]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - kernel/kprobes.c
kprobes: Fix optimize_kprobe()/unoptimize_kprobe() cancellation logic
[thirdparty/kernel/stable.git] / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 static int kprobes_initialized;
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64
65 /* NOTE: change this value only with kprobe_mutex held */
66 static bool kprobes_all_disarmed;
67
68 /* This protects kprobe_table and optimizing_list */
69 static DEFINE_MUTEX(kprobe_mutex);
70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71 static struct {
72 raw_spinlock_t lock ____cacheline_aligned_in_smp;
73 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
74
75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76 unsigned int __unused)
77 {
78 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79 }
80
81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82 {
83 return &(kretprobe_table_locks[hash].lock);
84 }
85
86 /* Blacklist -- list of struct kprobe_blacklist_entry */
87 static LIST_HEAD(kprobe_blacklist);
88
89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90 /*
91 * kprobe->ainsn.insn points to the copy of the instruction to be
92 * single-stepped. x86_64, POWER4 and above have no-exec support and
93 * stepping on the instruction on a vmalloced/kmalloced/data page
94 * is a recipe for disaster
95 */
96 struct kprobe_insn_page {
97 struct list_head list;
98 kprobe_opcode_t *insns; /* Page of instruction slots */
99 struct kprobe_insn_cache *cache;
100 int nused;
101 int ngarbage;
102 char slot_used[];
103 };
104
105 #define KPROBE_INSN_PAGE_SIZE(slots) \
106 (offsetof(struct kprobe_insn_page, slot_used) + \
107 (sizeof(char) * (slots)))
108
109 static int slots_per_page(struct kprobe_insn_cache *c)
110 {
111 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112 }
113
114 enum kprobe_slot_state {
115 SLOT_CLEAN = 0,
116 SLOT_DIRTY = 1,
117 SLOT_USED = 2,
118 };
119
120 static void *alloc_insn_page(void)
121 {
122 return module_alloc(PAGE_SIZE);
123 }
124
125 void __weak free_insn_page(void *page)
126 {
127 module_memfree(page);
128 }
129
130 struct kprobe_insn_cache kprobe_insn_slots = {
131 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132 .alloc = alloc_insn_page,
133 .free = free_insn_page,
134 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 .insn_size = MAX_INSN_SIZE,
136 .nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140 /**
141 * __get_insn_slot() - Find a slot on an executable page for an instruction.
142 * We allocate an executable page if there's no room on existing ones.
143 */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146 struct kprobe_insn_page *kip;
147 kprobe_opcode_t *slot = NULL;
148
149 /* Since the slot array is not protected by rcu, we need a mutex */
150 mutex_lock(&c->mutex);
151 retry:
152 rcu_read_lock();
153 list_for_each_entry_rcu(kip, &c->pages, list) {
154 if (kip->nused < slots_per_page(c)) {
155 int i;
156 for (i = 0; i < slots_per_page(c); i++) {
157 if (kip->slot_used[i] == SLOT_CLEAN) {
158 kip->slot_used[i] = SLOT_USED;
159 kip->nused++;
160 slot = kip->insns + (i * c->insn_size);
161 rcu_read_unlock();
162 goto out;
163 }
164 }
165 /* kip->nused is broken. Fix it. */
166 kip->nused = slots_per_page(c);
167 WARN_ON(1);
168 }
169 }
170 rcu_read_unlock();
171
172 /* If there are any garbage slots, collect it and try again. */
173 if (c->nr_garbage && collect_garbage_slots(c) == 0)
174 goto retry;
175
176 /* All out of space. Need to allocate a new page. */
177 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178 if (!kip)
179 goto out;
180
181 /*
182 * Use module_alloc so this page is within +/- 2GB of where the
183 * kernel image and loaded module images reside. This is required
184 * so x86_64 can correctly handle the %rip-relative fixups.
185 */
186 kip->insns = c->alloc();
187 if (!kip->insns) {
188 kfree(kip);
189 goto out;
190 }
191 INIT_LIST_HEAD(&kip->list);
192 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193 kip->slot_used[0] = SLOT_USED;
194 kip->nused = 1;
195 kip->ngarbage = 0;
196 kip->cache = c;
197 list_add_rcu(&kip->list, &c->pages);
198 slot = kip->insns;
199 out:
200 mutex_unlock(&c->mutex);
201 return slot;
202 }
203
204 /* Return 1 if all garbages are collected, otherwise 0. */
205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207 kip->slot_used[idx] = SLOT_CLEAN;
208 kip->nused--;
209 if (kip->nused == 0) {
210 /*
211 * Page is no longer in use. Free it unless
212 * it's the last one. We keep the last one
213 * so as not to have to set it up again the
214 * next time somebody inserts a probe.
215 */
216 if (!list_is_singular(&kip->list)) {
217 list_del_rcu(&kip->list);
218 synchronize_rcu();
219 kip->cache->free(kip->insns);
220 kfree(kip);
221 }
222 return 1;
223 }
224 return 0;
225 }
226
227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
228 {
229 struct kprobe_insn_page *kip, *next;
230
231 /* Ensure no-one is interrupted on the garbages */
232 synchronize_sched();
233
234 list_for_each_entry_safe(kip, next, &c->pages, list) {
235 int i;
236 if (kip->ngarbage == 0)
237 continue;
238 kip->ngarbage = 0; /* we will collect all garbages */
239 for (i = 0; i < slots_per_page(c); i++) {
240 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241 break;
242 }
243 }
244 c->nr_garbage = 0;
245 return 0;
246 }
247
248 void __free_insn_slot(struct kprobe_insn_cache *c,
249 kprobe_opcode_t *slot, int dirty)
250 {
251 struct kprobe_insn_page *kip;
252 long idx;
253
254 mutex_lock(&c->mutex);
255 rcu_read_lock();
256 list_for_each_entry_rcu(kip, &c->pages, list) {
257 idx = ((long)slot - (long)kip->insns) /
258 (c->insn_size * sizeof(kprobe_opcode_t));
259 if (idx >= 0 && idx < slots_per_page(c))
260 goto out;
261 }
262 /* Could not find this slot. */
263 WARN_ON(1);
264 kip = NULL;
265 out:
266 rcu_read_unlock();
267 /* Mark and sweep: this may sleep */
268 if (kip) {
269 /* Check double free */
270 WARN_ON(kip->slot_used[idx] != SLOT_USED);
271 if (dirty) {
272 kip->slot_used[idx] = SLOT_DIRTY;
273 kip->ngarbage++;
274 if (++c->nr_garbage > slots_per_page(c))
275 collect_garbage_slots(c);
276 } else {
277 collect_one_slot(kip, idx);
278 }
279 }
280 mutex_unlock(&c->mutex);
281 }
282
283 /*
284 * Check given address is on the page of kprobe instruction slots.
285 * This will be used for checking whether the address on a stack
286 * is on a text area or not.
287 */
288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289 {
290 struct kprobe_insn_page *kip;
291 bool ret = false;
292
293 rcu_read_lock();
294 list_for_each_entry_rcu(kip, &c->pages, list) {
295 if (addr >= (unsigned long)kip->insns &&
296 addr < (unsigned long)kip->insns + PAGE_SIZE) {
297 ret = true;
298 break;
299 }
300 }
301 rcu_read_unlock();
302
303 return ret;
304 }
305
306 #ifdef CONFIG_OPTPROBES
307 /* For optimized_kprobe buffer */
308 struct kprobe_insn_cache kprobe_optinsn_slots = {
309 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310 .alloc = alloc_insn_page,
311 .free = free_insn_page,
312 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313 /* .insn_size is initialized later */
314 .nr_garbage = 0,
315 };
316 #endif
317 #endif
318
319 /* We have preemption disabled.. so it is safe to use __ versions */
320 static inline void set_kprobe_instance(struct kprobe *kp)
321 {
322 __this_cpu_write(kprobe_instance, kp);
323 }
324
325 static inline void reset_kprobe_instance(void)
326 {
327 __this_cpu_write(kprobe_instance, NULL);
328 }
329
330 /*
331 * This routine is called either:
332 * - under the kprobe_mutex - during kprobe_[un]register()
333 * OR
334 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
335 */
336 struct kprobe *get_kprobe(void *addr)
337 {
338 struct hlist_head *head;
339 struct kprobe *p;
340
341 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342 hlist_for_each_entry_rcu(p, head, hlist) {
343 if (p->addr == addr)
344 return p;
345 }
346
347 return NULL;
348 }
349 NOKPROBE_SYMBOL(get_kprobe);
350
351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352
353 /* Return true if the kprobe is an aggregator */
354 static inline int kprobe_aggrprobe(struct kprobe *p)
355 {
356 return p->pre_handler == aggr_pre_handler;
357 }
358
359 /* Return true(!0) if the kprobe is unused */
360 static inline int kprobe_unused(struct kprobe *p)
361 {
362 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363 list_empty(&p->list);
364 }
365
366 /*
367 * Keep all fields in the kprobe consistent
368 */
369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370 {
371 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373 }
374
375 #ifdef CONFIG_OPTPROBES
376 /* NOTE: change this value only with kprobe_mutex held */
377 static bool kprobes_allow_optimization;
378
379 /*
380 * Call all pre_handler on the list, but ignores its return value.
381 * This must be called from arch-dep optimized caller.
382 */
383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384 {
385 struct kprobe *kp;
386
387 list_for_each_entry_rcu(kp, &p->list, list) {
388 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389 set_kprobe_instance(kp);
390 kp->pre_handler(kp, regs);
391 }
392 reset_kprobe_instance();
393 }
394 }
395 NOKPROBE_SYMBOL(opt_pre_handler);
396
397 /* Free optimized instructions and optimized_kprobe */
398 static void free_aggr_kprobe(struct kprobe *p)
399 {
400 struct optimized_kprobe *op;
401
402 op = container_of(p, struct optimized_kprobe, kp);
403 arch_remove_optimized_kprobe(op);
404 arch_remove_kprobe(p);
405 kfree(op);
406 }
407
408 /* Return true(!0) if the kprobe is ready for optimization. */
409 static inline int kprobe_optready(struct kprobe *p)
410 {
411 struct optimized_kprobe *op;
412
413 if (kprobe_aggrprobe(p)) {
414 op = container_of(p, struct optimized_kprobe, kp);
415 return arch_prepared_optinsn(&op->optinsn);
416 }
417
418 return 0;
419 }
420
421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422 static inline int kprobe_disarmed(struct kprobe *p)
423 {
424 struct optimized_kprobe *op;
425
426 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427 if (!kprobe_aggrprobe(p))
428 return kprobe_disabled(p);
429
430 op = container_of(p, struct optimized_kprobe, kp);
431
432 return kprobe_disabled(p) && list_empty(&op->list);
433 }
434
435 /* Return true(!0) if the probe is queued on (un)optimizing lists */
436 static int kprobe_queued(struct kprobe *p)
437 {
438 struct optimized_kprobe *op;
439
440 if (kprobe_aggrprobe(p)) {
441 op = container_of(p, struct optimized_kprobe, kp);
442 if (!list_empty(&op->list))
443 return 1;
444 }
445 return 0;
446 }
447
448 /*
449 * Return an optimized kprobe whose optimizing code replaces
450 * instructions including addr (exclude breakpoint).
451 */
452 static struct kprobe *get_optimized_kprobe(unsigned long addr)
453 {
454 int i;
455 struct kprobe *p = NULL;
456 struct optimized_kprobe *op;
457
458 /* Don't check i == 0, since that is a breakpoint case. */
459 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460 p = get_kprobe((void *)(addr - i));
461
462 if (p && kprobe_optready(p)) {
463 op = container_of(p, struct optimized_kprobe, kp);
464 if (arch_within_optimized_kprobe(op, addr))
465 return p;
466 }
467
468 return NULL;
469 }
470
471 /* Optimization staging list, protected by kprobe_mutex */
472 static LIST_HEAD(optimizing_list);
473 static LIST_HEAD(unoptimizing_list);
474 static LIST_HEAD(freeing_list);
475
476 static void kprobe_optimizer(struct work_struct *work);
477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478 #define OPTIMIZE_DELAY 5
479
480 /*
481 * Optimize (replace a breakpoint with a jump) kprobes listed on
482 * optimizing_list.
483 */
484 static void do_optimize_kprobes(void)
485 {
486 lockdep_assert_held(&text_mutex);
487 /*
488 * The optimization/unoptimization refers online_cpus via
489 * stop_machine() and cpu-hotplug modifies online_cpus.
490 * And same time, text_mutex will be held in cpu-hotplug and here.
491 * This combination can cause a deadlock (cpu-hotplug try to lock
492 * text_mutex but stop_machine can not be done because online_cpus
493 * has been changed)
494 * To avoid this deadlock, caller must have locked cpu hotplug
495 * for preventing cpu-hotplug outside of text_mutex locking.
496 */
497 lockdep_assert_cpus_held();
498
499 /* Optimization never be done when disarmed */
500 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
501 list_empty(&optimizing_list))
502 return;
503
504 arch_optimize_kprobes(&optimizing_list);
505 }
506
507 /*
508 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
509 * if need) kprobes listed on unoptimizing_list.
510 */
511 static void do_unoptimize_kprobes(void)
512 {
513 struct optimized_kprobe *op, *tmp;
514
515 lockdep_assert_held(&text_mutex);
516 /* See comment in do_optimize_kprobes() */
517 lockdep_assert_cpus_held();
518
519 /* Unoptimization must be done anytime */
520 if (list_empty(&unoptimizing_list))
521 return;
522
523 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
524 /* Loop free_list for disarming */
525 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
526 /* Switching from detour code to origin */
527 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
528 /* Disarm probes if marked disabled */
529 if (kprobe_disabled(&op->kp))
530 arch_disarm_kprobe(&op->kp);
531 if (kprobe_unused(&op->kp)) {
532 /*
533 * Remove unused probes from hash list. After waiting
534 * for synchronization, these probes are reclaimed.
535 * (reclaiming is done by do_free_cleaned_kprobes.)
536 */
537 hlist_del_rcu(&op->kp.hlist);
538 } else
539 list_del_init(&op->list);
540 }
541 }
542
543 /* Reclaim all kprobes on the free_list */
544 static void do_free_cleaned_kprobes(void)
545 {
546 struct optimized_kprobe *op, *tmp;
547
548 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549 list_del_init(&op->list);
550 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
551 /*
552 * This must not happen, but if there is a kprobe
553 * still in use, keep it on kprobes hash list.
554 */
555 continue;
556 }
557 free_aggr_kprobe(&op->kp);
558 }
559 }
560
561 /* Start optimizer after OPTIMIZE_DELAY passed */
562 static void kick_kprobe_optimizer(void)
563 {
564 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
565 }
566
567 /* Kprobe jump optimizer */
568 static void kprobe_optimizer(struct work_struct *work)
569 {
570 mutex_lock(&kprobe_mutex);
571 cpus_read_lock();
572 mutex_lock(&text_mutex);
573 /* Lock modules while optimizing kprobes */
574 mutex_lock(&module_mutex);
575
576 /*
577 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
578 * kprobes before waiting for quiesence period.
579 */
580 do_unoptimize_kprobes();
581
582 /*
583 * Step 2: Wait for quiesence period to ensure all potentially
584 * preempted tasks to have normally scheduled. Because optprobe
585 * may modify multiple instructions, there is a chance that Nth
586 * instruction is preempted. In that case, such tasks can return
587 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
588 * Note that on non-preemptive kernel, this is transparently converted
589 * to synchronoze_sched() to wait for all interrupts to have completed.
590 */
591 synchronize_rcu_tasks();
592
593 /* Step 3: Optimize kprobes after quiesence period */
594 do_optimize_kprobes();
595
596 /* Step 4: Free cleaned kprobes after quiesence period */
597 do_free_cleaned_kprobes();
598
599 mutex_unlock(&module_mutex);
600 mutex_unlock(&text_mutex);
601 cpus_read_unlock();
602 mutex_unlock(&kprobe_mutex);
603
604 /* Step 5: Kick optimizer again if needed */
605 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
606 kick_kprobe_optimizer();
607 }
608
609 /* Wait for completing optimization and unoptimization */
610 void wait_for_kprobe_optimizer(void)
611 {
612 mutex_lock(&kprobe_mutex);
613
614 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
615 mutex_unlock(&kprobe_mutex);
616
617 /* this will also make optimizing_work execute immmediately */
618 flush_delayed_work(&optimizing_work);
619 /* @optimizing_work might not have been queued yet, relax */
620 cpu_relax();
621
622 mutex_lock(&kprobe_mutex);
623 }
624
625 mutex_unlock(&kprobe_mutex);
626 }
627
628 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
629 {
630 struct optimized_kprobe *_op;
631
632 list_for_each_entry(_op, &unoptimizing_list, list) {
633 if (op == _op)
634 return true;
635 }
636
637 return false;
638 }
639
640 /* Optimize kprobe if p is ready to be optimized */
641 static void optimize_kprobe(struct kprobe *p)
642 {
643 struct optimized_kprobe *op;
644
645 /* Check if the kprobe is disabled or not ready for optimization. */
646 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
647 (kprobe_disabled(p) || kprobes_all_disarmed))
648 return;
649
650 /* Both of break_handler and post_handler are not supported. */
651 if (p->break_handler || p->post_handler)
652 return;
653
654 op = container_of(p, struct optimized_kprobe, kp);
655
656 /* Check there is no other kprobes at the optimized instructions */
657 if (arch_check_optimized_kprobe(op) < 0)
658 return;
659
660 /* Check if it is already optimized. */
661 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
662 if (optprobe_queued_unopt(op)) {
663 /* This is under unoptimizing. Just dequeue the probe */
664 list_del_init(&op->list);
665 }
666 return;
667 }
668 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
669
670 /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
671 if (WARN_ON_ONCE(!list_empty(&op->list)))
672 return;
673
674 list_add(&op->list, &optimizing_list);
675 kick_kprobe_optimizer();
676 }
677
678 /* Short cut to direct unoptimizing */
679 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
680 {
681 lockdep_assert_cpus_held();
682 arch_unoptimize_kprobe(op);
683 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
684 if (kprobe_disabled(&op->kp))
685 arch_disarm_kprobe(&op->kp);
686 }
687
688 /* Unoptimize a kprobe if p is optimized */
689 static void unoptimize_kprobe(struct kprobe *p, bool force)
690 {
691 struct optimized_kprobe *op;
692
693 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
694 return; /* This is not an optprobe nor optimized */
695
696 op = container_of(p, struct optimized_kprobe, kp);
697 if (!kprobe_optimized(p))
698 return;
699
700 if (!list_empty(&op->list)) {
701 if (optprobe_queued_unopt(op)) {
702 /* Queued in unoptimizing queue */
703 if (force) {
704 /*
705 * Forcibly unoptimize the kprobe here, and queue it
706 * in the freeing list for release afterwards.
707 */
708 force_unoptimize_kprobe(op);
709 list_move(&op->list, &freeing_list);
710 }
711 } else {
712 /* Dequeue from the optimizing queue */
713 list_del_init(&op->list);
714 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
715 }
716 return;
717 }
718
719 /* Optimized kprobe case */
720 if (force) {
721 /* Forcibly update the code: this is a special case */
722 force_unoptimize_kprobe(op);
723 } else {
724 list_add(&op->list, &unoptimizing_list);
725 kick_kprobe_optimizer();
726 }
727 }
728
729 /* Cancel unoptimizing for reusing */
730 static int reuse_unused_kprobe(struct kprobe *ap)
731 {
732 struct optimized_kprobe *op;
733
734 BUG_ON(!kprobe_unused(ap));
735 /*
736 * Unused kprobe MUST be on the way of delayed unoptimizing (means
737 * there is still a relative jump) and disabled.
738 */
739 op = container_of(ap, struct optimized_kprobe, kp);
740 if (unlikely(list_empty(&op->list)))
741 printk(KERN_WARNING "Warning: found a stray unused "
742 "aggrprobe@%p\n", ap->addr);
743 /* Enable the probe again */
744 ap->flags &= ~KPROBE_FLAG_DISABLED;
745 /* Optimize it again (remove from op->list) */
746 if (!kprobe_optready(ap))
747 return -EINVAL;
748
749 optimize_kprobe(ap);
750 return 0;
751 }
752
753 /* Remove optimized instructions */
754 static void kill_optimized_kprobe(struct kprobe *p)
755 {
756 struct optimized_kprobe *op;
757
758 op = container_of(p, struct optimized_kprobe, kp);
759 if (!list_empty(&op->list))
760 /* Dequeue from the (un)optimization queue */
761 list_del_init(&op->list);
762 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
763
764 if (kprobe_unused(p)) {
765 /* Enqueue if it is unused */
766 list_add(&op->list, &freeing_list);
767 /*
768 * Remove unused probes from the hash list. After waiting
769 * for synchronization, this probe is reclaimed.
770 * (reclaiming is done by do_free_cleaned_kprobes().)
771 */
772 hlist_del_rcu(&op->kp.hlist);
773 }
774
775 /* Don't touch the code, because it is already freed. */
776 arch_remove_optimized_kprobe(op);
777 }
778
779 static inline
780 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
781 {
782 if (!kprobe_ftrace(p))
783 arch_prepare_optimized_kprobe(op, p);
784 }
785
786 /* Try to prepare optimized instructions */
787 static void prepare_optimized_kprobe(struct kprobe *p)
788 {
789 struct optimized_kprobe *op;
790
791 op = container_of(p, struct optimized_kprobe, kp);
792 __prepare_optimized_kprobe(op, p);
793 }
794
795 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
796 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
797 {
798 struct optimized_kprobe *op;
799
800 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
801 if (!op)
802 return NULL;
803
804 INIT_LIST_HEAD(&op->list);
805 op->kp.addr = p->addr;
806 __prepare_optimized_kprobe(op, p);
807
808 return &op->kp;
809 }
810
811 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
812
813 /*
814 * Prepare an optimized_kprobe and optimize it
815 * NOTE: p must be a normal registered kprobe
816 */
817 static void try_to_optimize_kprobe(struct kprobe *p)
818 {
819 struct kprobe *ap;
820 struct optimized_kprobe *op;
821
822 /* Impossible to optimize ftrace-based kprobe */
823 if (kprobe_ftrace(p))
824 return;
825
826 /* For preparing optimization, jump_label_text_reserved() is called */
827 cpus_read_lock();
828 jump_label_lock();
829 mutex_lock(&text_mutex);
830
831 ap = alloc_aggr_kprobe(p);
832 if (!ap)
833 goto out;
834
835 op = container_of(ap, struct optimized_kprobe, kp);
836 if (!arch_prepared_optinsn(&op->optinsn)) {
837 /* If failed to setup optimizing, fallback to kprobe */
838 arch_remove_optimized_kprobe(op);
839 kfree(op);
840 goto out;
841 }
842
843 init_aggr_kprobe(ap, p);
844 optimize_kprobe(ap); /* This just kicks optimizer thread */
845
846 out:
847 mutex_unlock(&text_mutex);
848 jump_label_unlock();
849 cpus_read_unlock();
850 }
851
852 #ifdef CONFIG_SYSCTL
853 static void optimize_all_kprobes(void)
854 {
855 struct hlist_head *head;
856 struct kprobe *p;
857 unsigned int i;
858
859 mutex_lock(&kprobe_mutex);
860 /* If optimization is already allowed, just return */
861 if (kprobes_allow_optimization)
862 goto out;
863
864 cpus_read_lock();
865 kprobes_allow_optimization = true;
866 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
867 head = &kprobe_table[i];
868 hlist_for_each_entry_rcu(p, head, hlist)
869 if (!kprobe_disabled(p))
870 optimize_kprobe(p);
871 }
872 cpus_read_unlock();
873 printk(KERN_INFO "Kprobes globally optimized\n");
874 out:
875 mutex_unlock(&kprobe_mutex);
876 }
877
878 static void unoptimize_all_kprobes(void)
879 {
880 struct hlist_head *head;
881 struct kprobe *p;
882 unsigned int i;
883
884 mutex_lock(&kprobe_mutex);
885 /* If optimization is already prohibited, just return */
886 if (!kprobes_allow_optimization) {
887 mutex_unlock(&kprobe_mutex);
888 return;
889 }
890
891 cpus_read_lock();
892 kprobes_allow_optimization = false;
893 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
894 head = &kprobe_table[i];
895 hlist_for_each_entry_rcu(p, head, hlist) {
896 if (!kprobe_disabled(p))
897 unoptimize_kprobe(p, false);
898 }
899 }
900 cpus_read_unlock();
901 mutex_unlock(&kprobe_mutex);
902
903 /* Wait for unoptimizing completion */
904 wait_for_kprobe_optimizer();
905 printk(KERN_INFO "Kprobes globally unoptimized\n");
906 }
907
908 static DEFINE_MUTEX(kprobe_sysctl_mutex);
909 int sysctl_kprobes_optimization;
910 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
911 void __user *buffer, size_t *length,
912 loff_t *ppos)
913 {
914 int ret;
915
916 mutex_lock(&kprobe_sysctl_mutex);
917 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
918 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
919
920 if (sysctl_kprobes_optimization)
921 optimize_all_kprobes();
922 else
923 unoptimize_all_kprobes();
924 mutex_unlock(&kprobe_sysctl_mutex);
925
926 return ret;
927 }
928 #endif /* CONFIG_SYSCTL */
929
930 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
931 static void __arm_kprobe(struct kprobe *p)
932 {
933 struct kprobe *_p;
934
935 /* Check collision with other optimized kprobes */
936 _p = get_optimized_kprobe((unsigned long)p->addr);
937 if (unlikely(_p))
938 /* Fallback to unoptimized kprobe */
939 unoptimize_kprobe(_p, true);
940
941 arch_arm_kprobe(p);
942 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
943 }
944
945 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
946 static void __disarm_kprobe(struct kprobe *p, bool reopt)
947 {
948 struct kprobe *_p;
949
950 /* Try to unoptimize */
951 unoptimize_kprobe(p, kprobes_all_disarmed);
952
953 if (!kprobe_queued(p)) {
954 arch_disarm_kprobe(p);
955 /* If another kprobe was blocked, optimize it. */
956 _p = get_optimized_kprobe((unsigned long)p->addr);
957 if (unlikely(_p) && reopt)
958 optimize_kprobe(_p);
959 }
960 /* TODO: reoptimize others after unoptimized this probe */
961 }
962
963 #else /* !CONFIG_OPTPROBES */
964
965 #define optimize_kprobe(p) do {} while (0)
966 #define unoptimize_kprobe(p, f) do {} while (0)
967 #define kill_optimized_kprobe(p) do {} while (0)
968 #define prepare_optimized_kprobe(p) do {} while (0)
969 #define try_to_optimize_kprobe(p) do {} while (0)
970 #define __arm_kprobe(p) arch_arm_kprobe(p)
971 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
972 #define kprobe_disarmed(p) kprobe_disabled(p)
973 #define wait_for_kprobe_optimizer() do {} while (0)
974
975 static int reuse_unused_kprobe(struct kprobe *ap)
976 {
977 /*
978 * If the optimized kprobe is NOT supported, the aggr kprobe is
979 * released at the same time that the last aggregated kprobe is
980 * unregistered.
981 * Thus there should be no chance to reuse unused kprobe.
982 */
983 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
984 return -EINVAL;
985 }
986
987 static void free_aggr_kprobe(struct kprobe *p)
988 {
989 arch_remove_kprobe(p);
990 kfree(p);
991 }
992
993 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
994 {
995 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
996 }
997 #endif /* CONFIG_OPTPROBES */
998
999 #ifdef CONFIG_KPROBES_ON_FTRACE
1000 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1001 .func = kprobe_ftrace_handler,
1002 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1003 };
1004 static int kprobe_ftrace_enabled;
1005
1006 /* Must ensure p->addr is really on ftrace */
1007 static int prepare_kprobe(struct kprobe *p)
1008 {
1009 if (!kprobe_ftrace(p))
1010 return arch_prepare_kprobe(p);
1011
1012 return arch_prepare_kprobe_ftrace(p);
1013 }
1014
1015 /* Caller must lock kprobe_mutex */
1016 static void arm_kprobe_ftrace(struct kprobe *p)
1017 {
1018 int ret;
1019
1020 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1021 (unsigned long)p->addr, 0, 0);
1022 WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
1023 kprobe_ftrace_enabled++;
1024 if (kprobe_ftrace_enabled == 1) {
1025 ret = register_ftrace_function(&kprobe_ftrace_ops);
1026 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
1027 }
1028 }
1029
1030 /* Caller must lock kprobe_mutex */
1031 static void disarm_kprobe_ftrace(struct kprobe *p)
1032 {
1033 int ret;
1034
1035 kprobe_ftrace_enabled--;
1036 if (kprobe_ftrace_enabled == 0) {
1037 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1038 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
1039 }
1040 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1041 (unsigned long)p->addr, 1, 0);
1042 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
1043 }
1044 #else /* !CONFIG_KPROBES_ON_FTRACE */
1045 #define prepare_kprobe(p) arch_prepare_kprobe(p)
1046 #define arm_kprobe_ftrace(p) do {} while (0)
1047 #define disarm_kprobe_ftrace(p) do {} while (0)
1048 #endif
1049
1050 /* Arm a kprobe with text_mutex */
1051 static void arm_kprobe(struct kprobe *kp)
1052 {
1053 if (unlikely(kprobe_ftrace(kp))) {
1054 arm_kprobe_ftrace(kp);
1055 return;
1056 }
1057 cpus_read_lock();
1058 mutex_lock(&text_mutex);
1059 __arm_kprobe(kp);
1060 mutex_unlock(&text_mutex);
1061 cpus_read_unlock();
1062 }
1063
1064 /* Disarm a kprobe with text_mutex */
1065 static void disarm_kprobe(struct kprobe *kp, bool reopt)
1066 {
1067 if (unlikely(kprobe_ftrace(kp))) {
1068 disarm_kprobe_ftrace(kp);
1069 return;
1070 }
1071
1072 cpus_read_lock();
1073 mutex_lock(&text_mutex);
1074 __disarm_kprobe(kp, reopt);
1075 mutex_unlock(&text_mutex);
1076 cpus_read_unlock();
1077 }
1078
1079 /*
1080 * Aggregate handlers for multiple kprobes support - these handlers
1081 * take care of invoking the individual kprobe handlers on p->list
1082 */
1083 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1084 {
1085 struct kprobe *kp;
1086
1087 list_for_each_entry_rcu(kp, &p->list, list) {
1088 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1089 set_kprobe_instance(kp);
1090 if (kp->pre_handler(kp, regs))
1091 return 1;
1092 }
1093 reset_kprobe_instance();
1094 }
1095 return 0;
1096 }
1097 NOKPROBE_SYMBOL(aggr_pre_handler);
1098
1099 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1100 unsigned long flags)
1101 {
1102 struct kprobe *kp;
1103
1104 list_for_each_entry_rcu(kp, &p->list, list) {
1105 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1106 set_kprobe_instance(kp);
1107 kp->post_handler(kp, regs, flags);
1108 reset_kprobe_instance();
1109 }
1110 }
1111 }
1112 NOKPROBE_SYMBOL(aggr_post_handler);
1113
1114 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1115 int trapnr)
1116 {
1117 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1118
1119 /*
1120 * if we faulted "during" the execution of a user specified
1121 * probe handler, invoke just that probe's fault handler
1122 */
1123 if (cur && cur->fault_handler) {
1124 if (cur->fault_handler(cur, regs, trapnr))
1125 return 1;
1126 }
1127 return 0;
1128 }
1129 NOKPROBE_SYMBOL(aggr_fault_handler);
1130
1131 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1132 {
1133 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1134 int ret = 0;
1135
1136 if (cur && cur->break_handler) {
1137 if (cur->break_handler(cur, regs))
1138 ret = 1;
1139 }
1140 reset_kprobe_instance();
1141 return ret;
1142 }
1143 NOKPROBE_SYMBOL(aggr_break_handler);
1144
1145 /* Walks the list and increments nmissed count for multiprobe case */
1146 void kprobes_inc_nmissed_count(struct kprobe *p)
1147 {
1148 struct kprobe *kp;
1149 if (!kprobe_aggrprobe(p)) {
1150 p->nmissed++;
1151 } else {
1152 list_for_each_entry_rcu(kp, &p->list, list)
1153 kp->nmissed++;
1154 }
1155 return;
1156 }
1157 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1158
1159 void recycle_rp_inst(struct kretprobe_instance *ri,
1160 struct hlist_head *head)
1161 {
1162 struct kretprobe *rp = ri->rp;
1163
1164 /* remove rp inst off the rprobe_inst_table */
1165 hlist_del(&ri->hlist);
1166 INIT_HLIST_NODE(&ri->hlist);
1167 if (likely(rp)) {
1168 raw_spin_lock(&rp->lock);
1169 hlist_add_head(&ri->hlist, &rp->free_instances);
1170 raw_spin_unlock(&rp->lock);
1171 } else
1172 /* Unregistering */
1173 hlist_add_head(&ri->hlist, head);
1174 }
1175 NOKPROBE_SYMBOL(recycle_rp_inst);
1176
1177 void kretprobe_hash_lock(struct task_struct *tsk,
1178 struct hlist_head **head, unsigned long *flags)
1179 __acquires(hlist_lock)
1180 {
1181 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1182 raw_spinlock_t *hlist_lock;
1183
1184 *head = &kretprobe_inst_table[hash];
1185 hlist_lock = kretprobe_table_lock_ptr(hash);
1186 raw_spin_lock_irqsave(hlist_lock, *flags);
1187 }
1188 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1189
1190 static void kretprobe_table_lock(unsigned long hash,
1191 unsigned long *flags)
1192 __acquires(hlist_lock)
1193 {
1194 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1195 raw_spin_lock_irqsave(hlist_lock, *flags);
1196 }
1197 NOKPROBE_SYMBOL(kretprobe_table_lock);
1198
1199 void kretprobe_hash_unlock(struct task_struct *tsk,
1200 unsigned long *flags)
1201 __releases(hlist_lock)
1202 {
1203 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1204 raw_spinlock_t *hlist_lock;
1205
1206 hlist_lock = kretprobe_table_lock_ptr(hash);
1207 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1208 }
1209 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1210
1211 static void kretprobe_table_unlock(unsigned long hash,
1212 unsigned long *flags)
1213 __releases(hlist_lock)
1214 {
1215 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1216 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1217 }
1218 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1219
1220 /*
1221 * This function is called from finish_task_switch when task tk becomes dead,
1222 * so that we can recycle any function-return probe instances associated
1223 * with this task. These left over instances represent probed functions
1224 * that have been called but will never return.
1225 */
1226 void kprobe_flush_task(struct task_struct *tk)
1227 {
1228 struct kretprobe_instance *ri;
1229 struct hlist_head *head, empty_rp;
1230 struct hlist_node *tmp;
1231 unsigned long hash, flags = 0;
1232
1233 if (unlikely(!kprobes_initialized))
1234 /* Early boot. kretprobe_table_locks not yet initialized. */
1235 return;
1236
1237 INIT_HLIST_HEAD(&empty_rp);
1238 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1239 head = &kretprobe_inst_table[hash];
1240 kretprobe_table_lock(hash, &flags);
1241 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1242 if (ri->task == tk)
1243 recycle_rp_inst(ri, &empty_rp);
1244 }
1245 kretprobe_table_unlock(hash, &flags);
1246 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1247 hlist_del(&ri->hlist);
1248 kfree(ri);
1249 }
1250 }
1251 NOKPROBE_SYMBOL(kprobe_flush_task);
1252
1253 static inline void free_rp_inst(struct kretprobe *rp)
1254 {
1255 struct kretprobe_instance *ri;
1256 struct hlist_node *next;
1257
1258 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1259 hlist_del(&ri->hlist);
1260 kfree(ri);
1261 }
1262 }
1263
1264 static void cleanup_rp_inst(struct kretprobe *rp)
1265 {
1266 unsigned long flags, hash;
1267 struct kretprobe_instance *ri;
1268 struct hlist_node *next;
1269 struct hlist_head *head;
1270
1271 /* No race here */
1272 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1273 kretprobe_table_lock(hash, &flags);
1274 head = &kretprobe_inst_table[hash];
1275 hlist_for_each_entry_safe(ri, next, head, hlist) {
1276 if (ri->rp == rp)
1277 ri->rp = NULL;
1278 }
1279 kretprobe_table_unlock(hash, &flags);
1280 }
1281 free_rp_inst(rp);
1282 }
1283 NOKPROBE_SYMBOL(cleanup_rp_inst);
1284
1285 /*
1286 * Add the new probe to ap->list. Fail if this is the
1287 * second jprobe at the address - two jprobes can't coexist
1288 */
1289 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1290 {
1291 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1292
1293 if (p->break_handler || p->post_handler)
1294 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1295
1296 if (p->break_handler) {
1297 if (ap->break_handler)
1298 return -EEXIST;
1299 list_add_tail_rcu(&p->list, &ap->list);
1300 ap->break_handler = aggr_break_handler;
1301 } else
1302 list_add_rcu(&p->list, &ap->list);
1303 if (p->post_handler && !ap->post_handler)
1304 ap->post_handler = aggr_post_handler;
1305
1306 return 0;
1307 }
1308
1309 /*
1310 * Fill in the required fields of the "manager kprobe". Replace the
1311 * earlier kprobe in the hlist with the manager kprobe
1312 */
1313 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1314 {
1315 /* Copy p's insn slot to ap */
1316 copy_kprobe(p, ap);
1317 flush_insn_slot(ap);
1318 ap->addr = p->addr;
1319 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1320 ap->pre_handler = aggr_pre_handler;
1321 ap->fault_handler = aggr_fault_handler;
1322 /* We don't care the kprobe which has gone. */
1323 if (p->post_handler && !kprobe_gone(p))
1324 ap->post_handler = aggr_post_handler;
1325 if (p->break_handler && !kprobe_gone(p))
1326 ap->break_handler = aggr_break_handler;
1327
1328 INIT_LIST_HEAD(&ap->list);
1329 INIT_HLIST_NODE(&ap->hlist);
1330
1331 list_add_rcu(&p->list, &ap->list);
1332 hlist_replace_rcu(&p->hlist, &ap->hlist);
1333 }
1334
1335 /*
1336 * This is the second or subsequent kprobe at the address - handle
1337 * the intricacies
1338 */
1339 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1340 {
1341 int ret = 0;
1342 struct kprobe *ap = orig_p;
1343
1344 cpus_read_lock();
1345
1346 /* For preparing optimization, jump_label_text_reserved() is called */
1347 jump_label_lock();
1348 mutex_lock(&text_mutex);
1349
1350 if (!kprobe_aggrprobe(orig_p)) {
1351 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1352 ap = alloc_aggr_kprobe(orig_p);
1353 if (!ap) {
1354 ret = -ENOMEM;
1355 goto out;
1356 }
1357 init_aggr_kprobe(ap, orig_p);
1358 } else if (kprobe_unused(ap)) {
1359 /* This probe is going to die. Rescue it */
1360 ret = reuse_unused_kprobe(ap);
1361 if (ret)
1362 goto out;
1363 }
1364
1365 if (kprobe_gone(ap)) {
1366 /*
1367 * Attempting to insert new probe at the same location that
1368 * had a probe in the module vaddr area which already
1369 * freed. So, the instruction slot has already been
1370 * released. We need a new slot for the new probe.
1371 */
1372 ret = arch_prepare_kprobe(ap);
1373 if (ret)
1374 /*
1375 * Even if fail to allocate new slot, don't need to
1376 * free aggr_probe. It will be used next time, or
1377 * freed by unregister_kprobe.
1378 */
1379 goto out;
1380
1381 /* Prepare optimized instructions if possible. */
1382 prepare_optimized_kprobe(ap);
1383
1384 /*
1385 * Clear gone flag to prevent allocating new slot again, and
1386 * set disabled flag because it is not armed yet.
1387 */
1388 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1389 | KPROBE_FLAG_DISABLED;
1390 }
1391
1392 /* Copy ap's insn slot to p */
1393 copy_kprobe(ap, p);
1394 ret = add_new_kprobe(ap, p);
1395
1396 out:
1397 mutex_unlock(&text_mutex);
1398 jump_label_unlock();
1399 cpus_read_unlock();
1400
1401 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1402 ap->flags &= ~KPROBE_FLAG_DISABLED;
1403 if (!kprobes_all_disarmed)
1404 /* Arm the breakpoint again. */
1405 arm_kprobe(ap);
1406 }
1407 return ret;
1408 }
1409
1410 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1411 {
1412 /* The __kprobes marked functions and entry code must not be probed */
1413 return addr >= (unsigned long)__kprobes_text_start &&
1414 addr < (unsigned long)__kprobes_text_end;
1415 }
1416
1417 bool within_kprobe_blacklist(unsigned long addr)
1418 {
1419 struct kprobe_blacklist_entry *ent;
1420
1421 if (arch_within_kprobe_blacklist(addr))
1422 return true;
1423 /*
1424 * If there exists a kprobe_blacklist, verify and
1425 * fail any probe registration in the prohibited area
1426 */
1427 list_for_each_entry(ent, &kprobe_blacklist, list) {
1428 if (addr >= ent->start_addr && addr < ent->end_addr)
1429 return true;
1430 }
1431
1432 return false;
1433 }
1434
1435 /*
1436 * If we have a symbol_name argument, look it up and add the offset field
1437 * to it. This way, we can specify a relative address to a symbol.
1438 * This returns encoded errors if it fails to look up symbol or invalid
1439 * combination of parameters.
1440 */
1441 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1442 const char *symbol_name, unsigned int offset)
1443 {
1444 if ((symbol_name && addr) || (!symbol_name && !addr))
1445 goto invalid;
1446
1447 if (symbol_name) {
1448 addr = kprobe_lookup_name(symbol_name, offset);
1449 if (!addr)
1450 return ERR_PTR(-ENOENT);
1451 }
1452
1453 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1454 if (addr)
1455 return addr;
1456
1457 invalid:
1458 return ERR_PTR(-EINVAL);
1459 }
1460
1461 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1462 {
1463 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1464 }
1465
1466 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1467 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1468 {
1469 struct kprobe *ap, *list_p;
1470
1471 ap = get_kprobe(p->addr);
1472 if (unlikely(!ap))
1473 return NULL;
1474
1475 if (p != ap) {
1476 list_for_each_entry_rcu(list_p, &ap->list, list)
1477 if (list_p == p)
1478 /* kprobe p is a valid probe */
1479 goto valid;
1480 return NULL;
1481 }
1482 valid:
1483 return ap;
1484 }
1485
1486 /* Return error if the kprobe is being re-registered */
1487 static inline int check_kprobe_rereg(struct kprobe *p)
1488 {
1489 int ret = 0;
1490
1491 mutex_lock(&kprobe_mutex);
1492 if (__get_valid_kprobe(p))
1493 ret = -EINVAL;
1494 mutex_unlock(&kprobe_mutex);
1495
1496 return ret;
1497 }
1498
1499 int __weak arch_check_ftrace_location(struct kprobe *p)
1500 {
1501 unsigned long ftrace_addr;
1502
1503 ftrace_addr = ftrace_location((unsigned long)p->addr);
1504 if (ftrace_addr) {
1505 #ifdef CONFIG_KPROBES_ON_FTRACE
1506 /* Given address is not on the instruction boundary */
1507 if ((unsigned long)p->addr != ftrace_addr)
1508 return -EILSEQ;
1509 p->flags |= KPROBE_FLAG_FTRACE;
1510 #else /* !CONFIG_KPROBES_ON_FTRACE */
1511 return -EINVAL;
1512 #endif
1513 }
1514 return 0;
1515 }
1516
1517 static int check_kprobe_address_safe(struct kprobe *p,
1518 struct module **probed_mod)
1519 {
1520 int ret;
1521
1522 ret = arch_check_ftrace_location(p);
1523 if (ret)
1524 return ret;
1525 jump_label_lock();
1526 preempt_disable();
1527
1528 /* Ensure it is not in reserved area nor out of text */
1529 if (!kernel_text_address((unsigned long) p->addr) ||
1530 within_kprobe_blacklist((unsigned long) p->addr) ||
1531 jump_label_text_reserved(p->addr, p->addr) ||
1532 find_bug((unsigned long)p->addr)) {
1533 ret = -EINVAL;
1534 goto out;
1535 }
1536
1537 /* Check if are we probing a module */
1538 *probed_mod = __module_text_address((unsigned long) p->addr);
1539 if (*probed_mod) {
1540 /*
1541 * We must hold a refcount of the probed module while updating
1542 * its code to prohibit unexpected unloading.
1543 */
1544 if (unlikely(!try_module_get(*probed_mod))) {
1545 ret = -ENOENT;
1546 goto out;
1547 }
1548
1549 /*
1550 * If the module freed .init.text, we couldn't insert
1551 * kprobes in there.
1552 */
1553 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1554 (*probed_mod)->state != MODULE_STATE_COMING) {
1555 module_put(*probed_mod);
1556 *probed_mod = NULL;
1557 ret = -ENOENT;
1558 }
1559 }
1560 out:
1561 preempt_enable();
1562 jump_label_unlock();
1563
1564 return ret;
1565 }
1566
1567 int register_kprobe(struct kprobe *p)
1568 {
1569 int ret;
1570 struct kprobe *old_p;
1571 struct module *probed_mod;
1572 kprobe_opcode_t *addr;
1573
1574 /* Adjust probe address from symbol */
1575 addr = kprobe_addr(p);
1576 if (IS_ERR(addr))
1577 return PTR_ERR(addr);
1578 p->addr = addr;
1579
1580 ret = check_kprobe_rereg(p);
1581 if (ret)
1582 return ret;
1583
1584 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1585 p->flags &= KPROBE_FLAG_DISABLED;
1586 p->nmissed = 0;
1587 INIT_LIST_HEAD(&p->list);
1588
1589 ret = check_kprobe_address_safe(p, &probed_mod);
1590 if (ret)
1591 return ret;
1592
1593 mutex_lock(&kprobe_mutex);
1594
1595 old_p = get_kprobe(p->addr);
1596 if (old_p) {
1597 /* Since this may unoptimize old_p, locking text_mutex. */
1598 ret = register_aggr_kprobe(old_p, p);
1599 goto out;
1600 }
1601
1602 cpus_read_lock();
1603 /* Prevent text modification */
1604 mutex_lock(&text_mutex);
1605 ret = prepare_kprobe(p);
1606 mutex_unlock(&text_mutex);
1607 cpus_read_unlock();
1608 if (ret)
1609 goto out;
1610
1611 INIT_HLIST_NODE(&p->hlist);
1612 hlist_add_head_rcu(&p->hlist,
1613 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1614
1615 if (!kprobes_all_disarmed && !kprobe_disabled(p))
1616 arm_kprobe(p);
1617
1618 /* Try to optimize kprobe */
1619 try_to_optimize_kprobe(p);
1620 out:
1621 mutex_unlock(&kprobe_mutex);
1622
1623 if (probed_mod)
1624 module_put(probed_mod);
1625
1626 return ret;
1627 }
1628 EXPORT_SYMBOL_GPL(register_kprobe);
1629
1630 /* Check if all probes on the aggrprobe are disabled */
1631 static int aggr_kprobe_disabled(struct kprobe *ap)
1632 {
1633 struct kprobe *kp;
1634
1635 list_for_each_entry_rcu(kp, &ap->list, list)
1636 if (!kprobe_disabled(kp))
1637 /*
1638 * There is an active probe on the list.
1639 * We can't disable this ap.
1640 */
1641 return 0;
1642
1643 return 1;
1644 }
1645
1646 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1647 static struct kprobe *__disable_kprobe(struct kprobe *p)
1648 {
1649 struct kprobe *orig_p;
1650
1651 /* Get an original kprobe for return */
1652 orig_p = __get_valid_kprobe(p);
1653 if (unlikely(orig_p == NULL))
1654 return NULL;
1655
1656 if (!kprobe_disabled(p)) {
1657 /* Disable probe if it is a child probe */
1658 if (p != orig_p)
1659 p->flags |= KPROBE_FLAG_DISABLED;
1660
1661 /* Try to disarm and disable this/parent probe */
1662 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1663 /*
1664 * If kprobes_all_disarmed is set, orig_p
1665 * should have already been disarmed, so
1666 * skip unneed disarming process.
1667 */
1668 if (!kprobes_all_disarmed)
1669 disarm_kprobe(orig_p, true);
1670 orig_p->flags |= KPROBE_FLAG_DISABLED;
1671 }
1672 }
1673
1674 return orig_p;
1675 }
1676
1677 /*
1678 * Unregister a kprobe without a scheduler synchronization.
1679 */
1680 static int __unregister_kprobe_top(struct kprobe *p)
1681 {
1682 struct kprobe *ap, *list_p;
1683
1684 /* Disable kprobe. This will disarm it if needed. */
1685 ap = __disable_kprobe(p);
1686 if (ap == NULL)
1687 return -EINVAL;
1688
1689 if (ap == p)
1690 /*
1691 * This probe is an independent(and non-optimized) kprobe
1692 * (not an aggrprobe). Remove from the hash list.
1693 */
1694 goto disarmed;
1695
1696 /* Following process expects this probe is an aggrprobe */
1697 WARN_ON(!kprobe_aggrprobe(ap));
1698
1699 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1700 /*
1701 * !disarmed could be happen if the probe is under delayed
1702 * unoptimizing.
1703 */
1704 goto disarmed;
1705 else {
1706 /* If disabling probe has special handlers, update aggrprobe */
1707 if (p->break_handler && !kprobe_gone(p))
1708 ap->break_handler = NULL;
1709 if (p->post_handler && !kprobe_gone(p)) {
1710 list_for_each_entry_rcu(list_p, &ap->list, list) {
1711 if ((list_p != p) && (list_p->post_handler))
1712 goto noclean;
1713 }
1714 ap->post_handler = NULL;
1715 }
1716 noclean:
1717 /*
1718 * Remove from the aggrprobe: this path will do nothing in
1719 * __unregister_kprobe_bottom().
1720 */
1721 list_del_rcu(&p->list);
1722 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1723 /*
1724 * Try to optimize this probe again, because post
1725 * handler may have been changed.
1726 */
1727 optimize_kprobe(ap);
1728 }
1729 return 0;
1730
1731 disarmed:
1732 BUG_ON(!kprobe_disarmed(ap));
1733 hlist_del_rcu(&ap->hlist);
1734 return 0;
1735 }
1736
1737 static void __unregister_kprobe_bottom(struct kprobe *p)
1738 {
1739 struct kprobe *ap;
1740
1741 if (list_empty(&p->list))
1742 /* This is an independent kprobe */
1743 arch_remove_kprobe(p);
1744 else if (list_is_singular(&p->list)) {
1745 /* This is the last child of an aggrprobe */
1746 ap = list_entry(p->list.next, struct kprobe, list);
1747 list_del(&p->list);
1748 free_aggr_kprobe(ap);
1749 }
1750 /* Otherwise, do nothing. */
1751 }
1752
1753 int register_kprobes(struct kprobe **kps, int num)
1754 {
1755 int i, ret = 0;
1756
1757 if (num <= 0)
1758 return -EINVAL;
1759 for (i = 0; i < num; i++) {
1760 ret = register_kprobe(kps[i]);
1761 if (ret < 0) {
1762 if (i > 0)
1763 unregister_kprobes(kps, i);
1764 break;
1765 }
1766 }
1767 return ret;
1768 }
1769 EXPORT_SYMBOL_GPL(register_kprobes);
1770
1771 void unregister_kprobe(struct kprobe *p)
1772 {
1773 unregister_kprobes(&p, 1);
1774 }
1775 EXPORT_SYMBOL_GPL(unregister_kprobe);
1776
1777 void unregister_kprobes(struct kprobe **kps, int num)
1778 {
1779 int i;
1780
1781 if (num <= 0)
1782 return;
1783 mutex_lock(&kprobe_mutex);
1784 for (i = 0; i < num; i++)
1785 if (__unregister_kprobe_top(kps[i]) < 0)
1786 kps[i]->addr = NULL;
1787 mutex_unlock(&kprobe_mutex);
1788
1789 synchronize_sched();
1790 for (i = 0; i < num; i++)
1791 if (kps[i]->addr)
1792 __unregister_kprobe_bottom(kps[i]);
1793 }
1794 EXPORT_SYMBOL_GPL(unregister_kprobes);
1795
1796 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1797 unsigned long val, void *data)
1798 {
1799 return NOTIFY_DONE;
1800 }
1801 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1802
1803 static struct notifier_block kprobe_exceptions_nb = {
1804 .notifier_call = kprobe_exceptions_notify,
1805 .priority = 0x7fffffff /* we need to be notified first */
1806 };
1807
1808 unsigned long __weak arch_deref_entry_point(void *entry)
1809 {
1810 return (unsigned long)entry;
1811 }
1812
1813 int register_jprobes(struct jprobe **jps, int num)
1814 {
1815 int ret = 0, i;
1816
1817 if (num <= 0)
1818 return -EINVAL;
1819
1820 for (i = 0; i < num; i++) {
1821 ret = register_jprobe(jps[i]);
1822
1823 if (ret < 0) {
1824 if (i > 0)
1825 unregister_jprobes(jps, i);
1826 break;
1827 }
1828 }
1829
1830 return ret;
1831 }
1832 EXPORT_SYMBOL_GPL(register_jprobes);
1833
1834 int register_jprobe(struct jprobe *jp)
1835 {
1836 unsigned long addr, offset;
1837 struct kprobe *kp = &jp->kp;
1838
1839 /*
1840 * Verify probepoint as well as the jprobe handler are
1841 * valid function entry points.
1842 */
1843 addr = arch_deref_entry_point(jp->entry);
1844
1845 if (kallsyms_lookup_size_offset(addr, NULL, &offset) && offset == 0 &&
1846 kprobe_on_func_entry(kp->addr, kp->symbol_name, kp->offset)) {
1847 kp->pre_handler = setjmp_pre_handler;
1848 kp->break_handler = longjmp_break_handler;
1849 return register_kprobe(kp);
1850 }
1851
1852 return -EINVAL;
1853 }
1854 EXPORT_SYMBOL_GPL(register_jprobe);
1855
1856 void unregister_jprobe(struct jprobe *jp)
1857 {
1858 unregister_jprobes(&jp, 1);
1859 }
1860 EXPORT_SYMBOL_GPL(unregister_jprobe);
1861
1862 void unregister_jprobes(struct jprobe **jps, int num)
1863 {
1864 int i;
1865
1866 if (num <= 0)
1867 return;
1868 mutex_lock(&kprobe_mutex);
1869 for (i = 0; i < num; i++)
1870 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1871 jps[i]->kp.addr = NULL;
1872 mutex_unlock(&kprobe_mutex);
1873
1874 synchronize_sched();
1875 for (i = 0; i < num; i++) {
1876 if (jps[i]->kp.addr)
1877 __unregister_kprobe_bottom(&jps[i]->kp);
1878 }
1879 }
1880 EXPORT_SYMBOL_GPL(unregister_jprobes);
1881
1882 #ifdef CONFIG_KRETPROBES
1883 /*
1884 * This kprobe pre_handler is registered with every kretprobe. When probe
1885 * hits it will set up the return probe.
1886 */
1887 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1888 {
1889 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1890 unsigned long hash, flags = 0;
1891 struct kretprobe_instance *ri;
1892
1893 /*
1894 * To avoid deadlocks, prohibit return probing in NMI contexts,
1895 * just skip the probe and increase the (inexact) 'nmissed'
1896 * statistical counter, so that the user is informed that
1897 * something happened:
1898 */
1899 if (unlikely(in_nmi())) {
1900 rp->nmissed++;
1901 return 0;
1902 }
1903
1904 /* TODO: consider to only swap the RA after the last pre_handler fired */
1905 hash = hash_ptr(current, KPROBE_HASH_BITS);
1906 raw_spin_lock_irqsave(&rp->lock, flags);
1907 if (!hlist_empty(&rp->free_instances)) {
1908 ri = hlist_entry(rp->free_instances.first,
1909 struct kretprobe_instance, hlist);
1910 hlist_del(&ri->hlist);
1911 raw_spin_unlock_irqrestore(&rp->lock, flags);
1912
1913 ri->rp = rp;
1914 ri->task = current;
1915
1916 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1917 raw_spin_lock_irqsave(&rp->lock, flags);
1918 hlist_add_head(&ri->hlist, &rp->free_instances);
1919 raw_spin_unlock_irqrestore(&rp->lock, flags);
1920 return 0;
1921 }
1922
1923 arch_prepare_kretprobe(ri, regs);
1924
1925 /* XXX(hch): why is there no hlist_move_head? */
1926 INIT_HLIST_NODE(&ri->hlist);
1927 kretprobe_table_lock(hash, &flags);
1928 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1929 kretprobe_table_unlock(hash, &flags);
1930 } else {
1931 rp->nmissed++;
1932 raw_spin_unlock_irqrestore(&rp->lock, flags);
1933 }
1934 return 0;
1935 }
1936 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1937
1938 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1939 {
1940 return !offset;
1941 }
1942
1943 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1944 {
1945 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1946
1947 if (IS_ERR(kp_addr))
1948 return false;
1949
1950 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1951 !arch_kprobe_on_func_entry(offset))
1952 return false;
1953
1954 return true;
1955 }
1956
1957 int register_kretprobe(struct kretprobe *rp)
1958 {
1959 int ret = 0;
1960 struct kretprobe_instance *inst;
1961 int i;
1962 void *addr;
1963
1964 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1965 return -EINVAL;
1966
1967 if (kretprobe_blacklist_size) {
1968 addr = kprobe_addr(&rp->kp);
1969 if (IS_ERR(addr))
1970 return PTR_ERR(addr);
1971
1972 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1973 if (kretprobe_blacklist[i].addr == addr)
1974 return -EINVAL;
1975 }
1976 }
1977
1978 rp->kp.pre_handler = pre_handler_kretprobe;
1979 rp->kp.post_handler = NULL;
1980 rp->kp.fault_handler = NULL;
1981 rp->kp.break_handler = NULL;
1982
1983 /* Pre-allocate memory for max kretprobe instances */
1984 if (rp->maxactive <= 0) {
1985 #ifdef CONFIG_PREEMPT
1986 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1987 #else
1988 rp->maxactive = num_possible_cpus();
1989 #endif
1990 }
1991 raw_spin_lock_init(&rp->lock);
1992 INIT_HLIST_HEAD(&rp->free_instances);
1993 for (i = 0; i < rp->maxactive; i++) {
1994 inst = kmalloc(sizeof(struct kretprobe_instance) +
1995 rp->data_size, GFP_KERNEL);
1996 if (inst == NULL) {
1997 free_rp_inst(rp);
1998 return -ENOMEM;
1999 }
2000 INIT_HLIST_NODE(&inst->hlist);
2001 hlist_add_head(&inst->hlist, &rp->free_instances);
2002 }
2003
2004 rp->nmissed = 0;
2005 /* Establish function entry probe point */
2006 ret = register_kprobe(&rp->kp);
2007 if (ret != 0)
2008 free_rp_inst(rp);
2009 return ret;
2010 }
2011 EXPORT_SYMBOL_GPL(register_kretprobe);
2012
2013 int register_kretprobes(struct kretprobe **rps, int num)
2014 {
2015 int ret = 0, i;
2016
2017 if (num <= 0)
2018 return -EINVAL;
2019 for (i = 0; i < num; i++) {
2020 ret = register_kretprobe(rps[i]);
2021 if (ret < 0) {
2022 if (i > 0)
2023 unregister_kretprobes(rps, i);
2024 break;
2025 }
2026 }
2027 return ret;
2028 }
2029 EXPORT_SYMBOL_GPL(register_kretprobes);
2030
2031 void unregister_kretprobe(struct kretprobe *rp)
2032 {
2033 unregister_kretprobes(&rp, 1);
2034 }
2035 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2036
2037 void unregister_kretprobes(struct kretprobe **rps, int num)
2038 {
2039 int i;
2040
2041 if (num <= 0)
2042 return;
2043 mutex_lock(&kprobe_mutex);
2044 for (i = 0; i < num; i++)
2045 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2046 rps[i]->kp.addr = NULL;
2047 mutex_unlock(&kprobe_mutex);
2048
2049 synchronize_sched();
2050 for (i = 0; i < num; i++) {
2051 if (rps[i]->kp.addr) {
2052 __unregister_kprobe_bottom(&rps[i]->kp);
2053 cleanup_rp_inst(rps[i]);
2054 }
2055 }
2056 }
2057 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2058
2059 #else /* CONFIG_KRETPROBES */
2060 int register_kretprobe(struct kretprobe *rp)
2061 {
2062 return -ENOSYS;
2063 }
2064 EXPORT_SYMBOL_GPL(register_kretprobe);
2065
2066 int register_kretprobes(struct kretprobe **rps, int num)
2067 {
2068 return -ENOSYS;
2069 }
2070 EXPORT_SYMBOL_GPL(register_kretprobes);
2071
2072 void unregister_kretprobe(struct kretprobe *rp)
2073 {
2074 }
2075 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2076
2077 void unregister_kretprobes(struct kretprobe **rps, int num)
2078 {
2079 }
2080 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2081
2082 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2083 {
2084 return 0;
2085 }
2086 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2087
2088 #endif /* CONFIG_KRETPROBES */
2089
2090 /* Set the kprobe gone and remove its instruction buffer. */
2091 static void kill_kprobe(struct kprobe *p)
2092 {
2093 struct kprobe *kp;
2094
2095 p->flags |= KPROBE_FLAG_GONE;
2096 if (kprobe_aggrprobe(p)) {
2097 /*
2098 * If this is an aggr_kprobe, we have to list all the
2099 * chained probes and mark them GONE.
2100 */
2101 list_for_each_entry_rcu(kp, &p->list, list)
2102 kp->flags |= KPROBE_FLAG_GONE;
2103 p->post_handler = NULL;
2104 p->break_handler = NULL;
2105 kill_optimized_kprobe(p);
2106 }
2107 /*
2108 * Here, we can remove insn_slot safely, because no thread calls
2109 * the original probed function (which will be freed soon) any more.
2110 */
2111 arch_remove_kprobe(p);
2112 }
2113
2114 /* Disable one kprobe */
2115 int disable_kprobe(struct kprobe *kp)
2116 {
2117 int ret = 0;
2118
2119 mutex_lock(&kprobe_mutex);
2120
2121 /* Disable this kprobe */
2122 if (__disable_kprobe(kp) == NULL)
2123 ret = -EINVAL;
2124
2125 mutex_unlock(&kprobe_mutex);
2126 return ret;
2127 }
2128 EXPORT_SYMBOL_GPL(disable_kprobe);
2129
2130 /* Enable one kprobe */
2131 int enable_kprobe(struct kprobe *kp)
2132 {
2133 int ret = 0;
2134 struct kprobe *p;
2135
2136 mutex_lock(&kprobe_mutex);
2137
2138 /* Check whether specified probe is valid. */
2139 p = __get_valid_kprobe(kp);
2140 if (unlikely(p == NULL)) {
2141 ret = -EINVAL;
2142 goto out;
2143 }
2144
2145 if (kprobe_gone(kp)) {
2146 /* This kprobe has gone, we couldn't enable it. */
2147 ret = -EINVAL;
2148 goto out;
2149 }
2150
2151 if (p != kp)
2152 kp->flags &= ~KPROBE_FLAG_DISABLED;
2153
2154 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2155 p->flags &= ~KPROBE_FLAG_DISABLED;
2156 arm_kprobe(p);
2157 }
2158 out:
2159 mutex_unlock(&kprobe_mutex);
2160 return ret;
2161 }
2162 EXPORT_SYMBOL_GPL(enable_kprobe);
2163
2164 void dump_kprobe(struct kprobe *kp)
2165 {
2166 printk(KERN_WARNING "Dumping kprobe:\n");
2167 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2168 kp->symbol_name, kp->addr, kp->offset);
2169 }
2170 NOKPROBE_SYMBOL(dump_kprobe);
2171
2172 /*
2173 * Lookup and populate the kprobe_blacklist.
2174 *
2175 * Unlike the kretprobe blacklist, we'll need to determine
2176 * the range of addresses that belong to the said functions,
2177 * since a kprobe need not necessarily be at the beginning
2178 * of a function.
2179 */
2180 static int __init populate_kprobe_blacklist(unsigned long *start,
2181 unsigned long *end)
2182 {
2183 unsigned long *iter;
2184 struct kprobe_blacklist_entry *ent;
2185 unsigned long entry, offset = 0, size = 0;
2186
2187 for (iter = start; iter < end; iter++) {
2188 entry = arch_deref_entry_point((void *)*iter);
2189
2190 if (!kernel_text_address(entry) ||
2191 !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2192 pr_err("Failed to find blacklist at %p\n",
2193 (void *)entry);
2194 continue;
2195 }
2196
2197 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2198 if (!ent)
2199 return -ENOMEM;
2200 ent->start_addr = entry;
2201 ent->end_addr = entry + size;
2202 INIT_LIST_HEAD(&ent->list);
2203 list_add_tail(&ent->list, &kprobe_blacklist);
2204 }
2205 return 0;
2206 }
2207
2208 /* Module notifier call back, checking kprobes on the module */
2209 static int kprobes_module_callback(struct notifier_block *nb,
2210 unsigned long val, void *data)
2211 {
2212 struct module *mod = data;
2213 struct hlist_head *head;
2214 struct kprobe *p;
2215 unsigned int i;
2216 int checkcore = (val == MODULE_STATE_GOING);
2217
2218 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2219 return NOTIFY_DONE;
2220
2221 /*
2222 * When MODULE_STATE_GOING was notified, both of module .text and
2223 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2224 * notified, only .init.text section would be freed. We need to
2225 * disable kprobes which have been inserted in the sections.
2226 */
2227 mutex_lock(&kprobe_mutex);
2228 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2229 head = &kprobe_table[i];
2230 hlist_for_each_entry_rcu(p, head, hlist)
2231 if (within_module_init((unsigned long)p->addr, mod) ||
2232 (checkcore &&
2233 within_module_core((unsigned long)p->addr, mod))) {
2234 /*
2235 * The vaddr this probe is installed will soon
2236 * be vfreed buy not synced to disk. Hence,
2237 * disarming the breakpoint isn't needed.
2238 *
2239 * Note, this will also move any optimized probes
2240 * that are pending to be removed from their
2241 * corresponding lists to the freeing_list and
2242 * will not be touched by the delayed
2243 * kprobe_optimizer work handler.
2244 */
2245 kill_kprobe(p);
2246 }
2247 }
2248 mutex_unlock(&kprobe_mutex);
2249 return NOTIFY_DONE;
2250 }
2251
2252 static struct notifier_block kprobe_module_nb = {
2253 .notifier_call = kprobes_module_callback,
2254 .priority = 0
2255 };
2256
2257 /* Markers of _kprobe_blacklist section */
2258 extern unsigned long __start_kprobe_blacklist[];
2259 extern unsigned long __stop_kprobe_blacklist[];
2260
2261 static int __init init_kprobes(void)
2262 {
2263 int i, err = 0;
2264
2265 /* FIXME allocate the probe table, currently defined statically */
2266 /* initialize all list heads */
2267 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2268 INIT_HLIST_HEAD(&kprobe_table[i]);
2269 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2270 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2271 }
2272
2273 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2274 __stop_kprobe_blacklist);
2275 if (err) {
2276 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2277 pr_err("Please take care of using kprobes.\n");
2278 }
2279
2280 if (kretprobe_blacklist_size) {
2281 /* lookup the function address from its name */
2282 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2283 kretprobe_blacklist[i].addr =
2284 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2285 if (!kretprobe_blacklist[i].addr)
2286 printk("kretprobe: lookup failed: %s\n",
2287 kretprobe_blacklist[i].name);
2288 }
2289 }
2290
2291 #if defined(CONFIG_OPTPROBES)
2292 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2293 /* Init kprobe_optinsn_slots */
2294 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2295 #endif
2296 /* By default, kprobes can be optimized */
2297 kprobes_allow_optimization = true;
2298 #endif
2299
2300 /* By default, kprobes are armed */
2301 kprobes_all_disarmed = false;
2302
2303 err = arch_init_kprobes();
2304 if (!err)
2305 err = register_die_notifier(&kprobe_exceptions_nb);
2306 if (!err)
2307 err = register_module_notifier(&kprobe_module_nb);
2308
2309 kprobes_initialized = (err == 0);
2310
2311 if (!err)
2312 init_test_probes();
2313 return err;
2314 }
2315
2316 #ifdef CONFIG_DEBUG_FS
2317 static void report_probe(struct seq_file *pi, struct kprobe *p,
2318 const char *sym, int offset, char *modname, struct kprobe *pp)
2319 {
2320 char *kprobe_type;
2321
2322 if (p->pre_handler == pre_handler_kretprobe)
2323 kprobe_type = "r";
2324 else if (p->pre_handler == setjmp_pre_handler)
2325 kprobe_type = "j";
2326 else
2327 kprobe_type = "k";
2328
2329 if (sym)
2330 seq_printf(pi, "%p %s %s+0x%x %s ",
2331 p->addr, kprobe_type, sym, offset,
2332 (modname ? modname : " "));
2333 else
2334 seq_printf(pi, "%p %s %p ",
2335 p->addr, kprobe_type, p->addr);
2336
2337 if (!pp)
2338 pp = p;
2339 seq_printf(pi, "%s%s%s%s\n",
2340 (kprobe_gone(p) ? "[GONE]" : ""),
2341 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2342 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2343 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2344 }
2345
2346 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2347 {
2348 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2349 }
2350
2351 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2352 {
2353 (*pos)++;
2354 if (*pos >= KPROBE_TABLE_SIZE)
2355 return NULL;
2356 return pos;
2357 }
2358
2359 static void kprobe_seq_stop(struct seq_file *f, void *v)
2360 {
2361 /* Nothing to do */
2362 }
2363
2364 static int show_kprobe_addr(struct seq_file *pi, void *v)
2365 {
2366 struct hlist_head *head;
2367 struct kprobe *p, *kp;
2368 const char *sym = NULL;
2369 unsigned int i = *(loff_t *) v;
2370 unsigned long offset = 0;
2371 char *modname, namebuf[KSYM_NAME_LEN];
2372
2373 head = &kprobe_table[i];
2374 preempt_disable();
2375 hlist_for_each_entry_rcu(p, head, hlist) {
2376 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2377 &offset, &modname, namebuf);
2378 if (kprobe_aggrprobe(p)) {
2379 list_for_each_entry_rcu(kp, &p->list, list)
2380 report_probe(pi, kp, sym, offset, modname, p);
2381 } else
2382 report_probe(pi, p, sym, offset, modname, NULL);
2383 }
2384 preempt_enable();
2385 return 0;
2386 }
2387
2388 static const struct seq_operations kprobes_seq_ops = {
2389 .start = kprobe_seq_start,
2390 .next = kprobe_seq_next,
2391 .stop = kprobe_seq_stop,
2392 .show = show_kprobe_addr
2393 };
2394
2395 static int kprobes_open(struct inode *inode, struct file *filp)
2396 {
2397 return seq_open(filp, &kprobes_seq_ops);
2398 }
2399
2400 static const struct file_operations debugfs_kprobes_operations = {
2401 .open = kprobes_open,
2402 .read = seq_read,
2403 .llseek = seq_lseek,
2404 .release = seq_release,
2405 };
2406
2407 /* kprobes/blacklist -- shows which functions can not be probed */
2408 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2409 {
2410 return seq_list_start(&kprobe_blacklist, *pos);
2411 }
2412
2413 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2414 {
2415 return seq_list_next(v, &kprobe_blacklist, pos);
2416 }
2417
2418 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2419 {
2420 struct kprobe_blacklist_entry *ent =
2421 list_entry(v, struct kprobe_blacklist_entry, list);
2422
2423 seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr,
2424 (void *)ent->end_addr, (void *)ent->start_addr);
2425 return 0;
2426 }
2427
2428 static const struct seq_operations kprobe_blacklist_seq_ops = {
2429 .start = kprobe_blacklist_seq_start,
2430 .next = kprobe_blacklist_seq_next,
2431 .stop = kprobe_seq_stop, /* Reuse void function */
2432 .show = kprobe_blacklist_seq_show,
2433 };
2434
2435 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2436 {
2437 return seq_open(filp, &kprobe_blacklist_seq_ops);
2438 }
2439
2440 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2441 .open = kprobe_blacklist_open,
2442 .read = seq_read,
2443 .llseek = seq_lseek,
2444 .release = seq_release,
2445 };
2446
2447 static void arm_all_kprobes(void)
2448 {
2449 struct hlist_head *head;
2450 struct kprobe *p;
2451 unsigned int i;
2452
2453 mutex_lock(&kprobe_mutex);
2454
2455 /* If kprobes are armed, just return */
2456 if (!kprobes_all_disarmed)
2457 goto already_enabled;
2458
2459 /*
2460 * optimize_kprobe() called by arm_kprobe() checks
2461 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2462 * arm_kprobe.
2463 */
2464 kprobes_all_disarmed = false;
2465 /* Arming kprobes doesn't optimize kprobe itself */
2466 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2467 head = &kprobe_table[i];
2468 hlist_for_each_entry_rcu(p, head, hlist)
2469 if (!kprobe_disabled(p))
2470 arm_kprobe(p);
2471 }
2472
2473 printk(KERN_INFO "Kprobes globally enabled\n");
2474
2475 already_enabled:
2476 mutex_unlock(&kprobe_mutex);
2477 return;
2478 }
2479
2480 static void disarm_all_kprobes(void)
2481 {
2482 struct hlist_head *head;
2483 struct kprobe *p;
2484 unsigned int i;
2485
2486 mutex_lock(&kprobe_mutex);
2487
2488 /* If kprobes are already disarmed, just return */
2489 if (kprobes_all_disarmed) {
2490 mutex_unlock(&kprobe_mutex);
2491 return;
2492 }
2493
2494 kprobes_all_disarmed = true;
2495 printk(KERN_INFO "Kprobes globally disabled\n");
2496
2497 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2498 head = &kprobe_table[i];
2499 hlist_for_each_entry_rcu(p, head, hlist) {
2500 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2501 disarm_kprobe(p, false);
2502 }
2503 }
2504 mutex_unlock(&kprobe_mutex);
2505
2506 /* Wait for disarming all kprobes by optimizer */
2507 wait_for_kprobe_optimizer();
2508 }
2509
2510 /*
2511 * XXX: The debugfs bool file interface doesn't allow for callbacks
2512 * when the bool state is switched. We can reuse that facility when
2513 * available
2514 */
2515 static ssize_t read_enabled_file_bool(struct file *file,
2516 char __user *user_buf, size_t count, loff_t *ppos)
2517 {
2518 char buf[3];
2519
2520 if (!kprobes_all_disarmed)
2521 buf[0] = '1';
2522 else
2523 buf[0] = '0';
2524 buf[1] = '\n';
2525 buf[2] = 0x00;
2526 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2527 }
2528
2529 static ssize_t write_enabled_file_bool(struct file *file,
2530 const char __user *user_buf, size_t count, loff_t *ppos)
2531 {
2532 char buf[32];
2533 size_t buf_size;
2534
2535 buf_size = min(count, (sizeof(buf)-1));
2536 if (copy_from_user(buf, user_buf, buf_size))
2537 return -EFAULT;
2538
2539 buf[buf_size] = '\0';
2540 switch (buf[0]) {
2541 case 'y':
2542 case 'Y':
2543 case '1':
2544 arm_all_kprobes();
2545 break;
2546 case 'n':
2547 case 'N':
2548 case '0':
2549 disarm_all_kprobes();
2550 break;
2551 default:
2552 return -EINVAL;
2553 }
2554
2555 return count;
2556 }
2557
2558 static const struct file_operations fops_kp = {
2559 .read = read_enabled_file_bool,
2560 .write = write_enabled_file_bool,
2561 .llseek = default_llseek,
2562 };
2563
2564 static int __init debugfs_kprobe_init(void)
2565 {
2566 struct dentry *dir, *file;
2567 unsigned int value = 1;
2568
2569 dir = debugfs_create_dir("kprobes", NULL);
2570 if (!dir)
2571 return -ENOMEM;
2572
2573 file = debugfs_create_file("list", 0400, dir, NULL,
2574 &debugfs_kprobes_operations);
2575 if (!file)
2576 goto error;
2577
2578 file = debugfs_create_file("enabled", 0600, dir,
2579 &value, &fops_kp);
2580 if (!file)
2581 goto error;
2582
2583 file = debugfs_create_file("blacklist", 0400, dir, NULL,
2584 &debugfs_kprobe_blacklist_ops);
2585 if (!file)
2586 goto error;
2587
2588 return 0;
2589
2590 error:
2591 debugfs_remove(dir);
2592 return -ENOMEM;
2593 }
2594
2595 late_initcall(debugfs_kprobe_init);
2596 #endif /* CONFIG_DEBUG_FS */
2597
2598 module_init(init_kprobes);
2599
2600 /* defined in arch/.../kernel/kprobes.c */
2601 EXPORT_SYMBOL_GPL(jprobe_return);