]> git.ipfire.org Git - people/ms/linux.git/blob - kernel/module.c
Revert "printk: extend console_lock for per-console locking"
[people/ms/linux.git] / kernel / module.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2002 Richard Henderson
4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5 */
6
7 #define INCLUDE_VERMAGIC
8
9 #include <linux/export.h>
10 #include <linux/extable.h>
11 #include <linux/moduleloader.h>
12 #include <linux/module_signature.h>
13 #include <linux/trace_events.h>
14 #include <linux/init.h>
15 #include <linux/kallsyms.h>
16 #include <linux/buildid.h>
17 #include <linux/file.h>
18 #include <linux/fs.h>
19 #include <linux/sysfs.h>
20 #include <linux/kernel.h>
21 #include <linux/kernel_read_file.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/elf.h>
25 #include <linux/proc_fs.h>
26 #include <linux/security.h>
27 #include <linux/seq_file.h>
28 #include <linux/syscalls.h>
29 #include <linux/fcntl.h>
30 #include <linux/rcupdate.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/moduleparam.h>
34 #include <linux/errno.h>
35 #include <linux/err.h>
36 #include <linux/vermagic.h>
37 #include <linux/notifier.h>
38 #include <linux/sched.h>
39 #include <linux/device.h>
40 #include <linux/string.h>
41 #include <linux/mutex.h>
42 #include <linux/rculist.h>
43 #include <linux/uaccess.h>
44 #include <asm/cacheflush.h>
45 #include <linux/set_memory.h>
46 #include <asm/mmu_context.h>
47 #include <linux/license.h>
48 #include <asm/sections.h>
49 #include <linux/tracepoint.h>
50 #include <linux/ftrace.h>
51 #include <linux/livepatch.h>
52 #include <linux/async.h>
53 #include <linux/percpu.h>
54 #include <linux/kmemleak.h>
55 #include <linux/jump_label.h>
56 #include <linux/pfn.h>
57 #include <linux/bsearch.h>
58 #include <linux/dynamic_debug.h>
59 #include <linux/audit.h>
60 #include <uapi/linux/module.h>
61 #include "module-internal.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/module.h>
65
66 #ifndef ARCH_SHF_SMALL
67 #define ARCH_SHF_SMALL 0
68 #endif
69
70 /*
71 * Modules' sections will be aligned on page boundaries
72 * to ensure complete separation of code and data, but
73 * only when CONFIG_ARCH_HAS_STRICT_MODULE_RWX=y
74 */
75 #ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
76 # define debug_align(X) ALIGN(X, PAGE_SIZE)
77 #else
78 # define debug_align(X) (X)
79 #endif
80
81 /* If this is set, the section belongs in the init part of the module */
82 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
83
84 /*
85 * Mutex protects:
86 * 1) List of modules (also safely readable with preempt_disable),
87 * 2) module_use links,
88 * 3) module_addr_min/module_addr_max.
89 * (delete and add uses RCU list operations).
90 */
91 static DEFINE_MUTEX(module_mutex);
92 static LIST_HEAD(modules);
93
94 /* Work queue for freeing init sections in success case */
95 static void do_free_init(struct work_struct *w);
96 static DECLARE_WORK(init_free_wq, do_free_init);
97 static LLIST_HEAD(init_free_list);
98
99 #ifdef CONFIG_MODULES_TREE_LOOKUP
100
101 /*
102 * Use a latched RB-tree for __module_address(); this allows us to use
103 * RCU-sched lookups of the address from any context.
104 *
105 * This is conditional on PERF_EVENTS || TRACING because those can really hit
106 * __module_address() hard by doing a lot of stack unwinding; potentially from
107 * NMI context.
108 */
109
110 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
111 {
112 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
113
114 return (unsigned long)layout->base;
115 }
116
117 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
118 {
119 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
120
121 return (unsigned long)layout->size;
122 }
123
124 static __always_inline bool
125 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
126 {
127 return __mod_tree_val(a) < __mod_tree_val(b);
128 }
129
130 static __always_inline int
131 mod_tree_comp(void *key, struct latch_tree_node *n)
132 {
133 unsigned long val = (unsigned long)key;
134 unsigned long start, end;
135
136 start = __mod_tree_val(n);
137 if (val < start)
138 return -1;
139
140 end = start + __mod_tree_size(n);
141 if (val >= end)
142 return 1;
143
144 return 0;
145 }
146
147 static const struct latch_tree_ops mod_tree_ops = {
148 .less = mod_tree_less,
149 .comp = mod_tree_comp,
150 };
151
152 static struct mod_tree_root {
153 struct latch_tree_root root;
154 unsigned long addr_min;
155 unsigned long addr_max;
156 } mod_tree __cacheline_aligned = {
157 .addr_min = -1UL,
158 };
159
160 #define module_addr_min mod_tree.addr_min
161 #define module_addr_max mod_tree.addr_max
162
163 static noinline void __mod_tree_insert(struct mod_tree_node *node)
164 {
165 latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
166 }
167
168 static void __mod_tree_remove(struct mod_tree_node *node)
169 {
170 latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
171 }
172
173 /*
174 * These modifications: insert, remove_init and remove; are serialized by the
175 * module_mutex.
176 */
177 static void mod_tree_insert(struct module *mod)
178 {
179 mod->core_layout.mtn.mod = mod;
180 mod->init_layout.mtn.mod = mod;
181
182 __mod_tree_insert(&mod->core_layout.mtn);
183 if (mod->init_layout.size)
184 __mod_tree_insert(&mod->init_layout.mtn);
185 }
186
187 static void mod_tree_remove_init(struct module *mod)
188 {
189 if (mod->init_layout.size)
190 __mod_tree_remove(&mod->init_layout.mtn);
191 }
192
193 static void mod_tree_remove(struct module *mod)
194 {
195 __mod_tree_remove(&mod->core_layout.mtn);
196 mod_tree_remove_init(mod);
197 }
198
199 static struct module *mod_find(unsigned long addr)
200 {
201 struct latch_tree_node *ltn;
202
203 ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
204 if (!ltn)
205 return NULL;
206
207 return container_of(ltn, struct mod_tree_node, node)->mod;
208 }
209
210 #else /* MODULES_TREE_LOOKUP */
211
212 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
213
214 static void mod_tree_insert(struct module *mod) { }
215 static void mod_tree_remove_init(struct module *mod) { }
216 static void mod_tree_remove(struct module *mod) { }
217
218 static struct module *mod_find(unsigned long addr)
219 {
220 struct module *mod;
221
222 list_for_each_entry_rcu(mod, &modules, list,
223 lockdep_is_held(&module_mutex)) {
224 if (within_module(addr, mod))
225 return mod;
226 }
227
228 return NULL;
229 }
230
231 #endif /* MODULES_TREE_LOOKUP */
232
233 /*
234 * Bounds of module text, for speeding up __module_address.
235 * Protected by module_mutex.
236 */
237 static void __mod_update_bounds(void *base, unsigned int size)
238 {
239 unsigned long min = (unsigned long)base;
240 unsigned long max = min + size;
241
242 if (min < module_addr_min)
243 module_addr_min = min;
244 if (max > module_addr_max)
245 module_addr_max = max;
246 }
247
248 static void mod_update_bounds(struct module *mod)
249 {
250 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
251 if (mod->init_layout.size)
252 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
253 }
254
255 #ifdef CONFIG_KGDB_KDB
256 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
257 #endif /* CONFIG_KGDB_KDB */
258
259 static void module_assert_mutex_or_preempt(void)
260 {
261 #ifdef CONFIG_LOCKDEP
262 if (unlikely(!debug_locks))
263 return;
264
265 WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
266 !lockdep_is_held(&module_mutex));
267 #endif
268 }
269
270 #ifdef CONFIG_MODULE_SIG
271 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
272 module_param(sig_enforce, bool_enable_only, 0644);
273
274 void set_module_sig_enforced(void)
275 {
276 sig_enforce = true;
277 }
278 #else
279 #define sig_enforce false
280 #endif
281
282 /*
283 * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
284 * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
285 */
286 bool is_module_sig_enforced(void)
287 {
288 return sig_enforce;
289 }
290 EXPORT_SYMBOL(is_module_sig_enforced);
291
292 /* Block module loading/unloading? */
293 int modules_disabled = 0;
294 core_param(nomodule, modules_disabled, bint, 0);
295
296 /* Waiting for a module to finish initializing? */
297 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
298
299 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
300
301 int register_module_notifier(struct notifier_block *nb)
302 {
303 return blocking_notifier_chain_register(&module_notify_list, nb);
304 }
305 EXPORT_SYMBOL(register_module_notifier);
306
307 int unregister_module_notifier(struct notifier_block *nb)
308 {
309 return blocking_notifier_chain_unregister(&module_notify_list, nb);
310 }
311 EXPORT_SYMBOL(unregister_module_notifier);
312
313 /*
314 * We require a truly strong try_module_get(): 0 means success.
315 * Otherwise an error is returned due to ongoing or failed
316 * initialization etc.
317 */
318 static inline int strong_try_module_get(struct module *mod)
319 {
320 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
321 if (mod && mod->state == MODULE_STATE_COMING)
322 return -EBUSY;
323 if (try_module_get(mod))
324 return 0;
325 else
326 return -ENOENT;
327 }
328
329 static inline void add_taint_module(struct module *mod, unsigned flag,
330 enum lockdep_ok lockdep_ok)
331 {
332 add_taint(flag, lockdep_ok);
333 set_bit(flag, &mod->taints);
334 }
335
336 /*
337 * A thread that wants to hold a reference to a module only while it
338 * is running can call this to safely exit.
339 */
340 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
341 {
342 module_put(mod);
343 kthread_exit(code);
344 }
345 EXPORT_SYMBOL(__module_put_and_kthread_exit);
346
347 /* Find a module section: 0 means not found. */
348 static unsigned int find_sec(const struct load_info *info, const char *name)
349 {
350 unsigned int i;
351
352 for (i = 1; i < info->hdr->e_shnum; i++) {
353 Elf_Shdr *shdr = &info->sechdrs[i];
354 /* Alloc bit cleared means "ignore it." */
355 if ((shdr->sh_flags & SHF_ALLOC)
356 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
357 return i;
358 }
359 return 0;
360 }
361
362 /* Find a module section, or NULL. */
363 static void *section_addr(const struct load_info *info, const char *name)
364 {
365 /* Section 0 has sh_addr 0. */
366 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
367 }
368
369 /* Find a module section, or NULL. Fill in number of "objects" in section. */
370 static void *section_objs(const struct load_info *info,
371 const char *name,
372 size_t object_size,
373 unsigned int *num)
374 {
375 unsigned int sec = find_sec(info, name);
376
377 /* Section 0 has sh_addr 0 and sh_size 0. */
378 *num = info->sechdrs[sec].sh_size / object_size;
379 return (void *)info->sechdrs[sec].sh_addr;
380 }
381
382 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
383 static unsigned int find_any_sec(const struct load_info *info, const char *name)
384 {
385 unsigned int i;
386
387 for (i = 1; i < info->hdr->e_shnum; i++) {
388 Elf_Shdr *shdr = &info->sechdrs[i];
389 if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
390 return i;
391 }
392 return 0;
393 }
394
395 /*
396 * Find a module section, or NULL. Fill in number of "objects" in section.
397 * Ignores SHF_ALLOC flag.
398 */
399 static __maybe_unused void *any_section_objs(const struct load_info *info,
400 const char *name,
401 size_t object_size,
402 unsigned int *num)
403 {
404 unsigned int sec = find_any_sec(info, name);
405
406 /* Section 0 has sh_addr 0 and sh_size 0. */
407 *num = info->sechdrs[sec].sh_size / object_size;
408 return (void *)info->sechdrs[sec].sh_addr;
409 }
410
411 /* Provided by the linker */
412 extern const struct kernel_symbol __start___ksymtab[];
413 extern const struct kernel_symbol __stop___ksymtab[];
414 extern const struct kernel_symbol __start___ksymtab_gpl[];
415 extern const struct kernel_symbol __stop___ksymtab_gpl[];
416 extern const s32 __start___kcrctab[];
417 extern const s32 __start___kcrctab_gpl[];
418
419 #ifndef CONFIG_MODVERSIONS
420 #define symversion(base, idx) NULL
421 #else
422 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
423 #endif
424
425 struct symsearch {
426 const struct kernel_symbol *start, *stop;
427 const s32 *crcs;
428 enum mod_license {
429 NOT_GPL_ONLY,
430 GPL_ONLY,
431 } license;
432 };
433
434 struct find_symbol_arg {
435 /* Input */
436 const char *name;
437 bool gplok;
438 bool warn;
439
440 /* Output */
441 struct module *owner;
442 const s32 *crc;
443 const struct kernel_symbol *sym;
444 enum mod_license license;
445 };
446
447 static bool check_exported_symbol(const struct symsearch *syms,
448 struct module *owner,
449 unsigned int symnum, void *data)
450 {
451 struct find_symbol_arg *fsa = data;
452
453 if (!fsa->gplok && syms->license == GPL_ONLY)
454 return false;
455 fsa->owner = owner;
456 fsa->crc = symversion(syms->crcs, symnum);
457 fsa->sym = &syms->start[symnum];
458 fsa->license = syms->license;
459 return true;
460 }
461
462 static unsigned long kernel_symbol_value(const struct kernel_symbol *sym)
463 {
464 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
465 return (unsigned long)offset_to_ptr(&sym->value_offset);
466 #else
467 return sym->value;
468 #endif
469 }
470
471 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
472 {
473 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
474 return offset_to_ptr(&sym->name_offset);
475 #else
476 return sym->name;
477 #endif
478 }
479
480 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
481 {
482 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
483 if (!sym->namespace_offset)
484 return NULL;
485 return offset_to_ptr(&sym->namespace_offset);
486 #else
487 return sym->namespace;
488 #endif
489 }
490
491 static int cmp_name(const void *name, const void *sym)
492 {
493 return strcmp(name, kernel_symbol_name(sym));
494 }
495
496 static bool find_exported_symbol_in_section(const struct symsearch *syms,
497 struct module *owner,
498 void *data)
499 {
500 struct find_symbol_arg *fsa = data;
501 struct kernel_symbol *sym;
502
503 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
504 sizeof(struct kernel_symbol), cmp_name);
505
506 if (sym != NULL && check_exported_symbol(syms, owner,
507 sym - syms->start, data))
508 return true;
509
510 return false;
511 }
512
513 /*
514 * Find an exported symbol and return it, along with, (optional) crc and
515 * (optional) module which owns it. Needs preempt disabled or module_mutex.
516 */
517 static bool find_symbol(struct find_symbol_arg *fsa)
518 {
519 static const struct symsearch arr[] = {
520 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
521 NOT_GPL_ONLY },
522 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
523 __start___kcrctab_gpl,
524 GPL_ONLY },
525 };
526 struct module *mod;
527 unsigned int i;
528
529 module_assert_mutex_or_preempt();
530
531 for (i = 0; i < ARRAY_SIZE(arr); i++)
532 if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
533 return true;
534
535 list_for_each_entry_rcu(mod, &modules, list,
536 lockdep_is_held(&module_mutex)) {
537 struct symsearch arr[] = {
538 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
539 NOT_GPL_ONLY },
540 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
541 mod->gpl_crcs,
542 GPL_ONLY },
543 };
544
545 if (mod->state == MODULE_STATE_UNFORMED)
546 continue;
547
548 for (i = 0; i < ARRAY_SIZE(arr); i++)
549 if (find_exported_symbol_in_section(&arr[i], mod, fsa))
550 return true;
551 }
552
553 pr_debug("Failed to find symbol %s\n", fsa->name);
554 return false;
555 }
556
557 /*
558 * Search for module by name: must hold module_mutex (or preempt disabled
559 * for read-only access).
560 */
561 static struct module *find_module_all(const char *name, size_t len,
562 bool even_unformed)
563 {
564 struct module *mod;
565
566 module_assert_mutex_or_preempt();
567
568 list_for_each_entry_rcu(mod, &modules, list,
569 lockdep_is_held(&module_mutex)) {
570 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
571 continue;
572 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
573 return mod;
574 }
575 return NULL;
576 }
577
578 struct module *find_module(const char *name)
579 {
580 return find_module_all(name, strlen(name), false);
581 }
582
583 #ifdef CONFIG_SMP
584
585 static inline void __percpu *mod_percpu(struct module *mod)
586 {
587 return mod->percpu;
588 }
589
590 static int percpu_modalloc(struct module *mod, struct load_info *info)
591 {
592 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
593 unsigned long align = pcpusec->sh_addralign;
594
595 if (!pcpusec->sh_size)
596 return 0;
597
598 if (align > PAGE_SIZE) {
599 pr_warn("%s: per-cpu alignment %li > %li\n",
600 mod->name, align, PAGE_SIZE);
601 align = PAGE_SIZE;
602 }
603
604 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
605 if (!mod->percpu) {
606 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
607 mod->name, (unsigned long)pcpusec->sh_size);
608 return -ENOMEM;
609 }
610 mod->percpu_size = pcpusec->sh_size;
611 return 0;
612 }
613
614 static void percpu_modfree(struct module *mod)
615 {
616 free_percpu(mod->percpu);
617 }
618
619 static unsigned int find_pcpusec(struct load_info *info)
620 {
621 return find_sec(info, ".data..percpu");
622 }
623
624 static void percpu_modcopy(struct module *mod,
625 const void *from, unsigned long size)
626 {
627 int cpu;
628
629 for_each_possible_cpu(cpu)
630 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
631 }
632
633 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
634 {
635 struct module *mod;
636 unsigned int cpu;
637
638 preempt_disable();
639
640 list_for_each_entry_rcu(mod, &modules, list) {
641 if (mod->state == MODULE_STATE_UNFORMED)
642 continue;
643 if (!mod->percpu_size)
644 continue;
645 for_each_possible_cpu(cpu) {
646 void *start = per_cpu_ptr(mod->percpu, cpu);
647 void *va = (void *)addr;
648
649 if (va >= start && va < start + mod->percpu_size) {
650 if (can_addr) {
651 *can_addr = (unsigned long) (va - start);
652 *can_addr += (unsigned long)
653 per_cpu_ptr(mod->percpu,
654 get_boot_cpu_id());
655 }
656 preempt_enable();
657 return true;
658 }
659 }
660 }
661
662 preempt_enable();
663 return false;
664 }
665
666 /**
667 * is_module_percpu_address() - test whether address is from module static percpu
668 * @addr: address to test
669 *
670 * Test whether @addr belongs to module static percpu area.
671 *
672 * Return: %true if @addr is from module static percpu area
673 */
674 bool is_module_percpu_address(unsigned long addr)
675 {
676 return __is_module_percpu_address(addr, NULL);
677 }
678
679 #else /* ... !CONFIG_SMP */
680
681 static inline void __percpu *mod_percpu(struct module *mod)
682 {
683 return NULL;
684 }
685 static int percpu_modalloc(struct module *mod, struct load_info *info)
686 {
687 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
688 if (info->sechdrs[info->index.pcpu].sh_size != 0)
689 return -ENOMEM;
690 return 0;
691 }
692 static inline void percpu_modfree(struct module *mod)
693 {
694 }
695 static unsigned int find_pcpusec(struct load_info *info)
696 {
697 return 0;
698 }
699 static inline void percpu_modcopy(struct module *mod,
700 const void *from, unsigned long size)
701 {
702 /* pcpusec should be 0, and size of that section should be 0. */
703 BUG_ON(size != 0);
704 }
705 bool is_module_percpu_address(unsigned long addr)
706 {
707 return false;
708 }
709
710 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
711 {
712 return false;
713 }
714
715 #endif /* CONFIG_SMP */
716
717 #define MODINFO_ATTR(field) \
718 static void setup_modinfo_##field(struct module *mod, const char *s) \
719 { \
720 mod->field = kstrdup(s, GFP_KERNEL); \
721 } \
722 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
723 struct module_kobject *mk, char *buffer) \
724 { \
725 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
726 } \
727 static int modinfo_##field##_exists(struct module *mod) \
728 { \
729 return mod->field != NULL; \
730 } \
731 static void free_modinfo_##field(struct module *mod) \
732 { \
733 kfree(mod->field); \
734 mod->field = NULL; \
735 } \
736 static struct module_attribute modinfo_##field = { \
737 .attr = { .name = __stringify(field), .mode = 0444 }, \
738 .show = show_modinfo_##field, \
739 .setup = setup_modinfo_##field, \
740 .test = modinfo_##field##_exists, \
741 .free = free_modinfo_##field, \
742 };
743
744 MODINFO_ATTR(version);
745 MODINFO_ATTR(srcversion);
746
747 static char last_unloaded_module[MODULE_NAME_LEN+1];
748
749 #ifdef CONFIG_MODULE_UNLOAD
750
751 EXPORT_TRACEPOINT_SYMBOL(module_get);
752
753 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
754 #define MODULE_REF_BASE 1
755
756 /* Init the unload section of the module. */
757 static int module_unload_init(struct module *mod)
758 {
759 /*
760 * Initialize reference counter to MODULE_REF_BASE.
761 * refcnt == 0 means module is going.
762 */
763 atomic_set(&mod->refcnt, MODULE_REF_BASE);
764
765 INIT_LIST_HEAD(&mod->source_list);
766 INIT_LIST_HEAD(&mod->target_list);
767
768 /* Hold reference count during initialization. */
769 atomic_inc(&mod->refcnt);
770
771 return 0;
772 }
773
774 /* Does a already use b? */
775 static int already_uses(struct module *a, struct module *b)
776 {
777 struct module_use *use;
778
779 list_for_each_entry(use, &b->source_list, source_list) {
780 if (use->source == a) {
781 pr_debug("%s uses %s!\n", a->name, b->name);
782 return 1;
783 }
784 }
785 pr_debug("%s does not use %s!\n", a->name, b->name);
786 return 0;
787 }
788
789 /*
790 * Module a uses b
791 * - we add 'a' as a "source", 'b' as a "target" of module use
792 * - the module_use is added to the list of 'b' sources (so
793 * 'b' can walk the list to see who sourced them), and of 'a'
794 * targets (so 'a' can see what modules it targets).
795 */
796 static int add_module_usage(struct module *a, struct module *b)
797 {
798 struct module_use *use;
799
800 pr_debug("Allocating new usage for %s.\n", a->name);
801 use = kmalloc(sizeof(*use), GFP_ATOMIC);
802 if (!use)
803 return -ENOMEM;
804
805 use->source = a;
806 use->target = b;
807 list_add(&use->source_list, &b->source_list);
808 list_add(&use->target_list, &a->target_list);
809 return 0;
810 }
811
812 /* Module a uses b: caller needs module_mutex() */
813 static int ref_module(struct module *a, struct module *b)
814 {
815 int err;
816
817 if (b == NULL || already_uses(a, b))
818 return 0;
819
820 /* If module isn't available, we fail. */
821 err = strong_try_module_get(b);
822 if (err)
823 return err;
824
825 err = add_module_usage(a, b);
826 if (err) {
827 module_put(b);
828 return err;
829 }
830 return 0;
831 }
832
833 /* Clear the unload stuff of the module. */
834 static void module_unload_free(struct module *mod)
835 {
836 struct module_use *use, *tmp;
837
838 mutex_lock(&module_mutex);
839 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
840 struct module *i = use->target;
841 pr_debug("%s unusing %s\n", mod->name, i->name);
842 module_put(i);
843 list_del(&use->source_list);
844 list_del(&use->target_list);
845 kfree(use);
846 }
847 mutex_unlock(&module_mutex);
848 }
849
850 #ifdef CONFIG_MODULE_FORCE_UNLOAD
851 static inline int try_force_unload(unsigned int flags)
852 {
853 int ret = (flags & O_TRUNC);
854 if (ret)
855 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
856 return ret;
857 }
858 #else
859 static inline int try_force_unload(unsigned int flags)
860 {
861 return 0;
862 }
863 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
864
865 /* Try to release refcount of module, 0 means success. */
866 static int try_release_module_ref(struct module *mod)
867 {
868 int ret;
869
870 /* Try to decrement refcnt which we set at loading */
871 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
872 BUG_ON(ret < 0);
873 if (ret)
874 /* Someone can put this right now, recover with checking */
875 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
876
877 return ret;
878 }
879
880 static int try_stop_module(struct module *mod, int flags, int *forced)
881 {
882 /* If it's not unused, quit unless we're forcing. */
883 if (try_release_module_ref(mod) != 0) {
884 *forced = try_force_unload(flags);
885 if (!(*forced))
886 return -EWOULDBLOCK;
887 }
888
889 /* Mark it as dying. */
890 mod->state = MODULE_STATE_GOING;
891
892 return 0;
893 }
894
895 /**
896 * module_refcount() - return the refcount or -1 if unloading
897 * @mod: the module we're checking
898 *
899 * Return:
900 * -1 if the module is in the process of unloading
901 * otherwise the number of references in the kernel to the module
902 */
903 int module_refcount(struct module *mod)
904 {
905 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
906 }
907 EXPORT_SYMBOL(module_refcount);
908
909 /* This exists whether we can unload or not */
910 static void free_module(struct module *mod);
911
912 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
913 unsigned int, flags)
914 {
915 struct module *mod;
916 char name[MODULE_NAME_LEN];
917 int ret, forced = 0;
918
919 if (!capable(CAP_SYS_MODULE) || modules_disabled)
920 return -EPERM;
921
922 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
923 return -EFAULT;
924 name[MODULE_NAME_LEN-1] = '\0';
925
926 audit_log_kern_module(name);
927
928 if (mutex_lock_interruptible(&module_mutex) != 0)
929 return -EINTR;
930
931 mod = find_module(name);
932 if (!mod) {
933 ret = -ENOENT;
934 goto out;
935 }
936
937 if (!list_empty(&mod->source_list)) {
938 /* Other modules depend on us: get rid of them first. */
939 ret = -EWOULDBLOCK;
940 goto out;
941 }
942
943 /* Doing init or already dying? */
944 if (mod->state != MODULE_STATE_LIVE) {
945 /* FIXME: if (force), slam module count damn the torpedoes */
946 pr_debug("%s already dying\n", mod->name);
947 ret = -EBUSY;
948 goto out;
949 }
950
951 /* If it has an init func, it must have an exit func to unload */
952 if (mod->init && !mod->exit) {
953 forced = try_force_unload(flags);
954 if (!forced) {
955 /* This module can't be removed */
956 ret = -EBUSY;
957 goto out;
958 }
959 }
960
961 ret = try_stop_module(mod, flags, &forced);
962 if (ret != 0)
963 goto out;
964
965 mutex_unlock(&module_mutex);
966 /* Final destruction now no one is using it. */
967 if (mod->exit != NULL)
968 mod->exit();
969 blocking_notifier_call_chain(&module_notify_list,
970 MODULE_STATE_GOING, mod);
971 klp_module_going(mod);
972 ftrace_release_mod(mod);
973
974 async_synchronize_full();
975
976 /* Store the name of the last unloaded module for diagnostic purposes */
977 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
978
979 free_module(mod);
980 /* someone could wait for the module in add_unformed_module() */
981 wake_up_all(&module_wq);
982 return 0;
983 out:
984 mutex_unlock(&module_mutex);
985 return ret;
986 }
987
988 static inline void print_unload_info(struct seq_file *m, struct module *mod)
989 {
990 struct module_use *use;
991 int printed_something = 0;
992
993 seq_printf(m, " %i ", module_refcount(mod));
994
995 /*
996 * Always include a trailing , so userspace can differentiate
997 * between this and the old multi-field proc format.
998 */
999 list_for_each_entry(use, &mod->source_list, source_list) {
1000 printed_something = 1;
1001 seq_printf(m, "%s,", use->source->name);
1002 }
1003
1004 if (mod->init != NULL && mod->exit == NULL) {
1005 printed_something = 1;
1006 seq_puts(m, "[permanent],");
1007 }
1008
1009 if (!printed_something)
1010 seq_puts(m, "-");
1011 }
1012
1013 void __symbol_put(const char *symbol)
1014 {
1015 struct find_symbol_arg fsa = {
1016 .name = symbol,
1017 .gplok = true,
1018 };
1019
1020 preempt_disable();
1021 BUG_ON(!find_symbol(&fsa));
1022 module_put(fsa.owner);
1023 preempt_enable();
1024 }
1025 EXPORT_SYMBOL(__symbol_put);
1026
1027 /* Note this assumes addr is a function, which it currently always is. */
1028 void symbol_put_addr(void *addr)
1029 {
1030 struct module *modaddr;
1031 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1032
1033 if (core_kernel_text(a))
1034 return;
1035
1036 /*
1037 * Even though we hold a reference on the module; we still need to
1038 * disable preemption in order to safely traverse the data structure.
1039 */
1040 preempt_disable();
1041 modaddr = __module_text_address(a);
1042 BUG_ON(!modaddr);
1043 module_put(modaddr);
1044 preempt_enable();
1045 }
1046 EXPORT_SYMBOL_GPL(symbol_put_addr);
1047
1048 static ssize_t show_refcnt(struct module_attribute *mattr,
1049 struct module_kobject *mk, char *buffer)
1050 {
1051 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1052 }
1053
1054 static struct module_attribute modinfo_refcnt =
1055 __ATTR(refcnt, 0444, show_refcnt, NULL);
1056
1057 void __module_get(struct module *module)
1058 {
1059 if (module) {
1060 preempt_disable();
1061 atomic_inc(&module->refcnt);
1062 trace_module_get(module, _RET_IP_);
1063 preempt_enable();
1064 }
1065 }
1066 EXPORT_SYMBOL(__module_get);
1067
1068 bool try_module_get(struct module *module)
1069 {
1070 bool ret = true;
1071
1072 if (module) {
1073 preempt_disable();
1074 /* Note: here, we can fail to get a reference */
1075 if (likely(module_is_live(module) &&
1076 atomic_inc_not_zero(&module->refcnt) != 0))
1077 trace_module_get(module, _RET_IP_);
1078 else
1079 ret = false;
1080
1081 preempt_enable();
1082 }
1083 return ret;
1084 }
1085 EXPORT_SYMBOL(try_module_get);
1086
1087 void module_put(struct module *module)
1088 {
1089 int ret;
1090
1091 if (module) {
1092 preempt_disable();
1093 ret = atomic_dec_if_positive(&module->refcnt);
1094 WARN_ON(ret < 0); /* Failed to put refcount */
1095 trace_module_put(module, _RET_IP_);
1096 preempt_enable();
1097 }
1098 }
1099 EXPORT_SYMBOL(module_put);
1100
1101 #else /* !CONFIG_MODULE_UNLOAD */
1102 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1103 {
1104 /* We don't know the usage count, or what modules are using. */
1105 seq_puts(m, " - -");
1106 }
1107
1108 static inline void module_unload_free(struct module *mod)
1109 {
1110 }
1111
1112 static int ref_module(struct module *a, struct module *b)
1113 {
1114 return strong_try_module_get(b);
1115 }
1116
1117 static inline int module_unload_init(struct module *mod)
1118 {
1119 return 0;
1120 }
1121 #endif /* CONFIG_MODULE_UNLOAD */
1122
1123 static size_t module_flags_taint(struct module *mod, char *buf)
1124 {
1125 size_t l = 0;
1126 int i;
1127
1128 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1129 if (taint_flags[i].module && test_bit(i, &mod->taints))
1130 buf[l++] = taint_flags[i].c_true;
1131 }
1132
1133 return l;
1134 }
1135
1136 static ssize_t show_initstate(struct module_attribute *mattr,
1137 struct module_kobject *mk, char *buffer)
1138 {
1139 const char *state = "unknown";
1140
1141 switch (mk->mod->state) {
1142 case MODULE_STATE_LIVE:
1143 state = "live";
1144 break;
1145 case MODULE_STATE_COMING:
1146 state = "coming";
1147 break;
1148 case MODULE_STATE_GOING:
1149 state = "going";
1150 break;
1151 default:
1152 BUG();
1153 }
1154 return sprintf(buffer, "%s\n", state);
1155 }
1156
1157 static struct module_attribute modinfo_initstate =
1158 __ATTR(initstate, 0444, show_initstate, NULL);
1159
1160 static ssize_t store_uevent(struct module_attribute *mattr,
1161 struct module_kobject *mk,
1162 const char *buffer, size_t count)
1163 {
1164 int rc;
1165
1166 rc = kobject_synth_uevent(&mk->kobj, buffer, count);
1167 return rc ? rc : count;
1168 }
1169
1170 struct module_attribute module_uevent =
1171 __ATTR(uevent, 0200, NULL, store_uevent);
1172
1173 static ssize_t show_coresize(struct module_attribute *mattr,
1174 struct module_kobject *mk, char *buffer)
1175 {
1176 return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1177 }
1178
1179 static struct module_attribute modinfo_coresize =
1180 __ATTR(coresize, 0444, show_coresize, NULL);
1181
1182 static ssize_t show_initsize(struct module_attribute *mattr,
1183 struct module_kobject *mk, char *buffer)
1184 {
1185 return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1186 }
1187
1188 static struct module_attribute modinfo_initsize =
1189 __ATTR(initsize, 0444, show_initsize, NULL);
1190
1191 static ssize_t show_taint(struct module_attribute *mattr,
1192 struct module_kobject *mk, char *buffer)
1193 {
1194 size_t l;
1195
1196 l = module_flags_taint(mk->mod, buffer);
1197 buffer[l++] = '\n';
1198 return l;
1199 }
1200
1201 static struct module_attribute modinfo_taint =
1202 __ATTR(taint, 0444, show_taint, NULL);
1203
1204 static struct module_attribute *modinfo_attrs[] = {
1205 &module_uevent,
1206 &modinfo_version,
1207 &modinfo_srcversion,
1208 &modinfo_initstate,
1209 &modinfo_coresize,
1210 &modinfo_initsize,
1211 &modinfo_taint,
1212 #ifdef CONFIG_MODULE_UNLOAD
1213 &modinfo_refcnt,
1214 #endif
1215 NULL,
1216 };
1217
1218 static const char vermagic[] = VERMAGIC_STRING;
1219
1220 static int try_to_force_load(struct module *mod, const char *reason)
1221 {
1222 #ifdef CONFIG_MODULE_FORCE_LOAD
1223 if (!test_taint(TAINT_FORCED_MODULE))
1224 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1225 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1226 return 0;
1227 #else
1228 return -ENOEXEC;
1229 #endif
1230 }
1231
1232 #ifdef CONFIG_MODVERSIONS
1233
1234 static u32 resolve_rel_crc(const s32 *crc)
1235 {
1236 return *(u32 *)((void *)crc + *crc);
1237 }
1238
1239 static int check_version(const struct load_info *info,
1240 const char *symname,
1241 struct module *mod,
1242 const s32 *crc)
1243 {
1244 Elf_Shdr *sechdrs = info->sechdrs;
1245 unsigned int versindex = info->index.vers;
1246 unsigned int i, num_versions;
1247 struct modversion_info *versions;
1248
1249 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1250 if (!crc)
1251 return 1;
1252
1253 /* No versions at all? modprobe --force does this. */
1254 if (versindex == 0)
1255 return try_to_force_load(mod, symname) == 0;
1256
1257 versions = (void *) sechdrs[versindex].sh_addr;
1258 num_versions = sechdrs[versindex].sh_size
1259 / sizeof(struct modversion_info);
1260
1261 for (i = 0; i < num_versions; i++) {
1262 u32 crcval;
1263
1264 if (strcmp(versions[i].name, symname) != 0)
1265 continue;
1266
1267 if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1268 crcval = resolve_rel_crc(crc);
1269 else
1270 crcval = *crc;
1271 if (versions[i].crc == crcval)
1272 return 1;
1273 pr_debug("Found checksum %X vs module %lX\n",
1274 crcval, versions[i].crc);
1275 goto bad_version;
1276 }
1277
1278 /* Broken toolchain. Warn once, then let it go.. */
1279 pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1280 return 1;
1281
1282 bad_version:
1283 pr_warn("%s: disagrees about version of symbol %s\n",
1284 info->name, symname);
1285 return 0;
1286 }
1287
1288 static inline int check_modstruct_version(const struct load_info *info,
1289 struct module *mod)
1290 {
1291 struct find_symbol_arg fsa = {
1292 .name = "module_layout",
1293 .gplok = true,
1294 };
1295
1296 /*
1297 * Since this should be found in kernel (which can't be removed), no
1298 * locking is necessary -- use preempt_disable() to placate lockdep.
1299 */
1300 preempt_disable();
1301 if (!find_symbol(&fsa)) {
1302 preempt_enable();
1303 BUG();
1304 }
1305 preempt_enable();
1306 return check_version(info, "module_layout", mod, fsa.crc);
1307 }
1308
1309 /* First part is kernel version, which we ignore if module has crcs. */
1310 static inline int same_magic(const char *amagic, const char *bmagic,
1311 bool has_crcs)
1312 {
1313 if (has_crcs) {
1314 amagic += strcspn(amagic, " ");
1315 bmagic += strcspn(bmagic, " ");
1316 }
1317 return strcmp(amagic, bmagic) == 0;
1318 }
1319 #else
1320 static inline int check_version(const struct load_info *info,
1321 const char *symname,
1322 struct module *mod,
1323 const s32 *crc)
1324 {
1325 return 1;
1326 }
1327
1328 static inline int check_modstruct_version(const struct load_info *info,
1329 struct module *mod)
1330 {
1331 return 1;
1332 }
1333
1334 static inline int same_magic(const char *amagic, const char *bmagic,
1335 bool has_crcs)
1336 {
1337 return strcmp(amagic, bmagic) == 0;
1338 }
1339 #endif /* CONFIG_MODVERSIONS */
1340
1341 static char *get_modinfo(const struct load_info *info, const char *tag);
1342 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1343 char *prev);
1344
1345 static int verify_namespace_is_imported(const struct load_info *info,
1346 const struct kernel_symbol *sym,
1347 struct module *mod)
1348 {
1349 const char *namespace;
1350 char *imported_namespace;
1351
1352 namespace = kernel_symbol_namespace(sym);
1353 if (namespace && namespace[0]) {
1354 imported_namespace = get_modinfo(info, "import_ns");
1355 while (imported_namespace) {
1356 if (strcmp(namespace, imported_namespace) == 0)
1357 return 0;
1358 imported_namespace = get_next_modinfo(
1359 info, "import_ns", imported_namespace);
1360 }
1361 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1362 pr_warn(
1363 #else
1364 pr_err(
1365 #endif
1366 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1367 mod->name, kernel_symbol_name(sym), namespace);
1368 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1369 return -EINVAL;
1370 #endif
1371 }
1372 return 0;
1373 }
1374
1375 static bool inherit_taint(struct module *mod, struct module *owner)
1376 {
1377 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1378 return true;
1379
1380 if (mod->using_gplonly_symbols) {
1381 pr_err("%s: module using GPL-only symbols uses symbols from proprietary module %s.\n",
1382 mod->name, owner->name);
1383 return false;
1384 }
1385
1386 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1387 pr_warn("%s: module uses symbols from proprietary module %s, inheriting taint.\n",
1388 mod->name, owner->name);
1389 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1390 }
1391 return true;
1392 }
1393
1394 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1395 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1396 const struct load_info *info,
1397 const char *name,
1398 char ownername[])
1399 {
1400 struct find_symbol_arg fsa = {
1401 .name = name,
1402 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1403 .warn = true,
1404 };
1405 int err;
1406
1407 /*
1408 * The module_mutex should not be a heavily contended lock;
1409 * if we get the occasional sleep here, we'll go an extra iteration
1410 * in the wait_event_interruptible(), which is harmless.
1411 */
1412 sched_annotate_sleep();
1413 mutex_lock(&module_mutex);
1414 if (!find_symbol(&fsa))
1415 goto unlock;
1416
1417 if (fsa.license == GPL_ONLY)
1418 mod->using_gplonly_symbols = true;
1419
1420 if (!inherit_taint(mod, fsa.owner)) {
1421 fsa.sym = NULL;
1422 goto getname;
1423 }
1424
1425 if (!check_version(info, name, mod, fsa.crc)) {
1426 fsa.sym = ERR_PTR(-EINVAL);
1427 goto getname;
1428 }
1429
1430 err = verify_namespace_is_imported(info, fsa.sym, mod);
1431 if (err) {
1432 fsa.sym = ERR_PTR(err);
1433 goto getname;
1434 }
1435
1436 err = ref_module(mod, fsa.owner);
1437 if (err) {
1438 fsa.sym = ERR_PTR(err);
1439 goto getname;
1440 }
1441
1442 getname:
1443 /* We must make copy under the lock if we failed to get ref. */
1444 strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1445 unlock:
1446 mutex_unlock(&module_mutex);
1447 return fsa.sym;
1448 }
1449
1450 static const struct kernel_symbol *
1451 resolve_symbol_wait(struct module *mod,
1452 const struct load_info *info,
1453 const char *name)
1454 {
1455 const struct kernel_symbol *ksym;
1456 char owner[MODULE_NAME_LEN];
1457
1458 if (wait_event_interruptible_timeout(module_wq,
1459 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1460 || PTR_ERR(ksym) != -EBUSY,
1461 30 * HZ) <= 0) {
1462 pr_warn("%s: gave up waiting for init of module %s.\n",
1463 mod->name, owner);
1464 }
1465 return ksym;
1466 }
1467
1468 #ifdef CONFIG_KALLSYMS
1469 static inline bool sect_empty(const Elf_Shdr *sect)
1470 {
1471 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1472 }
1473 #endif
1474
1475 /*
1476 * /sys/module/foo/sections stuff
1477 * J. Corbet <corbet@lwn.net>
1478 */
1479 #ifdef CONFIG_SYSFS
1480
1481 #ifdef CONFIG_KALLSYMS
1482 struct module_sect_attr {
1483 struct bin_attribute battr;
1484 unsigned long address;
1485 };
1486
1487 struct module_sect_attrs {
1488 struct attribute_group grp;
1489 unsigned int nsections;
1490 struct module_sect_attr attrs[];
1491 };
1492
1493 #define MODULE_SECT_READ_SIZE (3 /* "0x", "\n" */ + (BITS_PER_LONG / 4))
1494 static ssize_t module_sect_read(struct file *file, struct kobject *kobj,
1495 struct bin_attribute *battr,
1496 char *buf, loff_t pos, size_t count)
1497 {
1498 struct module_sect_attr *sattr =
1499 container_of(battr, struct module_sect_attr, battr);
1500 char bounce[MODULE_SECT_READ_SIZE + 1];
1501 size_t wrote;
1502
1503 if (pos != 0)
1504 return -EINVAL;
1505
1506 /*
1507 * Since we're a binary read handler, we must account for the
1508 * trailing NUL byte that sprintf will write: if "buf" is
1509 * too small to hold the NUL, or the NUL is exactly the last
1510 * byte, the read will look like it got truncated by one byte.
1511 * Since there is no way to ask sprintf nicely to not write
1512 * the NUL, we have to use a bounce buffer.
1513 */
1514 wrote = scnprintf(bounce, sizeof(bounce), "0x%px\n",
1515 kallsyms_show_value(file->f_cred)
1516 ? (void *)sattr->address : NULL);
1517 count = min(count, wrote);
1518 memcpy(buf, bounce, count);
1519
1520 return count;
1521 }
1522
1523 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1524 {
1525 unsigned int section;
1526
1527 for (section = 0; section < sect_attrs->nsections; section++)
1528 kfree(sect_attrs->attrs[section].battr.attr.name);
1529 kfree(sect_attrs);
1530 }
1531
1532 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1533 {
1534 unsigned int nloaded = 0, i, size[2];
1535 struct module_sect_attrs *sect_attrs;
1536 struct module_sect_attr *sattr;
1537 struct bin_attribute **gattr;
1538
1539 /* Count loaded sections and allocate structures */
1540 for (i = 0; i < info->hdr->e_shnum; i++)
1541 if (!sect_empty(&info->sechdrs[i]))
1542 nloaded++;
1543 size[0] = ALIGN(struct_size(sect_attrs, attrs, nloaded),
1544 sizeof(sect_attrs->grp.bin_attrs[0]));
1545 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.bin_attrs[0]);
1546 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1547 if (sect_attrs == NULL)
1548 return;
1549
1550 /* Setup section attributes. */
1551 sect_attrs->grp.name = "sections";
1552 sect_attrs->grp.bin_attrs = (void *)sect_attrs + size[0];
1553
1554 sect_attrs->nsections = 0;
1555 sattr = &sect_attrs->attrs[0];
1556 gattr = &sect_attrs->grp.bin_attrs[0];
1557 for (i = 0; i < info->hdr->e_shnum; i++) {
1558 Elf_Shdr *sec = &info->sechdrs[i];
1559 if (sect_empty(sec))
1560 continue;
1561 sysfs_bin_attr_init(&sattr->battr);
1562 sattr->address = sec->sh_addr;
1563 sattr->battr.attr.name =
1564 kstrdup(info->secstrings + sec->sh_name, GFP_KERNEL);
1565 if (sattr->battr.attr.name == NULL)
1566 goto out;
1567 sect_attrs->nsections++;
1568 sattr->battr.read = module_sect_read;
1569 sattr->battr.size = MODULE_SECT_READ_SIZE;
1570 sattr->battr.attr.mode = 0400;
1571 *(gattr++) = &(sattr++)->battr;
1572 }
1573 *gattr = NULL;
1574
1575 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1576 goto out;
1577
1578 mod->sect_attrs = sect_attrs;
1579 return;
1580 out:
1581 free_sect_attrs(sect_attrs);
1582 }
1583
1584 static void remove_sect_attrs(struct module *mod)
1585 {
1586 if (mod->sect_attrs) {
1587 sysfs_remove_group(&mod->mkobj.kobj,
1588 &mod->sect_attrs->grp);
1589 /*
1590 * We are positive that no one is using any sect attrs
1591 * at this point. Deallocate immediately.
1592 */
1593 free_sect_attrs(mod->sect_attrs);
1594 mod->sect_attrs = NULL;
1595 }
1596 }
1597
1598 /*
1599 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1600 */
1601
1602 struct module_notes_attrs {
1603 struct kobject *dir;
1604 unsigned int notes;
1605 struct bin_attribute attrs[];
1606 };
1607
1608 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1609 struct bin_attribute *bin_attr,
1610 char *buf, loff_t pos, size_t count)
1611 {
1612 /*
1613 * The caller checked the pos and count against our size.
1614 */
1615 memcpy(buf, bin_attr->private + pos, count);
1616 return count;
1617 }
1618
1619 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1620 unsigned int i)
1621 {
1622 if (notes_attrs->dir) {
1623 while (i-- > 0)
1624 sysfs_remove_bin_file(notes_attrs->dir,
1625 &notes_attrs->attrs[i]);
1626 kobject_put(notes_attrs->dir);
1627 }
1628 kfree(notes_attrs);
1629 }
1630
1631 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1632 {
1633 unsigned int notes, loaded, i;
1634 struct module_notes_attrs *notes_attrs;
1635 struct bin_attribute *nattr;
1636
1637 /* failed to create section attributes, so can't create notes */
1638 if (!mod->sect_attrs)
1639 return;
1640
1641 /* Count notes sections and allocate structures. */
1642 notes = 0;
1643 for (i = 0; i < info->hdr->e_shnum; i++)
1644 if (!sect_empty(&info->sechdrs[i]) &&
1645 (info->sechdrs[i].sh_type == SHT_NOTE))
1646 ++notes;
1647
1648 if (notes == 0)
1649 return;
1650
1651 notes_attrs = kzalloc(struct_size(notes_attrs, attrs, notes),
1652 GFP_KERNEL);
1653 if (notes_attrs == NULL)
1654 return;
1655
1656 notes_attrs->notes = notes;
1657 nattr = &notes_attrs->attrs[0];
1658 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1659 if (sect_empty(&info->sechdrs[i]))
1660 continue;
1661 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1662 sysfs_bin_attr_init(nattr);
1663 nattr->attr.name = mod->sect_attrs->attrs[loaded].battr.attr.name;
1664 nattr->attr.mode = S_IRUGO;
1665 nattr->size = info->sechdrs[i].sh_size;
1666 nattr->private = (void *) info->sechdrs[i].sh_addr;
1667 nattr->read = module_notes_read;
1668 ++nattr;
1669 }
1670 ++loaded;
1671 }
1672
1673 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1674 if (!notes_attrs->dir)
1675 goto out;
1676
1677 for (i = 0; i < notes; ++i)
1678 if (sysfs_create_bin_file(notes_attrs->dir,
1679 &notes_attrs->attrs[i]))
1680 goto out;
1681
1682 mod->notes_attrs = notes_attrs;
1683 return;
1684
1685 out:
1686 free_notes_attrs(notes_attrs, i);
1687 }
1688
1689 static void remove_notes_attrs(struct module *mod)
1690 {
1691 if (mod->notes_attrs)
1692 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1693 }
1694
1695 #else
1696
1697 static inline void add_sect_attrs(struct module *mod,
1698 const struct load_info *info)
1699 {
1700 }
1701
1702 static inline void remove_sect_attrs(struct module *mod)
1703 {
1704 }
1705
1706 static inline void add_notes_attrs(struct module *mod,
1707 const struct load_info *info)
1708 {
1709 }
1710
1711 static inline void remove_notes_attrs(struct module *mod)
1712 {
1713 }
1714 #endif /* CONFIG_KALLSYMS */
1715
1716 static void del_usage_links(struct module *mod)
1717 {
1718 #ifdef CONFIG_MODULE_UNLOAD
1719 struct module_use *use;
1720
1721 mutex_lock(&module_mutex);
1722 list_for_each_entry(use, &mod->target_list, target_list)
1723 sysfs_remove_link(use->target->holders_dir, mod->name);
1724 mutex_unlock(&module_mutex);
1725 #endif
1726 }
1727
1728 static int add_usage_links(struct module *mod)
1729 {
1730 int ret = 0;
1731 #ifdef CONFIG_MODULE_UNLOAD
1732 struct module_use *use;
1733
1734 mutex_lock(&module_mutex);
1735 list_for_each_entry(use, &mod->target_list, target_list) {
1736 ret = sysfs_create_link(use->target->holders_dir,
1737 &mod->mkobj.kobj, mod->name);
1738 if (ret)
1739 break;
1740 }
1741 mutex_unlock(&module_mutex);
1742 if (ret)
1743 del_usage_links(mod);
1744 #endif
1745 return ret;
1746 }
1747
1748 static void module_remove_modinfo_attrs(struct module *mod, int end);
1749
1750 static int module_add_modinfo_attrs(struct module *mod)
1751 {
1752 struct module_attribute *attr;
1753 struct module_attribute *temp_attr;
1754 int error = 0;
1755 int i;
1756
1757 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1758 (ARRAY_SIZE(modinfo_attrs) + 1)),
1759 GFP_KERNEL);
1760 if (!mod->modinfo_attrs)
1761 return -ENOMEM;
1762
1763 temp_attr = mod->modinfo_attrs;
1764 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1765 if (!attr->test || attr->test(mod)) {
1766 memcpy(temp_attr, attr, sizeof(*temp_attr));
1767 sysfs_attr_init(&temp_attr->attr);
1768 error = sysfs_create_file(&mod->mkobj.kobj,
1769 &temp_attr->attr);
1770 if (error)
1771 goto error_out;
1772 ++temp_attr;
1773 }
1774 }
1775
1776 return 0;
1777
1778 error_out:
1779 if (i > 0)
1780 module_remove_modinfo_attrs(mod, --i);
1781 else
1782 kfree(mod->modinfo_attrs);
1783 return error;
1784 }
1785
1786 static void module_remove_modinfo_attrs(struct module *mod, int end)
1787 {
1788 struct module_attribute *attr;
1789 int i;
1790
1791 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1792 if (end >= 0 && i > end)
1793 break;
1794 /* pick a field to test for end of list */
1795 if (!attr->attr.name)
1796 break;
1797 sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1798 if (attr->free)
1799 attr->free(mod);
1800 }
1801 kfree(mod->modinfo_attrs);
1802 }
1803
1804 static void mod_kobject_put(struct module *mod)
1805 {
1806 DECLARE_COMPLETION_ONSTACK(c);
1807 mod->mkobj.kobj_completion = &c;
1808 kobject_put(&mod->mkobj.kobj);
1809 wait_for_completion(&c);
1810 }
1811
1812 static int mod_sysfs_init(struct module *mod)
1813 {
1814 int err;
1815 struct kobject *kobj;
1816
1817 if (!module_sysfs_initialized) {
1818 pr_err("%s: module sysfs not initialized\n", mod->name);
1819 err = -EINVAL;
1820 goto out;
1821 }
1822
1823 kobj = kset_find_obj(module_kset, mod->name);
1824 if (kobj) {
1825 pr_err("%s: module is already loaded\n", mod->name);
1826 kobject_put(kobj);
1827 err = -EINVAL;
1828 goto out;
1829 }
1830
1831 mod->mkobj.mod = mod;
1832
1833 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1834 mod->mkobj.kobj.kset = module_kset;
1835 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1836 "%s", mod->name);
1837 if (err)
1838 mod_kobject_put(mod);
1839
1840 out:
1841 return err;
1842 }
1843
1844 static int mod_sysfs_setup(struct module *mod,
1845 const struct load_info *info,
1846 struct kernel_param *kparam,
1847 unsigned int num_params)
1848 {
1849 int err;
1850
1851 err = mod_sysfs_init(mod);
1852 if (err)
1853 goto out;
1854
1855 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1856 if (!mod->holders_dir) {
1857 err = -ENOMEM;
1858 goto out_unreg;
1859 }
1860
1861 err = module_param_sysfs_setup(mod, kparam, num_params);
1862 if (err)
1863 goto out_unreg_holders;
1864
1865 err = module_add_modinfo_attrs(mod);
1866 if (err)
1867 goto out_unreg_param;
1868
1869 err = add_usage_links(mod);
1870 if (err)
1871 goto out_unreg_modinfo_attrs;
1872
1873 add_sect_attrs(mod, info);
1874 add_notes_attrs(mod, info);
1875
1876 return 0;
1877
1878 out_unreg_modinfo_attrs:
1879 module_remove_modinfo_attrs(mod, -1);
1880 out_unreg_param:
1881 module_param_sysfs_remove(mod);
1882 out_unreg_holders:
1883 kobject_put(mod->holders_dir);
1884 out_unreg:
1885 mod_kobject_put(mod);
1886 out:
1887 return err;
1888 }
1889
1890 static void mod_sysfs_fini(struct module *mod)
1891 {
1892 remove_notes_attrs(mod);
1893 remove_sect_attrs(mod);
1894 mod_kobject_put(mod);
1895 }
1896
1897 static void init_param_lock(struct module *mod)
1898 {
1899 mutex_init(&mod->param_lock);
1900 }
1901 #else /* !CONFIG_SYSFS */
1902
1903 static int mod_sysfs_setup(struct module *mod,
1904 const struct load_info *info,
1905 struct kernel_param *kparam,
1906 unsigned int num_params)
1907 {
1908 return 0;
1909 }
1910
1911 static void mod_sysfs_fini(struct module *mod)
1912 {
1913 }
1914
1915 static void module_remove_modinfo_attrs(struct module *mod, int end)
1916 {
1917 }
1918
1919 static void del_usage_links(struct module *mod)
1920 {
1921 }
1922
1923 static void init_param_lock(struct module *mod)
1924 {
1925 }
1926 #endif /* CONFIG_SYSFS */
1927
1928 static void mod_sysfs_teardown(struct module *mod)
1929 {
1930 del_usage_links(mod);
1931 module_remove_modinfo_attrs(mod, -1);
1932 module_param_sysfs_remove(mod);
1933 kobject_put(mod->mkobj.drivers_dir);
1934 kobject_put(mod->holders_dir);
1935 mod_sysfs_fini(mod);
1936 }
1937
1938 /*
1939 * LKM RO/NX protection: protect module's text/ro-data
1940 * from modification and any data from execution.
1941 *
1942 * General layout of module is:
1943 * [text] [read-only-data] [ro-after-init] [writable data]
1944 * text_size -----^ ^ ^ ^
1945 * ro_size ------------------------| | |
1946 * ro_after_init_size -----------------------------| |
1947 * size -----------------------------------------------------------|
1948 *
1949 * These values are always page-aligned (as is base)
1950 */
1951
1952 /*
1953 * Since some arches are moving towards PAGE_KERNEL module allocations instead
1954 * of PAGE_KERNEL_EXEC, keep frob_text() and module_enable_x() outside of the
1955 * CONFIG_STRICT_MODULE_RWX block below because they are needed regardless of
1956 * whether we are strict.
1957 */
1958 #ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
1959 static void frob_text(const struct module_layout *layout,
1960 int (*set_memory)(unsigned long start, int num_pages))
1961 {
1962 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1963 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1964 set_memory((unsigned long)layout->base,
1965 layout->text_size >> PAGE_SHIFT);
1966 }
1967
1968 static void module_enable_x(const struct module *mod)
1969 {
1970 frob_text(&mod->core_layout, set_memory_x);
1971 frob_text(&mod->init_layout, set_memory_x);
1972 }
1973 #else /* !CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
1974 static void module_enable_x(const struct module *mod) { }
1975 #endif /* CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
1976
1977 #ifdef CONFIG_STRICT_MODULE_RWX
1978 static void frob_rodata(const struct module_layout *layout,
1979 int (*set_memory)(unsigned long start, int num_pages))
1980 {
1981 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1982 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1983 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1984 set_memory((unsigned long)layout->base + layout->text_size,
1985 (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1986 }
1987
1988 static void frob_ro_after_init(const struct module_layout *layout,
1989 int (*set_memory)(unsigned long start, int num_pages))
1990 {
1991 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1992 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1993 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1994 set_memory((unsigned long)layout->base + layout->ro_size,
1995 (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
1996 }
1997
1998 static void frob_writable_data(const struct module_layout *layout,
1999 int (*set_memory)(unsigned long start, int num_pages))
2000 {
2001 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2002 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
2003 BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
2004 set_memory((unsigned long)layout->base + layout->ro_after_init_size,
2005 (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
2006 }
2007
2008 static void module_enable_ro(const struct module *mod, bool after_init)
2009 {
2010 if (!rodata_enabled)
2011 return;
2012
2013 set_vm_flush_reset_perms(mod->core_layout.base);
2014 set_vm_flush_reset_perms(mod->init_layout.base);
2015 frob_text(&mod->core_layout, set_memory_ro);
2016
2017 frob_rodata(&mod->core_layout, set_memory_ro);
2018 frob_text(&mod->init_layout, set_memory_ro);
2019 frob_rodata(&mod->init_layout, set_memory_ro);
2020
2021 if (after_init)
2022 frob_ro_after_init(&mod->core_layout, set_memory_ro);
2023 }
2024
2025 static void module_enable_nx(const struct module *mod)
2026 {
2027 frob_rodata(&mod->core_layout, set_memory_nx);
2028 frob_ro_after_init(&mod->core_layout, set_memory_nx);
2029 frob_writable_data(&mod->core_layout, set_memory_nx);
2030 frob_rodata(&mod->init_layout, set_memory_nx);
2031 frob_writable_data(&mod->init_layout, set_memory_nx);
2032 }
2033
2034 static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2035 char *secstrings, struct module *mod)
2036 {
2037 const unsigned long shf_wx = SHF_WRITE|SHF_EXECINSTR;
2038 int i;
2039
2040 for (i = 0; i < hdr->e_shnum; i++) {
2041 if ((sechdrs[i].sh_flags & shf_wx) == shf_wx) {
2042 pr_err("%s: section %s (index %d) has invalid WRITE|EXEC flags\n",
2043 mod->name, secstrings + sechdrs[i].sh_name, i);
2044 return -ENOEXEC;
2045 }
2046 }
2047
2048 return 0;
2049 }
2050
2051 #else /* !CONFIG_STRICT_MODULE_RWX */
2052 static void module_enable_nx(const struct module *mod) { }
2053 static void module_enable_ro(const struct module *mod, bool after_init) {}
2054 static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2055 char *secstrings, struct module *mod)
2056 {
2057 return 0;
2058 }
2059 #endif /* CONFIG_STRICT_MODULE_RWX */
2060
2061 #ifdef CONFIG_LIVEPATCH
2062 /*
2063 * Persist Elf information about a module. Copy the Elf header,
2064 * section header table, section string table, and symtab section
2065 * index from info to mod->klp_info.
2066 */
2067 static int copy_module_elf(struct module *mod, struct load_info *info)
2068 {
2069 unsigned int size, symndx;
2070 int ret;
2071
2072 size = sizeof(*mod->klp_info);
2073 mod->klp_info = kmalloc(size, GFP_KERNEL);
2074 if (mod->klp_info == NULL)
2075 return -ENOMEM;
2076
2077 /* Elf header */
2078 size = sizeof(mod->klp_info->hdr);
2079 memcpy(&mod->klp_info->hdr, info->hdr, size);
2080
2081 /* Elf section header table */
2082 size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2083 mod->klp_info->sechdrs = kmemdup(info->sechdrs, size, GFP_KERNEL);
2084 if (mod->klp_info->sechdrs == NULL) {
2085 ret = -ENOMEM;
2086 goto free_info;
2087 }
2088
2089 /* Elf section name string table */
2090 size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2091 mod->klp_info->secstrings = kmemdup(info->secstrings, size, GFP_KERNEL);
2092 if (mod->klp_info->secstrings == NULL) {
2093 ret = -ENOMEM;
2094 goto free_sechdrs;
2095 }
2096
2097 /* Elf symbol section index */
2098 symndx = info->index.sym;
2099 mod->klp_info->symndx = symndx;
2100
2101 /*
2102 * For livepatch modules, core_kallsyms.symtab is a complete
2103 * copy of the original symbol table. Adjust sh_addr to point
2104 * to core_kallsyms.symtab since the copy of the symtab in module
2105 * init memory is freed at the end of do_init_module().
2106 */
2107 mod->klp_info->sechdrs[symndx].sh_addr = \
2108 (unsigned long) mod->core_kallsyms.symtab;
2109
2110 return 0;
2111
2112 free_sechdrs:
2113 kfree(mod->klp_info->sechdrs);
2114 free_info:
2115 kfree(mod->klp_info);
2116 return ret;
2117 }
2118
2119 static void free_module_elf(struct module *mod)
2120 {
2121 kfree(mod->klp_info->sechdrs);
2122 kfree(mod->klp_info->secstrings);
2123 kfree(mod->klp_info);
2124 }
2125 #else /* !CONFIG_LIVEPATCH */
2126 static int copy_module_elf(struct module *mod, struct load_info *info)
2127 {
2128 return 0;
2129 }
2130
2131 static void free_module_elf(struct module *mod)
2132 {
2133 }
2134 #endif /* CONFIG_LIVEPATCH */
2135
2136 void __weak module_memfree(void *module_region)
2137 {
2138 /*
2139 * This memory may be RO, and freeing RO memory in an interrupt is not
2140 * supported by vmalloc.
2141 */
2142 WARN_ON(in_interrupt());
2143 vfree(module_region);
2144 }
2145
2146 void __weak module_arch_cleanup(struct module *mod)
2147 {
2148 }
2149
2150 void __weak module_arch_freeing_init(struct module *mod)
2151 {
2152 }
2153
2154 static void cfi_cleanup(struct module *mod);
2155
2156 /* Free a module, remove from lists, etc. */
2157 static void free_module(struct module *mod)
2158 {
2159 trace_module_free(mod);
2160
2161 mod_sysfs_teardown(mod);
2162
2163 /*
2164 * We leave it in list to prevent duplicate loads, but make sure
2165 * that noone uses it while it's being deconstructed.
2166 */
2167 mutex_lock(&module_mutex);
2168 mod->state = MODULE_STATE_UNFORMED;
2169 mutex_unlock(&module_mutex);
2170
2171 /* Remove dynamic debug info */
2172 ddebug_remove_module(mod->name);
2173
2174 /* Arch-specific cleanup. */
2175 module_arch_cleanup(mod);
2176
2177 /* Module unload stuff */
2178 module_unload_free(mod);
2179
2180 /* Free any allocated parameters. */
2181 destroy_params(mod->kp, mod->num_kp);
2182
2183 if (is_livepatch_module(mod))
2184 free_module_elf(mod);
2185
2186 /* Now we can delete it from the lists */
2187 mutex_lock(&module_mutex);
2188 /* Unlink carefully: kallsyms could be walking list. */
2189 list_del_rcu(&mod->list);
2190 mod_tree_remove(mod);
2191 /* Remove this module from bug list, this uses list_del_rcu */
2192 module_bug_cleanup(mod);
2193 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2194 synchronize_rcu();
2195 mutex_unlock(&module_mutex);
2196
2197 /* Clean up CFI for the module. */
2198 cfi_cleanup(mod);
2199
2200 /* This may be empty, but that's OK */
2201 module_arch_freeing_init(mod);
2202 module_memfree(mod->init_layout.base);
2203 kfree(mod->args);
2204 percpu_modfree(mod);
2205
2206 /* Free lock-classes; relies on the preceding sync_rcu(). */
2207 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2208
2209 /* Finally, free the core (containing the module structure) */
2210 module_memfree(mod->core_layout.base);
2211 }
2212
2213 void *__symbol_get(const char *symbol)
2214 {
2215 struct find_symbol_arg fsa = {
2216 .name = symbol,
2217 .gplok = true,
2218 .warn = true,
2219 };
2220
2221 preempt_disable();
2222 if (!find_symbol(&fsa) || strong_try_module_get(fsa.owner)) {
2223 preempt_enable();
2224 return NULL;
2225 }
2226 preempt_enable();
2227 return (void *)kernel_symbol_value(fsa.sym);
2228 }
2229 EXPORT_SYMBOL_GPL(__symbol_get);
2230
2231 /*
2232 * Ensure that an exported symbol [global namespace] does not already exist
2233 * in the kernel or in some other module's exported symbol table.
2234 *
2235 * You must hold the module_mutex.
2236 */
2237 static int verify_exported_symbols(struct module *mod)
2238 {
2239 unsigned int i;
2240 const struct kernel_symbol *s;
2241 struct {
2242 const struct kernel_symbol *sym;
2243 unsigned int num;
2244 } arr[] = {
2245 { mod->syms, mod->num_syms },
2246 { mod->gpl_syms, mod->num_gpl_syms },
2247 };
2248
2249 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2250 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2251 struct find_symbol_arg fsa = {
2252 .name = kernel_symbol_name(s),
2253 .gplok = true,
2254 };
2255 if (find_symbol(&fsa)) {
2256 pr_err("%s: exports duplicate symbol %s"
2257 " (owned by %s)\n",
2258 mod->name, kernel_symbol_name(s),
2259 module_name(fsa.owner));
2260 return -ENOEXEC;
2261 }
2262 }
2263 }
2264 return 0;
2265 }
2266
2267 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
2268 {
2269 /*
2270 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
2271 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
2272 * i386 has a similar problem but may not deserve a fix.
2273 *
2274 * If we ever have to ignore many symbols, consider refactoring the code to
2275 * only warn if referenced by a relocation.
2276 */
2277 if (emachine == EM_386 || emachine == EM_X86_64)
2278 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
2279 return false;
2280 }
2281
2282 /* Change all symbols so that st_value encodes the pointer directly. */
2283 static int simplify_symbols(struct module *mod, const struct load_info *info)
2284 {
2285 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2286 Elf_Sym *sym = (void *)symsec->sh_addr;
2287 unsigned long secbase;
2288 unsigned int i;
2289 int ret = 0;
2290 const struct kernel_symbol *ksym;
2291
2292 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2293 const char *name = info->strtab + sym[i].st_name;
2294
2295 switch (sym[i].st_shndx) {
2296 case SHN_COMMON:
2297 /* Ignore common symbols */
2298 if (!strncmp(name, "__gnu_lto", 9))
2299 break;
2300
2301 /*
2302 * We compiled with -fno-common. These are not
2303 * supposed to happen.
2304 */
2305 pr_debug("Common symbol: %s\n", name);
2306 pr_warn("%s: please compile with -fno-common\n",
2307 mod->name);
2308 ret = -ENOEXEC;
2309 break;
2310
2311 case SHN_ABS:
2312 /* Don't need to do anything */
2313 pr_debug("Absolute symbol: 0x%08lx\n",
2314 (long)sym[i].st_value);
2315 break;
2316
2317 case SHN_LIVEPATCH:
2318 /* Livepatch symbols are resolved by livepatch */
2319 break;
2320
2321 case SHN_UNDEF:
2322 ksym = resolve_symbol_wait(mod, info, name);
2323 /* Ok if resolved. */
2324 if (ksym && !IS_ERR(ksym)) {
2325 sym[i].st_value = kernel_symbol_value(ksym);
2326 break;
2327 }
2328
2329 /* Ok if weak or ignored. */
2330 if (!ksym &&
2331 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
2332 ignore_undef_symbol(info->hdr->e_machine, name)))
2333 break;
2334
2335 ret = PTR_ERR(ksym) ?: -ENOENT;
2336 pr_warn("%s: Unknown symbol %s (err %d)\n",
2337 mod->name, name, ret);
2338 break;
2339
2340 default:
2341 /* Divert to percpu allocation if a percpu var. */
2342 if (sym[i].st_shndx == info->index.pcpu)
2343 secbase = (unsigned long)mod_percpu(mod);
2344 else
2345 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2346 sym[i].st_value += secbase;
2347 break;
2348 }
2349 }
2350
2351 return ret;
2352 }
2353
2354 static int apply_relocations(struct module *mod, const struct load_info *info)
2355 {
2356 unsigned int i;
2357 int err = 0;
2358
2359 /* Now do relocations. */
2360 for (i = 1; i < info->hdr->e_shnum; i++) {
2361 unsigned int infosec = info->sechdrs[i].sh_info;
2362
2363 /* Not a valid relocation section? */
2364 if (infosec >= info->hdr->e_shnum)
2365 continue;
2366
2367 /* Don't bother with non-allocated sections */
2368 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2369 continue;
2370
2371 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2372 err = klp_apply_section_relocs(mod, info->sechdrs,
2373 info->secstrings,
2374 info->strtab,
2375 info->index.sym, i,
2376 NULL);
2377 else if (info->sechdrs[i].sh_type == SHT_REL)
2378 err = apply_relocate(info->sechdrs, info->strtab,
2379 info->index.sym, i, mod);
2380 else if (info->sechdrs[i].sh_type == SHT_RELA)
2381 err = apply_relocate_add(info->sechdrs, info->strtab,
2382 info->index.sym, i, mod);
2383 if (err < 0)
2384 break;
2385 }
2386 return err;
2387 }
2388
2389 /* Additional bytes needed by arch in front of individual sections */
2390 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2391 unsigned int section)
2392 {
2393 /* default implementation just returns zero */
2394 return 0;
2395 }
2396
2397 /* Update size with this section: return offset. */
2398 static long get_offset(struct module *mod, unsigned int *size,
2399 Elf_Shdr *sechdr, unsigned int section)
2400 {
2401 long ret;
2402
2403 *size += arch_mod_section_prepend(mod, section);
2404 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2405 *size = ret + sechdr->sh_size;
2406 return ret;
2407 }
2408
2409 static bool module_init_layout_section(const char *sname)
2410 {
2411 #ifndef CONFIG_MODULE_UNLOAD
2412 if (module_exit_section(sname))
2413 return true;
2414 #endif
2415 return module_init_section(sname);
2416 }
2417
2418 /*
2419 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2420 * might -- code, read-only data, read-write data, small data. Tally
2421 * sizes, and place the offsets into sh_entsize fields: high bit means it
2422 * belongs in init.
2423 */
2424 static void layout_sections(struct module *mod, struct load_info *info)
2425 {
2426 static unsigned long const masks[][2] = {
2427 /*
2428 * NOTE: all executable code must be the first section
2429 * in this array; otherwise modify the text_size
2430 * finder in the two loops below
2431 */
2432 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2433 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2434 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2435 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2436 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2437 };
2438 unsigned int m, i;
2439
2440 for (i = 0; i < info->hdr->e_shnum; i++)
2441 info->sechdrs[i].sh_entsize = ~0UL;
2442
2443 pr_debug("Core section allocation order:\n");
2444 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2445 for (i = 0; i < info->hdr->e_shnum; ++i) {
2446 Elf_Shdr *s = &info->sechdrs[i];
2447 const char *sname = info->secstrings + s->sh_name;
2448
2449 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2450 || (s->sh_flags & masks[m][1])
2451 || s->sh_entsize != ~0UL
2452 || module_init_layout_section(sname))
2453 continue;
2454 s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2455 pr_debug("\t%s\n", sname);
2456 }
2457 switch (m) {
2458 case 0: /* executable */
2459 mod->core_layout.size = debug_align(mod->core_layout.size);
2460 mod->core_layout.text_size = mod->core_layout.size;
2461 break;
2462 case 1: /* RO: text and ro-data */
2463 mod->core_layout.size = debug_align(mod->core_layout.size);
2464 mod->core_layout.ro_size = mod->core_layout.size;
2465 break;
2466 case 2: /* RO after init */
2467 mod->core_layout.size = debug_align(mod->core_layout.size);
2468 mod->core_layout.ro_after_init_size = mod->core_layout.size;
2469 break;
2470 case 4: /* whole core */
2471 mod->core_layout.size = debug_align(mod->core_layout.size);
2472 break;
2473 }
2474 }
2475
2476 pr_debug("Init section allocation order:\n");
2477 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2478 for (i = 0; i < info->hdr->e_shnum; ++i) {
2479 Elf_Shdr *s = &info->sechdrs[i];
2480 const char *sname = info->secstrings + s->sh_name;
2481
2482 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2483 || (s->sh_flags & masks[m][1])
2484 || s->sh_entsize != ~0UL
2485 || !module_init_layout_section(sname))
2486 continue;
2487 s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2488 | INIT_OFFSET_MASK);
2489 pr_debug("\t%s\n", sname);
2490 }
2491 switch (m) {
2492 case 0: /* executable */
2493 mod->init_layout.size = debug_align(mod->init_layout.size);
2494 mod->init_layout.text_size = mod->init_layout.size;
2495 break;
2496 case 1: /* RO: text and ro-data */
2497 mod->init_layout.size = debug_align(mod->init_layout.size);
2498 mod->init_layout.ro_size = mod->init_layout.size;
2499 break;
2500 case 2:
2501 /*
2502 * RO after init doesn't apply to init_layout (only
2503 * core_layout), so it just takes the value of ro_size.
2504 */
2505 mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2506 break;
2507 case 4: /* whole init */
2508 mod->init_layout.size = debug_align(mod->init_layout.size);
2509 break;
2510 }
2511 }
2512 }
2513
2514 static void set_license(struct module *mod, const char *license)
2515 {
2516 if (!license)
2517 license = "unspecified";
2518
2519 if (!license_is_gpl_compatible(license)) {
2520 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2521 pr_warn("%s: module license '%s' taints kernel.\n",
2522 mod->name, license);
2523 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2524 LOCKDEP_NOW_UNRELIABLE);
2525 }
2526 }
2527
2528 /* Parse tag=value strings from .modinfo section */
2529 static char *next_string(char *string, unsigned long *secsize)
2530 {
2531 /* Skip non-zero chars */
2532 while (string[0]) {
2533 string++;
2534 if ((*secsize)-- <= 1)
2535 return NULL;
2536 }
2537
2538 /* Skip any zero padding. */
2539 while (!string[0]) {
2540 string++;
2541 if ((*secsize)-- <= 1)
2542 return NULL;
2543 }
2544 return string;
2545 }
2546
2547 static char *get_next_modinfo(const struct load_info *info, const char *tag,
2548 char *prev)
2549 {
2550 char *p;
2551 unsigned int taglen = strlen(tag);
2552 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2553 unsigned long size = infosec->sh_size;
2554
2555 /*
2556 * get_modinfo() calls made before rewrite_section_headers()
2557 * must use sh_offset, as sh_addr isn't set!
2558 */
2559 char *modinfo = (char *)info->hdr + infosec->sh_offset;
2560
2561 if (prev) {
2562 size -= prev - modinfo;
2563 modinfo = next_string(prev, &size);
2564 }
2565
2566 for (p = modinfo; p; p = next_string(p, &size)) {
2567 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2568 return p + taglen + 1;
2569 }
2570 return NULL;
2571 }
2572
2573 static char *get_modinfo(const struct load_info *info, const char *tag)
2574 {
2575 return get_next_modinfo(info, tag, NULL);
2576 }
2577
2578 static void setup_modinfo(struct module *mod, struct load_info *info)
2579 {
2580 struct module_attribute *attr;
2581 int i;
2582
2583 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2584 if (attr->setup)
2585 attr->setup(mod, get_modinfo(info, attr->attr.name));
2586 }
2587 }
2588
2589 static void free_modinfo(struct module *mod)
2590 {
2591 struct module_attribute *attr;
2592 int i;
2593
2594 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2595 if (attr->free)
2596 attr->free(mod);
2597 }
2598 }
2599
2600 #ifdef CONFIG_KALLSYMS
2601
2602 /* Lookup exported symbol in given range of kernel_symbols */
2603 static const struct kernel_symbol *lookup_exported_symbol(const char *name,
2604 const struct kernel_symbol *start,
2605 const struct kernel_symbol *stop)
2606 {
2607 return bsearch(name, start, stop - start,
2608 sizeof(struct kernel_symbol), cmp_name);
2609 }
2610
2611 static int is_exported(const char *name, unsigned long value,
2612 const struct module *mod)
2613 {
2614 const struct kernel_symbol *ks;
2615 if (!mod)
2616 ks = lookup_exported_symbol(name, __start___ksymtab, __stop___ksymtab);
2617 else
2618 ks = lookup_exported_symbol(name, mod->syms, mod->syms + mod->num_syms);
2619
2620 return ks != NULL && kernel_symbol_value(ks) == value;
2621 }
2622
2623 /* As per nm */
2624 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2625 {
2626 const Elf_Shdr *sechdrs = info->sechdrs;
2627
2628 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2629 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2630 return 'v';
2631 else
2632 return 'w';
2633 }
2634 if (sym->st_shndx == SHN_UNDEF)
2635 return 'U';
2636 if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2637 return 'a';
2638 if (sym->st_shndx >= SHN_LORESERVE)
2639 return '?';
2640 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2641 return 't';
2642 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2643 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2644 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2645 return 'r';
2646 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2647 return 'g';
2648 else
2649 return 'd';
2650 }
2651 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2652 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2653 return 's';
2654 else
2655 return 'b';
2656 }
2657 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2658 ".debug")) {
2659 return 'n';
2660 }
2661 return '?';
2662 }
2663
2664 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2665 unsigned int shnum, unsigned int pcpundx)
2666 {
2667 const Elf_Shdr *sec;
2668
2669 if (src->st_shndx == SHN_UNDEF
2670 || src->st_shndx >= shnum
2671 || !src->st_name)
2672 return false;
2673
2674 #ifdef CONFIG_KALLSYMS_ALL
2675 if (src->st_shndx == pcpundx)
2676 return true;
2677 #endif
2678
2679 sec = sechdrs + src->st_shndx;
2680 if (!(sec->sh_flags & SHF_ALLOC)
2681 #ifndef CONFIG_KALLSYMS_ALL
2682 || !(sec->sh_flags & SHF_EXECINSTR)
2683 #endif
2684 || (sec->sh_entsize & INIT_OFFSET_MASK))
2685 return false;
2686
2687 return true;
2688 }
2689
2690 /*
2691 * We only allocate and copy the strings needed by the parts of symtab
2692 * we keep. This is simple, but has the effect of making multiple
2693 * copies of duplicates. We could be more sophisticated, see
2694 * linux-kernel thread starting with
2695 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2696 */
2697 static void layout_symtab(struct module *mod, struct load_info *info)
2698 {
2699 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2700 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2701 const Elf_Sym *src;
2702 unsigned int i, nsrc, ndst, strtab_size = 0;
2703
2704 /* Put symbol section at end of init part of module. */
2705 symsect->sh_flags |= SHF_ALLOC;
2706 symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2707 info->index.sym) | INIT_OFFSET_MASK;
2708 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2709
2710 src = (void *)info->hdr + symsect->sh_offset;
2711 nsrc = symsect->sh_size / sizeof(*src);
2712
2713 /* Compute total space required for the core symbols' strtab. */
2714 for (ndst = i = 0; i < nsrc; i++) {
2715 if (i == 0 || is_livepatch_module(mod) ||
2716 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2717 info->index.pcpu)) {
2718 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2719 ndst++;
2720 }
2721 }
2722
2723 /* Append room for core symbols at end of core part. */
2724 info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2725 info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2726 mod->core_layout.size += strtab_size;
2727 info->core_typeoffs = mod->core_layout.size;
2728 mod->core_layout.size += ndst * sizeof(char);
2729 mod->core_layout.size = debug_align(mod->core_layout.size);
2730
2731 /* Put string table section at end of init part of module. */
2732 strsect->sh_flags |= SHF_ALLOC;
2733 strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2734 info->index.str) | INIT_OFFSET_MASK;
2735 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2736
2737 /* We'll tack temporary mod_kallsyms on the end. */
2738 mod->init_layout.size = ALIGN(mod->init_layout.size,
2739 __alignof__(struct mod_kallsyms));
2740 info->mod_kallsyms_init_off = mod->init_layout.size;
2741 mod->init_layout.size += sizeof(struct mod_kallsyms);
2742 info->init_typeoffs = mod->init_layout.size;
2743 mod->init_layout.size += nsrc * sizeof(char);
2744 mod->init_layout.size = debug_align(mod->init_layout.size);
2745 }
2746
2747 /*
2748 * We use the full symtab and strtab which layout_symtab arranged to
2749 * be appended to the init section. Later we switch to the cut-down
2750 * core-only ones.
2751 */
2752 static void add_kallsyms(struct module *mod, const struct load_info *info)
2753 {
2754 unsigned int i, ndst;
2755 const Elf_Sym *src;
2756 Elf_Sym *dst;
2757 char *s;
2758 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2759
2760 /* Set up to point into init section. */
2761 mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2762
2763 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2764 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2765 /* Make sure we get permanent strtab: don't use info->strtab. */
2766 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2767 mod->kallsyms->typetab = mod->init_layout.base + info->init_typeoffs;
2768
2769 /*
2770 * Now populate the cut down core kallsyms for after init
2771 * and set types up while we still have access to sections.
2772 */
2773 mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2774 mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2775 mod->core_kallsyms.typetab = mod->core_layout.base + info->core_typeoffs;
2776 src = mod->kallsyms->symtab;
2777 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2778 mod->kallsyms->typetab[i] = elf_type(src + i, info);
2779 if (i == 0 || is_livepatch_module(mod) ||
2780 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2781 info->index.pcpu)) {
2782 mod->core_kallsyms.typetab[ndst] =
2783 mod->kallsyms->typetab[i];
2784 dst[ndst] = src[i];
2785 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2786 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2787 KSYM_NAME_LEN) + 1;
2788 }
2789 }
2790 mod->core_kallsyms.num_symtab = ndst;
2791 }
2792 #else
2793 static inline void layout_symtab(struct module *mod, struct load_info *info)
2794 {
2795 }
2796
2797 static void add_kallsyms(struct module *mod, const struct load_info *info)
2798 {
2799 }
2800 #endif /* CONFIG_KALLSYMS */
2801
2802 #if IS_ENABLED(CONFIG_KALLSYMS) && IS_ENABLED(CONFIG_STACKTRACE_BUILD_ID)
2803 static void init_build_id(struct module *mod, const struct load_info *info)
2804 {
2805 const Elf_Shdr *sechdr;
2806 unsigned int i;
2807
2808 for (i = 0; i < info->hdr->e_shnum; i++) {
2809 sechdr = &info->sechdrs[i];
2810 if (!sect_empty(sechdr) && sechdr->sh_type == SHT_NOTE &&
2811 !build_id_parse_buf((void *)sechdr->sh_addr, mod->build_id,
2812 sechdr->sh_size))
2813 break;
2814 }
2815 }
2816 #else
2817 static void init_build_id(struct module *mod, const struct load_info *info)
2818 {
2819 }
2820 #endif
2821
2822 static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2823 {
2824 if (!debug)
2825 return;
2826 ddebug_add_module(debug, num, mod->name);
2827 }
2828
2829 static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2830 {
2831 if (debug)
2832 ddebug_remove_module(mod->name);
2833 }
2834
2835 void * __weak module_alloc(unsigned long size)
2836 {
2837 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2838 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2839 NUMA_NO_NODE, __builtin_return_address(0));
2840 }
2841
2842 bool __weak module_init_section(const char *name)
2843 {
2844 return strstarts(name, ".init");
2845 }
2846
2847 bool __weak module_exit_section(const char *name)
2848 {
2849 return strstarts(name, ".exit");
2850 }
2851
2852 #ifdef CONFIG_DEBUG_KMEMLEAK
2853 static void kmemleak_load_module(const struct module *mod,
2854 const struct load_info *info)
2855 {
2856 unsigned int i;
2857
2858 /* only scan the sections containing data */
2859 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2860
2861 for (i = 1; i < info->hdr->e_shnum; i++) {
2862 /* Scan all writable sections that's not executable */
2863 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2864 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2865 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2866 continue;
2867
2868 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2869 info->sechdrs[i].sh_size, GFP_KERNEL);
2870 }
2871 }
2872 #else
2873 static inline void kmemleak_load_module(const struct module *mod,
2874 const struct load_info *info)
2875 {
2876 }
2877 #endif
2878
2879 #ifdef CONFIG_MODULE_SIG
2880 static int module_sig_check(struct load_info *info, int flags)
2881 {
2882 int err = -ENODATA;
2883 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2884 const char *reason;
2885 const void *mod = info->hdr;
2886 bool mangled_module = flags & (MODULE_INIT_IGNORE_MODVERSIONS |
2887 MODULE_INIT_IGNORE_VERMAGIC);
2888 /*
2889 * Do not allow mangled modules as a module with version information
2890 * removed is no longer the module that was signed.
2891 */
2892 if (!mangled_module &&
2893 info->len > markerlen &&
2894 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2895 /* We truncate the module to discard the signature */
2896 info->len -= markerlen;
2897 err = mod_verify_sig(mod, info);
2898 if (!err) {
2899 info->sig_ok = true;
2900 return 0;
2901 }
2902 }
2903
2904 /*
2905 * We don't permit modules to be loaded into the trusted kernels
2906 * without a valid signature on them, but if we're not enforcing,
2907 * certain errors are non-fatal.
2908 */
2909 switch (err) {
2910 case -ENODATA:
2911 reason = "unsigned module";
2912 break;
2913 case -ENOPKG:
2914 reason = "module with unsupported crypto";
2915 break;
2916 case -ENOKEY:
2917 reason = "module with unavailable key";
2918 break;
2919
2920 default:
2921 /*
2922 * All other errors are fatal, including lack of memory,
2923 * unparseable signatures, and signature check failures --
2924 * even if signatures aren't required.
2925 */
2926 return err;
2927 }
2928
2929 if (is_module_sig_enforced()) {
2930 pr_notice("Loading of %s is rejected\n", reason);
2931 return -EKEYREJECTED;
2932 }
2933
2934 return security_locked_down(LOCKDOWN_MODULE_SIGNATURE);
2935 }
2936 #else /* !CONFIG_MODULE_SIG */
2937 static int module_sig_check(struct load_info *info, int flags)
2938 {
2939 return 0;
2940 }
2941 #endif /* !CONFIG_MODULE_SIG */
2942
2943 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr)
2944 {
2945 #if defined(CONFIG_64BIT)
2946 unsigned long long secend;
2947 #else
2948 unsigned long secend;
2949 #endif
2950
2951 /*
2952 * Check for both overflow and offset/size being
2953 * too large.
2954 */
2955 secend = shdr->sh_offset + shdr->sh_size;
2956 if (secend < shdr->sh_offset || secend > info->len)
2957 return -ENOEXEC;
2958
2959 return 0;
2960 }
2961
2962 /*
2963 * Sanity checks against invalid binaries, wrong arch, weird elf version.
2964 *
2965 * Also do basic validity checks against section offsets and sizes, the
2966 * section name string table, and the indices used for it (sh_name).
2967 */
2968 static int elf_validity_check(struct load_info *info)
2969 {
2970 unsigned int i;
2971 Elf_Shdr *shdr, *strhdr;
2972 int err;
2973
2974 if (info->len < sizeof(*(info->hdr))) {
2975 pr_err("Invalid ELF header len %lu\n", info->len);
2976 goto no_exec;
2977 }
2978
2979 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
2980 pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
2981 goto no_exec;
2982 }
2983 if (info->hdr->e_type != ET_REL) {
2984 pr_err("Invalid ELF header type: %u != %u\n",
2985 info->hdr->e_type, ET_REL);
2986 goto no_exec;
2987 }
2988 if (!elf_check_arch(info->hdr)) {
2989 pr_err("Invalid architecture in ELF header: %u\n",
2990 info->hdr->e_machine);
2991 goto no_exec;
2992 }
2993 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
2994 pr_err("Invalid ELF section header size\n");
2995 goto no_exec;
2996 }
2997
2998 /*
2999 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
3000 * known and small. So e_shnum * sizeof(Elf_Shdr)
3001 * will not overflow unsigned long on any platform.
3002 */
3003 if (info->hdr->e_shoff >= info->len
3004 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
3005 info->len - info->hdr->e_shoff)) {
3006 pr_err("Invalid ELF section header overflow\n");
3007 goto no_exec;
3008 }
3009
3010 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
3011
3012 /*
3013 * Verify if the section name table index is valid.
3014 */
3015 if (info->hdr->e_shstrndx == SHN_UNDEF
3016 || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
3017 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
3018 info->hdr->e_shstrndx, info->hdr->e_shstrndx,
3019 info->hdr->e_shnum);
3020 goto no_exec;
3021 }
3022
3023 strhdr = &info->sechdrs[info->hdr->e_shstrndx];
3024 err = validate_section_offset(info, strhdr);
3025 if (err < 0) {
3026 pr_err("Invalid ELF section hdr(type %u)\n", strhdr->sh_type);
3027 return err;
3028 }
3029
3030 /*
3031 * The section name table must be NUL-terminated, as required
3032 * by the spec. This makes strcmp and pr_* calls that access
3033 * strings in the section safe.
3034 */
3035 info->secstrings = (void *)info->hdr + strhdr->sh_offset;
3036 if (info->secstrings[strhdr->sh_size - 1] != '\0') {
3037 pr_err("ELF Spec violation: section name table isn't null terminated\n");
3038 goto no_exec;
3039 }
3040
3041 /*
3042 * The code assumes that section 0 has a length of zero and
3043 * an addr of zero, so check for it.
3044 */
3045 if (info->sechdrs[0].sh_type != SHT_NULL
3046 || info->sechdrs[0].sh_size != 0
3047 || info->sechdrs[0].sh_addr != 0) {
3048 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
3049 info->sechdrs[0].sh_type);
3050 goto no_exec;
3051 }
3052
3053 for (i = 1; i < info->hdr->e_shnum; i++) {
3054 shdr = &info->sechdrs[i];
3055 switch (shdr->sh_type) {
3056 case SHT_NULL:
3057 case SHT_NOBITS:
3058 continue;
3059 case SHT_SYMTAB:
3060 if (shdr->sh_link == SHN_UNDEF
3061 || shdr->sh_link >= info->hdr->e_shnum) {
3062 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
3063 shdr->sh_link, shdr->sh_link,
3064 info->hdr->e_shnum);
3065 goto no_exec;
3066 }
3067 fallthrough;
3068 default:
3069 err = validate_section_offset(info, shdr);
3070 if (err < 0) {
3071 pr_err("Invalid ELF section in module (section %u type %u)\n",
3072 i, shdr->sh_type);
3073 return err;
3074 }
3075
3076 if (shdr->sh_flags & SHF_ALLOC) {
3077 if (shdr->sh_name >= strhdr->sh_size) {
3078 pr_err("Invalid ELF section name in module (section %u type %u)\n",
3079 i, shdr->sh_type);
3080 return -ENOEXEC;
3081 }
3082 }
3083 break;
3084 }
3085 }
3086
3087 return 0;
3088
3089 no_exec:
3090 return -ENOEXEC;
3091 }
3092
3093 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
3094
3095 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
3096 {
3097 do {
3098 unsigned long n = min(len, COPY_CHUNK_SIZE);
3099
3100 if (copy_from_user(dst, usrc, n) != 0)
3101 return -EFAULT;
3102 cond_resched();
3103 dst += n;
3104 usrc += n;
3105 len -= n;
3106 } while (len);
3107 return 0;
3108 }
3109
3110 #ifdef CONFIG_LIVEPATCH
3111 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
3112 {
3113 if (get_modinfo(info, "livepatch")) {
3114 mod->klp = true;
3115 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
3116 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
3117 mod->name);
3118 }
3119
3120 return 0;
3121 }
3122 #else /* !CONFIG_LIVEPATCH */
3123 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
3124 {
3125 if (get_modinfo(info, "livepatch")) {
3126 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
3127 mod->name);
3128 return -ENOEXEC;
3129 }
3130
3131 return 0;
3132 }
3133 #endif /* CONFIG_LIVEPATCH */
3134
3135 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
3136 {
3137 if (retpoline_module_ok(get_modinfo(info, "retpoline")))
3138 return;
3139
3140 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
3141 mod->name);
3142 }
3143
3144 /* Sets info->hdr and info->len. */
3145 static int copy_module_from_user(const void __user *umod, unsigned long len,
3146 struct load_info *info)
3147 {
3148 int err;
3149
3150 info->len = len;
3151 if (info->len < sizeof(*(info->hdr)))
3152 return -ENOEXEC;
3153
3154 err = security_kernel_load_data(LOADING_MODULE, true);
3155 if (err)
3156 return err;
3157
3158 /* Suck in entire file: we'll want most of it. */
3159 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
3160 if (!info->hdr)
3161 return -ENOMEM;
3162
3163 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
3164 err = -EFAULT;
3165 goto out;
3166 }
3167
3168 err = security_kernel_post_load_data((char *)info->hdr, info->len,
3169 LOADING_MODULE, "init_module");
3170 out:
3171 if (err)
3172 vfree(info->hdr);
3173
3174 return err;
3175 }
3176
3177 static void free_copy(struct load_info *info, int flags)
3178 {
3179 if (flags & MODULE_INIT_COMPRESSED_FILE)
3180 module_decompress_cleanup(info);
3181 else
3182 vfree(info->hdr);
3183 }
3184
3185 static int rewrite_section_headers(struct load_info *info, int flags)
3186 {
3187 unsigned int i;
3188
3189 /* This should always be true, but let's be sure. */
3190 info->sechdrs[0].sh_addr = 0;
3191
3192 for (i = 1; i < info->hdr->e_shnum; i++) {
3193 Elf_Shdr *shdr = &info->sechdrs[i];
3194
3195 /*
3196 * Mark all sections sh_addr with their address in the
3197 * temporary image.
3198 */
3199 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
3200
3201 }
3202
3203 /* Track but don't keep modinfo and version sections. */
3204 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
3205 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
3206
3207 return 0;
3208 }
3209
3210 /*
3211 * Set up our basic convenience variables (pointers to section headers,
3212 * search for module section index etc), and do some basic section
3213 * verification.
3214 *
3215 * Set info->mod to the temporary copy of the module in info->hdr. The final one
3216 * will be allocated in move_module().
3217 */
3218 static int setup_load_info(struct load_info *info, int flags)
3219 {
3220 unsigned int i;
3221
3222 /* Try to find a name early so we can log errors with a module name */
3223 info->index.info = find_sec(info, ".modinfo");
3224 if (info->index.info)
3225 info->name = get_modinfo(info, "name");
3226
3227 /* Find internal symbols and strings. */
3228 for (i = 1; i < info->hdr->e_shnum; i++) {
3229 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
3230 info->index.sym = i;
3231 info->index.str = info->sechdrs[i].sh_link;
3232 info->strtab = (char *)info->hdr
3233 + info->sechdrs[info->index.str].sh_offset;
3234 break;
3235 }
3236 }
3237
3238 if (info->index.sym == 0) {
3239 pr_warn("%s: module has no symbols (stripped?)\n",
3240 info->name ?: "(missing .modinfo section or name field)");
3241 return -ENOEXEC;
3242 }
3243
3244 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
3245 if (!info->index.mod) {
3246 pr_warn("%s: No module found in object\n",
3247 info->name ?: "(missing .modinfo section or name field)");
3248 return -ENOEXEC;
3249 }
3250 /* This is temporary: point mod into copy of data. */
3251 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
3252
3253 /*
3254 * If we didn't load the .modinfo 'name' field earlier, fall back to
3255 * on-disk struct mod 'name' field.
3256 */
3257 if (!info->name)
3258 info->name = info->mod->name;
3259
3260 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
3261 info->index.vers = 0; /* Pretend no __versions section! */
3262 else
3263 info->index.vers = find_sec(info, "__versions");
3264
3265 info->index.pcpu = find_pcpusec(info);
3266
3267 return 0;
3268 }
3269
3270 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3271 {
3272 const char *modmagic = get_modinfo(info, "vermagic");
3273 int err;
3274
3275 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3276 modmagic = NULL;
3277
3278 /* This is allowed: modprobe --force will invalidate it. */
3279 if (!modmagic) {
3280 err = try_to_force_load(mod, "bad vermagic");
3281 if (err)
3282 return err;
3283 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3284 pr_err("%s: version magic '%s' should be '%s'\n",
3285 info->name, modmagic, vermagic);
3286 return -ENOEXEC;
3287 }
3288
3289 if (!get_modinfo(info, "intree")) {
3290 if (!test_taint(TAINT_OOT_MODULE))
3291 pr_warn("%s: loading out-of-tree module taints kernel.\n",
3292 mod->name);
3293 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3294 }
3295
3296 check_modinfo_retpoline(mod, info);
3297
3298 if (get_modinfo(info, "staging")) {
3299 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3300 pr_warn("%s: module is from the staging directory, the quality "
3301 "is unknown, you have been warned.\n", mod->name);
3302 }
3303
3304 err = check_modinfo_livepatch(mod, info);
3305 if (err)
3306 return err;
3307
3308 /* Set up license info based on the info section */
3309 set_license(mod, get_modinfo(info, "license"));
3310
3311 return 0;
3312 }
3313
3314 static int find_module_sections(struct module *mod, struct load_info *info)
3315 {
3316 mod->kp = section_objs(info, "__param",
3317 sizeof(*mod->kp), &mod->num_kp);
3318 mod->syms = section_objs(info, "__ksymtab",
3319 sizeof(*mod->syms), &mod->num_syms);
3320 mod->crcs = section_addr(info, "__kcrctab");
3321 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3322 sizeof(*mod->gpl_syms),
3323 &mod->num_gpl_syms);
3324 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3325
3326 #ifdef CONFIG_CONSTRUCTORS
3327 mod->ctors = section_objs(info, ".ctors",
3328 sizeof(*mod->ctors), &mod->num_ctors);
3329 if (!mod->ctors)
3330 mod->ctors = section_objs(info, ".init_array",
3331 sizeof(*mod->ctors), &mod->num_ctors);
3332 else if (find_sec(info, ".init_array")) {
3333 /*
3334 * This shouldn't happen with same compiler and binutils
3335 * building all parts of the module.
3336 */
3337 pr_warn("%s: has both .ctors and .init_array.\n",
3338 mod->name);
3339 return -EINVAL;
3340 }
3341 #endif
3342
3343 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
3344 &mod->noinstr_text_size);
3345
3346 #ifdef CONFIG_TRACEPOINTS
3347 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3348 sizeof(*mod->tracepoints_ptrs),
3349 &mod->num_tracepoints);
3350 #endif
3351 #ifdef CONFIG_TREE_SRCU
3352 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
3353 sizeof(*mod->srcu_struct_ptrs),
3354 &mod->num_srcu_structs);
3355 #endif
3356 #ifdef CONFIG_BPF_EVENTS
3357 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
3358 sizeof(*mod->bpf_raw_events),
3359 &mod->num_bpf_raw_events);
3360 #endif
3361 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3362 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
3363 #endif
3364 #ifdef CONFIG_JUMP_LABEL
3365 mod->jump_entries = section_objs(info, "__jump_table",
3366 sizeof(*mod->jump_entries),
3367 &mod->num_jump_entries);
3368 #endif
3369 #ifdef CONFIG_EVENT_TRACING
3370 mod->trace_events = section_objs(info, "_ftrace_events",
3371 sizeof(*mod->trace_events),
3372 &mod->num_trace_events);
3373 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3374 sizeof(*mod->trace_evals),
3375 &mod->num_trace_evals);
3376 #endif
3377 #ifdef CONFIG_TRACING
3378 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3379 sizeof(*mod->trace_bprintk_fmt_start),
3380 &mod->num_trace_bprintk_fmt);
3381 #endif
3382 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3383 /* sechdrs[0].sh_size is always zero */
3384 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
3385 sizeof(*mod->ftrace_callsites),
3386 &mod->num_ftrace_callsites);
3387 #endif
3388 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
3389 mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
3390 sizeof(*mod->ei_funcs),
3391 &mod->num_ei_funcs);
3392 #endif
3393 #ifdef CONFIG_KPROBES
3394 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
3395 &mod->kprobes_text_size);
3396 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
3397 sizeof(unsigned long),
3398 &mod->num_kprobe_blacklist);
3399 #endif
3400 #ifdef CONFIG_PRINTK_INDEX
3401 mod->printk_index_start = section_objs(info, ".printk_index",
3402 sizeof(*mod->printk_index_start),
3403 &mod->printk_index_size);
3404 #endif
3405 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
3406 mod->static_call_sites = section_objs(info, ".static_call_sites",
3407 sizeof(*mod->static_call_sites),
3408 &mod->num_static_call_sites);
3409 #endif
3410 mod->extable = section_objs(info, "__ex_table",
3411 sizeof(*mod->extable), &mod->num_exentries);
3412
3413 if (section_addr(info, "__obsparm"))
3414 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3415
3416 info->debug = section_objs(info, "__dyndbg",
3417 sizeof(*info->debug), &info->num_debug);
3418
3419 return 0;
3420 }
3421
3422 static int move_module(struct module *mod, struct load_info *info)
3423 {
3424 int i;
3425 void *ptr;
3426
3427 /* Do the allocs. */
3428 ptr = module_alloc(mod->core_layout.size);
3429 /*
3430 * The pointer to this block is stored in the module structure
3431 * which is inside the block. Just mark it as not being a
3432 * leak.
3433 */
3434 kmemleak_not_leak(ptr);
3435 if (!ptr)
3436 return -ENOMEM;
3437
3438 memset(ptr, 0, mod->core_layout.size);
3439 mod->core_layout.base = ptr;
3440
3441 if (mod->init_layout.size) {
3442 ptr = module_alloc(mod->init_layout.size);
3443 /*
3444 * The pointer to this block is stored in the module structure
3445 * which is inside the block. This block doesn't need to be
3446 * scanned as it contains data and code that will be freed
3447 * after the module is initialized.
3448 */
3449 kmemleak_ignore(ptr);
3450 if (!ptr) {
3451 module_memfree(mod->core_layout.base);
3452 return -ENOMEM;
3453 }
3454 memset(ptr, 0, mod->init_layout.size);
3455 mod->init_layout.base = ptr;
3456 } else
3457 mod->init_layout.base = NULL;
3458
3459 /* Transfer each section which specifies SHF_ALLOC */
3460 pr_debug("final section addresses:\n");
3461 for (i = 0; i < info->hdr->e_shnum; i++) {
3462 void *dest;
3463 Elf_Shdr *shdr = &info->sechdrs[i];
3464
3465 if (!(shdr->sh_flags & SHF_ALLOC))
3466 continue;
3467
3468 if (shdr->sh_entsize & INIT_OFFSET_MASK)
3469 dest = mod->init_layout.base
3470 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3471 else
3472 dest = mod->core_layout.base + shdr->sh_entsize;
3473
3474 if (shdr->sh_type != SHT_NOBITS)
3475 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3476 /* Update sh_addr to point to copy in image. */
3477 shdr->sh_addr = (unsigned long)dest;
3478 pr_debug("\t0x%lx %s\n",
3479 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3480 }
3481
3482 return 0;
3483 }
3484
3485 static int check_module_license_and_versions(struct module *mod)
3486 {
3487 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3488
3489 /*
3490 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3491 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3492 * using GPL-only symbols it needs.
3493 */
3494 if (strcmp(mod->name, "ndiswrapper") == 0)
3495 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3496
3497 /* driverloader was caught wrongly pretending to be under GPL */
3498 if (strcmp(mod->name, "driverloader") == 0)
3499 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3500 LOCKDEP_NOW_UNRELIABLE);
3501
3502 /* lve claims to be GPL but upstream won't provide source */
3503 if (strcmp(mod->name, "lve") == 0)
3504 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3505 LOCKDEP_NOW_UNRELIABLE);
3506
3507 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3508 pr_warn("%s: module license taints kernel.\n", mod->name);
3509
3510 #ifdef CONFIG_MODVERSIONS
3511 if ((mod->num_syms && !mod->crcs) ||
3512 (mod->num_gpl_syms && !mod->gpl_crcs)) {
3513 return try_to_force_load(mod,
3514 "no versions for exported symbols");
3515 }
3516 #endif
3517 return 0;
3518 }
3519
3520 static void flush_module_icache(const struct module *mod)
3521 {
3522 /*
3523 * Flush the instruction cache, since we've played with text.
3524 * Do it before processing of module parameters, so the module
3525 * can provide parameter accessor functions of its own.
3526 */
3527 if (mod->init_layout.base)
3528 flush_icache_range((unsigned long)mod->init_layout.base,
3529 (unsigned long)mod->init_layout.base
3530 + mod->init_layout.size);
3531 flush_icache_range((unsigned long)mod->core_layout.base,
3532 (unsigned long)mod->core_layout.base + mod->core_layout.size);
3533 }
3534
3535 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3536 Elf_Shdr *sechdrs,
3537 char *secstrings,
3538 struct module *mod)
3539 {
3540 return 0;
3541 }
3542
3543 /* module_blacklist is a comma-separated list of module names */
3544 static char *module_blacklist;
3545 static bool blacklisted(const char *module_name)
3546 {
3547 const char *p;
3548 size_t len;
3549
3550 if (!module_blacklist)
3551 return false;
3552
3553 for (p = module_blacklist; *p; p += len) {
3554 len = strcspn(p, ",");
3555 if (strlen(module_name) == len && !memcmp(module_name, p, len))
3556 return true;
3557 if (p[len] == ',')
3558 len++;
3559 }
3560 return false;
3561 }
3562 core_param(module_blacklist, module_blacklist, charp, 0400);
3563
3564 static struct module *layout_and_allocate(struct load_info *info, int flags)
3565 {
3566 struct module *mod;
3567 unsigned int ndx;
3568 int err;
3569
3570 err = check_modinfo(info->mod, info, flags);
3571 if (err)
3572 return ERR_PTR(err);
3573
3574 /* Allow arches to frob section contents and sizes. */
3575 err = module_frob_arch_sections(info->hdr, info->sechdrs,
3576 info->secstrings, info->mod);
3577 if (err < 0)
3578 return ERR_PTR(err);
3579
3580 err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
3581 info->secstrings, info->mod);
3582 if (err < 0)
3583 return ERR_PTR(err);
3584
3585 /* We will do a special allocation for per-cpu sections later. */
3586 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3587
3588 /*
3589 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3590 * layout_sections() can put it in the right place.
3591 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3592 */
3593 ndx = find_sec(info, ".data..ro_after_init");
3594 if (ndx)
3595 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3596 /*
3597 * Mark the __jump_table section as ro_after_init as well: these data
3598 * structures are never modified, with the exception of entries that
3599 * refer to code in the __init section, which are annotated as such
3600 * at module load time.
3601 */
3602 ndx = find_sec(info, "__jump_table");
3603 if (ndx)
3604 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3605
3606 /*
3607 * Determine total sizes, and put offsets in sh_entsize. For now
3608 * this is done generically; there doesn't appear to be any
3609 * special cases for the architectures.
3610 */
3611 layout_sections(info->mod, info);
3612 layout_symtab(info->mod, info);
3613
3614 /* Allocate and move to the final place */
3615 err = move_module(info->mod, info);
3616 if (err)
3617 return ERR_PTR(err);
3618
3619 /* Module has been copied to its final place now: return it. */
3620 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3621 kmemleak_load_module(mod, info);
3622 return mod;
3623 }
3624
3625 /* mod is no longer valid after this! */
3626 static void module_deallocate(struct module *mod, struct load_info *info)
3627 {
3628 percpu_modfree(mod);
3629 module_arch_freeing_init(mod);
3630 module_memfree(mod->init_layout.base);
3631 module_memfree(mod->core_layout.base);
3632 }
3633
3634 int __weak module_finalize(const Elf_Ehdr *hdr,
3635 const Elf_Shdr *sechdrs,
3636 struct module *me)
3637 {
3638 return 0;
3639 }
3640
3641 static int post_relocation(struct module *mod, const struct load_info *info)
3642 {
3643 /* Sort exception table now relocations are done. */
3644 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3645
3646 /* Copy relocated percpu area over. */
3647 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3648 info->sechdrs[info->index.pcpu].sh_size);
3649
3650 /* Setup kallsyms-specific fields. */
3651 add_kallsyms(mod, info);
3652
3653 /* Arch-specific module finalizing. */
3654 return module_finalize(info->hdr, info->sechdrs, mod);
3655 }
3656
3657 /* Is this module of this name done loading? No locks held. */
3658 static bool finished_loading(const char *name)
3659 {
3660 struct module *mod;
3661 bool ret;
3662
3663 /*
3664 * The module_mutex should not be a heavily contended lock;
3665 * if we get the occasional sleep here, we'll go an extra iteration
3666 * in the wait_event_interruptible(), which is harmless.
3667 */
3668 sched_annotate_sleep();
3669 mutex_lock(&module_mutex);
3670 mod = find_module_all(name, strlen(name), true);
3671 ret = !mod || mod->state == MODULE_STATE_LIVE;
3672 mutex_unlock(&module_mutex);
3673
3674 return ret;
3675 }
3676
3677 /* Call module constructors. */
3678 static void do_mod_ctors(struct module *mod)
3679 {
3680 #ifdef CONFIG_CONSTRUCTORS
3681 unsigned long i;
3682
3683 for (i = 0; i < mod->num_ctors; i++)
3684 mod->ctors[i]();
3685 #endif
3686 }
3687
3688 /* For freeing module_init on success, in case kallsyms traversing */
3689 struct mod_initfree {
3690 struct llist_node node;
3691 void *module_init;
3692 };
3693
3694 static void do_free_init(struct work_struct *w)
3695 {
3696 struct llist_node *pos, *n, *list;
3697 struct mod_initfree *initfree;
3698
3699 list = llist_del_all(&init_free_list);
3700
3701 synchronize_rcu();
3702
3703 llist_for_each_safe(pos, n, list) {
3704 initfree = container_of(pos, struct mod_initfree, node);
3705 module_memfree(initfree->module_init);
3706 kfree(initfree);
3707 }
3708 }
3709
3710 /*
3711 * This is where the real work happens.
3712 *
3713 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3714 * helper command 'lx-symbols'.
3715 */
3716 static noinline int do_init_module(struct module *mod)
3717 {
3718 int ret = 0;
3719 struct mod_initfree *freeinit;
3720
3721 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3722 if (!freeinit) {
3723 ret = -ENOMEM;
3724 goto fail;
3725 }
3726 freeinit->module_init = mod->init_layout.base;
3727
3728 do_mod_ctors(mod);
3729 /* Start the module */
3730 if (mod->init != NULL)
3731 ret = do_one_initcall(mod->init);
3732 if (ret < 0) {
3733 goto fail_free_freeinit;
3734 }
3735 if (ret > 0) {
3736 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3737 "follow 0/-E convention\n"
3738 "%s: loading module anyway...\n",
3739 __func__, mod->name, ret, __func__);
3740 dump_stack();
3741 }
3742
3743 /* Now it's a first class citizen! */
3744 mod->state = MODULE_STATE_LIVE;
3745 blocking_notifier_call_chain(&module_notify_list,
3746 MODULE_STATE_LIVE, mod);
3747
3748 /* Delay uevent until module has finished its init routine */
3749 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
3750
3751 /*
3752 * We need to finish all async code before the module init sequence
3753 * is done. This has potential to deadlock if synchronous module
3754 * loading is requested from async (which is not allowed!).
3755 *
3756 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
3757 * request_module() from async workers") for more details.
3758 */
3759 if (!mod->async_probe_requested)
3760 async_synchronize_full();
3761
3762 ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3763 mod->init_layout.size);
3764 mutex_lock(&module_mutex);
3765 /* Drop initial reference. */
3766 module_put(mod);
3767 trim_init_extable(mod);
3768 #ifdef CONFIG_KALLSYMS
3769 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3770 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3771 #endif
3772 module_enable_ro(mod, true);
3773 mod_tree_remove_init(mod);
3774 module_arch_freeing_init(mod);
3775 mod->init_layout.base = NULL;
3776 mod->init_layout.size = 0;
3777 mod->init_layout.ro_size = 0;
3778 mod->init_layout.ro_after_init_size = 0;
3779 mod->init_layout.text_size = 0;
3780 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3781 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointer */
3782 mod->btf_data = NULL;
3783 #endif
3784 /*
3785 * We want to free module_init, but be aware that kallsyms may be
3786 * walking this with preempt disabled. In all the failure paths, we
3787 * call synchronize_rcu(), but we don't want to slow down the success
3788 * path. module_memfree() cannot be called in an interrupt, so do the
3789 * work and call synchronize_rcu() in a work queue.
3790 *
3791 * Note that module_alloc() on most architectures creates W+X page
3792 * mappings which won't be cleaned up until do_free_init() runs. Any
3793 * code such as mark_rodata_ro() which depends on those mappings to
3794 * be cleaned up needs to sync with the queued work - ie
3795 * rcu_barrier()
3796 */
3797 if (llist_add(&freeinit->node, &init_free_list))
3798 schedule_work(&init_free_wq);
3799
3800 mutex_unlock(&module_mutex);
3801 wake_up_all(&module_wq);
3802
3803 return 0;
3804
3805 fail_free_freeinit:
3806 kfree(freeinit);
3807 fail:
3808 /* Try to protect us from buggy refcounters. */
3809 mod->state = MODULE_STATE_GOING;
3810 synchronize_rcu();
3811 module_put(mod);
3812 blocking_notifier_call_chain(&module_notify_list,
3813 MODULE_STATE_GOING, mod);
3814 klp_module_going(mod);
3815 ftrace_release_mod(mod);
3816 free_module(mod);
3817 wake_up_all(&module_wq);
3818 return ret;
3819 }
3820
3821 static int may_init_module(void)
3822 {
3823 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3824 return -EPERM;
3825
3826 return 0;
3827 }
3828
3829 /*
3830 * We try to place it in the list now to make sure it's unique before
3831 * we dedicate too many resources. In particular, temporary percpu
3832 * memory exhaustion.
3833 */
3834 static int add_unformed_module(struct module *mod)
3835 {
3836 int err;
3837 struct module *old;
3838
3839 mod->state = MODULE_STATE_UNFORMED;
3840
3841 again:
3842 mutex_lock(&module_mutex);
3843 old = find_module_all(mod->name, strlen(mod->name), true);
3844 if (old != NULL) {
3845 if (old->state != MODULE_STATE_LIVE) {
3846 /* Wait in case it fails to load. */
3847 mutex_unlock(&module_mutex);
3848 err = wait_event_interruptible(module_wq,
3849 finished_loading(mod->name));
3850 if (err)
3851 goto out_unlocked;
3852 goto again;
3853 }
3854 err = -EEXIST;
3855 goto out;
3856 }
3857 mod_update_bounds(mod);
3858 list_add_rcu(&mod->list, &modules);
3859 mod_tree_insert(mod);
3860 err = 0;
3861
3862 out:
3863 mutex_unlock(&module_mutex);
3864 out_unlocked:
3865 return err;
3866 }
3867
3868 static int complete_formation(struct module *mod, struct load_info *info)
3869 {
3870 int err;
3871
3872 mutex_lock(&module_mutex);
3873
3874 /* Find duplicate symbols (must be called under lock). */
3875 err = verify_exported_symbols(mod);
3876 if (err < 0)
3877 goto out;
3878
3879 /* This relies on module_mutex for list integrity. */
3880 module_bug_finalize(info->hdr, info->sechdrs, mod);
3881
3882 module_enable_ro(mod, false);
3883 module_enable_nx(mod);
3884 module_enable_x(mod);
3885
3886 /*
3887 * Mark state as coming so strong_try_module_get() ignores us,
3888 * but kallsyms etc. can see us.
3889 */
3890 mod->state = MODULE_STATE_COMING;
3891 mutex_unlock(&module_mutex);
3892
3893 return 0;
3894
3895 out:
3896 mutex_unlock(&module_mutex);
3897 return err;
3898 }
3899
3900 static int prepare_coming_module(struct module *mod)
3901 {
3902 int err;
3903
3904 ftrace_module_enable(mod);
3905 err = klp_module_coming(mod);
3906 if (err)
3907 return err;
3908
3909 err = blocking_notifier_call_chain_robust(&module_notify_list,
3910 MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3911 err = notifier_to_errno(err);
3912 if (err)
3913 klp_module_going(mod);
3914
3915 return err;
3916 }
3917
3918 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3919 void *arg)
3920 {
3921 struct module *mod = arg;
3922 int ret;
3923
3924 if (strcmp(param, "async_probe") == 0) {
3925 mod->async_probe_requested = true;
3926 return 0;
3927 }
3928
3929 /* Check for magic 'dyndbg' arg */
3930 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3931 if (ret != 0)
3932 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3933 return 0;
3934 }
3935
3936 static void cfi_init(struct module *mod);
3937
3938 /*
3939 * Allocate and load the module: note that size of section 0 is always
3940 * zero, and we rely on this for optional sections.
3941 */
3942 static int load_module(struct load_info *info, const char __user *uargs,
3943 int flags)
3944 {
3945 struct module *mod;
3946 long err = 0;
3947 char *after_dashes;
3948
3949 /*
3950 * Do the signature check (if any) first. All that
3951 * the signature check needs is info->len, it does
3952 * not need any of the section info. That can be
3953 * set up later. This will minimize the chances
3954 * of a corrupt module causing problems before
3955 * we even get to the signature check.
3956 *
3957 * The check will also adjust info->len by stripping
3958 * off the sig length at the end of the module, making
3959 * checks against info->len more correct.
3960 */
3961 err = module_sig_check(info, flags);
3962 if (err)
3963 goto free_copy;
3964
3965 /*
3966 * Do basic sanity checks against the ELF header and
3967 * sections.
3968 */
3969 err = elf_validity_check(info);
3970 if (err)
3971 goto free_copy;
3972
3973 /*
3974 * Everything checks out, so set up the section info
3975 * in the info structure.
3976 */
3977 err = setup_load_info(info, flags);
3978 if (err)
3979 goto free_copy;
3980
3981 /*
3982 * Now that we know we have the correct module name, check
3983 * if it's blacklisted.
3984 */
3985 if (blacklisted(info->name)) {
3986 err = -EPERM;
3987 pr_err("Module %s is blacklisted\n", info->name);
3988 goto free_copy;
3989 }
3990
3991 err = rewrite_section_headers(info, flags);
3992 if (err)
3993 goto free_copy;
3994
3995 /* Check module struct version now, before we try to use module. */
3996 if (!check_modstruct_version(info, info->mod)) {
3997 err = -ENOEXEC;
3998 goto free_copy;
3999 }
4000
4001 /* Figure out module layout, and allocate all the memory. */
4002 mod = layout_and_allocate(info, flags);
4003 if (IS_ERR(mod)) {
4004 err = PTR_ERR(mod);
4005 goto free_copy;
4006 }
4007
4008 audit_log_kern_module(mod->name);
4009
4010 /* Reserve our place in the list. */
4011 err = add_unformed_module(mod);
4012 if (err)
4013 goto free_module;
4014
4015 #ifdef CONFIG_MODULE_SIG
4016 mod->sig_ok = info->sig_ok;
4017 if (!mod->sig_ok) {
4018 pr_notice_once("%s: module verification failed: signature "
4019 "and/or required key missing - tainting "
4020 "kernel\n", mod->name);
4021 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
4022 }
4023 #endif
4024
4025 /* To avoid stressing percpu allocator, do this once we're unique. */
4026 err = percpu_modalloc(mod, info);
4027 if (err)
4028 goto unlink_mod;
4029
4030 /* Now module is in final location, initialize linked lists, etc. */
4031 err = module_unload_init(mod);
4032 if (err)
4033 goto unlink_mod;
4034
4035 init_param_lock(mod);
4036
4037 /*
4038 * Now we've got everything in the final locations, we can
4039 * find optional sections.
4040 */
4041 err = find_module_sections(mod, info);
4042 if (err)
4043 goto free_unload;
4044
4045 err = check_module_license_and_versions(mod);
4046 if (err)
4047 goto free_unload;
4048
4049 /* Set up MODINFO_ATTR fields */
4050 setup_modinfo(mod, info);
4051
4052 /* Fix up syms, so that st_value is a pointer to location. */
4053 err = simplify_symbols(mod, info);
4054 if (err < 0)
4055 goto free_modinfo;
4056
4057 err = apply_relocations(mod, info);
4058 if (err < 0)
4059 goto free_modinfo;
4060
4061 err = post_relocation(mod, info);
4062 if (err < 0)
4063 goto free_modinfo;
4064
4065 flush_module_icache(mod);
4066
4067 /* Setup CFI for the module. */
4068 cfi_init(mod);
4069
4070 /* Now copy in args */
4071 mod->args = strndup_user(uargs, ~0UL >> 1);
4072 if (IS_ERR(mod->args)) {
4073 err = PTR_ERR(mod->args);
4074 goto free_arch_cleanup;
4075 }
4076
4077 init_build_id(mod, info);
4078 dynamic_debug_setup(mod, info->debug, info->num_debug);
4079
4080 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
4081 ftrace_module_init(mod);
4082
4083 /* Finally it's fully formed, ready to start executing. */
4084 err = complete_formation(mod, info);
4085 if (err)
4086 goto ddebug_cleanup;
4087
4088 err = prepare_coming_module(mod);
4089 if (err)
4090 goto bug_cleanup;
4091
4092 /* Module is ready to execute: parsing args may do that. */
4093 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
4094 -32768, 32767, mod,
4095 unknown_module_param_cb);
4096 if (IS_ERR(after_dashes)) {
4097 err = PTR_ERR(after_dashes);
4098 goto coming_cleanup;
4099 } else if (after_dashes) {
4100 pr_warn("%s: parameters '%s' after `--' ignored\n",
4101 mod->name, after_dashes);
4102 }
4103
4104 /* Link in to sysfs. */
4105 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
4106 if (err < 0)
4107 goto coming_cleanup;
4108
4109 if (is_livepatch_module(mod)) {
4110 err = copy_module_elf(mod, info);
4111 if (err < 0)
4112 goto sysfs_cleanup;
4113 }
4114
4115 /* Get rid of temporary copy. */
4116 free_copy(info, flags);
4117
4118 /* Done! */
4119 trace_module_load(mod);
4120
4121 return do_init_module(mod);
4122
4123 sysfs_cleanup:
4124 mod_sysfs_teardown(mod);
4125 coming_cleanup:
4126 mod->state = MODULE_STATE_GOING;
4127 destroy_params(mod->kp, mod->num_kp);
4128 blocking_notifier_call_chain(&module_notify_list,
4129 MODULE_STATE_GOING, mod);
4130 klp_module_going(mod);
4131 bug_cleanup:
4132 mod->state = MODULE_STATE_GOING;
4133 /* module_bug_cleanup needs module_mutex protection */
4134 mutex_lock(&module_mutex);
4135 module_bug_cleanup(mod);
4136 mutex_unlock(&module_mutex);
4137
4138 ddebug_cleanup:
4139 ftrace_release_mod(mod);
4140 dynamic_debug_remove(mod, info->debug);
4141 synchronize_rcu();
4142 kfree(mod->args);
4143 free_arch_cleanup:
4144 cfi_cleanup(mod);
4145 module_arch_cleanup(mod);
4146 free_modinfo:
4147 free_modinfo(mod);
4148 free_unload:
4149 module_unload_free(mod);
4150 unlink_mod:
4151 mutex_lock(&module_mutex);
4152 /* Unlink carefully: kallsyms could be walking list. */
4153 list_del_rcu(&mod->list);
4154 mod_tree_remove(mod);
4155 wake_up_all(&module_wq);
4156 /* Wait for RCU-sched synchronizing before releasing mod->list. */
4157 synchronize_rcu();
4158 mutex_unlock(&module_mutex);
4159 free_module:
4160 /* Free lock-classes; relies on the preceding sync_rcu() */
4161 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
4162
4163 module_deallocate(mod, info);
4164 free_copy:
4165 free_copy(info, flags);
4166 return err;
4167 }
4168
4169 SYSCALL_DEFINE3(init_module, void __user *, umod,
4170 unsigned long, len, const char __user *, uargs)
4171 {
4172 int err;
4173 struct load_info info = { };
4174
4175 err = may_init_module();
4176 if (err)
4177 return err;
4178
4179 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
4180 umod, len, uargs);
4181
4182 err = copy_module_from_user(umod, len, &info);
4183 if (err)
4184 return err;
4185
4186 return load_module(&info, uargs, 0);
4187 }
4188
4189 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
4190 {
4191 struct load_info info = { };
4192 void *buf = NULL;
4193 int len;
4194 int err;
4195
4196 err = may_init_module();
4197 if (err)
4198 return err;
4199
4200 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
4201
4202 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
4203 |MODULE_INIT_IGNORE_VERMAGIC
4204 |MODULE_INIT_COMPRESSED_FILE))
4205 return -EINVAL;
4206
4207 len = kernel_read_file_from_fd(fd, 0, &buf, INT_MAX, NULL,
4208 READING_MODULE);
4209 if (len < 0)
4210 return len;
4211
4212 if (flags & MODULE_INIT_COMPRESSED_FILE) {
4213 err = module_decompress(&info, buf, len);
4214 vfree(buf); /* compressed data is no longer needed */
4215 if (err)
4216 return err;
4217 } else {
4218 info.hdr = buf;
4219 info.len = len;
4220 }
4221
4222 return load_module(&info, uargs, flags);
4223 }
4224
4225 static inline int within(unsigned long addr, void *start, unsigned long size)
4226 {
4227 return ((void *)addr >= start && (void *)addr < start + size);
4228 }
4229
4230 #ifdef CONFIG_KALLSYMS
4231 /*
4232 * This ignores the intensely annoying "mapping symbols" found
4233 * in ARM ELF files: $a, $t and $d.
4234 */
4235 static inline int is_arm_mapping_symbol(const char *str)
4236 {
4237 if (str[0] == '.' && str[1] == 'L')
4238 return true;
4239 return str[0] == '$' && strchr("axtd", str[1])
4240 && (str[2] == '\0' || str[2] == '.');
4241 }
4242
4243 static const char *kallsyms_symbol_name(struct mod_kallsyms *kallsyms, unsigned int symnum)
4244 {
4245 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
4246 }
4247
4248 /*
4249 * Given a module and address, find the corresponding symbol and return its name
4250 * while providing its size and offset if needed.
4251 */
4252 static const char *find_kallsyms_symbol(struct module *mod,
4253 unsigned long addr,
4254 unsigned long *size,
4255 unsigned long *offset)
4256 {
4257 unsigned int i, best = 0;
4258 unsigned long nextval, bestval;
4259 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4260
4261 /* At worse, next value is at end of module */
4262 if (within_module_init(addr, mod))
4263 nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
4264 else
4265 nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
4266
4267 bestval = kallsyms_symbol_value(&kallsyms->symtab[best]);
4268
4269 /*
4270 * Scan for closest preceding symbol, and next symbol. (ELF
4271 * starts real symbols at 1).
4272 */
4273 for (i = 1; i < kallsyms->num_symtab; i++) {
4274 const Elf_Sym *sym = &kallsyms->symtab[i];
4275 unsigned long thisval = kallsyms_symbol_value(sym);
4276
4277 if (sym->st_shndx == SHN_UNDEF)
4278 continue;
4279
4280 /*
4281 * We ignore unnamed symbols: they're uninformative
4282 * and inserted at a whim.
4283 */
4284 if (*kallsyms_symbol_name(kallsyms, i) == '\0'
4285 || is_arm_mapping_symbol(kallsyms_symbol_name(kallsyms, i)))
4286 continue;
4287
4288 if (thisval <= addr && thisval > bestval) {
4289 best = i;
4290 bestval = thisval;
4291 }
4292 if (thisval > addr && thisval < nextval)
4293 nextval = thisval;
4294 }
4295
4296 if (!best)
4297 return NULL;
4298
4299 if (size)
4300 *size = nextval - bestval;
4301 if (offset)
4302 *offset = addr - bestval;
4303
4304 return kallsyms_symbol_name(kallsyms, best);
4305 }
4306
4307 void * __weak dereference_module_function_descriptor(struct module *mod,
4308 void *ptr)
4309 {
4310 return ptr;
4311 }
4312
4313 /*
4314 * For kallsyms to ask for address resolution. NULL means not found. Careful
4315 * not to lock to avoid deadlock on oopses, simply disable preemption.
4316 */
4317 const char *module_address_lookup(unsigned long addr,
4318 unsigned long *size,
4319 unsigned long *offset,
4320 char **modname,
4321 const unsigned char **modbuildid,
4322 char *namebuf)
4323 {
4324 const char *ret = NULL;
4325 struct module *mod;
4326
4327 preempt_disable();
4328 mod = __module_address(addr);
4329 if (mod) {
4330 if (modname)
4331 *modname = mod->name;
4332 if (modbuildid) {
4333 #if IS_ENABLED(CONFIG_STACKTRACE_BUILD_ID)
4334 *modbuildid = mod->build_id;
4335 #else
4336 *modbuildid = NULL;
4337 #endif
4338 }
4339
4340 ret = find_kallsyms_symbol(mod, addr, size, offset);
4341 }
4342 /* Make a copy in here where it's safe */
4343 if (ret) {
4344 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
4345 ret = namebuf;
4346 }
4347 preempt_enable();
4348
4349 return ret;
4350 }
4351
4352 int lookup_module_symbol_name(unsigned long addr, char *symname)
4353 {
4354 struct module *mod;
4355
4356 preempt_disable();
4357 list_for_each_entry_rcu(mod, &modules, list) {
4358 if (mod->state == MODULE_STATE_UNFORMED)
4359 continue;
4360 if (within_module(addr, mod)) {
4361 const char *sym;
4362
4363 sym = find_kallsyms_symbol(mod, addr, NULL, NULL);
4364 if (!sym)
4365 goto out;
4366
4367 strlcpy(symname, sym, KSYM_NAME_LEN);
4368 preempt_enable();
4369 return 0;
4370 }
4371 }
4372 out:
4373 preempt_enable();
4374 return -ERANGE;
4375 }
4376
4377 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4378 unsigned long *offset, char *modname, char *name)
4379 {
4380 struct module *mod;
4381
4382 preempt_disable();
4383 list_for_each_entry_rcu(mod, &modules, list) {
4384 if (mod->state == MODULE_STATE_UNFORMED)
4385 continue;
4386 if (within_module(addr, mod)) {
4387 const char *sym;
4388
4389 sym = find_kallsyms_symbol(mod, addr, size, offset);
4390 if (!sym)
4391 goto out;
4392 if (modname)
4393 strlcpy(modname, mod->name, MODULE_NAME_LEN);
4394 if (name)
4395 strlcpy(name, sym, KSYM_NAME_LEN);
4396 preempt_enable();
4397 return 0;
4398 }
4399 }
4400 out:
4401 preempt_enable();
4402 return -ERANGE;
4403 }
4404
4405 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4406 char *name, char *module_name, int *exported)
4407 {
4408 struct module *mod;
4409
4410 preempt_disable();
4411 list_for_each_entry_rcu(mod, &modules, list) {
4412 struct mod_kallsyms *kallsyms;
4413
4414 if (mod->state == MODULE_STATE_UNFORMED)
4415 continue;
4416 kallsyms = rcu_dereference_sched(mod->kallsyms);
4417 if (symnum < kallsyms->num_symtab) {
4418 const Elf_Sym *sym = &kallsyms->symtab[symnum];
4419
4420 *value = kallsyms_symbol_value(sym);
4421 *type = kallsyms->typetab[symnum];
4422 strlcpy(name, kallsyms_symbol_name(kallsyms, symnum), KSYM_NAME_LEN);
4423 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4424 *exported = is_exported(name, *value, mod);
4425 preempt_enable();
4426 return 0;
4427 }
4428 symnum -= kallsyms->num_symtab;
4429 }
4430 preempt_enable();
4431 return -ERANGE;
4432 }
4433
4434 /* Given a module and name of symbol, find and return the symbol's value */
4435 static unsigned long find_kallsyms_symbol_value(struct module *mod, const char *name)
4436 {
4437 unsigned int i;
4438 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4439
4440 for (i = 0; i < kallsyms->num_symtab; i++) {
4441 const Elf_Sym *sym = &kallsyms->symtab[i];
4442
4443 if (strcmp(name, kallsyms_symbol_name(kallsyms, i)) == 0 &&
4444 sym->st_shndx != SHN_UNDEF)
4445 return kallsyms_symbol_value(sym);
4446 }
4447 return 0;
4448 }
4449
4450 /* Look for this name: can be of form module:name. */
4451 unsigned long module_kallsyms_lookup_name(const char *name)
4452 {
4453 struct module *mod;
4454 char *colon;
4455 unsigned long ret = 0;
4456
4457 /* Don't lock: we're in enough trouble already. */
4458 preempt_disable();
4459 if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4460 if ((mod = find_module_all(name, colon - name, false)) != NULL)
4461 ret = find_kallsyms_symbol_value(mod, colon+1);
4462 } else {
4463 list_for_each_entry_rcu(mod, &modules, list) {
4464 if (mod->state == MODULE_STATE_UNFORMED)
4465 continue;
4466 if ((ret = find_kallsyms_symbol_value(mod, name)) != 0)
4467 break;
4468 }
4469 }
4470 preempt_enable();
4471 return ret;
4472 }
4473
4474 #ifdef CONFIG_LIVEPATCH
4475 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4476 struct module *, unsigned long),
4477 void *data)
4478 {
4479 struct module *mod;
4480 unsigned int i;
4481 int ret = 0;
4482
4483 mutex_lock(&module_mutex);
4484 list_for_each_entry(mod, &modules, list) {
4485 /* We hold module_mutex: no need for rcu_dereference_sched */
4486 struct mod_kallsyms *kallsyms = mod->kallsyms;
4487
4488 if (mod->state == MODULE_STATE_UNFORMED)
4489 continue;
4490 for (i = 0; i < kallsyms->num_symtab; i++) {
4491 const Elf_Sym *sym = &kallsyms->symtab[i];
4492
4493 if (sym->st_shndx == SHN_UNDEF)
4494 continue;
4495
4496 ret = fn(data, kallsyms_symbol_name(kallsyms, i),
4497 mod, kallsyms_symbol_value(sym));
4498 if (ret != 0)
4499 goto out;
4500
4501 cond_resched();
4502 }
4503 }
4504 out:
4505 mutex_unlock(&module_mutex);
4506 return ret;
4507 }
4508 #endif /* CONFIG_LIVEPATCH */
4509 #endif /* CONFIG_KALLSYMS */
4510
4511 static void cfi_init(struct module *mod)
4512 {
4513 #ifdef CONFIG_CFI_CLANG
4514 initcall_t *init;
4515 exitcall_t *exit;
4516
4517 rcu_read_lock_sched();
4518 mod->cfi_check = (cfi_check_fn)
4519 find_kallsyms_symbol_value(mod, "__cfi_check");
4520 init = (initcall_t *)
4521 find_kallsyms_symbol_value(mod, "__cfi_jt_init_module");
4522 exit = (exitcall_t *)
4523 find_kallsyms_symbol_value(mod, "__cfi_jt_cleanup_module");
4524 rcu_read_unlock_sched();
4525
4526 /* Fix init/exit functions to point to the CFI jump table */
4527 if (init)
4528 mod->init = *init;
4529 #ifdef CONFIG_MODULE_UNLOAD
4530 if (exit)
4531 mod->exit = *exit;
4532 #endif
4533
4534 cfi_module_add(mod, module_addr_min);
4535 #endif
4536 }
4537
4538 static void cfi_cleanup(struct module *mod)
4539 {
4540 #ifdef CONFIG_CFI_CLANG
4541 cfi_module_remove(mod, module_addr_min);
4542 #endif
4543 }
4544
4545 /* Maximum number of characters written by module_flags() */
4546 #define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4547
4548 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
4549 static char *module_flags(struct module *mod, char *buf)
4550 {
4551 int bx = 0;
4552
4553 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4554 if (mod->taints ||
4555 mod->state == MODULE_STATE_GOING ||
4556 mod->state == MODULE_STATE_COMING) {
4557 buf[bx++] = '(';
4558 bx += module_flags_taint(mod, buf + bx);
4559 /* Show a - for module-is-being-unloaded */
4560 if (mod->state == MODULE_STATE_GOING)
4561 buf[bx++] = '-';
4562 /* Show a + for module-is-being-loaded */
4563 if (mod->state == MODULE_STATE_COMING)
4564 buf[bx++] = '+';
4565 buf[bx++] = ')';
4566 }
4567 buf[bx] = '\0';
4568
4569 return buf;
4570 }
4571
4572 #ifdef CONFIG_PROC_FS
4573 /* Called by the /proc file system to return a list of modules. */
4574 static void *m_start(struct seq_file *m, loff_t *pos)
4575 {
4576 mutex_lock(&module_mutex);
4577 return seq_list_start(&modules, *pos);
4578 }
4579
4580 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4581 {
4582 return seq_list_next(p, &modules, pos);
4583 }
4584
4585 static void m_stop(struct seq_file *m, void *p)
4586 {
4587 mutex_unlock(&module_mutex);
4588 }
4589
4590 static int m_show(struct seq_file *m, void *p)
4591 {
4592 struct module *mod = list_entry(p, struct module, list);
4593 char buf[MODULE_FLAGS_BUF_SIZE];
4594 void *value;
4595
4596 /* We always ignore unformed modules. */
4597 if (mod->state == MODULE_STATE_UNFORMED)
4598 return 0;
4599
4600 seq_printf(m, "%s %u",
4601 mod->name, mod->init_layout.size + mod->core_layout.size);
4602 print_unload_info(m, mod);
4603
4604 /* Informative for users. */
4605 seq_printf(m, " %s",
4606 mod->state == MODULE_STATE_GOING ? "Unloading" :
4607 mod->state == MODULE_STATE_COMING ? "Loading" :
4608 "Live");
4609 /* Used by oprofile and other similar tools. */
4610 value = m->private ? NULL : mod->core_layout.base;
4611 seq_printf(m, " 0x%px", value);
4612
4613 /* Taints info */
4614 if (mod->taints)
4615 seq_printf(m, " %s", module_flags(mod, buf));
4616
4617 seq_puts(m, "\n");
4618 return 0;
4619 }
4620
4621 /*
4622 * Format: modulename size refcount deps address
4623 *
4624 * Where refcount is a number or -, and deps is a comma-separated list
4625 * of depends or -.
4626 */
4627 static const struct seq_operations modules_op = {
4628 .start = m_start,
4629 .next = m_next,
4630 .stop = m_stop,
4631 .show = m_show
4632 };
4633
4634 /*
4635 * This also sets the "private" pointer to non-NULL if the
4636 * kernel pointers should be hidden (so you can just test
4637 * "m->private" to see if you should keep the values private).
4638 *
4639 * We use the same logic as for /proc/kallsyms.
4640 */
4641 static int modules_open(struct inode *inode, struct file *file)
4642 {
4643 int err = seq_open(file, &modules_op);
4644
4645 if (!err) {
4646 struct seq_file *m = file->private_data;
4647 m->private = kallsyms_show_value(file->f_cred) ? NULL : (void *)8ul;
4648 }
4649
4650 return err;
4651 }
4652
4653 static const struct proc_ops modules_proc_ops = {
4654 .proc_flags = PROC_ENTRY_PERMANENT,
4655 .proc_open = modules_open,
4656 .proc_read = seq_read,
4657 .proc_lseek = seq_lseek,
4658 .proc_release = seq_release,
4659 };
4660
4661 static int __init proc_modules_init(void)
4662 {
4663 proc_create("modules", 0, NULL, &modules_proc_ops);
4664 return 0;
4665 }
4666 module_init(proc_modules_init);
4667 #endif
4668
4669 /* Given an address, look for it in the module exception tables. */
4670 const struct exception_table_entry *search_module_extables(unsigned long addr)
4671 {
4672 const struct exception_table_entry *e = NULL;
4673 struct module *mod;
4674
4675 preempt_disable();
4676 mod = __module_address(addr);
4677 if (!mod)
4678 goto out;
4679
4680 if (!mod->num_exentries)
4681 goto out;
4682
4683 e = search_extable(mod->extable,
4684 mod->num_exentries,
4685 addr);
4686 out:
4687 preempt_enable();
4688
4689 /*
4690 * Now, if we found one, we are running inside it now, hence
4691 * we cannot unload the module, hence no refcnt needed.
4692 */
4693 return e;
4694 }
4695
4696 /**
4697 * is_module_address() - is this address inside a module?
4698 * @addr: the address to check.
4699 *
4700 * See is_module_text_address() if you simply want to see if the address
4701 * is code (not data).
4702 */
4703 bool is_module_address(unsigned long addr)
4704 {
4705 bool ret;
4706
4707 preempt_disable();
4708 ret = __module_address(addr) != NULL;
4709 preempt_enable();
4710
4711 return ret;
4712 }
4713
4714 /**
4715 * __module_address() - get the module which contains an address.
4716 * @addr: the address.
4717 *
4718 * Must be called with preempt disabled or module mutex held so that
4719 * module doesn't get freed during this.
4720 */
4721 struct module *__module_address(unsigned long addr)
4722 {
4723 struct module *mod;
4724
4725 if (addr < module_addr_min || addr > module_addr_max)
4726 return NULL;
4727
4728 module_assert_mutex_or_preempt();
4729
4730 mod = mod_find(addr);
4731 if (mod) {
4732 BUG_ON(!within_module(addr, mod));
4733 if (mod->state == MODULE_STATE_UNFORMED)
4734 mod = NULL;
4735 }
4736 return mod;
4737 }
4738
4739 /**
4740 * is_module_text_address() - is this address inside module code?
4741 * @addr: the address to check.
4742 *
4743 * See is_module_address() if you simply want to see if the address is
4744 * anywhere in a module. See kernel_text_address() for testing if an
4745 * address corresponds to kernel or module code.
4746 */
4747 bool is_module_text_address(unsigned long addr)
4748 {
4749 bool ret;
4750
4751 preempt_disable();
4752 ret = __module_text_address(addr) != NULL;
4753 preempt_enable();
4754
4755 return ret;
4756 }
4757
4758 /**
4759 * __module_text_address() - get the module whose code contains an address.
4760 * @addr: the address.
4761 *
4762 * Must be called with preempt disabled or module mutex held so that
4763 * module doesn't get freed during this.
4764 */
4765 struct module *__module_text_address(unsigned long addr)
4766 {
4767 struct module *mod = __module_address(addr);
4768 if (mod) {
4769 /* Make sure it's within the text section. */
4770 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4771 && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4772 mod = NULL;
4773 }
4774 return mod;
4775 }
4776
4777 /* Don't grab lock, we're oopsing. */
4778 void print_modules(void)
4779 {
4780 struct module *mod;
4781 char buf[MODULE_FLAGS_BUF_SIZE];
4782
4783 printk(KERN_DEFAULT "Modules linked in:");
4784 /* Most callers should already have preempt disabled, but make sure */
4785 preempt_disable();
4786 list_for_each_entry_rcu(mod, &modules, list) {
4787 if (mod->state == MODULE_STATE_UNFORMED)
4788 continue;
4789 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4790 }
4791 preempt_enable();
4792 if (last_unloaded_module[0])
4793 pr_cont(" [last unloaded: %s]", last_unloaded_module);
4794 pr_cont("\n");
4795 }
4796
4797 #ifdef CONFIG_MODVERSIONS
4798 /*
4799 * Generate the signature for all relevant module structures here.
4800 * If these change, we don't want to try to parse the module.
4801 */
4802 void module_layout(struct module *mod,
4803 struct modversion_info *ver,
4804 struct kernel_param *kp,
4805 struct kernel_symbol *ks,
4806 struct tracepoint * const *tp)
4807 {
4808 }
4809 EXPORT_SYMBOL(module_layout);
4810 #endif