]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - kernel/posix-cpu-timers.c
x86/speculation: Provide IBPB always command line options
[thirdparty/kernel/stable.git] / kernel / posix-cpu-timers.c
1 /*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
4
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 #include <linux/random.h>
13 #include <linux/tick.h>
14 #include <linux/workqueue.h>
15
16 /*
17 * Called after updating RLIMIT_CPU to run cpu timer and update
18 * tsk->signal->cputime_expires expiration cache if necessary. Needs
19 * siglock protection since other code may update expiration cache as
20 * well.
21 */
22 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
23 {
24 cputime_t cputime = secs_to_cputime(rlim_new);
25
26 spin_lock_irq(&task->sighand->siglock);
27 set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
28 spin_unlock_irq(&task->sighand->siglock);
29 }
30
31 static int check_clock(const clockid_t which_clock)
32 {
33 int error = 0;
34 struct task_struct *p;
35 const pid_t pid = CPUCLOCK_PID(which_clock);
36
37 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
38 return -EINVAL;
39
40 if (pid == 0)
41 return 0;
42
43 rcu_read_lock();
44 p = find_task_by_vpid(pid);
45 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
46 same_thread_group(p, current) : has_group_leader_pid(p))) {
47 error = -EINVAL;
48 }
49 rcu_read_unlock();
50
51 return error;
52 }
53
54 static inline unsigned long long
55 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
56 {
57 unsigned long long ret;
58
59 ret = 0; /* high half always zero when .cpu used */
60 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
61 ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
62 } else {
63 ret = cputime_to_expires(timespec_to_cputime(tp));
64 }
65 return ret;
66 }
67
68 static void sample_to_timespec(const clockid_t which_clock,
69 unsigned long long expires,
70 struct timespec *tp)
71 {
72 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
73 *tp = ns_to_timespec(expires);
74 else
75 cputime_to_timespec((__force cputime_t)expires, tp);
76 }
77
78 /*
79 * Update expiry time from increment, and increase overrun count,
80 * given the current clock sample.
81 */
82 static void bump_cpu_timer(struct k_itimer *timer,
83 unsigned long long now)
84 {
85 int i;
86 unsigned long long delta, incr;
87
88 if (timer->it.cpu.incr == 0)
89 return;
90
91 if (now < timer->it.cpu.expires)
92 return;
93
94 incr = timer->it.cpu.incr;
95 delta = now + incr - timer->it.cpu.expires;
96
97 /* Don't use (incr*2 < delta), incr*2 might overflow. */
98 for (i = 0; incr < delta - incr; i++)
99 incr = incr << 1;
100
101 for (; i >= 0; incr >>= 1, i--) {
102 if (delta < incr)
103 continue;
104
105 timer->it.cpu.expires += incr;
106 timer->it_overrun += 1LL << i;
107 delta -= incr;
108 }
109 }
110
111 /**
112 * task_cputime_zero - Check a task_cputime struct for all zero fields.
113 *
114 * @cputime: The struct to compare.
115 *
116 * Checks @cputime to see if all fields are zero. Returns true if all fields
117 * are zero, false if any field is nonzero.
118 */
119 static inline int task_cputime_zero(const struct task_cputime *cputime)
120 {
121 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
122 return 1;
123 return 0;
124 }
125
126 static inline unsigned long long prof_ticks(struct task_struct *p)
127 {
128 cputime_t utime, stime;
129
130 task_cputime(p, &utime, &stime);
131
132 return cputime_to_expires(utime + stime);
133 }
134 static inline unsigned long long virt_ticks(struct task_struct *p)
135 {
136 cputime_t utime;
137
138 task_cputime(p, &utime, NULL);
139
140 return cputime_to_expires(utime);
141 }
142
143 static int
144 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
145 {
146 int error = check_clock(which_clock);
147 if (!error) {
148 tp->tv_sec = 0;
149 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
150 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
151 /*
152 * If sched_clock is using a cycle counter, we
153 * don't have any idea of its true resolution
154 * exported, but it is much more than 1s/HZ.
155 */
156 tp->tv_nsec = 1;
157 }
158 }
159 return error;
160 }
161
162 static int
163 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
164 {
165 /*
166 * You can never reset a CPU clock, but we check for other errors
167 * in the call before failing with EPERM.
168 */
169 int error = check_clock(which_clock);
170 if (error == 0) {
171 error = -EPERM;
172 }
173 return error;
174 }
175
176
177 /*
178 * Sample a per-thread clock for the given task.
179 */
180 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
181 unsigned long long *sample)
182 {
183 switch (CPUCLOCK_WHICH(which_clock)) {
184 default:
185 return -EINVAL;
186 case CPUCLOCK_PROF:
187 *sample = prof_ticks(p);
188 break;
189 case CPUCLOCK_VIRT:
190 *sample = virt_ticks(p);
191 break;
192 case CPUCLOCK_SCHED:
193 *sample = task_sched_runtime(p);
194 break;
195 }
196 return 0;
197 }
198
199 static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
200 {
201 if (b->utime > a->utime)
202 a->utime = b->utime;
203
204 if (b->stime > a->stime)
205 a->stime = b->stime;
206
207 if (b->sum_exec_runtime > a->sum_exec_runtime)
208 a->sum_exec_runtime = b->sum_exec_runtime;
209 }
210
211 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
212 {
213 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
214 struct task_cputime sum;
215 unsigned long flags;
216
217 if (!cputimer->running) {
218 /*
219 * The POSIX timer interface allows for absolute time expiry
220 * values through the TIMER_ABSTIME flag, therefore we have
221 * to synchronize the timer to the clock every time we start
222 * it.
223 */
224 thread_group_cputime(tsk, &sum);
225 raw_spin_lock_irqsave(&cputimer->lock, flags);
226 cputimer->running = 1;
227 update_gt_cputime(&cputimer->cputime, &sum);
228 } else
229 raw_spin_lock_irqsave(&cputimer->lock, flags);
230 *times = cputimer->cputime;
231 raw_spin_unlock_irqrestore(&cputimer->lock, flags);
232 }
233
234 /*
235 * Sample a process (thread group) clock for the given group_leader task.
236 * Must be called with task sighand lock held for safe while_each_thread()
237 * traversal.
238 */
239 static int cpu_clock_sample_group(const clockid_t which_clock,
240 struct task_struct *p,
241 unsigned long long *sample)
242 {
243 struct task_cputime cputime;
244
245 switch (CPUCLOCK_WHICH(which_clock)) {
246 default:
247 return -EINVAL;
248 case CPUCLOCK_PROF:
249 thread_group_cputime(p, &cputime);
250 *sample = cputime_to_expires(cputime.utime + cputime.stime);
251 break;
252 case CPUCLOCK_VIRT:
253 thread_group_cputime(p, &cputime);
254 *sample = cputime_to_expires(cputime.utime);
255 break;
256 case CPUCLOCK_SCHED:
257 thread_group_cputime(p, &cputime);
258 *sample = cputime.sum_exec_runtime;
259 break;
260 }
261 return 0;
262 }
263
264 static int posix_cpu_clock_get_task(struct task_struct *tsk,
265 const clockid_t which_clock,
266 struct timespec *tp)
267 {
268 int err = -EINVAL;
269 unsigned long long rtn;
270
271 if (CPUCLOCK_PERTHREAD(which_clock)) {
272 if (same_thread_group(tsk, current))
273 err = cpu_clock_sample(which_clock, tsk, &rtn);
274 } else {
275 unsigned long flags;
276 struct sighand_struct *sighand;
277
278 /*
279 * while_each_thread() is not yet entirely RCU safe,
280 * keep locking the group while sampling process
281 * clock for now.
282 */
283 sighand = lock_task_sighand(tsk, &flags);
284 if (!sighand)
285 return err;
286
287 if (tsk == current || thread_group_leader(tsk))
288 err = cpu_clock_sample_group(which_clock, tsk, &rtn);
289
290 unlock_task_sighand(tsk, &flags);
291 }
292
293 if (!err)
294 sample_to_timespec(which_clock, rtn, tp);
295
296 return err;
297 }
298
299
300 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
301 {
302 const pid_t pid = CPUCLOCK_PID(which_clock);
303 int err = -EINVAL;
304
305 if (pid == 0) {
306 /*
307 * Special case constant value for our own clocks.
308 * We don't have to do any lookup to find ourselves.
309 */
310 err = posix_cpu_clock_get_task(current, which_clock, tp);
311 } else {
312 /*
313 * Find the given PID, and validate that the caller
314 * should be able to see it.
315 */
316 struct task_struct *p;
317 rcu_read_lock();
318 p = find_task_by_vpid(pid);
319 if (p)
320 err = posix_cpu_clock_get_task(p, which_clock, tp);
321 rcu_read_unlock();
322 }
323
324 return err;
325 }
326
327
328 /*
329 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
330 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
331 * new timer already all-zeros initialized.
332 */
333 static int posix_cpu_timer_create(struct k_itimer *new_timer)
334 {
335 int ret = 0;
336 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
337 struct task_struct *p;
338
339 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
340 return -EINVAL;
341
342 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
343
344 rcu_read_lock();
345 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
346 if (pid == 0) {
347 p = current;
348 } else {
349 p = find_task_by_vpid(pid);
350 if (p && !same_thread_group(p, current))
351 p = NULL;
352 }
353 } else {
354 if (pid == 0) {
355 p = current->group_leader;
356 } else {
357 p = find_task_by_vpid(pid);
358 if (p && !has_group_leader_pid(p))
359 p = NULL;
360 }
361 }
362 new_timer->it.cpu.task = p;
363 if (p) {
364 get_task_struct(p);
365 } else {
366 ret = -EINVAL;
367 }
368 rcu_read_unlock();
369
370 return ret;
371 }
372
373 /*
374 * Clean up a CPU-clock timer that is about to be destroyed.
375 * This is called from timer deletion with the timer already locked.
376 * If we return TIMER_RETRY, it's necessary to release the timer's lock
377 * and try again. (This happens when the timer is in the middle of firing.)
378 */
379 static int posix_cpu_timer_del(struct k_itimer *timer)
380 {
381 int ret = 0;
382 unsigned long flags;
383 struct sighand_struct *sighand;
384 struct task_struct *p = timer->it.cpu.task;
385
386 WARN_ON_ONCE(p == NULL);
387
388 /*
389 * Protect against sighand release/switch in exit/exec and process/
390 * thread timer list entry concurrent read/writes.
391 */
392 sighand = lock_task_sighand(p, &flags);
393 if (unlikely(sighand == NULL)) {
394 /*
395 * We raced with the reaping of the task.
396 * The deletion should have cleared us off the list.
397 */
398 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
399 } else {
400 if (timer->it.cpu.firing)
401 ret = TIMER_RETRY;
402 else
403 list_del(&timer->it.cpu.entry);
404
405 unlock_task_sighand(p, &flags);
406 }
407
408 if (!ret)
409 put_task_struct(p);
410
411 return ret;
412 }
413
414 static void cleanup_timers_list(struct list_head *head)
415 {
416 struct cpu_timer_list *timer, *next;
417
418 list_for_each_entry_safe(timer, next, head, entry)
419 list_del_init(&timer->entry);
420 }
421
422 /*
423 * Clean out CPU timers still ticking when a thread exited. The task
424 * pointer is cleared, and the expiry time is replaced with the residual
425 * time for later timer_gettime calls to return.
426 * This must be called with the siglock held.
427 */
428 static void cleanup_timers(struct list_head *head)
429 {
430 cleanup_timers_list(head);
431 cleanup_timers_list(++head);
432 cleanup_timers_list(++head);
433 }
434
435 /*
436 * These are both called with the siglock held, when the current thread
437 * is being reaped. When the final (leader) thread in the group is reaped,
438 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
439 */
440 void posix_cpu_timers_exit(struct task_struct *tsk)
441 {
442 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
443 sizeof(unsigned long long));
444 cleanup_timers(tsk->cpu_timers);
445
446 }
447 void posix_cpu_timers_exit_group(struct task_struct *tsk)
448 {
449 cleanup_timers(tsk->signal->cpu_timers);
450 }
451
452 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
453 {
454 return expires == 0 || expires > new_exp;
455 }
456
457 /*
458 * Insert the timer on the appropriate list before any timers that
459 * expire later. This must be called with the sighand lock held.
460 */
461 static void arm_timer(struct k_itimer *timer)
462 {
463 struct task_struct *p = timer->it.cpu.task;
464 struct list_head *head, *listpos;
465 struct task_cputime *cputime_expires;
466 struct cpu_timer_list *const nt = &timer->it.cpu;
467 struct cpu_timer_list *next;
468
469 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
470 head = p->cpu_timers;
471 cputime_expires = &p->cputime_expires;
472 } else {
473 head = p->signal->cpu_timers;
474 cputime_expires = &p->signal->cputime_expires;
475 }
476 head += CPUCLOCK_WHICH(timer->it_clock);
477
478 listpos = head;
479 list_for_each_entry(next, head, entry) {
480 if (nt->expires < next->expires)
481 break;
482 listpos = &next->entry;
483 }
484 list_add(&nt->entry, listpos);
485
486 if (listpos == head) {
487 unsigned long long exp = nt->expires;
488
489 /*
490 * We are the new earliest-expiring POSIX 1.b timer, hence
491 * need to update expiration cache. Take into account that
492 * for process timers we share expiration cache with itimers
493 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
494 */
495
496 switch (CPUCLOCK_WHICH(timer->it_clock)) {
497 case CPUCLOCK_PROF:
498 if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
499 cputime_expires->prof_exp = expires_to_cputime(exp);
500 break;
501 case CPUCLOCK_VIRT:
502 if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
503 cputime_expires->virt_exp = expires_to_cputime(exp);
504 break;
505 case CPUCLOCK_SCHED:
506 if (cputime_expires->sched_exp == 0 ||
507 cputime_expires->sched_exp > exp)
508 cputime_expires->sched_exp = exp;
509 break;
510 }
511 }
512 }
513
514 /*
515 * The timer is locked, fire it and arrange for its reload.
516 */
517 static void cpu_timer_fire(struct k_itimer *timer)
518 {
519 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
520 /*
521 * User don't want any signal.
522 */
523 timer->it.cpu.expires = 0;
524 } else if (unlikely(timer->sigq == NULL)) {
525 /*
526 * This a special case for clock_nanosleep,
527 * not a normal timer from sys_timer_create.
528 */
529 wake_up_process(timer->it_process);
530 timer->it.cpu.expires = 0;
531 } else if (timer->it.cpu.incr == 0) {
532 /*
533 * One-shot timer. Clear it as soon as it's fired.
534 */
535 posix_timer_event(timer, 0);
536 timer->it.cpu.expires = 0;
537 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
538 /*
539 * The signal did not get queued because the signal
540 * was ignored, so we won't get any callback to
541 * reload the timer. But we need to keep it
542 * ticking in case the signal is deliverable next time.
543 */
544 posix_cpu_timer_schedule(timer);
545 }
546 }
547
548 /*
549 * Sample a process (thread group) timer for the given group_leader task.
550 * Must be called with task sighand lock held for safe while_each_thread()
551 * traversal.
552 */
553 static int cpu_timer_sample_group(const clockid_t which_clock,
554 struct task_struct *p,
555 unsigned long long *sample)
556 {
557 struct task_cputime cputime;
558
559 thread_group_cputimer(p, &cputime);
560 switch (CPUCLOCK_WHICH(which_clock)) {
561 default:
562 return -EINVAL;
563 case CPUCLOCK_PROF:
564 *sample = cputime_to_expires(cputime.utime + cputime.stime);
565 break;
566 case CPUCLOCK_VIRT:
567 *sample = cputime_to_expires(cputime.utime);
568 break;
569 case CPUCLOCK_SCHED:
570 *sample = cputime.sum_exec_runtime + task_delta_exec(p);
571 break;
572 }
573 return 0;
574 }
575
576 #ifdef CONFIG_NO_HZ_FULL
577 static void nohz_kick_work_fn(struct work_struct *work)
578 {
579 tick_nohz_full_kick_all();
580 }
581
582 static DECLARE_WORK(nohz_kick_work, nohz_kick_work_fn);
583
584 /*
585 * We need the IPIs to be sent from sane process context.
586 * The posix cpu timers are always set with irqs disabled.
587 */
588 static void posix_cpu_timer_kick_nohz(void)
589 {
590 if (context_tracking_is_enabled())
591 schedule_work(&nohz_kick_work);
592 }
593
594 bool posix_cpu_timers_can_stop_tick(struct task_struct *tsk)
595 {
596 if (!task_cputime_zero(&tsk->cputime_expires))
597 return false;
598
599 if (tsk->signal->cputimer.running)
600 return false;
601
602 return true;
603 }
604 #else
605 static inline void posix_cpu_timer_kick_nohz(void) { }
606 #endif
607
608 /*
609 * Guts of sys_timer_settime for CPU timers.
610 * This is called with the timer locked and interrupts disabled.
611 * If we return TIMER_RETRY, it's necessary to release the timer's lock
612 * and try again. (This happens when the timer is in the middle of firing.)
613 */
614 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
615 struct itimerspec *new, struct itimerspec *old)
616 {
617 unsigned long flags;
618 struct sighand_struct *sighand;
619 struct task_struct *p = timer->it.cpu.task;
620 unsigned long long old_expires, new_expires, old_incr, val;
621 int ret;
622
623 WARN_ON_ONCE(p == NULL);
624
625 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
626
627 /*
628 * Protect against sighand release/switch in exit/exec and p->cpu_timers
629 * and p->signal->cpu_timers read/write in arm_timer()
630 */
631 sighand = lock_task_sighand(p, &flags);
632 /*
633 * If p has just been reaped, we can no
634 * longer get any information about it at all.
635 */
636 if (unlikely(sighand == NULL)) {
637 return -ESRCH;
638 }
639
640 /*
641 * Disarm any old timer after extracting its expiry time.
642 */
643 WARN_ON_ONCE(!irqs_disabled());
644
645 ret = 0;
646 old_incr = timer->it.cpu.incr;
647 old_expires = timer->it.cpu.expires;
648 if (unlikely(timer->it.cpu.firing)) {
649 timer->it.cpu.firing = -1;
650 ret = TIMER_RETRY;
651 } else
652 list_del_init(&timer->it.cpu.entry);
653
654 /*
655 * We need to sample the current value to convert the new
656 * value from to relative and absolute, and to convert the
657 * old value from absolute to relative. To set a process
658 * timer, we need a sample to balance the thread expiry
659 * times (in arm_timer). With an absolute time, we must
660 * check if it's already passed. In short, we need a sample.
661 */
662 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
663 cpu_clock_sample(timer->it_clock, p, &val);
664 } else {
665 cpu_timer_sample_group(timer->it_clock, p, &val);
666 }
667
668 if (old) {
669 if (old_expires == 0) {
670 old->it_value.tv_sec = 0;
671 old->it_value.tv_nsec = 0;
672 } else {
673 /*
674 * Update the timer in case it has
675 * overrun already. If it has,
676 * we'll report it as having overrun
677 * and with the next reloaded timer
678 * already ticking, though we are
679 * swallowing that pending
680 * notification here to install the
681 * new setting.
682 */
683 bump_cpu_timer(timer, val);
684 if (val < timer->it.cpu.expires) {
685 old_expires = timer->it.cpu.expires - val;
686 sample_to_timespec(timer->it_clock,
687 old_expires,
688 &old->it_value);
689 } else {
690 old->it_value.tv_nsec = 1;
691 old->it_value.tv_sec = 0;
692 }
693 }
694 }
695
696 if (unlikely(ret)) {
697 /*
698 * We are colliding with the timer actually firing.
699 * Punt after filling in the timer's old value, and
700 * disable this firing since we are already reporting
701 * it as an overrun (thanks to bump_cpu_timer above).
702 */
703 unlock_task_sighand(p, &flags);
704 goto out;
705 }
706
707 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
708 new_expires += val;
709 }
710
711 /*
712 * Install the new expiry time (or zero).
713 * For a timer with no notification action, we don't actually
714 * arm the timer (we'll just fake it for timer_gettime).
715 */
716 timer->it.cpu.expires = new_expires;
717 if (new_expires != 0 && val < new_expires) {
718 arm_timer(timer);
719 }
720
721 unlock_task_sighand(p, &flags);
722 /*
723 * Install the new reload setting, and
724 * set up the signal and overrun bookkeeping.
725 */
726 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
727 &new->it_interval);
728
729 /*
730 * This acts as a modification timestamp for the timer,
731 * so any automatic reload attempt will punt on seeing
732 * that we have reset the timer manually.
733 */
734 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
735 ~REQUEUE_PENDING;
736 timer->it_overrun_last = 0;
737 timer->it_overrun = -1;
738
739 if (new_expires != 0 && !(val < new_expires)) {
740 /*
741 * The designated time already passed, so we notify
742 * immediately, even if the thread never runs to
743 * accumulate more time on this clock.
744 */
745 cpu_timer_fire(timer);
746 }
747
748 ret = 0;
749 out:
750 if (old) {
751 sample_to_timespec(timer->it_clock,
752 old_incr, &old->it_interval);
753 }
754 if (!ret)
755 posix_cpu_timer_kick_nohz();
756 return ret;
757 }
758
759 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
760 {
761 unsigned long long now;
762 struct task_struct *p = timer->it.cpu.task;
763
764 WARN_ON_ONCE(p == NULL);
765
766 /*
767 * Easy part: convert the reload time.
768 */
769 sample_to_timespec(timer->it_clock,
770 timer->it.cpu.incr, &itp->it_interval);
771
772 if (timer->it.cpu.expires == 0) { /* Timer not armed at all. */
773 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
774 return;
775 }
776
777 /*
778 * Sample the clock to take the difference with the expiry time.
779 */
780 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
781 cpu_clock_sample(timer->it_clock, p, &now);
782 } else {
783 struct sighand_struct *sighand;
784 unsigned long flags;
785
786 /*
787 * Protect against sighand release/switch in exit/exec and
788 * also make timer sampling safe if it ends up calling
789 * thread_group_cputime().
790 */
791 sighand = lock_task_sighand(p, &flags);
792 if (unlikely(sighand == NULL)) {
793 /*
794 * The process has been reaped.
795 * We can't even collect a sample any more.
796 * Call the timer disarmed, nothing else to do.
797 */
798 timer->it.cpu.expires = 0;
799 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
800 &itp->it_value);
801 return;
802 } else {
803 cpu_timer_sample_group(timer->it_clock, p, &now);
804 unlock_task_sighand(p, &flags);
805 }
806 }
807
808 if (now < timer->it.cpu.expires) {
809 sample_to_timespec(timer->it_clock,
810 timer->it.cpu.expires - now,
811 &itp->it_value);
812 } else {
813 /*
814 * The timer should have expired already, but the firing
815 * hasn't taken place yet. Say it's just about to expire.
816 */
817 itp->it_value.tv_nsec = 1;
818 itp->it_value.tv_sec = 0;
819 }
820 }
821
822 static unsigned long long
823 check_timers_list(struct list_head *timers,
824 struct list_head *firing,
825 unsigned long long curr)
826 {
827 int maxfire = 20;
828
829 while (!list_empty(timers)) {
830 struct cpu_timer_list *t;
831
832 t = list_first_entry(timers, struct cpu_timer_list, entry);
833
834 if (!--maxfire || curr < t->expires)
835 return t->expires;
836
837 t->firing = 1;
838 list_move_tail(&t->entry, firing);
839 }
840
841 return 0;
842 }
843
844 /*
845 * Check for any per-thread CPU timers that have fired and move them off
846 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
847 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
848 */
849 static void check_thread_timers(struct task_struct *tsk,
850 struct list_head *firing)
851 {
852 struct list_head *timers = tsk->cpu_timers;
853 struct signal_struct *const sig = tsk->signal;
854 struct task_cputime *tsk_expires = &tsk->cputime_expires;
855 unsigned long long expires;
856 unsigned long soft;
857
858 expires = check_timers_list(timers, firing, prof_ticks(tsk));
859 tsk_expires->prof_exp = expires_to_cputime(expires);
860
861 expires = check_timers_list(++timers, firing, virt_ticks(tsk));
862 tsk_expires->virt_exp = expires_to_cputime(expires);
863
864 tsk_expires->sched_exp = check_timers_list(++timers, firing,
865 tsk->se.sum_exec_runtime);
866
867 /*
868 * Check for the special case thread timers.
869 */
870 soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
871 if (soft != RLIM_INFINITY) {
872 unsigned long hard =
873 ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
874
875 if (hard != RLIM_INFINITY &&
876 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
877 /*
878 * At the hard limit, we just die.
879 * No need to calculate anything else now.
880 */
881 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
882 return;
883 }
884 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
885 /*
886 * At the soft limit, send a SIGXCPU every second.
887 */
888 if (soft < hard) {
889 soft += USEC_PER_SEC;
890 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
891 }
892 printk(KERN_INFO
893 "RT Watchdog Timeout: %s[%d]\n",
894 tsk->comm, task_pid_nr(tsk));
895 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
896 }
897 }
898 }
899
900 static void stop_process_timers(struct signal_struct *sig)
901 {
902 struct thread_group_cputimer *cputimer = &sig->cputimer;
903 unsigned long flags;
904
905 raw_spin_lock_irqsave(&cputimer->lock, flags);
906 cputimer->running = 0;
907 raw_spin_unlock_irqrestore(&cputimer->lock, flags);
908 }
909
910 static u32 onecputick;
911
912 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
913 unsigned long long *expires,
914 unsigned long long cur_time, int signo)
915 {
916 if (!it->expires)
917 return;
918
919 if (cur_time >= it->expires) {
920 if (it->incr) {
921 it->expires += it->incr;
922 it->error += it->incr_error;
923 if (it->error >= onecputick) {
924 it->expires -= cputime_one_jiffy;
925 it->error -= onecputick;
926 }
927 } else {
928 it->expires = 0;
929 }
930
931 trace_itimer_expire(signo == SIGPROF ?
932 ITIMER_PROF : ITIMER_VIRTUAL,
933 tsk->signal->leader_pid, cur_time);
934 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
935 }
936
937 if (it->expires && (!*expires || it->expires < *expires)) {
938 *expires = it->expires;
939 }
940 }
941
942 /*
943 * Check for any per-thread CPU timers that have fired and move them
944 * off the tsk->*_timers list onto the firing list. Per-thread timers
945 * have already been taken off.
946 */
947 static void check_process_timers(struct task_struct *tsk,
948 struct list_head *firing)
949 {
950 struct signal_struct *const sig = tsk->signal;
951 unsigned long long utime, ptime, virt_expires, prof_expires;
952 unsigned long long sum_sched_runtime, sched_expires;
953 struct list_head *timers = sig->cpu_timers;
954 struct task_cputime cputime;
955 unsigned long soft;
956
957 /*
958 * Collect the current process totals.
959 */
960 thread_group_cputimer(tsk, &cputime);
961 utime = cputime_to_expires(cputime.utime);
962 ptime = utime + cputime_to_expires(cputime.stime);
963 sum_sched_runtime = cputime.sum_exec_runtime;
964
965 prof_expires = check_timers_list(timers, firing, ptime);
966 virt_expires = check_timers_list(++timers, firing, utime);
967 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
968
969 /*
970 * Check for the special case process timers.
971 */
972 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
973 SIGPROF);
974 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
975 SIGVTALRM);
976 soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
977 if (soft != RLIM_INFINITY) {
978 unsigned long psecs = cputime_to_secs(ptime);
979 unsigned long hard =
980 ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
981 cputime_t x;
982 if (psecs >= hard) {
983 /*
984 * At the hard limit, we just die.
985 * No need to calculate anything else now.
986 */
987 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
988 return;
989 }
990 if (psecs >= soft) {
991 /*
992 * At the soft limit, send a SIGXCPU every second.
993 */
994 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
995 if (soft < hard) {
996 soft++;
997 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
998 }
999 }
1000 x = secs_to_cputime(soft);
1001 if (!prof_expires || x < prof_expires) {
1002 prof_expires = x;
1003 }
1004 }
1005
1006 sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
1007 sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
1008 sig->cputime_expires.sched_exp = sched_expires;
1009 if (task_cputime_zero(&sig->cputime_expires))
1010 stop_process_timers(sig);
1011 }
1012
1013 /*
1014 * This is called from the signal code (via do_schedule_next_timer)
1015 * when the last timer signal was delivered and we have to reload the timer.
1016 */
1017 void posix_cpu_timer_schedule(struct k_itimer *timer)
1018 {
1019 struct sighand_struct *sighand;
1020 unsigned long flags;
1021 struct task_struct *p = timer->it.cpu.task;
1022 unsigned long long now;
1023
1024 WARN_ON_ONCE(p == NULL);
1025
1026 /*
1027 * Fetch the current sample and update the timer's expiry time.
1028 */
1029 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1030 cpu_clock_sample(timer->it_clock, p, &now);
1031 bump_cpu_timer(timer, now);
1032 if (unlikely(p->exit_state))
1033 goto out;
1034
1035 /* Protect timer list r/w in arm_timer() */
1036 sighand = lock_task_sighand(p, &flags);
1037 if (!sighand)
1038 goto out;
1039 } else {
1040 /*
1041 * Protect arm_timer() and timer sampling in case of call to
1042 * thread_group_cputime().
1043 */
1044 sighand = lock_task_sighand(p, &flags);
1045 if (unlikely(sighand == NULL)) {
1046 /*
1047 * The process has been reaped.
1048 * We can't even collect a sample any more.
1049 */
1050 timer->it.cpu.expires = 0;
1051 goto out;
1052 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1053 unlock_task_sighand(p, &flags);
1054 /* Optimizations: if the process is dying, no need to rearm */
1055 goto out;
1056 }
1057 cpu_timer_sample_group(timer->it_clock, p, &now);
1058 bump_cpu_timer(timer, now);
1059 /* Leave the sighand locked for the call below. */
1060 }
1061
1062 /*
1063 * Now re-arm for the new expiry time.
1064 */
1065 WARN_ON_ONCE(!irqs_disabled());
1066 arm_timer(timer);
1067 unlock_task_sighand(p, &flags);
1068
1069 /* Kick full dynticks CPUs in case they need to tick on the new timer */
1070 posix_cpu_timer_kick_nohz();
1071 out:
1072 timer->it_overrun_last = timer->it_overrun;
1073 timer->it_overrun = -1;
1074 ++timer->it_requeue_pending;
1075 }
1076
1077 /**
1078 * task_cputime_expired - Compare two task_cputime entities.
1079 *
1080 * @sample: The task_cputime structure to be checked for expiration.
1081 * @expires: Expiration times, against which @sample will be checked.
1082 *
1083 * Checks @sample against @expires to see if any field of @sample has expired.
1084 * Returns true if any field of the former is greater than the corresponding
1085 * field of the latter if the latter field is set. Otherwise returns false.
1086 */
1087 static inline int task_cputime_expired(const struct task_cputime *sample,
1088 const struct task_cputime *expires)
1089 {
1090 if (expires->utime && sample->utime >= expires->utime)
1091 return 1;
1092 if (expires->stime && sample->utime + sample->stime >= expires->stime)
1093 return 1;
1094 if (expires->sum_exec_runtime != 0 &&
1095 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1096 return 1;
1097 return 0;
1098 }
1099
1100 /**
1101 * fastpath_timer_check - POSIX CPU timers fast path.
1102 *
1103 * @tsk: The task (thread) being checked.
1104 *
1105 * Check the task and thread group timers. If both are zero (there are no
1106 * timers set) return false. Otherwise snapshot the task and thread group
1107 * timers and compare them with the corresponding expiration times. Return
1108 * true if a timer has expired, else return false.
1109 */
1110 static inline int fastpath_timer_check(struct task_struct *tsk)
1111 {
1112 struct signal_struct *sig;
1113 cputime_t utime, stime;
1114
1115 task_cputime(tsk, &utime, &stime);
1116
1117 if (!task_cputime_zero(&tsk->cputime_expires)) {
1118 struct task_cputime task_sample = {
1119 .utime = utime,
1120 .stime = stime,
1121 .sum_exec_runtime = tsk->se.sum_exec_runtime
1122 };
1123
1124 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1125 return 1;
1126 }
1127
1128 sig = tsk->signal;
1129 if (sig->cputimer.running) {
1130 struct task_cputime group_sample;
1131
1132 raw_spin_lock(&sig->cputimer.lock);
1133 group_sample = sig->cputimer.cputime;
1134 raw_spin_unlock(&sig->cputimer.lock);
1135
1136 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1137 return 1;
1138 }
1139
1140 return 0;
1141 }
1142
1143 /*
1144 * This is called from the timer interrupt handler. The irq handler has
1145 * already updated our counts. We need to check if any timers fire now.
1146 * Interrupts are disabled.
1147 */
1148 void run_posix_cpu_timers(struct task_struct *tsk)
1149 {
1150 LIST_HEAD(firing);
1151 struct k_itimer *timer, *next;
1152 unsigned long flags;
1153
1154 WARN_ON_ONCE(!irqs_disabled());
1155
1156 /*
1157 * The fast path checks that there are no expired thread or thread
1158 * group timers. If that's so, just return.
1159 */
1160 if (!fastpath_timer_check(tsk))
1161 return;
1162
1163 if (!lock_task_sighand(tsk, &flags))
1164 return;
1165 /*
1166 * Here we take off tsk->signal->cpu_timers[N] and
1167 * tsk->cpu_timers[N] all the timers that are firing, and
1168 * put them on the firing list.
1169 */
1170 check_thread_timers(tsk, &firing);
1171 /*
1172 * If there are any active process wide timers (POSIX 1.b, itimers,
1173 * RLIMIT_CPU) cputimer must be running.
1174 */
1175 if (tsk->signal->cputimer.running)
1176 check_process_timers(tsk, &firing);
1177
1178 /*
1179 * We must release these locks before taking any timer's lock.
1180 * There is a potential race with timer deletion here, as the
1181 * siglock now protects our private firing list. We have set
1182 * the firing flag in each timer, so that a deletion attempt
1183 * that gets the timer lock before we do will give it up and
1184 * spin until we've taken care of that timer below.
1185 */
1186 unlock_task_sighand(tsk, &flags);
1187
1188 /*
1189 * Now that all the timers on our list have the firing flag,
1190 * no one will touch their list entries but us. We'll take
1191 * each timer's lock before clearing its firing flag, so no
1192 * timer call will interfere.
1193 */
1194 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1195 int cpu_firing;
1196
1197 spin_lock(&timer->it_lock);
1198 list_del_init(&timer->it.cpu.entry);
1199 cpu_firing = timer->it.cpu.firing;
1200 timer->it.cpu.firing = 0;
1201 /*
1202 * The firing flag is -1 if we collided with a reset
1203 * of the timer, which already reported this
1204 * almost-firing as an overrun. So don't generate an event.
1205 */
1206 if (likely(cpu_firing >= 0))
1207 cpu_timer_fire(timer);
1208 spin_unlock(&timer->it_lock);
1209 }
1210 }
1211
1212 /*
1213 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1214 * The tsk->sighand->siglock must be held by the caller.
1215 */
1216 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1217 cputime_t *newval, cputime_t *oldval)
1218 {
1219 unsigned long long now;
1220
1221 WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1222 cpu_timer_sample_group(clock_idx, tsk, &now);
1223
1224 if (oldval) {
1225 /*
1226 * We are setting itimer. The *oldval is absolute and we update
1227 * it to be relative, *newval argument is relative and we update
1228 * it to be absolute.
1229 */
1230 if (*oldval) {
1231 if (*oldval <= now) {
1232 /* Just about to fire. */
1233 *oldval = cputime_one_jiffy;
1234 } else {
1235 *oldval -= now;
1236 }
1237 }
1238
1239 if (!*newval)
1240 goto out;
1241 *newval += now;
1242 }
1243
1244 /*
1245 * Update expiration cache if we are the earliest timer, or eventually
1246 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1247 */
1248 switch (clock_idx) {
1249 case CPUCLOCK_PROF:
1250 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1251 tsk->signal->cputime_expires.prof_exp = *newval;
1252 break;
1253 case CPUCLOCK_VIRT:
1254 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1255 tsk->signal->cputime_expires.virt_exp = *newval;
1256 break;
1257 }
1258 out:
1259 posix_cpu_timer_kick_nohz();
1260 }
1261
1262 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1263 struct timespec *rqtp, struct itimerspec *it)
1264 {
1265 struct k_itimer timer;
1266 int error;
1267
1268 /*
1269 * Set up a temporary timer and then wait for it to go off.
1270 */
1271 memset(&timer, 0, sizeof timer);
1272 spin_lock_init(&timer.it_lock);
1273 timer.it_clock = which_clock;
1274 timer.it_overrun = -1;
1275 error = posix_cpu_timer_create(&timer);
1276 timer.it_process = current;
1277 if (!error) {
1278 static struct itimerspec zero_it;
1279
1280 memset(it, 0, sizeof *it);
1281 it->it_value = *rqtp;
1282
1283 spin_lock_irq(&timer.it_lock);
1284 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1285 if (error) {
1286 spin_unlock_irq(&timer.it_lock);
1287 return error;
1288 }
1289
1290 while (!signal_pending(current)) {
1291 if (timer.it.cpu.expires == 0) {
1292 /*
1293 * Our timer fired and was reset, below
1294 * deletion can not fail.
1295 */
1296 posix_cpu_timer_del(&timer);
1297 spin_unlock_irq(&timer.it_lock);
1298 return 0;
1299 }
1300
1301 /*
1302 * Block until cpu_timer_fire (or a signal) wakes us.
1303 */
1304 __set_current_state(TASK_INTERRUPTIBLE);
1305 spin_unlock_irq(&timer.it_lock);
1306 schedule();
1307 spin_lock_irq(&timer.it_lock);
1308 }
1309
1310 /*
1311 * We were interrupted by a signal.
1312 */
1313 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1314 error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1315 if (!error) {
1316 /*
1317 * Timer is now unarmed, deletion can not fail.
1318 */
1319 posix_cpu_timer_del(&timer);
1320 }
1321 spin_unlock_irq(&timer.it_lock);
1322
1323 while (error == TIMER_RETRY) {
1324 /*
1325 * We need to handle case when timer was or is in the
1326 * middle of firing. In other cases we already freed
1327 * resources.
1328 */
1329 spin_lock_irq(&timer.it_lock);
1330 error = posix_cpu_timer_del(&timer);
1331 spin_unlock_irq(&timer.it_lock);
1332 }
1333
1334 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1335 /*
1336 * It actually did fire already.
1337 */
1338 return 0;
1339 }
1340
1341 error = -ERESTART_RESTARTBLOCK;
1342 }
1343
1344 return error;
1345 }
1346
1347 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1348
1349 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1350 struct timespec *rqtp, struct timespec __user *rmtp)
1351 {
1352 struct restart_block *restart_block =
1353 &current_thread_info()->restart_block;
1354 struct itimerspec it;
1355 int error;
1356
1357 /*
1358 * Diagnose required errors first.
1359 */
1360 if (CPUCLOCK_PERTHREAD(which_clock) &&
1361 (CPUCLOCK_PID(which_clock) == 0 ||
1362 CPUCLOCK_PID(which_clock) == current->pid))
1363 return -EINVAL;
1364
1365 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1366
1367 if (error == -ERESTART_RESTARTBLOCK) {
1368
1369 if (flags & TIMER_ABSTIME)
1370 return -ERESTARTNOHAND;
1371 /*
1372 * Report back to the user the time still remaining.
1373 */
1374 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1375 return -EFAULT;
1376
1377 restart_block->fn = posix_cpu_nsleep_restart;
1378 restart_block->nanosleep.clockid = which_clock;
1379 restart_block->nanosleep.rmtp = rmtp;
1380 restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1381 }
1382 return error;
1383 }
1384
1385 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1386 {
1387 clockid_t which_clock = restart_block->nanosleep.clockid;
1388 struct timespec t;
1389 struct itimerspec it;
1390 int error;
1391
1392 t = ns_to_timespec(restart_block->nanosleep.expires);
1393
1394 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1395
1396 if (error == -ERESTART_RESTARTBLOCK) {
1397 struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1398 /*
1399 * Report back to the user the time still remaining.
1400 */
1401 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1402 return -EFAULT;
1403
1404 restart_block->nanosleep.expires = timespec_to_ns(&t);
1405 }
1406 return error;
1407
1408 }
1409
1410 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1411 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1412
1413 static int process_cpu_clock_getres(const clockid_t which_clock,
1414 struct timespec *tp)
1415 {
1416 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1417 }
1418 static int process_cpu_clock_get(const clockid_t which_clock,
1419 struct timespec *tp)
1420 {
1421 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1422 }
1423 static int process_cpu_timer_create(struct k_itimer *timer)
1424 {
1425 timer->it_clock = PROCESS_CLOCK;
1426 return posix_cpu_timer_create(timer);
1427 }
1428 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1429 struct timespec *rqtp,
1430 struct timespec __user *rmtp)
1431 {
1432 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1433 }
1434 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1435 {
1436 return -EINVAL;
1437 }
1438 static int thread_cpu_clock_getres(const clockid_t which_clock,
1439 struct timespec *tp)
1440 {
1441 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1442 }
1443 static int thread_cpu_clock_get(const clockid_t which_clock,
1444 struct timespec *tp)
1445 {
1446 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1447 }
1448 static int thread_cpu_timer_create(struct k_itimer *timer)
1449 {
1450 timer->it_clock = THREAD_CLOCK;
1451 return posix_cpu_timer_create(timer);
1452 }
1453
1454 struct k_clock clock_posix_cpu = {
1455 .clock_getres = posix_cpu_clock_getres,
1456 .clock_set = posix_cpu_clock_set,
1457 .clock_get = posix_cpu_clock_get,
1458 .timer_create = posix_cpu_timer_create,
1459 .nsleep = posix_cpu_nsleep,
1460 .nsleep_restart = posix_cpu_nsleep_restart,
1461 .timer_set = posix_cpu_timer_set,
1462 .timer_del = posix_cpu_timer_del,
1463 .timer_get = posix_cpu_timer_get,
1464 };
1465
1466 static __init int init_posix_cpu_timers(void)
1467 {
1468 struct k_clock process = {
1469 .clock_getres = process_cpu_clock_getres,
1470 .clock_get = process_cpu_clock_get,
1471 .timer_create = process_cpu_timer_create,
1472 .nsleep = process_cpu_nsleep,
1473 .nsleep_restart = process_cpu_nsleep_restart,
1474 };
1475 struct k_clock thread = {
1476 .clock_getres = thread_cpu_clock_getres,
1477 .clock_get = thread_cpu_clock_get,
1478 .timer_create = thread_cpu_timer_create,
1479 };
1480 struct timespec ts;
1481
1482 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1483 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1484
1485 cputime_to_timespec(cputime_one_jiffy, &ts);
1486 onecputick = ts.tv_nsec;
1487 WARN_ON(ts.tv_sec != 0);
1488
1489 return 0;
1490 }
1491 __initcall(init_posix_cpu_timers);