]> git.ipfire.org Git - people/arne_f/kernel.git/blob - kernel/power/snapshot.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[people/arne_f/kernel.git] / kernel / power / snapshot.c
1 /*
2 * linux/kernel/power/snapshot.c
3 *
4 * This file provides system snapshot/restore functionality for swsusp.
5 *
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8 *
9 * This file is released under the GPLv2.
10 *
11 */
12
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30
31 #include <asm/uaccess.h>
32 #include <asm/mmu_context.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <asm/io.h>
36
37 #include "power.h"
38
39 static int swsusp_page_is_free(struct page *);
40 static void swsusp_set_page_forbidden(struct page *);
41 static void swsusp_unset_page_forbidden(struct page *);
42
43 /*
44 * Preferred image size in bytes (tunable via /sys/power/image_size).
45 * When it is set to N, swsusp will do its best to ensure the image
46 * size will not exceed N bytes, but if that is impossible, it will
47 * try to create the smallest image possible.
48 */
49 unsigned long image_size = 500 * 1024 * 1024;
50
51 /* List of PBEs needed for restoring the pages that were allocated before
52 * the suspend and included in the suspend image, but have also been
53 * allocated by the "resume" kernel, so their contents cannot be written
54 * directly to their "original" page frames.
55 */
56 struct pbe *restore_pblist;
57
58 /* Pointer to an auxiliary buffer (1 page) */
59 static void *buffer;
60
61 /**
62 * @safe_needed - on resume, for storing the PBE list and the image,
63 * we can only use memory pages that do not conflict with the pages
64 * used before suspend. The unsafe pages have PageNosaveFree set
65 * and we count them using unsafe_pages.
66 *
67 * Each allocated image page is marked as PageNosave and PageNosaveFree
68 * so that swsusp_free() can release it.
69 */
70
71 #define PG_ANY 0
72 #define PG_SAFE 1
73 #define PG_UNSAFE_CLEAR 1
74 #define PG_UNSAFE_KEEP 0
75
76 static unsigned int allocated_unsafe_pages;
77
78 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
79 {
80 void *res;
81
82 res = (void *)get_zeroed_page(gfp_mask);
83 if (safe_needed)
84 while (res && swsusp_page_is_free(virt_to_page(res))) {
85 /* The page is unsafe, mark it for swsusp_free() */
86 swsusp_set_page_forbidden(virt_to_page(res));
87 allocated_unsafe_pages++;
88 res = (void *)get_zeroed_page(gfp_mask);
89 }
90 if (res) {
91 swsusp_set_page_forbidden(virt_to_page(res));
92 swsusp_set_page_free(virt_to_page(res));
93 }
94 return res;
95 }
96
97 unsigned long get_safe_page(gfp_t gfp_mask)
98 {
99 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
100 }
101
102 static struct page *alloc_image_page(gfp_t gfp_mask)
103 {
104 struct page *page;
105
106 page = alloc_page(gfp_mask);
107 if (page) {
108 swsusp_set_page_forbidden(page);
109 swsusp_set_page_free(page);
110 }
111 return page;
112 }
113
114 /**
115 * free_image_page - free page represented by @addr, allocated with
116 * get_image_page (page flags set by it must be cleared)
117 */
118
119 static inline void free_image_page(void *addr, int clear_nosave_free)
120 {
121 struct page *page;
122
123 BUG_ON(!virt_addr_valid(addr));
124
125 page = virt_to_page(addr);
126
127 swsusp_unset_page_forbidden(page);
128 if (clear_nosave_free)
129 swsusp_unset_page_free(page);
130
131 __free_page(page);
132 }
133
134 /* struct linked_page is used to build chains of pages */
135
136 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
137
138 struct linked_page {
139 struct linked_page *next;
140 char data[LINKED_PAGE_DATA_SIZE];
141 } __attribute__((packed));
142
143 static inline void
144 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
145 {
146 while (list) {
147 struct linked_page *lp = list->next;
148
149 free_image_page(list, clear_page_nosave);
150 list = lp;
151 }
152 }
153
154 /**
155 * struct chain_allocator is used for allocating small objects out of
156 * a linked list of pages called 'the chain'.
157 *
158 * The chain grows each time when there is no room for a new object in
159 * the current page. The allocated objects cannot be freed individually.
160 * It is only possible to free them all at once, by freeing the entire
161 * chain.
162 *
163 * NOTE: The chain allocator may be inefficient if the allocated objects
164 * are not much smaller than PAGE_SIZE.
165 */
166
167 struct chain_allocator {
168 struct linked_page *chain; /* the chain */
169 unsigned int used_space; /* total size of objects allocated out
170 * of the current page
171 */
172 gfp_t gfp_mask; /* mask for allocating pages */
173 int safe_needed; /* if set, only "safe" pages are allocated */
174 };
175
176 static void
177 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
178 {
179 ca->chain = NULL;
180 ca->used_space = LINKED_PAGE_DATA_SIZE;
181 ca->gfp_mask = gfp_mask;
182 ca->safe_needed = safe_needed;
183 }
184
185 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
186 {
187 void *ret;
188
189 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
190 struct linked_page *lp;
191
192 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
193 if (!lp)
194 return NULL;
195
196 lp->next = ca->chain;
197 ca->chain = lp;
198 ca->used_space = 0;
199 }
200 ret = ca->chain->data + ca->used_space;
201 ca->used_space += size;
202 return ret;
203 }
204
205 /**
206 * Data types related to memory bitmaps.
207 *
208 * Memory bitmap is a structure consiting of many linked lists of
209 * objects. The main list's elements are of type struct zone_bitmap
210 * and each of them corresonds to one zone. For each zone bitmap
211 * object there is a list of objects of type struct bm_block that
212 * represent each blocks of bitmap in which information is stored.
213 *
214 * struct memory_bitmap contains a pointer to the main list of zone
215 * bitmap objects, a struct bm_position used for browsing the bitmap,
216 * and a pointer to the list of pages used for allocating all of the
217 * zone bitmap objects and bitmap block objects.
218 *
219 * NOTE: It has to be possible to lay out the bitmap in memory
220 * using only allocations of order 0. Additionally, the bitmap is
221 * designed to work with arbitrary number of zones (this is over the
222 * top for now, but let's avoid making unnecessary assumptions ;-).
223 *
224 * struct zone_bitmap contains a pointer to a list of bitmap block
225 * objects and a pointer to the bitmap block object that has been
226 * most recently used for setting bits. Additionally, it contains the
227 * pfns that correspond to the start and end of the represented zone.
228 *
229 * struct bm_block contains a pointer to the memory page in which
230 * information is stored (in the form of a block of bitmap)
231 * It also contains the pfns that correspond to the start and end of
232 * the represented memory area.
233 */
234
235 #define BM_END_OF_MAP (~0UL)
236
237 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
238
239 struct bm_block {
240 struct list_head hook; /* hook into a list of bitmap blocks */
241 unsigned long start_pfn; /* pfn represented by the first bit */
242 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
243 unsigned long *data; /* bitmap representing pages */
244 };
245
246 static inline unsigned long bm_block_bits(struct bm_block *bb)
247 {
248 return bb->end_pfn - bb->start_pfn;
249 }
250
251 /* strcut bm_position is used for browsing memory bitmaps */
252
253 struct bm_position {
254 struct bm_block *block;
255 int bit;
256 };
257
258 struct memory_bitmap {
259 struct list_head blocks; /* list of bitmap blocks */
260 struct linked_page *p_list; /* list of pages used to store zone
261 * bitmap objects and bitmap block
262 * objects
263 */
264 struct bm_position cur; /* most recently used bit position */
265 };
266
267 /* Functions that operate on memory bitmaps */
268
269 static void memory_bm_position_reset(struct memory_bitmap *bm)
270 {
271 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
272 bm->cur.bit = 0;
273 }
274
275 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
276
277 /**
278 * create_bm_block_list - create a list of block bitmap objects
279 * @pages - number of pages to track
280 * @list - list to put the allocated blocks into
281 * @ca - chain allocator to be used for allocating memory
282 */
283 static int create_bm_block_list(unsigned long pages,
284 struct list_head *list,
285 struct chain_allocator *ca)
286 {
287 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
288
289 while (nr_blocks-- > 0) {
290 struct bm_block *bb;
291
292 bb = chain_alloc(ca, sizeof(struct bm_block));
293 if (!bb)
294 return -ENOMEM;
295 list_add(&bb->hook, list);
296 }
297
298 return 0;
299 }
300
301 struct mem_extent {
302 struct list_head hook;
303 unsigned long start;
304 unsigned long end;
305 };
306
307 /**
308 * free_mem_extents - free a list of memory extents
309 * @list - list of extents to empty
310 */
311 static void free_mem_extents(struct list_head *list)
312 {
313 struct mem_extent *ext, *aux;
314
315 list_for_each_entry_safe(ext, aux, list, hook) {
316 list_del(&ext->hook);
317 kfree(ext);
318 }
319 }
320
321 /**
322 * create_mem_extents - create a list of memory extents representing
323 * contiguous ranges of PFNs
324 * @list - list to put the extents into
325 * @gfp_mask - mask to use for memory allocations
326 */
327 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
328 {
329 struct zone *zone;
330
331 INIT_LIST_HEAD(list);
332
333 for_each_populated_zone(zone) {
334 unsigned long zone_start, zone_end;
335 struct mem_extent *ext, *cur, *aux;
336
337 zone_start = zone->zone_start_pfn;
338 zone_end = zone->zone_start_pfn + zone->spanned_pages;
339
340 list_for_each_entry(ext, list, hook)
341 if (zone_start <= ext->end)
342 break;
343
344 if (&ext->hook == list || zone_end < ext->start) {
345 /* New extent is necessary */
346 struct mem_extent *new_ext;
347
348 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
349 if (!new_ext) {
350 free_mem_extents(list);
351 return -ENOMEM;
352 }
353 new_ext->start = zone_start;
354 new_ext->end = zone_end;
355 list_add_tail(&new_ext->hook, &ext->hook);
356 continue;
357 }
358
359 /* Merge this zone's range of PFNs with the existing one */
360 if (zone_start < ext->start)
361 ext->start = zone_start;
362 if (zone_end > ext->end)
363 ext->end = zone_end;
364
365 /* More merging may be possible */
366 cur = ext;
367 list_for_each_entry_safe_continue(cur, aux, list, hook) {
368 if (zone_end < cur->start)
369 break;
370 if (zone_end < cur->end)
371 ext->end = cur->end;
372 list_del(&cur->hook);
373 kfree(cur);
374 }
375 }
376
377 return 0;
378 }
379
380 /**
381 * memory_bm_create - allocate memory for a memory bitmap
382 */
383 static int
384 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
385 {
386 struct chain_allocator ca;
387 struct list_head mem_extents;
388 struct mem_extent *ext;
389 int error;
390
391 chain_init(&ca, gfp_mask, safe_needed);
392 INIT_LIST_HEAD(&bm->blocks);
393
394 error = create_mem_extents(&mem_extents, gfp_mask);
395 if (error)
396 return error;
397
398 list_for_each_entry(ext, &mem_extents, hook) {
399 struct bm_block *bb;
400 unsigned long pfn = ext->start;
401 unsigned long pages = ext->end - ext->start;
402
403 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
404
405 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
406 if (error)
407 goto Error;
408
409 list_for_each_entry_continue(bb, &bm->blocks, hook) {
410 bb->data = get_image_page(gfp_mask, safe_needed);
411 if (!bb->data) {
412 error = -ENOMEM;
413 goto Error;
414 }
415
416 bb->start_pfn = pfn;
417 if (pages >= BM_BITS_PER_BLOCK) {
418 pfn += BM_BITS_PER_BLOCK;
419 pages -= BM_BITS_PER_BLOCK;
420 } else {
421 /* This is executed only once in the loop */
422 pfn += pages;
423 }
424 bb->end_pfn = pfn;
425 }
426 }
427
428 bm->p_list = ca.chain;
429 memory_bm_position_reset(bm);
430 Exit:
431 free_mem_extents(&mem_extents);
432 return error;
433
434 Error:
435 bm->p_list = ca.chain;
436 memory_bm_free(bm, PG_UNSAFE_CLEAR);
437 goto Exit;
438 }
439
440 /**
441 * memory_bm_free - free memory occupied by the memory bitmap @bm
442 */
443 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
444 {
445 struct bm_block *bb;
446
447 list_for_each_entry(bb, &bm->blocks, hook)
448 if (bb->data)
449 free_image_page(bb->data, clear_nosave_free);
450
451 free_list_of_pages(bm->p_list, clear_nosave_free);
452
453 INIT_LIST_HEAD(&bm->blocks);
454 }
455
456 /**
457 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
458 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
459 * of @bm->cur_zone_bm are updated.
460 */
461 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
462 void **addr, unsigned int *bit_nr)
463 {
464 struct bm_block *bb;
465
466 /*
467 * Check if the pfn corresponds to the current bitmap block and find
468 * the block where it fits if this is not the case.
469 */
470 bb = bm->cur.block;
471 if (pfn < bb->start_pfn)
472 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
473 if (pfn >= bb->start_pfn)
474 break;
475
476 if (pfn >= bb->end_pfn)
477 list_for_each_entry_continue(bb, &bm->blocks, hook)
478 if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
479 break;
480
481 if (&bb->hook == &bm->blocks)
482 return -EFAULT;
483
484 /* The block has been found */
485 bm->cur.block = bb;
486 pfn -= bb->start_pfn;
487 bm->cur.bit = pfn + 1;
488 *bit_nr = pfn;
489 *addr = bb->data;
490 return 0;
491 }
492
493 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
494 {
495 void *addr;
496 unsigned int bit;
497 int error;
498
499 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
500 BUG_ON(error);
501 set_bit(bit, addr);
502 }
503
504 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
505 {
506 void *addr;
507 unsigned int bit;
508 int error;
509
510 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
511 if (!error)
512 set_bit(bit, addr);
513 return error;
514 }
515
516 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
517 {
518 void *addr;
519 unsigned int bit;
520 int error;
521
522 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
523 BUG_ON(error);
524 clear_bit(bit, addr);
525 }
526
527 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
528 {
529 void *addr;
530 unsigned int bit;
531 int error;
532
533 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
534 BUG_ON(error);
535 return test_bit(bit, addr);
536 }
537
538 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
539 {
540 void *addr;
541 unsigned int bit;
542
543 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
544 }
545
546 /**
547 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
548 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
549 * returned.
550 *
551 * It is required to run memory_bm_position_reset() before the first call to
552 * this function.
553 */
554
555 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
556 {
557 struct bm_block *bb;
558 int bit;
559
560 bb = bm->cur.block;
561 do {
562 bit = bm->cur.bit;
563 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
564 if (bit < bm_block_bits(bb))
565 goto Return_pfn;
566
567 bb = list_entry(bb->hook.next, struct bm_block, hook);
568 bm->cur.block = bb;
569 bm->cur.bit = 0;
570 } while (&bb->hook != &bm->blocks);
571
572 memory_bm_position_reset(bm);
573 return BM_END_OF_MAP;
574
575 Return_pfn:
576 bm->cur.bit = bit + 1;
577 return bb->start_pfn + bit;
578 }
579
580 /**
581 * This structure represents a range of page frames the contents of which
582 * should not be saved during the suspend.
583 */
584
585 struct nosave_region {
586 struct list_head list;
587 unsigned long start_pfn;
588 unsigned long end_pfn;
589 };
590
591 static LIST_HEAD(nosave_regions);
592
593 /**
594 * register_nosave_region - register a range of page frames the contents
595 * of which should not be saved during the suspend (to be used in the early
596 * initialization code)
597 */
598
599 void __init
600 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
601 int use_kmalloc)
602 {
603 struct nosave_region *region;
604
605 if (start_pfn >= end_pfn)
606 return;
607
608 if (!list_empty(&nosave_regions)) {
609 /* Try to extend the previous region (they should be sorted) */
610 region = list_entry(nosave_regions.prev,
611 struct nosave_region, list);
612 if (region->end_pfn == start_pfn) {
613 region->end_pfn = end_pfn;
614 goto Report;
615 }
616 }
617 if (use_kmalloc) {
618 /* during init, this shouldn't fail */
619 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
620 BUG_ON(!region);
621 } else
622 /* This allocation cannot fail */
623 region = alloc_bootmem(sizeof(struct nosave_region));
624 region->start_pfn = start_pfn;
625 region->end_pfn = end_pfn;
626 list_add_tail(&region->list, &nosave_regions);
627 Report:
628 printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
629 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
630 }
631
632 /*
633 * Set bits in this map correspond to the page frames the contents of which
634 * should not be saved during the suspend.
635 */
636 static struct memory_bitmap *forbidden_pages_map;
637
638 /* Set bits in this map correspond to free page frames. */
639 static struct memory_bitmap *free_pages_map;
640
641 /*
642 * Each page frame allocated for creating the image is marked by setting the
643 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
644 */
645
646 void swsusp_set_page_free(struct page *page)
647 {
648 if (free_pages_map)
649 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
650 }
651
652 static int swsusp_page_is_free(struct page *page)
653 {
654 return free_pages_map ?
655 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
656 }
657
658 void swsusp_unset_page_free(struct page *page)
659 {
660 if (free_pages_map)
661 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
662 }
663
664 static void swsusp_set_page_forbidden(struct page *page)
665 {
666 if (forbidden_pages_map)
667 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
668 }
669
670 int swsusp_page_is_forbidden(struct page *page)
671 {
672 return forbidden_pages_map ?
673 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
674 }
675
676 static void swsusp_unset_page_forbidden(struct page *page)
677 {
678 if (forbidden_pages_map)
679 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
680 }
681
682 /**
683 * mark_nosave_pages - set bits corresponding to the page frames the
684 * contents of which should not be saved in a given bitmap.
685 */
686
687 static void mark_nosave_pages(struct memory_bitmap *bm)
688 {
689 struct nosave_region *region;
690
691 if (list_empty(&nosave_regions))
692 return;
693
694 list_for_each_entry(region, &nosave_regions, list) {
695 unsigned long pfn;
696
697 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
698 region->start_pfn << PAGE_SHIFT,
699 region->end_pfn << PAGE_SHIFT);
700
701 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
702 if (pfn_valid(pfn)) {
703 /*
704 * It is safe to ignore the result of
705 * mem_bm_set_bit_check() here, since we won't
706 * touch the PFNs for which the error is
707 * returned anyway.
708 */
709 mem_bm_set_bit_check(bm, pfn);
710 }
711 }
712 }
713
714 /**
715 * create_basic_memory_bitmaps - create bitmaps needed for marking page
716 * frames that should not be saved and free page frames. The pointers
717 * forbidden_pages_map and free_pages_map are only modified if everything
718 * goes well, because we don't want the bits to be used before both bitmaps
719 * are set up.
720 */
721
722 int create_basic_memory_bitmaps(void)
723 {
724 struct memory_bitmap *bm1, *bm2;
725 int error = 0;
726
727 BUG_ON(forbidden_pages_map || free_pages_map);
728
729 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
730 if (!bm1)
731 return -ENOMEM;
732
733 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
734 if (error)
735 goto Free_first_object;
736
737 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
738 if (!bm2)
739 goto Free_first_bitmap;
740
741 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
742 if (error)
743 goto Free_second_object;
744
745 forbidden_pages_map = bm1;
746 free_pages_map = bm2;
747 mark_nosave_pages(forbidden_pages_map);
748
749 pr_debug("PM: Basic memory bitmaps created\n");
750
751 return 0;
752
753 Free_second_object:
754 kfree(bm2);
755 Free_first_bitmap:
756 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
757 Free_first_object:
758 kfree(bm1);
759 return -ENOMEM;
760 }
761
762 /**
763 * free_basic_memory_bitmaps - free memory bitmaps allocated by
764 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
765 * so that the bitmaps themselves are not referred to while they are being
766 * freed.
767 */
768
769 void free_basic_memory_bitmaps(void)
770 {
771 struct memory_bitmap *bm1, *bm2;
772
773 BUG_ON(!(forbidden_pages_map && free_pages_map));
774
775 bm1 = forbidden_pages_map;
776 bm2 = free_pages_map;
777 forbidden_pages_map = NULL;
778 free_pages_map = NULL;
779 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
780 kfree(bm1);
781 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
782 kfree(bm2);
783
784 pr_debug("PM: Basic memory bitmaps freed\n");
785 }
786
787 /**
788 * snapshot_additional_pages - estimate the number of additional pages
789 * be needed for setting up the suspend image data structures for given
790 * zone (usually the returned value is greater than the exact number)
791 */
792
793 unsigned int snapshot_additional_pages(struct zone *zone)
794 {
795 unsigned int res;
796
797 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
798 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
799 return 2 * res;
800 }
801
802 #ifdef CONFIG_HIGHMEM
803 /**
804 * count_free_highmem_pages - compute the total number of free highmem
805 * pages, system-wide.
806 */
807
808 static unsigned int count_free_highmem_pages(void)
809 {
810 struct zone *zone;
811 unsigned int cnt = 0;
812
813 for_each_populated_zone(zone)
814 if (is_highmem(zone))
815 cnt += zone_page_state(zone, NR_FREE_PAGES);
816
817 return cnt;
818 }
819
820 /**
821 * saveable_highmem_page - Determine whether a highmem page should be
822 * included in the suspend image.
823 *
824 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
825 * and it isn't a part of a free chunk of pages.
826 */
827 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
828 {
829 struct page *page;
830
831 if (!pfn_valid(pfn))
832 return NULL;
833
834 page = pfn_to_page(pfn);
835 if (page_zone(page) != zone)
836 return NULL;
837
838 BUG_ON(!PageHighMem(page));
839
840 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
841 PageReserved(page))
842 return NULL;
843
844 return page;
845 }
846
847 /**
848 * count_highmem_pages - compute the total number of saveable highmem
849 * pages.
850 */
851
852 static unsigned int count_highmem_pages(void)
853 {
854 struct zone *zone;
855 unsigned int n = 0;
856
857 for_each_populated_zone(zone) {
858 unsigned long pfn, max_zone_pfn;
859
860 if (!is_highmem(zone))
861 continue;
862
863 mark_free_pages(zone);
864 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
865 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
866 if (saveable_highmem_page(zone, pfn))
867 n++;
868 }
869 return n;
870 }
871 #else
872 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
873 {
874 return NULL;
875 }
876 #endif /* CONFIG_HIGHMEM */
877
878 /**
879 * saveable_page - Determine whether a non-highmem page should be included
880 * in the suspend image.
881 *
882 * We should save the page if it isn't Nosave, and is not in the range
883 * of pages statically defined as 'unsaveable', and it isn't a part of
884 * a free chunk of pages.
885 */
886 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
887 {
888 struct page *page;
889
890 if (!pfn_valid(pfn))
891 return NULL;
892
893 page = pfn_to_page(pfn);
894 if (page_zone(page) != zone)
895 return NULL;
896
897 BUG_ON(PageHighMem(page));
898
899 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
900 return NULL;
901
902 if (PageReserved(page)
903 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
904 return NULL;
905
906 return page;
907 }
908
909 /**
910 * count_data_pages - compute the total number of saveable non-highmem
911 * pages.
912 */
913
914 static unsigned int count_data_pages(void)
915 {
916 struct zone *zone;
917 unsigned long pfn, max_zone_pfn;
918 unsigned int n = 0;
919
920 for_each_populated_zone(zone) {
921 if (is_highmem(zone))
922 continue;
923
924 mark_free_pages(zone);
925 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
926 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
927 if (saveable_page(zone, pfn))
928 n++;
929 }
930 return n;
931 }
932
933 /* This is needed, because copy_page and memcpy are not usable for copying
934 * task structs.
935 */
936 static inline void do_copy_page(long *dst, long *src)
937 {
938 int n;
939
940 for (n = PAGE_SIZE / sizeof(long); n; n--)
941 *dst++ = *src++;
942 }
943
944
945 /**
946 * safe_copy_page - check if the page we are going to copy is marked as
947 * present in the kernel page tables (this always is the case if
948 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
949 * kernel_page_present() always returns 'true').
950 */
951 static void safe_copy_page(void *dst, struct page *s_page)
952 {
953 if (kernel_page_present(s_page)) {
954 do_copy_page(dst, page_address(s_page));
955 } else {
956 kernel_map_pages(s_page, 1, 1);
957 do_copy_page(dst, page_address(s_page));
958 kernel_map_pages(s_page, 1, 0);
959 }
960 }
961
962
963 #ifdef CONFIG_HIGHMEM
964 static inline struct page *
965 page_is_saveable(struct zone *zone, unsigned long pfn)
966 {
967 return is_highmem(zone) ?
968 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
969 }
970
971 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
972 {
973 struct page *s_page, *d_page;
974 void *src, *dst;
975
976 s_page = pfn_to_page(src_pfn);
977 d_page = pfn_to_page(dst_pfn);
978 if (PageHighMem(s_page)) {
979 src = kmap_atomic(s_page, KM_USER0);
980 dst = kmap_atomic(d_page, KM_USER1);
981 do_copy_page(dst, src);
982 kunmap_atomic(src, KM_USER0);
983 kunmap_atomic(dst, KM_USER1);
984 } else {
985 if (PageHighMem(d_page)) {
986 /* Page pointed to by src may contain some kernel
987 * data modified by kmap_atomic()
988 */
989 safe_copy_page(buffer, s_page);
990 dst = kmap_atomic(d_page, KM_USER0);
991 memcpy(dst, buffer, PAGE_SIZE);
992 kunmap_atomic(dst, KM_USER0);
993 } else {
994 safe_copy_page(page_address(d_page), s_page);
995 }
996 }
997 }
998 #else
999 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
1000
1001 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1002 {
1003 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1004 pfn_to_page(src_pfn));
1005 }
1006 #endif /* CONFIG_HIGHMEM */
1007
1008 static void
1009 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1010 {
1011 struct zone *zone;
1012 unsigned long pfn;
1013
1014 for_each_populated_zone(zone) {
1015 unsigned long max_zone_pfn;
1016
1017 mark_free_pages(zone);
1018 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1019 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1020 if (page_is_saveable(zone, pfn))
1021 memory_bm_set_bit(orig_bm, pfn);
1022 }
1023 memory_bm_position_reset(orig_bm);
1024 memory_bm_position_reset(copy_bm);
1025 for(;;) {
1026 pfn = memory_bm_next_pfn(orig_bm);
1027 if (unlikely(pfn == BM_END_OF_MAP))
1028 break;
1029 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1030 }
1031 }
1032
1033 /* Total number of image pages */
1034 static unsigned int nr_copy_pages;
1035 /* Number of pages needed for saving the original pfns of the image pages */
1036 static unsigned int nr_meta_pages;
1037 /*
1038 * Numbers of normal and highmem page frames allocated for hibernation image
1039 * before suspending devices.
1040 */
1041 unsigned int alloc_normal, alloc_highmem;
1042 /*
1043 * Memory bitmap used for marking saveable pages (during hibernation) or
1044 * hibernation image pages (during restore)
1045 */
1046 static struct memory_bitmap orig_bm;
1047 /*
1048 * Memory bitmap used during hibernation for marking allocated page frames that
1049 * will contain copies of saveable pages. During restore it is initially used
1050 * for marking hibernation image pages, but then the set bits from it are
1051 * duplicated in @orig_bm and it is released. On highmem systems it is next
1052 * used for marking "safe" highmem pages, but it has to be reinitialized for
1053 * this purpose.
1054 */
1055 static struct memory_bitmap copy_bm;
1056
1057 /**
1058 * swsusp_free - free pages allocated for the suspend.
1059 *
1060 * Suspend pages are alocated before the atomic copy is made, so we
1061 * need to release them after the resume.
1062 */
1063
1064 void swsusp_free(void)
1065 {
1066 struct zone *zone;
1067 unsigned long pfn, max_zone_pfn;
1068
1069 for_each_populated_zone(zone) {
1070 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1071 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1072 if (pfn_valid(pfn)) {
1073 struct page *page = pfn_to_page(pfn);
1074
1075 if (swsusp_page_is_forbidden(page) &&
1076 swsusp_page_is_free(page)) {
1077 swsusp_unset_page_forbidden(page);
1078 swsusp_unset_page_free(page);
1079 __free_page(page);
1080 }
1081 }
1082 }
1083 nr_copy_pages = 0;
1084 nr_meta_pages = 0;
1085 restore_pblist = NULL;
1086 buffer = NULL;
1087 alloc_normal = 0;
1088 alloc_highmem = 0;
1089 }
1090
1091 /* Helper functions used for the shrinking of memory. */
1092
1093 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1094
1095 /**
1096 * preallocate_image_pages - Allocate a number of pages for hibernation image
1097 * @nr_pages: Number of page frames to allocate.
1098 * @mask: GFP flags to use for the allocation.
1099 *
1100 * Return value: Number of page frames actually allocated
1101 */
1102 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1103 {
1104 unsigned long nr_alloc = 0;
1105
1106 while (nr_pages > 0) {
1107 struct page *page;
1108
1109 page = alloc_image_page(mask);
1110 if (!page)
1111 break;
1112 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1113 if (PageHighMem(page))
1114 alloc_highmem++;
1115 else
1116 alloc_normal++;
1117 nr_pages--;
1118 nr_alloc++;
1119 }
1120
1121 return nr_alloc;
1122 }
1123
1124 static unsigned long preallocate_image_memory(unsigned long nr_pages)
1125 {
1126 return preallocate_image_pages(nr_pages, GFP_IMAGE);
1127 }
1128
1129 #ifdef CONFIG_HIGHMEM
1130 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1131 {
1132 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1133 }
1134
1135 /**
1136 * __fraction - Compute (an approximation of) x * (multiplier / base)
1137 */
1138 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1139 {
1140 x *= multiplier;
1141 do_div(x, base);
1142 return (unsigned long)x;
1143 }
1144
1145 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1146 unsigned long highmem,
1147 unsigned long total)
1148 {
1149 unsigned long alloc = __fraction(nr_pages, highmem, total);
1150
1151 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1152 }
1153 #else /* CONFIG_HIGHMEM */
1154 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1155 {
1156 return 0;
1157 }
1158
1159 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1160 unsigned long highmem,
1161 unsigned long total)
1162 {
1163 return 0;
1164 }
1165 #endif /* CONFIG_HIGHMEM */
1166
1167 /**
1168 * free_unnecessary_pages - Release preallocated pages not needed for the image
1169 */
1170 static void free_unnecessary_pages(void)
1171 {
1172 unsigned long save_highmem, to_free_normal, to_free_highmem;
1173
1174 to_free_normal = alloc_normal - count_data_pages();
1175 save_highmem = count_highmem_pages();
1176 if (alloc_highmem > save_highmem) {
1177 to_free_highmem = alloc_highmem - save_highmem;
1178 } else {
1179 to_free_highmem = 0;
1180 to_free_normal -= save_highmem - alloc_highmem;
1181 }
1182
1183 memory_bm_position_reset(&copy_bm);
1184
1185 while (to_free_normal > 0 || to_free_highmem > 0) {
1186 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1187 struct page *page = pfn_to_page(pfn);
1188
1189 if (PageHighMem(page)) {
1190 if (!to_free_highmem)
1191 continue;
1192 to_free_highmem--;
1193 alloc_highmem--;
1194 } else {
1195 if (!to_free_normal)
1196 continue;
1197 to_free_normal--;
1198 alloc_normal--;
1199 }
1200 memory_bm_clear_bit(&copy_bm, pfn);
1201 swsusp_unset_page_forbidden(page);
1202 swsusp_unset_page_free(page);
1203 __free_page(page);
1204 }
1205 }
1206
1207 /**
1208 * minimum_image_size - Estimate the minimum acceptable size of an image
1209 * @saveable: Number of saveable pages in the system.
1210 *
1211 * We want to avoid attempting to free too much memory too hard, so estimate the
1212 * minimum acceptable size of a hibernation image to use as the lower limit for
1213 * preallocating memory.
1214 *
1215 * We assume that the minimum image size should be proportional to
1216 *
1217 * [number of saveable pages] - [number of pages that can be freed in theory]
1218 *
1219 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1220 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1221 * minus mapped file pages.
1222 */
1223 static unsigned long minimum_image_size(unsigned long saveable)
1224 {
1225 unsigned long size;
1226
1227 size = global_page_state(NR_SLAB_RECLAIMABLE)
1228 + global_page_state(NR_ACTIVE_ANON)
1229 + global_page_state(NR_INACTIVE_ANON)
1230 + global_page_state(NR_ACTIVE_FILE)
1231 + global_page_state(NR_INACTIVE_FILE)
1232 - global_page_state(NR_FILE_MAPPED);
1233
1234 return saveable <= size ? 0 : saveable - size;
1235 }
1236
1237 /**
1238 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1239 *
1240 * To create a hibernation image it is necessary to make a copy of every page
1241 * frame in use. We also need a number of page frames to be free during
1242 * hibernation for allocations made while saving the image and for device
1243 * drivers, in case they need to allocate memory from their hibernation
1244 * callbacks (these two numbers are given by PAGES_FOR_IO and SPARE_PAGES,
1245 * respectively, both of which are rough estimates). To make this happen, we
1246 * compute the total number of available page frames and allocate at least
1247 *
1248 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 + 2 * SPARE_PAGES
1249 *
1250 * of them, which corresponds to the maximum size of a hibernation image.
1251 *
1252 * If image_size is set below the number following from the above formula,
1253 * the preallocation of memory is continued until the total number of saveable
1254 * pages in the system is below the requested image size or the minimum
1255 * acceptable image size returned by minimum_image_size(), whichever is greater.
1256 */
1257 int hibernate_preallocate_memory(void)
1258 {
1259 struct zone *zone;
1260 unsigned long saveable, size, max_size, count, highmem, pages = 0;
1261 unsigned long alloc, save_highmem, pages_highmem;
1262 struct timeval start, stop;
1263 int error;
1264
1265 printk(KERN_INFO "PM: Preallocating image memory... ");
1266 do_gettimeofday(&start);
1267
1268 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1269 if (error)
1270 goto err_out;
1271
1272 error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1273 if (error)
1274 goto err_out;
1275
1276 alloc_normal = 0;
1277 alloc_highmem = 0;
1278
1279 /* Count the number of saveable data pages. */
1280 save_highmem = count_highmem_pages();
1281 saveable = count_data_pages();
1282
1283 /*
1284 * Compute the total number of page frames we can use (count) and the
1285 * number of pages needed for image metadata (size).
1286 */
1287 count = saveable;
1288 saveable += save_highmem;
1289 highmem = save_highmem;
1290 size = 0;
1291 for_each_populated_zone(zone) {
1292 size += snapshot_additional_pages(zone);
1293 if (is_highmem(zone))
1294 highmem += zone_page_state(zone, NR_FREE_PAGES);
1295 else
1296 count += zone_page_state(zone, NR_FREE_PAGES);
1297 }
1298 count += highmem;
1299 count -= totalreserve_pages;
1300
1301 /* Compute the maximum number of saveable pages to leave in memory. */
1302 max_size = (count - (size + PAGES_FOR_IO)) / 2 - 2 * SPARE_PAGES;
1303 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1304 if (size > max_size)
1305 size = max_size;
1306 /*
1307 * If the maximum is not less than the current number of saveable pages
1308 * in memory, allocate page frames for the image and we're done.
1309 */
1310 if (size >= saveable) {
1311 pages = preallocate_image_highmem(save_highmem);
1312 pages += preallocate_image_memory(saveable - pages);
1313 goto out;
1314 }
1315
1316 /* Estimate the minimum size of the image. */
1317 pages = minimum_image_size(saveable);
1318 if (size < pages)
1319 size = min_t(unsigned long, pages, max_size);
1320
1321 /*
1322 * Let the memory management subsystem know that we're going to need a
1323 * large number of page frames to allocate and make it free some memory.
1324 * NOTE: If this is not done, performance will be hurt badly in some
1325 * test cases.
1326 */
1327 shrink_all_memory(saveable - size);
1328
1329 /*
1330 * The number of saveable pages in memory was too high, so apply some
1331 * pressure to decrease it. First, make room for the largest possible
1332 * image and fail if that doesn't work. Next, try to decrease the size
1333 * of the image as much as indicated by 'size' using allocations from
1334 * highmem and non-highmem zones separately.
1335 */
1336 pages_highmem = preallocate_image_highmem(highmem / 2);
1337 alloc = (count - max_size) - pages_highmem;
1338 pages = preallocate_image_memory(alloc);
1339 if (pages < alloc)
1340 goto err_out;
1341 size = max_size - size;
1342 alloc = size;
1343 size = preallocate_highmem_fraction(size, highmem, count);
1344 pages_highmem += size;
1345 alloc -= size;
1346 pages += preallocate_image_memory(alloc);
1347 pages += pages_highmem;
1348
1349 /*
1350 * We only need as many page frames for the image as there are saveable
1351 * pages in memory, but we have allocated more. Release the excessive
1352 * ones now.
1353 */
1354 free_unnecessary_pages();
1355
1356 out:
1357 do_gettimeofday(&stop);
1358 printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1359 swsusp_show_speed(&start, &stop, pages, "Allocated");
1360
1361 return 0;
1362
1363 err_out:
1364 printk(KERN_CONT "\n");
1365 swsusp_free();
1366 return -ENOMEM;
1367 }
1368
1369 #ifdef CONFIG_HIGHMEM
1370 /**
1371 * count_pages_for_highmem - compute the number of non-highmem pages
1372 * that will be necessary for creating copies of highmem pages.
1373 */
1374
1375 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1376 {
1377 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1378
1379 if (free_highmem >= nr_highmem)
1380 nr_highmem = 0;
1381 else
1382 nr_highmem -= free_highmem;
1383
1384 return nr_highmem;
1385 }
1386 #else
1387 static unsigned int
1388 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1389 #endif /* CONFIG_HIGHMEM */
1390
1391 /**
1392 * enough_free_mem - Make sure we have enough free memory for the
1393 * snapshot image.
1394 */
1395
1396 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1397 {
1398 struct zone *zone;
1399 unsigned int free = alloc_normal;
1400
1401 for_each_populated_zone(zone)
1402 if (!is_highmem(zone))
1403 free += zone_page_state(zone, NR_FREE_PAGES);
1404
1405 nr_pages += count_pages_for_highmem(nr_highmem);
1406 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1407 nr_pages, PAGES_FOR_IO, free);
1408
1409 return free > nr_pages + PAGES_FOR_IO;
1410 }
1411
1412 #ifdef CONFIG_HIGHMEM
1413 /**
1414 * get_highmem_buffer - if there are some highmem pages in the suspend
1415 * image, we may need the buffer to copy them and/or load their data.
1416 */
1417
1418 static inline int get_highmem_buffer(int safe_needed)
1419 {
1420 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1421 return buffer ? 0 : -ENOMEM;
1422 }
1423
1424 /**
1425 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1426 * Try to allocate as many pages as needed, but if the number of free
1427 * highmem pages is lesser than that, allocate them all.
1428 */
1429
1430 static inline unsigned int
1431 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1432 {
1433 unsigned int to_alloc = count_free_highmem_pages();
1434
1435 if (to_alloc > nr_highmem)
1436 to_alloc = nr_highmem;
1437
1438 nr_highmem -= to_alloc;
1439 while (to_alloc-- > 0) {
1440 struct page *page;
1441
1442 page = alloc_image_page(__GFP_HIGHMEM);
1443 memory_bm_set_bit(bm, page_to_pfn(page));
1444 }
1445 return nr_highmem;
1446 }
1447 #else
1448 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1449
1450 static inline unsigned int
1451 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1452 #endif /* CONFIG_HIGHMEM */
1453
1454 /**
1455 * swsusp_alloc - allocate memory for the suspend image
1456 *
1457 * We first try to allocate as many highmem pages as there are
1458 * saveable highmem pages in the system. If that fails, we allocate
1459 * non-highmem pages for the copies of the remaining highmem ones.
1460 *
1461 * In this approach it is likely that the copies of highmem pages will
1462 * also be located in the high memory, because of the way in which
1463 * copy_data_pages() works.
1464 */
1465
1466 static int
1467 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1468 unsigned int nr_pages, unsigned int nr_highmem)
1469 {
1470 int error = 0;
1471
1472 if (nr_highmem > 0) {
1473 error = get_highmem_buffer(PG_ANY);
1474 if (error)
1475 goto err_out;
1476 if (nr_highmem > alloc_highmem) {
1477 nr_highmem -= alloc_highmem;
1478 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1479 }
1480 }
1481 if (nr_pages > alloc_normal) {
1482 nr_pages -= alloc_normal;
1483 while (nr_pages-- > 0) {
1484 struct page *page;
1485
1486 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1487 if (!page)
1488 goto err_out;
1489 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1490 }
1491 }
1492
1493 return 0;
1494
1495 err_out:
1496 swsusp_free();
1497 return error;
1498 }
1499
1500 asmlinkage int swsusp_save(void)
1501 {
1502 unsigned int nr_pages, nr_highmem;
1503
1504 printk(KERN_INFO "PM: Creating hibernation image:\n");
1505
1506 drain_local_pages(NULL);
1507 nr_pages = count_data_pages();
1508 nr_highmem = count_highmem_pages();
1509 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1510
1511 if (!enough_free_mem(nr_pages, nr_highmem)) {
1512 printk(KERN_ERR "PM: Not enough free memory\n");
1513 return -ENOMEM;
1514 }
1515
1516 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1517 printk(KERN_ERR "PM: Memory allocation failed\n");
1518 return -ENOMEM;
1519 }
1520
1521 /* During allocating of suspend pagedir, new cold pages may appear.
1522 * Kill them.
1523 */
1524 drain_local_pages(NULL);
1525 copy_data_pages(&copy_bm, &orig_bm);
1526
1527 /*
1528 * End of critical section. From now on, we can write to memory,
1529 * but we should not touch disk. This specially means we must _not_
1530 * touch swap space! Except we must write out our image of course.
1531 */
1532
1533 nr_pages += nr_highmem;
1534 nr_copy_pages = nr_pages;
1535 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1536
1537 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1538 nr_pages);
1539
1540 return 0;
1541 }
1542
1543 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1544 static int init_header_complete(struct swsusp_info *info)
1545 {
1546 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1547 info->version_code = LINUX_VERSION_CODE;
1548 return 0;
1549 }
1550
1551 static char *check_image_kernel(struct swsusp_info *info)
1552 {
1553 if (info->version_code != LINUX_VERSION_CODE)
1554 return "kernel version";
1555 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1556 return "system type";
1557 if (strcmp(info->uts.release,init_utsname()->release))
1558 return "kernel release";
1559 if (strcmp(info->uts.version,init_utsname()->version))
1560 return "version";
1561 if (strcmp(info->uts.machine,init_utsname()->machine))
1562 return "machine";
1563 return NULL;
1564 }
1565 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1566
1567 unsigned long snapshot_get_image_size(void)
1568 {
1569 return nr_copy_pages + nr_meta_pages + 1;
1570 }
1571
1572 static int init_header(struct swsusp_info *info)
1573 {
1574 memset(info, 0, sizeof(struct swsusp_info));
1575 info->num_physpages = num_physpages;
1576 info->image_pages = nr_copy_pages;
1577 info->pages = snapshot_get_image_size();
1578 info->size = info->pages;
1579 info->size <<= PAGE_SHIFT;
1580 return init_header_complete(info);
1581 }
1582
1583 /**
1584 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1585 * are stored in the array @buf[] (1 page at a time)
1586 */
1587
1588 static inline void
1589 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1590 {
1591 int j;
1592
1593 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1594 buf[j] = memory_bm_next_pfn(bm);
1595 if (unlikely(buf[j] == BM_END_OF_MAP))
1596 break;
1597 }
1598 }
1599
1600 /**
1601 * snapshot_read_next - used for reading the system memory snapshot.
1602 *
1603 * On the first call to it @handle should point to a zeroed
1604 * snapshot_handle structure. The structure gets updated and a pointer
1605 * to it should be passed to this function every next time.
1606 *
1607 * The @count parameter should contain the number of bytes the caller
1608 * wants to read from the snapshot. It must not be zero.
1609 *
1610 * On success the function returns a positive number. Then, the caller
1611 * is allowed to read up to the returned number of bytes from the memory
1612 * location computed by the data_of() macro. The number returned
1613 * may be smaller than @count, but this only happens if the read would
1614 * cross a page boundary otherwise.
1615 *
1616 * The function returns 0 to indicate the end of data stream condition,
1617 * and a negative number is returned on error. In such cases the
1618 * structure pointed to by @handle is not updated and should not be used
1619 * any more.
1620 */
1621
1622 int snapshot_read_next(struct snapshot_handle *handle, size_t count)
1623 {
1624 if (handle->cur > nr_meta_pages + nr_copy_pages)
1625 return 0;
1626
1627 if (!buffer) {
1628 /* This makes the buffer be freed by swsusp_free() */
1629 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1630 if (!buffer)
1631 return -ENOMEM;
1632 }
1633 if (!handle->offset) {
1634 int error;
1635
1636 error = init_header((struct swsusp_info *)buffer);
1637 if (error)
1638 return error;
1639 handle->buffer = buffer;
1640 memory_bm_position_reset(&orig_bm);
1641 memory_bm_position_reset(&copy_bm);
1642 }
1643 if (handle->prev < handle->cur) {
1644 if (handle->cur <= nr_meta_pages) {
1645 memset(buffer, 0, PAGE_SIZE);
1646 pack_pfns(buffer, &orig_bm);
1647 } else {
1648 struct page *page;
1649
1650 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1651 if (PageHighMem(page)) {
1652 /* Highmem pages are copied to the buffer,
1653 * because we can't return with a kmapped
1654 * highmem page (we may not be called again).
1655 */
1656 void *kaddr;
1657
1658 kaddr = kmap_atomic(page, KM_USER0);
1659 memcpy(buffer, kaddr, PAGE_SIZE);
1660 kunmap_atomic(kaddr, KM_USER0);
1661 handle->buffer = buffer;
1662 } else {
1663 handle->buffer = page_address(page);
1664 }
1665 }
1666 handle->prev = handle->cur;
1667 }
1668 handle->buf_offset = handle->cur_offset;
1669 if (handle->cur_offset + count >= PAGE_SIZE) {
1670 count = PAGE_SIZE - handle->cur_offset;
1671 handle->cur_offset = 0;
1672 handle->cur++;
1673 } else {
1674 handle->cur_offset += count;
1675 }
1676 handle->offset += count;
1677 return count;
1678 }
1679
1680 /**
1681 * mark_unsafe_pages - mark the pages that cannot be used for storing
1682 * the image during resume, because they conflict with the pages that
1683 * had been used before suspend
1684 */
1685
1686 static int mark_unsafe_pages(struct memory_bitmap *bm)
1687 {
1688 struct zone *zone;
1689 unsigned long pfn, max_zone_pfn;
1690
1691 /* Clear page flags */
1692 for_each_populated_zone(zone) {
1693 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1694 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1695 if (pfn_valid(pfn))
1696 swsusp_unset_page_free(pfn_to_page(pfn));
1697 }
1698
1699 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1700 memory_bm_position_reset(bm);
1701 do {
1702 pfn = memory_bm_next_pfn(bm);
1703 if (likely(pfn != BM_END_OF_MAP)) {
1704 if (likely(pfn_valid(pfn)))
1705 swsusp_set_page_free(pfn_to_page(pfn));
1706 else
1707 return -EFAULT;
1708 }
1709 } while (pfn != BM_END_OF_MAP);
1710
1711 allocated_unsafe_pages = 0;
1712
1713 return 0;
1714 }
1715
1716 static void
1717 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1718 {
1719 unsigned long pfn;
1720
1721 memory_bm_position_reset(src);
1722 pfn = memory_bm_next_pfn(src);
1723 while (pfn != BM_END_OF_MAP) {
1724 memory_bm_set_bit(dst, pfn);
1725 pfn = memory_bm_next_pfn(src);
1726 }
1727 }
1728
1729 static int check_header(struct swsusp_info *info)
1730 {
1731 char *reason;
1732
1733 reason = check_image_kernel(info);
1734 if (!reason && info->num_physpages != num_physpages)
1735 reason = "memory size";
1736 if (reason) {
1737 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1738 return -EPERM;
1739 }
1740 return 0;
1741 }
1742
1743 /**
1744 * load header - check the image header and copy data from it
1745 */
1746
1747 static int
1748 load_header(struct swsusp_info *info)
1749 {
1750 int error;
1751
1752 restore_pblist = NULL;
1753 error = check_header(info);
1754 if (!error) {
1755 nr_copy_pages = info->image_pages;
1756 nr_meta_pages = info->pages - info->image_pages - 1;
1757 }
1758 return error;
1759 }
1760
1761 /**
1762 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1763 * the corresponding bit in the memory bitmap @bm
1764 */
1765 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1766 {
1767 int j;
1768
1769 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1770 if (unlikely(buf[j] == BM_END_OF_MAP))
1771 break;
1772
1773 if (memory_bm_pfn_present(bm, buf[j]))
1774 memory_bm_set_bit(bm, buf[j]);
1775 else
1776 return -EFAULT;
1777 }
1778
1779 return 0;
1780 }
1781
1782 /* List of "safe" pages that may be used to store data loaded from the suspend
1783 * image
1784 */
1785 static struct linked_page *safe_pages_list;
1786
1787 #ifdef CONFIG_HIGHMEM
1788 /* struct highmem_pbe is used for creating the list of highmem pages that
1789 * should be restored atomically during the resume from disk, because the page
1790 * frames they have occupied before the suspend are in use.
1791 */
1792 struct highmem_pbe {
1793 struct page *copy_page; /* data is here now */
1794 struct page *orig_page; /* data was here before the suspend */
1795 struct highmem_pbe *next;
1796 };
1797
1798 /* List of highmem PBEs needed for restoring the highmem pages that were
1799 * allocated before the suspend and included in the suspend image, but have
1800 * also been allocated by the "resume" kernel, so their contents cannot be
1801 * written directly to their "original" page frames.
1802 */
1803 static struct highmem_pbe *highmem_pblist;
1804
1805 /**
1806 * count_highmem_image_pages - compute the number of highmem pages in the
1807 * suspend image. The bits in the memory bitmap @bm that correspond to the
1808 * image pages are assumed to be set.
1809 */
1810
1811 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1812 {
1813 unsigned long pfn;
1814 unsigned int cnt = 0;
1815
1816 memory_bm_position_reset(bm);
1817 pfn = memory_bm_next_pfn(bm);
1818 while (pfn != BM_END_OF_MAP) {
1819 if (PageHighMem(pfn_to_page(pfn)))
1820 cnt++;
1821
1822 pfn = memory_bm_next_pfn(bm);
1823 }
1824 return cnt;
1825 }
1826
1827 /**
1828 * prepare_highmem_image - try to allocate as many highmem pages as
1829 * there are highmem image pages (@nr_highmem_p points to the variable
1830 * containing the number of highmem image pages). The pages that are
1831 * "safe" (ie. will not be overwritten when the suspend image is
1832 * restored) have the corresponding bits set in @bm (it must be
1833 * unitialized).
1834 *
1835 * NOTE: This function should not be called if there are no highmem
1836 * image pages.
1837 */
1838
1839 static unsigned int safe_highmem_pages;
1840
1841 static struct memory_bitmap *safe_highmem_bm;
1842
1843 static int
1844 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1845 {
1846 unsigned int to_alloc;
1847
1848 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1849 return -ENOMEM;
1850
1851 if (get_highmem_buffer(PG_SAFE))
1852 return -ENOMEM;
1853
1854 to_alloc = count_free_highmem_pages();
1855 if (to_alloc > *nr_highmem_p)
1856 to_alloc = *nr_highmem_p;
1857 else
1858 *nr_highmem_p = to_alloc;
1859
1860 safe_highmem_pages = 0;
1861 while (to_alloc-- > 0) {
1862 struct page *page;
1863
1864 page = alloc_page(__GFP_HIGHMEM);
1865 if (!swsusp_page_is_free(page)) {
1866 /* The page is "safe", set its bit the bitmap */
1867 memory_bm_set_bit(bm, page_to_pfn(page));
1868 safe_highmem_pages++;
1869 }
1870 /* Mark the page as allocated */
1871 swsusp_set_page_forbidden(page);
1872 swsusp_set_page_free(page);
1873 }
1874 memory_bm_position_reset(bm);
1875 safe_highmem_bm = bm;
1876 return 0;
1877 }
1878
1879 /**
1880 * get_highmem_page_buffer - for given highmem image page find the buffer
1881 * that suspend_write_next() should set for its caller to write to.
1882 *
1883 * If the page is to be saved to its "original" page frame or a copy of
1884 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1885 * the copy of the page is to be made in normal memory, so the address of
1886 * the copy is returned.
1887 *
1888 * If @buffer is returned, the caller of suspend_write_next() will write
1889 * the page's contents to @buffer, so they will have to be copied to the
1890 * right location on the next call to suspend_write_next() and it is done
1891 * with the help of copy_last_highmem_page(). For this purpose, if
1892 * @buffer is returned, @last_highmem page is set to the page to which
1893 * the data will have to be copied from @buffer.
1894 */
1895
1896 static struct page *last_highmem_page;
1897
1898 static void *
1899 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1900 {
1901 struct highmem_pbe *pbe;
1902 void *kaddr;
1903
1904 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1905 /* We have allocated the "original" page frame and we can
1906 * use it directly to store the loaded page.
1907 */
1908 last_highmem_page = page;
1909 return buffer;
1910 }
1911 /* The "original" page frame has not been allocated and we have to
1912 * use a "safe" page frame to store the loaded page.
1913 */
1914 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1915 if (!pbe) {
1916 swsusp_free();
1917 return ERR_PTR(-ENOMEM);
1918 }
1919 pbe->orig_page = page;
1920 if (safe_highmem_pages > 0) {
1921 struct page *tmp;
1922
1923 /* Copy of the page will be stored in high memory */
1924 kaddr = buffer;
1925 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1926 safe_highmem_pages--;
1927 last_highmem_page = tmp;
1928 pbe->copy_page = tmp;
1929 } else {
1930 /* Copy of the page will be stored in normal memory */
1931 kaddr = safe_pages_list;
1932 safe_pages_list = safe_pages_list->next;
1933 pbe->copy_page = virt_to_page(kaddr);
1934 }
1935 pbe->next = highmem_pblist;
1936 highmem_pblist = pbe;
1937 return kaddr;
1938 }
1939
1940 /**
1941 * copy_last_highmem_page - copy the contents of a highmem image from
1942 * @buffer, where the caller of snapshot_write_next() has place them,
1943 * to the right location represented by @last_highmem_page .
1944 */
1945
1946 static void copy_last_highmem_page(void)
1947 {
1948 if (last_highmem_page) {
1949 void *dst;
1950
1951 dst = kmap_atomic(last_highmem_page, KM_USER0);
1952 memcpy(dst, buffer, PAGE_SIZE);
1953 kunmap_atomic(dst, KM_USER0);
1954 last_highmem_page = NULL;
1955 }
1956 }
1957
1958 static inline int last_highmem_page_copied(void)
1959 {
1960 return !last_highmem_page;
1961 }
1962
1963 static inline void free_highmem_data(void)
1964 {
1965 if (safe_highmem_bm)
1966 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
1967
1968 if (buffer)
1969 free_image_page(buffer, PG_UNSAFE_CLEAR);
1970 }
1971 #else
1972 static inline int get_safe_write_buffer(void) { return 0; }
1973
1974 static unsigned int
1975 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
1976
1977 static inline int
1978 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1979 {
1980 return 0;
1981 }
1982
1983 static inline void *
1984 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1985 {
1986 return ERR_PTR(-EINVAL);
1987 }
1988
1989 static inline void copy_last_highmem_page(void) {}
1990 static inline int last_highmem_page_copied(void) { return 1; }
1991 static inline void free_highmem_data(void) {}
1992 #endif /* CONFIG_HIGHMEM */
1993
1994 /**
1995 * prepare_image - use the memory bitmap @bm to mark the pages that will
1996 * be overwritten in the process of restoring the system memory state
1997 * from the suspend image ("unsafe" pages) and allocate memory for the
1998 * image.
1999 *
2000 * The idea is to allocate a new memory bitmap first and then allocate
2001 * as many pages as needed for the image data, but not to assign these
2002 * pages to specific tasks initially. Instead, we just mark them as
2003 * allocated and create a lists of "safe" pages that will be used
2004 * later. On systems with high memory a list of "safe" highmem pages is
2005 * also created.
2006 */
2007
2008 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2009
2010 static int
2011 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2012 {
2013 unsigned int nr_pages, nr_highmem;
2014 struct linked_page *sp_list, *lp;
2015 int error;
2016
2017 /* If there is no highmem, the buffer will not be necessary */
2018 free_image_page(buffer, PG_UNSAFE_CLEAR);
2019 buffer = NULL;
2020
2021 nr_highmem = count_highmem_image_pages(bm);
2022 error = mark_unsafe_pages(bm);
2023 if (error)
2024 goto Free;
2025
2026 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2027 if (error)
2028 goto Free;
2029
2030 duplicate_memory_bitmap(new_bm, bm);
2031 memory_bm_free(bm, PG_UNSAFE_KEEP);
2032 if (nr_highmem > 0) {
2033 error = prepare_highmem_image(bm, &nr_highmem);
2034 if (error)
2035 goto Free;
2036 }
2037 /* Reserve some safe pages for potential later use.
2038 *
2039 * NOTE: This way we make sure there will be enough safe pages for the
2040 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2041 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2042 */
2043 sp_list = NULL;
2044 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2045 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2046 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2047 while (nr_pages > 0) {
2048 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2049 if (!lp) {
2050 error = -ENOMEM;
2051 goto Free;
2052 }
2053 lp->next = sp_list;
2054 sp_list = lp;
2055 nr_pages--;
2056 }
2057 /* Preallocate memory for the image */
2058 safe_pages_list = NULL;
2059 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2060 while (nr_pages > 0) {
2061 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2062 if (!lp) {
2063 error = -ENOMEM;
2064 goto Free;
2065 }
2066 if (!swsusp_page_is_free(virt_to_page(lp))) {
2067 /* The page is "safe", add it to the list */
2068 lp->next = safe_pages_list;
2069 safe_pages_list = lp;
2070 }
2071 /* Mark the page as allocated */
2072 swsusp_set_page_forbidden(virt_to_page(lp));
2073 swsusp_set_page_free(virt_to_page(lp));
2074 nr_pages--;
2075 }
2076 /* Free the reserved safe pages so that chain_alloc() can use them */
2077 while (sp_list) {
2078 lp = sp_list->next;
2079 free_image_page(sp_list, PG_UNSAFE_CLEAR);
2080 sp_list = lp;
2081 }
2082 return 0;
2083
2084 Free:
2085 swsusp_free();
2086 return error;
2087 }
2088
2089 /**
2090 * get_buffer - compute the address that snapshot_write_next() should
2091 * set for its caller to write to.
2092 */
2093
2094 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2095 {
2096 struct pbe *pbe;
2097 struct page *page;
2098 unsigned long pfn = memory_bm_next_pfn(bm);
2099
2100 if (pfn == BM_END_OF_MAP)
2101 return ERR_PTR(-EFAULT);
2102
2103 page = pfn_to_page(pfn);
2104 if (PageHighMem(page))
2105 return get_highmem_page_buffer(page, ca);
2106
2107 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2108 /* We have allocated the "original" page frame and we can
2109 * use it directly to store the loaded page.
2110 */
2111 return page_address(page);
2112
2113 /* The "original" page frame has not been allocated and we have to
2114 * use a "safe" page frame to store the loaded page.
2115 */
2116 pbe = chain_alloc(ca, sizeof(struct pbe));
2117 if (!pbe) {
2118 swsusp_free();
2119 return ERR_PTR(-ENOMEM);
2120 }
2121 pbe->orig_address = page_address(page);
2122 pbe->address = safe_pages_list;
2123 safe_pages_list = safe_pages_list->next;
2124 pbe->next = restore_pblist;
2125 restore_pblist = pbe;
2126 return pbe->address;
2127 }
2128
2129 /**
2130 * snapshot_write_next - used for writing the system memory snapshot.
2131 *
2132 * On the first call to it @handle should point to a zeroed
2133 * snapshot_handle structure. The structure gets updated and a pointer
2134 * to it should be passed to this function every next time.
2135 *
2136 * The @count parameter should contain the number of bytes the caller
2137 * wants to write to the image. It must not be zero.
2138 *
2139 * On success the function returns a positive number. Then, the caller
2140 * is allowed to write up to the returned number of bytes to the memory
2141 * location computed by the data_of() macro. The number returned
2142 * may be smaller than @count, but this only happens if the write would
2143 * cross a page boundary otherwise.
2144 *
2145 * The function returns 0 to indicate the "end of file" condition,
2146 * and a negative number is returned on error. In such cases the
2147 * structure pointed to by @handle is not updated and should not be used
2148 * any more.
2149 */
2150
2151 int snapshot_write_next(struct snapshot_handle *handle, size_t count)
2152 {
2153 static struct chain_allocator ca;
2154 int error = 0;
2155
2156 /* Check if we have already loaded the entire image */
2157 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
2158 return 0;
2159
2160 if (handle->offset == 0) {
2161 if (!buffer)
2162 /* This makes the buffer be freed by swsusp_free() */
2163 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2164
2165 if (!buffer)
2166 return -ENOMEM;
2167
2168 handle->buffer = buffer;
2169 }
2170 handle->sync_read = 1;
2171 if (handle->prev < handle->cur) {
2172 if (handle->prev == 0) {
2173 error = load_header(buffer);
2174 if (error)
2175 return error;
2176
2177 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2178 if (error)
2179 return error;
2180
2181 } else if (handle->prev <= nr_meta_pages) {
2182 error = unpack_orig_pfns(buffer, &copy_bm);
2183 if (error)
2184 return error;
2185
2186 if (handle->prev == nr_meta_pages) {
2187 error = prepare_image(&orig_bm, &copy_bm);
2188 if (error)
2189 return error;
2190
2191 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2192 memory_bm_position_reset(&orig_bm);
2193 restore_pblist = NULL;
2194 handle->buffer = get_buffer(&orig_bm, &ca);
2195 handle->sync_read = 0;
2196 if (IS_ERR(handle->buffer))
2197 return PTR_ERR(handle->buffer);
2198 }
2199 } else {
2200 copy_last_highmem_page();
2201 handle->buffer = get_buffer(&orig_bm, &ca);
2202 if (IS_ERR(handle->buffer))
2203 return PTR_ERR(handle->buffer);
2204 if (handle->buffer != buffer)
2205 handle->sync_read = 0;
2206 }
2207 handle->prev = handle->cur;
2208 }
2209 handle->buf_offset = handle->cur_offset;
2210 if (handle->cur_offset + count >= PAGE_SIZE) {
2211 count = PAGE_SIZE - handle->cur_offset;
2212 handle->cur_offset = 0;
2213 handle->cur++;
2214 } else {
2215 handle->cur_offset += count;
2216 }
2217 handle->offset += count;
2218 return count;
2219 }
2220
2221 /**
2222 * snapshot_write_finalize - must be called after the last call to
2223 * snapshot_write_next() in case the last page in the image happens
2224 * to be a highmem page and its contents should be stored in the
2225 * highmem. Additionally, it releases the memory that will not be
2226 * used any more.
2227 */
2228
2229 void snapshot_write_finalize(struct snapshot_handle *handle)
2230 {
2231 copy_last_highmem_page();
2232 /* Free only if we have loaded the image entirely */
2233 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
2234 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2235 free_highmem_data();
2236 }
2237 }
2238
2239 int snapshot_image_loaded(struct snapshot_handle *handle)
2240 {
2241 return !(!nr_copy_pages || !last_highmem_page_copied() ||
2242 handle->cur <= nr_meta_pages + nr_copy_pages);
2243 }
2244
2245 #ifdef CONFIG_HIGHMEM
2246 /* Assumes that @buf is ready and points to a "safe" page */
2247 static inline void
2248 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2249 {
2250 void *kaddr1, *kaddr2;
2251
2252 kaddr1 = kmap_atomic(p1, KM_USER0);
2253 kaddr2 = kmap_atomic(p2, KM_USER1);
2254 memcpy(buf, kaddr1, PAGE_SIZE);
2255 memcpy(kaddr1, kaddr2, PAGE_SIZE);
2256 memcpy(kaddr2, buf, PAGE_SIZE);
2257 kunmap_atomic(kaddr1, KM_USER0);
2258 kunmap_atomic(kaddr2, KM_USER1);
2259 }
2260
2261 /**
2262 * restore_highmem - for each highmem page that was allocated before
2263 * the suspend and included in the suspend image, and also has been
2264 * allocated by the "resume" kernel swap its current (ie. "before
2265 * resume") contents with the previous (ie. "before suspend") one.
2266 *
2267 * If the resume eventually fails, we can call this function once
2268 * again and restore the "before resume" highmem state.
2269 */
2270
2271 int restore_highmem(void)
2272 {
2273 struct highmem_pbe *pbe = highmem_pblist;
2274 void *buf;
2275
2276 if (!pbe)
2277 return 0;
2278
2279 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2280 if (!buf)
2281 return -ENOMEM;
2282
2283 while (pbe) {
2284 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2285 pbe = pbe->next;
2286 }
2287 free_image_page(buf, PG_UNSAFE_CLEAR);
2288 return 0;
2289 }
2290 #endif /* CONFIG_HIGHMEM */