]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/panic.c
Merge tag 'pcmcia-6.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/brodo...
[thirdparty/linux.git] / kernel / panic.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/panic.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * This function is used through-out the kernel (including mm and fs)
10 * to indicate a major problem.
11 */
12 #include <linux/debug_locks.h>
13 #include <linux/sched/debug.h>
14 #include <linux/interrupt.h>
15 #include <linux/kgdb.h>
16 #include <linux/kmsg_dump.h>
17 #include <linux/kallsyms.h>
18 #include <linux/notifier.h>
19 #include <linux/vt_kern.h>
20 #include <linux/module.h>
21 #include <linux/random.h>
22 #include <linux/ftrace.h>
23 #include <linux/reboot.h>
24 #include <linux/delay.h>
25 #include <linux/kexec.h>
26 #include <linux/panic_notifier.h>
27 #include <linux/sched.h>
28 #include <linux/string_helpers.h>
29 #include <linux/sysrq.h>
30 #include <linux/init.h>
31 #include <linux/nmi.h>
32 #include <linux/console.h>
33 #include <linux/bug.h>
34 #include <linux/ratelimit.h>
35 #include <linux/debugfs.h>
36 #include <linux/sysfs.h>
37 #include <linux/context_tracking.h>
38 #include <trace/events/error_report.h>
39 #include <asm/sections.h>
40
41 #define PANIC_TIMER_STEP 100
42 #define PANIC_BLINK_SPD 18
43
44 #ifdef CONFIG_SMP
45 /*
46 * Should we dump all CPUs backtraces in an oops event?
47 * Defaults to 0, can be changed via sysctl.
48 */
49 static unsigned int __read_mostly sysctl_oops_all_cpu_backtrace;
50 #else
51 #define sysctl_oops_all_cpu_backtrace 0
52 #endif /* CONFIG_SMP */
53
54 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
55 static unsigned long tainted_mask =
56 IS_ENABLED(CONFIG_RANDSTRUCT) ? (1 << TAINT_RANDSTRUCT) : 0;
57 static int pause_on_oops;
58 static int pause_on_oops_flag;
59 static DEFINE_SPINLOCK(pause_on_oops_lock);
60 bool crash_kexec_post_notifiers;
61 int panic_on_warn __read_mostly;
62 unsigned long panic_on_taint;
63 bool panic_on_taint_nousertaint = false;
64 static unsigned int warn_limit __read_mostly;
65
66 int panic_timeout = CONFIG_PANIC_TIMEOUT;
67 EXPORT_SYMBOL_GPL(panic_timeout);
68
69 #define PANIC_PRINT_TASK_INFO 0x00000001
70 #define PANIC_PRINT_MEM_INFO 0x00000002
71 #define PANIC_PRINT_TIMER_INFO 0x00000004
72 #define PANIC_PRINT_LOCK_INFO 0x00000008
73 #define PANIC_PRINT_FTRACE_INFO 0x00000010
74 #define PANIC_PRINT_ALL_PRINTK_MSG 0x00000020
75 #define PANIC_PRINT_ALL_CPU_BT 0x00000040
76 unsigned long panic_print;
77
78 ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
79
80 EXPORT_SYMBOL(panic_notifier_list);
81
82 #ifdef CONFIG_SYSCTL
83 static struct ctl_table kern_panic_table[] = {
84 #ifdef CONFIG_SMP
85 {
86 .procname = "oops_all_cpu_backtrace",
87 .data = &sysctl_oops_all_cpu_backtrace,
88 .maxlen = sizeof(int),
89 .mode = 0644,
90 .proc_handler = proc_dointvec_minmax,
91 .extra1 = SYSCTL_ZERO,
92 .extra2 = SYSCTL_ONE,
93 },
94 #endif
95 {
96 .procname = "warn_limit",
97 .data = &warn_limit,
98 .maxlen = sizeof(warn_limit),
99 .mode = 0644,
100 .proc_handler = proc_douintvec,
101 },
102 { }
103 };
104
105 static __init int kernel_panic_sysctls_init(void)
106 {
107 register_sysctl_init("kernel", kern_panic_table);
108 return 0;
109 }
110 late_initcall(kernel_panic_sysctls_init);
111 #endif
112
113 static atomic_t warn_count = ATOMIC_INIT(0);
114
115 #ifdef CONFIG_SYSFS
116 static ssize_t warn_count_show(struct kobject *kobj, struct kobj_attribute *attr,
117 char *page)
118 {
119 return sysfs_emit(page, "%d\n", atomic_read(&warn_count));
120 }
121
122 static struct kobj_attribute warn_count_attr = __ATTR_RO(warn_count);
123
124 static __init int kernel_panic_sysfs_init(void)
125 {
126 sysfs_add_file_to_group(kernel_kobj, &warn_count_attr.attr, NULL);
127 return 0;
128 }
129 late_initcall(kernel_panic_sysfs_init);
130 #endif
131
132 static long no_blink(int state)
133 {
134 return 0;
135 }
136
137 /* Returns how long it waited in ms */
138 long (*panic_blink)(int state);
139 EXPORT_SYMBOL(panic_blink);
140
141 /*
142 * Stop ourself in panic -- architecture code may override this
143 */
144 void __weak __noreturn panic_smp_self_stop(void)
145 {
146 while (1)
147 cpu_relax();
148 }
149
150 /*
151 * Stop ourselves in NMI context if another CPU has already panicked. Arch code
152 * may override this to prepare for crash dumping, e.g. save regs info.
153 */
154 void __weak __noreturn nmi_panic_self_stop(struct pt_regs *regs)
155 {
156 panic_smp_self_stop();
157 }
158
159 /*
160 * Stop other CPUs in panic. Architecture dependent code may override this
161 * with more suitable version. For example, if the architecture supports
162 * crash dump, it should save registers of each stopped CPU and disable
163 * per-CPU features such as virtualization extensions.
164 */
165 void __weak crash_smp_send_stop(void)
166 {
167 static int cpus_stopped;
168
169 /*
170 * This function can be called twice in panic path, but obviously
171 * we execute this only once.
172 */
173 if (cpus_stopped)
174 return;
175
176 /*
177 * Note smp_send_stop is the usual smp shutdown function, which
178 * unfortunately means it may not be hardened to work in a panic
179 * situation.
180 */
181 smp_send_stop();
182 cpus_stopped = 1;
183 }
184
185 atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
186
187 /*
188 * A variant of panic() called from NMI context. We return if we've already
189 * panicked on this CPU. If another CPU already panicked, loop in
190 * nmi_panic_self_stop() which can provide architecture dependent code such
191 * as saving register state for crash dump.
192 */
193 void nmi_panic(struct pt_regs *regs, const char *msg)
194 {
195 int old_cpu, this_cpu;
196
197 old_cpu = PANIC_CPU_INVALID;
198 this_cpu = raw_smp_processor_id();
199
200 /* atomic_try_cmpxchg updates old_cpu on failure */
201 if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu))
202 panic("%s", msg);
203 else if (old_cpu != this_cpu)
204 nmi_panic_self_stop(regs);
205 }
206 EXPORT_SYMBOL(nmi_panic);
207
208 static void panic_print_sys_info(bool console_flush)
209 {
210 if (console_flush) {
211 if (panic_print & PANIC_PRINT_ALL_PRINTK_MSG)
212 console_flush_on_panic(CONSOLE_REPLAY_ALL);
213 return;
214 }
215
216 if (panic_print & PANIC_PRINT_TASK_INFO)
217 show_state();
218
219 if (panic_print & PANIC_PRINT_MEM_INFO)
220 show_mem();
221
222 if (panic_print & PANIC_PRINT_TIMER_INFO)
223 sysrq_timer_list_show();
224
225 if (panic_print & PANIC_PRINT_LOCK_INFO)
226 debug_show_all_locks();
227
228 if (panic_print & PANIC_PRINT_FTRACE_INFO)
229 ftrace_dump(DUMP_ALL);
230 }
231
232 void check_panic_on_warn(const char *origin)
233 {
234 unsigned int limit;
235
236 if (panic_on_warn)
237 panic("%s: panic_on_warn set ...\n", origin);
238
239 limit = READ_ONCE(warn_limit);
240 if (atomic_inc_return(&warn_count) >= limit && limit)
241 panic("%s: system warned too often (kernel.warn_limit is %d)",
242 origin, limit);
243 }
244
245 /*
246 * Helper that triggers the NMI backtrace (if set in panic_print)
247 * and then performs the secondary CPUs shutdown - we cannot have
248 * the NMI backtrace after the CPUs are off!
249 */
250 static void panic_other_cpus_shutdown(bool crash_kexec)
251 {
252 if (panic_print & PANIC_PRINT_ALL_CPU_BT)
253 trigger_all_cpu_backtrace();
254
255 /*
256 * Note that smp_send_stop() is the usual SMP shutdown function,
257 * which unfortunately may not be hardened to work in a panic
258 * situation. If we want to do crash dump after notifier calls
259 * and kmsg_dump, we will need architecture dependent extra
260 * bits in addition to stopping other CPUs, hence we rely on
261 * crash_smp_send_stop() for that.
262 */
263 if (!crash_kexec)
264 smp_send_stop();
265 else
266 crash_smp_send_stop();
267 }
268
269 /**
270 * panic - halt the system
271 * @fmt: The text string to print
272 *
273 * Display a message, then perform cleanups.
274 *
275 * This function never returns.
276 */
277 void panic(const char *fmt, ...)
278 {
279 static char buf[1024];
280 va_list args;
281 long i, i_next = 0, len;
282 int state = 0;
283 int old_cpu, this_cpu;
284 bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers;
285
286 if (panic_on_warn) {
287 /*
288 * This thread may hit another WARN() in the panic path.
289 * Resetting this prevents additional WARN() from panicking the
290 * system on this thread. Other threads are blocked by the
291 * panic_mutex in panic().
292 */
293 panic_on_warn = 0;
294 }
295
296 /*
297 * Disable local interrupts. This will prevent panic_smp_self_stop
298 * from deadlocking the first cpu that invokes the panic, since
299 * there is nothing to prevent an interrupt handler (that runs
300 * after setting panic_cpu) from invoking panic() again.
301 */
302 local_irq_disable();
303 preempt_disable_notrace();
304
305 /*
306 * It's possible to come here directly from a panic-assertion and
307 * not have preempt disabled. Some functions called from here want
308 * preempt to be disabled. No point enabling it later though...
309 *
310 * Only one CPU is allowed to execute the panic code from here. For
311 * multiple parallel invocations of panic, all other CPUs either
312 * stop themself or will wait until they are stopped by the 1st CPU
313 * with smp_send_stop().
314 *
315 * cmpxchg success means this is the 1st CPU which comes here,
316 * so go ahead.
317 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
318 * panic_cpu to this CPU. In this case, this is also the 1st CPU.
319 */
320 old_cpu = PANIC_CPU_INVALID;
321 this_cpu = raw_smp_processor_id();
322
323 /* atomic_try_cmpxchg updates old_cpu on failure */
324 if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu)) {
325 /* go ahead */
326 } else if (old_cpu != this_cpu)
327 panic_smp_self_stop();
328
329 console_verbose();
330 bust_spinlocks(1);
331 va_start(args, fmt);
332 len = vscnprintf(buf, sizeof(buf), fmt, args);
333 va_end(args);
334
335 if (len && buf[len - 1] == '\n')
336 buf[len - 1] = '\0';
337
338 pr_emerg("Kernel panic - not syncing: %s\n", buf);
339 #ifdef CONFIG_DEBUG_BUGVERBOSE
340 /*
341 * Avoid nested stack-dumping if a panic occurs during oops processing
342 */
343 if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
344 dump_stack();
345 #endif
346
347 /*
348 * If kgdb is enabled, give it a chance to run before we stop all
349 * the other CPUs or else we won't be able to debug processes left
350 * running on them.
351 */
352 kgdb_panic(buf);
353
354 /*
355 * If we have crashed and we have a crash kernel loaded let it handle
356 * everything else.
357 * If we want to run this after calling panic_notifiers, pass
358 * the "crash_kexec_post_notifiers" option to the kernel.
359 *
360 * Bypass the panic_cpu check and call __crash_kexec directly.
361 */
362 if (!_crash_kexec_post_notifiers)
363 __crash_kexec(NULL);
364
365 panic_other_cpus_shutdown(_crash_kexec_post_notifiers);
366
367 /*
368 * Run any panic handlers, including those that might need to
369 * add information to the kmsg dump output.
370 */
371 atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
372
373 panic_print_sys_info(false);
374
375 kmsg_dump(KMSG_DUMP_PANIC);
376
377 /*
378 * If you doubt kdump always works fine in any situation,
379 * "crash_kexec_post_notifiers" offers you a chance to run
380 * panic_notifiers and dumping kmsg before kdump.
381 * Note: since some panic_notifiers can make crashed kernel
382 * more unstable, it can increase risks of the kdump failure too.
383 *
384 * Bypass the panic_cpu check and call __crash_kexec directly.
385 */
386 if (_crash_kexec_post_notifiers)
387 __crash_kexec(NULL);
388
389 console_unblank();
390
391 /*
392 * We may have ended up stopping the CPU holding the lock (in
393 * smp_send_stop()) while still having some valuable data in the console
394 * buffer. Try to acquire the lock then release it regardless of the
395 * result. The release will also print the buffers out. Locks debug
396 * should be disabled to avoid reporting bad unlock balance when
397 * panic() is not being callled from OOPS.
398 */
399 debug_locks_off();
400 console_flush_on_panic(CONSOLE_FLUSH_PENDING);
401
402 panic_print_sys_info(true);
403
404 if (!panic_blink)
405 panic_blink = no_blink;
406
407 if (panic_timeout > 0) {
408 /*
409 * Delay timeout seconds before rebooting the machine.
410 * We can't use the "normal" timers since we just panicked.
411 */
412 pr_emerg("Rebooting in %d seconds..\n", panic_timeout);
413
414 for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
415 touch_nmi_watchdog();
416 if (i >= i_next) {
417 i += panic_blink(state ^= 1);
418 i_next = i + 3600 / PANIC_BLINK_SPD;
419 }
420 mdelay(PANIC_TIMER_STEP);
421 }
422 }
423 if (panic_timeout != 0) {
424 /*
425 * This will not be a clean reboot, with everything
426 * shutting down. But if there is a chance of
427 * rebooting the system it will be rebooted.
428 */
429 if (panic_reboot_mode != REBOOT_UNDEFINED)
430 reboot_mode = panic_reboot_mode;
431 emergency_restart();
432 }
433 #ifdef __sparc__
434 {
435 extern int stop_a_enabled;
436 /* Make sure the user can actually press Stop-A (L1-A) */
437 stop_a_enabled = 1;
438 pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n"
439 "twice on console to return to the boot prom\n");
440 }
441 #endif
442 #if defined(CONFIG_S390)
443 disabled_wait();
444 #endif
445 pr_emerg("---[ end Kernel panic - not syncing: %s ]---\n", buf);
446
447 /* Do not scroll important messages printed above */
448 suppress_printk = 1;
449 local_irq_enable();
450 for (i = 0; ; i += PANIC_TIMER_STEP) {
451 touch_softlockup_watchdog();
452 if (i >= i_next) {
453 i += panic_blink(state ^= 1);
454 i_next = i + 3600 / PANIC_BLINK_SPD;
455 }
456 mdelay(PANIC_TIMER_STEP);
457 }
458 }
459
460 EXPORT_SYMBOL(panic);
461
462 /*
463 * TAINT_FORCED_RMMOD could be a per-module flag but the module
464 * is being removed anyway.
465 */
466 const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = {
467 [ TAINT_PROPRIETARY_MODULE ] = { 'P', 'G', true },
468 [ TAINT_FORCED_MODULE ] = { 'F', ' ', true },
469 [ TAINT_CPU_OUT_OF_SPEC ] = { 'S', ' ', false },
470 [ TAINT_FORCED_RMMOD ] = { 'R', ' ', false },
471 [ TAINT_MACHINE_CHECK ] = { 'M', ' ', false },
472 [ TAINT_BAD_PAGE ] = { 'B', ' ', false },
473 [ TAINT_USER ] = { 'U', ' ', false },
474 [ TAINT_DIE ] = { 'D', ' ', false },
475 [ TAINT_OVERRIDDEN_ACPI_TABLE ] = { 'A', ' ', false },
476 [ TAINT_WARN ] = { 'W', ' ', false },
477 [ TAINT_CRAP ] = { 'C', ' ', true },
478 [ TAINT_FIRMWARE_WORKAROUND ] = { 'I', ' ', false },
479 [ TAINT_OOT_MODULE ] = { 'O', ' ', true },
480 [ TAINT_UNSIGNED_MODULE ] = { 'E', ' ', true },
481 [ TAINT_SOFTLOCKUP ] = { 'L', ' ', false },
482 [ TAINT_LIVEPATCH ] = { 'K', ' ', true },
483 [ TAINT_AUX ] = { 'X', ' ', true },
484 [ TAINT_RANDSTRUCT ] = { 'T', ' ', true },
485 [ TAINT_TEST ] = { 'N', ' ', true },
486 };
487
488 /**
489 * print_tainted - return a string to represent the kernel taint state.
490 *
491 * For individual taint flag meanings, see Documentation/admin-guide/sysctl/kernel.rst
492 *
493 * The string is overwritten by the next call to print_tainted(),
494 * but is always NULL terminated.
495 */
496 const char *print_tainted(void)
497 {
498 static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")];
499
500 BUILD_BUG_ON(ARRAY_SIZE(taint_flags) != TAINT_FLAGS_COUNT);
501
502 if (tainted_mask) {
503 char *s;
504 int i;
505
506 s = buf + sprintf(buf, "Tainted: ");
507 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
508 const struct taint_flag *t = &taint_flags[i];
509 *s++ = test_bit(i, &tainted_mask) ?
510 t->c_true : t->c_false;
511 }
512 *s = 0;
513 } else
514 snprintf(buf, sizeof(buf), "Not tainted");
515
516 return buf;
517 }
518
519 int test_taint(unsigned flag)
520 {
521 return test_bit(flag, &tainted_mask);
522 }
523 EXPORT_SYMBOL(test_taint);
524
525 unsigned long get_taint(void)
526 {
527 return tainted_mask;
528 }
529
530 /**
531 * add_taint: add a taint flag if not already set.
532 * @flag: one of the TAINT_* constants.
533 * @lockdep_ok: whether lock debugging is still OK.
534 *
535 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
536 * some notewortht-but-not-corrupting cases, it can be set to true.
537 */
538 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
539 {
540 if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
541 pr_warn("Disabling lock debugging due to kernel taint\n");
542
543 set_bit(flag, &tainted_mask);
544
545 if (tainted_mask & panic_on_taint) {
546 panic_on_taint = 0;
547 panic("panic_on_taint set ...");
548 }
549 }
550 EXPORT_SYMBOL(add_taint);
551
552 static void spin_msec(int msecs)
553 {
554 int i;
555
556 for (i = 0; i < msecs; i++) {
557 touch_nmi_watchdog();
558 mdelay(1);
559 }
560 }
561
562 /*
563 * It just happens that oops_enter() and oops_exit() are identically
564 * implemented...
565 */
566 static void do_oops_enter_exit(void)
567 {
568 unsigned long flags;
569 static int spin_counter;
570
571 if (!pause_on_oops)
572 return;
573
574 spin_lock_irqsave(&pause_on_oops_lock, flags);
575 if (pause_on_oops_flag == 0) {
576 /* This CPU may now print the oops message */
577 pause_on_oops_flag = 1;
578 } else {
579 /* We need to stall this CPU */
580 if (!spin_counter) {
581 /* This CPU gets to do the counting */
582 spin_counter = pause_on_oops;
583 do {
584 spin_unlock(&pause_on_oops_lock);
585 spin_msec(MSEC_PER_SEC);
586 spin_lock(&pause_on_oops_lock);
587 } while (--spin_counter);
588 pause_on_oops_flag = 0;
589 } else {
590 /* This CPU waits for a different one */
591 while (spin_counter) {
592 spin_unlock(&pause_on_oops_lock);
593 spin_msec(1);
594 spin_lock(&pause_on_oops_lock);
595 }
596 }
597 }
598 spin_unlock_irqrestore(&pause_on_oops_lock, flags);
599 }
600
601 /*
602 * Return true if the calling CPU is allowed to print oops-related info.
603 * This is a bit racy..
604 */
605 bool oops_may_print(void)
606 {
607 return pause_on_oops_flag == 0;
608 }
609
610 /*
611 * Called when the architecture enters its oops handler, before it prints
612 * anything. If this is the first CPU to oops, and it's oopsing the first
613 * time then let it proceed.
614 *
615 * This is all enabled by the pause_on_oops kernel boot option. We do all
616 * this to ensure that oopses don't scroll off the screen. It has the
617 * side-effect of preventing later-oopsing CPUs from mucking up the display,
618 * too.
619 *
620 * It turns out that the CPU which is allowed to print ends up pausing for
621 * the right duration, whereas all the other CPUs pause for twice as long:
622 * once in oops_enter(), once in oops_exit().
623 */
624 void oops_enter(void)
625 {
626 tracing_off();
627 /* can't trust the integrity of the kernel anymore: */
628 debug_locks_off();
629 do_oops_enter_exit();
630
631 if (sysctl_oops_all_cpu_backtrace)
632 trigger_all_cpu_backtrace();
633 }
634
635 static void print_oops_end_marker(void)
636 {
637 pr_warn("---[ end trace %016llx ]---\n", 0ULL);
638 }
639
640 /*
641 * Called when the architecture exits its oops handler, after printing
642 * everything.
643 */
644 void oops_exit(void)
645 {
646 do_oops_enter_exit();
647 print_oops_end_marker();
648 kmsg_dump(KMSG_DUMP_OOPS);
649 }
650
651 struct warn_args {
652 const char *fmt;
653 va_list args;
654 };
655
656 void __warn(const char *file, int line, void *caller, unsigned taint,
657 struct pt_regs *regs, struct warn_args *args)
658 {
659 disable_trace_on_warning();
660
661 if (file)
662 pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
663 raw_smp_processor_id(), current->pid, file, line,
664 caller);
665 else
666 pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
667 raw_smp_processor_id(), current->pid, caller);
668
669 if (args)
670 vprintk(args->fmt, args->args);
671
672 print_modules();
673
674 if (regs)
675 show_regs(regs);
676
677 check_panic_on_warn("kernel");
678
679 if (!regs)
680 dump_stack();
681
682 print_irqtrace_events(current);
683
684 print_oops_end_marker();
685 trace_error_report_end(ERROR_DETECTOR_WARN, (unsigned long)caller);
686
687 /* Just a warning, don't kill lockdep. */
688 add_taint(taint, LOCKDEP_STILL_OK);
689 }
690
691 #ifdef CONFIG_BUG
692 #ifndef __WARN_FLAGS
693 void warn_slowpath_fmt(const char *file, int line, unsigned taint,
694 const char *fmt, ...)
695 {
696 bool rcu = warn_rcu_enter();
697 struct warn_args args;
698
699 pr_warn(CUT_HERE);
700
701 if (!fmt) {
702 __warn(file, line, __builtin_return_address(0), taint,
703 NULL, NULL);
704 warn_rcu_exit(rcu);
705 return;
706 }
707
708 args.fmt = fmt;
709 va_start(args.args, fmt);
710 __warn(file, line, __builtin_return_address(0), taint, NULL, &args);
711 va_end(args.args);
712 warn_rcu_exit(rcu);
713 }
714 EXPORT_SYMBOL(warn_slowpath_fmt);
715 #else
716 void __warn_printk(const char *fmt, ...)
717 {
718 bool rcu = warn_rcu_enter();
719 va_list args;
720
721 pr_warn(CUT_HERE);
722
723 va_start(args, fmt);
724 vprintk(fmt, args);
725 va_end(args);
726 warn_rcu_exit(rcu);
727 }
728 EXPORT_SYMBOL(__warn_printk);
729 #endif
730
731 /* Support resetting WARN*_ONCE state */
732
733 static int clear_warn_once_set(void *data, u64 val)
734 {
735 generic_bug_clear_once();
736 memset(__start_once, 0, __end_once - __start_once);
737 return 0;
738 }
739
740 DEFINE_DEBUGFS_ATTRIBUTE(clear_warn_once_fops, NULL, clear_warn_once_set,
741 "%lld\n");
742
743 static __init int register_warn_debugfs(void)
744 {
745 /* Don't care about failure */
746 debugfs_create_file_unsafe("clear_warn_once", 0200, NULL, NULL,
747 &clear_warn_once_fops);
748 return 0;
749 }
750
751 device_initcall(register_warn_debugfs);
752 #endif
753
754 #ifdef CONFIG_STACKPROTECTOR
755
756 /*
757 * Called when gcc's -fstack-protector feature is used, and
758 * gcc detects corruption of the on-stack canary value
759 */
760 __visible noinstr void __stack_chk_fail(void)
761 {
762 instrumentation_begin();
763 panic("stack-protector: Kernel stack is corrupted in: %pB",
764 __builtin_return_address(0));
765 instrumentation_end();
766 }
767 EXPORT_SYMBOL(__stack_chk_fail);
768
769 #endif
770
771 core_param(panic, panic_timeout, int, 0644);
772 core_param(panic_print, panic_print, ulong, 0644);
773 core_param(pause_on_oops, pause_on_oops, int, 0644);
774 core_param(panic_on_warn, panic_on_warn, int, 0644);
775 core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644);
776
777 static int __init oops_setup(char *s)
778 {
779 if (!s)
780 return -EINVAL;
781 if (!strcmp(s, "panic"))
782 panic_on_oops = 1;
783 return 0;
784 }
785 early_param("oops", oops_setup);
786
787 static int __init panic_on_taint_setup(char *s)
788 {
789 char *taint_str;
790
791 if (!s)
792 return -EINVAL;
793
794 taint_str = strsep(&s, ",");
795 if (kstrtoul(taint_str, 16, &panic_on_taint))
796 return -EINVAL;
797
798 /* make sure panic_on_taint doesn't hold out-of-range TAINT flags */
799 panic_on_taint &= TAINT_FLAGS_MAX;
800
801 if (!panic_on_taint)
802 return -EINVAL;
803
804 if (s && !strcmp(s, "nousertaint"))
805 panic_on_taint_nousertaint = true;
806
807 pr_info("panic_on_taint: bitmask=0x%lx nousertaint_mode=%s\n",
808 panic_on_taint, str_enabled_disabled(panic_on_taint_nousertaint));
809
810 return 0;
811 }
812 early_param("panic_on_taint", panic_on_taint_setup);