]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - kernel/kprobes.c
kretprobe: Avoid re-registration of the same kretprobe earlier
[thirdparty/kernel/stable.git] / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 static int kprobes_initialized;
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64
65 /* NOTE: change this value only with kprobe_mutex held */
66 static bool kprobes_all_disarmed;
67
68 /* This protects kprobe_table and optimizing_list */
69 static DEFINE_MUTEX(kprobe_mutex);
70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71 static struct {
72 raw_spinlock_t lock ____cacheline_aligned_in_smp;
73 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
74
75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76 unsigned int __unused)
77 {
78 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79 }
80
81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82 {
83 return &(kretprobe_table_locks[hash].lock);
84 }
85
86 /* Blacklist -- list of struct kprobe_blacklist_entry */
87 static LIST_HEAD(kprobe_blacklist);
88
89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90 /*
91 * kprobe->ainsn.insn points to the copy of the instruction to be
92 * single-stepped. x86_64, POWER4 and above have no-exec support and
93 * stepping on the instruction on a vmalloced/kmalloced/data page
94 * is a recipe for disaster
95 */
96 struct kprobe_insn_page {
97 struct list_head list;
98 kprobe_opcode_t *insns; /* Page of instruction slots */
99 struct kprobe_insn_cache *cache;
100 int nused;
101 int ngarbage;
102 char slot_used[];
103 };
104
105 #define KPROBE_INSN_PAGE_SIZE(slots) \
106 (offsetof(struct kprobe_insn_page, slot_used) + \
107 (sizeof(char) * (slots)))
108
109 static int slots_per_page(struct kprobe_insn_cache *c)
110 {
111 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112 }
113
114 enum kprobe_slot_state {
115 SLOT_CLEAN = 0,
116 SLOT_DIRTY = 1,
117 SLOT_USED = 2,
118 };
119
120 static void *alloc_insn_page(void)
121 {
122 return module_alloc(PAGE_SIZE);
123 }
124
125 void __weak free_insn_page(void *page)
126 {
127 module_memfree(page);
128 }
129
130 struct kprobe_insn_cache kprobe_insn_slots = {
131 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132 .alloc = alloc_insn_page,
133 .free = free_insn_page,
134 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 .insn_size = MAX_INSN_SIZE,
136 .nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140 /**
141 * __get_insn_slot() - Find a slot on an executable page for an instruction.
142 * We allocate an executable page if there's no room on existing ones.
143 */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146 struct kprobe_insn_page *kip;
147 kprobe_opcode_t *slot = NULL;
148
149 /* Since the slot array is not protected by rcu, we need a mutex */
150 mutex_lock(&c->mutex);
151 retry:
152 rcu_read_lock();
153 list_for_each_entry_rcu(kip, &c->pages, list) {
154 if (kip->nused < slots_per_page(c)) {
155 int i;
156 for (i = 0; i < slots_per_page(c); i++) {
157 if (kip->slot_used[i] == SLOT_CLEAN) {
158 kip->slot_used[i] = SLOT_USED;
159 kip->nused++;
160 slot = kip->insns + (i * c->insn_size);
161 rcu_read_unlock();
162 goto out;
163 }
164 }
165 /* kip->nused is broken. Fix it. */
166 kip->nused = slots_per_page(c);
167 WARN_ON(1);
168 }
169 }
170 rcu_read_unlock();
171
172 /* If there are any garbage slots, collect it and try again. */
173 if (c->nr_garbage && collect_garbage_slots(c) == 0)
174 goto retry;
175
176 /* All out of space. Need to allocate a new page. */
177 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178 if (!kip)
179 goto out;
180
181 /*
182 * Use module_alloc so this page is within +/- 2GB of where the
183 * kernel image and loaded module images reside. This is required
184 * so x86_64 can correctly handle the %rip-relative fixups.
185 */
186 kip->insns = c->alloc();
187 if (!kip->insns) {
188 kfree(kip);
189 goto out;
190 }
191 INIT_LIST_HEAD(&kip->list);
192 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193 kip->slot_used[0] = SLOT_USED;
194 kip->nused = 1;
195 kip->ngarbage = 0;
196 kip->cache = c;
197 list_add_rcu(&kip->list, &c->pages);
198 slot = kip->insns;
199 out:
200 mutex_unlock(&c->mutex);
201 return slot;
202 }
203
204 /* Return 1 if all garbages are collected, otherwise 0. */
205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207 kip->slot_used[idx] = SLOT_CLEAN;
208 kip->nused--;
209 if (kip->nused == 0) {
210 /*
211 * Page is no longer in use. Free it unless
212 * it's the last one. We keep the last one
213 * so as not to have to set it up again the
214 * next time somebody inserts a probe.
215 */
216 if (!list_is_singular(&kip->list)) {
217 list_del_rcu(&kip->list);
218 synchronize_rcu();
219 kip->cache->free(kip->insns);
220 kfree(kip);
221 }
222 return 1;
223 }
224 return 0;
225 }
226
227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
228 {
229 struct kprobe_insn_page *kip, *next;
230
231 /* Ensure no-one is interrupted on the garbages */
232 synchronize_sched();
233
234 list_for_each_entry_safe(kip, next, &c->pages, list) {
235 int i;
236 if (kip->ngarbage == 0)
237 continue;
238 kip->ngarbage = 0; /* we will collect all garbages */
239 for (i = 0; i < slots_per_page(c); i++) {
240 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241 break;
242 }
243 }
244 c->nr_garbage = 0;
245 return 0;
246 }
247
248 void __free_insn_slot(struct kprobe_insn_cache *c,
249 kprobe_opcode_t *slot, int dirty)
250 {
251 struct kprobe_insn_page *kip;
252 long idx;
253
254 mutex_lock(&c->mutex);
255 rcu_read_lock();
256 list_for_each_entry_rcu(kip, &c->pages, list) {
257 idx = ((long)slot - (long)kip->insns) /
258 (c->insn_size * sizeof(kprobe_opcode_t));
259 if (idx >= 0 && idx < slots_per_page(c))
260 goto out;
261 }
262 /* Could not find this slot. */
263 WARN_ON(1);
264 kip = NULL;
265 out:
266 rcu_read_unlock();
267 /* Mark and sweep: this may sleep */
268 if (kip) {
269 /* Check double free */
270 WARN_ON(kip->slot_used[idx] != SLOT_USED);
271 if (dirty) {
272 kip->slot_used[idx] = SLOT_DIRTY;
273 kip->ngarbage++;
274 if (++c->nr_garbage > slots_per_page(c))
275 collect_garbage_slots(c);
276 } else {
277 collect_one_slot(kip, idx);
278 }
279 }
280 mutex_unlock(&c->mutex);
281 }
282
283 /*
284 * Check given address is on the page of kprobe instruction slots.
285 * This will be used for checking whether the address on a stack
286 * is on a text area or not.
287 */
288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289 {
290 struct kprobe_insn_page *kip;
291 bool ret = false;
292
293 rcu_read_lock();
294 list_for_each_entry_rcu(kip, &c->pages, list) {
295 if (addr >= (unsigned long)kip->insns &&
296 addr < (unsigned long)kip->insns + PAGE_SIZE) {
297 ret = true;
298 break;
299 }
300 }
301 rcu_read_unlock();
302
303 return ret;
304 }
305
306 #ifdef CONFIG_OPTPROBES
307 /* For optimized_kprobe buffer */
308 struct kprobe_insn_cache kprobe_optinsn_slots = {
309 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310 .alloc = alloc_insn_page,
311 .free = free_insn_page,
312 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313 /* .insn_size is initialized later */
314 .nr_garbage = 0,
315 };
316 #endif
317 #endif
318
319 /* We have preemption disabled.. so it is safe to use __ versions */
320 static inline void set_kprobe_instance(struct kprobe *kp)
321 {
322 __this_cpu_write(kprobe_instance, kp);
323 }
324
325 static inline void reset_kprobe_instance(void)
326 {
327 __this_cpu_write(kprobe_instance, NULL);
328 }
329
330 /*
331 * This routine is called either:
332 * - under the kprobe_mutex - during kprobe_[un]register()
333 * OR
334 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
335 */
336 struct kprobe *get_kprobe(void *addr)
337 {
338 struct hlist_head *head;
339 struct kprobe *p;
340
341 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342 hlist_for_each_entry_rcu(p, head, hlist) {
343 if (p->addr == addr)
344 return p;
345 }
346
347 return NULL;
348 }
349 NOKPROBE_SYMBOL(get_kprobe);
350
351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352
353 /* Return true if the kprobe is an aggregator */
354 static inline int kprobe_aggrprobe(struct kprobe *p)
355 {
356 return p->pre_handler == aggr_pre_handler;
357 }
358
359 /* Return true(!0) if the kprobe is unused */
360 static inline int kprobe_unused(struct kprobe *p)
361 {
362 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363 list_empty(&p->list);
364 }
365
366 /*
367 * Keep all fields in the kprobe consistent
368 */
369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370 {
371 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373 }
374
375 #ifdef CONFIG_OPTPROBES
376 /* NOTE: change this value only with kprobe_mutex held */
377 static bool kprobes_allow_optimization;
378
379 /*
380 * Call all pre_handler on the list, but ignores its return value.
381 * This must be called from arch-dep optimized caller.
382 */
383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384 {
385 struct kprobe *kp;
386
387 list_for_each_entry_rcu(kp, &p->list, list) {
388 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389 set_kprobe_instance(kp);
390 kp->pre_handler(kp, regs);
391 }
392 reset_kprobe_instance();
393 }
394 }
395 NOKPROBE_SYMBOL(opt_pre_handler);
396
397 /* Free optimized instructions and optimized_kprobe */
398 static void free_aggr_kprobe(struct kprobe *p)
399 {
400 struct optimized_kprobe *op;
401
402 op = container_of(p, struct optimized_kprobe, kp);
403 arch_remove_optimized_kprobe(op);
404 arch_remove_kprobe(p);
405 kfree(op);
406 }
407
408 /* Return true(!0) if the kprobe is ready for optimization. */
409 static inline int kprobe_optready(struct kprobe *p)
410 {
411 struct optimized_kprobe *op;
412
413 if (kprobe_aggrprobe(p)) {
414 op = container_of(p, struct optimized_kprobe, kp);
415 return arch_prepared_optinsn(&op->optinsn);
416 }
417
418 return 0;
419 }
420
421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422 static inline int kprobe_disarmed(struct kprobe *p)
423 {
424 struct optimized_kprobe *op;
425
426 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427 if (!kprobe_aggrprobe(p))
428 return kprobe_disabled(p);
429
430 op = container_of(p, struct optimized_kprobe, kp);
431
432 return kprobe_disabled(p) && list_empty(&op->list);
433 }
434
435 /* Return true(!0) if the probe is queued on (un)optimizing lists */
436 static int kprobe_queued(struct kprobe *p)
437 {
438 struct optimized_kprobe *op;
439
440 if (kprobe_aggrprobe(p)) {
441 op = container_of(p, struct optimized_kprobe, kp);
442 if (!list_empty(&op->list))
443 return 1;
444 }
445 return 0;
446 }
447
448 /*
449 * Return an optimized kprobe whose optimizing code replaces
450 * instructions including addr (exclude breakpoint).
451 */
452 static struct kprobe *get_optimized_kprobe(unsigned long addr)
453 {
454 int i;
455 struct kprobe *p = NULL;
456 struct optimized_kprobe *op;
457
458 /* Don't check i == 0, since that is a breakpoint case. */
459 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460 p = get_kprobe((void *)(addr - i));
461
462 if (p && kprobe_optready(p)) {
463 op = container_of(p, struct optimized_kprobe, kp);
464 if (arch_within_optimized_kprobe(op, addr))
465 return p;
466 }
467
468 return NULL;
469 }
470
471 /* Optimization staging list, protected by kprobe_mutex */
472 static LIST_HEAD(optimizing_list);
473 static LIST_HEAD(unoptimizing_list);
474 static LIST_HEAD(freeing_list);
475
476 static void kprobe_optimizer(struct work_struct *work);
477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478 #define OPTIMIZE_DELAY 5
479
480 /*
481 * Optimize (replace a breakpoint with a jump) kprobes listed on
482 * optimizing_list.
483 */
484 static void do_optimize_kprobes(void)
485 {
486 lockdep_assert_held(&text_mutex);
487 /*
488 * The optimization/unoptimization refers online_cpus via
489 * stop_machine() and cpu-hotplug modifies online_cpus.
490 * And same time, text_mutex will be held in cpu-hotplug and here.
491 * This combination can cause a deadlock (cpu-hotplug try to lock
492 * text_mutex but stop_machine can not be done because online_cpus
493 * has been changed)
494 * To avoid this deadlock, caller must have locked cpu hotplug
495 * for preventing cpu-hotplug outside of text_mutex locking.
496 */
497 lockdep_assert_cpus_held();
498
499 /* Optimization never be done when disarmed */
500 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
501 list_empty(&optimizing_list))
502 return;
503
504 arch_optimize_kprobes(&optimizing_list);
505 }
506
507 /*
508 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
509 * if need) kprobes listed on unoptimizing_list.
510 */
511 static void do_unoptimize_kprobes(void)
512 {
513 struct optimized_kprobe *op, *tmp;
514
515 lockdep_assert_held(&text_mutex);
516 /* See comment in do_optimize_kprobes() */
517 lockdep_assert_cpus_held();
518
519 /* Unoptimization must be done anytime */
520 if (list_empty(&unoptimizing_list))
521 return;
522
523 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
524 /* Loop free_list for disarming */
525 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
526 /* Switching from detour code to origin */
527 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
528 /* Disarm probes if marked disabled */
529 if (kprobe_disabled(&op->kp))
530 arch_disarm_kprobe(&op->kp);
531 if (kprobe_unused(&op->kp)) {
532 /*
533 * Remove unused probes from hash list. After waiting
534 * for synchronization, these probes are reclaimed.
535 * (reclaiming is done by do_free_cleaned_kprobes.)
536 */
537 hlist_del_rcu(&op->kp.hlist);
538 } else
539 list_del_init(&op->list);
540 }
541 }
542
543 /* Reclaim all kprobes on the free_list */
544 static void do_free_cleaned_kprobes(void)
545 {
546 struct optimized_kprobe *op, *tmp;
547
548 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549 list_del_init(&op->list);
550 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
551 /*
552 * This must not happen, but if there is a kprobe
553 * still in use, keep it on kprobes hash list.
554 */
555 continue;
556 }
557 free_aggr_kprobe(&op->kp);
558 }
559 }
560
561 /* Start optimizer after OPTIMIZE_DELAY passed */
562 static void kick_kprobe_optimizer(void)
563 {
564 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
565 }
566
567 /* Kprobe jump optimizer */
568 static void kprobe_optimizer(struct work_struct *work)
569 {
570 mutex_lock(&kprobe_mutex);
571 cpus_read_lock();
572 mutex_lock(&text_mutex);
573 /* Lock modules while optimizing kprobes */
574 mutex_lock(&module_mutex);
575
576 /*
577 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
578 * kprobes before waiting for quiesence period.
579 */
580 do_unoptimize_kprobes();
581
582 /*
583 * Step 2: Wait for quiesence period to ensure all potentially
584 * preempted tasks to have normally scheduled. Because optprobe
585 * may modify multiple instructions, there is a chance that Nth
586 * instruction is preempted. In that case, such tasks can return
587 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
588 * Note that on non-preemptive kernel, this is transparently converted
589 * to synchronoze_sched() to wait for all interrupts to have completed.
590 */
591 synchronize_rcu_tasks();
592
593 /* Step 3: Optimize kprobes after quiesence period */
594 do_optimize_kprobes();
595
596 /* Step 4: Free cleaned kprobes after quiesence period */
597 do_free_cleaned_kprobes();
598
599 mutex_unlock(&module_mutex);
600 mutex_unlock(&text_mutex);
601 cpus_read_unlock();
602
603 /* Step 5: Kick optimizer again if needed */
604 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
605 kick_kprobe_optimizer();
606
607 mutex_unlock(&kprobe_mutex);
608 }
609
610 /* Wait for completing optimization and unoptimization */
611 void wait_for_kprobe_optimizer(void)
612 {
613 mutex_lock(&kprobe_mutex);
614
615 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
616 mutex_unlock(&kprobe_mutex);
617
618 /* this will also make optimizing_work execute immmediately */
619 flush_delayed_work(&optimizing_work);
620 /* @optimizing_work might not have been queued yet, relax */
621 cpu_relax();
622
623 mutex_lock(&kprobe_mutex);
624 }
625
626 mutex_unlock(&kprobe_mutex);
627 }
628
629 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
630 {
631 struct optimized_kprobe *_op;
632
633 list_for_each_entry(_op, &unoptimizing_list, list) {
634 if (op == _op)
635 return true;
636 }
637
638 return false;
639 }
640
641 /* Optimize kprobe if p is ready to be optimized */
642 static void optimize_kprobe(struct kprobe *p)
643 {
644 struct optimized_kprobe *op;
645
646 /* Check if the kprobe is disabled or not ready for optimization. */
647 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
648 (kprobe_disabled(p) || kprobes_all_disarmed))
649 return;
650
651 /* Both of break_handler and post_handler are not supported. */
652 if (p->break_handler || p->post_handler)
653 return;
654
655 op = container_of(p, struct optimized_kprobe, kp);
656
657 /* Check there is no other kprobes at the optimized instructions */
658 if (arch_check_optimized_kprobe(op) < 0)
659 return;
660
661 /* Check if it is already optimized. */
662 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
663 if (optprobe_queued_unopt(op)) {
664 /* This is under unoptimizing. Just dequeue the probe */
665 list_del_init(&op->list);
666 }
667 return;
668 }
669 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
670
671 /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
672 if (WARN_ON_ONCE(!list_empty(&op->list)))
673 return;
674
675 list_add(&op->list, &optimizing_list);
676 kick_kprobe_optimizer();
677 }
678
679 /* Short cut to direct unoptimizing */
680 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
681 {
682 lockdep_assert_cpus_held();
683 arch_unoptimize_kprobe(op);
684 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
685 if (kprobe_disabled(&op->kp))
686 arch_disarm_kprobe(&op->kp);
687 }
688
689 /* Unoptimize a kprobe if p is optimized */
690 static void unoptimize_kprobe(struct kprobe *p, bool force)
691 {
692 struct optimized_kprobe *op;
693
694 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
695 return; /* This is not an optprobe nor optimized */
696
697 op = container_of(p, struct optimized_kprobe, kp);
698 if (!kprobe_optimized(p))
699 return;
700
701 if (!list_empty(&op->list)) {
702 if (optprobe_queued_unopt(op)) {
703 /* Queued in unoptimizing queue */
704 if (force) {
705 /*
706 * Forcibly unoptimize the kprobe here, and queue it
707 * in the freeing list for release afterwards.
708 */
709 force_unoptimize_kprobe(op);
710 list_move(&op->list, &freeing_list);
711 }
712 } else {
713 /* Dequeue from the optimizing queue */
714 list_del_init(&op->list);
715 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
716 }
717 return;
718 }
719
720 /* Optimized kprobe case */
721 if (force) {
722 /* Forcibly update the code: this is a special case */
723 force_unoptimize_kprobe(op);
724 } else {
725 list_add(&op->list, &unoptimizing_list);
726 kick_kprobe_optimizer();
727 }
728 }
729
730 /* Cancel unoptimizing for reusing */
731 static int reuse_unused_kprobe(struct kprobe *ap)
732 {
733 struct optimized_kprobe *op;
734
735 BUG_ON(!kprobe_unused(ap));
736 /*
737 * Unused kprobe MUST be on the way of delayed unoptimizing (means
738 * there is still a relative jump) and disabled.
739 */
740 op = container_of(ap, struct optimized_kprobe, kp);
741 if (unlikely(list_empty(&op->list)))
742 printk(KERN_WARNING "Warning: found a stray unused "
743 "aggrprobe@%p\n", ap->addr);
744 /* Enable the probe again */
745 ap->flags &= ~KPROBE_FLAG_DISABLED;
746 /* Optimize it again (remove from op->list) */
747 if (!kprobe_optready(ap))
748 return -EINVAL;
749
750 optimize_kprobe(ap);
751 return 0;
752 }
753
754 /* Remove optimized instructions */
755 static void kill_optimized_kprobe(struct kprobe *p)
756 {
757 struct optimized_kprobe *op;
758
759 op = container_of(p, struct optimized_kprobe, kp);
760 if (!list_empty(&op->list))
761 /* Dequeue from the (un)optimization queue */
762 list_del_init(&op->list);
763 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
764
765 if (kprobe_unused(p)) {
766 /* Enqueue if it is unused */
767 list_add(&op->list, &freeing_list);
768 /*
769 * Remove unused probes from the hash list. After waiting
770 * for synchronization, this probe is reclaimed.
771 * (reclaiming is done by do_free_cleaned_kprobes().)
772 */
773 hlist_del_rcu(&op->kp.hlist);
774 }
775
776 /* Don't touch the code, because it is already freed. */
777 arch_remove_optimized_kprobe(op);
778 }
779
780 static inline
781 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
782 {
783 if (!kprobe_ftrace(p))
784 arch_prepare_optimized_kprobe(op, p);
785 }
786
787 /* Try to prepare optimized instructions */
788 static void prepare_optimized_kprobe(struct kprobe *p)
789 {
790 struct optimized_kprobe *op;
791
792 op = container_of(p, struct optimized_kprobe, kp);
793 __prepare_optimized_kprobe(op, p);
794 }
795
796 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
797 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
798 {
799 struct optimized_kprobe *op;
800
801 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
802 if (!op)
803 return NULL;
804
805 INIT_LIST_HEAD(&op->list);
806 op->kp.addr = p->addr;
807 __prepare_optimized_kprobe(op, p);
808
809 return &op->kp;
810 }
811
812 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
813
814 /*
815 * Prepare an optimized_kprobe and optimize it
816 * NOTE: p must be a normal registered kprobe
817 */
818 static void try_to_optimize_kprobe(struct kprobe *p)
819 {
820 struct kprobe *ap;
821 struct optimized_kprobe *op;
822
823 /* Impossible to optimize ftrace-based kprobe */
824 if (kprobe_ftrace(p))
825 return;
826
827 /* For preparing optimization, jump_label_text_reserved() is called */
828 cpus_read_lock();
829 jump_label_lock();
830 mutex_lock(&text_mutex);
831
832 ap = alloc_aggr_kprobe(p);
833 if (!ap)
834 goto out;
835
836 op = container_of(ap, struct optimized_kprobe, kp);
837 if (!arch_prepared_optinsn(&op->optinsn)) {
838 /* If failed to setup optimizing, fallback to kprobe */
839 arch_remove_optimized_kprobe(op);
840 kfree(op);
841 goto out;
842 }
843
844 init_aggr_kprobe(ap, p);
845 optimize_kprobe(ap); /* This just kicks optimizer thread */
846
847 out:
848 mutex_unlock(&text_mutex);
849 jump_label_unlock();
850 cpus_read_unlock();
851 }
852
853 #ifdef CONFIG_SYSCTL
854 static void optimize_all_kprobes(void)
855 {
856 struct hlist_head *head;
857 struct kprobe *p;
858 unsigned int i;
859
860 mutex_lock(&kprobe_mutex);
861 /* If optimization is already allowed, just return */
862 if (kprobes_allow_optimization)
863 goto out;
864
865 cpus_read_lock();
866 kprobes_allow_optimization = true;
867 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
868 head = &kprobe_table[i];
869 hlist_for_each_entry_rcu(p, head, hlist)
870 if (!kprobe_disabled(p))
871 optimize_kprobe(p);
872 }
873 cpus_read_unlock();
874 printk(KERN_INFO "Kprobes globally optimized\n");
875 out:
876 mutex_unlock(&kprobe_mutex);
877 }
878
879 static void unoptimize_all_kprobes(void)
880 {
881 struct hlist_head *head;
882 struct kprobe *p;
883 unsigned int i;
884
885 mutex_lock(&kprobe_mutex);
886 /* If optimization is already prohibited, just return */
887 if (!kprobes_allow_optimization) {
888 mutex_unlock(&kprobe_mutex);
889 return;
890 }
891
892 cpus_read_lock();
893 kprobes_allow_optimization = false;
894 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
895 head = &kprobe_table[i];
896 hlist_for_each_entry_rcu(p, head, hlist) {
897 if (!kprobe_disabled(p))
898 unoptimize_kprobe(p, false);
899 }
900 }
901 cpus_read_unlock();
902 mutex_unlock(&kprobe_mutex);
903
904 /* Wait for unoptimizing completion */
905 wait_for_kprobe_optimizer();
906 printk(KERN_INFO "Kprobes globally unoptimized\n");
907 }
908
909 static DEFINE_MUTEX(kprobe_sysctl_mutex);
910 int sysctl_kprobes_optimization;
911 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
912 void __user *buffer, size_t *length,
913 loff_t *ppos)
914 {
915 int ret;
916
917 mutex_lock(&kprobe_sysctl_mutex);
918 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
919 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
920
921 if (sysctl_kprobes_optimization)
922 optimize_all_kprobes();
923 else
924 unoptimize_all_kprobes();
925 mutex_unlock(&kprobe_sysctl_mutex);
926
927 return ret;
928 }
929 #endif /* CONFIG_SYSCTL */
930
931 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
932 static void __arm_kprobe(struct kprobe *p)
933 {
934 struct kprobe *_p;
935
936 /* Check collision with other optimized kprobes */
937 _p = get_optimized_kprobe((unsigned long)p->addr);
938 if (unlikely(_p))
939 /* Fallback to unoptimized kprobe */
940 unoptimize_kprobe(_p, true);
941
942 arch_arm_kprobe(p);
943 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
944 }
945
946 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
947 static void __disarm_kprobe(struct kprobe *p, bool reopt)
948 {
949 struct kprobe *_p;
950
951 /* Try to unoptimize */
952 unoptimize_kprobe(p, kprobes_all_disarmed);
953
954 if (!kprobe_queued(p)) {
955 arch_disarm_kprobe(p);
956 /* If another kprobe was blocked, optimize it. */
957 _p = get_optimized_kprobe((unsigned long)p->addr);
958 if (unlikely(_p) && reopt)
959 optimize_kprobe(_p);
960 }
961 /* TODO: reoptimize others after unoptimized this probe */
962 }
963
964 #else /* !CONFIG_OPTPROBES */
965
966 #define optimize_kprobe(p) do {} while (0)
967 #define unoptimize_kprobe(p, f) do {} while (0)
968 #define kill_optimized_kprobe(p) do {} while (0)
969 #define prepare_optimized_kprobe(p) do {} while (0)
970 #define try_to_optimize_kprobe(p) do {} while (0)
971 #define __arm_kprobe(p) arch_arm_kprobe(p)
972 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
973 #define kprobe_disarmed(p) kprobe_disabled(p)
974 #define wait_for_kprobe_optimizer() do {} while (0)
975
976 static int reuse_unused_kprobe(struct kprobe *ap)
977 {
978 /*
979 * If the optimized kprobe is NOT supported, the aggr kprobe is
980 * released at the same time that the last aggregated kprobe is
981 * unregistered.
982 * Thus there should be no chance to reuse unused kprobe.
983 */
984 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
985 return -EINVAL;
986 }
987
988 static void free_aggr_kprobe(struct kprobe *p)
989 {
990 arch_remove_kprobe(p);
991 kfree(p);
992 }
993
994 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
995 {
996 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
997 }
998 #endif /* CONFIG_OPTPROBES */
999
1000 #ifdef CONFIG_KPROBES_ON_FTRACE
1001 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1002 .func = kprobe_ftrace_handler,
1003 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1004 };
1005 static int kprobe_ftrace_enabled;
1006
1007 /* Must ensure p->addr is really on ftrace */
1008 static int prepare_kprobe(struct kprobe *p)
1009 {
1010 if (!kprobe_ftrace(p))
1011 return arch_prepare_kprobe(p);
1012
1013 return arch_prepare_kprobe_ftrace(p);
1014 }
1015
1016 /* Caller must lock kprobe_mutex */
1017 static void arm_kprobe_ftrace(struct kprobe *p)
1018 {
1019 int ret;
1020
1021 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1022 (unsigned long)p->addr, 0, 0);
1023 WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
1024 kprobe_ftrace_enabled++;
1025 if (kprobe_ftrace_enabled == 1) {
1026 ret = register_ftrace_function(&kprobe_ftrace_ops);
1027 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
1028 }
1029 }
1030
1031 /* Caller must lock kprobe_mutex */
1032 static void disarm_kprobe_ftrace(struct kprobe *p)
1033 {
1034 int ret;
1035
1036 kprobe_ftrace_enabled--;
1037 if (kprobe_ftrace_enabled == 0) {
1038 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1039 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
1040 }
1041 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1042 (unsigned long)p->addr, 1, 0);
1043 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
1044 }
1045 #else /* !CONFIG_KPROBES_ON_FTRACE */
1046 #define prepare_kprobe(p) arch_prepare_kprobe(p)
1047 #define arm_kprobe_ftrace(p) do {} while (0)
1048 #define disarm_kprobe_ftrace(p) do {} while (0)
1049 #endif
1050
1051 /* Arm a kprobe with text_mutex */
1052 static void arm_kprobe(struct kprobe *kp)
1053 {
1054 if (unlikely(kprobe_ftrace(kp))) {
1055 arm_kprobe_ftrace(kp);
1056 return;
1057 }
1058 cpus_read_lock();
1059 mutex_lock(&text_mutex);
1060 __arm_kprobe(kp);
1061 mutex_unlock(&text_mutex);
1062 cpus_read_unlock();
1063 }
1064
1065 /* Disarm a kprobe with text_mutex */
1066 static void disarm_kprobe(struct kprobe *kp, bool reopt)
1067 {
1068 if (unlikely(kprobe_ftrace(kp))) {
1069 disarm_kprobe_ftrace(kp);
1070 return;
1071 }
1072
1073 cpus_read_lock();
1074 mutex_lock(&text_mutex);
1075 __disarm_kprobe(kp, reopt);
1076 mutex_unlock(&text_mutex);
1077 cpus_read_unlock();
1078 }
1079
1080 /*
1081 * Aggregate handlers for multiple kprobes support - these handlers
1082 * take care of invoking the individual kprobe handlers on p->list
1083 */
1084 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1085 {
1086 struct kprobe *kp;
1087
1088 list_for_each_entry_rcu(kp, &p->list, list) {
1089 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1090 set_kprobe_instance(kp);
1091 if (kp->pre_handler(kp, regs))
1092 return 1;
1093 }
1094 reset_kprobe_instance();
1095 }
1096 return 0;
1097 }
1098 NOKPROBE_SYMBOL(aggr_pre_handler);
1099
1100 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1101 unsigned long flags)
1102 {
1103 struct kprobe *kp;
1104
1105 list_for_each_entry_rcu(kp, &p->list, list) {
1106 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1107 set_kprobe_instance(kp);
1108 kp->post_handler(kp, regs, flags);
1109 reset_kprobe_instance();
1110 }
1111 }
1112 }
1113 NOKPROBE_SYMBOL(aggr_post_handler);
1114
1115 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1116 int trapnr)
1117 {
1118 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1119
1120 /*
1121 * if we faulted "during" the execution of a user specified
1122 * probe handler, invoke just that probe's fault handler
1123 */
1124 if (cur && cur->fault_handler) {
1125 if (cur->fault_handler(cur, regs, trapnr))
1126 return 1;
1127 }
1128 return 0;
1129 }
1130 NOKPROBE_SYMBOL(aggr_fault_handler);
1131
1132 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1133 {
1134 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1135 int ret = 0;
1136
1137 if (cur && cur->break_handler) {
1138 if (cur->break_handler(cur, regs))
1139 ret = 1;
1140 }
1141 reset_kprobe_instance();
1142 return ret;
1143 }
1144 NOKPROBE_SYMBOL(aggr_break_handler);
1145
1146 /* Walks the list and increments nmissed count for multiprobe case */
1147 void kprobes_inc_nmissed_count(struct kprobe *p)
1148 {
1149 struct kprobe *kp;
1150 if (!kprobe_aggrprobe(p)) {
1151 p->nmissed++;
1152 } else {
1153 list_for_each_entry_rcu(kp, &p->list, list)
1154 kp->nmissed++;
1155 }
1156 return;
1157 }
1158 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1159
1160 void recycle_rp_inst(struct kretprobe_instance *ri,
1161 struct hlist_head *head)
1162 {
1163 struct kretprobe *rp = ri->rp;
1164
1165 /* remove rp inst off the rprobe_inst_table */
1166 hlist_del(&ri->hlist);
1167 INIT_HLIST_NODE(&ri->hlist);
1168 if (likely(rp)) {
1169 raw_spin_lock(&rp->lock);
1170 hlist_add_head(&ri->hlist, &rp->free_instances);
1171 raw_spin_unlock(&rp->lock);
1172 } else
1173 /* Unregistering */
1174 hlist_add_head(&ri->hlist, head);
1175 }
1176 NOKPROBE_SYMBOL(recycle_rp_inst);
1177
1178 void kretprobe_hash_lock(struct task_struct *tsk,
1179 struct hlist_head **head, unsigned long *flags)
1180 __acquires(hlist_lock)
1181 {
1182 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1183 raw_spinlock_t *hlist_lock;
1184
1185 *head = &kretprobe_inst_table[hash];
1186 hlist_lock = kretprobe_table_lock_ptr(hash);
1187 raw_spin_lock_irqsave(hlist_lock, *flags);
1188 }
1189 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1190
1191 static void kretprobe_table_lock(unsigned long hash,
1192 unsigned long *flags)
1193 __acquires(hlist_lock)
1194 {
1195 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1196 raw_spin_lock_irqsave(hlist_lock, *flags);
1197 }
1198 NOKPROBE_SYMBOL(kretprobe_table_lock);
1199
1200 void kretprobe_hash_unlock(struct task_struct *tsk,
1201 unsigned long *flags)
1202 __releases(hlist_lock)
1203 {
1204 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1205 raw_spinlock_t *hlist_lock;
1206
1207 hlist_lock = kretprobe_table_lock_ptr(hash);
1208 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1209 }
1210 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1211
1212 static void kretprobe_table_unlock(unsigned long hash,
1213 unsigned long *flags)
1214 __releases(hlist_lock)
1215 {
1216 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1217 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1218 }
1219 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1220
1221 struct kprobe kprobe_busy = {
1222 .addr = (void *) get_kprobe,
1223 };
1224
1225 void kprobe_busy_begin(void)
1226 {
1227 struct kprobe_ctlblk *kcb;
1228
1229 preempt_disable();
1230 __this_cpu_write(current_kprobe, &kprobe_busy);
1231 kcb = get_kprobe_ctlblk();
1232 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1233 }
1234
1235 void kprobe_busy_end(void)
1236 {
1237 __this_cpu_write(current_kprobe, NULL);
1238 preempt_enable();
1239 }
1240
1241 /*
1242 * This function is called from finish_task_switch when task tk becomes dead,
1243 * so that we can recycle any function-return probe instances associated
1244 * with this task. These left over instances represent probed functions
1245 * that have been called but will never return.
1246 */
1247 void kprobe_flush_task(struct task_struct *tk)
1248 {
1249 struct kretprobe_instance *ri;
1250 struct hlist_head *head, empty_rp;
1251 struct hlist_node *tmp;
1252 unsigned long hash, flags = 0;
1253
1254 if (unlikely(!kprobes_initialized))
1255 /* Early boot. kretprobe_table_locks not yet initialized. */
1256 return;
1257
1258 kprobe_busy_begin();
1259
1260 INIT_HLIST_HEAD(&empty_rp);
1261 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1262 head = &kretprobe_inst_table[hash];
1263 kretprobe_table_lock(hash, &flags);
1264 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1265 if (ri->task == tk)
1266 recycle_rp_inst(ri, &empty_rp);
1267 }
1268 kretprobe_table_unlock(hash, &flags);
1269 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1270 hlist_del(&ri->hlist);
1271 kfree(ri);
1272 }
1273
1274 kprobe_busy_end();
1275 }
1276 NOKPROBE_SYMBOL(kprobe_flush_task);
1277
1278 static inline void free_rp_inst(struct kretprobe *rp)
1279 {
1280 struct kretprobe_instance *ri;
1281 struct hlist_node *next;
1282
1283 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1284 hlist_del(&ri->hlist);
1285 kfree(ri);
1286 }
1287 }
1288
1289 static void cleanup_rp_inst(struct kretprobe *rp)
1290 {
1291 unsigned long flags, hash;
1292 struct kretprobe_instance *ri;
1293 struct hlist_node *next;
1294 struct hlist_head *head;
1295
1296 /* No race here */
1297 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1298 kretprobe_table_lock(hash, &flags);
1299 head = &kretprobe_inst_table[hash];
1300 hlist_for_each_entry_safe(ri, next, head, hlist) {
1301 if (ri->rp == rp)
1302 ri->rp = NULL;
1303 }
1304 kretprobe_table_unlock(hash, &flags);
1305 }
1306 free_rp_inst(rp);
1307 }
1308 NOKPROBE_SYMBOL(cleanup_rp_inst);
1309
1310 /*
1311 * Add the new probe to ap->list. Fail if this is the
1312 * second jprobe at the address - two jprobes can't coexist
1313 */
1314 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1315 {
1316 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1317
1318 if (p->break_handler || p->post_handler)
1319 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1320
1321 if (p->break_handler) {
1322 if (ap->break_handler)
1323 return -EEXIST;
1324 list_add_tail_rcu(&p->list, &ap->list);
1325 ap->break_handler = aggr_break_handler;
1326 } else
1327 list_add_rcu(&p->list, &ap->list);
1328 if (p->post_handler && !ap->post_handler)
1329 ap->post_handler = aggr_post_handler;
1330
1331 return 0;
1332 }
1333
1334 /*
1335 * Fill in the required fields of the "manager kprobe". Replace the
1336 * earlier kprobe in the hlist with the manager kprobe
1337 */
1338 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1339 {
1340 /* Copy p's insn slot to ap */
1341 copy_kprobe(p, ap);
1342 flush_insn_slot(ap);
1343 ap->addr = p->addr;
1344 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1345 ap->pre_handler = aggr_pre_handler;
1346 ap->fault_handler = aggr_fault_handler;
1347 /* We don't care the kprobe which has gone. */
1348 if (p->post_handler && !kprobe_gone(p))
1349 ap->post_handler = aggr_post_handler;
1350 if (p->break_handler && !kprobe_gone(p))
1351 ap->break_handler = aggr_break_handler;
1352
1353 INIT_LIST_HEAD(&ap->list);
1354 INIT_HLIST_NODE(&ap->hlist);
1355
1356 list_add_rcu(&p->list, &ap->list);
1357 hlist_replace_rcu(&p->hlist, &ap->hlist);
1358 }
1359
1360 /*
1361 * This is the second or subsequent kprobe at the address - handle
1362 * the intricacies
1363 */
1364 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1365 {
1366 int ret = 0;
1367 struct kprobe *ap = orig_p;
1368
1369 cpus_read_lock();
1370
1371 /* For preparing optimization, jump_label_text_reserved() is called */
1372 jump_label_lock();
1373 mutex_lock(&text_mutex);
1374
1375 if (!kprobe_aggrprobe(orig_p)) {
1376 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1377 ap = alloc_aggr_kprobe(orig_p);
1378 if (!ap) {
1379 ret = -ENOMEM;
1380 goto out;
1381 }
1382 init_aggr_kprobe(ap, orig_p);
1383 } else if (kprobe_unused(ap)) {
1384 /* This probe is going to die. Rescue it */
1385 ret = reuse_unused_kprobe(ap);
1386 if (ret)
1387 goto out;
1388 }
1389
1390 if (kprobe_gone(ap)) {
1391 /*
1392 * Attempting to insert new probe at the same location that
1393 * had a probe in the module vaddr area which already
1394 * freed. So, the instruction slot has already been
1395 * released. We need a new slot for the new probe.
1396 */
1397 ret = arch_prepare_kprobe(ap);
1398 if (ret)
1399 /*
1400 * Even if fail to allocate new slot, don't need to
1401 * free aggr_probe. It will be used next time, or
1402 * freed by unregister_kprobe.
1403 */
1404 goto out;
1405
1406 /* Prepare optimized instructions if possible. */
1407 prepare_optimized_kprobe(ap);
1408
1409 /*
1410 * Clear gone flag to prevent allocating new slot again, and
1411 * set disabled flag because it is not armed yet.
1412 */
1413 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1414 | KPROBE_FLAG_DISABLED;
1415 }
1416
1417 /* Copy ap's insn slot to p */
1418 copy_kprobe(ap, p);
1419 ret = add_new_kprobe(ap, p);
1420
1421 out:
1422 mutex_unlock(&text_mutex);
1423 jump_label_unlock();
1424 cpus_read_unlock();
1425
1426 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1427 ap->flags &= ~KPROBE_FLAG_DISABLED;
1428 if (!kprobes_all_disarmed)
1429 /* Arm the breakpoint again. */
1430 arm_kprobe(ap);
1431 }
1432 return ret;
1433 }
1434
1435 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1436 {
1437 /* The __kprobes marked functions and entry code must not be probed */
1438 return addr >= (unsigned long)__kprobes_text_start &&
1439 addr < (unsigned long)__kprobes_text_end;
1440 }
1441
1442 bool within_kprobe_blacklist(unsigned long addr)
1443 {
1444 struct kprobe_blacklist_entry *ent;
1445
1446 if (arch_within_kprobe_blacklist(addr))
1447 return true;
1448 /*
1449 * If there exists a kprobe_blacklist, verify and
1450 * fail any probe registration in the prohibited area
1451 */
1452 list_for_each_entry(ent, &kprobe_blacklist, list) {
1453 if (addr >= ent->start_addr && addr < ent->end_addr)
1454 return true;
1455 }
1456
1457 return false;
1458 }
1459
1460 /*
1461 * If we have a symbol_name argument, look it up and add the offset field
1462 * to it. This way, we can specify a relative address to a symbol.
1463 * This returns encoded errors if it fails to look up symbol or invalid
1464 * combination of parameters.
1465 */
1466 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1467 const char *symbol_name, unsigned int offset)
1468 {
1469 if ((symbol_name && addr) || (!symbol_name && !addr))
1470 goto invalid;
1471
1472 if (symbol_name) {
1473 addr = kprobe_lookup_name(symbol_name, offset);
1474 if (!addr)
1475 return ERR_PTR(-ENOENT);
1476 }
1477
1478 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1479 if (addr)
1480 return addr;
1481
1482 invalid:
1483 return ERR_PTR(-EINVAL);
1484 }
1485
1486 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1487 {
1488 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1489 }
1490
1491 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1492 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1493 {
1494 struct kprobe *ap, *list_p;
1495
1496 ap = get_kprobe(p->addr);
1497 if (unlikely(!ap))
1498 return NULL;
1499
1500 if (p != ap) {
1501 list_for_each_entry_rcu(list_p, &ap->list, list)
1502 if (list_p == p)
1503 /* kprobe p is a valid probe */
1504 goto valid;
1505 return NULL;
1506 }
1507 valid:
1508 return ap;
1509 }
1510
1511 /* Return error if the kprobe is being re-registered */
1512 static inline int check_kprobe_rereg(struct kprobe *p)
1513 {
1514 int ret = 0;
1515
1516 mutex_lock(&kprobe_mutex);
1517 if (__get_valid_kprobe(p))
1518 ret = -EINVAL;
1519 mutex_unlock(&kprobe_mutex);
1520
1521 return ret;
1522 }
1523
1524 int __weak arch_check_ftrace_location(struct kprobe *p)
1525 {
1526 unsigned long ftrace_addr;
1527
1528 ftrace_addr = ftrace_location((unsigned long)p->addr);
1529 if (ftrace_addr) {
1530 #ifdef CONFIG_KPROBES_ON_FTRACE
1531 /* Given address is not on the instruction boundary */
1532 if ((unsigned long)p->addr != ftrace_addr)
1533 return -EILSEQ;
1534 p->flags |= KPROBE_FLAG_FTRACE;
1535 #else /* !CONFIG_KPROBES_ON_FTRACE */
1536 return -EINVAL;
1537 #endif
1538 }
1539 return 0;
1540 }
1541
1542 static int check_kprobe_address_safe(struct kprobe *p,
1543 struct module **probed_mod)
1544 {
1545 int ret;
1546
1547 ret = arch_check_ftrace_location(p);
1548 if (ret)
1549 return ret;
1550 jump_label_lock();
1551 preempt_disable();
1552
1553 /* Ensure it is not in reserved area nor out of text */
1554 if (!kernel_text_address((unsigned long) p->addr) ||
1555 within_kprobe_blacklist((unsigned long) p->addr) ||
1556 jump_label_text_reserved(p->addr, p->addr) ||
1557 find_bug((unsigned long)p->addr)) {
1558 ret = -EINVAL;
1559 goto out;
1560 }
1561
1562 /* Check if are we probing a module */
1563 *probed_mod = __module_text_address((unsigned long) p->addr);
1564 if (*probed_mod) {
1565 /*
1566 * We must hold a refcount of the probed module while updating
1567 * its code to prohibit unexpected unloading.
1568 */
1569 if (unlikely(!try_module_get(*probed_mod))) {
1570 ret = -ENOENT;
1571 goto out;
1572 }
1573
1574 /*
1575 * If the module freed .init.text, we couldn't insert
1576 * kprobes in there.
1577 */
1578 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1579 (*probed_mod)->state != MODULE_STATE_COMING) {
1580 module_put(*probed_mod);
1581 *probed_mod = NULL;
1582 ret = -ENOENT;
1583 }
1584 }
1585 out:
1586 preempt_enable();
1587 jump_label_unlock();
1588
1589 return ret;
1590 }
1591
1592 int register_kprobe(struct kprobe *p)
1593 {
1594 int ret;
1595 struct kprobe *old_p;
1596 struct module *probed_mod;
1597 kprobe_opcode_t *addr;
1598
1599 /* Adjust probe address from symbol */
1600 addr = kprobe_addr(p);
1601 if (IS_ERR(addr))
1602 return PTR_ERR(addr);
1603 p->addr = addr;
1604
1605 ret = check_kprobe_rereg(p);
1606 if (ret)
1607 return ret;
1608
1609 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1610 p->flags &= KPROBE_FLAG_DISABLED;
1611 p->nmissed = 0;
1612 INIT_LIST_HEAD(&p->list);
1613
1614 ret = check_kprobe_address_safe(p, &probed_mod);
1615 if (ret)
1616 return ret;
1617
1618 mutex_lock(&kprobe_mutex);
1619
1620 old_p = get_kprobe(p->addr);
1621 if (old_p) {
1622 /* Since this may unoptimize old_p, locking text_mutex. */
1623 ret = register_aggr_kprobe(old_p, p);
1624 goto out;
1625 }
1626
1627 cpus_read_lock();
1628 /* Prevent text modification */
1629 mutex_lock(&text_mutex);
1630 ret = prepare_kprobe(p);
1631 mutex_unlock(&text_mutex);
1632 cpus_read_unlock();
1633 if (ret)
1634 goto out;
1635
1636 INIT_HLIST_NODE(&p->hlist);
1637 hlist_add_head_rcu(&p->hlist,
1638 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1639
1640 if (!kprobes_all_disarmed && !kprobe_disabled(p))
1641 arm_kprobe(p);
1642
1643 /* Try to optimize kprobe */
1644 try_to_optimize_kprobe(p);
1645 out:
1646 mutex_unlock(&kprobe_mutex);
1647
1648 if (probed_mod)
1649 module_put(probed_mod);
1650
1651 return ret;
1652 }
1653 EXPORT_SYMBOL_GPL(register_kprobe);
1654
1655 /* Check if all probes on the aggrprobe are disabled */
1656 static int aggr_kprobe_disabled(struct kprobe *ap)
1657 {
1658 struct kprobe *kp;
1659
1660 list_for_each_entry_rcu(kp, &ap->list, list)
1661 if (!kprobe_disabled(kp))
1662 /*
1663 * There is an active probe on the list.
1664 * We can't disable this ap.
1665 */
1666 return 0;
1667
1668 return 1;
1669 }
1670
1671 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1672 static struct kprobe *__disable_kprobe(struct kprobe *p)
1673 {
1674 struct kprobe *orig_p;
1675
1676 /* Get an original kprobe for return */
1677 orig_p = __get_valid_kprobe(p);
1678 if (unlikely(orig_p == NULL))
1679 return NULL;
1680
1681 if (!kprobe_disabled(p)) {
1682 /* Disable probe if it is a child probe */
1683 if (p != orig_p)
1684 p->flags |= KPROBE_FLAG_DISABLED;
1685
1686 /* Try to disarm and disable this/parent probe */
1687 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1688 /*
1689 * If kprobes_all_disarmed is set, orig_p
1690 * should have already been disarmed, so
1691 * skip unneed disarming process.
1692 */
1693 if (!kprobes_all_disarmed)
1694 disarm_kprobe(orig_p, true);
1695 orig_p->flags |= KPROBE_FLAG_DISABLED;
1696 }
1697 }
1698
1699 return orig_p;
1700 }
1701
1702 /*
1703 * Unregister a kprobe without a scheduler synchronization.
1704 */
1705 static int __unregister_kprobe_top(struct kprobe *p)
1706 {
1707 struct kprobe *ap, *list_p;
1708
1709 /* Disable kprobe. This will disarm it if needed. */
1710 ap = __disable_kprobe(p);
1711 if (ap == NULL)
1712 return -EINVAL;
1713
1714 if (ap == p)
1715 /*
1716 * This probe is an independent(and non-optimized) kprobe
1717 * (not an aggrprobe). Remove from the hash list.
1718 */
1719 goto disarmed;
1720
1721 /* Following process expects this probe is an aggrprobe */
1722 WARN_ON(!kprobe_aggrprobe(ap));
1723
1724 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1725 /*
1726 * !disarmed could be happen if the probe is under delayed
1727 * unoptimizing.
1728 */
1729 goto disarmed;
1730 else {
1731 /* If disabling probe has special handlers, update aggrprobe */
1732 if (p->break_handler && !kprobe_gone(p))
1733 ap->break_handler = NULL;
1734 if (p->post_handler && !kprobe_gone(p)) {
1735 list_for_each_entry_rcu(list_p, &ap->list, list) {
1736 if ((list_p != p) && (list_p->post_handler))
1737 goto noclean;
1738 }
1739 ap->post_handler = NULL;
1740 }
1741 noclean:
1742 /*
1743 * Remove from the aggrprobe: this path will do nothing in
1744 * __unregister_kprobe_bottom().
1745 */
1746 list_del_rcu(&p->list);
1747 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1748 /*
1749 * Try to optimize this probe again, because post
1750 * handler may have been changed.
1751 */
1752 optimize_kprobe(ap);
1753 }
1754 return 0;
1755
1756 disarmed:
1757 BUG_ON(!kprobe_disarmed(ap));
1758 hlist_del_rcu(&ap->hlist);
1759 return 0;
1760 }
1761
1762 static void __unregister_kprobe_bottom(struct kprobe *p)
1763 {
1764 struct kprobe *ap;
1765
1766 if (list_empty(&p->list))
1767 /* This is an independent kprobe */
1768 arch_remove_kprobe(p);
1769 else if (list_is_singular(&p->list)) {
1770 /* This is the last child of an aggrprobe */
1771 ap = list_entry(p->list.next, struct kprobe, list);
1772 list_del(&p->list);
1773 free_aggr_kprobe(ap);
1774 }
1775 /* Otherwise, do nothing. */
1776 }
1777
1778 int register_kprobes(struct kprobe **kps, int num)
1779 {
1780 int i, ret = 0;
1781
1782 if (num <= 0)
1783 return -EINVAL;
1784 for (i = 0; i < num; i++) {
1785 ret = register_kprobe(kps[i]);
1786 if (ret < 0) {
1787 if (i > 0)
1788 unregister_kprobes(kps, i);
1789 break;
1790 }
1791 }
1792 return ret;
1793 }
1794 EXPORT_SYMBOL_GPL(register_kprobes);
1795
1796 void unregister_kprobe(struct kprobe *p)
1797 {
1798 unregister_kprobes(&p, 1);
1799 }
1800 EXPORT_SYMBOL_GPL(unregister_kprobe);
1801
1802 void unregister_kprobes(struct kprobe **kps, int num)
1803 {
1804 int i;
1805
1806 if (num <= 0)
1807 return;
1808 mutex_lock(&kprobe_mutex);
1809 for (i = 0; i < num; i++)
1810 if (__unregister_kprobe_top(kps[i]) < 0)
1811 kps[i]->addr = NULL;
1812 mutex_unlock(&kprobe_mutex);
1813
1814 synchronize_sched();
1815 for (i = 0; i < num; i++)
1816 if (kps[i]->addr)
1817 __unregister_kprobe_bottom(kps[i]);
1818 }
1819 EXPORT_SYMBOL_GPL(unregister_kprobes);
1820
1821 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1822 unsigned long val, void *data)
1823 {
1824 return NOTIFY_DONE;
1825 }
1826 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1827
1828 static struct notifier_block kprobe_exceptions_nb = {
1829 .notifier_call = kprobe_exceptions_notify,
1830 .priority = 0x7fffffff /* we need to be notified first */
1831 };
1832
1833 unsigned long __weak arch_deref_entry_point(void *entry)
1834 {
1835 return (unsigned long)entry;
1836 }
1837
1838 int register_jprobes(struct jprobe **jps, int num)
1839 {
1840 int ret = 0, i;
1841
1842 if (num <= 0)
1843 return -EINVAL;
1844
1845 for (i = 0; i < num; i++) {
1846 ret = register_jprobe(jps[i]);
1847
1848 if (ret < 0) {
1849 if (i > 0)
1850 unregister_jprobes(jps, i);
1851 break;
1852 }
1853 }
1854
1855 return ret;
1856 }
1857 EXPORT_SYMBOL_GPL(register_jprobes);
1858
1859 int register_jprobe(struct jprobe *jp)
1860 {
1861 unsigned long addr, offset;
1862 struct kprobe *kp = &jp->kp;
1863
1864 /*
1865 * Verify probepoint as well as the jprobe handler are
1866 * valid function entry points.
1867 */
1868 addr = arch_deref_entry_point(jp->entry);
1869
1870 if (kallsyms_lookup_size_offset(addr, NULL, &offset) && offset == 0 &&
1871 kprobe_on_func_entry(kp->addr, kp->symbol_name, kp->offset)) {
1872 kp->pre_handler = setjmp_pre_handler;
1873 kp->break_handler = longjmp_break_handler;
1874 return register_kprobe(kp);
1875 }
1876
1877 return -EINVAL;
1878 }
1879 EXPORT_SYMBOL_GPL(register_jprobe);
1880
1881 void unregister_jprobe(struct jprobe *jp)
1882 {
1883 unregister_jprobes(&jp, 1);
1884 }
1885 EXPORT_SYMBOL_GPL(unregister_jprobe);
1886
1887 void unregister_jprobes(struct jprobe **jps, int num)
1888 {
1889 int i;
1890
1891 if (num <= 0)
1892 return;
1893 mutex_lock(&kprobe_mutex);
1894 for (i = 0; i < num; i++)
1895 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1896 jps[i]->kp.addr = NULL;
1897 mutex_unlock(&kprobe_mutex);
1898
1899 synchronize_sched();
1900 for (i = 0; i < num; i++) {
1901 if (jps[i]->kp.addr)
1902 __unregister_kprobe_bottom(&jps[i]->kp);
1903 }
1904 }
1905 EXPORT_SYMBOL_GPL(unregister_jprobes);
1906
1907 #ifdef CONFIG_KRETPROBES
1908 /*
1909 * This kprobe pre_handler is registered with every kretprobe. When probe
1910 * hits it will set up the return probe.
1911 */
1912 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1913 {
1914 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1915 unsigned long hash, flags = 0;
1916 struct kretprobe_instance *ri;
1917
1918 /*
1919 * To avoid deadlocks, prohibit return probing in NMI contexts,
1920 * just skip the probe and increase the (inexact) 'nmissed'
1921 * statistical counter, so that the user is informed that
1922 * something happened:
1923 */
1924 if (unlikely(in_nmi())) {
1925 rp->nmissed++;
1926 return 0;
1927 }
1928
1929 /* TODO: consider to only swap the RA after the last pre_handler fired */
1930 hash = hash_ptr(current, KPROBE_HASH_BITS);
1931 raw_spin_lock_irqsave(&rp->lock, flags);
1932 if (!hlist_empty(&rp->free_instances)) {
1933 ri = hlist_entry(rp->free_instances.first,
1934 struct kretprobe_instance, hlist);
1935 hlist_del(&ri->hlist);
1936 raw_spin_unlock_irqrestore(&rp->lock, flags);
1937
1938 ri->rp = rp;
1939 ri->task = current;
1940
1941 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1942 raw_spin_lock_irqsave(&rp->lock, flags);
1943 hlist_add_head(&ri->hlist, &rp->free_instances);
1944 raw_spin_unlock_irqrestore(&rp->lock, flags);
1945 return 0;
1946 }
1947
1948 arch_prepare_kretprobe(ri, regs);
1949
1950 /* XXX(hch): why is there no hlist_move_head? */
1951 INIT_HLIST_NODE(&ri->hlist);
1952 kretprobe_table_lock(hash, &flags);
1953 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1954 kretprobe_table_unlock(hash, &flags);
1955 } else {
1956 rp->nmissed++;
1957 raw_spin_unlock_irqrestore(&rp->lock, flags);
1958 }
1959 return 0;
1960 }
1961 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1962
1963 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1964 {
1965 return !offset;
1966 }
1967
1968 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1969 {
1970 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1971
1972 if (IS_ERR(kp_addr))
1973 return false;
1974
1975 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1976 !arch_kprobe_on_func_entry(offset))
1977 return false;
1978
1979 return true;
1980 }
1981
1982 int register_kretprobe(struct kretprobe *rp)
1983 {
1984 int ret = 0;
1985 struct kretprobe_instance *inst;
1986 int i;
1987 void *addr;
1988
1989 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1990 return -EINVAL;
1991
1992 /* If only rp->kp.addr is specified, check reregistering kprobes */
1993 if (rp->kp.addr && check_kprobe_rereg(&rp->kp))
1994 return -EINVAL;
1995
1996 if (kretprobe_blacklist_size) {
1997 addr = kprobe_addr(&rp->kp);
1998 if (IS_ERR(addr))
1999 return PTR_ERR(addr);
2000
2001 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2002 if (kretprobe_blacklist[i].addr == addr)
2003 return -EINVAL;
2004 }
2005 }
2006
2007 rp->kp.pre_handler = pre_handler_kretprobe;
2008 rp->kp.post_handler = NULL;
2009 rp->kp.fault_handler = NULL;
2010 rp->kp.break_handler = NULL;
2011
2012 /* Pre-allocate memory for max kretprobe instances */
2013 if (rp->maxactive <= 0) {
2014 #ifdef CONFIG_PREEMPT
2015 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2016 #else
2017 rp->maxactive = num_possible_cpus();
2018 #endif
2019 }
2020 raw_spin_lock_init(&rp->lock);
2021 INIT_HLIST_HEAD(&rp->free_instances);
2022 for (i = 0; i < rp->maxactive; i++) {
2023 inst = kmalloc(sizeof(struct kretprobe_instance) +
2024 rp->data_size, GFP_KERNEL);
2025 if (inst == NULL) {
2026 free_rp_inst(rp);
2027 return -ENOMEM;
2028 }
2029 INIT_HLIST_NODE(&inst->hlist);
2030 hlist_add_head(&inst->hlist, &rp->free_instances);
2031 }
2032
2033 rp->nmissed = 0;
2034 /* Establish function entry probe point */
2035 ret = register_kprobe(&rp->kp);
2036 if (ret != 0)
2037 free_rp_inst(rp);
2038 return ret;
2039 }
2040 EXPORT_SYMBOL_GPL(register_kretprobe);
2041
2042 int register_kretprobes(struct kretprobe **rps, int num)
2043 {
2044 int ret = 0, i;
2045
2046 if (num <= 0)
2047 return -EINVAL;
2048 for (i = 0; i < num; i++) {
2049 ret = register_kretprobe(rps[i]);
2050 if (ret < 0) {
2051 if (i > 0)
2052 unregister_kretprobes(rps, i);
2053 break;
2054 }
2055 }
2056 return ret;
2057 }
2058 EXPORT_SYMBOL_GPL(register_kretprobes);
2059
2060 void unregister_kretprobe(struct kretprobe *rp)
2061 {
2062 unregister_kretprobes(&rp, 1);
2063 }
2064 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2065
2066 void unregister_kretprobes(struct kretprobe **rps, int num)
2067 {
2068 int i;
2069
2070 if (num <= 0)
2071 return;
2072 mutex_lock(&kprobe_mutex);
2073 for (i = 0; i < num; i++)
2074 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2075 rps[i]->kp.addr = NULL;
2076 mutex_unlock(&kprobe_mutex);
2077
2078 synchronize_sched();
2079 for (i = 0; i < num; i++) {
2080 if (rps[i]->kp.addr) {
2081 __unregister_kprobe_bottom(&rps[i]->kp);
2082 cleanup_rp_inst(rps[i]);
2083 }
2084 }
2085 }
2086 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2087
2088 #else /* CONFIG_KRETPROBES */
2089 int register_kretprobe(struct kretprobe *rp)
2090 {
2091 return -ENOSYS;
2092 }
2093 EXPORT_SYMBOL_GPL(register_kretprobe);
2094
2095 int register_kretprobes(struct kretprobe **rps, int num)
2096 {
2097 return -ENOSYS;
2098 }
2099 EXPORT_SYMBOL_GPL(register_kretprobes);
2100
2101 void unregister_kretprobe(struct kretprobe *rp)
2102 {
2103 }
2104 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2105
2106 void unregister_kretprobes(struct kretprobe **rps, int num)
2107 {
2108 }
2109 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2110
2111 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2112 {
2113 return 0;
2114 }
2115 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2116
2117 #endif /* CONFIG_KRETPROBES */
2118
2119 /* Set the kprobe gone and remove its instruction buffer. */
2120 static void kill_kprobe(struct kprobe *p)
2121 {
2122 struct kprobe *kp;
2123
2124 if (WARN_ON_ONCE(kprobe_gone(p)))
2125 return;
2126
2127 p->flags |= KPROBE_FLAG_GONE;
2128 if (kprobe_aggrprobe(p)) {
2129 /*
2130 * If this is an aggr_kprobe, we have to list all the
2131 * chained probes and mark them GONE.
2132 */
2133 list_for_each_entry_rcu(kp, &p->list, list)
2134 kp->flags |= KPROBE_FLAG_GONE;
2135 p->post_handler = NULL;
2136 p->break_handler = NULL;
2137 kill_optimized_kprobe(p);
2138 }
2139 /*
2140 * Here, we can remove insn_slot safely, because no thread calls
2141 * the original probed function (which will be freed soon) any more.
2142 */
2143 arch_remove_kprobe(p);
2144
2145 /*
2146 * The module is going away. We should disarm the kprobe which
2147 * is using ftrace, because ftrace framework is still available at
2148 * MODULE_STATE_GOING notification.
2149 */
2150 if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2151 disarm_kprobe_ftrace(p);
2152 }
2153
2154 /* Disable one kprobe */
2155 int disable_kprobe(struct kprobe *kp)
2156 {
2157 int ret = 0;
2158
2159 mutex_lock(&kprobe_mutex);
2160
2161 /* Disable this kprobe */
2162 if (__disable_kprobe(kp) == NULL)
2163 ret = -EINVAL;
2164
2165 mutex_unlock(&kprobe_mutex);
2166 return ret;
2167 }
2168 EXPORT_SYMBOL_GPL(disable_kprobe);
2169
2170 /* Enable one kprobe */
2171 int enable_kprobe(struct kprobe *kp)
2172 {
2173 int ret = 0;
2174 struct kprobe *p;
2175
2176 mutex_lock(&kprobe_mutex);
2177
2178 /* Check whether specified probe is valid. */
2179 p = __get_valid_kprobe(kp);
2180 if (unlikely(p == NULL)) {
2181 ret = -EINVAL;
2182 goto out;
2183 }
2184
2185 if (kprobe_gone(kp)) {
2186 /* This kprobe has gone, we couldn't enable it. */
2187 ret = -EINVAL;
2188 goto out;
2189 }
2190
2191 if (p != kp)
2192 kp->flags &= ~KPROBE_FLAG_DISABLED;
2193
2194 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2195 p->flags &= ~KPROBE_FLAG_DISABLED;
2196 arm_kprobe(p);
2197 }
2198 out:
2199 mutex_unlock(&kprobe_mutex);
2200 return ret;
2201 }
2202 EXPORT_SYMBOL_GPL(enable_kprobe);
2203
2204 void dump_kprobe(struct kprobe *kp)
2205 {
2206 printk(KERN_WARNING "Dumping kprobe:\n");
2207 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2208 kp->symbol_name, kp->addr, kp->offset);
2209 }
2210 NOKPROBE_SYMBOL(dump_kprobe);
2211
2212 /*
2213 * Lookup and populate the kprobe_blacklist.
2214 *
2215 * Unlike the kretprobe blacklist, we'll need to determine
2216 * the range of addresses that belong to the said functions,
2217 * since a kprobe need not necessarily be at the beginning
2218 * of a function.
2219 */
2220 static int __init populate_kprobe_blacklist(unsigned long *start,
2221 unsigned long *end)
2222 {
2223 unsigned long *iter;
2224 struct kprobe_blacklist_entry *ent;
2225 unsigned long entry, offset = 0, size = 0;
2226
2227 for (iter = start; iter < end; iter++) {
2228 entry = arch_deref_entry_point((void *)*iter);
2229
2230 if (!kernel_text_address(entry) ||
2231 !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2232 pr_err("Failed to find blacklist at %p\n",
2233 (void *)entry);
2234 continue;
2235 }
2236
2237 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2238 if (!ent)
2239 return -ENOMEM;
2240 ent->start_addr = entry;
2241 ent->end_addr = entry + size;
2242 INIT_LIST_HEAD(&ent->list);
2243 list_add_tail(&ent->list, &kprobe_blacklist);
2244 }
2245 return 0;
2246 }
2247
2248 /* Module notifier call back, checking kprobes on the module */
2249 static int kprobes_module_callback(struct notifier_block *nb,
2250 unsigned long val, void *data)
2251 {
2252 struct module *mod = data;
2253 struct hlist_head *head;
2254 struct kprobe *p;
2255 unsigned int i;
2256 int checkcore = (val == MODULE_STATE_GOING);
2257
2258 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2259 return NOTIFY_DONE;
2260
2261 /*
2262 * When MODULE_STATE_GOING was notified, both of module .text and
2263 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2264 * notified, only .init.text section would be freed. We need to
2265 * disable kprobes which have been inserted in the sections.
2266 */
2267 mutex_lock(&kprobe_mutex);
2268 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2269 head = &kprobe_table[i];
2270 hlist_for_each_entry_rcu(p, head, hlist) {
2271 if (kprobe_gone(p))
2272 continue;
2273
2274 if (within_module_init((unsigned long)p->addr, mod) ||
2275 (checkcore &&
2276 within_module_core((unsigned long)p->addr, mod))) {
2277 /*
2278 * The vaddr this probe is installed will soon
2279 * be vfreed buy not synced to disk. Hence,
2280 * disarming the breakpoint isn't needed.
2281 *
2282 * Note, this will also move any optimized probes
2283 * that are pending to be removed from their
2284 * corresponding lists to the freeing_list and
2285 * will not be touched by the delayed
2286 * kprobe_optimizer work handler.
2287 */
2288 kill_kprobe(p);
2289 }
2290 }
2291 }
2292 mutex_unlock(&kprobe_mutex);
2293 return NOTIFY_DONE;
2294 }
2295
2296 static struct notifier_block kprobe_module_nb = {
2297 .notifier_call = kprobes_module_callback,
2298 .priority = 0
2299 };
2300
2301 /* Markers of _kprobe_blacklist section */
2302 extern unsigned long __start_kprobe_blacklist[];
2303 extern unsigned long __stop_kprobe_blacklist[];
2304
2305 static int __init init_kprobes(void)
2306 {
2307 int i, err = 0;
2308
2309 /* FIXME allocate the probe table, currently defined statically */
2310 /* initialize all list heads */
2311 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2312 INIT_HLIST_HEAD(&kprobe_table[i]);
2313 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2314 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2315 }
2316
2317 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2318 __stop_kprobe_blacklist);
2319 if (err) {
2320 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2321 pr_err("Please take care of using kprobes.\n");
2322 }
2323
2324 if (kretprobe_blacklist_size) {
2325 /* lookup the function address from its name */
2326 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2327 kretprobe_blacklist[i].addr =
2328 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2329 if (!kretprobe_blacklist[i].addr)
2330 printk("kretprobe: lookup failed: %s\n",
2331 kretprobe_blacklist[i].name);
2332 }
2333 }
2334
2335 #if defined(CONFIG_OPTPROBES)
2336 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2337 /* Init kprobe_optinsn_slots */
2338 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2339 #endif
2340 /* By default, kprobes can be optimized */
2341 kprobes_allow_optimization = true;
2342 #endif
2343
2344 /* By default, kprobes are armed */
2345 kprobes_all_disarmed = false;
2346
2347 err = arch_init_kprobes();
2348 if (!err)
2349 err = register_die_notifier(&kprobe_exceptions_nb);
2350 if (!err)
2351 err = register_module_notifier(&kprobe_module_nb);
2352
2353 kprobes_initialized = (err == 0);
2354
2355 if (!err)
2356 init_test_probes();
2357 return err;
2358 }
2359
2360 #ifdef CONFIG_DEBUG_FS
2361 static void report_probe(struct seq_file *pi, struct kprobe *p,
2362 const char *sym, int offset, char *modname, struct kprobe *pp)
2363 {
2364 char *kprobe_type;
2365
2366 if (p->pre_handler == pre_handler_kretprobe)
2367 kprobe_type = "r";
2368 else if (p->pre_handler == setjmp_pre_handler)
2369 kprobe_type = "j";
2370 else
2371 kprobe_type = "k";
2372
2373 if (sym)
2374 seq_printf(pi, "%p %s %s+0x%x %s ",
2375 p->addr, kprobe_type, sym, offset,
2376 (modname ? modname : " "));
2377 else
2378 seq_printf(pi, "%p %s %p ",
2379 p->addr, kprobe_type, p->addr);
2380
2381 if (!pp)
2382 pp = p;
2383 seq_printf(pi, "%s%s%s%s\n",
2384 (kprobe_gone(p) ? "[GONE]" : ""),
2385 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2386 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2387 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2388 }
2389
2390 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2391 {
2392 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2393 }
2394
2395 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2396 {
2397 (*pos)++;
2398 if (*pos >= KPROBE_TABLE_SIZE)
2399 return NULL;
2400 return pos;
2401 }
2402
2403 static void kprobe_seq_stop(struct seq_file *f, void *v)
2404 {
2405 /* Nothing to do */
2406 }
2407
2408 static int show_kprobe_addr(struct seq_file *pi, void *v)
2409 {
2410 struct hlist_head *head;
2411 struct kprobe *p, *kp;
2412 const char *sym = NULL;
2413 unsigned int i = *(loff_t *) v;
2414 unsigned long offset = 0;
2415 char *modname, namebuf[KSYM_NAME_LEN];
2416
2417 head = &kprobe_table[i];
2418 preempt_disable();
2419 hlist_for_each_entry_rcu(p, head, hlist) {
2420 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2421 &offset, &modname, namebuf);
2422 if (kprobe_aggrprobe(p)) {
2423 list_for_each_entry_rcu(kp, &p->list, list)
2424 report_probe(pi, kp, sym, offset, modname, p);
2425 } else
2426 report_probe(pi, p, sym, offset, modname, NULL);
2427 }
2428 preempt_enable();
2429 return 0;
2430 }
2431
2432 static const struct seq_operations kprobes_seq_ops = {
2433 .start = kprobe_seq_start,
2434 .next = kprobe_seq_next,
2435 .stop = kprobe_seq_stop,
2436 .show = show_kprobe_addr
2437 };
2438
2439 static int kprobes_open(struct inode *inode, struct file *filp)
2440 {
2441 return seq_open(filp, &kprobes_seq_ops);
2442 }
2443
2444 static const struct file_operations debugfs_kprobes_operations = {
2445 .open = kprobes_open,
2446 .read = seq_read,
2447 .llseek = seq_lseek,
2448 .release = seq_release,
2449 };
2450
2451 /* kprobes/blacklist -- shows which functions can not be probed */
2452 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2453 {
2454 return seq_list_start(&kprobe_blacklist, *pos);
2455 }
2456
2457 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2458 {
2459 return seq_list_next(v, &kprobe_blacklist, pos);
2460 }
2461
2462 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2463 {
2464 struct kprobe_blacklist_entry *ent =
2465 list_entry(v, struct kprobe_blacklist_entry, list);
2466
2467 seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr,
2468 (void *)ent->end_addr, (void *)ent->start_addr);
2469 return 0;
2470 }
2471
2472 static const struct seq_operations kprobe_blacklist_seq_ops = {
2473 .start = kprobe_blacklist_seq_start,
2474 .next = kprobe_blacklist_seq_next,
2475 .stop = kprobe_seq_stop, /* Reuse void function */
2476 .show = kprobe_blacklist_seq_show,
2477 };
2478
2479 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2480 {
2481 return seq_open(filp, &kprobe_blacklist_seq_ops);
2482 }
2483
2484 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2485 .open = kprobe_blacklist_open,
2486 .read = seq_read,
2487 .llseek = seq_lseek,
2488 .release = seq_release,
2489 };
2490
2491 static void arm_all_kprobes(void)
2492 {
2493 struct hlist_head *head;
2494 struct kprobe *p;
2495 unsigned int i;
2496
2497 mutex_lock(&kprobe_mutex);
2498
2499 /* If kprobes are armed, just return */
2500 if (!kprobes_all_disarmed)
2501 goto already_enabled;
2502
2503 /*
2504 * optimize_kprobe() called by arm_kprobe() checks
2505 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2506 * arm_kprobe.
2507 */
2508 kprobes_all_disarmed = false;
2509 /* Arming kprobes doesn't optimize kprobe itself */
2510 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2511 head = &kprobe_table[i];
2512 hlist_for_each_entry_rcu(p, head, hlist)
2513 if (!kprobe_disabled(p))
2514 arm_kprobe(p);
2515 }
2516
2517 printk(KERN_INFO "Kprobes globally enabled\n");
2518
2519 already_enabled:
2520 mutex_unlock(&kprobe_mutex);
2521 return;
2522 }
2523
2524 static void disarm_all_kprobes(void)
2525 {
2526 struct hlist_head *head;
2527 struct kprobe *p;
2528 unsigned int i;
2529
2530 mutex_lock(&kprobe_mutex);
2531
2532 /* If kprobes are already disarmed, just return */
2533 if (kprobes_all_disarmed) {
2534 mutex_unlock(&kprobe_mutex);
2535 return;
2536 }
2537
2538 kprobes_all_disarmed = true;
2539 printk(KERN_INFO "Kprobes globally disabled\n");
2540
2541 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2542 head = &kprobe_table[i];
2543 hlist_for_each_entry_rcu(p, head, hlist) {
2544 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2545 disarm_kprobe(p, false);
2546 }
2547 }
2548 mutex_unlock(&kprobe_mutex);
2549
2550 /* Wait for disarming all kprobes by optimizer */
2551 wait_for_kprobe_optimizer();
2552 }
2553
2554 /*
2555 * XXX: The debugfs bool file interface doesn't allow for callbacks
2556 * when the bool state is switched. We can reuse that facility when
2557 * available
2558 */
2559 static ssize_t read_enabled_file_bool(struct file *file,
2560 char __user *user_buf, size_t count, loff_t *ppos)
2561 {
2562 char buf[3];
2563
2564 if (!kprobes_all_disarmed)
2565 buf[0] = '1';
2566 else
2567 buf[0] = '0';
2568 buf[1] = '\n';
2569 buf[2] = 0x00;
2570 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2571 }
2572
2573 static ssize_t write_enabled_file_bool(struct file *file,
2574 const char __user *user_buf, size_t count, loff_t *ppos)
2575 {
2576 char buf[32];
2577 size_t buf_size;
2578
2579 buf_size = min(count, (sizeof(buf)-1));
2580 if (copy_from_user(buf, user_buf, buf_size))
2581 return -EFAULT;
2582
2583 buf[buf_size] = '\0';
2584 switch (buf[0]) {
2585 case 'y':
2586 case 'Y':
2587 case '1':
2588 arm_all_kprobes();
2589 break;
2590 case 'n':
2591 case 'N':
2592 case '0':
2593 disarm_all_kprobes();
2594 break;
2595 default:
2596 return -EINVAL;
2597 }
2598
2599 return count;
2600 }
2601
2602 static const struct file_operations fops_kp = {
2603 .read = read_enabled_file_bool,
2604 .write = write_enabled_file_bool,
2605 .llseek = default_llseek,
2606 };
2607
2608 static int __init debugfs_kprobe_init(void)
2609 {
2610 struct dentry *dir, *file;
2611 unsigned int value = 1;
2612
2613 dir = debugfs_create_dir("kprobes", NULL);
2614 if (!dir)
2615 return -ENOMEM;
2616
2617 file = debugfs_create_file("list", 0400, dir, NULL,
2618 &debugfs_kprobes_operations);
2619 if (!file)
2620 goto error;
2621
2622 file = debugfs_create_file("enabled", 0600, dir,
2623 &value, &fops_kp);
2624 if (!file)
2625 goto error;
2626
2627 file = debugfs_create_file("blacklist", 0400, dir, NULL,
2628 &debugfs_kprobe_blacklist_ops);
2629 if (!file)
2630 goto error;
2631
2632 return 0;
2633
2634 error:
2635 debugfs_remove(dir);
2636 return -ENOMEM;
2637 }
2638
2639 late_initcall(debugfs_kprobe_init);
2640 #endif /* CONFIG_DEBUG_FS */
2641
2642 module_init(init_kprobes);
2643
2644 /* defined in arch/.../kernel/kprobes.c */
2645 EXPORT_SYMBOL_GPL(jprobe_return);