for (entry = start; entry < end; entry += ret) {
2140 ret = kprobe_add_ksym_blacklist(entry);
2141 if (ret < 0)
2142 return ret;
2143 if (ret == 0) /* In case of alias symbol */
2144 ret = 1;
2145 }
2146 return 0;
2147 }
2148
2149 int __init __weak arch_populate_kprobe_blacklist(void)
2150 {
2151 return 0;
2152 }
2153
2154 /*
2155 * Lookup and populate the kprobe_blacklist.
2156 *
2157 * Unlike the kretprobe blacklist, we'll need to determine
2158 * the range of addresses that belong to the said functions,
2159 * since a kprobe need not necessarily be at the beginning
2160 * of a function.
2161 */
2162 static int __init populate_kprobe_blacklist(unsigned long *start,
2163 unsigned long *end)
2164 {
2165 unsigned long entry;
2166 unsigned long *iter;
2167 int ret;
2168
2169 for (iter = start; iter < end; iter++) {
2170 entry = arch_deref_entry_point((void *)*iter);
2171 ret = kprobe_add_ksym_blacklist(entry);
2172 if (ret == -EINVAL)
2173 continue;
2174 if (ret < 0)
2175 return ret;
2176 }
2177
2178 /* Symbols in __kprobes_text are blacklisted */
2179 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2180 (unsigned long)__kprobes_text_end);
2181
2182 return ret ? : arch_populate_kprobe_blacklist();
2183 }
2184
2185 /* Module notifier call back, checking kprobes on the module */
2186 static int kprobes_module_callback(struct notifier_block *nb,
2187 unsigned long val, void *data)
2188 {
2189 struct module *mod = data;
2190 struct hlist_head *head;
2191 struct kprobe *p;
2192 unsigned int i;
2193 int checkcore = (val == MODULE_STATE_GOING);
2194
2195 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2196 return NOTIFY_DONE;
2197
2198 /*
2199 * When MODULE_STATE_GOING was notified, both of module .text and
2200 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2201 * notified, only .init.text section would be freed. We need to
2202 * disable kprobes which have been inserted in the sections.
2203 */
2204 mutex_lock(&kprobe_mutex);
2205 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2206 head = &kprobe_table[i];
2207 hlist_for_each_entry_rcu(p, head, hlist)
2208 if (within_module_init((unsigned long)p->addr, mod) ||
2209 (checkcore &&
2210 within_module_core((unsigned long)p->addr, mod))) {
2211 /*
2212 * The vaddr this probe is installed will soon
2213 * be vfreed buy not synced to disk. Hence,
2214 * disarming the breakpoint isn't needed.
2215 *
2216 * Note, this will also move any optimized probes
2217 * that are pending to be removed from their
2218 * corresponding lists to the freeing_list and
2219 * will not be touched by the delayed
2220 * kprobe_optimizer work handler.
2221 */
2222 kill_kprobe(p);
2223 }
2224 }
2225 mutex_unlock(&kprobe_mutex);
2226 return NOTIFY_DONE;
2227 }
2228
2229 static struct notifier_block kprobe_module_nb = {
2230 .notifier_call = kprobes_module_callback,
2231 .priority = 0
2232 };
2233
2234 /* Markers of _kprobe_blacklist section */
2235 extern unsigned long __start_kprobe_blacklist[];
2236 extern unsigned long __stop_kprobe_blacklist[];
2237
2238 static int __init init_kprobes(void)
2239 {
2240 int i, err = 0;
2241
2242 /* FIXME allocate the probe table, currently defined statically */
2243 /* initialize all list heads */
2244 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2245 INIT_HLIST_HEAD(&kprobe_table[i]);
2246 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2247 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2248 }
2249
2250 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2251 __stop_kprobe_blacklist);
2252 if (err) {
2253 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2254 pr_err("Please take care of using kprobes.\n");
2255 }
2256
2257 if (kretprobe_blacklist_size) {
2258 /* lookup the function address from its name */
2259 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2260 kretprobe_blacklist[i].addr =
2261 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2262 if (!kretprobe_blacklist[i].addr)
2263 printk("kretprobe: lookup failed: %s\n",
2264 kretprobe_blacklist[i].name);
2265 }
2266 }
2267
2268 #if defined(CONFIG_OPTPROBES)
2269 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2270 /* Init kprobe_optinsn_slots */
2271 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2272 #endif
2273 /* By default, kprobes can be optimized */
2274 kprobes_allow_optimization = true;
2275 #endif
2276
2277 /* By default, kprobes are armed */
2278 kprobes_all_disarmed = false;
2279
2280 err = arch_init_kprobes();
2281 if (!err)
2282 err = register_die_notifier(&kprobe_exceptions_nb);
2283 if (!err)
2284 err = register_module_notifier(&kprobe_module_nb);
2285
2286 kprobes_initialized = (err == 0);
2287
2288 if (!err)
2289 init_test_probes();
2290 return err;
2291 }
2292
2293 #ifdef CONFIG_DEBUG_FS
2294 static void report_probe(struct seq_file *pi, struct kprobe *p,
2295 const char *sym, int offset, char *modname, struct kprobe *pp)
2296 {
2297 char *kprobe_type;
2298 void *addr = p->addr;
2299
2300 if (p->pre_handler == pre_handler_kretprobe)
2301 kprobe_type = "r";
2302 else
2303 kprobe_type = "k";
2304
2305 if (!kallsyms_show_value())
2306 addr = NULL;
2307
2308 if (sym)
2309 seq_printf(pi, "%px %s %s+0x%x %s ",
2310 addr, kprobe_type, sym, offset,
2311 (modname ? modname : " "));
2312 else /* try to use %pS */
2313 seq_printf(pi, "%px %s %pS ",
2314 addr, kprobe_type, p->addr);
2315
2316 if (!pp)
2317 pp = p;
2318 seq_printf(pi, "%s%s%s%s\n",
2319 (kprobe_gone(p) ? "[GONE]" : ""),
2320 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2321 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2322 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2323 }
2324
2325 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2326 {
2327 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2328 }
2329
2330 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2331 {
2332 (*pos)++;
2333 if (*pos >= KPROBE_TABLE_SIZE)
2334 return NULL;
2335 return pos;
2336 }
2337
2338 static void kprobe_seq_stop(struct seq_file *f, void *v)
2339 {
2340 /* Nothing to do */
2341 }
2342
2343 static int show_kprobe_addr(struct seq_file *pi, void *v)
2344 {
2345 struct hlist_head *head;
2346 struct kprobe *p, *kp;
2347 const char *sym = NULL;
2348 unsigned int i = *(loff_t *) v;
2349 unsigned long offset = 0;
2350 char *modname, namebuf[KSYM_NAME_LEN];
2351
2352 head = &kprobe_table[i];
2353 preempt_disable();
2354 hlist_for_each_entry_rcu(p, head, hlist) {
2355 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2356 &offset, &modname, namebuf);
2357 if (kprobe_aggrprobe(p)) {
2358 list_for_each_entry_rcu(kp, &p->list, list)
2359 report_probe(pi, kp, sym, offset, modname, p);
2360 } else
2361 report_probe(pi, p, sym, offset, modname, NULL);
2362 }
2363 preempt_enable();
2364 return 0;
2365 }
2366
2367 static const struct seq_operations kprobes_seq_ops = {
2368 .start = kprobe_seq_start,
2369 .next = kprobe_seq_next,
2370 .stop = kprobe_seq_stop,
2371 .show = show_kprobe_addr
2372 };
2373
2374 static int kprobes_open(struct inode *inode, struct file *filp)
2375 {
2376 return seq_open(filp, &kprobes_seq_ops);
2377 }
2378
2379 static const struct file_operations debugfs_kprobes_operations = {
2380 .open = kprobes_open,
2381 .read = seq_read,
2382 .llseek = seq_lseek,
2383 .release = seq_release,
2384 };
2385
2386 /* kprobes/blacklist -- shows which functions can not be probed */
2387 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2388 {
2389 return seq_list_start(&kprobe_blacklist, *pos);
2390 }
2391
2392 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2393 {
2394 return seq_list_next(v, &kprobe_blacklist, pos);
2395 }
2396
2397 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2398 {
2399 struct kprobe_blacklist_entry *ent =
2400 list_entry(v, struct kprobe_blacklist_entry, list);
2401
2402 /*
2403 * If /proc/kallsyms is not showing kernel address, we won't
2404 * show them here either.
2405 */
2406 if (!kallsyms_show_value())
2407 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2408 (void *)ent->start_addr);
2409 else
2410 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2411 (void *)ent->end_addr, (void *)ent->start_addr);
2412 return 0;
2413 }
2414
2415 static const struct seq_operations kprobe_blacklist_seq_ops = {
2416 .start = kprobe_blacklist_seq_start,
2417 .next = kprobe_blacklist_seq_next,
2418 .stop = kprobe_seq_stop, /* Reuse void function */
2419 .show = kprobe_blacklist_seq_show,
2420 };
2421
2422 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2423 {
2424 return seq_open(filp, &kprobe_blacklist_seq_ops);
2425 }
2426
2427 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2428 .open = kprobe_blacklist_open,
2429 .read = seq_read,
2430 .llseek = seq_lseek,
2431 .release = seq_release,
2432 };
2433
2434 static int arm_all_kprobes(void)
2435 {
2436 struct hlist_head *head;
2437 struct kprobe *p;
2438 unsigned int i, total = 0, errors = 0;
2439 int err, ret = 0;
2440
2441 mutex_lock(&kprobe_mutex);
2442
2443 /* If kprobes are armed, just return */
2444 if (!kprobes_all_disarmed)
2445 goto already_enabled;
2446
2447 /*
2448 * optimize_kprobe() called by arm_kprobe() checks
2449 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2450 * arm_kprobe.
2451 */
2452 kprobes_all_disarmed = false;
2453 /* Arming kprobes doesn't optimize kprobe itself */
2454 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2455 head = &kprobe_table[i];
2456 /* Arm all kprobes on a best-effort basis */
2457 hlist_for_each_entry_rcu(p, head, hlist) {
2458 if (!kprobe_disabled(p)) {
2459 err = arm_kprobe(p);
2460 if (err) {
2461 errors++;
2462 ret = err;
2463 }
2464 total++;
2465 }
2466 }
2467 }
2468
2469 if (errors)
2470 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2471 errors, total);
2472 else
2473 pr_info("Kprobes globally enabled\n");
2474
2475 already_enabled:
2476 mutex_unlock(&kprobe_mutex);
2477 return ret;
2478 }
2479
2480 static int disarm_all_kprobes(void)
2481 {
2482 struct hlist_head *head;
2483 struct kprobe *p;
2484 unsigned int i, total = 0, errors = 0;
2485 int err, ret = 0;
2486
2487 mutex_lock(&kprobe_mutex);
2488
2489 /* If kprobes are already disarmed, just return */
2490 if (kprobes_all_disarmed) {
2491 mutex_unlock(&kprobe_mutex);
2492 return 0;
2493 }
2494
2495 kprobes_all_disarmed = true;
2496
2497 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2498 head = &kprobe_table[i];
2499 /* Disarm all kprobes on a best-effort basis */
2500 hlist_for_each_entry_rcu(p, head, hlist) {
2501 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2502 err = disarm_kprobe(p, false);
2503 if (err) {
2504 errors++;
2505 ret = err;
2506 }
2507 total++;
2508 }
2509 }
2510 }
2511
2512 if (errors)
2513 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2514 errors, total);
2515 else
2516 pr_info("Kprobes globally disabled\n");
2517
2518 mutex_unlock(&kprobe_mutex);
2519
2520 /* Wait for disarming all kprobes by optimizer */
2521 wait_for_kprobe_optimizer();
2522
2523 return ret;
2524 }
2525
2526 /*
2527 * XXX: The debugfs bool file interface doesn't allow for callbacks
2528 * when the bool state is switched. We can reuse that facility when
2529 * available
2530 */
2531 static ssize_t read_enabled_file_bool(struct file *file,
2532 char __user *user_buf, size_t count, loff_t *ppos)
2533 {
2534 char buf[3];
2535
2536 if (!kprobes_all_disarmed)
2537 buf[0] = '1';
2538 else
2539 buf[0] = '0';
2540 buf[1] = '\n';
2541 buf[2] = 0x00;
2542 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2543 }
2544
2545 static ssize_t write_enabled_file_bool(struct file *file,
2546 const char __user *user_buf, size_t count, loff_t *ppos)
2547 {
2548 char buf[32];
2549 size_t buf_size;
2550 int ret = 0;
2551
2552 buf_size = min(count, (sizeof(buf)-1));
2553 if (copy_from_user(buf, user_buf, buf_size))
2554 return -EFAULT;
2555
2556 buf[buf_size] = '\0';
2557 switch (buf[0]) {
2558 case 'y':
2559 case 'Y':
2560 case '1':
2561 ret = arm_all_kprobes();
2562 break;
2563 case 'n':
2564 case 'N':
2565 case '0':
2566 ret = disarm_all_kprobes();
2567 break;
2568 default:
2569 return -EINVAL;
2570 }
2571
2572 if (ret)
2573 return ret;
2574
2575 return count;
2576 }
2577
2578 static const struct file_operations fops_kp = {
2579 .read = read_enabled_file_bool,
2580 .write = write_enabled_file_bool,
2581 .llseek = default_llseek,
2582 };
2583
2584 static int __init debugfs_kprobe_init(void)
2585 {
2586 struct dentry *dir, *file;
2587 unsigned int value = 1;
2588
2589 dir = debugfs_create_dir("kprobes", NULL);
2590 if (!dir)
2591 return -ENOMEM;
2592
2593 file = debugfs_create_file("list", 0400, dir, NULL,
2594 &debugfs_kprobes_operations);
2595 if (!file)
2596 goto error;
2597
2598 file = debugfs_create_file("enabled", 0600, dir,
2599 &value, &fops_kp);
2600 if (!file)
2601 goto error;
2602
2603 file = debugfs_create_file("blacklist", 0400, dir, NULL,
2604 &debugfs_kprobe_blacklist_ops);
2605 if (!file)
2606 goto error;
2607
2608 return 0;
2609
2610 error:
2611 debugfs_remove(dir);
2612 return -ENOMEM;
2613 }
2614
2615 late_initcall(debugfs_kprobe_init);
2616 #endif /* CONFIG_DEBUG_FS */
2617
2618 module_init(init_kprobes);