]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - kernel/pid_namespace.c
s390/qeth: fix VLAN attribute in bridge_hostnotify udev event
[thirdparty/kernel/linux.git] / kernel / pid_namespace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Pid namespaces
4 *
5 * Authors:
6 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
7 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
8 * Many thanks to Oleg Nesterov for comments and help
9 *
10 */
11
12 #include <linux/pid.h>
13 #include <linux/pid_namespace.h>
14 #include <linux/user_namespace.h>
15 #include <linux/syscalls.h>
16 #include <linux/cred.h>
17 #include <linux/err.h>
18 #include <linux/acct.h>
19 #include <linux/slab.h>
20 #include <linux/proc_ns.h>
21 #include <linux/reboot.h>
22 #include <linux/export.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/signal.h>
25 #include <linux/idr.h>
26
27 static DEFINE_MUTEX(pid_caches_mutex);
28 static struct kmem_cache *pid_ns_cachep;
29 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
30 #define MAX_PID_NS_LEVEL 32
31 /* Write once array, filled from the beginning. */
32 static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
33
34 /*
35 * creates the kmem cache to allocate pids from.
36 * @level: pid namespace level
37 */
38
39 static struct kmem_cache *create_pid_cachep(unsigned int level)
40 {
41 /* Level 0 is init_pid_ns.pid_cachep */
42 struct kmem_cache **pkc = &pid_cache[level - 1];
43 struct kmem_cache *kc;
44 char name[4 + 10 + 1];
45 unsigned int len;
46
47 kc = READ_ONCE(*pkc);
48 if (kc)
49 return kc;
50
51 snprintf(name, sizeof(name), "pid_%u", level + 1);
52 len = sizeof(struct pid) + level * sizeof(struct upid);
53 mutex_lock(&pid_caches_mutex);
54 /* Name collision forces to do allocation under mutex. */
55 if (!*pkc)
56 *pkc = kmem_cache_create(name, len, 0, SLAB_HWCACHE_ALIGN, 0);
57 mutex_unlock(&pid_caches_mutex);
58 /* current can fail, but someone else can succeed. */
59 return READ_ONCE(*pkc);
60 }
61
62 static void proc_cleanup_work(struct work_struct *work)
63 {
64 struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
65 pid_ns_release_proc(ns);
66 }
67
68 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
69 {
70 return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
71 }
72
73 static void dec_pid_namespaces(struct ucounts *ucounts)
74 {
75 dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
76 }
77
78 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
79 struct pid_namespace *parent_pid_ns)
80 {
81 struct pid_namespace *ns;
82 unsigned int level = parent_pid_ns->level + 1;
83 struct ucounts *ucounts;
84 int err;
85
86 err = -EINVAL;
87 if (!in_userns(parent_pid_ns->user_ns, user_ns))
88 goto out;
89
90 err = -ENOSPC;
91 if (level > MAX_PID_NS_LEVEL)
92 goto out;
93 ucounts = inc_pid_namespaces(user_ns);
94 if (!ucounts)
95 goto out;
96
97 err = -ENOMEM;
98 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
99 if (ns == NULL)
100 goto out_dec;
101
102 idr_init(&ns->idr);
103
104 ns->pid_cachep = create_pid_cachep(level);
105 if (ns->pid_cachep == NULL)
106 goto out_free_idr;
107
108 err = ns_alloc_inum(&ns->ns);
109 if (err)
110 goto out_free_idr;
111 ns->ns.ops = &pidns_operations;
112
113 kref_init(&ns->kref);
114 ns->level = level;
115 ns->parent = get_pid_ns(parent_pid_ns);
116 ns->user_ns = get_user_ns(user_ns);
117 ns->ucounts = ucounts;
118 ns->pid_allocated = PIDNS_ADDING;
119 INIT_WORK(&ns->proc_work, proc_cleanup_work);
120
121 return ns;
122
123 out_free_idr:
124 idr_destroy(&ns->idr);
125 kmem_cache_free(pid_ns_cachep, ns);
126 out_dec:
127 dec_pid_namespaces(ucounts);
128 out:
129 return ERR_PTR(err);
130 }
131
132 static void delayed_free_pidns(struct rcu_head *p)
133 {
134 struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
135
136 dec_pid_namespaces(ns->ucounts);
137 put_user_ns(ns->user_ns);
138
139 kmem_cache_free(pid_ns_cachep, ns);
140 }
141
142 static void destroy_pid_namespace(struct pid_namespace *ns)
143 {
144 ns_free_inum(&ns->ns);
145
146 idr_destroy(&ns->idr);
147 call_rcu(&ns->rcu, delayed_free_pidns);
148 }
149
150 struct pid_namespace *copy_pid_ns(unsigned long flags,
151 struct user_namespace *user_ns, struct pid_namespace *old_ns)
152 {
153 if (!(flags & CLONE_NEWPID))
154 return get_pid_ns(old_ns);
155 if (task_active_pid_ns(current) != old_ns)
156 return ERR_PTR(-EINVAL);
157 return create_pid_namespace(user_ns, old_ns);
158 }
159
160 static void free_pid_ns(struct kref *kref)
161 {
162 struct pid_namespace *ns;
163
164 ns = container_of(kref, struct pid_namespace, kref);
165 destroy_pid_namespace(ns);
166 }
167
168 void put_pid_ns(struct pid_namespace *ns)
169 {
170 struct pid_namespace *parent;
171
172 while (ns != &init_pid_ns) {
173 parent = ns->parent;
174 if (!kref_put(&ns->kref, free_pid_ns))
175 break;
176 ns = parent;
177 }
178 }
179 EXPORT_SYMBOL_GPL(put_pid_ns);
180
181 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
182 {
183 int nr;
184 int rc;
185 struct task_struct *task, *me = current;
186 int init_pids = thread_group_leader(me) ? 1 : 2;
187 struct pid *pid;
188
189 /* Don't allow any more processes into the pid namespace */
190 disable_pid_allocation(pid_ns);
191
192 /*
193 * Ignore SIGCHLD causing any terminated children to autoreap.
194 * This speeds up the namespace shutdown, plus see the comment
195 * below.
196 */
197 spin_lock_irq(&me->sighand->siglock);
198 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
199 spin_unlock_irq(&me->sighand->siglock);
200
201 /*
202 * The last thread in the cgroup-init thread group is terminating.
203 * Find remaining pid_ts in the namespace, signal and wait for them
204 * to exit.
205 *
206 * Note: This signals each threads in the namespace - even those that
207 * belong to the same thread group, To avoid this, we would have
208 * to walk the entire tasklist looking a processes in this
209 * namespace, but that could be unnecessarily expensive if the
210 * pid namespace has just a few processes. Or we need to
211 * maintain a tasklist for each pid namespace.
212 *
213 */
214 rcu_read_lock();
215 read_lock(&tasklist_lock);
216 nr = 2;
217 idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
218 task = pid_task(pid, PIDTYPE_PID);
219 if (task && !__fatal_signal_pending(task))
220 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX);
221 }
222 read_unlock(&tasklist_lock);
223 rcu_read_unlock();
224
225 /*
226 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
227 * kernel_wait4() will also block until our children traced from the
228 * parent namespace are detached and become EXIT_DEAD.
229 */
230 do {
231 clear_thread_flag(TIF_SIGPENDING);
232 rc = kernel_wait4(-1, NULL, __WALL, NULL);
233 } while (rc != -ECHILD);
234
235 /*
236 * kernel_wait4() above can't reap the EXIT_DEAD children but we do not
237 * really care, we could reparent them to the global init. We could
238 * exit and reap ->child_reaper even if it is not the last thread in
239 * this pid_ns, free_pid(pid_allocated == 0) calls proc_cleanup_work(),
240 * pid_ns can not go away until proc_kill_sb() drops the reference.
241 *
242 * But this ns can also have other tasks injected by setns()+fork().
243 * Again, ignoring the user visible semantics we do not really need
244 * to wait until they are all reaped, but they can be reparented to
245 * us and thus we need to ensure that pid->child_reaper stays valid
246 * until they all go away. See free_pid()->wake_up_process().
247 *
248 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
249 * if reparented.
250 */
251 for (;;) {
252 set_current_state(TASK_INTERRUPTIBLE);
253 if (pid_ns->pid_allocated == init_pids)
254 break;
255 schedule();
256 }
257 __set_current_state(TASK_RUNNING);
258
259 if (pid_ns->reboot)
260 current->signal->group_exit_code = pid_ns->reboot;
261
262 acct_exit_ns(pid_ns);
263 return;
264 }
265
266 #ifdef CONFIG_CHECKPOINT_RESTORE
267 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
268 void __user *buffer, size_t *lenp, loff_t *ppos)
269 {
270 struct pid_namespace *pid_ns = task_active_pid_ns(current);
271 struct ctl_table tmp = *table;
272 int ret, next;
273
274 if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
275 return -EPERM;
276
277 /*
278 * Writing directly to ns' last_pid field is OK, since this field
279 * is volatile in a living namespace anyway and a code writing to
280 * it should synchronize its usage with external means.
281 */
282
283 next = idr_get_cursor(&pid_ns->idr) - 1;
284
285 tmp.data = &next;
286 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
287 if (!ret && write)
288 idr_set_cursor(&pid_ns->idr, next + 1);
289
290 return ret;
291 }
292
293 extern int pid_max;
294 static int zero = 0;
295 static struct ctl_table pid_ns_ctl_table[] = {
296 {
297 .procname = "ns_last_pid",
298 .maxlen = sizeof(int),
299 .mode = 0666, /* permissions are checked in the handler */
300 .proc_handler = pid_ns_ctl_handler,
301 .extra1 = &zero,
302 .extra2 = &pid_max,
303 },
304 { }
305 };
306 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
307 #endif /* CONFIG_CHECKPOINT_RESTORE */
308
309 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
310 {
311 if (pid_ns == &init_pid_ns)
312 return 0;
313
314 switch (cmd) {
315 case LINUX_REBOOT_CMD_RESTART2:
316 case LINUX_REBOOT_CMD_RESTART:
317 pid_ns->reboot = SIGHUP;
318 break;
319
320 case LINUX_REBOOT_CMD_POWER_OFF:
321 case LINUX_REBOOT_CMD_HALT:
322 pid_ns->reboot = SIGINT;
323 break;
324 default:
325 return -EINVAL;
326 }
327
328 read_lock(&tasklist_lock);
329 force_sig(SIGKILL, pid_ns->child_reaper);
330 read_unlock(&tasklist_lock);
331
332 do_exit(0);
333
334 /* Not reached */
335 return 0;
336 }
337
338 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
339 {
340 return container_of(ns, struct pid_namespace, ns);
341 }
342
343 static struct ns_common *pidns_get(struct task_struct *task)
344 {
345 struct pid_namespace *ns;
346
347 rcu_read_lock();
348 ns = task_active_pid_ns(task);
349 if (ns)
350 get_pid_ns(ns);
351 rcu_read_unlock();
352
353 return ns ? &ns->ns : NULL;
354 }
355
356 static struct ns_common *pidns_for_children_get(struct task_struct *task)
357 {
358 struct pid_namespace *ns = NULL;
359
360 task_lock(task);
361 if (task->nsproxy) {
362 ns = task->nsproxy->pid_ns_for_children;
363 get_pid_ns(ns);
364 }
365 task_unlock(task);
366
367 if (ns) {
368 read_lock(&tasklist_lock);
369 if (!ns->child_reaper) {
370 put_pid_ns(ns);
371 ns = NULL;
372 }
373 read_unlock(&tasklist_lock);
374 }
375
376 return ns ? &ns->ns : NULL;
377 }
378
379 static void pidns_put(struct ns_common *ns)
380 {
381 put_pid_ns(to_pid_ns(ns));
382 }
383
384 static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
385 {
386 struct pid_namespace *active = task_active_pid_ns(current);
387 struct pid_namespace *ancestor, *new = to_pid_ns(ns);
388
389 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
390 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
391 return -EPERM;
392
393 /*
394 * Only allow entering the current active pid namespace
395 * or a child of the current active pid namespace.
396 *
397 * This is required for fork to return a usable pid value and
398 * this maintains the property that processes and their
399 * children can not escape their current pid namespace.
400 */
401 if (new->level < active->level)
402 return -EINVAL;
403
404 ancestor = new;
405 while (ancestor->level > active->level)
406 ancestor = ancestor->parent;
407 if (ancestor != active)
408 return -EINVAL;
409
410 put_pid_ns(nsproxy->pid_ns_for_children);
411 nsproxy->pid_ns_for_children = get_pid_ns(new);
412 return 0;
413 }
414
415 static struct ns_common *pidns_get_parent(struct ns_common *ns)
416 {
417 struct pid_namespace *active = task_active_pid_ns(current);
418 struct pid_namespace *pid_ns, *p;
419
420 /* See if the parent is in the current namespace */
421 pid_ns = p = to_pid_ns(ns)->parent;
422 for (;;) {
423 if (!p)
424 return ERR_PTR(-EPERM);
425 if (p == active)
426 break;
427 p = p->parent;
428 }
429
430 return &get_pid_ns(pid_ns)->ns;
431 }
432
433 static struct user_namespace *pidns_owner(struct ns_common *ns)
434 {
435 return to_pid_ns(ns)->user_ns;
436 }
437
438 const struct proc_ns_operations pidns_operations = {
439 .name = "pid",
440 .type = CLONE_NEWPID,
441 .get = pidns_get,
442 .put = pidns_put,
443 .install = pidns_install,
444 .owner = pidns_owner,
445 .get_parent = pidns_get_parent,
446 };
447
448 const struct proc_ns_operations pidns_for_children_operations = {
449 .name = "pid_for_children",
450 .real_ns_name = "pid",
451 .type = CLONE_NEWPID,
452 .get = pidns_for_children_get,
453 .put = pidns_put,
454 .install = pidns_install,
455 .owner = pidns_owner,
456 .get_parent = pidns_get_parent,
457 };
458
459 static __init int pid_namespaces_init(void)
460 {
461 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
462
463 #ifdef CONFIG_CHECKPOINT_RESTORE
464 register_sysctl_paths(kern_path, pid_ns_ctl_table);
465 #endif
466 return 0;
467 }
468
469 __initcall(pid_namespaces_init);