]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - kernel/module.c
sched/nohz: Run NOHZ idle load balancer on HK_FLAG_MISC CPUs
[thirdparty/kernel/stable.git] / kernel / module.c
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/export.h>
20 #include <linux/extable.h>
21 #include <linux/moduleloader.h>
22 #include <linux/trace_events.h>
23 #include <linux/init.h>
24 #include <linux/kallsyms.h>
25 #include <linux/file.h>
26 #include <linux/fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/vmalloc.h>
31 #include <linux/elf.h>
32 #include <linux/proc_fs.h>
33 #include <linux/security.h>
34 #include <linux/seq_file.h>
35 #include <linux/syscalls.h>
36 #include <linux/fcntl.h>
37 #include <linux/rcupdate.h>
38 #include <linux/capability.h>
39 #include <linux/cpu.h>
40 #include <linux/moduleparam.h>
41 #include <linux/errno.h>
42 #include <linux/err.h>
43 #include <linux/vermagic.h>
44 #include <linux/notifier.h>
45 #include <linux/sched.h>
46 #include <linux/device.h>
47 #include <linux/string.h>
48 #include <linux/mutex.h>
49 #include <linux/rculist.h>
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <linux/set_memory.h>
53 #include <asm/mmu_context.h>
54 #include <linux/license.h>
55 #include <asm/sections.h>
56 #include <linux/tracepoint.h>
57 #include <linux/ftrace.h>
58 #include <linux/livepatch.h>
59 #include <linux/async.h>
60 #include <linux/percpu.h>
61 #include <linux/kmemleak.h>
62 #include <linux/jump_label.h>
63 #include <linux/pfn.h>
64 #include <linux/bsearch.h>
65 #include <linux/dynamic_debug.h>
66 #include <linux/audit.h>
67 #include <uapi/linux/module.h>
68 #include "module-internal.h"
69
70 #define CREATE_TRACE_POINTS
71 #include <trace/events/module.h>
72
73 #ifndef ARCH_SHF_SMALL
74 #define ARCH_SHF_SMALL 0
75 #endif
76
77 /*
78 * Modules' sections will be aligned on page boundaries
79 * to ensure complete separation of code and data, but
80 * only when CONFIG_STRICT_MODULE_RWX=y
81 */
82 #ifdef CONFIG_STRICT_MODULE_RWX
83 # define debug_align(X) ALIGN(X, PAGE_SIZE)
84 #else
85 # define debug_align(X) (X)
86 #endif
87
88 /* If this is set, the section belongs in the init part of the module */
89 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
90
91 /*
92 * Mutex protects:
93 * 1) List of modules (also safely readable with preempt_disable),
94 * 2) module_use links,
95 * 3) module_addr_min/module_addr_max.
96 * (delete and add uses RCU list operations). */
97 DEFINE_MUTEX(module_mutex);
98 EXPORT_SYMBOL_GPL(module_mutex);
99 static LIST_HEAD(modules);
100
101 #ifdef CONFIG_MODULES_TREE_LOOKUP
102
103 /*
104 * Use a latched RB-tree for __module_address(); this allows us to use
105 * RCU-sched lookups of the address from any context.
106 *
107 * This is conditional on PERF_EVENTS || TRACING because those can really hit
108 * __module_address() hard by doing a lot of stack unwinding; potentially from
109 * NMI context.
110 */
111
112 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
113 {
114 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
115
116 return (unsigned long)layout->base;
117 }
118
119 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
120 {
121 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
122
123 return (unsigned long)layout->size;
124 }
125
126 static __always_inline bool
127 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
128 {
129 return __mod_tree_val(a) < __mod_tree_val(b);
130 }
131
132 static __always_inline int
133 mod_tree_comp(void *key, struct latch_tree_node *n)
134 {
135 unsigned long val = (unsigned long)key;
136 unsigned long start, end;
137
138 start = __mod_tree_val(n);
139 if (val < start)
140 return -1;
141
142 end = start + __mod_tree_size(n);
143 if (val >= end)
144 return 1;
145
146 return 0;
147 }
148
149 static const struct latch_tree_ops mod_tree_ops = {
150 .less = mod_tree_less,
151 .comp = mod_tree_comp,
152 };
153
154 static struct mod_tree_root {
155 struct latch_tree_root root;
156 unsigned long addr_min;
157 unsigned long addr_max;
158 } mod_tree __cacheline_aligned = {
159 .addr_min = -1UL,
160 };
161
162 #define module_addr_min mod_tree.addr_min
163 #define module_addr_max mod_tree.addr_max
164
165 static noinline void __mod_tree_insert(struct mod_tree_node *node)
166 {
167 latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
168 }
169
170 static void __mod_tree_remove(struct mod_tree_node *node)
171 {
172 latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
173 }
174
175 /*
176 * These modifications: insert, remove_init and remove; are serialized by the
177 * module_mutex.
178 */
179 static void mod_tree_insert(struct module *mod)
180 {
181 mod->core_layout.mtn.mod = mod;
182 mod->init_layout.mtn.mod = mod;
183
184 __mod_tree_insert(&mod->core_layout.mtn);
185 if (mod->init_layout.size)
186 __mod_tree_insert(&mod->init_layout.mtn);
187 }
188
189 static void mod_tree_remove_init(struct module *mod)
190 {
191 if (mod->init_layout.size)
192 __mod_tree_remove(&mod->init_layout.mtn);
193 }
194
195 static void mod_tree_remove(struct module *mod)
196 {
197 __mod_tree_remove(&mod->core_layout.mtn);
198 mod_tree_remove_init(mod);
199 }
200
201 static struct module *mod_find(unsigned long addr)
202 {
203 struct latch_tree_node *ltn;
204
205 ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
206 if (!ltn)
207 return NULL;
208
209 return container_of(ltn, struct mod_tree_node, node)->mod;
210 }
211
212 #else /* MODULES_TREE_LOOKUP */
213
214 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
215
216 static void mod_tree_insert(struct module *mod) { }
217 static void mod_tree_remove_init(struct module *mod) { }
218 static void mod_tree_remove(struct module *mod) { }
219
220 static struct module *mod_find(unsigned long addr)
221 {
222 struct module *mod;
223
224 list_for_each_entry_rcu(mod, &modules, list) {
225 if (within_module(addr, mod))
226 return mod;
227 }
228
229 return NULL;
230 }
231
232 #endif /* MODULES_TREE_LOOKUP */
233
234 /*
235 * Bounds of module text, for speeding up __module_address.
236 * Protected by module_mutex.
237 */
238 static void __mod_update_bounds(void *base, unsigned int size)
239 {
240 unsigned long min = (unsigned long)base;
241 unsigned long max = min + size;
242
243 if (min < module_addr_min)
244 module_addr_min = min;
245 if (max > module_addr_max)
246 module_addr_max = max;
247 }
248
249 static void mod_update_bounds(struct module *mod)
250 {
251 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
252 if (mod->init_layout.size)
253 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
254 }
255
256 #ifdef CONFIG_KGDB_KDB
257 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
258 #endif /* CONFIG_KGDB_KDB */
259
260 static void module_assert_mutex(void)
261 {
262 lockdep_assert_held(&module_mutex);
263 }
264
265 static void module_assert_mutex_or_preempt(void)
266 {
267 #ifdef CONFIG_LOCKDEP
268 if (unlikely(!debug_locks))
269 return;
270
271 WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
272 !lockdep_is_held(&module_mutex));
273 #endif
274 }
275
276 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
277 module_param(sig_enforce, bool_enable_only, 0644);
278
279 /*
280 * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
281 * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
282 */
283 bool is_module_sig_enforced(void)
284 {
285 return sig_enforce;
286 }
287 EXPORT_SYMBOL(is_module_sig_enforced);
288
289 /* Block module loading/unloading? */
290 int modules_disabled = 0;
291 core_param(nomodule, modules_disabled, bint, 0);
292
293 /* Waiting for a module to finish initializing? */
294 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
295
296 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
297
298 int register_module_notifier(struct notifier_block *nb)
299 {
300 return blocking_notifier_chain_register(&module_notify_list, nb);
301 }
302 EXPORT_SYMBOL(register_module_notifier);
303
304 int unregister_module_notifier(struct notifier_block *nb)
305 {
306 return blocking_notifier_chain_unregister(&module_notify_list, nb);
307 }
308 EXPORT_SYMBOL(unregister_module_notifier);
309
310 /*
311 * We require a truly strong try_module_get(): 0 means success.
312 * Otherwise an error is returned due to ongoing or failed
313 * initialization etc.
314 */
315 static inline int strong_try_module_get(struct module *mod)
316 {
317 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
318 if (mod && mod->state == MODULE_STATE_COMING)
319 return -EBUSY;
320 if (try_module_get(mod))
321 return 0;
322 else
323 return -ENOENT;
324 }
325
326 static inline void add_taint_module(struct module *mod, unsigned flag,
327 enum lockdep_ok lockdep_ok)
328 {
329 add_taint(flag, lockdep_ok);
330 set_bit(flag, &mod->taints);
331 }
332
333 /*
334 * A thread that wants to hold a reference to a module only while it
335 * is running can call this to safely exit. nfsd and lockd use this.
336 */
337 void __noreturn __module_put_and_exit(struct module *mod, long code)
338 {
339 module_put(mod);
340 do_exit(code);
341 }
342 EXPORT_SYMBOL(__module_put_and_exit);
343
344 /* Find a module section: 0 means not found. */
345 static unsigned int find_sec(const struct load_info *info, const char *name)
346 {
347 unsigned int i;
348
349 for (i = 1; i < info->hdr->e_shnum; i++) {
350 Elf_Shdr *shdr = &info->sechdrs[i];
351 /* Alloc bit cleared means "ignore it." */
352 if ((shdr->sh_flags & SHF_ALLOC)
353 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
354 return i;
355 }
356 return 0;
357 }
358
359 /* Find a module section, or NULL. */
360 static void *section_addr(const struct load_info *info, const char *name)
361 {
362 /* Section 0 has sh_addr 0. */
363 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
364 }
365
366 /* Find a module section, or NULL. Fill in number of "objects" in section. */
367 static void *section_objs(const struct load_info *info,
368 const char *name,
369 size_t object_size,
370 unsigned int *num)
371 {
372 unsigned int sec = find_sec(info, name);
373
374 /* Section 0 has sh_addr 0 and sh_size 0. */
375 *num = info->sechdrs[sec].sh_size / object_size;
376 return (void *)info->sechdrs[sec].sh_addr;
377 }
378
379 /* Provided by the linker */
380 extern const struct kernel_symbol __start___ksymtab[];
381 extern const struct kernel_symbol __stop___ksymtab[];
382 extern const struct kernel_symbol __start___ksymtab_gpl[];
383 extern const struct kernel_symbol __stop___ksymtab_gpl[];
384 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
385 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
386 extern const s32 __start___kcrctab[];
387 extern const s32 __start___kcrctab_gpl[];
388 extern const s32 __start___kcrctab_gpl_future[];
389 #ifdef CONFIG_UNUSED_SYMBOLS
390 extern const struct kernel_symbol __start___ksymtab_unused[];
391 extern const struct kernel_symbol __stop___ksymtab_unused[];
392 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
393 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
394 extern const s32 __start___kcrctab_unused[];
395 extern const s32 __start___kcrctab_unused_gpl[];
396 #endif
397
398 #ifndef CONFIG_MODVERSIONS
399 #define symversion(base, idx) NULL
400 #else
401 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
402 #endif
403
404 static bool each_symbol_in_section(const struct symsearch *arr,
405 unsigned int arrsize,
406 struct module *owner,
407 bool (*fn)(const struct symsearch *syms,
408 struct module *owner,
409 void *data),
410 void *data)
411 {
412 unsigned int j;
413
414 for (j = 0; j < arrsize; j++) {
415 if (fn(&arr[j], owner, data))
416 return true;
417 }
418
419 return false;
420 }
421
422 /* Returns true as soon as fn returns true, otherwise false. */
423 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
424 struct module *owner,
425 void *data),
426 void *data)
427 {
428 struct module *mod;
429 static const struct symsearch arr[] = {
430 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
431 NOT_GPL_ONLY, false },
432 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
433 __start___kcrctab_gpl,
434 GPL_ONLY, false },
435 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
436 __start___kcrctab_gpl_future,
437 WILL_BE_GPL_ONLY, false },
438 #ifdef CONFIG_UNUSED_SYMBOLS
439 { __start___ksymtab_unused, __stop___ksymtab_unused,
440 __start___kcrctab_unused,
441 NOT_GPL_ONLY, true },
442 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
443 __start___kcrctab_unused_gpl,
444 GPL_ONLY, true },
445 #endif
446 };
447
448 module_assert_mutex_or_preempt();
449
450 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
451 return true;
452
453 list_for_each_entry_rcu(mod, &modules, list) {
454 struct symsearch arr[] = {
455 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
456 NOT_GPL_ONLY, false },
457 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
458 mod->gpl_crcs,
459 GPL_ONLY, false },
460 { mod->gpl_future_syms,
461 mod->gpl_future_syms + mod->num_gpl_future_syms,
462 mod->gpl_future_crcs,
463 WILL_BE_GPL_ONLY, false },
464 #ifdef CONFIG_UNUSED_SYMBOLS
465 { mod->unused_syms,
466 mod->unused_syms + mod->num_unused_syms,
467 mod->unused_crcs,
468 NOT_GPL_ONLY, true },
469 { mod->unused_gpl_syms,
470 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
471 mod->unused_gpl_crcs,
472 GPL_ONLY, true },
473 #endif
474 };
475
476 if (mod->state == MODULE_STATE_UNFORMED)
477 continue;
478
479 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
480 return true;
481 }
482 return false;
483 }
484 EXPORT_SYMBOL_GPL(each_symbol_section);
485
486 struct find_symbol_arg {
487 /* Input */
488 const char *name;
489 bool gplok;
490 bool warn;
491
492 /* Output */
493 struct module *owner;
494 const s32 *crc;
495 const struct kernel_symbol *sym;
496 };
497
498 static bool check_exported_symbol(const struct symsearch *syms,
499 struct module *owner,
500 unsigned int symnum, void *data)
501 {
502 struct find_symbol_arg *fsa = data;
503
504 if (!fsa->gplok) {
505 if (syms->licence == GPL_ONLY)
506 return false;
507 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
508 pr_warn("Symbol %s is being used by a non-GPL module, "
509 "which will not be allowed in the future\n",
510 fsa->name);
511 }
512 }
513
514 #ifdef CONFIG_UNUSED_SYMBOLS
515 if (syms->unused && fsa->warn) {
516 pr_warn("Symbol %s is marked as UNUSED, however this module is "
517 "using it.\n", fsa->name);
518 pr_warn("This symbol will go away in the future.\n");
519 pr_warn("Please evaluate if this is the right api to use and "
520 "if it really is, submit a report to the linux kernel "
521 "mailing list together with submitting your code for "
522 "inclusion.\n");
523 }
524 #endif
525
526 fsa->owner = owner;
527 fsa->crc = symversion(syms->crcs, symnum);
528 fsa->sym = &syms->start[symnum];
529 return true;
530 }
531
532 static unsigned long kernel_symbol_value(const struct kernel_symbol *sym)
533 {
534 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
535 return (unsigned long)offset_to_ptr(&sym->value_offset);
536 #else
537 return sym->value;
538 #endif
539 }
540
541 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
542 {
543 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
544 return offset_to_ptr(&sym->name_offset);
545 #else
546 return sym->name;
547 #endif
548 }
549
550 static int cmp_name(const void *va, const void *vb)
551 {
552 const char *a;
553 const struct kernel_symbol *b;
554 a = va; b = vb;
555 return strcmp(a, kernel_symbol_name(b));
556 }
557
558 static bool find_exported_symbol_in_section(const struct symsearch *syms,
559 struct module *owner,
560 void *data)
561 {
562 struct find_symbol_arg *fsa = data;
563 struct kernel_symbol *sym;
564
565 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
566 sizeof(struct kernel_symbol), cmp_name);
567
568 if (sym != NULL && check_exported_symbol(syms, owner,
569 sym - syms->start, data))
570 return true;
571
572 return false;
573 }
574
575 /* Find an exported symbol and return it, along with, (optional) crc and
576 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
577 const struct kernel_symbol *find_symbol(const char *name,
578 struct module **owner,
579 const s32 **crc,
580 bool gplok,
581 bool warn)
582 {
583 struct find_symbol_arg fsa;
584
585 fsa.name = name;
586 fsa.gplok = gplok;
587 fsa.warn = warn;
588
589 if (each_symbol_section(find_exported_symbol_in_section, &fsa)) {
590 if (owner)
591 *owner = fsa.owner;
592 if (crc)
593 *crc = fsa.crc;
594 return fsa.sym;
595 }
596
597 pr_debug("Failed to find symbol %s\n", name);
598 return NULL;
599 }
600 EXPORT_SYMBOL_GPL(find_symbol);
601
602 /*
603 * Search for module by name: must hold module_mutex (or preempt disabled
604 * for read-only access).
605 */
606 static struct module *find_module_all(const char *name, size_t len,
607 bool even_unformed)
608 {
609 struct module *mod;
610
611 module_assert_mutex_or_preempt();
612
613 list_for_each_entry_rcu(mod, &modules, list) {
614 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
615 continue;
616 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
617 return mod;
618 }
619 return NULL;
620 }
621
622 struct module *find_module(const char *name)
623 {
624 module_assert_mutex();
625 return find_module_all(name, strlen(name), false);
626 }
627 EXPORT_SYMBOL_GPL(find_module);
628
629 #ifdef CONFIG_SMP
630
631 static inline void __percpu *mod_percpu(struct module *mod)
632 {
633 return mod->percpu;
634 }
635
636 static int percpu_modalloc(struct module *mod, struct load_info *info)
637 {
638 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
639 unsigned long align = pcpusec->sh_addralign;
640
641 if (!pcpusec->sh_size)
642 return 0;
643
644 if (align > PAGE_SIZE) {
645 pr_warn("%s: per-cpu alignment %li > %li\n",
646 mod->name, align, PAGE_SIZE);
647 align = PAGE_SIZE;
648 }
649
650 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
651 if (!mod->percpu) {
652 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
653 mod->name, (unsigned long)pcpusec->sh_size);
654 return -ENOMEM;
655 }
656 mod->percpu_size = pcpusec->sh_size;
657 return 0;
658 }
659
660 static void percpu_modfree(struct module *mod)
661 {
662 free_percpu(mod->percpu);
663 }
664
665 static unsigned int find_pcpusec(struct load_info *info)
666 {
667 return find_sec(info, ".data..percpu");
668 }
669
670 static void percpu_modcopy(struct module *mod,
671 const void *from, unsigned long size)
672 {
673 int cpu;
674
675 for_each_possible_cpu(cpu)
676 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
677 }
678
679 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
680 {
681 struct module *mod;
682 unsigned int cpu;
683
684 preempt_disable();
685
686 list_for_each_entry_rcu(mod, &modules, list) {
687 if (mod->state == MODULE_STATE_UNFORMED)
688 continue;
689 if (!mod->percpu_size)
690 continue;
691 for_each_possible_cpu(cpu) {
692 void *start = per_cpu_ptr(mod->percpu, cpu);
693 void *va = (void *)addr;
694
695 if (va >= start && va < start + mod->percpu_size) {
696 if (can_addr) {
697 *can_addr = (unsigned long) (va - start);
698 *can_addr += (unsigned long)
699 per_cpu_ptr(mod->percpu,
700 get_boot_cpu_id());
701 }
702 preempt_enable();
703 return true;
704 }
705 }
706 }
707
708 preempt_enable();
709 return false;
710 }
711
712 /**
713 * is_module_percpu_address - test whether address is from module static percpu
714 * @addr: address to test
715 *
716 * Test whether @addr belongs to module static percpu area.
717 *
718 * RETURNS:
719 * %true if @addr is from module static percpu area
720 */
721 bool is_module_percpu_address(unsigned long addr)
722 {
723 return __is_module_percpu_address(addr, NULL);
724 }
725
726 #else /* ... !CONFIG_SMP */
727
728 static inline void __percpu *mod_percpu(struct module *mod)
729 {
730 return NULL;
731 }
732 static int percpu_modalloc(struct module *mod, struct load_info *info)
733 {
734 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
735 if (info->sechdrs[info->index.pcpu].sh_size != 0)
736 return -ENOMEM;
737 return 0;
738 }
739 static inline void percpu_modfree(struct module *mod)
740 {
741 }
742 static unsigned int find_pcpusec(struct load_info *info)
743 {
744 return 0;
745 }
746 static inline void percpu_modcopy(struct module *mod,
747 const void *from, unsigned long size)
748 {
749 /* pcpusec should be 0, and size of that section should be 0. */
750 BUG_ON(size != 0);
751 }
752 bool is_module_percpu_address(unsigned long addr)
753 {
754 return false;
755 }
756
757 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
758 {
759 return false;
760 }
761
762 #endif /* CONFIG_SMP */
763
764 #define MODINFO_ATTR(field) \
765 static void setup_modinfo_##field(struct module *mod, const char *s) \
766 { \
767 mod->field = kstrdup(s, GFP_KERNEL); \
768 } \
769 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
770 struct module_kobject *mk, char *buffer) \
771 { \
772 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
773 } \
774 static int modinfo_##field##_exists(struct module *mod) \
775 { \
776 return mod->field != NULL; \
777 } \
778 static void free_modinfo_##field(struct module *mod) \
779 { \
780 kfree(mod->field); \
781 mod->field = NULL; \
782 } \
783 static struct module_attribute modinfo_##field = { \
784 .attr = { .name = __stringify(field), .mode = 0444 }, \
785 .show = show_modinfo_##field, \
786 .setup = setup_modinfo_##field, \
787 .test = modinfo_##field##_exists, \
788 .free = free_modinfo_##field, \
789 };
790
791 MODINFO_ATTR(version);
792 MODINFO_ATTR(srcversion);
793
794 static char last_unloaded_module[MODULE_NAME_LEN+1];
795
796 #ifdef CONFIG_MODULE_UNLOAD
797
798 EXPORT_TRACEPOINT_SYMBOL(module_get);
799
800 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
801 #define MODULE_REF_BASE 1
802
803 /* Init the unload section of the module. */
804 static int module_unload_init(struct module *mod)
805 {
806 /*
807 * Initialize reference counter to MODULE_REF_BASE.
808 * refcnt == 0 means module is going.
809 */
810 atomic_set(&mod->refcnt, MODULE_REF_BASE);
811
812 INIT_LIST_HEAD(&mod->source_list);
813 INIT_LIST_HEAD(&mod->target_list);
814
815 /* Hold reference count during initialization. */
816 atomic_inc(&mod->refcnt);
817
818 return 0;
819 }
820
821 /* Does a already use b? */
822 static int already_uses(struct module *a, struct module *b)
823 {
824 struct module_use *use;
825
826 list_for_each_entry(use, &b->source_list, source_list) {
827 if (use->source == a) {
828 pr_debug("%s uses %s!\n", a->name, b->name);
829 return 1;
830 }
831 }
832 pr_debug("%s does not use %s!\n", a->name, b->name);
833 return 0;
834 }
835
836 /*
837 * Module a uses b
838 * - we add 'a' as a "source", 'b' as a "target" of module use
839 * - the module_use is added to the list of 'b' sources (so
840 * 'b' can walk the list to see who sourced them), and of 'a'
841 * targets (so 'a' can see what modules it targets).
842 */
843 static int add_module_usage(struct module *a, struct module *b)
844 {
845 struct module_use *use;
846
847 pr_debug("Allocating new usage for %s.\n", a->name);
848 use = kmalloc(sizeof(*use), GFP_ATOMIC);
849 if (!use)
850 return -ENOMEM;
851
852 use->source = a;
853 use->target = b;
854 list_add(&use->source_list, &b->source_list);
855 list_add(&use->target_list, &a->target_list);
856 return 0;
857 }
858
859 /* Module a uses b: caller needs module_mutex() */
860 int ref_module(struct module *a, struct module *b)
861 {
862 int err;
863
864 if (b == NULL || already_uses(a, b))
865 return 0;
866
867 /* If module isn't available, we fail. */
868 err = strong_try_module_get(b);
869 if (err)
870 return err;
871
872 err = add_module_usage(a, b);
873 if (err) {
874 module_put(b);
875 return err;
876 }
877 return 0;
878 }
879 EXPORT_SYMBOL_GPL(ref_module);
880
881 /* Clear the unload stuff of the module. */
882 static void module_unload_free(struct module *mod)
883 {
884 struct module_use *use, *tmp;
885
886 mutex_lock(&module_mutex);
887 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
888 struct module *i = use->target;
889 pr_debug("%s unusing %s\n", mod->name, i->name);
890 module_put(i);
891 list_del(&use->source_list);
892 list_del(&use->target_list);
893 kfree(use);
894 }
895 mutex_unlock(&module_mutex);
896 }
897
898 #ifdef CONFIG_MODULE_FORCE_UNLOAD
899 static inline int try_force_unload(unsigned int flags)
900 {
901 int ret = (flags & O_TRUNC);
902 if (ret)
903 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
904 return ret;
905 }
906 #else
907 static inline int try_force_unload(unsigned int flags)
908 {
909 return 0;
910 }
911 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
912
913 /* Try to release refcount of module, 0 means success. */
914 static int try_release_module_ref(struct module *mod)
915 {
916 int ret;
917
918 /* Try to decrement refcnt which we set at loading */
919 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
920 BUG_ON(ret < 0);
921 if (ret)
922 /* Someone can put this right now, recover with checking */
923 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
924
925 return ret;
926 }
927
928 static int try_stop_module(struct module *mod, int flags, int *forced)
929 {
930 /* If it's not unused, quit unless we're forcing. */
931 if (try_release_module_ref(mod) != 0) {
932 *forced = try_force_unload(flags);
933 if (!(*forced))
934 return -EWOULDBLOCK;
935 }
936
937 /* Mark it as dying. */
938 mod->state = MODULE_STATE_GOING;
939
940 return 0;
941 }
942
943 /**
944 * module_refcount - return the refcount or -1 if unloading
945 *
946 * @mod: the module we're checking
947 *
948 * Returns:
949 * -1 if the module is in the process of unloading
950 * otherwise the number of references in the kernel to the module
951 */
952 int module_refcount(struct module *mod)
953 {
954 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
955 }
956 EXPORT_SYMBOL(module_refcount);
957
958 /* This exists whether we can unload or not */
959 static void free_module(struct module *mod);
960
961 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
962 unsigned int, flags)
963 {
964 struct module *mod;
965 char name[MODULE_NAME_LEN];
966 int ret, forced = 0;
967
968 if (!capable(CAP_SYS_MODULE) || modules_disabled)
969 return -EPERM;
970
971 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
972 return -EFAULT;
973 name[MODULE_NAME_LEN-1] = '\0';
974
975 audit_log_kern_module(name);
976
977 if (mutex_lock_interruptible(&module_mutex) != 0)
978 return -EINTR;
979
980 mod = find_module(name);
981 if (!mod) {
982 ret = -ENOENT;
983 goto out;
984 }
985
986 if (!list_empty(&mod->source_list)) {
987 /* Other modules depend on us: get rid of them first. */
988 ret = -EWOULDBLOCK;
989 goto out;
990 }
991
992 /* Doing init or already dying? */
993 if (mod->state != MODULE_STATE_LIVE) {
994 /* FIXME: if (force), slam module count damn the torpedoes */
995 pr_debug("%s already dying\n", mod->name);
996 ret = -EBUSY;
997 goto out;
998 }
999
1000 /* If it has an init func, it must have an exit func to unload */
1001 if (mod->init && !mod->exit) {
1002 forced = try_force_unload(flags);
1003 if (!forced) {
1004 /* This module can't be removed */
1005 ret = -EBUSY;
1006 goto out;
1007 }
1008 }
1009
1010 /* Stop the machine so refcounts can't move and disable module. */
1011 ret = try_stop_module(mod, flags, &forced);
1012 if (ret != 0)
1013 goto out;
1014
1015 mutex_unlock(&module_mutex);
1016 /* Final destruction now no one is using it. */
1017 if (mod->exit != NULL)
1018 mod->exit();
1019 blocking_notifier_call_chain(&module_notify_list,
1020 MODULE_STATE_GOING, mod);
1021 klp_module_going(mod);
1022 ftrace_release_mod(mod);
1023
1024 async_synchronize_full();
1025
1026 /* Store the name of the last unloaded module for diagnostic purposes */
1027 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1028
1029 free_module(mod);
1030 return 0;
1031 out:
1032 mutex_unlock(&module_mutex);
1033 return ret;
1034 }
1035
1036 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1037 {
1038 struct module_use *use;
1039 int printed_something = 0;
1040
1041 seq_printf(m, " %i ", module_refcount(mod));
1042
1043 /*
1044 * Always include a trailing , so userspace can differentiate
1045 * between this and the old multi-field proc format.
1046 */
1047 list_for_each_entry(use, &mod->source_list, source_list) {
1048 printed_something = 1;
1049 seq_printf(m, "%s,", use->source->name);
1050 }
1051
1052 if (mod->init != NULL && mod->exit == NULL) {
1053 printed_something = 1;
1054 seq_puts(m, "[permanent],");
1055 }
1056
1057 if (!printed_something)
1058 seq_puts(m, "-");
1059 }
1060
1061 void __symbol_put(const char *symbol)
1062 {
1063 struct module *owner;
1064
1065 preempt_disable();
1066 if (!find_symbol(symbol, &owner, NULL, true, false))
1067 BUG();
1068 module_put(owner);
1069 preempt_enable();
1070 }
1071 EXPORT_SYMBOL(__symbol_put);
1072
1073 /* Note this assumes addr is a function, which it currently always is. */
1074 void symbol_put_addr(void *addr)
1075 {
1076 struct module *modaddr;
1077 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1078
1079 if (core_kernel_text(a))
1080 return;
1081
1082 /*
1083 * Even though we hold a reference on the module; we still need to
1084 * disable preemption in order to safely traverse the data structure.
1085 */
1086 preempt_disable();
1087 modaddr = __module_text_address(a);
1088 BUG_ON(!modaddr);
1089 module_put(modaddr);
1090 preempt_enable();
1091 }
1092 EXPORT_SYMBOL_GPL(symbol_put_addr);
1093
1094 static ssize_t show_refcnt(struct module_attribute *mattr,
1095 struct module_kobject *mk, char *buffer)
1096 {
1097 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1098 }
1099
1100 static struct module_attribute modinfo_refcnt =
1101 __ATTR(refcnt, 0444, show_refcnt, NULL);
1102
1103 void __module_get(struct module *module)
1104 {
1105 if (module) {
1106 preempt_disable();
1107 atomic_inc(&module->refcnt);
1108 trace_module_get(module, _RET_IP_);
1109 preempt_enable();
1110 }
1111 }
1112 EXPORT_SYMBOL(__module_get);
1113
1114 bool try_module_get(struct module *module)
1115 {
1116 bool ret = true;
1117
1118 if (module) {
1119 preempt_disable();
1120 /* Note: here, we can fail to get a reference */
1121 if (likely(module_is_live(module) &&
1122 atomic_inc_not_zero(&module->refcnt) != 0))
1123 trace_module_get(module, _RET_IP_);
1124 else
1125 ret = false;
1126
1127 preempt_enable();
1128 }
1129 return ret;
1130 }
1131 EXPORT_SYMBOL(try_module_get);
1132
1133 void module_put(struct module *module)
1134 {
1135 int ret;
1136
1137 if (module) {
1138 preempt_disable();
1139 ret = atomic_dec_if_positive(&module->refcnt);
1140 WARN_ON(ret < 0); /* Failed to put refcount */
1141 trace_module_put(module, _RET_IP_);
1142 preempt_enable();
1143 }
1144 }
1145 EXPORT_SYMBOL(module_put);
1146
1147 #else /* !CONFIG_MODULE_UNLOAD */
1148 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1149 {
1150 /* We don't know the usage count, or what modules are using. */
1151 seq_puts(m, " - -");
1152 }
1153
1154 static inline void module_unload_free(struct module *mod)
1155 {
1156 }
1157
1158 int ref_module(struct module *a, struct module *b)
1159 {
1160 return strong_try_module_get(b);
1161 }
1162 EXPORT_SYMBOL_GPL(ref_module);
1163
1164 static inline int module_unload_init(struct module *mod)
1165 {
1166 return 0;
1167 }
1168 #endif /* CONFIG_MODULE_UNLOAD */
1169
1170 static size_t module_flags_taint(struct module *mod, char *buf)
1171 {
1172 size_t l = 0;
1173 int i;
1174
1175 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1176 if (taint_flags[i].module && test_bit(i, &mod->taints))
1177 buf[l++] = taint_flags[i].c_true;
1178 }
1179
1180 return l;
1181 }
1182
1183 static ssize_t show_initstate(struct module_attribute *mattr,
1184 struct module_kobject *mk, char *buffer)
1185 {
1186 const char *state = "unknown";
1187
1188 switch (mk->mod->state) {
1189 case MODULE_STATE_LIVE:
1190 state = "live";
1191 break;
1192 case MODULE_STATE_COMING:
1193 state = "coming";
1194 break;
1195 case MODULE_STATE_GOING:
1196 state = "going";
1197 break;
1198 default:
1199 BUG();
1200 }
1201 return sprintf(buffer, "%s\n", state);
1202 }
1203
1204 static struct module_attribute modinfo_initstate =
1205 __ATTR(initstate, 0444, show_initstate, NULL);
1206
1207 static ssize_t store_uevent(struct module_attribute *mattr,
1208 struct module_kobject *mk,
1209 const char *buffer, size_t count)
1210 {
1211 int rc;
1212
1213 rc = kobject_synth_uevent(&mk->kobj, buffer, count);
1214 return rc ? rc : count;
1215 }
1216
1217 struct module_attribute module_uevent =
1218 __ATTR(uevent, 0200, NULL, store_uevent);
1219
1220 static ssize_t show_coresize(struct module_attribute *mattr,
1221 struct module_kobject *mk, char *buffer)
1222 {
1223 return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1224 }
1225
1226 static struct module_attribute modinfo_coresize =
1227 __ATTR(coresize, 0444, show_coresize, NULL);
1228
1229 static ssize_t show_initsize(struct module_attribute *mattr,
1230 struct module_kobject *mk, char *buffer)
1231 {
1232 return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1233 }
1234
1235 static struct module_attribute modinfo_initsize =
1236 __ATTR(initsize, 0444, show_initsize, NULL);
1237
1238 static ssize_t show_taint(struct module_attribute *mattr,
1239 struct module_kobject *mk, char *buffer)
1240 {
1241 size_t l;
1242
1243 l = module_flags_taint(mk->mod, buffer);
1244 buffer[l++] = '\n';
1245 return l;
1246 }
1247
1248 static struct module_attribute modinfo_taint =
1249 __ATTR(taint, 0444, show_taint, NULL);
1250
1251 static struct module_attribute *modinfo_attrs[] = {
1252 &module_uevent,
1253 &modinfo_version,
1254 &modinfo_srcversion,
1255 &modinfo_initstate,
1256 &modinfo_coresize,
1257 &modinfo_initsize,
1258 &modinfo_taint,
1259 #ifdef CONFIG_MODULE_UNLOAD
1260 &modinfo_refcnt,
1261 #endif
1262 NULL,
1263 };
1264
1265 static const char vermagic[] = VERMAGIC_STRING;
1266
1267 static int try_to_force_load(struct module *mod, const char *reason)
1268 {
1269 #ifdef CONFIG_MODULE_FORCE_LOAD
1270 if (!test_taint(TAINT_FORCED_MODULE))
1271 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1272 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1273 return 0;
1274 #else
1275 return -ENOEXEC;
1276 #endif
1277 }
1278
1279 #ifdef CONFIG_MODVERSIONS
1280
1281 static u32 resolve_rel_crc(const s32 *crc)
1282 {
1283 return *(u32 *)((void *)crc + *crc);
1284 }
1285
1286 static int check_version(const struct load_info *info,
1287 const char *symname,
1288 struct module *mod,
1289 const s32 *crc)
1290 {
1291 Elf_Shdr *sechdrs = info->sechdrs;
1292 unsigned int versindex = info->index.vers;
1293 unsigned int i, num_versions;
1294 struct modversion_info *versions;
1295
1296 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1297 if (!crc)
1298 return 1;
1299
1300 /* No versions at all? modprobe --force does this. */
1301 if (versindex == 0)
1302 return try_to_force_load(mod, symname) == 0;
1303
1304 versions = (void *) sechdrs[versindex].sh_addr;
1305 num_versions = sechdrs[versindex].sh_size
1306 / sizeof(struct modversion_info);
1307
1308 for (i = 0; i < num_versions; i++) {
1309 u32 crcval;
1310
1311 if (strcmp(versions[i].name, symname) != 0)
1312 continue;
1313
1314 if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1315 crcval = resolve_rel_crc(crc);
1316 else
1317 crcval = *crc;
1318 if (versions[i].crc == crcval)
1319 return 1;
1320 pr_debug("Found checksum %X vs module %lX\n",
1321 crcval, versions[i].crc);
1322 goto bad_version;
1323 }
1324
1325 /* Broken toolchain. Warn once, then let it go.. */
1326 pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1327 return 1;
1328
1329 bad_version:
1330 pr_warn("%s: disagrees about version of symbol %s\n",
1331 info->name, symname);
1332 return 0;
1333 }
1334
1335 static inline int check_modstruct_version(const struct load_info *info,
1336 struct module *mod)
1337 {
1338 const s32 *crc;
1339
1340 /*
1341 * Since this should be found in kernel (which can't be removed), no
1342 * locking is necessary -- use preempt_disable() to placate lockdep.
1343 */
1344 preempt_disable();
1345 if (!find_symbol("module_layout", NULL, &crc, true, false)) {
1346 preempt_enable();
1347 BUG();
1348 }
1349 preempt_enable();
1350 return check_version(info, "module_layout", mod, crc);
1351 }
1352
1353 /* First part is kernel version, which we ignore if module has crcs. */
1354 static inline int same_magic(const char *amagic, const char *bmagic,
1355 bool has_crcs)
1356 {
1357 if (has_crcs) {
1358 amagic += strcspn(amagic, " ");
1359 bmagic += strcspn(bmagic, " ");
1360 }
1361 return strcmp(amagic, bmagic) == 0;
1362 }
1363 #else
1364 static inline int check_version(const struct load_info *info,
1365 const char *symname,
1366 struct module *mod,
1367 const s32 *crc)
1368 {
1369 return 1;
1370 }
1371
1372 static inline int check_modstruct_version(const struct load_info *info,
1373 struct module *mod)
1374 {
1375 return 1;
1376 }
1377
1378 static inline int same_magic(const char *amagic, const char *bmagic,
1379 bool has_crcs)
1380 {
1381 return strcmp(amagic, bmagic) == 0;
1382 }
1383 #endif /* CONFIG_MODVERSIONS */
1384
1385 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1386 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1387 const struct load_info *info,
1388 const char *name,
1389 char ownername[])
1390 {
1391 struct module *owner;
1392 const struct kernel_symbol *sym;
1393 const s32 *crc;
1394 int err;
1395
1396 /*
1397 * The module_mutex should not be a heavily contended lock;
1398 * if we get the occasional sleep here, we'll go an extra iteration
1399 * in the wait_event_interruptible(), which is harmless.
1400 */
1401 sched_annotate_sleep();
1402 mutex_lock(&module_mutex);
1403 sym = find_symbol(name, &owner, &crc,
1404 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1405 if (!sym)
1406 goto unlock;
1407
1408 if (!check_version(info, name, mod, crc)) {
1409 sym = ERR_PTR(-EINVAL);
1410 goto getname;
1411 }
1412
1413 err = ref_module(mod, owner);
1414 if (err) {
1415 sym = ERR_PTR(err);
1416 goto getname;
1417 }
1418
1419 getname:
1420 /* We must make copy under the lock if we failed to get ref. */
1421 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1422 unlock:
1423 mutex_unlock(&module_mutex);
1424 return sym;
1425 }
1426
1427 static const struct kernel_symbol *
1428 resolve_symbol_wait(struct module *mod,
1429 const struct load_info *info,
1430 const char *name)
1431 {
1432 const struct kernel_symbol *ksym;
1433 char owner[MODULE_NAME_LEN];
1434
1435 if (wait_event_interruptible_timeout(module_wq,
1436 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1437 || PTR_ERR(ksym) != -EBUSY,
1438 30 * HZ) <= 0) {
1439 pr_warn("%s: gave up waiting for init of module %s.\n",
1440 mod->name, owner);
1441 }
1442 return ksym;
1443 }
1444
1445 /*
1446 * /sys/module/foo/sections stuff
1447 * J. Corbet <corbet@lwn.net>
1448 */
1449 #ifdef CONFIG_SYSFS
1450
1451 #ifdef CONFIG_KALLSYMS
1452 static inline bool sect_empty(const Elf_Shdr *sect)
1453 {
1454 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1455 }
1456
1457 struct module_sect_attr {
1458 struct module_attribute mattr;
1459 char *name;
1460 unsigned long address;
1461 };
1462
1463 struct module_sect_attrs {
1464 struct attribute_group grp;
1465 unsigned int nsections;
1466 struct module_sect_attr attrs[0];
1467 };
1468
1469 static ssize_t module_sect_show(struct module_attribute *mattr,
1470 struct module_kobject *mk, char *buf)
1471 {
1472 struct module_sect_attr *sattr =
1473 container_of(mattr, struct module_sect_attr, mattr);
1474 return sprintf(buf, "0x%px\n", kptr_restrict < 2 ?
1475 (void *)sattr->address : NULL);
1476 }
1477
1478 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1479 {
1480 unsigned int section;
1481
1482 for (section = 0; section < sect_attrs->nsections; section++)
1483 kfree(sect_attrs->attrs[section].name);
1484 kfree(sect_attrs);
1485 }
1486
1487 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1488 {
1489 unsigned int nloaded = 0, i, size[2];
1490 struct module_sect_attrs *sect_attrs;
1491 struct module_sect_attr *sattr;
1492 struct attribute **gattr;
1493
1494 /* Count loaded sections and allocate structures */
1495 for (i = 0; i < info->hdr->e_shnum; i++)
1496 if (!sect_empty(&info->sechdrs[i]))
1497 nloaded++;
1498 size[0] = ALIGN(sizeof(*sect_attrs)
1499 + nloaded * sizeof(sect_attrs->attrs[0]),
1500 sizeof(sect_attrs->grp.attrs[0]));
1501 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1502 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1503 if (sect_attrs == NULL)
1504 return;
1505
1506 /* Setup section attributes. */
1507 sect_attrs->grp.name = "sections";
1508 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1509
1510 sect_attrs->nsections = 0;
1511 sattr = &sect_attrs->attrs[0];
1512 gattr = &sect_attrs->grp.attrs[0];
1513 for (i = 0; i < info->hdr->e_shnum; i++) {
1514 Elf_Shdr *sec = &info->sechdrs[i];
1515 if (sect_empty(sec))
1516 continue;
1517 sattr->address = sec->sh_addr;
1518 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1519 GFP_KERNEL);
1520 if (sattr->name == NULL)
1521 goto out;
1522 sect_attrs->nsections++;
1523 sysfs_attr_init(&sattr->mattr.attr);
1524 sattr->mattr.show = module_sect_show;
1525 sattr->mattr.store = NULL;
1526 sattr->mattr.attr.name = sattr->name;
1527 sattr->mattr.attr.mode = S_IRUSR;
1528 *(gattr++) = &(sattr++)->mattr.attr;
1529 }
1530 *gattr = NULL;
1531
1532 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1533 goto out;
1534
1535 mod->sect_attrs = sect_attrs;
1536 return;
1537 out:
1538 free_sect_attrs(sect_attrs);
1539 }
1540
1541 static void remove_sect_attrs(struct module *mod)
1542 {
1543 if (mod->sect_attrs) {
1544 sysfs_remove_group(&mod->mkobj.kobj,
1545 &mod->sect_attrs->grp);
1546 /* We are positive that no one is using any sect attrs
1547 * at this point. Deallocate immediately. */
1548 free_sect_attrs(mod->sect_attrs);
1549 mod->sect_attrs = NULL;
1550 }
1551 }
1552
1553 /*
1554 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1555 */
1556
1557 struct module_notes_attrs {
1558 struct kobject *dir;
1559 unsigned int notes;
1560 struct bin_attribute attrs[0];
1561 };
1562
1563 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1564 struct bin_attribute *bin_attr,
1565 char *buf, loff_t pos, size_t count)
1566 {
1567 /*
1568 * The caller checked the pos and count against our size.
1569 */
1570 memcpy(buf, bin_attr->private + pos, count);
1571 return count;
1572 }
1573
1574 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1575 unsigned int i)
1576 {
1577 if (notes_attrs->dir) {
1578 while (i-- > 0)
1579 sysfs_remove_bin_file(notes_attrs->dir,
1580 &notes_attrs->attrs[i]);
1581 kobject_put(notes_attrs->dir);
1582 }
1583 kfree(notes_attrs);
1584 }
1585
1586 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1587 {
1588 unsigned int notes, loaded, i;
1589 struct module_notes_attrs *notes_attrs;
1590 struct bin_attribute *nattr;
1591
1592 /* failed to create section attributes, so can't create notes */
1593 if (!mod->sect_attrs)
1594 return;
1595
1596 /* Count notes sections and allocate structures. */
1597 notes = 0;
1598 for (i = 0; i < info->hdr->e_shnum; i++)
1599 if (!sect_empty(&info->sechdrs[i]) &&
1600 (info->sechdrs[i].sh_type == SHT_NOTE))
1601 ++notes;
1602
1603 if (notes == 0)
1604 return;
1605
1606 notes_attrs = kzalloc(struct_size(notes_attrs, attrs, notes),
1607 GFP_KERNEL);
1608 if (notes_attrs == NULL)
1609 return;
1610
1611 notes_attrs->notes = notes;
1612 nattr = &notes_attrs->attrs[0];
1613 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1614 if (sect_empty(&info->sechdrs[i]))
1615 continue;
1616 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1617 sysfs_bin_attr_init(nattr);
1618 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1619 nattr->attr.mode = S_IRUGO;
1620 nattr->size = info->sechdrs[i].sh_size;
1621 nattr->private = (void *) info->sechdrs[i].sh_addr;
1622 nattr->read = module_notes_read;
1623 ++nattr;
1624 }
1625 ++loaded;
1626 }
1627
1628 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1629 if (!notes_attrs->dir)
1630 goto out;
1631
1632 for (i = 0; i < notes; ++i)
1633 if (sysfs_create_bin_file(notes_attrs->dir,
1634 &notes_attrs->attrs[i]))
1635 goto out;
1636
1637 mod->notes_attrs = notes_attrs;
1638 return;
1639
1640 out:
1641 free_notes_attrs(notes_attrs, i);
1642 }
1643
1644 static void remove_notes_attrs(struct module *mod)
1645 {
1646 if (mod->notes_attrs)
1647 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1648 }
1649
1650 #else
1651
1652 static inline void add_sect_attrs(struct module *mod,
1653 const struct load_info *info)
1654 {
1655 }
1656
1657 static inline void remove_sect_attrs(struct module *mod)
1658 {
1659 }
1660
1661 static inline void add_notes_attrs(struct module *mod,
1662 const struct load_info *info)
1663 {
1664 }
1665
1666 static inline void remove_notes_attrs(struct module *mod)
1667 {
1668 }
1669 #endif /* CONFIG_KALLSYMS */
1670
1671 static void del_usage_links(struct module *mod)
1672 {
1673 #ifdef CONFIG_MODULE_UNLOAD
1674 struct module_use *use;
1675
1676 mutex_lock(&module_mutex);
1677 list_for_each_entry(use, &mod->target_list, target_list)
1678 sysfs_remove_link(use->target->holders_dir, mod->name);
1679 mutex_unlock(&module_mutex);
1680 #endif
1681 }
1682
1683 static int add_usage_links(struct module *mod)
1684 {
1685 int ret = 0;
1686 #ifdef CONFIG_MODULE_UNLOAD
1687 struct module_use *use;
1688
1689 mutex_lock(&module_mutex);
1690 list_for_each_entry(use, &mod->target_list, target_list) {
1691 ret = sysfs_create_link(use->target->holders_dir,
1692 &mod->mkobj.kobj, mod->name);
1693 if (ret)
1694 break;
1695 }
1696 mutex_unlock(&module_mutex);
1697 if (ret)
1698 del_usage_links(mod);
1699 #endif
1700 return ret;
1701 }
1702
1703 static int module_add_modinfo_attrs(struct module *mod)
1704 {
1705 struct module_attribute *attr;
1706 struct module_attribute *temp_attr;
1707 int error = 0;
1708 int i;
1709
1710 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1711 (ARRAY_SIZE(modinfo_attrs) + 1)),
1712 GFP_KERNEL);
1713 if (!mod->modinfo_attrs)
1714 return -ENOMEM;
1715
1716 temp_attr = mod->modinfo_attrs;
1717 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1718 if (!attr->test || attr->test(mod)) {
1719 memcpy(temp_attr, attr, sizeof(*temp_attr));
1720 sysfs_attr_init(&temp_attr->attr);
1721 error = sysfs_create_file(&mod->mkobj.kobj,
1722 &temp_attr->attr);
1723 ++temp_attr;
1724 }
1725 }
1726 return error;
1727 }
1728
1729 static void module_remove_modinfo_attrs(struct module *mod)
1730 {
1731 struct module_attribute *attr;
1732 int i;
1733
1734 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1735 /* pick a field to test for end of list */
1736 if (!attr->attr.name)
1737 break;
1738 sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1739 if (attr->free)
1740 attr->free(mod);
1741 }
1742 kfree(mod->modinfo_attrs);
1743 }
1744
1745 static void mod_kobject_put(struct module *mod)
1746 {
1747 DECLARE_COMPLETION_ONSTACK(c);
1748 mod->mkobj.kobj_completion = &c;
1749 kobject_put(&mod->mkobj.kobj);
1750 wait_for_completion(&c);
1751 }
1752
1753 static int mod_sysfs_init(struct module *mod)
1754 {
1755 int err;
1756 struct kobject *kobj;
1757
1758 if (!module_sysfs_initialized) {
1759 pr_err("%s: module sysfs not initialized\n", mod->name);
1760 err = -EINVAL;
1761 goto out;
1762 }
1763
1764 kobj = kset_find_obj(module_kset, mod->name);
1765 if (kobj) {
1766 pr_err("%s: module is already loaded\n", mod->name);
1767 kobject_put(kobj);
1768 err = -EINVAL;
1769 goto out;
1770 }
1771
1772 mod->mkobj.mod = mod;
1773
1774 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1775 mod->mkobj.kobj.kset = module_kset;
1776 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1777 "%s", mod->name);
1778 if (err)
1779 mod_kobject_put(mod);
1780
1781 /* delay uevent until full sysfs population */
1782 out:
1783 return err;
1784 }
1785
1786 static int mod_sysfs_setup(struct module *mod,
1787 const struct load_info *info,
1788 struct kernel_param *kparam,
1789 unsigned int num_params)
1790 {
1791 int err;
1792
1793 err = mod_sysfs_init(mod);
1794 if (err)
1795 goto out;
1796
1797 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1798 if (!mod->holders_dir) {
1799 err = -ENOMEM;
1800 goto out_unreg;
1801 }
1802
1803 err = module_param_sysfs_setup(mod, kparam, num_params);
1804 if (err)
1805 goto out_unreg_holders;
1806
1807 err = module_add_modinfo_attrs(mod);
1808 if (err)
1809 goto out_unreg_param;
1810
1811 err = add_usage_links(mod);
1812 if (err)
1813 goto out_unreg_modinfo_attrs;
1814
1815 add_sect_attrs(mod, info);
1816 add_notes_attrs(mod, info);
1817
1818 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1819 return 0;
1820
1821 out_unreg_modinfo_attrs:
1822 module_remove_modinfo_attrs(mod);
1823 out_unreg_param:
1824 module_param_sysfs_remove(mod);
1825 out_unreg_holders:
1826 kobject_put(mod->holders_dir);
1827 out_unreg:
1828 mod_kobject_put(mod);
1829 out:
1830 return err;
1831 }
1832
1833 static void mod_sysfs_fini(struct module *mod)
1834 {
1835 remove_notes_attrs(mod);
1836 remove_sect_attrs(mod);
1837 mod_kobject_put(mod);
1838 }
1839
1840 static void init_param_lock(struct module *mod)
1841 {
1842 mutex_init(&mod->param_lock);
1843 }
1844 #else /* !CONFIG_SYSFS */
1845
1846 static int mod_sysfs_setup(struct module *mod,
1847 const struct load_info *info,
1848 struct kernel_param *kparam,
1849 unsigned int num_params)
1850 {
1851 return 0;
1852 }
1853
1854 static void mod_sysfs_fini(struct module *mod)
1855 {
1856 }
1857
1858 static void module_remove_modinfo_attrs(struct module *mod)
1859 {
1860 }
1861
1862 static void del_usage_links(struct module *mod)
1863 {
1864 }
1865
1866 static void init_param_lock(struct module *mod)
1867 {
1868 }
1869 #endif /* CONFIG_SYSFS */
1870
1871 static void mod_sysfs_teardown(struct module *mod)
1872 {
1873 del_usage_links(mod);
1874 module_remove_modinfo_attrs(mod);
1875 module_param_sysfs_remove(mod);
1876 kobject_put(mod->mkobj.drivers_dir);
1877 kobject_put(mod->holders_dir);
1878 mod_sysfs_fini(mod);
1879 }
1880
1881 #ifdef CONFIG_STRICT_MODULE_RWX
1882 /*
1883 * LKM RO/NX protection: protect module's text/ro-data
1884 * from modification and any data from execution.
1885 *
1886 * General layout of module is:
1887 * [text] [read-only-data] [ro-after-init] [writable data]
1888 * text_size -----^ ^ ^ ^
1889 * ro_size ------------------------| | |
1890 * ro_after_init_size -----------------------------| |
1891 * size -----------------------------------------------------------|
1892 *
1893 * These values are always page-aligned (as is base)
1894 */
1895 static void frob_text(const struct module_layout *layout,
1896 int (*set_memory)(unsigned long start, int num_pages))
1897 {
1898 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1899 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1900 set_memory((unsigned long)layout->base,
1901 layout->text_size >> PAGE_SHIFT);
1902 }
1903
1904 static void frob_rodata(const struct module_layout *layout,
1905 int (*set_memory)(unsigned long start, int num_pages))
1906 {
1907 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1908 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1909 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1910 set_memory((unsigned long)layout->base + layout->text_size,
1911 (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1912 }
1913
1914 static void frob_ro_after_init(const struct module_layout *layout,
1915 int (*set_memory)(unsigned long start, int num_pages))
1916 {
1917 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1918 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1919 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1920 set_memory((unsigned long)layout->base + layout->ro_size,
1921 (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
1922 }
1923
1924 static void frob_writable_data(const struct module_layout *layout,
1925 int (*set_memory)(unsigned long start, int num_pages))
1926 {
1927 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1928 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1929 BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
1930 set_memory((unsigned long)layout->base + layout->ro_after_init_size,
1931 (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
1932 }
1933
1934 /* livepatching wants to disable read-only so it can frob module. */
1935 void module_disable_ro(const struct module *mod)
1936 {
1937 if (!rodata_enabled)
1938 return;
1939
1940 frob_text(&mod->core_layout, set_memory_rw);
1941 frob_rodata(&mod->core_layout, set_memory_rw);
1942 frob_ro_after_init(&mod->core_layout, set_memory_rw);
1943 frob_text(&mod->init_layout, set_memory_rw);
1944 frob_rodata(&mod->init_layout, set_memory_rw);
1945 }
1946
1947 void module_enable_ro(const struct module *mod, bool after_init)
1948 {
1949 if (!rodata_enabled)
1950 return;
1951
1952 frob_text(&mod->core_layout, set_memory_ro);
1953 frob_text(&mod->core_layout, set_memory_x);
1954
1955 frob_rodata(&mod->core_layout, set_memory_ro);
1956
1957 frob_text(&mod->init_layout, set_memory_ro);
1958 frob_text(&mod->init_layout, set_memory_x);
1959
1960 frob_rodata(&mod->init_layout, set_memory_ro);
1961
1962 if (after_init)
1963 frob_ro_after_init(&mod->core_layout, set_memory_ro);
1964 }
1965
1966 static void module_enable_nx(const struct module *mod)
1967 {
1968 frob_rodata(&mod->core_layout, set_memory_nx);
1969 frob_ro_after_init(&mod->core_layout, set_memory_nx);
1970 frob_writable_data(&mod->core_layout, set_memory_nx);
1971 frob_rodata(&mod->init_layout, set_memory_nx);
1972 frob_writable_data(&mod->init_layout, set_memory_nx);
1973 }
1974
1975 static void module_disable_nx(const struct module *mod)
1976 {
1977 frob_rodata(&mod->core_layout, set_memory_x);
1978 frob_ro_after_init(&mod->core_layout, set_memory_x);
1979 frob_writable_data(&mod->core_layout, set_memory_x);
1980 frob_rodata(&mod->init_layout, set_memory_x);
1981 frob_writable_data(&mod->init_layout, set_memory_x);
1982 }
1983
1984 /* Iterate through all modules and set each module's text as RW */
1985 void set_all_modules_text_rw(void)
1986 {
1987 struct module *mod;
1988
1989 if (!rodata_enabled)
1990 return;
1991
1992 mutex_lock(&module_mutex);
1993 list_for_each_entry_rcu(mod, &modules, list) {
1994 if (mod->state == MODULE_STATE_UNFORMED)
1995 continue;
1996
1997 frob_text(&mod->core_layout, set_memory_rw);
1998 frob_text(&mod->init_layout, set_memory_rw);
1999 }
2000 mutex_unlock(&module_mutex);
2001 }
2002
2003 /* Iterate through all modules and set each module's text as RO */
2004 void set_all_modules_text_ro(void)
2005 {
2006 struct module *mod;
2007
2008 if (!rodata_enabled)
2009 return;
2010
2011 mutex_lock(&module_mutex);
2012 list_for_each_entry_rcu(mod, &modules, list) {
2013 /*
2014 * Ignore going modules since it's possible that ro
2015 * protection has already been disabled, otherwise we'll
2016 * run into protection faults at module deallocation.
2017 */
2018 if (mod->state == MODULE_STATE_UNFORMED ||
2019 mod->state == MODULE_STATE_GOING)
2020 continue;
2021
2022 frob_text(&mod->core_layout, set_memory_ro);
2023 frob_text(&mod->init_layout, set_memory_ro);
2024 }
2025 mutex_unlock(&module_mutex);
2026 }
2027
2028 static void disable_ro_nx(const struct module_layout *layout)
2029 {
2030 if (rodata_enabled) {
2031 frob_text(layout, set_memory_rw);
2032 frob_rodata(layout, set_memory_rw);
2033 frob_ro_after_init(layout, set_memory_rw);
2034 }
2035 frob_rodata(layout, set_memory_x);
2036 frob_ro_after_init(layout, set_memory_x);
2037 frob_writable_data(layout, set_memory_x);
2038 }
2039
2040 #else
2041 static void disable_ro_nx(const struct module_layout *layout) { }
2042 static void module_enable_nx(const struct module *mod) { }
2043 static void module_disable_nx(const struct module *mod) { }
2044 #endif
2045
2046 #ifdef CONFIG_LIVEPATCH
2047 /*
2048 * Persist Elf information about a module. Copy the Elf header,
2049 * section header table, section string table, and symtab section
2050 * index from info to mod->klp_info.
2051 */
2052 static int copy_module_elf(struct module *mod, struct load_info *info)
2053 {
2054 unsigned int size, symndx;
2055 int ret;
2056
2057 size = sizeof(*mod->klp_info);
2058 mod->klp_info = kmalloc(size, GFP_KERNEL);
2059 if (mod->klp_info == NULL)
2060 return -ENOMEM;
2061
2062 /* Elf header */
2063 size = sizeof(mod->klp_info->hdr);
2064 memcpy(&mod->klp_info->hdr, info->hdr, size);
2065
2066 /* Elf section header table */
2067 size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2068 mod->klp_info->sechdrs = kmemdup(info->sechdrs, size, GFP_KERNEL);
2069 if (mod->klp_info->sechdrs == NULL) {
2070 ret = -ENOMEM;
2071 goto free_info;
2072 }
2073
2074 /* Elf section name string table */
2075 size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2076 mod->klp_info->secstrings = kmemdup(info->secstrings, size, GFP_KERNEL);
2077 if (mod->klp_info->secstrings == NULL) {
2078 ret = -ENOMEM;
2079 goto free_sechdrs;
2080 }
2081
2082 /* Elf symbol section index */
2083 symndx = info->index.sym;
2084 mod->klp_info->symndx = symndx;
2085
2086 /*
2087 * For livepatch modules, core_kallsyms.symtab is a complete
2088 * copy of the original symbol table. Adjust sh_addr to point
2089 * to core_kallsyms.symtab since the copy of the symtab in module
2090 * init memory is freed at the end of do_init_module().
2091 */
2092 mod->klp_info->sechdrs[symndx].sh_addr = \
2093 (unsigned long) mod->core_kallsyms.symtab;
2094
2095 return 0;
2096
2097 free_sechdrs:
2098 kfree(mod->klp_info->sechdrs);
2099 free_info:
2100 kfree(mod->klp_info);
2101 return ret;
2102 }
2103
2104 static void free_module_elf(struct module *mod)
2105 {
2106 kfree(mod->klp_info->sechdrs);
2107 kfree(mod->klp_info->secstrings);
2108 kfree(mod->klp_info);
2109 }
2110 #else /* !CONFIG_LIVEPATCH */
2111 static int copy_module_elf(struct module *mod, struct load_info *info)
2112 {
2113 return 0;
2114 }
2115
2116 static void free_module_elf(struct module *mod)
2117 {
2118 }
2119 #endif /* CONFIG_LIVEPATCH */
2120
2121 void __weak module_memfree(void *module_region)
2122 {
2123 vfree(module_region);
2124 }
2125
2126 void __weak module_arch_cleanup(struct module *mod)
2127 {
2128 }
2129
2130 void __weak module_arch_freeing_init(struct module *mod)
2131 {
2132 }
2133
2134 /* Free a module, remove from lists, etc. */
2135 static void free_module(struct module *mod)
2136 {
2137 trace_module_free(mod);
2138
2139 mod_sysfs_teardown(mod);
2140
2141 /* We leave it in list to prevent duplicate loads, but make sure
2142 * that noone uses it while it's being deconstructed. */
2143 mutex_lock(&module_mutex);
2144 mod->state = MODULE_STATE_UNFORMED;
2145 mutex_unlock(&module_mutex);
2146
2147 /* Remove dynamic debug info */
2148 ddebug_remove_module(mod->name);
2149
2150 /* Arch-specific cleanup. */
2151 module_arch_cleanup(mod);
2152
2153 /* Module unload stuff */
2154 module_unload_free(mod);
2155
2156 /* Free any allocated parameters. */
2157 destroy_params(mod->kp, mod->num_kp);
2158
2159 if (is_livepatch_module(mod))
2160 free_module_elf(mod);
2161
2162 /* Now we can delete it from the lists */
2163 mutex_lock(&module_mutex);
2164 /* Unlink carefully: kallsyms could be walking list. */
2165 list_del_rcu(&mod->list);
2166 mod_tree_remove(mod);
2167 /* Remove this module from bug list, this uses list_del_rcu */
2168 module_bug_cleanup(mod);
2169 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2170 synchronize_rcu();
2171 mutex_unlock(&module_mutex);
2172
2173 /* This may be empty, but that's OK */
2174 disable_ro_nx(&mod->init_layout);
2175 module_arch_freeing_init(mod);
2176 module_memfree(mod->init_layout.base);
2177 kfree(mod->args);
2178 percpu_modfree(mod);
2179
2180 /* Free lock-classes; relies on the preceding sync_rcu(). */
2181 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2182
2183 /* Finally, free the core (containing the module structure) */
2184 disable_ro_nx(&mod->core_layout);
2185 module_memfree(mod->core_layout.base);
2186 }
2187
2188 void *__symbol_get(const char *symbol)
2189 {
2190 struct module *owner;
2191 const struct kernel_symbol *sym;
2192
2193 preempt_disable();
2194 sym = find_symbol(symbol, &owner, NULL, true, true);
2195 if (sym && strong_try_module_get(owner))
2196 sym = NULL;
2197 preempt_enable();
2198
2199 return sym ? (void *)kernel_symbol_value(sym) : NULL;
2200 }
2201 EXPORT_SYMBOL_GPL(__symbol_get);
2202
2203 /*
2204 * Ensure that an exported symbol [global namespace] does not already exist
2205 * in the kernel or in some other module's exported symbol table.
2206 *
2207 * You must hold the module_mutex.
2208 */
2209 static int verify_exported_symbols(struct module *mod)
2210 {
2211 unsigned int i;
2212 struct module *owner;
2213 const struct kernel_symbol *s;
2214 struct {
2215 const struct kernel_symbol *sym;
2216 unsigned int num;
2217 } arr[] = {
2218 { mod->syms, mod->num_syms },
2219 { mod->gpl_syms, mod->num_gpl_syms },
2220 { mod->gpl_future_syms, mod->num_gpl_future_syms },
2221 #ifdef CONFIG_UNUSED_SYMBOLS
2222 { mod->unused_syms, mod->num_unused_syms },
2223 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2224 #endif
2225 };
2226
2227 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2228 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2229 if (find_symbol(kernel_symbol_name(s), &owner, NULL,
2230 true, false)) {
2231 pr_err("%s: exports duplicate symbol %s"
2232 " (owned by %s)\n",
2233 mod->name, kernel_symbol_name(s),
2234 module_name(owner));
2235 return -ENOEXEC;
2236 }
2237 }
2238 }
2239 return 0;
2240 }
2241
2242 /* Change all symbols so that st_value encodes the pointer directly. */
2243 static int simplify_symbols(struct module *mod, const struct load_info *info)
2244 {
2245 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2246 Elf_Sym *sym = (void *)symsec->sh_addr;
2247 unsigned long secbase;
2248 unsigned int i;
2249 int ret = 0;
2250 const struct kernel_symbol *ksym;
2251
2252 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2253 const char *name = info->strtab + sym[i].st_name;
2254
2255 switch (sym[i].st_shndx) {
2256 case SHN_COMMON:
2257 /* Ignore common symbols */
2258 if (!strncmp(name, "__gnu_lto", 9))
2259 break;
2260
2261 /* We compiled with -fno-common. These are not
2262 supposed to happen. */
2263 pr_debug("Common symbol: %s\n", name);
2264 pr_warn("%s: please compile with -fno-common\n",
2265 mod->name);
2266 ret = -ENOEXEC;
2267 break;
2268
2269 case SHN_ABS:
2270 /* Don't need to do anything */
2271 pr_debug("Absolute symbol: 0x%08lx\n",
2272 (long)sym[i].st_value);
2273 break;
2274
2275 case SHN_LIVEPATCH:
2276 /* Livepatch symbols are resolved by livepatch */
2277 break;
2278
2279 case SHN_UNDEF:
2280 ksym = resolve_symbol_wait(mod, info, name);
2281 /* Ok if resolved. */
2282 if (ksym && !IS_ERR(ksym)) {
2283 sym[i].st_value = kernel_symbol_value(ksym);
2284 break;
2285 }
2286
2287 /* Ok if weak. */
2288 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2289 break;
2290
2291 ret = PTR_ERR(ksym) ?: -ENOENT;
2292 pr_warn("%s: Unknown symbol %s (err %d)\n",
2293 mod->name, name, ret);
2294 break;
2295
2296 default:
2297 /* Divert to percpu allocation if a percpu var. */
2298 if (sym[i].st_shndx == info->index.pcpu)
2299 secbase = (unsigned long)mod_percpu(mod);
2300 else
2301 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2302 sym[i].st_value += secbase;
2303 break;
2304 }
2305 }
2306
2307 return ret;
2308 }
2309
2310 static int apply_relocations(struct module *mod, const struct load_info *info)
2311 {
2312 unsigned int i;
2313 int err = 0;
2314
2315 /* Now do relocations. */
2316 for (i = 1; i < info->hdr->e_shnum; i++) {
2317 unsigned int infosec = info->sechdrs[i].sh_info;
2318
2319 /* Not a valid relocation section? */
2320 if (infosec >= info->hdr->e_shnum)
2321 continue;
2322
2323 /* Don't bother with non-allocated sections */
2324 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2325 continue;
2326
2327 /* Livepatch relocation sections are applied by livepatch */
2328 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2329 continue;
2330
2331 if (info->sechdrs[i].sh_type == SHT_REL)
2332 err = apply_relocate(info->sechdrs, info->strtab,
2333 info->index.sym, i, mod);
2334 else if (info->sechdrs[i].sh_type == SHT_RELA)
2335 err = apply_relocate_add(info->sechdrs, info->strtab,
2336 info->index.sym, i, mod);
2337 if (err < 0)
2338 break;
2339 }
2340 return err;
2341 }
2342
2343 /* Additional bytes needed by arch in front of individual sections */
2344 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2345 unsigned int section)
2346 {
2347 /* default implementation just returns zero */
2348 return 0;
2349 }
2350
2351 /* Update size with this section: return offset. */
2352 static long get_offset(struct module *mod, unsigned int *size,
2353 Elf_Shdr *sechdr, unsigned int section)
2354 {
2355 long ret;
2356
2357 *size += arch_mod_section_prepend(mod, section);
2358 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2359 *size = ret + sechdr->sh_size;
2360 return ret;
2361 }
2362
2363 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2364 might -- code, read-only data, read-write data, small data. Tally
2365 sizes, and place the offsets into sh_entsize fields: high bit means it
2366 belongs in init. */
2367 static void layout_sections(struct module *mod, struct load_info *info)
2368 {
2369 static unsigned long const masks[][2] = {
2370 /* NOTE: all executable code must be the first section
2371 * in this array; otherwise modify the text_size
2372 * finder in the two loops below */
2373 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2374 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2375 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2376 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2377 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2378 };
2379 unsigned int m, i;
2380
2381 for (i = 0; i < info->hdr->e_shnum; i++)
2382 info->sechdrs[i].sh_entsize = ~0UL;
2383
2384 pr_debug("Core section allocation order:\n");
2385 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2386 for (i = 0; i < info->hdr->e_shnum; ++i) {
2387 Elf_Shdr *s = &info->sechdrs[i];
2388 const char *sname = info->secstrings + s->sh_name;
2389
2390 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2391 || (s->sh_flags & masks[m][1])
2392 || s->sh_entsize != ~0UL
2393 || strstarts(sname, ".init"))
2394 continue;
2395 s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2396 pr_debug("\t%s\n", sname);
2397 }
2398 switch (m) {
2399 case 0: /* executable */
2400 mod->core_layout.size = debug_align(mod->core_layout.size);
2401 mod->core_layout.text_size = mod->core_layout.size;
2402 break;
2403 case 1: /* RO: text and ro-data */
2404 mod->core_layout.size = debug_align(mod->core_layout.size);
2405 mod->core_layout.ro_size = mod->core_layout.size;
2406 break;
2407 case 2: /* RO after init */
2408 mod->core_layout.size = debug_align(mod->core_layout.size);
2409 mod->core_layout.ro_after_init_size = mod->core_layout.size;
2410 break;
2411 case 4: /* whole core */
2412 mod->core_layout.size = debug_align(mod->core_layout.size);
2413 break;
2414 }
2415 }
2416
2417 pr_debug("Init section allocation order:\n");
2418 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2419 for (i = 0; i < info->hdr->e_shnum; ++i) {
2420 Elf_Shdr *s = &info->sechdrs[i];
2421 const char *sname = info->secstrings + s->sh_name;
2422
2423 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2424 || (s->sh_flags & masks[m][1])
2425 || s->sh_entsize != ~0UL
2426 || !strstarts(sname, ".init"))
2427 continue;
2428 s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2429 | INIT_OFFSET_MASK);
2430 pr_debug("\t%s\n", sname);
2431 }
2432 switch (m) {
2433 case 0: /* executable */
2434 mod->init_layout.size = debug_align(mod->init_layout.size);
2435 mod->init_layout.text_size = mod->init_layout.size;
2436 break;
2437 case 1: /* RO: text and ro-data */
2438 mod->init_layout.size = debug_align(mod->init_layout.size);
2439 mod->init_layout.ro_size = mod->init_layout.size;
2440 break;
2441 case 2:
2442 /*
2443 * RO after init doesn't apply to init_layout (only
2444 * core_layout), so it just takes the value of ro_size.
2445 */
2446 mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2447 break;
2448 case 4: /* whole init */
2449 mod->init_layout.size = debug_align(mod->init_layout.size);
2450 break;
2451 }
2452 }
2453 }
2454
2455 static void set_license(struct module *mod, const char *license)
2456 {
2457 if (!license)
2458 license = "unspecified";
2459
2460 if (!license_is_gpl_compatible(license)) {
2461 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2462 pr_warn("%s: module license '%s' taints kernel.\n",
2463 mod->name, license);
2464 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2465 LOCKDEP_NOW_UNRELIABLE);
2466 }
2467 }
2468
2469 /* Parse tag=value strings from .modinfo section */
2470 static char *next_string(char *string, unsigned long *secsize)
2471 {
2472 /* Skip non-zero chars */
2473 while (string[0]) {
2474 string++;
2475 if ((*secsize)-- <= 1)
2476 return NULL;
2477 }
2478
2479 /* Skip any zero padding. */
2480 while (!string[0]) {
2481 string++;
2482 if ((*secsize)-- <= 1)
2483 return NULL;
2484 }
2485 return string;
2486 }
2487
2488 static char *get_modinfo(struct load_info *info, const char *tag)
2489 {
2490 char *p;
2491 unsigned int taglen = strlen(tag);
2492 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2493 unsigned long size = infosec->sh_size;
2494
2495 /*
2496 * get_modinfo() calls made before rewrite_section_headers()
2497 * must use sh_offset, as sh_addr isn't set!
2498 */
2499 for (p = (char *)info->hdr + infosec->sh_offset; p; p = next_string(p, &size)) {
2500 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2501 return p + taglen + 1;
2502 }
2503 return NULL;
2504 }
2505
2506 static void setup_modinfo(struct module *mod, struct load_info *info)
2507 {
2508 struct module_attribute *attr;
2509 int i;
2510
2511 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2512 if (attr->setup)
2513 attr->setup(mod, get_modinfo(info, attr->attr.name));
2514 }
2515 }
2516
2517 static void free_modinfo(struct module *mod)
2518 {
2519 struct module_attribute *attr;
2520 int i;
2521
2522 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2523 if (attr->free)
2524 attr->free(mod);
2525 }
2526 }
2527
2528 #ifdef CONFIG_KALLSYMS
2529
2530 /* Lookup exported symbol in given range of kernel_symbols */
2531 static const struct kernel_symbol *lookup_exported_symbol(const char *name,
2532 const struct kernel_symbol *start,
2533 const struct kernel_symbol *stop)
2534 {
2535 return bsearch(name, start, stop - start,
2536 sizeof(struct kernel_symbol), cmp_name);
2537 }
2538
2539 static int is_exported(const char *name, unsigned long value,
2540 const struct module *mod)
2541 {
2542 const struct kernel_symbol *ks;
2543 if (!mod)
2544 ks = lookup_exported_symbol(name, __start___ksymtab, __stop___ksymtab);
2545 else
2546 ks = lookup_exported_symbol(name, mod->syms, mod->syms + mod->num_syms);
2547
2548 return ks != NULL && kernel_symbol_value(ks) == value;
2549 }
2550
2551 /* As per nm */
2552 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2553 {
2554 const Elf_Shdr *sechdrs = info->sechdrs;
2555
2556 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2557 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2558 return 'v';
2559 else
2560 return 'w';
2561 }
2562 if (sym->st_shndx == SHN_UNDEF)
2563 return 'U';
2564 if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2565 return 'a';
2566 if (sym->st_shndx >= SHN_LORESERVE)
2567 return '?';
2568 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2569 return 't';
2570 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2571 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2572 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2573 return 'r';
2574 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2575 return 'g';
2576 else
2577 return 'd';
2578 }
2579 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2580 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2581 return 's';
2582 else
2583 return 'b';
2584 }
2585 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2586 ".debug")) {
2587 return 'n';
2588 }
2589 return '?';
2590 }
2591
2592 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2593 unsigned int shnum, unsigned int pcpundx)
2594 {
2595 const Elf_Shdr *sec;
2596
2597 if (src->st_shndx == SHN_UNDEF
2598 || src->st_shndx >= shnum
2599 || !src->st_name)
2600 return false;
2601
2602 #ifdef CONFIG_KALLSYMS_ALL
2603 if (src->st_shndx == pcpundx)
2604 return true;
2605 #endif
2606
2607 sec = sechdrs + src->st_shndx;
2608 if (!(sec->sh_flags & SHF_ALLOC)
2609 #ifndef CONFIG_KALLSYMS_ALL
2610 || !(sec->sh_flags & SHF_EXECINSTR)
2611 #endif
2612 || (sec->sh_entsize & INIT_OFFSET_MASK))
2613 return false;
2614
2615 return true;
2616 }
2617
2618 /*
2619 * We only allocate and copy the strings needed by the parts of symtab
2620 * we keep. This is simple, but has the effect of making multiple
2621 * copies of duplicates. We could be more sophisticated, see
2622 * linux-kernel thread starting with
2623 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2624 */
2625 static void layout_symtab(struct module *mod, struct load_info *info)
2626 {
2627 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2628 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2629 const Elf_Sym *src;
2630 unsigned int i, nsrc, ndst, strtab_size = 0;
2631
2632 /* Put symbol section at end of init part of module. */
2633 symsect->sh_flags |= SHF_ALLOC;
2634 symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2635 info->index.sym) | INIT_OFFSET_MASK;
2636 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2637
2638 src = (void *)info->hdr + symsect->sh_offset;
2639 nsrc = symsect->sh_size / sizeof(*src);
2640
2641 /* Compute total space required for the core symbols' strtab. */
2642 for (ndst = i = 0; i < nsrc; i++) {
2643 if (i == 0 || is_livepatch_module(mod) ||
2644 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2645 info->index.pcpu)) {
2646 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2647 ndst++;
2648 }
2649 }
2650
2651 /* Append room for core symbols at end of core part. */
2652 info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2653 info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2654 mod->core_layout.size += strtab_size;
2655 mod->core_layout.size = debug_align(mod->core_layout.size);
2656
2657 /* Put string table section at end of init part of module. */
2658 strsect->sh_flags |= SHF_ALLOC;
2659 strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2660 info->index.str) | INIT_OFFSET_MASK;
2661 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2662
2663 /* We'll tack temporary mod_kallsyms on the end. */
2664 mod->init_layout.size = ALIGN(mod->init_layout.size,
2665 __alignof__(struct mod_kallsyms));
2666 info->mod_kallsyms_init_off = mod->init_layout.size;
2667 mod->init_layout.size += sizeof(struct mod_kallsyms);
2668 mod->init_layout.size = debug_align(mod->init_layout.size);
2669 }
2670
2671 /*
2672 * We use the full symtab and strtab which layout_symtab arranged to
2673 * be appended to the init section. Later we switch to the cut-down
2674 * core-only ones.
2675 */
2676 static void add_kallsyms(struct module *mod, const struct load_info *info)
2677 {
2678 unsigned int i, ndst;
2679 const Elf_Sym *src;
2680 Elf_Sym *dst;
2681 char *s;
2682 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2683
2684 /* Set up to point into init section. */
2685 mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2686
2687 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2688 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2689 /* Make sure we get permanent strtab: don't use info->strtab. */
2690 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2691
2692 /* Set types up while we still have access to sections. */
2693 for (i = 0; i < mod->kallsyms->num_symtab; i++)
2694 mod->kallsyms->symtab[i].st_size
2695 = elf_type(&mod->kallsyms->symtab[i], info);
2696
2697 /* Now populate the cut down core kallsyms for after init. */
2698 mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2699 mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2700 src = mod->kallsyms->symtab;
2701 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2702 if (i == 0 || is_livepatch_module(mod) ||
2703 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2704 info->index.pcpu)) {
2705 dst[ndst] = src[i];
2706 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2707 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2708 KSYM_NAME_LEN) + 1;
2709 }
2710 }
2711 mod->core_kallsyms.num_symtab = ndst;
2712 }
2713 #else
2714 static inline void layout_symtab(struct module *mod, struct load_info *info)
2715 {
2716 }
2717
2718 static void add_kallsyms(struct module *mod, const struct load_info *info)
2719 {
2720 }
2721 #endif /* CONFIG_KALLSYMS */
2722
2723 static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2724 {
2725 if (!debug)
2726 return;
2727 ddebug_add_module(debug, num, mod->name);
2728 }
2729
2730 static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2731 {
2732 if (debug)
2733 ddebug_remove_module(mod->name);
2734 }
2735
2736 void * __weak module_alloc(unsigned long size)
2737 {
2738 return vmalloc_exec(size);
2739 }
2740
2741 #ifdef CONFIG_DEBUG_KMEMLEAK
2742 static void kmemleak_load_module(const struct module *mod,
2743 const struct load_info *info)
2744 {
2745 unsigned int i;
2746
2747 /* only scan the sections containing data */
2748 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2749
2750 for (i = 1; i < info->hdr->e_shnum; i++) {
2751 /* Scan all writable sections that's not executable */
2752 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2753 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2754 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2755 continue;
2756
2757 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2758 info->sechdrs[i].sh_size, GFP_KERNEL);
2759 }
2760 }
2761 #else
2762 static inline void kmemleak_load_module(const struct module *mod,
2763 const struct load_info *info)
2764 {
2765 }
2766 #endif
2767
2768 #ifdef CONFIG_MODULE_SIG
2769 static int module_sig_check(struct load_info *info, int flags)
2770 {
2771 int err = -ENOKEY;
2772 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2773 const void *mod = info->hdr;
2774
2775 /*
2776 * Require flags == 0, as a module with version information
2777 * removed is no longer the module that was signed
2778 */
2779 if (flags == 0 &&
2780 info->len > markerlen &&
2781 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2782 /* We truncate the module to discard the signature */
2783 info->len -= markerlen;
2784 err = mod_verify_sig(mod, info);
2785 }
2786
2787 if (!err) {
2788 info->sig_ok = true;
2789 return 0;
2790 }
2791
2792 /* Not having a signature is only an error if we're strict. */
2793 if (err == -ENOKEY && !is_module_sig_enforced())
2794 err = 0;
2795
2796 return err;
2797 }
2798 #else /* !CONFIG_MODULE_SIG */
2799 static int module_sig_check(struct load_info *info, int flags)
2800 {
2801 return 0;
2802 }
2803 #endif /* !CONFIG_MODULE_SIG */
2804
2805 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2806 static int elf_header_check(struct load_info *info)
2807 {
2808 if (info->len < sizeof(*(info->hdr)))
2809 return -ENOEXEC;
2810
2811 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2812 || info->hdr->e_type != ET_REL
2813 || !elf_check_arch(info->hdr)
2814 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2815 return -ENOEXEC;
2816
2817 if (info->hdr->e_shoff >= info->len
2818 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2819 info->len - info->hdr->e_shoff))
2820 return -ENOEXEC;
2821
2822 return 0;
2823 }
2824
2825 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2826
2827 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2828 {
2829 do {
2830 unsigned long n = min(len, COPY_CHUNK_SIZE);
2831
2832 if (copy_from_user(dst, usrc, n) != 0)
2833 return -EFAULT;
2834 cond_resched();
2835 dst += n;
2836 usrc += n;
2837 len -= n;
2838 } while (len);
2839 return 0;
2840 }
2841
2842 #ifdef CONFIG_LIVEPATCH
2843 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2844 {
2845 if (get_modinfo(info, "livepatch")) {
2846 mod->klp = true;
2847 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2848 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2849 mod->name);
2850 }
2851
2852 return 0;
2853 }
2854 #else /* !CONFIG_LIVEPATCH */
2855 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2856 {
2857 if (get_modinfo(info, "livepatch")) {
2858 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2859 mod->name);
2860 return -ENOEXEC;
2861 }
2862
2863 return 0;
2864 }
2865 #endif /* CONFIG_LIVEPATCH */
2866
2867 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2868 {
2869 if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2870 return;
2871
2872 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2873 mod->name);
2874 }
2875
2876 /* Sets info->hdr and info->len. */
2877 static int copy_module_from_user(const void __user *umod, unsigned long len,
2878 struct load_info *info)
2879 {
2880 int err;
2881
2882 info->len = len;
2883 if (info->len < sizeof(*(info->hdr)))
2884 return -ENOEXEC;
2885
2886 err = security_kernel_load_data(LOADING_MODULE);
2887 if (err)
2888 return err;
2889
2890 /* Suck in entire file: we'll want most of it. */
2891 info->hdr = __vmalloc(info->len,
2892 GFP_KERNEL | __GFP_NOWARN, PAGE_KERNEL);
2893 if (!info->hdr)
2894 return -ENOMEM;
2895
2896 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2897 vfree(info->hdr);
2898 return -EFAULT;
2899 }
2900
2901 return 0;
2902 }
2903
2904 static void free_copy(struct load_info *info)
2905 {
2906 vfree(info->hdr);
2907 }
2908
2909 static int rewrite_section_headers(struct load_info *info, int flags)
2910 {
2911 unsigned int i;
2912
2913 /* This should always be true, but let's be sure. */
2914 info->sechdrs[0].sh_addr = 0;
2915
2916 for (i = 1; i < info->hdr->e_shnum; i++) {
2917 Elf_Shdr *shdr = &info->sechdrs[i];
2918 if (shdr->sh_type != SHT_NOBITS
2919 && info->len < shdr->sh_offset + shdr->sh_size) {
2920 pr_err("Module len %lu truncated\n", info->len);
2921 return -ENOEXEC;
2922 }
2923
2924 /* Mark all sections sh_addr with their address in the
2925 temporary image. */
2926 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2927
2928 #ifndef CONFIG_MODULE_UNLOAD
2929 /* Don't load .exit sections */
2930 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2931 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2932 #endif
2933 }
2934
2935 /* Track but don't keep modinfo and version sections. */
2936 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2937 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2938
2939 return 0;
2940 }
2941
2942 /*
2943 * Set up our basic convenience variables (pointers to section headers,
2944 * search for module section index etc), and do some basic section
2945 * verification.
2946 *
2947 * Set info->mod to the temporary copy of the module in info->hdr. The final one
2948 * will be allocated in move_module().
2949 */
2950 static int setup_load_info(struct load_info *info, int flags)
2951 {
2952 unsigned int i;
2953
2954 /* Set up the convenience variables */
2955 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2956 info->secstrings = (void *)info->hdr
2957 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2958
2959 /* Try to find a name early so we can log errors with a module name */
2960 info->index.info = find_sec(info, ".modinfo");
2961 if (!info->index.info)
2962 info->name = "(missing .modinfo section)";
2963 else
2964 info->name = get_modinfo(info, "name");
2965
2966 /* Find internal symbols and strings. */
2967 for (i = 1; i < info->hdr->e_shnum; i++) {
2968 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2969 info->index.sym = i;
2970 info->index.str = info->sechdrs[i].sh_link;
2971 info->strtab = (char *)info->hdr
2972 + info->sechdrs[info->index.str].sh_offset;
2973 break;
2974 }
2975 }
2976
2977 if (info->index.sym == 0) {
2978 pr_warn("%s: module has no symbols (stripped?)\n", info->name);
2979 return -ENOEXEC;
2980 }
2981
2982 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2983 if (!info->index.mod) {
2984 pr_warn("%s: No module found in object\n",
2985 info->name ?: "(missing .modinfo name field)");
2986 return -ENOEXEC;
2987 }
2988 /* This is temporary: point mod into copy of data. */
2989 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
2990
2991 /*
2992 * If we didn't load the .modinfo 'name' field earlier, fall back to
2993 * on-disk struct mod 'name' field.
2994 */
2995 if (!info->name)
2996 info->name = info->mod->name;
2997
2998 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2999 info->index.vers = 0; /* Pretend no __versions section! */
3000 else
3001 info->index.vers = find_sec(info, "__versions");
3002
3003 info->index.pcpu = find_pcpusec(info);
3004
3005 return 0;
3006 }
3007
3008 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3009 {
3010 const char *modmagic = get_modinfo(info, "vermagic");
3011 int err;
3012
3013 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3014 modmagic = NULL;
3015
3016 /* This is allowed: modprobe --force will invalidate it. */
3017 if (!modmagic) {
3018 err = try_to_force_load(mod, "bad vermagic");
3019 if (err)
3020 return err;
3021 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3022 pr_err("%s: version magic '%s' should be '%s'\n",
3023 info->name, modmagic, vermagic);
3024 return -ENOEXEC;
3025 }
3026
3027 if (!get_modinfo(info, "intree")) {
3028 if (!test_taint(TAINT_OOT_MODULE))
3029 pr_warn("%s: loading out-of-tree module taints kernel.\n",
3030 mod->name);
3031 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3032 }
3033
3034 check_modinfo_retpoline(mod, info);
3035
3036 if (get_modinfo(info, "staging")) {
3037 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3038 pr_warn("%s: module is from the staging directory, the quality "
3039 "is unknown, you have been warned.\n", mod->name);
3040 }
3041
3042 err = check_modinfo_livepatch(mod, info);
3043 if (err)
3044 return err;
3045
3046 /* Set up license info based on the info section */
3047 set_license(mod, get_modinfo(info, "license"));
3048
3049 return 0;
3050 }
3051
3052 static int find_module_sections(struct module *mod, struct load_info *info)
3053 {
3054 mod->kp = section_objs(info, "__param",
3055 sizeof(*mod->kp), &mod->num_kp);
3056 mod->syms = section_objs(info, "__ksymtab",
3057 sizeof(*mod->syms), &mod->num_syms);
3058 mod->crcs = section_addr(info, "__kcrctab");
3059 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3060 sizeof(*mod->gpl_syms),
3061 &mod->num_gpl_syms);
3062 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3063 mod->gpl_future_syms = section_objs(info,
3064 "__ksymtab_gpl_future",
3065 sizeof(*mod->gpl_future_syms),
3066 &mod->num_gpl_future_syms);
3067 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
3068
3069 #ifdef CONFIG_UNUSED_SYMBOLS
3070 mod->unused_syms = section_objs(info, "__ksymtab_unused",
3071 sizeof(*mod->unused_syms),
3072 &mod->num_unused_syms);
3073 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
3074 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
3075 sizeof(*mod->unused_gpl_syms),
3076 &mod->num_unused_gpl_syms);
3077 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
3078 #endif
3079 #ifdef CONFIG_CONSTRUCTORS
3080 mod->ctors = section_objs(info, ".ctors",
3081 sizeof(*mod->ctors), &mod->num_ctors);
3082 if (!mod->ctors)
3083 mod->ctors = section_objs(info, ".init_array",
3084 sizeof(*mod->ctors), &mod->num_ctors);
3085 else if (find_sec(info, ".init_array")) {
3086 /*
3087 * This shouldn't happen with same compiler and binutils
3088 * building all parts of the module.
3089 */
3090 pr_warn("%s: has both .ctors and .init_array.\n",
3091 mod->name);
3092 return -EINVAL;
3093 }
3094 #endif
3095
3096 #ifdef CONFIG_TRACEPOINTS
3097 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3098 sizeof(*mod->tracepoints_ptrs),
3099 &mod->num_tracepoints);
3100 #endif
3101 #ifdef CONFIG_BPF_EVENTS
3102 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
3103 sizeof(*mod->bpf_raw_events),
3104 &mod->num_bpf_raw_events);
3105 #endif
3106 #ifdef CONFIG_JUMP_LABEL
3107 mod->jump_entries = section_objs(info, "__jump_table",
3108 sizeof(*mod->jump_entries),
3109 &mod->num_jump_entries);
3110 #endif
3111 #ifdef CONFIG_EVENT_TRACING
3112 mod->trace_events = section_objs(info, "_ftrace_events",
3113 sizeof(*mod->trace_events),
3114 &mod->num_trace_events);
3115 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3116 sizeof(*mod->trace_evals),
3117 &mod->num_trace_evals);
3118 #endif
3119 #ifdef CONFIG_TRACING
3120 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3121 sizeof(*mod->trace_bprintk_fmt_start),
3122 &mod->num_trace_bprintk_fmt);
3123 #endif
3124 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3125 /* sechdrs[0].sh_size is always zero */
3126 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
3127 sizeof(*mod->ftrace_callsites),
3128 &mod->num_ftrace_callsites);
3129 #endif
3130 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
3131 mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
3132 sizeof(*mod->ei_funcs),
3133 &mod->num_ei_funcs);
3134 #endif
3135 mod->extable = section_objs(info, "__ex_table",
3136 sizeof(*mod->extable), &mod->num_exentries);
3137
3138 if (section_addr(info, "__obsparm"))
3139 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3140
3141 info->debug = section_objs(info, "__verbose",
3142 sizeof(*info->debug), &info->num_debug);
3143
3144 return 0;
3145 }
3146
3147 static int move_module(struct module *mod, struct load_info *info)
3148 {
3149 int i;
3150 void *ptr;
3151
3152 /* Do the allocs. */
3153 ptr = module_alloc(mod->core_layout.size);
3154 /*
3155 * The pointer to this block is stored in the module structure
3156 * which is inside the block. Just mark it as not being a
3157 * leak.
3158 */
3159 kmemleak_not_leak(ptr);
3160 if (!ptr)
3161 return -ENOMEM;
3162
3163 memset(ptr, 0, mod->core_layout.size);
3164 mod->core_layout.base = ptr;
3165
3166 if (mod->init_layout.size) {
3167 ptr = module_alloc(mod->init_layout.size);
3168 /*
3169 * The pointer to this block is stored in the module structure
3170 * which is inside the block. This block doesn't need to be
3171 * scanned as it contains data and code that will be freed
3172 * after the module is initialized.
3173 */
3174 kmemleak_ignore(ptr);
3175 if (!ptr) {
3176 module_memfree(mod->core_layout.base);
3177 return -ENOMEM;
3178 }
3179 memset(ptr, 0, mod->init_layout.size);
3180 mod->init_layout.base = ptr;
3181 } else
3182 mod->init_layout.base = NULL;
3183
3184 /* Transfer each section which specifies SHF_ALLOC */
3185 pr_debug("final section addresses:\n");
3186 for (i = 0; i < info->hdr->e_shnum; i++) {
3187 void *dest;
3188 Elf_Shdr *shdr = &info->sechdrs[i];
3189
3190 if (!(shdr->sh_flags & SHF_ALLOC))
3191 continue;
3192
3193 if (shdr->sh_entsize & INIT_OFFSET_MASK)
3194 dest = mod->init_layout.base
3195 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3196 else
3197 dest = mod->core_layout.base + shdr->sh_entsize;
3198
3199 if (shdr->sh_type != SHT_NOBITS)
3200 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3201 /* Update sh_addr to point to copy in image. */
3202 shdr->sh_addr = (unsigned long)dest;
3203 pr_debug("\t0x%lx %s\n",
3204 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3205 }
3206
3207 return 0;
3208 }
3209
3210 static int check_module_license_and_versions(struct module *mod)
3211 {
3212 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3213
3214 /*
3215 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3216 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3217 * using GPL-only symbols it needs.
3218 */
3219 if (strcmp(mod->name, "ndiswrapper") == 0)
3220 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3221
3222 /* driverloader was caught wrongly pretending to be under GPL */
3223 if (strcmp(mod->name, "driverloader") == 0)
3224 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3225 LOCKDEP_NOW_UNRELIABLE);
3226
3227 /* lve claims to be GPL but upstream won't provide source */
3228 if (strcmp(mod->name, "lve") == 0)
3229 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3230 LOCKDEP_NOW_UNRELIABLE);
3231
3232 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3233 pr_warn("%s: module license taints kernel.\n", mod->name);
3234
3235 #ifdef CONFIG_MODVERSIONS
3236 if ((mod->num_syms && !mod->crcs)
3237 || (mod->num_gpl_syms && !mod->gpl_crcs)
3238 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3239 #ifdef CONFIG_UNUSED_SYMBOLS
3240 || (mod->num_unused_syms && !mod->unused_crcs)
3241 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3242 #endif
3243 ) {
3244 return try_to_force_load(mod,
3245 "no versions for exported symbols");
3246 }
3247 #endif
3248 return 0;
3249 }
3250
3251 static void flush_module_icache(const struct module *mod)
3252 {
3253 mm_segment_t old_fs;
3254
3255 /* flush the icache in correct context */
3256 old_fs = get_fs();
3257 set_fs(KERNEL_DS);
3258
3259 /*
3260 * Flush the instruction cache, since we've played with text.
3261 * Do it before processing of module parameters, so the module
3262 * can provide parameter accessor functions of its own.
3263 */
3264 if (mod->init_layout.base)
3265 flush_icache_range((unsigned long)mod->init_layout.base,
3266 (unsigned long)mod->init_layout.base
3267 + mod->init_layout.size);
3268 flush_icache_range((unsigned long)mod->core_layout.base,
3269 (unsigned long)mod->core_layout.base + mod->core_layout.size);
3270
3271 set_fs(old_fs);
3272 }
3273
3274 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3275 Elf_Shdr *sechdrs,
3276 char *secstrings,
3277 struct module *mod)
3278 {
3279 return 0;
3280 }
3281
3282 /* module_blacklist is a comma-separated list of module names */
3283 static char *module_blacklist;
3284 static bool blacklisted(const char *module_name)
3285 {
3286 const char *p;
3287 size_t len;
3288
3289 if (!module_blacklist)
3290 return false;
3291
3292 for (p = module_blacklist; *p; p += len) {
3293 len = strcspn(p, ",");
3294 if (strlen(module_name) == len && !memcmp(module_name, p, len))
3295 return true;
3296 if (p[len] == ',')
3297 len++;
3298 }
3299 return false;
3300 }
3301 core_param(module_blacklist, module_blacklist, charp, 0400);
3302
3303 static struct module *layout_and_allocate(struct load_info *info, int flags)
3304 {
3305 struct module *mod;
3306 unsigned int ndx;
3307 int err;
3308
3309 err = check_modinfo(info->mod, info, flags);
3310 if (err)
3311 return ERR_PTR(err);
3312
3313 /* Allow arches to frob section contents and sizes. */
3314 err = module_frob_arch_sections(info->hdr, info->sechdrs,
3315 info->secstrings, info->mod);
3316 if (err < 0)
3317 return ERR_PTR(err);
3318
3319 /* We will do a special allocation for per-cpu sections later. */
3320 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3321
3322 /*
3323 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3324 * layout_sections() can put it in the right place.
3325 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3326 */
3327 ndx = find_sec(info, ".data..ro_after_init");
3328 if (ndx)
3329 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3330 /*
3331 * Mark the __jump_table section as ro_after_init as well: these data
3332 * structures are never modified, with the exception of entries that
3333 * refer to code in the __init section, which are annotated as such
3334 * at module load time.
3335 */
3336 ndx = find_sec(info, "__jump_table");
3337 if (ndx)
3338 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3339
3340 /* Determine total sizes, and put offsets in sh_entsize. For now
3341 this is done generically; there doesn't appear to be any
3342 special cases for the architectures. */
3343 layout_sections(info->mod, info);
3344 layout_symtab(info->mod, info);
3345
3346 /* Allocate and move to the final place */
3347 err = move_module(info->mod, info);
3348 if (err)
3349 return ERR_PTR(err);
3350
3351 /* Module has been copied to its final place now: return it. */
3352 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3353 kmemleak_load_module(mod, info);
3354 return mod;
3355 }
3356
3357 /* mod is no longer valid after this! */
3358 static void module_deallocate(struct module *mod, struct load_info *info)
3359 {
3360 percpu_modfree(mod);
3361 module_arch_freeing_init(mod);
3362 module_memfree(mod->init_layout.base);
3363 module_memfree(mod->core_layout.base);
3364 }
3365
3366 int __weak module_finalize(const Elf_Ehdr *hdr,
3367 const Elf_Shdr *sechdrs,
3368 struct module *me)
3369 {
3370 return 0;
3371 }
3372
3373 static int post_relocation(struct module *mod, const struct load_info *info)
3374 {
3375 /* Sort exception table now relocations are done. */
3376 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3377
3378 /* Copy relocated percpu area over. */
3379 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3380 info->sechdrs[info->index.pcpu].sh_size);
3381
3382 /* Setup kallsyms-specific fields. */
3383 add_kallsyms(mod, info);
3384
3385 /* Arch-specific module finalizing. */
3386 return module_finalize(info->hdr, info->sechdrs, mod);
3387 }
3388
3389 /* Is this module of this name done loading? No locks held. */
3390 static bool finished_loading(const char *name)
3391 {
3392 struct module *mod;
3393 bool ret;
3394
3395 /*
3396 * The module_mutex should not be a heavily contended lock;
3397 * if we get the occasional sleep here, we'll go an extra iteration
3398 * in the wait_event_interruptible(), which is harmless.
3399 */
3400 sched_annotate_sleep();
3401 mutex_lock(&module_mutex);
3402 mod = find_module_all(name, strlen(name), true);
3403 ret = !mod || mod->state == MODULE_STATE_LIVE
3404 || mod->state == MODULE_STATE_GOING;
3405 mutex_unlock(&module_mutex);
3406
3407 return ret;
3408 }
3409
3410 /* Call module constructors. */
3411 static void do_mod_ctors(struct module *mod)
3412 {
3413 #ifdef CONFIG_CONSTRUCTORS
3414 unsigned long i;
3415
3416 for (i = 0; i < mod->num_ctors; i++)
3417 mod->ctors[i]();
3418 #endif
3419 }
3420
3421 /* For freeing module_init on success, in case kallsyms traversing */
3422 struct mod_initfree {
3423 struct rcu_head rcu;
3424 void *module_init;
3425 };
3426
3427 static void do_free_init(struct rcu_head *head)
3428 {
3429 struct mod_initfree *m = container_of(head, struct mod_initfree, rcu);
3430 module_memfree(m->module_init);
3431 kfree(m);
3432 }
3433
3434 /*
3435 * This is where the real work happens.
3436 *
3437 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3438 * helper command 'lx-symbols'.
3439 */
3440 static noinline int do_init_module(struct module *mod)
3441 {
3442 int ret = 0;
3443 struct mod_initfree *freeinit;
3444
3445 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3446 if (!freeinit) {
3447 ret = -ENOMEM;
3448 goto fail;
3449 }
3450 freeinit->module_init = mod->init_layout.base;
3451
3452 /*
3453 * We want to find out whether @mod uses async during init. Clear
3454 * PF_USED_ASYNC. async_schedule*() will set it.
3455 */
3456 current->flags &= ~PF_USED_ASYNC;
3457
3458 do_mod_ctors(mod);
3459 /* Start the module */
3460 if (mod->init != NULL)
3461 ret = do_one_initcall(mod->init);
3462 if (ret < 0) {
3463 goto fail_free_freeinit;
3464 }
3465 if (ret > 0) {
3466 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3467 "follow 0/-E convention\n"
3468 "%s: loading module anyway...\n",
3469 __func__, mod->name, ret, __func__);
3470 dump_stack();
3471 }
3472
3473 /* Now it's a first class citizen! */
3474 mod->state = MODULE_STATE_LIVE;
3475 blocking_notifier_call_chain(&module_notify_list,
3476 MODULE_STATE_LIVE, mod);
3477
3478 /*
3479 * We need to finish all async code before the module init sequence
3480 * is done. This has potential to deadlock. For example, a newly
3481 * detected block device can trigger request_module() of the
3482 * default iosched from async probing task. Once userland helper
3483 * reaches here, async_synchronize_full() will wait on the async
3484 * task waiting on request_module() and deadlock.
3485 *
3486 * This deadlock is avoided by perfomring async_synchronize_full()
3487 * iff module init queued any async jobs. This isn't a full
3488 * solution as it will deadlock the same if module loading from
3489 * async jobs nests more than once; however, due to the various
3490 * constraints, this hack seems to be the best option for now.
3491 * Please refer to the following thread for details.
3492 *
3493 * http://thread.gmane.org/gmane.linux.kernel/1420814
3494 */
3495 if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3496 async_synchronize_full();
3497
3498 ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3499 mod->init_layout.size);
3500 mutex_lock(&module_mutex);
3501 /* Drop initial reference. */
3502 module_put(mod);
3503 trim_init_extable(mod);
3504 #ifdef CONFIG_KALLSYMS
3505 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3506 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3507 #endif
3508 module_enable_ro(mod, true);
3509 mod_tree_remove_init(mod);
3510 disable_ro_nx(&mod->init_layout);
3511 module_arch_freeing_init(mod);
3512 mod->init_layout.base = NULL;
3513 mod->init_layout.size = 0;
3514 mod->init_layout.ro_size = 0;
3515 mod->init_layout.ro_after_init_size = 0;
3516 mod->init_layout.text_size = 0;
3517 /*
3518 * We want to free module_init, but be aware that kallsyms may be
3519 * walking this with preempt disabled. In all the failure paths, we
3520 * call synchronize_rcu(), but we don't want to slow down the success
3521 * path, so use actual RCU here.
3522 * Note that module_alloc() on most architectures creates W+X page
3523 * mappings which won't be cleaned up until do_free_init() runs. Any
3524 * code such as mark_rodata_ro() which depends on those mappings to
3525 * be cleaned up needs to sync with the queued work - ie
3526 * rcu_barrier()
3527 */
3528 call_rcu(&freeinit->rcu, do_free_init);
3529 mutex_unlock(&module_mutex);
3530 wake_up_all(&module_wq);
3531
3532 return 0;
3533
3534 fail_free_freeinit:
3535 kfree(freeinit);
3536 fail:
3537 /* Try to protect us from buggy refcounters. */
3538 mod->state = MODULE_STATE_GOING;
3539 synchronize_rcu();
3540 module_put(mod);
3541 blocking_notifier_call_chain(&module_notify_list,
3542 MODULE_STATE_GOING, mod);
3543 klp_module_going(mod);
3544 ftrace_release_mod(mod);
3545 free_module(mod);
3546 wake_up_all(&module_wq);
3547 return ret;
3548 }
3549
3550 static int may_init_module(void)
3551 {
3552 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3553 return -EPERM;
3554
3555 return 0;
3556 }
3557
3558 /*
3559 * We try to place it in the list now to make sure it's unique before
3560 * we dedicate too many resources. In particular, temporary percpu
3561 * memory exhaustion.
3562 */
3563 static int add_unformed_module(struct module *mod)
3564 {
3565 int err;
3566 struct module *old;
3567
3568 mod->state = MODULE_STATE_UNFORMED;
3569
3570 again:
3571 mutex_lock(&module_mutex);
3572 old = find_module_all(mod->name, strlen(mod->name), true);
3573 if (old != NULL) {
3574 if (old->state == MODULE_STATE_COMING
3575 || old->state == MODULE_STATE_UNFORMED) {
3576 /* Wait in case it fails to load. */
3577 mutex_unlock(&module_mutex);
3578 err = wait_event_interruptible(module_wq,
3579 finished_loading(mod->name));
3580 if (err)
3581 goto out_unlocked;
3582 goto again;
3583 }
3584 err = -EEXIST;
3585 goto out;
3586 }
3587 mod_update_bounds(mod);
3588 list_add_rcu(&mod->list, &modules);
3589 mod_tree_insert(mod);
3590 err = 0;
3591
3592 out:
3593 mutex_unlock(&module_mutex);
3594 out_unlocked:
3595 return err;
3596 }
3597
3598 static int complete_formation(struct module *mod, struct load_info *info)
3599 {
3600 int err;
3601
3602 mutex_lock(&module_mutex);
3603
3604 /* Find duplicate symbols (must be called under lock). */
3605 err = verify_exported_symbols(mod);
3606 if (err < 0)
3607 goto out;
3608
3609 /* This relies on module_mutex for list integrity. */
3610 module_bug_finalize(info->hdr, info->sechdrs, mod);
3611
3612 module_enable_ro(mod, false);
3613 module_enable_nx(mod);
3614
3615 /* Mark state as coming so strong_try_module_get() ignores us,
3616 * but kallsyms etc. can see us. */
3617 mod->state = MODULE_STATE_COMING;
3618 mutex_unlock(&module_mutex);
3619
3620 return 0;
3621
3622 out:
3623 mutex_unlock(&module_mutex);
3624 return err;
3625 }
3626
3627 static int prepare_coming_module(struct module *mod)
3628 {
3629 int err;
3630
3631 ftrace_module_enable(mod);
3632 err = klp_module_coming(mod);
3633 if (err)
3634 return err;
3635
3636 blocking_notifier_call_chain(&module_notify_list,
3637 MODULE_STATE_COMING, mod);
3638 return 0;
3639 }
3640
3641 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3642 void *arg)
3643 {
3644 struct module *mod = arg;
3645 int ret;
3646
3647 if (strcmp(param, "async_probe") == 0) {
3648 mod->async_probe_requested = true;
3649 return 0;
3650 }
3651
3652 /* Check for magic 'dyndbg' arg */
3653 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3654 if (ret != 0)
3655 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3656 return 0;
3657 }
3658
3659 /* Allocate and load the module: note that size of section 0 is always
3660 zero, and we rely on this for optional sections. */
3661 static int load_module(struct load_info *info, const char __user *uargs,
3662 int flags)
3663 {
3664 struct module *mod;
3665 long err = 0;
3666 char *after_dashes;
3667
3668 err = elf_header_check(info);
3669 if (err)
3670 goto free_copy;
3671
3672 err = setup_load_info(info, flags);
3673 if (err)
3674 goto free_copy;
3675
3676 if (blacklisted(info->name)) {
3677 err = -EPERM;
3678 goto free_copy;
3679 }
3680
3681 err = module_sig_check(info, flags);
3682 if (err)
3683 goto free_copy;
3684
3685 err = rewrite_section_headers(info, flags);
3686 if (err)
3687 goto free_copy;
3688
3689 /* Check module struct version now, before we try to use module. */
3690 if (!check_modstruct_version(info, info->mod)) {
3691 err = -ENOEXEC;
3692 goto free_copy;
3693 }
3694
3695 /* Figure out module layout, and allocate all the memory. */
3696 mod = layout_and_allocate(info, flags);
3697 if (IS_ERR(mod)) {
3698 err = PTR_ERR(mod);
3699 goto free_copy;
3700 }
3701
3702 audit_log_kern_module(mod->name);
3703
3704 /* Reserve our place in the list. */
3705 err = add_unformed_module(mod);
3706 if (err)
3707 goto free_module;
3708
3709 #ifdef CONFIG_MODULE_SIG
3710 mod->sig_ok = info->sig_ok;
3711 if (!mod->sig_ok) {
3712 pr_notice_once("%s: module verification failed: signature "
3713 "and/or required key missing - tainting "
3714 "kernel\n", mod->name);
3715 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3716 }
3717 #endif
3718
3719 /* To avoid stressing percpu allocator, do this once we're unique. */
3720 err = percpu_modalloc(mod, info);
3721 if (err)
3722 goto unlink_mod;
3723
3724 /* Now module is in final location, initialize linked lists, etc. */
3725 err = module_unload_init(mod);
3726 if (err)
3727 goto unlink_mod;
3728
3729 init_param_lock(mod);
3730
3731 /* Now we've got everything in the final locations, we can
3732 * find optional sections. */
3733 err = find_module_sections(mod, info);
3734 if (err)
3735 goto free_unload;
3736
3737 err = check_module_license_and_versions(mod);
3738 if (err)
3739 goto free_unload;
3740
3741 /* Set up MODINFO_ATTR fields */
3742 setup_modinfo(mod, info);
3743
3744 /* Fix up syms, so that st_value is a pointer to location. */
3745 err = simplify_symbols(mod, info);
3746 if (err < 0)
3747 goto free_modinfo;
3748
3749 err = apply_relocations(mod, info);
3750 if (err < 0)
3751 goto free_modinfo;
3752
3753 err = post_relocation(mod, info);
3754 if (err < 0)
3755 goto free_modinfo;
3756
3757 flush_module_icache(mod);
3758
3759 /* Now copy in args */
3760 mod->args = strndup_user(uargs, ~0UL >> 1);
3761 if (IS_ERR(mod->args)) {
3762 err = PTR_ERR(mod->args);
3763 goto free_arch_cleanup;
3764 }
3765
3766 dynamic_debug_setup(mod, info->debug, info->num_debug);
3767
3768 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3769 ftrace_module_init(mod);
3770
3771 /* Finally it's fully formed, ready to start executing. */
3772 err = complete_formation(mod, info);
3773 if (err)
3774 goto ddebug_cleanup;
3775
3776 err = prepare_coming_module(mod);
3777 if (err)
3778 goto bug_cleanup;
3779
3780 /* Module is ready to execute: parsing args may do that. */
3781 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3782 -32768, 32767, mod,
3783 unknown_module_param_cb);
3784 if (IS_ERR(after_dashes)) {
3785 err = PTR_ERR(after_dashes);
3786 goto coming_cleanup;
3787 } else if (after_dashes) {
3788 pr_warn("%s: parameters '%s' after `--' ignored\n",
3789 mod->name, after_dashes);
3790 }
3791
3792 /* Link in to sysfs. */
3793 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3794 if (err < 0)
3795 goto coming_cleanup;
3796
3797 if (is_livepatch_module(mod)) {
3798 err = copy_module_elf(mod, info);
3799 if (err < 0)
3800 goto sysfs_cleanup;
3801 }
3802
3803 /* Get rid of temporary copy. */
3804 free_copy(info);
3805
3806 /* Done! */
3807 trace_module_load(mod);
3808
3809 return do_init_module(mod);
3810
3811 sysfs_cleanup:
3812 mod_sysfs_teardown(mod);
3813 coming_cleanup:
3814 mod->state = MODULE_STATE_GOING;
3815 destroy_params(mod->kp, mod->num_kp);
3816 blocking_notifier_call_chain(&module_notify_list,
3817 MODULE_STATE_GOING, mod);
3818 klp_module_going(mod);
3819 bug_cleanup:
3820 /* module_bug_cleanup needs module_mutex protection */
3821 mutex_lock(&module_mutex);
3822 module_bug_cleanup(mod);
3823 mutex_unlock(&module_mutex);
3824
3825 /* we can't deallocate the module until we clear memory protection */
3826 module_disable_ro(mod);
3827 module_disable_nx(mod);
3828
3829 ddebug_cleanup:
3830 ftrace_release_mod(mod);
3831 dynamic_debug_remove(mod, info->debug);
3832 synchronize_rcu();
3833 kfree(mod->args);
3834 free_arch_cleanup:
3835 module_arch_cleanup(mod);
3836 free_modinfo:
3837 free_modinfo(mod);
3838 free_unload:
3839 module_unload_free(mod);
3840 unlink_mod:
3841 mutex_lock(&module_mutex);
3842 /* Unlink carefully: kallsyms could be walking list. */
3843 list_del_rcu(&mod->list);
3844 mod_tree_remove(mod);
3845 wake_up_all(&module_wq);
3846 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3847 synchronize_rcu();
3848 mutex_unlock(&module_mutex);
3849 free_module:
3850 /* Free lock-classes; relies on the preceding sync_rcu() */
3851 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
3852
3853 module_deallocate(mod, info);
3854 free_copy:
3855 free_copy(info);
3856 return err;
3857 }
3858
3859 SYSCALL_DEFINE3(init_module, void __user *, umod,
3860 unsigned long, len, const char __user *, uargs)
3861 {
3862 int err;
3863 struct load_info info = { };
3864
3865 err = may_init_module();
3866 if (err)
3867 return err;
3868
3869 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3870 umod, len, uargs);
3871
3872 err = copy_module_from_user(umod, len, &info);
3873 if (err)
3874 return err;
3875
3876 return load_module(&info, uargs, 0);
3877 }
3878
3879 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3880 {
3881 struct load_info info = { };
3882 loff_t size;
3883 void *hdr;
3884 int err;
3885
3886 err = may_init_module();
3887 if (err)
3888 return err;
3889
3890 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3891
3892 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3893 |MODULE_INIT_IGNORE_VERMAGIC))
3894 return -EINVAL;
3895
3896 err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
3897 READING_MODULE);
3898 if (err)
3899 return err;
3900 info.hdr = hdr;
3901 info.len = size;
3902
3903 return load_module(&info, uargs, flags);
3904 }
3905
3906 static inline int within(unsigned long addr, void *start, unsigned long size)
3907 {
3908 return ((void *)addr >= start && (void *)addr < start + size);
3909 }
3910
3911 #ifdef CONFIG_KALLSYMS
3912 /*
3913 * This ignores the intensely annoying "mapping symbols" found
3914 * in ARM ELF files: $a, $t and $d.
3915 */
3916 static inline int is_arm_mapping_symbol(const char *str)
3917 {
3918 if (str[0] == '.' && str[1] == 'L')
3919 return true;
3920 return str[0] == '$' && strchr("axtd", str[1])
3921 && (str[2] == '\0' || str[2] == '.');
3922 }
3923
3924 static const char *kallsyms_symbol_name(struct mod_kallsyms *kallsyms, unsigned int symnum)
3925 {
3926 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
3927 }
3928
3929 /*
3930 * Given a module and address, find the corresponding symbol and return its name
3931 * while providing its size and offset if needed.
3932 */
3933 static const char *find_kallsyms_symbol(struct module *mod,
3934 unsigned long addr,
3935 unsigned long *size,
3936 unsigned long *offset)
3937 {
3938 unsigned int i, best = 0;
3939 unsigned long nextval, bestval;
3940 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3941
3942 /* At worse, next value is at end of module */
3943 if (within_module_init(addr, mod))
3944 nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
3945 else
3946 nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
3947
3948 bestval = kallsyms_symbol_value(&kallsyms->symtab[best]);
3949
3950 /* Scan for closest preceding symbol, and next symbol. (ELF
3951 starts real symbols at 1). */
3952 for (i = 1; i < kallsyms->num_symtab; i++) {
3953 const Elf_Sym *sym = &kallsyms->symtab[i];
3954 unsigned long thisval = kallsyms_symbol_value(sym);
3955
3956 if (sym->st_shndx == SHN_UNDEF)
3957 continue;
3958
3959 /* We ignore unnamed symbols: they're uninformative
3960 * and inserted at a whim. */
3961 if (*kallsyms_symbol_name(kallsyms, i) == '\0'
3962 || is_arm_mapping_symbol(kallsyms_symbol_name(kallsyms, i)))
3963 continue;
3964
3965 if (thisval <= addr && thisval > bestval) {
3966 best = i;
3967 bestval = thisval;
3968 }
3969 if (thisval > addr && thisval < nextval)
3970 nextval = thisval;
3971 }
3972
3973 if (!best)
3974 return NULL;
3975
3976 if (size)
3977 *size = nextval - bestval;
3978 if (offset)
3979 *offset = addr - bestval;
3980
3981 return kallsyms_symbol_name(kallsyms, best);
3982 }
3983
3984 void * __weak dereference_module_function_descriptor(struct module *mod,
3985 void *ptr)
3986 {
3987 return ptr;
3988 }
3989
3990 /* For kallsyms to ask for address resolution. NULL means not found. Careful
3991 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3992 const char *module_address_lookup(unsigned long addr,
3993 unsigned long *size,
3994 unsigned long *offset,
3995 char **modname,
3996 char *namebuf)
3997 {
3998 const char *ret = NULL;
3999 struct module *mod;
4000
4001 preempt_disable();
4002 mod = __module_address(addr);
4003 if (mod) {
4004 if (modname)
4005 *modname = mod->name;
4006
4007 ret = find_kallsyms_symbol(mod, addr, size, offset);
4008 }
4009 /* Make a copy in here where it's safe */
4010 if (ret) {
4011 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
4012 ret = namebuf;
4013 }
4014 preempt_enable();
4015
4016 return ret;
4017 }
4018
4019 int lookup_module_symbol_name(unsigned long addr, char *symname)
4020 {
4021 struct module *mod;
4022
4023 preempt_disable();
4024 list_for_each_entry_rcu(mod, &modules, list) {
4025 if (mod->state == MODULE_STATE_UNFORMED)
4026 continue;
4027 if (within_module(addr, mod)) {
4028 const char *sym;
4029
4030 sym = find_kallsyms_symbol(mod, addr, NULL, NULL);
4031 if (!sym)
4032 goto out;
4033
4034 strlcpy(symname, sym, KSYM_NAME_LEN);
4035 preempt_enable();
4036 return 0;
4037 }
4038 }
4039 out:
4040 preempt_enable();
4041 return -ERANGE;
4042 }
4043
4044 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4045 unsigned long *offset, char *modname, char *name)
4046 {
4047 struct module *mod;
4048
4049 preempt_disable();
4050 list_for_each_entry_rcu(mod, &modules, list) {
4051 if (mod->state == MODULE_STATE_UNFORMED)
4052 continue;
4053 if (within_module(addr, mod)) {
4054 const char *sym;
4055
4056 sym = find_kallsyms_symbol(mod, addr, size, offset);
4057 if (!sym)
4058 goto out;
4059 if (modname)
4060 strlcpy(modname, mod->name, MODULE_NAME_LEN);
4061 if (name)
4062 strlcpy(name, sym, KSYM_NAME_LEN);
4063 preempt_enable();
4064 return 0;
4065 }
4066 }
4067 out:
4068 preempt_enable();
4069 return -ERANGE;
4070 }
4071
4072 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4073 char *name, char *module_name, int *exported)
4074 {
4075 struct module *mod;
4076
4077 preempt_disable();
4078 list_for_each_entry_rcu(mod, &modules, list) {
4079 struct mod_kallsyms *kallsyms;
4080
4081 if (mod->state == MODULE_STATE_UNFORMED)
4082 continue;
4083 kallsyms = rcu_dereference_sched(mod->kallsyms);
4084 if (symnum < kallsyms->num_symtab) {
4085 const Elf_Sym *sym = &kallsyms->symtab[symnum];
4086
4087 *value = kallsyms_symbol_value(sym);
4088 *type = sym->st_size;
4089 strlcpy(name, kallsyms_symbol_name(kallsyms, symnum), KSYM_NAME_LEN);
4090 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4091 *exported = is_exported(name, *value, mod);
4092 preempt_enable();
4093 return 0;
4094 }
4095 symnum -= kallsyms->num_symtab;
4096 }
4097 preempt_enable();
4098 return -ERANGE;
4099 }
4100
4101 /* Given a module and name of symbol, find and return the symbol's value */
4102 static unsigned long find_kallsyms_symbol_value(struct module *mod, const char *name)
4103 {
4104 unsigned int i;
4105 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4106
4107 for (i = 0; i < kallsyms->num_symtab; i++) {
4108 const Elf_Sym *sym = &kallsyms->symtab[i];
4109
4110 if (strcmp(name, kallsyms_symbol_name(kallsyms, i)) == 0 &&
4111 sym->st_shndx != SHN_UNDEF)
4112 return kallsyms_symbol_value(sym);
4113 }
4114 return 0;
4115 }
4116
4117 /* Look for this name: can be of form module:name. */
4118 unsigned long module_kallsyms_lookup_name(const char *name)
4119 {
4120 struct module *mod;
4121 char *colon;
4122 unsigned long ret = 0;
4123
4124 /* Don't lock: we're in enough trouble already. */
4125 preempt_disable();
4126 if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4127 if ((mod = find_module_all(name, colon - name, false)) != NULL)
4128 ret = find_kallsyms_symbol_value(mod, colon+1);
4129 } else {
4130 list_for_each_entry_rcu(mod, &modules, list) {
4131 if (mod->state == MODULE_STATE_UNFORMED)
4132 continue;
4133 if ((ret = find_kallsyms_symbol_value(mod, name)) != 0)
4134 break;
4135 }
4136 }
4137 preempt_enable();
4138 return ret;
4139 }
4140
4141 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4142 struct module *, unsigned long),
4143 void *data)
4144 {
4145 struct module *mod;
4146 unsigned int i;
4147 int ret;
4148
4149 module_assert_mutex();
4150
4151 list_for_each_entry(mod, &modules, list) {
4152 /* We hold module_mutex: no need for rcu_dereference_sched */
4153 struct mod_kallsyms *kallsyms = mod->kallsyms;
4154
4155 if (mod->state == MODULE_STATE_UNFORMED)
4156 continue;
4157 for (i = 0; i < kallsyms->num_symtab; i++) {
4158 const Elf_Sym *sym = &kallsyms->symtab[i];
4159
4160 if (sym->st_shndx == SHN_UNDEF)
4161 continue;
4162
4163 ret = fn(data, kallsyms_symbol_name(kallsyms, i),
4164 mod, kallsyms_symbol_value(sym));
4165 if (ret != 0)
4166 return ret;
4167 }
4168 }
4169 return 0;
4170 }
4171 #endif /* CONFIG_KALLSYMS */
4172
4173 /* Maximum number of characters written by module_flags() */
4174 #define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4175
4176 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
4177 static char *module_flags(struct module *mod, char *buf)
4178 {
4179 int bx = 0;
4180
4181 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4182 if (mod->taints ||
4183 mod->state == MODULE_STATE_GOING ||
4184 mod->state == MODULE_STATE_COMING) {
4185 buf[bx++] = '(';
4186 bx += module_flags_taint(mod, buf + bx);
4187 /* Show a - for module-is-being-unloaded */
4188 if (mod->state == MODULE_STATE_GOING)
4189 buf[bx++] = '-';
4190 /* Show a + for module-is-being-loaded */
4191 if (mod->state == MODULE_STATE_COMING)
4192 buf[bx++] = '+';
4193 buf[bx++] = ')';
4194 }
4195 buf[bx] = '\0';
4196
4197 return buf;
4198 }
4199
4200 #ifdef CONFIG_PROC_FS
4201 /* Called by the /proc file system to return a list of modules. */
4202 static void *m_start(struct seq_file *m, loff_t *pos)
4203 {
4204 mutex_lock(&module_mutex);
4205 return seq_list_start(&modules, *pos);
4206 }
4207
4208 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4209 {
4210 return seq_list_next(p, &modules, pos);
4211 }
4212
4213 static void m_stop(struct seq_file *m, void *p)
4214 {
4215 mutex_unlock(&module_mutex);
4216 }
4217
4218 static int m_show(struct seq_file *m, void *p)
4219 {
4220 struct module *mod = list_entry(p, struct module, list);
4221 char buf[MODULE_FLAGS_BUF_SIZE];
4222 void *value;
4223
4224 /* We always ignore unformed modules. */
4225 if (mod->state == MODULE_STATE_UNFORMED)
4226 return 0;
4227
4228 seq_printf(m, "%s %u",
4229 mod->name, mod->init_layout.size + mod->core_layout.size);
4230 print_unload_info(m, mod);
4231
4232 /* Informative for users. */
4233 seq_printf(m, " %s",
4234 mod->state == MODULE_STATE_GOING ? "Unloading" :
4235 mod->state == MODULE_STATE_COMING ? "Loading" :
4236 "Live");
4237 /* Used by oprofile and other similar tools. */
4238 value = m->private ? NULL : mod->core_layout.base;
4239 seq_printf(m, " 0x%px", value);
4240
4241 /* Taints info */
4242 if (mod->taints)
4243 seq_printf(m, " %s", module_flags(mod, buf));
4244
4245 seq_puts(m, "\n");
4246 return 0;
4247 }
4248
4249 /* Format: modulename size refcount deps address
4250
4251 Where refcount is a number or -, and deps is a comma-separated list
4252 of depends or -.
4253 */
4254 static const struct seq_operations modules_op = {
4255 .start = m_start,
4256 .next = m_next,
4257 .stop = m_stop,
4258 .show = m_show
4259 };
4260
4261 /*
4262 * This also sets the "private" pointer to non-NULL if the
4263 * kernel pointers should be hidden (so you can just test
4264 * "m->private" to see if you should keep the values private).
4265 *
4266 * We use the same logic as for /proc/kallsyms.
4267 */
4268 static int modules_open(struct inode *inode, struct file *file)
4269 {
4270 int err = seq_open(file, &modules_op);
4271
4272 if (!err) {
4273 struct seq_file *m = file->private_data;
4274 m->private = kallsyms_show_value() ? NULL : (void *)8ul;
4275 }
4276
4277 return err;
4278 }
4279
4280 static const struct file_operations proc_modules_operations = {
4281 .open = modules_open,
4282 .read = seq_read,
4283 .llseek = seq_lseek,
4284 .release = seq_release,
4285 };
4286
4287 static int __init proc_modules_init(void)
4288 {
4289 proc_create("modules", 0, NULL, &proc_modules_operations);
4290 return 0;
4291 }
4292 module_init(proc_modules_init);
4293 #endif
4294
4295 /* Given an address, look for it in the module exception tables. */
4296 const struct exception_table_entry *search_module_extables(unsigned long addr)
4297 {
4298 const struct exception_table_entry *e = NULL;
4299 struct module *mod;
4300
4301 preempt_disable();
4302 mod = __module_address(addr);
4303 if (!mod)
4304 goto out;
4305
4306 if (!mod->num_exentries)
4307 goto out;
4308
4309 e = search_extable(mod->extable,
4310 mod->num_exentries,
4311 addr);
4312 out:
4313 preempt_enable();
4314
4315 /*
4316 * Now, if we found one, we are running inside it now, hence
4317 * we cannot unload the module, hence no refcnt needed.
4318 */
4319 return e;
4320 }
4321
4322 /*
4323 * is_module_address - is this address inside a module?
4324 * @addr: the address to check.
4325 *
4326 * See is_module_text_address() if you simply want to see if the address
4327 * is code (not data).
4328 */
4329 bool is_module_address(unsigned long addr)
4330 {
4331 bool ret;
4332
4333 preempt_disable();
4334 ret = __module_address(addr) != NULL;
4335 preempt_enable();
4336
4337 return ret;
4338 }
4339
4340 /*
4341 * __module_address - get the module which contains an address.
4342 * @addr: the address.
4343 *
4344 * Must be called with preempt disabled or module mutex held so that
4345 * module doesn't get freed during this.
4346 */
4347 struct module *__module_address(unsigned long addr)
4348 {
4349 struct module *mod;
4350
4351 if (addr < module_addr_min || addr > module_addr_max)
4352 return NULL;
4353
4354 module_assert_mutex_or_preempt();
4355
4356 mod = mod_find(addr);
4357 if (mod) {
4358 BUG_ON(!within_module(addr, mod));
4359 if (mod->state == MODULE_STATE_UNFORMED)
4360 mod = NULL;
4361 }
4362 return mod;
4363 }
4364 EXPORT_SYMBOL_GPL(__module_address);
4365
4366 /*
4367 * is_module_text_address - is this address inside module code?
4368 * @addr: the address to check.
4369 *
4370 * See is_module_address() if you simply want to see if the address is
4371 * anywhere in a module. See kernel_text_address() for testing if an
4372 * address corresponds to kernel or module code.
4373 */
4374 bool is_module_text_address(unsigned long addr)
4375 {
4376 bool ret;
4377
4378 preempt_disable();
4379 ret = __module_text_address(addr) != NULL;
4380 preempt_enable();
4381
4382 return ret;
4383 }
4384
4385 /*
4386 * __module_text_address - get the module whose code contains an address.
4387 * @addr: the address.
4388 *
4389 * Must be called with preempt disabled or module mutex held so that
4390 * module doesn't get freed during this.
4391 */
4392 struct module *__module_text_address(unsigned long addr)
4393 {
4394 struct module *mod = __module_address(addr);
4395 if (mod) {
4396 /* Make sure it's within the text section. */
4397 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4398 && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4399 mod = NULL;
4400 }
4401 return mod;
4402 }
4403 EXPORT_SYMBOL_GPL(__module_text_address);
4404
4405 /* Don't grab lock, we're oopsing. */
4406 void print_modules(void)
4407 {
4408 struct module *mod;
4409 char buf[MODULE_FLAGS_BUF_SIZE];
4410
4411 printk(KERN_DEFAULT "Modules linked in:");
4412 /* Most callers should already have preempt disabled, but make sure */
4413 preempt_disable();
4414 list_for_each_entry_rcu(mod, &modules, list) {
4415 if (mod->state == MODULE_STATE_UNFORMED)
4416 continue;
4417 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4418 }
4419 preempt_enable();
4420 if (last_unloaded_module[0])
4421 pr_cont(" [last unloaded: %s]", last_unloaded_module);
4422 pr_cont("\n");
4423 }
4424
4425 #ifdef CONFIG_MODVERSIONS
4426 /* Generate the signature for all relevant module structures here.
4427 * If these change, we don't want to try to parse the module. */
4428 void module_layout(struct module *mod,
4429 struct modversion_info *ver,
4430 struct kernel_param *kp,
4431 struct kernel_symbol *ks,
4432 struct tracepoint * const *tp)
4433 {
4434 }
4435 EXPORT_SYMBOL(module_layout);
4436 #endif