]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - kernel/posix-timers.c
x86/speculation: Provide IBPB always command line options
[thirdparty/kernel/stable.git] / kernel / posix-timers.c
1 /*
2 * linux/kernel/posix-timers.c
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38
39 #include <asm/uaccess.h>
40 #include <linux/list.h>
41 #include <linux/init.h>
42 #include <linux/compiler.h>
43 #include <linux/hash.h>
44 #include <linux/posix-clock.h>
45 #include <linux/posix-timers.h>
46 #include <linux/syscalls.h>
47 #include <linux/wait.h>
48 #include <linux/workqueue.h>
49 #include <linux/export.h>
50 #include <linux/hashtable.h>
51 #include <linux/nospec.h>
52
53 /*
54 * Management arrays for POSIX timers. Timers are now kept in static hash table
55 * with 512 entries.
56 * Timer ids are allocated by local routine, which selects proper hash head by
57 * key, constructed from current->signal address and per signal struct counter.
58 * This keeps timer ids unique per process, but now they can intersect between
59 * processes.
60 */
61
62 /*
63 * Lets keep our timers in a slab cache :-)
64 */
65 static struct kmem_cache *posix_timers_cache;
66
67 static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
68 static DEFINE_SPINLOCK(hash_lock);
69
70 /*
71 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
72 * SIGEV values. Here we put out an error if this assumption fails.
73 */
74 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
75 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
76 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
77 #endif
78
79 /*
80 * parisc wants ENOTSUP instead of EOPNOTSUPP
81 */
82 #ifndef ENOTSUP
83 # define ENANOSLEEP_NOTSUP EOPNOTSUPP
84 #else
85 # define ENANOSLEEP_NOTSUP ENOTSUP
86 #endif
87
88 /*
89 * The timer ID is turned into a timer address by idr_find().
90 * Verifying a valid ID consists of:
91 *
92 * a) checking that idr_find() returns other than -1.
93 * b) checking that the timer id matches the one in the timer itself.
94 * c) that the timer owner is in the callers thread group.
95 */
96
97 /*
98 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
99 * to implement others. This structure defines the various
100 * clocks.
101 *
102 * RESOLUTION: Clock resolution is used to round up timer and interval
103 * times, NOT to report clock times, which are reported with as
104 * much resolution as the system can muster. In some cases this
105 * resolution may depend on the underlying clock hardware and
106 * may not be quantifiable until run time, and only then is the
107 * necessary code is written. The standard says we should say
108 * something about this issue in the documentation...
109 *
110 * FUNCTIONS: The CLOCKs structure defines possible functions to
111 * handle various clock functions.
112 *
113 * The standard POSIX timer management code assumes the
114 * following: 1.) The k_itimer struct (sched.h) is used for
115 * the timer. 2.) The list, it_lock, it_clock, it_id and
116 * it_pid fields are not modified by timer code.
117 *
118 * Permissions: It is assumed that the clock_settime() function defined
119 * for each clock will take care of permission checks. Some
120 * clocks may be set able by any user (i.e. local process
121 * clocks) others not. Currently the only set able clock we
122 * have is CLOCK_REALTIME and its high res counter part, both of
123 * which we beg off on and pass to do_sys_settimeofday().
124 */
125
126 static struct k_clock posix_clocks[MAX_CLOCKS];
127
128 /*
129 * These ones are defined below.
130 */
131 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
132 struct timespec __user *rmtp);
133 static int common_timer_create(struct k_itimer *new_timer);
134 static void common_timer_get(struct k_itimer *, struct itimerspec *);
135 static int common_timer_set(struct k_itimer *, int,
136 struct itimerspec *, struct itimerspec *);
137 static int common_timer_del(struct k_itimer *timer);
138
139 static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
140
141 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
142
143 #define lock_timer(tid, flags) \
144 ({ struct k_itimer *__timr; \
145 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
146 __timr; \
147 })
148
149 static int hash(struct signal_struct *sig, unsigned int nr)
150 {
151 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
152 }
153
154 static struct k_itimer *__posix_timers_find(struct hlist_head *head,
155 struct signal_struct *sig,
156 timer_t id)
157 {
158 struct k_itimer *timer;
159
160 hlist_for_each_entry_rcu(timer, head, t_hash) {
161 if ((timer->it_signal == sig) && (timer->it_id == id))
162 return timer;
163 }
164 return NULL;
165 }
166
167 static struct k_itimer *posix_timer_by_id(timer_t id)
168 {
169 struct signal_struct *sig = current->signal;
170 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
171
172 return __posix_timers_find(head, sig, id);
173 }
174
175 static int posix_timer_add(struct k_itimer *timer)
176 {
177 struct signal_struct *sig = current->signal;
178 int first_free_id = sig->posix_timer_id;
179 struct hlist_head *head;
180 int ret = -ENOENT;
181
182 do {
183 spin_lock(&hash_lock);
184 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
185 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
186 hlist_add_head_rcu(&timer->t_hash, head);
187 ret = sig->posix_timer_id;
188 }
189 if (++sig->posix_timer_id < 0)
190 sig->posix_timer_id = 0;
191 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
192 /* Loop over all possible ids completed */
193 ret = -EAGAIN;
194 spin_unlock(&hash_lock);
195 } while (ret == -ENOENT);
196 return ret;
197 }
198
199 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
200 {
201 spin_unlock_irqrestore(&timr->it_lock, flags);
202 }
203
204 /* Get clock_realtime */
205 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec *tp)
206 {
207 ktime_get_real_ts(tp);
208 return 0;
209 }
210
211 /* Set clock_realtime */
212 static int posix_clock_realtime_set(const clockid_t which_clock,
213 const struct timespec *tp)
214 {
215 return do_sys_settimeofday(tp, NULL);
216 }
217
218 static int posix_clock_realtime_adj(const clockid_t which_clock,
219 struct timex *t)
220 {
221 return do_adjtimex(t);
222 }
223
224 /*
225 * Get monotonic time for posix timers
226 */
227 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
228 {
229 ktime_get_ts(tp);
230 return 0;
231 }
232
233 /*
234 * Get monotonic-raw time for posix timers
235 */
236 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
237 {
238 getrawmonotonic(tp);
239 return 0;
240 }
241
242
243 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
244 {
245 *tp = current_kernel_time();
246 return 0;
247 }
248
249 static int posix_get_monotonic_coarse(clockid_t which_clock,
250 struct timespec *tp)
251 {
252 *tp = get_monotonic_coarse();
253 return 0;
254 }
255
256 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
257 {
258 *tp = ktime_to_timespec(KTIME_LOW_RES);
259 return 0;
260 }
261
262 static int posix_get_boottime(const clockid_t which_clock, struct timespec *tp)
263 {
264 get_monotonic_boottime(tp);
265 return 0;
266 }
267
268 static int posix_get_tai(clockid_t which_clock, struct timespec *tp)
269 {
270 timekeeping_clocktai(tp);
271 return 0;
272 }
273
274 /*
275 * Initialize everything, well, just everything in Posix clocks/timers ;)
276 */
277 static __init int init_posix_timers(void)
278 {
279 struct k_clock clock_realtime = {
280 .clock_getres = hrtimer_get_res,
281 .clock_get = posix_clock_realtime_get,
282 .clock_set = posix_clock_realtime_set,
283 .clock_adj = posix_clock_realtime_adj,
284 .nsleep = common_nsleep,
285 .nsleep_restart = hrtimer_nanosleep_restart,
286 .timer_create = common_timer_create,
287 .timer_set = common_timer_set,
288 .timer_get = common_timer_get,
289 .timer_del = common_timer_del,
290 };
291 struct k_clock clock_monotonic = {
292 .clock_getres = hrtimer_get_res,
293 .clock_get = posix_ktime_get_ts,
294 .nsleep = common_nsleep,
295 .nsleep_restart = hrtimer_nanosleep_restart,
296 .timer_create = common_timer_create,
297 .timer_set = common_timer_set,
298 .timer_get = common_timer_get,
299 .timer_del = common_timer_del,
300 };
301 struct k_clock clock_monotonic_raw = {
302 .clock_getres = hrtimer_get_res,
303 .clock_get = posix_get_monotonic_raw,
304 };
305 struct k_clock clock_realtime_coarse = {
306 .clock_getres = posix_get_coarse_res,
307 .clock_get = posix_get_realtime_coarse,
308 };
309 struct k_clock clock_monotonic_coarse = {
310 .clock_getres = posix_get_coarse_res,
311 .clock_get = posix_get_monotonic_coarse,
312 };
313 struct k_clock clock_tai = {
314 .clock_getres = hrtimer_get_res,
315 .clock_get = posix_get_tai,
316 .nsleep = common_nsleep,
317 .nsleep_restart = hrtimer_nanosleep_restart,
318 .timer_create = common_timer_create,
319 .timer_set = common_timer_set,
320 .timer_get = common_timer_get,
321 .timer_del = common_timer_del,
322 };
323 struct k_clock clock_boottime = {
324 .clock_getres = hrtimer_get_res,
325 .clock_get = posix_get_boottime,
326 .nsleep = common_nsleep,
327 .nsleep_restart = hrtimer_nanosleep_restart,
328 .timer_create = common_timer_create,
329 .timer_set = common_timer_set,
330 .timer_get = common_timer_get,
331 .timer_del = common_timer_del,
332 };
333
334 posix_timers_register_clock(CLOCK_REALTIME, &clock_realtime);
335 posix_timers_register_clock(CLOCK_MONOTONIC, &clock_monotonic);
336 posix_timers_register_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
337 posix_timers_register_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
338 posix_timers_register_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
339 posix_timers_register_clock(CLOCK_BOOTTIME, &clock_boottime);
340 posix_timers_register_clock(CLOCK_TAI, &clock_tai);
341
342 posix_timers_cache = kmem_cache_create("posix_timers_cache",
343 sizeof (struct k_itimer), 0, SLAB_PANIC,
344 NULL);
345 return 0;
346 }
347
348 __initcall(init_posix_timers);
349
350 /*
351 * The siginfo si_overrun field and the return value of timer_getoverrun(2)
352 * are of type int. Clamp the overrun value to INT_MAX
353 */
354 static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
355 {
356 s64 sum = timr->it_overrun_last + (s64)baseval;
357
358 return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
359 }
360
361 static void schedule_next_timer(struct k_itimer *timr)
362 {
363 struct hrtimer *timer = &timr->it.real.timer;
364
365 if (timr->it.real.interval.tv64 == 0)
366 return;
367
368 timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
369 timr->it.real.interval);
370
371 timr->it_overrun_last = timr->it_overrun;
372 timr->it_overrun = -1LL;
373 ++timr->it_requeue_pending;
374 hrtimer_restart(timer);
375 }
376
377 /*
378 * This function is exported for use by the signal deliver code. It is
379 * called just prior to the info block being released and passes that
380 * block to us. It's function is to update the overrun entry AND to
381 * restart the timer. It should only be called if the timer is to be
382 * restarted (i.e. we have flagged this in the sys_private entry of the
383 * info block).
384 *
385 * To protect against the timer going away while the interrupt is queued,
386 * we require that the it_requeue_pending flag be set.
387 */
388 void do_schedule_next_timer(struct siginfo *info)
389 {
390 struct k_itimer *timr;
391 unsigned long flags;
392
393 timr = lock_timer(info->si_tid, &flags);
394
395 if (timr && timr->it_requeue_pending == info->si_sys_private) {
396 if (timr->it_clock < 0)
397 posix_cpu_timer_schedule(timr);
398 else
399 schedule_next_timer(timr);
400
401 info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
402 }
403
404 if (timr)
405 unlock_timer(timr, flags);
406 }
407
408 int posix_timer_event(struct k_itimer *timr, int si_private)
409 {
410 struct task_struct *task;
411 int shared, ret = -1;
412 /*
413 * FIXME: if ->sigq is queued we can race with
414 * dequeue_signal()->do_schedule_next_timer().
415 *
416 * If dequeue_signal() sees the "right" value of
417 * si_sys_private it calls do_schedule_next_timer().
418 * We re-queue ->sigq and drop ->it_lock().
419 * do_schedule_next_timer() locks the timer
420 * and re-schedules it while ->sigq is pending.
421 * Not really bad, but not that we want.
422 */
423 timr->sigq->info.si_sys_private = si_private;
424
425 rcu_read_lock();
426 task = pid_task(timr->it_pid, PIDTYPE_PID);
427 if (task) {
428 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
429 ret = send_sigqueue(timr->sigq, task, shared);
430 }
431 rcu_read_unlock();
432 /* If we failed to send the signal the timer stops. */
433 return ret > 0;
434 }
435 EXPORT_SYMBOL_GPL(posix_timer_event);
436
437 /*
438 * This function gets called when a POSIX.1b interval timer expires. It
439 * is used as a callback from the kernel internal timer. The
440 * run_timer_list code ALWAYS calls with interrupts on.
441
442 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
443 */
444 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
445 {
446 struct k_itimer *timr;
447 unsigned long flags;
448 int si_private = 0;
449 enum hrtimer_restart ret = HRTIMER_NORESTART;
450
451 timr = container_of(timer, struct k_itimer, it.real.timer);
452 spin_lock_irqsave(&timr->it_lock, flags);
453
454 if (timr->it.real.interval.tv64 != 0)
455 si_private = ++timr->it_requeue_pending;
456
457 if (posix_timer_event(timr, si_private)) {
458 /*
459 * signal was not sent because of sig_ignor
460 * we will not get a call back to restart it AND
461 * it should be restarted.
462 */
463 if (timr->it.real.interval.tv64 != 0) {
464 ktime_t now = hrtimer_cb_get_time(timer);
465
466 /*
467 * FIXME: What we really want, is to stop this
468 * timer completely and restart it in case the
469 * SIG_IGN is removed. This is a non trivial
470 * change which involves sighand locking
471 * (sigh !), which we don't want to do late in
472 * the release cycle.
473 *
474 * For now we just let timers with an interval
475 * less than a jiffie expire every jiffie to
476 * avoid softirq starvation in case of SIG_IGN
477 * and a very small interval, which would put
478 * the timer right back on the softirq pending
479 * list. By moving now ahead of time we trick
480 * hrtimer_forward() to expire the timer
481 * later, while we still maintain the overrun
482 * accuracy, but have some inconsistency in
483 * the timer_gettime() case. This is at least
484 * better than a starved softirq. A more
485 * complex fix which solves also another related
486 * inconsistency is already in the pipeline.
487 */
488 #ifdef CONFIG_HIGH_RES_TIMERS
489 {
490 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
491
492 if (timr->it.real.interval.tv64 < kj.tv64)
493 now = ktime_add(now, kj);
494 }
495 #endif
496 timr->it_overrun += hrtimer_forward(timer, now,
497 timr->it.real.interval);
498 ret = HRTIMER_RESTART;
499 ++timr->it_requeue_pending;
500 }
501 }
502
503 unlock_timer(timr, flags);
504 return ret;
505 }
506
507 static struct pid *good_sigevent(sigevent_t * event)
508 {
509 struct task_struct *rtn = current->group_leader;
510
511 switch (event->sigev_notify) {
512 case SIGEV_SIGNAL | SIGEV_THREAD_ID:
513 rtn = find_task_by_vpid(event->sigev_notify_thread_id);
514 if (!rtn || !same_thread_group(rtn, current))
515 return NULL;
516 /* FALLTHRU */
517 case SIGEV_SIGNAL:
518 case SIGEV_THREAD:
519 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
520 return NULL;
521 /* FALLTHRU */
522 case SIGEV_NONE:
523 return task_pid(rtn);
524 default:
525 return NULL;
526 }
527 }
528
529 void posix_timers_register_clock(const clockid_t clock_id,
530 struct k_clock *new_clock)
531 {
532 if ((unsigned) clock_id >= MAX_CLOCKS) {
533 printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n",
534 clock_id);
535 return;
536 }
537
538 if (!new_clock->clock_get) {
539 printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n",
540 clock_id);
541 return;
542 }
543 if (!new_clock->clock_getres) {
544 printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n",
545 clock_id);
546 return;
547 }
548
549 posix_clocks[clock_id] = *new_clock;
550 }
551 EXPORT_SYMBOL_GPL(posix_timers_register_clock);
552
553 static struct k_itimer * alloc_posix_timer(void)
554 {
555 struct k_itimer *tmr;
556 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
557 if (!tmr)
558 return tmr;
559 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
560 kmem_cache_free(posix_timers_cache, tmr);
561 return NULL;
562 }
563 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
564 return tmr;
565 }
566
567 static void k_itimer_rcu_free(struct rcu_head *head)
568 {
569 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
570
571 kmem_cache_free(posix_timers_cache, tmr);
572 }
573
574 #define IT_ID_SET 1
575 #define IT_ID_NOT_SET 0
576 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
577 {
578 if (it_id_set) {
579 unsigned long flags;
580 spin_lock_irqsave(&hash_lock, flags);
581 hlist_del_rcu(&tmr->t_hash);
582 spin_unlock_irqrestore(&hash_lock, flags);
583 }
584 put_pid(tmr->it_pid);
585 sigqueue_free(tmr->sigq);
586 call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
587 }
588
589 static struct k_clock *clockid_to_kclock(const clockid_t id)
590 {
591 clockid_t idx = id;
592 struct k_clock *kc;
593
594 if (id < 0) {
595 return (id & CLOCKFD_MASK) == CLOCKFD ?
596 &clock_posix_dynamic : &clock_posix_cpu;
597 }
598
599 if (id >= ARRAY_SIZE(posix_clocks))
600 return NULL;
601
602 kc = &posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
603 if (!kc->clock_getres)
604 return NULL;
605 return kc;
606 }
607
608 static int common_timer_create(struct k_itimer *new_timer)
609 {
610 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
611 return 0;
612 }
613
614 /* Create a POSIX.1b interval timer. */
615
616 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
617 struct sigevent __user *, timer_event_spec,
618 timer_t __user *, created_timer_id)
619 {
620 struct k_clock *kc = clockid_to_kclock(which_clock);
621 struct k_itimer *new_timer;
622 int error, new_timer_id;
623 sigevent_t event;
624 int it_id_set = IT_ID_NOT_SET;
625
626 if (!kc)
627 return -EINVAL;
628 if (!kc->timer_create)
629 return -EOPNOTSUPP;
630
631 new_timer = alloc_posix_timer();
632 if (unlikely(!new_timer))
633 return -EAGAIN;
634
635 spin_lock_init(&new_timer->it_lock);
636 new_timer_id = posix_timer_add(new_timer);
637 if (new_timer_id < 0) {
638 error = new_timer_id;
639 goto out;
640 }
641
642 it_id_set = IT_ID_SET;
643 new_timer->it_id = (timer_t) new_timer_id;
644 new_timer->it_clock = which_clock;
645 new_timer->it_overrun = -1LL;
646
647 if (timer_event_spec) {
648 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
649 error = -EFAULT;
650 goto out;
651 }
652 rcu_read_lock();
653 new_timer->it_pid = get_pid(good_sigevent(&event));
654 rcu_read_unlock();
655 if (!new_timer->it_pid) {
656 error = -EINVAL;
657 goto out;
658 }
659 } else {
660 memset(&event.sigev_value, 0, sizeof(event.sigev_value));
661 event.sigev_notify = SIGEV_SIGNAL;
662 event.sigev_signo = SIGALRM;
663 event.sigev_value.sival_int = new_timer->it_id;
664 new_timer->it_pid = get_pid(task_tgid(current));
665 }
666
667 new_timer->it_sigev_notify = event.sigev_notify;
668 new_timer->sigq->info.si_signo = event.sigev_signo;
669 new_timer->sigq->info.si_value = event.sigev_value;
670 new_timer->sigq->info.si_tid = new_timer->it_id;
671 new_timer->sigq->info.si_code = SI_TIMER;
672
673 if (copy_to_user(created_timer_id,
674 &new_timer_id, sizeof (new_timer_id))) {
675 error = -EFAULT;
676 goto out;
677 }
678
679 error = kc->timer_create(new_timer);
680 if (error)
681 goto out;
682
683 spin_lock_irq(&current->sighand->siglock);
684 new_timer->it_signal = current->signal;
685 list_add(&new_timer->list, &current->signal->posix_timers);
686 spin_unlock_irq(&current->sighand->siglock);
687
688 return 0;
689 /*
690 * In the case of the timer belonging to another task, after
691 * the task is unlocked, the timer is owned by the other task
692 * and may cease to exist at any time. Don't use or modify
693 * new_timer after the unlock call.
694 */
695 out:
696 release_posix_timer(new_timer, it_id_set);
697 return error;
698 }
699
700 /*
701 * Locking issues: We need to protect the result of the id look up until
702 * we get the timer locked down so it is not deleted under us. The
703 * removal is done under the idr spinlock so we use that here to bridge
704 * the find to the timer lock. To avoid a dead lock, the timer id MUST
705 * be release with out holding the timer lock.
706 */
707 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
708 {
709 struct k_itimer *timr;
710
711 /*
712 * timer_t could be any type >= int and we want to make sure any
713 * @timer_id outside positive int range fails lookup.
714 */
715 if ((unsigned long long)timer_id > INT_MAX)
716 return NULL;
717
718 rcu_read_lock();
719 timr = posix_timer_by_id(timer_id);
720 if (timr) {
721 spin_lock_irqsave(&timr->it_lock, *flags);
722 if (timr->it_signal == current->signal) {
723 rcu_read_unlock();
724 return timr;
725 }
726 spin_unlock_irqrestore(&timr->it_lock, *flags);
727 }
728 rcu_read_unlock();
729
730 return NULL;
731 }
732
733 /*
734 * Get the time remaining on a POSIX.1b interval timer. This function
735 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
736 * mess with irq.
737 *
738 * We have a couple of messes to clean up here. First there is the case
739 * of a timer that has a requeue pending. These timers should appear to
740 * be in the timer list with an expiry as if we were to requeue them
741 * now.
742 *
743 * The second issue is the SIGEV_NONE timer which may be active but is
744 * not really ever put in the timer list (to save system resources).
745 * This timer may be expired, and if so, we will do it here. Otherwise
746 * it is the same as a requeue pending timer WRT to what we should
747 * report.
748 */
749 static void
750 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
751 {
752 ktime_t now, remaining, iv;
753 struct hrtimer *timer = &timr->it.real.timer;
754 bool sig_none;
755
756 memset(cur_setting, 0, sizeof(struct itimerspec));
757
758 sig_none = timr->it_sigev_notify == SIGEV_NONE;
759 iv = timr->it.real.interval;
760
761 /* interval timer ? */
762 if (iv.tv64)
763 cur_setting->it_interval = ktime_to_timespec(iv);
764 else if (!hrtimer_active(timer) && !sig_none)
765 return;
766
767 now = timer->base->get_time();
768
769 /*
770 * When a requeue is pending or this is a SIGEV_NONE
771 * timer move the expiry time forward by intervals, so
772 * expiry is > now.
773 */
774 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
775 timr->it_overrun += hrtimer_forward(timer, now, iv);
776
777 remaining = ktime_sub(hrtimer_get_expires(timer), now);
778 /* Return 0 only, when the timer is expired and not pending */
779 if (remaining.tv64 <= 0) {
780 /*
781 * A single shot SIGEV_NONE timer must return 0, when
782 * it is expired !
783 */
784 if (!sig_none)
785 cur_setting->it_value.tv_nsec = 1;
786 } else
787 cur_setting->it_value = ktime_to_timespec(remaining);
788 }
789
790 /* Get the time remaining on a POSIX.1b interval timer. */
791 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
792 struct itimerspec __user *, setting)
793 {
794 struct itimerspec cur_setting;
795 struct k_itimer *timr;
796 struct k_clock *kc;
797 unsigned long flags;
798 int ret = 0;
799
800 timr = lock_timer(timer_id, &flags);
801 if (!timr)
802 return -EINVAL;
803
804 kc = clockid_to_kclock(timr->it_clock);
805 if (WARN_ON_ONCE(!kc || !kc->timer_get))
806 ret = -EINVAL;
807 else
808 kc->timer_get(timr, &cur_setting);
809
810 unlock_timer(timr, flags);
811
812 if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
813 return -EFAULT;
814
815 return ret;
816 }
817
818 /*
819 * Get the number of overruns of a POSIX.1b interval timer. This is to
820 * be the overrun of the timer last delivered. At the same time we are
821 * accumulating overruns on the next timer. The overrun is frozen when
822 * the signal is delivered, either at the notify time (if the info block
823 * is not queued) or at the actual delivery time (as we are informed by
824 * the call back to do_schedule_next_timer(). So all we need to do is
825 * to pick up the frozen overrun.
826 */
827 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
828 {
829 struct k_itimer *timr;
830 int overrun;
831 unsigned long flags;
832
833 timr = lock_timer(timer_id, &flags);
834 if (!timr)
835 return -EINVAL;
836
837 overrun = timer_overrun_to_int(timr, 0);
838 unlock_timer(timr, flags);
839
840 return overrun;
841 }
842
843 /* Set a POSIX.1b interval timer. */
844 /* timr->it_lock is taken. */
845 static int
846 common_timer_set(struct k_itimer *timr, int flags,
847 struct itimerspec *new_setting, struct itimerspec *old_setting)
848 {
849 struct hrtimer *timer = &timr->it.real.timer;
850 enum hrtimer_mode mode;
851
852 if (old_setting)
853 common_timer_get(timr, old_setting);
854
855 /* disable the timer */
856 timr->it.real.interval.tv64 = 0;
857 /*
858 * careful here. If smp we could be in the "fire" routine which will
859 * be spinning as we hold the lock. But this is ONLY an SMP issue.
860 */
861 if (hrtimer_try_to_cancel(timer) < 0)
862 return TIMER_RETRY;
863
864 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
865 ~REQUEUE_PENDING;
866 timr->it_overrun_last = 0;
867
868 /* switch off the timer when it_value is zero */
869 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
870 return 0;
871
872 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
873 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
874 timr->it.real.timer.function = posix_timer_fn;
875
876 hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
877
878 /* Convert interval */
879 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
880
881 /* SIGEV_NONE timers are not queued ! See common_timer_get */
882 if (timr->it_sigev_notify == SIGEV_NONE) {
883 /* Setup correct expiry time for relative timers */
884 if (mode == HRTIMER_MODE_REL) {
885 hrtimer_add_expires(timer, timer->base->get_time());
886 }
887 return 0;
888 }
889
890 hrtimer_start_expires(timer, mode);
891 return 0;
892 }
893
894 /* Set a POSIX.1b interval timer */
895 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
896 const struct itimerspec __user *, new_setting,
897 struct itimerspec __user *, old_setting)
898 {
899 struct k_itimer *timr;
900 struct itimerspec new_spec, old_spec;
901 int error = 0;
902 unsigned long flag;
903 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
904 struct k_clock *kc;
905
906 if (!new_setting)
907 return -EINVAL;
908
909 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
910 return -EFAULT;
911
912 if (!timespec_valid(&new_spec.it_interval) ||
913 !timespec_valid(&new_spec.it_value))
914 return -EINVAL;
915 retry:
916 timr = lock_timer(timer_id, &flag);
917 if (!timr)
918 return -EINVAL;
919
920 kc = clockid_to_kclock(timr->it_clock);
921 if (WARN_ON_ONCE(!kc || !kc->timer_set))
922 error = -EINVAL;
923 else
924 error = kc->timer_set(timr, flags, &new_spec, rtn);
925
926 unlock_timer(timr, flag);
927 if (error == TIMER_RETRY) {
928 rtn = NULL; // We already got the old time...
929 goto retry;
930 }
931
932 if (old_setting && !error &&
933 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
934 error = -EFAULT;
935
936 return error;
937 }
938
939 static int common_timer_del(struct k_itimer *timer)
940 {
941 timer->it.real.interval.tv64 = 0;
942
943 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
944 return TIMER_RETRY;
945 return 0;
946 }
947
948 static inline int timer_delete_hook(struct k_itimer *timer)
949 {
950 struct k_clock *kc = clockid_to_kclock(timer->it_clock);
951
952 if (WARN_ON_ONCE(!kc || !kc->timer_del))
953 return -EINVAL;
954 return kc->timer_del(timer);
955 }
956
957 /* Delete a POSIX.1b interval timer. */
958 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
959 {
960 struct k_itimer *timer;
961 unsigned long flags;
962
963 retry_delete:
964 timer = lock_timer(timer_id, &flags);
965 if (!timer)
966 return -EINVAL;
967
968 if (timer_delete_hook(timer) == TIMER_RETRY) {
969 unlock_timer(timer, flags);
970 goto retry_delete;
971 }
972
973 spin_lock(&current->sighand->siglock);
974 list_del(&timer->list);
975 spin_unlock(&current->sighand->siglock);
976 /*
977 * This keeps any tasks waiting on the spin lock from thinking
978 * they got something (see the lock code above).
979 */
980 timer->it_signal = NULL;
981
982 unlock_timer(timer, flags);
983 release_posix_timer(timer, IT_ID_SET);
984 return 0;
985 }
986
987 /*
988 * return timer owned by the process, used by exit_itimers
989 */
990 static void itimer_delete(struct k_itimer *timer)
991 {
992 unsigned long flags;
993
994 retry_delete:
995 spin_lock_irqsave(&timer->it_lock, flags);
996
997 if (timer_delete_hook(timer) == TIMER_RETRY) {
998 unlock_timer(timer, flags);
999 goto retry_delete;
1000 }
1001 list_del(&timer->list);
1002 /*
1003 * This keeps any tasks waiting on the spin lock from thinking
1004 * they got something (see the lock code above).
1005 */
1006 timer->it_signal = NULL;
1007
1008 unlock_timer(timer, flags);
1009 release_posix_timer(timer, IT_ID_SET);
1010 }
1011
1012 /*
1013 * This is called by do_exit or de_thread, only when there are no more
1014 * references to the shared signal_struct.
1015 */
1016 void exit_itimers(struct signal_struct *sig)
1017 {
1018 struct k_itimer *tmr;
1019
1020 while (!list_empty(&sig->posix_timers)) {
1021 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1022 itimer_delete(tmr);
1023 }
1024 }
1025
1026 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1027 const struct timespec __user *, tp)
1028 {
1029 struct k_clock *kc = clockid_to_kclock(which_clock);
1030 struct timespec new_tp;
1031
1032 if (!kc || !kc->clock_set)
1033 return -EINVAL;
1034
1035 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
1036 return -EFAULT;
1037
1038 return kc->clock_set(which_clock, &new_tp);
1039 }
1040
1041 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1042 struct timespec __user *,tp)
1043 {
1044 struct k_clock *kc = clockid_to_kclock(which_clock);
1045 struct timespec kernel_tp;
1046 int error;
1047
1048 if (!kc)
1049 return -EINVAL;
1050
1051 error = kc->clock_get(which_clock, &kernel_tp);
1052
1053 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
1054 error = -EFAULT;
1055
1056 return error;
1057 }
1058
1059 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1060 struct timex __user *, utx)
1061 {
1062 struct k_clock *kc = clockid_to_kclock(which_clock);
1063 struct timex ktx;
1064 int err;
1065
1066 if (!kc)
1067 return -EINVAL;
1068 if (!kc->clock_adj)
1069 return -EOPNOTSUPP;
1070
1071 if (copy_from_user(&ktx, utx, sizeof(ktx)))
1072 return -EFAULT;
1073
1074 err = kc->clock_adj(which_clock, &ktx);
1075
1076 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1077 return -EFAULT;
1078
1079 return err;
1080 }
1081
1082 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1083 struct timespec __user *, tp)
1084 {
1085 struct k_clock *kc = clockid_to_kclock(which_clock);
1086 struct timespec rtn_tp;
1087 int error;
1088
1089 if (!kc)
1090 return -EINVAL;
1091
1092 error = kc->clock_getres(which_clock, &rtn_tp);
1093
1094 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
1095 error = -EFAULT;
1096
1097 return error;
1098 }
1099
1100 /*
1101 * nanosleep for monotonic and realtime clocks
1102 */
1103 static int common_nsleep(const clockid_t which_clock, int flags,
1104 struct timespec *tsave, struct timespec __user *rmtp)
1105 {
1106 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
1107 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1108 which_clock);
1109 }
1110
1111 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1112 const struct timespec __user *, rqtp,
1113 struct timespec __user *, rmtp)
1114 {
1115 struct k_clock *kc = clockid_to_kclock(which_clock);
1116 struct timespec t;
1117
1118 if (!kc)
1119 return -EINVAL;
1120 if (!kc->nsleep)
1121 return -ENANOSLEEP_NOTSUP;
1122
1123 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1124 return -EFAULT;
1125
1126 if (!timespec_valid(&t))
1127 return -EINVAL;
1128
1129 return kc->nsleep(which_clock, flags, &t, rmtp);
1130 }
1131
1132 /*
1133 * This will restart clock_nanosleep. This is required only by
1134 * compat_clock_nanosleep_restart for now.
1135 */
1136 long clock_nanosleep_restart(struct restart_block *restart_block)
1137 {
1138 clockid_t which_clock = restart_block->nanosleep.clockid;
1139 struct k_clock *kc = clockid_to_kclock(which_clock);
1140
1141 if (WARN_ON_ONCE(!kc || !kc->nsleep_restart))
1142 return -EINVAL;
1143
1144 return kc->nsleep_restart(restart_block);
1145 }