]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/printk/printk.c
printk: queue wake_up_klogd irq_work only if per-CPU areas are ready
[thirdparty/linux.git] / kernel / printk / printk.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/printk.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * Modified to make sys_syslog() more flexible: added commands to
8 * return the last 4k of kernel messages, regardless of whether
9 * they've been read or not. Added option to suppress kernel printk's
10 * to the console. Added hook for sending the console messages
11 * elsewhere, in preparation for a serial line console (someday).
12 * Ted Ts'o, 2/11/93.
13 * Modified for sysctl support, 1/8/97, Chris Horn.
14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15 * manfred@colorfullife.com
16 * Rewrote bits to get rid of console_lock
17 * 01Mar01 Andrew Morton
18 */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/crash_core.h>
38 #include <linux/kdb.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45 #include <linux/irq_work.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/debug.h>
50 #include <linux/sched/task_stack.h>
51
52 #include <linux/uaccess.h>
53 #include <asm/sections.h>
54
55 #include <trace/events/initcall.h>
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/printk.h>
58
59 #include "console_cmdline.h"
60 #include "braille.h"
61 #include "internal.h"
62
63 int console_printk[4] = {
64 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
65 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
66 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
67 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
68 };
69 EXPORT_SYMBOL_GPL(console_printk);
70
71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
72 EXPORT_SYMBOL(ignore_console_lock_warning);
73
74 /*
75 * Low level drivers may need that to know if they can schedule in
76 * their unblank() callback or not. So let's export it.
77 */
78 int oops_in_progress;
79 EXPORT_SYMBOL(oops_in_progress);
80
81 /*
82 * console_sem protects the console_drivers list, and also
83 * provides serialisation for access to the entire console
84 * driver system.
85 */
86 static DEFINE_SEMAPHORE(console_sem);
87 struct console *console_drivers;
88 EXPORT_SYMBOL_GPL(console_drivers);
89
90 /*
91 * System may need to suppress printk message under certain
92 * circumstances, like after kernel panic happens.
93 */
94 int __read_mostly suppress_printk;
95
96 #ifdef CONFIG_LOCKDEP
97 static struct lockdep_map console_lock_dep_map = {
98 .name = "console_lock"
99 };
100 #endif
101
102 enum devkmsg_log_bits {
103 __DEVKMSG_LOG_BIT_ON = 0,
104 __DEVKMSG_LOG_BIT_OFF,
105 __DEVKMSG_LOG_BIT_LOCK,
106 };
107
108 enum devkmsg_log_masks {
109 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON),
110 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF),
111 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK),
112 };
113
114 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
115 #define DEVKMSG_LOG_MASK_DEFAULT 0
116
117 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
118
119 static int __control_devkmsg(char *str)
120 {
121 size_t len;
122
123 if (!str)
124 return -EINVAL;
125
126 len = str_has_prefix(str, "on");
127 if (len) {
128 devkmsg_log = DEVKMSG_LOG_MASK_ON;
129 return len;
130 }
131
132 len = str_has_prefix(str, "off");
133 if (len) {
134 devkmsg_log = DEVKMSG_LOG_MASK_OFF;
135 return len;
136 }
137
138 len = str_has_prefix(str, "ratelimit");
139 if (len) {
140 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
141 return len;
142 }
143
144 return -EINVAL;
145 }
146
147 static int __init control_devkmsg(char *str)
148 {
149 if (__control_devkmsg(str) < 0)
150 return 1;
151
152 /*
153 * Set sysctl string accordingly:
154 */
155 if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
156 strcpy(devkmsg_log_str, "on");
157 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
158 strcpy(devkmsg_log_str, "off");
159 /* else "ratelimit" which is set by default. */
160
161 /*
162 * Sysctl cannot change it anymore. The kernel command line setting of
163 * this parameter is to force the setting to be permanent throughout the
164 * runtime of the system. This is a precation measure against userspace
165 * trying to be a smarta** and attempting to change it up on us.
166 */
167 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
168
169 return 0;
170 }
171 __setup("printk.devkmsg=", control_devkmsg);
172
173 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
174
175 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
176 void __user *buffer, size_t *lenp, loff_t *ppos)
177 {
178 char old_str[DEVKMSG_STR_MAX_SIZE];
179 unsigned int old;
180 int err;
181
182 if (write) {
183 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
184 return -EINVAL;
185
186 old = devkmsg_log;
187 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
188 }
189
190 err = proc_dostring(table, write, buffer, lenp, ppos);
191 if (err)
192 return err;
193
194 if (write) {
195 err = __control_devkmsg(devkmsg_log_str);
196
197 /*
198 * Do not accept an unknown string OR a known string with
199 * trailing crap...
200 */
201 if (err < 0 || (err + 1 != *lenp)) {
202
203 /* ... and restore old setting. */
204 devkmsg_log = old;
205 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
206
207 return -EINVAL;
208 }
209 }
210
211 return 0;
212 }
213
214 /* Number of registered extended console drivers. */
215 static int nr_ext_console_drivers;
216
217 /*
218 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
219 * macros instead of functions so that _RET_IP_ contains useful information.
220 */
221 #define down_console_sem() do { \
222 down(&console_sem);\
223 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
224 } while (0)
225
226 static int __down_trylock_console_sem(unsigned long ip)
227 {
228 int lock_failed;
229 unsigned long flags;
230
231 /*
232 * Here and in __up_console_sem() we need to be in safe mode,
233 * because spindump/WARN/etc from under console ->lock will
234 * deadlock in printk()->down_trylock_console_sem() otherwise.
235 */
236 printk_safe_enter_irqsave(flags);
237 lock_failed = down_trylock(&console_sem);
238 printk_safe_exit_irqrestore(flags);
239
240 if (lock_failed)
241 return 1;
242 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
243 return 0;
244 }
245 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
246
247 static void __up_console_sem(unsigned long ip)
248 {
249 unsigned long flags;
250
251 mutex_release(&console_lock_dep_map, ip);
252
253 printk_safe_enter_irqsave(flags);
254 up(&console_sem);
255 printk_safe_exit_irqrestore(flags);
256 }
257 #define up_console_sem() __up_console_sem(_RET_IP_)
258
259 /*
260 * This is used for debugging the mess that is the VT code by
261 * keeping track if we have the console semaphore held. It's
262 * definitely not the perfect debug tool (we don't know if _WE_
263 * hold it and are racing, but it helps tracking those weird code
264 * paths in the console code where we end up in places I want
265 * locked without the console sempahore held).
266 */
267 static int console_locked, console_suspended;
268
269 /*
270 * If exclusive_console is non-NULL then only this console is to be printed to.
271 */
272 static struct console *exclusive_console;
273
274 /*
275 * Array of consoles built from command line options (console=)
276 */
277
278 #define MAX_CMDLINECONSOLES 8
279
280 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
281
282 static int preferred_console = -1;
283 int console_set_on_cmdline;
284 EXPORT_SYMBOL(console_set_on_cmdline);
285
286 /* Flag: console code may call schedule() */
287 static int console_may_schedule;
288
289 enum con_msg_format_flags {
290 MSG_FORMAT_DEFAULT = 0,
291 MSG_FORMAT_SYSLOG = (1 << 0),
292 };
293
294 static int console_msg_format = MSG_FORMAT_DEFAULT;
295
296 /*
297 * The printk log buffer consists of a chain of concatenated variable
298 * length records. Every record starts with a record header, containing
299 * the overall length of the record.
300 *
301 * The heads to the first and last entry in the buffer, as well as the
302 * sequence numbers of these entries are maintained when messages are
303 * stored.
304 *
305 * If the heads indicate available messages, the length in the header
306 * tells the start next message. A length == 0 for the next message
307 * indicates a wrap-around to the beginning of the buffer.
308 *
309 * Every record carries the monotonic timestamp in microseconds, as well as
310 * the standard userspace syslog level and syslog facility. The usual
311 * kernel messages use LOG_KERN; userspace-injected messages always carry
312 * a matching syslog facility, by default LOG_USER. The origin of every
313 * message can be reliably determined that way.
314 *
315 * The human readable log message directly follows the message header. The
316 * length of the message text is stored in the header, the stored message
317 * is not terminated.
318 *
319 * Optionally, a message can carry a dictionary of properties (key/value pairs),
320 * to provide userspace with a machine-readable message context.
321 *
322 * Examples for well-defined, commonly used property names are:
323 * DEVICE=b12:8 device identifier
324 * b12:8 block dev_t
325 * c127:3 char dev_t
326 * n8 netdev ifindex
327 * +sound:card0 subsystem:devname
328 * SUBSYSTEM=pci driver-core subsystem name
329 *
330 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
331 * follows directly after a '=' character. Every property is terminated by
332 * a '\0' character. The last property is not terminated.
333 *
334 * Example of a message structure:
335 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
336 * 0008 34 00 record is 52 bytes long
337 * 000a 0b 00 text is 11 bytes long
338 * 000c 1f 00 dictionary is 23 bytes long
339 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
340 * 0010 69 74 27 73 20 61 20 6c "it's a l"
341 * 69 6e 65 "ine"
342 * 001b 44 45 56 49 43 "DEVIC"
343 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
344 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
345 * 67 "g"
346 * 0032 00 00 00 padding to next message header
347 *
348 * The 'struct printk_log' buffer header must never be directly exported to
349 * userspace, it is a kernel-private implementation detail that might
350 * need to be changed in the future, when the requirements change.
351 *
352 * /dev/kmsg exports the structured data in the following line format:
353 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
354 *
355 * Users of the export format should ignore possible additional values
356 * separated by ',', and find the message after the ';' character.
357 *
358 * The optional key/value pairs are attached as continuation lines starting
359 * with a space character and terminated by a newline. All possible
360 * non-prinatable characters are escaped in the "\xff" notation.
361 */
362
363 enum log_flags {
364 LOG_NEWLINE = 2, /* text ended with a newline */
365 LOG_CONT = 8, /* text is a fragment of a continuation line */
366 };
367
368 struct printk_log {
369 u64 ts_nsec; /* timestamp in nanoseconds */
370 u16 len; /* length of entire record */
371 u16 text_len; /* length of text buffer */
372 u16 dict_len; /* length of dictionary buffer */
373 u8 facility; /* syslog facility */
374 u8 flags:5; /* internal record flags */
375 u8 level:3; /* syslog level */
376 #ifdef CONFIG_PRINTK_CALLER
377 u32 caller_id; /* thread id or processor id */
378 #endif
379 }
380 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
381 __packed __aligned(4)
382 #endif
383 ;
384
385 /*
386 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
387 * within the scheduler's rq lock. It must be released before calling
388 * console_unlock() or anything else that might wake up a process.
389 */
390 DEFINE_RAW_SPINLOCK(logbuf_lock);
391
392 /*
393 * Helper macros to lock/unlock logbuf_lock and switch between
394 * printk-safe/unsafe modes.
395 */
396 #define logbuf_lock_irq() \
397 do { \
398 printk_safe_enter_irq(); \
399 raw_spin_lock(&logbuf_lock); \
400 } while (0)
401
402 #define logbuf_unlock_irq() \
403 do { \
404 raw_spin_unlock(&logbuf_lock); \
405 printk_safe_exit_irq(); \
406 } while (0)
407
408 #define logbuf_lock_irqsave(flags) \
409 do { \
410 printk_safe_enter_irqsave(flags); \
411 raw_spin_lock(&logbuf_lock); \
412 } while (0)
413
414 #define logbuf_unlock_irqrestore(flags) \
415 do { \
416 raw_spin_unlock(&logbuf_lock); \
417 printk_safe_exit_irqrestore(flags); \
418 } while (0)
419
420 #ifdef CONFIG_PRINTK
421 DECLARE_WAIT_QUEUE_HEAD(log_wait);
422 /* the next printk record to read by syslog(READ) or /proc/kmsg */
423 static u64 syslog_seq;
424 static u32 syslog_idx;
425 static size_t syslog_partial;
426 static bool syslog_time;
427
428 /* index and sequence number of the first record stored in the buffer */
429 static u64 log_first_seq;
430 static u32 log_first_idx;
431
432 /* index and sequence number of the next record to store in the buffer */
433 static u64 log_next_seq;
434 static u32 log_next_idx;
435
436 /* the next printk record to write to the console */
437 static u64 console_seq;
438 static u32 console_idx;
439 static u64 exclusive_console_stop_seq;
440
441 /* the next printk record to read after the last 'clear' command */
442 static u64 clear_seq;
443 static u32 clear_idx;
444
445 #ifdef CONFIG_PRINTK_CALLER
446 #define PREFIX_MAX 48
447 #else
448 #define PREFIX_MAX 32
449 #endif
450 #define LOG_LINE_MAX (1024 - PREFIX_MAX)
451
452 #define LOG_LEVEL(v) ((v) & 0x07)
453 #define LOG_FACILITY(v) ((v) >> 3 & 0xff)
454
455 /* record buffer */
456 #define LOG_ALIGN __alignof__(struct printk_log)
457 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
458 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
459 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
460 static char *log_buf = __log_buf;
461 static u32 log_buf_len = __LOG_BUF_LEN;
462
463 /*
464 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
465 * per_cpu_areas are initialised. This variable is set to true when
466 * it's safe to access per-CPU data.
467 */
468 static bool __printk_percpu_data_ready __read_mostly;
469
470 bool printk_percpu_data_ready(void)
471 {
472 return __printk_percpu_data_ready;
473 }
474
475 /* Return log buffer address */
476 char *log_buf_addr_get(void)
477 {
478 return log_buf;
479 }
480
481 /* Return log buffer size */
482 u32 log_buf_len_get(void)
483 {
484 return log_buf_len;
485 }
486
487 /* human readable text of the record */
488 static char *log_text(const struct printk_log *msg)
489 {
490 return (char *)msg + sizeof(struct printk_log);
491 }
492
493 /* optional key/value pair dictionary attached to the record */
494 static char *log_dict(const struct printk_log *msg)
495 {
496 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
497 }
498
499 /* get record by index; idx must point to valid msg */
500 static struct printk_log *log_from_idx(u32 idx)
501 {
502 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
503
504 /*
505 * A length == 0 record is the end of buffer marker. Wrap around and
506 * read the message at the start of the buffer.
507 */
508 if (!msg->len)
509 return (struct printk_log *)log_buf;
510 return msg;
511 }
512
513 /* get next record; idx must point to valid msg */
514 static u32 log_next(u32 idx)
515 {
516 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
517
518 /* length == 0 indicates the end of the buffer; wrap */
519 /*
520 * A length == 0 record is the end of buffer marker. Wrap around and
521 * read the message at the start of the buffer as *this* one, and
522 * return the one after that.
523 */
524 if (!msg->len) {
525 msg = (struct printk_log *)log_buf;
526 return msg->len;
527 }
528 return idx + msg->len;
529 }
530
531 /*
532 * Check whether there is enough free space for the given message.
533 *
534 * The same values of first_idx and next_idx mean that the buffer
535 * is either empty or full.
536 *
537 * If the buffer is empty, we must respect the position of the indexes.
538 * They cannot be reset to the beginning of the buffer.
539 */
540 static int logbuf_has_space(u32 msg_size, bool empty)
541 {
542 u32 free;
543
544 if (log_next_idx > log_first_idx || empty)
545 free = max(log_buf_len - log_next_idx, log_first_idx);
546 else
547 free = log_first_idx - log_next_idx;
548
549 /*
550 * We need space also for an empty header that signalizes wrapping
551 * of the buffer.
552 */
553 return free >= msg_size + sizeof(struct printk_log);
554 }
555
556 static int log_make_free_space(u32 msg_size)
557 {
558 while (log_first_seq < log_next_seq &&
559 !logbuf_has_space(msg_size, false)) {
560 /* drop old messages until we have enough contiguous space */
561 log_first_idx = log_next(log_first_idx);
562 log_first_seq++;
563 }
564
565 if (clear_seq < log_first_seq) {
566 clear_seq = log_first_seq;
567 clear_idx = log_first_idx;
568 }
569
570 /* sequence numbers are equal, so the log buffer is empty */
571 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
572 return 0;
573
574 return -ENOMEM;
575 }
576
577 /* compute the message size including the padding bytes */
578 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
579 {
580 u32 size;
581
582 size = sizeof(struct printk_log) + text_len + dict_len;
583 *pad_len = (-size) & (LOG_ALIGN - 1);
584 size += *pad_len;
585
586 return size;
587 }
588
589 /*
590 * Define how much of the log buffer we could take at maximum. The value
591 * must be greater than two. Note that only half of the buffer is available
592 * when the index points to the middle.
593 */
594 #define MAX_LOG_TAKE_PART 4
595 static const char trunc_msg[] = "<truncated>";
596
597 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
598 u16 *dict_len, u32 *pad_len)
599 {
600 /*
601 * The message should not take the whole buffer. Otherwise, it might
602 * get removed too soon.
603 */
604 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
605 if (*text_len > max_text_len)
606 *text_len = max_text_len;
607 /* enable the warning message */
608 *trunc_msg_len = strlen(trunc_msg);
609 /* disable the "dict" completely */
610 *dict_len = 0;
611 /* compute the size again, count also the warning message */
612 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
613 }
614
615 /* insert record into the buffer, discard old ones, update heads */
616 static int log_store(u32 caller_id, int facility, int level,
617 enum log_flags flags, u64 ts_nsec,
618 const char *dict, u16 dict_len,
619 const char *text, u16 text_len)
620 {
621 struct printk_log *msg;
622 u32 size, pad_len;
623 u16 trunc_msg_len = 0;
624
625 /* number of '\0' padding bytes to next message */
626 size = msg_used_size(text_len, dict_len, &pad_len);
627
628 if (log_make_free_space(size)) {
629 /* truncate the message if it is too long for empty buffer */
630 size = truncate_msg(&text_len, &trunc_msg_len,
631 &dict_len, &pad_len);
632 /* survive when the log buffer is too small for trunc_msg */
633 if (log_make_free_space(size))
634 return 0;
635 }
636
637 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
638 /*
639 * This message + an additional empty header does not fit
640 * at the end of the buffer. Add an empty header with len == 0
641 * to signify a wrap around.
642 */
643 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
644 log_next_idx = 0;
645 }
646
647 /* fill message */
648 msg = (struct printk_log *)(log_buf + log_next_idx);
649 memcpy(log_text(msg), text, text_len);
650 msg->text_len = text_len;
651 if (trunc_msg_len) {
652 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
653 msg->text_len += trunc_msg_len;
654 }
655 memcpy(log_dict(msg), dict, dict_len);
656 msg->dict_len = dict_len;
657 msg->facility = facility;
658 msg->level = level & 7;
659 msg->flags = flags & 0x1f;
660 if (ts_nsec > 0)
661 msg->ts_nsec = ts_nsec;
662 else
663 msg->ts_nsec = local_clock();
664 #ifdef CONFIG_PRINTK_CALLER
665 msg->caller_id = caller_id;
666 #endif
667 memset(log_dict(msg) + dict_len, 0, pad_len);
668 msg->len = size;
669
670 /* insert message */
671 log_next_idx += msg->len;
672 log_next_seq++;
673
674 return msg->text_len;
675 }
676
677 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
678
679 static int syslog_action_restricted(int type)
680 {
681 if (dmesg_restrict)
682 return 1;
683 /*
684 * Unless restricted, we allow "read all" and "get buffer size"
685 * for everybody.
686 */
687 return type != SYSLOG_ACTION_READ_ALL &&
688 type != SYSLOG_ACTION_SIZE_BUFFER;
689 }
690
691 static int check_syslog_permissions(int type, int source)
692 {
693 /*
694 * If this is from /proc/kmsg and we've already opened it, then we've
695 * already done the capabilities checks at open time.
696 */
697 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
698 goto ok;
699
700 if (syslog_action_restricted(type)) {
701 if (capable(CAP_SYSLOG))
702 goto ok;
703 /*
704 * For historical reasons, accept CAP_SYS_ADMIN too, with
705 * a warning.
706 */
707 if (capable(CAP_SYS_ADMIN)) {
708 pr_warn_once("%s (%d): Attempt to access syslog with "
709 "CAP_SYS_ADMIN but no CAP_SYSLOG "
710 "(deprecated).\n",
711 current->comm, task_pid_nr(current));
712 goto ok;
713 }
714 return -EPERM;
715 }
716 ok:
717 return security_syslog(type);
718 }
719
720 static void append_char(char **pp, char *e, char c)
721 {
722 if (*pp < e)
723 *(*pp)++ = c;
724 }
725
726 static ssize_t msg_print_ext_header(char *buf, size_t size,
727 struct printk_log *msg, u64 seq)
728 {
729 u64 ts_usec = msg->ts_nsec;
730 char caller[20];
731 #ifdef CONFIG_PRINTK_CALLER
732 u32 id = msg->caller_id;
733
734 snprintf(caller, sizeof(caller), ",caller=%c%u",
735 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
736 #else
737 caller[0] = '\0';
738 #endif
739
740 do_div(ts_usec, 1000);
741
742 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
743 (msg->facility << 3) | msg->level, seq, ts_usec,
744 msg->flags & LOG_CONT ? 'c' : '-', caller);
745 }
746
747 static ssize_t msg_print_ext_body(char *buf, size_t size,
748 char *dict, size_t dict_len,
749 char *text, size_t text_len)
750 {
751 char *p = buf, *e = buf + size;
752 size_t i;
753
754 /* escape non-printable characters */
755 for (i = 0; i < text_len; i++) {
756 unsigned char c = text[i];
757
758 if (c < ' ' || c >= 127 || c == '\\')
759 p += scnprintf(p, e - p, "\\x%02x", c);
760 else
761 append_char(&p, e, c);
762 }
763 append_char(&p, e, '\n');
764
765 if (dict_len) {
766 bool line = true;
767
768 for (i = 0; i < dict_len; i++) {
769 unsigned char c = dict[i];
770
771 if (line) {
772 append_char(&p, e, ' ');
773 line = false;
774 }
775
776 if (c == '\0') {
777 append_char(&p, e, '\n');
778 line = true;
779 continue;
780 }
781
782 if (c < ' ' || c >= 127 || c == '\\') {
783 p += scnprintf(p, e - p, "\\x%02x", c);
784 continue;
785 }
786
787 append_char(&p, e, c);
788 }
789 append_char(&p, e, '\n');
790 }
791
792 return p - buf;
793 }
794
795 /* /dev/kmsg - userspace message inject/listen interface */
796 struct devkmsg_user {
797 u64 seq;
798 u32 idx;
799 struct ratelimit_state rs;
800 struct mutex lock;
801 char buf[CONSOLE_EXT_LOG_MAX];
802 };
803
804 static __printf(3, 4) __cold
805 int devkmsg_emit(int facility, int level, const char *fmt, ...)
806 {
807 va_list args;
808 int r;
809
810 va_start(args, fmt);
811 r = vprintk_emit(facility, level, NULL, 0, fmt, args);
812 va_end(args);
813
814 return r;
815 }
816
817 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
818 {
819 char *buf, *line;
820 int level = default_message_loglevel;
821 int facility = 1; /* LOG_USER */
822 struct file *file = iocb->ki_filp;
823 struct devkmsg_user *user = file->private_data;
824 size_t len = iov_iter_count(from);
825 ssize_t ret = len;
826
827 if (!user || len > LOG_LINE_MAX)
828 return -EINVAL;
829
830 /* Ignore when user logging is disabled. */
831 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
832 return len;
833
834 /* Ratelimit when not explicitly enabled. */
835 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
836 if (!___ratelimit(&user->rs, current->comm))
837 return ret;
838 }
839
840 buf = kmalloc(len+1, GFP_KERNEL);
841 if (buf == NULL)
842 return -ENOMEM;
843
844 buf[len] = '\0';
845 if (!copy_from_iter_full(buf, len, from)) {
846 kfree(buf);
847 return -EFAULT;
848 }
849
850 /*
851 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
852 * the decimal value represents 32bit, the lower 3 bit are the log
853 * level, the rest are the log facility.
854 *
855 * If no prefix or no userspace facility is specified, we
856 * enforce LOG_USER, to be able to reliably distinguish
857 * kernel-generated messages from userspace-injected ones.
858 */
859 line = buf;
860 if (line[0] == '<') {
861 char *endp = NULL;
862 unsigned int u;
863
864 u = simple_strtoul(line + 1, &endp, 10);
865 if (endp && endp[0] == '>') {
866 level = LOG_LEVEL(u);
867 if (LOG_FACILITY(u) != 0)
868 facility = LOG_FACILITY(u);
869 endp++;
870 len -= endp - line;
871 line = endp;
872 }
873 }
874
875 devkmsg_emit(facility, level, "%s", line);
876 kfree(buf);
877 return ret;
878 }
879
880 static ssize_t devkmsg_read(struct file *file, char __user *buf,
881 size_t count, loff_t *ppos)
882 {
883 struct devkmsg_user *user = file->private_data;
884 struct printk_log *msg;
885 size_t len;
886 ssize_t ret;
887
888 if (!user)
889 return -EBADF;
890
891 ret = mutex_lock_interruptible(&user->lock);
892 if (ret)
893 return ret;
894
895 logbuf_lock_irq();
896 while (user->seq == log_next_seq) {
897 if (file->f_flags & O_NONBLOCK) {
898 ret = -EAGAIN;
899 logbuf_unlock_irq();
900 goto out;
901 }
902
903 logbuf_unlock_irq();
904 ret = wait_event_interruptible(log_wait,
905 user->seq != log_next_seq);
906 if (ret)
907 goto out;
908 logbuf_lock_irq();
909 }
910
911 if (user->seq < log_first_seq) {
912 /* our last seen message is gone, return error and reset */
913 user->idx = log_first_idx;
914 user->seq = log_first_seq;
915 ret = -EPIPE;
916 logbuf_unlock_irq();
917 goto out;
918 }
919
920 msg = log_from_idx(user->idx);
921 len = msg_print_ext_header(user->buf, sizeof(user->buf),
922 msg, user->seq);
923 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
924 log_dict(msg), msg->dict_len,
925 log_text(msg), msg->text_len);
926
927 user->idx = log_next(user->idx);
928 user->seq++;
929 logbuf_unlock_irq();
930
931 if (len > count) {
932 ret = -EINVAL;
933 goto out;
934 }
935
936 if (copy_to_user(buf, user->buf, len)) {
937 ret = -EFAULT;
938 goto out;
939 }
940 ret = len;
941 out:
942 mutex_unlock(&user->lock);
943 return ret;
944 }
945
946 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
947 {
948 struct devkmsg_user *user = file->private_data;
949 loff_t ret = 0;
950
951 if (!user)
952 return -EBADF;
953 if (offset)
954 return -ESPIPE;
955
956 logbuf_lock_irq();
957 switch (whence) {
958 case SEEK_SET:
959 /* the first record */
960 user->idx = log_first_idx;
961 user->seq = log_first_seq;
962 break;
963 case SEEK_DATA:
964 /*
965 * The first record after the last SYSLOG_ACTION_CLEAR,
966 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
967 * changes no global state, and does not clear anything.
968 */
969 user->idx = clear_idx;
970 user->seq = clear_seq;
971 break;
972 case SEEK_END:
973 /* after the last record */
974 user->idx = log_next_idx;
975 user->seq = log_next_seq;
976 break;
977 default:
978 ret = -EINVAL;
979 }
980 logbuf_unlock_irq();
981 return ret;
982 }
983
984 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
985 {
986 struct devkmsg_user *user = file->private_data;
987 __poll_t ret = 0;
988
989 if (!user)
990 return EPOLLERR|EPOLLNVAL;
991
992 poll_wait(file, &log_wait, wait);
993
994 logbuf_lock_irq();
995 if (user->seq < log_next_seq) {
996 /* return error when data has vanished underneath us */
997 if (user->seq < log_first_seq)
998 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
999 else
1000 ret = EPOLLIN|EPOLLRDNORM;
1001 }
1002 logbuf_unlock_irq();
1003
1004 return ret;
1005 }
1006
1007 static int devkmsg_open(struct inode *inode, struct file *file)
1008 {
1009 struct devkmsg_user *user;
1010 int err;
1011
1012 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
1013 return -EPERM;
1014
1015 /* write-only does not need any file context */
1016 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
1017 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
1018 SYSLOG_FROM_READER);
1019 if (err)
1020 return err;
1021 }
1022
1023 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
1024 if (!user)
1025 return -ENOMEM;
1026
1027 ratelimit_default_init(&user->rs);
1028 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
1029
1030 mutex_init(&user->lock);
1031
1032 logbuf_lock_irq();
1033 user->idx = log_first_idx;
1034 user->seq = log_first_seq;
1035 logbuf_unlock_irq();
1036
1037 file->private_data = user;
1038 return 0;
1039 }
1040
1041 static int devkmsg_release(struct inode *inode, struct file *file)
1042 {
1043 struct devkmsg_user *user = file->private_data;
1044
1045 if (!user)
1046 return 0;
1047
1048 ratelimit_state_exit(&user->rs);
1049
1050 mutex_destroy(&user->lock);
1051 kfree(user);
1052 return 0;
1053 }
1054
1055 const struct file_operations kmsg_fops = {
1056 .open = devkmsg_open,
1057 .read = devkmsg_read,
1058 .write_iter = devkmsg_write,
1059 .llseek = devkmsg_llseek,
1060 .poll = devkmsg_poll,
1061 .release = devkmsg_release,
1062 };
1063
1064 #ifdef CONFIG_CRASH_CORE
1065 /*
1066 * This appends the listed symbols to /proc/vmcore
1067 *
1068 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1069 * obtain access to symbols that are otherwise very difficult to locate. These
1070 * symbols are specifically used so that utilities can access and extract the
1071 * dmesg log from a vmcore file after a crash.
1072 */
1073 void log_buf_vmcoreinfo_setup(void)
1074 {
1075 VMCOREINFO_SYMBOL(log_buf);
1076 VMCOREINFO_SYMBOL(log_buf_len);
1077 VMCOREINFO_SYMBOL(log_first_idx);
1078 VMCOREINFO_SYMBOL(clear_idx);
1079 VMCOREINFO_SYMBOL(log_next_idx);
1080 /*
1081 * Export struct printk_log size and field offsets. User space tools can
1082 * parse it and detect any changes to structure down the line.
1083 */
1084 VMCOREINFO_STRUCT_SIZE(printk_log);
1085 VMCOREINFO_OFFSET(printk_log, ts_nsec);
1086 VMCOREINFO_OFFSET(printk_log, len);
1087 VMCOREINFO_OFFSET(printk_log, text_len);
1088 VMCOREINFO_OFFSET(printk_log, dict_len);
1089 #ifdef CONFIG_PRINTK_CALLER
1090 VMCOREINFO_OFFSET(printk_log, caller_id);
1091 #endif
1092 }
1093 #endif
1094
1095 /* requested log_buf_len from kernel cmdline */
1096 static unsigned long __initdata new_log_buf_len;
1097
1098 /* we practice scaling the ring buffer by powers of 2 */
1099 static void __init log_buf_len_update(u64 size)
1100 {
1101 if (size > (u64)LOG_BUF_LEN_MAX) {
1102 size = (u64)LOG_BUF_LEN_MAX;
1103 pr_err("log_buf over 2G is not supported.\n");
1104 }
1105
1106 if (size)
1107 size = roundup_pow_of_two(size);
1108 if (size > log_buf_len)
1109 new_log_buf_len = (unsigned long)size;
1110 }
1111
1112 /* save requested log_buf_len since it's too early to process it */
1113 static int __init log_buf_len_setup(char *str)
1114 {
1115 u64 size;
1116
1117 if (!str)
1118 return -EINVAL;
1119
1120 size = memparse(str, &str);
1121
1122 log_buf_len_update(size);
1123
1124 return 0;
1125 }
1126 early_param("log_buf_len", log_buf_len_setup);
1127
1128 #ifdef CONFIG_SMP
1129 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1130
1131 static void __init log_buf_add_cpu(void)
1132 {
1133 unsigned int cpu_extra;
1134
1135 /*
1136 * archs should set up cpu_possible_bits properly with
1137 * set_cpu_possible() after setup_arch() but just in
1138 * case lets ensure this is valid.
1139 */
1140 if (num_possible_cpus() == 1)
1141 return;
1142
1143 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1144
1145 /* by default this will only continue through for large > 64 CPUs */
1146 if (cpu_extra <= __LOG_BUF_LEN / 2)
1147 return;
1148
1149 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1150 __LOG_CPU_MAX_BUF_LEN);
1151 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1152 cpu_extra);
1153 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1154
1155 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1156 }
1157 #else /* !CONFIG_SMP */
1158 static inline void log_buf_add_cpu(void) {}
1159 #endif /* CONFIG_SMP */
1160
1161 static void __init set_percpu_data_ready(void)
1162 {
1163 printk_safe_init();
1164 /* Make sure we set this flag only after printk_safe() init is done */
1165 barrier();
1166 __printk_percpu_data_ready = true;
1167 }
1168
1169 void __init setup_log_buf(int early)
1170 {
1171 unsigned long flags;
1172 char *new_log_buf;
1173 unsigned int free;
1174
1175 /*
1176 * Some archs call setup_log_buf() multiple times - first is very
1177 * early, e.g. from setup_arch(), and second - when percpu_areas
1178 * are initialised.
1179 */
1180 if (!early)
1181 set_percpu_data_ready();
1182
1183 if (log_buf != __log_buf)
1184 return;
1185
1186 if (!early && !new_log_buf_len)
1187 log_buf_add_cpu();
1188
1189 if (!new_log_buf_len)
1190 return;
1191
1192 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1193 if (unlikely(!new_log_buf)) {
1194 pr_err("log_buf_len: %lu bytes not available\n",
1195 new_log_buf_len);
1196 return;
1197 }
1198
1199 logbuf_lock_irqsave(flags);
1200 log_buf_len = new_log_buf_len;
1201 log_buf = new_log_buf;
1202 new_log_buf_len = 0;
1203 free = __LOG_BUF_LEN - log_next_idx;
1204 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1205 logbuf_unlock_irqrestore(flags);
1206
1207 pr_info("log_buf_len: %u bytes\n", log_buf_len);
1208 pr_info("early log buf free: %u(%u%%)\n",
1209 free, (free * 100) / __LOG_BUF_LEN);
1210 }
1211
1212 static bool __read_mostly ignore_loglevel;
1213
1214 static int __init ignore_loglevel_setup(char *str)
1215 {
1216 ignore_loglevel = true;
1217 pr_info("debug: ignoring loglevel setting.\n");
1218
1219 return 0;
1220 }
1221
1222 early_param("ignore_loglevel", ignore_loglevel_setup);
1223 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1224 MODULE_PARM_DESC(ignore_loglevel,
1225 "ignore loglevel setting (prints all kernel messages to the console)");
1226
1227 static bool suppress_message_printing(int level)
1228 {
1229 return (level >= console_loglevel && !ignore_loglevel);
1230 }
1231
1232 #ifdef CONFIG_BOOT_PRINTK_DELAY
1233
1234 static int boot_delay; /* msecs delay after each printk during bootup */
1235 static unsigned long long loops_per_msec; /* based on boot_delay */
1236
1237 static int __init boot_delay_setup(char *str)
1238 {
1239 unsigned long lpj;
1240
1241 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
1242 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1243
1244 get_option(&str, &boot_delay);
1245 if (boot_delay > 10 * 1000)
1246 boot_delay = 0;
1247
1248 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1249 "HZ: %d, loops_per_msec: %llu\n",
1250 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1251 return 0;
1252 }
1253 early_param("boot_delay", boot_delay_setup);
1254
1255 static void boot_delay_msec(int level)
1256 {
1257 unsigned long long k;
1258 unsigned long timeout;
1259
1260 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1261 || suppress_message_printing(level)) {
1262 return;
1263 }
1264
1265 k = (unsigned long long)loops_per_msec * boot_delay;
1266
1267 timeout = jiffies + msecs_to_jiffies(boot_delay);
1268 while (k) {
1269 k--;
1270 cpu_relax();
1271 /*
1272 * use (volatile) jiffies to prevent
1273 * compiler reduction; loop termination via jiffies
1274 * is secondary and may or may not happen.
1275 */
1276 if (time_after(jiffies, timeout))
1277 break;
1278 touch_nmi_watchdog();
1279 }
1280 }
1281 #else
1282 static inline void boot_delay_msec(int level)
1283 {
1284 }
1285 #endif
1286
1287 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1288 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1289
1290 static size_t print_syslog(unsigned int level, char *buf)
1291 {
1292 return sprintf(buf, "<%u>", level);
1293 }
1294
1295 static size_t print_time(u64 ts, char *buf)
1296 {
1297 unsigned long rem_nsec = do_div(ts, 1000000000);
1298
1299 return sprintf(buf, "[%5lu.%06lu]",
1300 (unsigned long)ts, rem_nsec / 1000);
1301 }
1302
1303 #ifdef CONFIG_PRINTK_CALLER
1304 static size_t print_caller(u32 id, char *buf)
1305 {
1306 char caller[12];
1307
1308 snprintf(caller, sizeof(caller), "%c%u",
1309 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1310 return sprintf(buf, "[%6s]", caller);
1311 }
1312 #else
1313 #define print_caller(id, buf) 0
1314 #endif
1315
1316 static size_t print_prefix(const struct printk_log *msg, bool syslog,
1317 bool time, char *buf)
1318 {
1319 size_t len = 0;
1320
1321 if (syslog)
1322 len = print_syslog((msg->facility << 3) | msg->level, buf);
1323
1324 if (time)
1325 len += print_time(msg->ts_nsec, buf + len);
1326
1327 len += print_caller(msg->caller_id, buf + len);
1328
1329 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1330 buf[len++] = ' ';
1331 buf[len] = '\0';
1332 }
1333
1334 return len;
1335 }
1336
1337 static size_t msg_print_text(const struct printk_log *msg, bool syslog,
1338 bool time, char *buf, size_t size)
1339 {
1340 const char *text = log_text(msg);
1341 size_t text_size = msg->text_len;
1342 size_t len = 0;
1343 char prefix[PREFIX_MAX];
1344 const size_t prefix_len = print_prefix(msg, syslog, time, prefix);
1345
1346 do {
1347 const char *next = memchr(text, '\n', text_size);
1348 size_t text_len;
1349
1350 if (next) {
1351 text_len = next - text;
1352 next++;
1353 text_size -= next - text;
1354 } else {
1355 text_len = text_size;
1356 }
1357
1358 if (buf) {
1359 if (prefix_len + text_len + 1 >= size - len)
1360 break;
1361
1362 memcpy(buf + len, prefix, prefix_len);
1363 len += prefix_len;
1364 memcpy(buf + len, text, text_len);
1365 len += text_len;
1366 buf[len++] = '\n';
1367 } else {
1368 /* SYSLOG_ACTION_* buffer size only calculation */
1369 len += prefix_len + text_len + 1;
1370 }
1371
1372 text = next;
1373 } while (text);
1374
1375 return len;
1376 }
1377
1378 static int syslog_print(char __user *buf, int size)
1379 {
1380 char *text;
1381 struct printk_log *msg;
1382 int len = 0;
1383
1384 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1385 if (!text)
1386 return -ENOMEM;
1387
1388 while (size > 0) {
1389 size_t n;
1390 size_t skip;
1391
1392 logbuf_lock_irq();
1393 if (syslog_seq < log_first_seq) {
1394 /* messages are gone, move to first one */
1395 syslog_seq = log_first_seq;
1396 syslog_idx = log_first_idx;
1397 syslog_partial = 0;
1398 }
1399 if (syslog_seq == log_next_seq) {
1400 logbuf_unlock_irq();
1401 break;
1402 }
1403
1404 /*
1405 * To keep reading/counting partial line consistent,
1406 * use printk_time value as of the beginning of a line.
1407 */
1408 if (!syslog_partial)
1409 syslog_time = printk_time;
1410
1411 skip = syslog_partial;
1412 msg = log_from_idx(syslog_idx);
1413 n = msg_print_text(msg, true, syslog_time, text,
1414 LOG_LINE_MAX + PREFIX_MAX);
1415 if (n - syslog_partial <= size) {
1416 /* message fits into buffer, move forward */
1417 syslog_idx = log_next(syslog_idx);
1418 syslog_seq++;
1419 n -= syslog_partial;
1420 syslog_partial = 0;
1421 } else if (!len){
1422 /* partial read(), remember position */
1423 n = size;
1424 syslog_partial += n;
1425 } else
1426 n = 0;
1427 logbuf_unlock_irq();
1428
1429 if (!n)
1430 break;
1431
1432 if (copy_to_user(buf, text + skip, n)) {
1433 if (!len)
1434 len = -EFAULT;
1435 break;
1436 }
1437
1438 len += n;
1439 size -= n;
1440 buf += n;
1441 }
1442
1443 kfree(text);
1444 return len;
1445 }
1446
1447 static int syslog_print_all(char __user *buf, int size, bool clear)
1448 {
1449 char *text;
1450 int len = 0;
1451 u64 next_seq;
1452 u64 seq;
1453 u32 idx;
1454 bool time;
1455
1456 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1457 if (!text)
1458 return -ENOMEM;
1459
1460 time = printk_time;
1461 logbuf_lock_irq();
1462 /*
1463 * Find first record that fits, including all following records,
1464 * into the user-provided buffer for this dump.
1465 */
1466 seq = clear_seq;
1467 idx = clear_idx;
1468 while (seq < log_next_seq) {
1469 struct printk_log *msg = log_from_idx(idx);
1470
1471 len += msg_print_text(msg, true, time, NULL, 0);
1472 idx = log_next(idx);
1473 seq++;
1474 }
1475
1476 /* move first record forward until length fits into the buffer */
1477 seq = clear_seq;
1478 idx = clear_idx;
1479 while (len > size && seq < log_next_seq) {
1480 struct printk_log *msg = log_from_idx(idx);
1481
1482 len -= msg_print_text(msg, true, time, NULL, 0);
1483 idx = log_next(idx);
1484 seq++;
1485 }
1486
1487 /* last message fitting into this dump */
1488 next_seq = log_next_seq;
1489
1490 len = 0;
1491 while (len >= 0 && seq < next_seq) {
1492 struct printk_log *msg = log_from_idx(idx);
1493 int textlen = msg_print_text(msg, true, time, text,
1494 LOG_LINE_MAX + PREFIX_MAX);
1495
1496 idx = log_next(idx);
1497 seq++;
1498
1499 logbuf_unlock_irq();
1500 if (copy_to_user(buf + len, text, textlen))
1501 len = -EFAULT;
1502 else
1503 len += textlen;
1504 logbuf_lock_irq();
1505
1506 if (seq < log_first_seq) {
1507 /* messages are gone, move to next one */
1508 seq = log_first_seq;
1509 idx = log_first_idx;
1510 }
1511 }
1512
1513 if (clear) {
1514 clear_seq = log_next_seq;
1515 clear_idx = log_next_idx;
1516 }
1517 logbuf_unlock_irq();
1518
1519 kfree(text);
1520 return len;
1521 }
1522
1523 static void syslog_clear(void)
1524 {
1525 logbuf_lock_irq();
1526 clear_seq = log_next_seq;
1527 clear_idx = log_next_idx;
1528 logbuf_unlock_irq();
1529 }
1530
1531 int do_syslog(int type, char __user *buf, int len, int source)
1532 {
1533 bool clear = false;
1534 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1535 int error;
1536
1537 error = check_syslog_permissions(type, source);
1538 if (error)
1539 return error;
1540
1541 switch (type) {
1542 case SYSLOG_ACTION_CLOSE: /* Close log */
1543 break;
1544 case SYSLOG_ACTION_OPEN: /* Open log */
1545 break;
1546 case SYSLOG_ACTION_READ: /* Read from log */
1547 if (!buf || len < 0)
1548 return -EINVAL;
1549 if (!len)
1550 return 0;
1551 if (!access_ok(buf, len))
1552 return -EFAULT;
1553 error = wait_event_interruptible(log_wait,
1554 syslog_seq != log_next_seq);
1555 if (error)
1556 return error;
1557 error = syslog_print(buf, len);
1558 break;
1559 /* Read/clear last kernel messages */
1560 case SYSLOG_ACTION_READ_CLEAR:
1561 clear = true;
1562 /* FALL THRU */
1563 /* Read last kernel messages */
1564 case SYSLOG_ACTION_READ_ALL:
1565 if (!buf || len < 0)
1566 return -EINVAL;
1567 if (!len)
1568 return 0;
1569 if (!access_ok(buf, len))
1570 return -EFAULT;
1571 error = syslog_print_all(buf, len, clear);
1572 break;
1573 /* Clear ring buffer */
1574 case SYSLOG_ACTION_CLEAR:
1575 syslog_clear();
1576 break;
1577 /* Disable logging to console */
1578 case SYSLOG_ACTION_CONSOLE_OFF:
1579 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1580 saved_console_loglevel = console_loglevel;
1581 console_loglevel = minimum_console_loglevel;
1582 break;
1583 /* Enable logging to console */
1584 case SYSLOG_ACTION_CONSOLE_ON:
1585 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1586 console_loglevel = saved_console_loglevel;
1587 saved_console_loglevel = LOGLEVEL_DEFAULT;
1588 }
1589 break;
1590 /* Set level of messages printed to console */
1591 case SYSLOG_ACTION_CONSOLE_LEVEL:
1592 if (len < 1 || len > 8)
1593 return -EINVAL;
1594 if (len < minimum_console_loglevel)
1595 len = minimum_console_loglevel;
1596 console_loglevel = len;
1597 /* Implicitly re-enable logging to console */
1598 saved_console_loglevel = LOGLEVEL_DEFAULT;
1599 break;
1600 /* Number of chars in the log buffer */
1601 case SYSLOG_ACTION_SIZE_UNREAD:
1602 logbuf_lock_irq();
1603 if (syslog_seq < log_first_seq) {
1604 /* messages are gone, move to first one */
1605 syslog_seq = log_first_seq;
1606 syslog_idx = log_first_idx;
1607 syslog_partial = 0;
1608 }
1609 if (source == SYSLOG_FROM_PROC) {
1610 /*
1611 * Short-cut for poll(/"proc/kmsg") which simply checks
1612 * for pending data, not the size; return the count of
1613 * records, not the length.
1614 */
1615 error = log_next_seq - syslog_seq;
1616 } else {
1617 u64 seq = syslog_seq;
1618 u32 idx = syslog_idx;
1619 bool time = syslog_partial ? syslog_time : printk_time;
1620
1621 while (seq < log_next_seq) {
1622 struct printk_log *msg = log_from_idx(idx);
1623
1624 error += msg_print_text(msg, true, time, NULL,
1625 0);
1626 time = printk_time;
1627 idx = log_next(idx);
1628 seq++;
1629 }
1630 error -= syslog_partial;
1631 }
1632 logbuf_unlock_irq();
1633 break;
1634 /* Size of the log buffer */
1635 case SYSLOG_ACTION_SIZE_BUFFER:
1636 error = log_buf_len;
1637 break;
1638 default:
1639 error = -EINVAL;
1640 break;
1641 }
1642
1643 return error;
1644 }
1645
1646 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1647 {
1648 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1649 }
1650
1651 /*
1652 * Special console_lock variants that help to reduce the risk of soft-lockups.
1653 * They allow to pass console_lock to another printk() call using a busy wait.
1654 */
1655
1656 #ifdef CONFIG_LOCKDEP
1657 static struct lockdep_map console_owner_dep_map = {
1658 .name = "console_owner"
1659 };
1660 #endif
1661
1662 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1663 static struct task_struct *console_owner;
1664 static bool console_waiter;
1665
1666 /**
1667 * console_lock_spinning_enable - mark beginning of code where another
1668 * thread might safely busy wait
1669 *
1670 * This basically converts console_lock into a spinlock. This marks
1671 * the section where the console_lock owner can not sleep, because
1672 * there may be a waiter spinning (like a spinlock). Also it must be
1673 * ready to hand over the lock at the end of the section.
1674 */
1675 static void console_lock_spinning_enable(void)
1676 {
1677 raw_spin_lock(&console_owner_lock);
1678 console_owner = current;
1679 raw_spin_unlock(&console_owner_lock);
1680
1681 /* The waiter may spin on us after setting console_owner */
1682 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1683 }
1684
1685 /**
1686 * console_lock_spinning_disable_and_check - mark end of code where another
1687 * thread was able to busy wait and check if there is a waiter
1688 *
1689 * This is called at the end of the section where spinning is allowed.
1690 * It has two functions. First, it is a signal that it is no longer
1691 * safe to start busy waiting for the lock. Second, it checks if
1692 * there is a busy waiter and passes the lock rights to her.
1693 *
1694 * Important: Callers lose the lock if there was a busy waiter.
1695 * They must not touch items synchronized by console_lock
1696 * in this case.
1697 *
1698 * Return: 1 if the lock rights were passed, 0 otherwise.
1699 */
1700 static int console_lock_spinning_disable_and_check(void)
1701 {
1702 int waiter;
1703
1704 raw_spin_lock(&console_owner_lock);
1705 waiter = READ_ONCE(console_waiter);
1706 console_owner = NULL;
1707 raw_spin_unlock(&console_owner_lock);
1708
1709 if (!waiter) {
1710 spin_release(&console_owner_dep_map, _THIS_IP_);
1711 return 0;
1712 }
1713
1714 /* The waiter is now free to continue */
1715 WRITE_ONCE(console_waiter, false);
1716
1717 spin_release(&console_owner_dep_map, _THIS_IP_);
1718
1719 /*
1720 * Hand off console_lock to waiter. The waiter will perform
1721 * the up(). After this, the waiter is the console_lock owner.
1722 */
1723 mutex_release(&console_lock_dep_map, _THIS_IP_);
1724 return 1;
1725 }
1726
1727 /**
1728 * console_trylock_spinning - try to get console_lock by busy waiting
1729 *
1730 * This allows to busy wait for the console_lock when the current
1731 * owner is running in specially marked sections. It means that
1732 * the current owner is running and cannot reschedule until it
1733 * is ready to lose the lock.
1734 *
1735 * Return: 1 if we got the lock, 0 othrewise
1736 */
1737 static int console_trylock_spinning(void)
1738 {
1739 struct task_struct *owner = NULL;
1740 bool waiter;
1741 bool spin = false;
1742 unsigned long flags;
1743
1744 if (console_trylock())
1745 return 1;
1746
1747 printk_safe_enter_irqsave(flags);
1748
1749 raw_spin_lock(&console_owner_lock);
1750 owner = READ_ONCE(console_owner);
1751 waiter = READ_ONCE(console_waiter);
1752 if (!waiter && owner && owner != current) {
1753 WRITE_ONCE(console_waiter, true);
1754 spin = true;
1755 }
1756 raw_spin_unlock(&console_owner_lock);
1757
1758 /*
1759 * If there is an active printk() writing to the
1760 * consoles, instead of having it write our data too,
1761 * see if we can offload that load from the active
1762 * printer, and do some printing ourselves.
1763 * Go into a spin only if there isn't already a waiter
1764 * spinning, and there is an active printer, and
1765 * that active printer isn't us (recursive printk?).
1766 */
1767 if (!spin) {
1768 printk_safe_exit_irqrestore(flags);
1769 return 0;
1770 }
1771
1772 /* We spin waiting for the owner to release us */
1773 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1774 /* Owner will clear console_waiter on hand off */
1775 while (READ_ONCE(console_waiter))
1776 cpu_relax();
1777 spin_release(&console_owner_dep_map, _THIS_IP_);
1778
1779 printk_safe_exit_irqrestore(flags);
1780 /*
1781 * The owner passed the console lock to us.
1782 * Since we did not spin on console lock, annotate
1783 * this as a trylock. Otherwise lockdep will
1784 * complain.
1785 */
1786 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1787
1788 return 1;
1789 }
1790
1791 /*
1792 * Call the console drivers, asking them to write out
1793 * log_buf[start] to log_buf[end - 1].
1794 * The console_lock must be held.
1795 */
1796 static void call_console_drivers(const char *ext_text, size_t ext_len,
1797 const char *text, size_t len)
1798 {
1799 struct console *con;
1800
1801 trace_console_rcuidle(text, len);
1802
1803 for_each_console(con) {
1804 if (exclusive_console && con != exclusive_console)
1805 continue;
1806 if (!(con->flags & CON_ENABLED))
1807 continue;
1808 if (!con->write)
1809 continue;
1810 if (!cpu_online(smp_processor_id()) &&
1811 !(con->flags & CON_ANYTIME))
1812 continue;
1813 if (con->flags & CON_EXTENDED)
1814 con->write(con, ext_text, ext_len);
1815 else
1816 con->write(con, text, len);
1817 }
1818 }
1819
1820 int printk_delay_msec __read_mostly;
1821
1822 static inline void printk_delay(void)
1823 {
1824 if (unlikely(printk_delay_msec)) {
1825 int m = printk_delay_msec;
1826
1827 while (m--) {
1828 mdelay(1);
1829 touch_nmi_watchdog();
1830 }
1831 }
1832 }
1833
1834 static inline u32 printk_caller_id(void)
1835 {
1836 return in_task() ? task_pid_nr(current) :
1837 0x80000000 + raw_smp_processor_id();
1838 }
1839
1840 /*
1841 * Continuation lines are buffered, and not committed to the record buffer
1842 * until the line is complete, or a race forces it. The line fragments
1843 * though, are printed immediately to the consoles to ensure everything has
1844 * reached the console in case of a kernel crash.
1845 */
1846 static struct cont {
1847 char buf[LOG_LINE_MAX];
1848 size_t len; /* length == 0 means unused buffer */
1849 u32 caller_id; /* printk_caller_id() of first print */
1850 u64 ts_nsec; /* time of first print */
1851 u8 level; /* log level of first message */
1852 u8 facility; /* log facility of first message */
1853 enum log_flags flags; /* prefix, newline flags */
1854 } cont;
1855
1856 static void cont_flush(void)
1857 {
1858 if (cont.len == 0)
1859 return;
1860
1861 log_store(cont.caller_id, cont.facility, cont.level, cont.flags,
1862 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1863 cont.len = 0;
1864 }
1865
1866 static bool cont_add(u32 caller_id, int facility, int level,
1867 enum log_flags flags, const char *text, size_t len)
1868 {
1869 /* If the line gets too long, split it up in separate records. */
1870 if (cont.len + len > sizeof(cont.buf)) {
1871 cont_flush();
1872 return false;
1873 }
1874
1875 if (!cont.len) {
1876 cont.facility = facility;
1877 cont.level = level;
1878 cont.caller_id = caller_id;
1879 cont.ts_nsec = local_clock();
1880 cont.flags = flags;
1881 }
1882
1883 memcpy(cont.buf + cont.len, text, len);
1884 cont.len += len;
1885
1886 // The original flags come from the first line,
1887 // but later continuations can add a newline.
1888 if (flags & LOG_NEWLINE) {
1889 cont.flags |= LOG_NEWLINE;
1890 cont_flush();
1891 }
1892
1893 return true;
1894 }
1895
1896 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1897 {
1898 const u32 caller_id = printk_caller_id();
1899
1900 /*
1901 * If an earlier line was buffered, and we're a continuation
1902 * write from the same context, try to add it to the buffer.
1903 */
1904 if (cont.len) {
1905 if (cont.caller_id == caller_id && (lflags & LOG_CONT)) {
1906 if (cont_add(caller_id, facility, level, lflags, text, text_len))
1907 return text_len;
1908 }
1909 /* Otherwise, make sure it's flushed */
1910 cont_flush();
1911 }
1912
1913 /* Skip empty continuation lines that couldn't be added - they just flush */
1914 if (!text_len && (lflags & LOG_CONT))
1915 return 0;
1916
1917 /* If it doesn't end in a newline, try to buffer the current line */
1918 if (!(lflags & LOG_NEWLINE)) {
1919 if (cont_add(caller_id, facility, level, lflags, text, text_len))
1920 return text_len;
1921 }
1922
1923 /* Store it in the record log */
1924 return log_store(caller_id, facility, level, lflags, 0,
1925 dict, dictlen, text, text_len);
1926 }
1927
1928 /* Must be called under logbuf_lock. */
1929 int vprintk_store(int facility, int level,
1930 const char *dict, size_t dictlen,
1931 const char *fmt, va_list args)
1932 {
1933 static char textbuf[LOG_LINE_MAX];
1934 char *text = textbuf;
1935 size_t text_len;
1936 enum log_flags lflags = 0;
1937
1938 /*
1939 * The printf needs to come first; we need the syslog
1940 * prefix which might be passed-in as a parameter.
1941 */
1942 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1943
1944 /* mark and strip a trailing newline */
1945 if (text_len && text[text_len-1] == '\n') {
1946 text_len--;
1947 lflags |= LOG_NEWLINE;
1948 }
1949
1950 /* strip kernel syslog prefix and extract log level or control flags */
1951 if (facility == 0) {
1952 int kern_level;
1953
1954 while ((kern_level = printk_get_level(text)) != 0) {
1955 switch (kern_level) {
1956 case '0' ... '7':
1957 if (level == LOGLEVEL_DEFAULT)
1958 level = kern_level - '0';
1959 break;
1960 case 'c': /* KERN_CONT */
1961 lflags |= LOG_CONT;
1962 }
1963
1964 text_len -= 2;
1965 text += 2;
1966 }
1967 }
1968
1969 if (level == LOGLEVEL_DEFAULT)
1970 level = default_message_loglevel;
1971
1972 if (dict)
1973 lflags |= LOG_NEWLINE;
1974
1975 return log_output(facility, level, lflags,
1976 dict, dictlen, text, text_len);
1977 }
1978
1979 asmlinkage int vprintk_emit(int facility, int level,
1980 const char *dict, size_t dictlen,
1981 const char *fmt, va_list args)
1982 {
1983 int printed_len;
1984 bool in_sched = false, pending_output;
1985 unsigned long flags;
1986 u64 curr_log_seq;
1987
1988 /* Suppress unimportant messages after panic happens */
1989 if (unlikely(suppress_printk))
1990 return 0;
1991
1992 if (level == LOGLEVEL_SCHED) {
1993 level = LOGLEVEL_DEFAULT;
1994 in_sched = true;
1995 }
1996
1997 boot_delay_msec(level);
1998 printk_delay();
1999
2000 /* This stops the holder of console_sem just where we want him */
2001 logbuf_lock_irqsave(flags);
2002 curr_log_seq = log_next_seq;
2003 printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args);
2004 pending_output = (curr_log_seq != log_next_seq);
2005 logbuf_unlock_irqrestore(flags);
2006
2007 /* If called from the scheduler, we can not call up(). */
2008 if (!in_sched && pending_output) {
2009 /*
2010 * Disable preemption to avoid being preempted while holding
2011 * console_sem which would prevent anyone from printing to
2012 * console
2013 */
2014 preempt_disable();
2015 /*
2016 * Try to acquire and then immediately release the console
2017 * semaphore. The release will print out buffers and wake up
2018 * /dev/kmsg and syslog() users.
2019 */
2020 if (console_trylock_spinning())
2021 console_unlock();
2022 preempt_enable();
2023 }
2024
2025 if (pending_output)
2026 wake_up_klogd();
2027 return printed_len;
2028 }
2029 EXPORT_SYMBOL(vprintk_emit);
2030
2031 asmlinkage int vprintk(const char *fmt, va_list args)
2032 {
2033 return vprintk_func(fmt, args);
2034 }
2035 EXPORT_SYMBOL(vprintk);
2036
2037 int vprintk_default(const char *fmt, va_list args)
2038 {
2039 int r;
2040
2041 #ifdef CONFIG_KGDB_KDB
2042 /* Allow to pass printk() to kdb but avoid a recursion. */
2043 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
2044 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
2045 return r;
2046 }
2047 #endif
2048 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
2049
2050 return r;
2051 }
2052 EXPORT_SYMBOL_GPL(vprintk_default);
2053
2054 /**
2055 * printk - print a kernel message
2056 * @fmt: format string
2057 *
2058 * This is printk(). It can be called from any context. We want it to work.
2059 *
2060 * We try to grab the console_lock. If we succeed, it's easy - we log the
2061 * output and call the console drivers. If we fail to get the semaphore, we
2062 * place the output into the log buffer and return. The current holder of
2063 * the console_sem will notice the new output in console_unlock(); and will
2064 * send it to the consoles before releasing the lock.
2065 *
2066 * One effect of this deferred printing is that code which calls printk() and
2067 * then changes console_loglevel may break. This is because console_loglevel
2068 * is inspected when the actual printing occurs.
2069 *
2070 * See also:
2071 * printf(3)
2072 *
2073 * See the vsnprintf() documentation for format string extensions over C99.
2074 */
2075 asmlinkage __visible int printk(const char *fmt, ...)
2076 {
2077 va_list args;
2078 int r;
2079
2080 va_start(args, fmt);
2081 r = vprintk_func(fmt, args);
2082 va_end(args);
2083
2084 return r;
2085 }
2086 EXPORT_SYMBOL(printk);
2087
2088 #else /* CONFIG_PRINTK */
2089
2090 #define LOG_LINE_MAX 0
2091 #define PREFIX_MAX 0
2092 #define printk_time false
2093
2094 static u64 syslog_seq;
2095 static u32 syslog_idx;
2096 static u64 console_seq;
2097 static u32 console_idx;
2098 static u64 exclusive_console_stop_seq;
2099 static u64 log_first_seq;
2100 static u32 log_first_idx;
2101 static u64 log_next_seq;
2102 static char *log_text(const struct printk_log *msg) { return NULL; }
2103 static char *log_dict(const struct printk_log *msg) { return NULL; }
2104 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2105 static u32 log_next(u32 idx) { return 0; }
2106 static ssize_t msg_print_ext_header(char *buf, size_t size,
2107 struct printk_log *msg,
2108 u64 seq) { return 0; }
2109 static ssize_t msg_print_ext_body(char *buf, size_t size,
2110 char *dict, size_t dict_len,
2111 char *text, size_t text_len) { return 0; }
2112 static void console_lock_spinning_enable(void) { }
2113 static int console_lock_spinning_disable_and_check(void) { return 0; }
2114 static void call_console_drivers(const char *ext_text, size_t ext_len,
2115 const char *text, size_t len) {}
2116 static size_t msg_print_text(const struct printk_log *msg, bool syslog,
2117 bool time, char *buf, size_t size) { return 0; }
2118 static bool suppress_message_printing(int level) { return false; }
2119
2120 #endif /* CONFIG_PRINTK */
2121
2122 #ifdef CONFIG_EARLY_PRINTK
2123 struct console *early_console;
2124
2125 asmlinkage __visible void early_printk(const char *fmt, ...)
2126 {
2127 va_list ap;
2128 char buf[512];
2129 int n;
2130
2131 if (!early_console)
2132 return;
2133
2134 va_start(ap, fmt);
2135 n = vscnprintf(buf, sizeof(buf), fmt, ap);
2136 va_end(ap);
2137
2138 early_console->write(early_console, buf, n);
2139 }
2140 #endif
2141
2142 static int __add_preferred_console(char *name, int idx, char *options,
2143 char *brl_options)
2144 {
2145 struct console_cmdline *c;
2146 int i;
2147
2148 /*
2149 * See if this tty is not yet registered, and
2150 * if we have a slot free.
2151 */
2152 for (i = 0, c = console_cmdline;
2153 i < MAX_CMDLINECONSOLES && c->name[0];
2154 i++, c++) {
2155 if (strcmp(c->name, name) == 0 && c->index == idx) {
2156 if (!brl_options)
2157 preferred_console = i;
2158 return 0;
2159 }
2160 }
2161 if (i == MAX_CMDLINECONSOLES)
2162 return -E2BIG;
2163 if (!brl_options)
2164 preferred_console = i;
2165 strlcpy(c->name, name, sizeof(c->name));
2166 c->options = options;
2167 braille_set_options(c, brl_options);
2168
2169 c->index = idx;
2170 return 0;
2171 }
2172
2173 static int __init console_msg_format_setup(char *str)
2174 {
2175 if (!strcmp(str, "syslog"))
2176 console_msg_format = MSG_FORMAT_SYSLOG;
2177 if (!strcmp(str, "default"))
2178 console_msg_format = MSG_FORMAT_DEFAULT;
2179 return 1;
2180 }
2181 __setup("console_msg_format=", console_msg_format_setup);
2182
2183 /*
2184 * Set up a console. Called via do_early_param() in init/main.c
2185 * for each "console=" parameter in the boot command line.
2186 */
2187 static int __init console_setup(char *str)
2188 {
2189 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2190 char *s, *options, *brl_options = NULL;
2191 int idx;
2192
2193 if (_braille_console_setup(&str, &brl_options))
2194 return 1;
2195
2196 /*
2197 * Decode str into name, index, options.
2198 */
2199 if (str[0] >= '0' && str[0] <= '9') {
2200 strcpy(buf, "ttyS");
2201 strncpy(buf + 4, str, sizeof(buf) - 5);
2202 } else {
2203 strncpy(buf, str, sizeof(buf) - 1);
2204 }
2205 buf[sizeof(buf) - 1] = 0;
2206 options = strchr(str, ',');
2207 if (options)
2208 *(options++) = 0;
2209 #ifdef __sparc__
2210 if (!strcmp(str, "ttya"))
2211 strcpy(buf, "ttyS0");
2212 if (!strcmp(str, "ttyb"))
2213 strcpy(buf, "ttyS1");
2214 #endif
2215 for (s = buf; *s; s++)
2216 if (isdigit(*s) || *s == ',')
2217 break;
2218 idx = simple_strtoul(s, NULL, 10);
2219 *s = 0;
2220
2221 __add_preferred_console(buf, idx, options, brl_options);
2222 console_set_on_cmdline = 1;
2223 return 1;
2224 }
2225 __setup("console=", console_setup);
2226
2227 /**
2228 * add_preferred_console - add a device to the list of preferred consoles.
2229 * @name: device name
2230 * @idx: device index
2231 * @options: options for this console
2232 *
2233 * The last preferred console added will be used for kernel messages
2234 * and stdin/out/err for init. Normally this is used by console_setup
2235 * above to handle user-supplied console arguments; however it can also
2236 * be used by arch-specific code either to override the user or more
2237 * commonly to provide a default console (ie from PROM variables) when
2238 * the user has not supplied one.
2239 */
2240 int add_preferred_console(char *name, int idx, char *options)
2241 {
2242 return __add_preferred_console(name, idx, options, NULL);
2243 }
2244
2245 bool console_suspend_enabled = true;
2246 EXPORT_SYMBOL(console_suspend_enabled);
2247
2248 static int __init console_suspend_disable(char *str)
2249 {
2250 console_suspend_enabled = false;
2251 return 1;
2252 }
2253 __setup("no_console_suspend", console_suspend_disable);
2254 module_param_named(console_suspend, console_suspend_enabled,
2255 bool, S_IRUGO | S_IWUSR);
2256 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2257 " and hibernate operations");
2258
2259 /**
2260 * suspend_console - suspend the console subsystem
2261 *
2262 * This disables printk() while we go into suspend states
2263 */
2264 void suspend_console(void)
2265 {
2266 if (!console_suspend_enabled)
2267 return;
2268 pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2269 console_lock();
2270 console_suspended = 1;
2271 up_console_sem();
2272 }
2273
2274 void resume_console(void)
2275 {
2276 if (!console_suspend_enabled)
2277 return;
2278 down_console_sem();
2279 console_suspended = 0;
2280 console_unlock();
2281 }
2282
2283 /**
2284 * console_cpu_notify - print deferred console messages after CPU hotplug
2285 * @cpu: unused
2286 *
2287 * If printk() is called from a CPU that is not online yet, the messages
2288 * will be printed on the console only if there are CON_ANYTIME consoles.
2289 * This function is called when a new CPU comes online (or fails to come
2290 * up) or goes offline.
2291 */
2292 static int console_cpu_notify(unsigned int cpu)
2293 {
2294 if (!cpuhp_tasks_frozen) {
2295 /* If trylock fails, someone else is doing the printing */
2296 if (console_trylock())
2297 console_unlock();
2298 }
2299 return 0;
2300 }
2301
2302 /**
2303 * console_lock - lock the console system for exclusive use.
2304 *
2305 * Acquires a lock which guarantees that the caller has
2306 * exclusive access to the console system and the console_drivers list.
2307 *
2308 * Can sleep, returns nothing.
2309 */
2310 void console_lock(void)
2311 {
2312 might_sleep();
2313
2314 down_console_sem();
2315 if (console_suspended)
2316 return;
2317 console_locked = 1;
2318 console_may_schedule = 1;
2319 }
2320 EXPORT_SYMBOL(console_lock);
2321
2322 /**
2323 * console_trylock - try to lock the console system for exclusive use.
2324 *
2325 * Try to acquire a lock which guarantees that the caller has exclusive
2326 * access to the console system and the console_drivers list.
2327 *
2328 * returns 1 on success, and 0 on failure to acquire the lock.
2329 */
2330 int console_trylock(void)
2331 {
2332 if (down_trylock_console_sem())
2333 return 0;
2334 if (console_suspended) {
2335 up_console_sem();
2336 return 0;
2337 }
2338 console_locked = 1;
2339 console_may_schedule = 0;
2340 return 1;
2341 }
2342 EXPORT_SYMBOL(console_trylock);
2343
2344 int is_console_locked(void)
2345 {
2346 return console_locked;
2347 }
2348 EXPORT_SYMBOL(is_console_locked);
2349
2350 /*
2351 * Check if we have any console that is capable of printing while cpu is
2352 * booting or shutting down. Requires console_sem.
2353 */
2354 static int have_callable_console(void)
2355 {
2356 struct console *con;
2357
2358 for_each_console(con)
2359 if ((con->flags & CON_ENABLED) &&
2360 (con->flags & CON_ANYTIME))
2361 return 1;
2362
2363 return 0;
2364 }
2365
2366 /*
2367 * Can we actually use the console at this time on this cpu?
2368 *
2369 * Console drivers may assume that per-cpu resources have been allocated. So
2370 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2371 * call them until this CPU is officially up.
2372 */
2373 static inline int can_use_console(void)
2374 {
2375 return cpu_online(raw_smp_processor_id()) || have_callable_console();
2376 }
2377
2378 /**
2379 * console_unlock - unlock the console system
2380 *
2381 * Releases the console_lock which the caller holds on the console system
2382 * and the console driver list.
2383 *
2384 * While the console_lock was held, console output may have been buffered
2385 * by printk(). If this is the case, console_unlock(); emits
2386 * the output prior to releasing the lock.
2387 *
2388 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2389 *
2390 * console_unlock(); may be called from any context.
2391 */
2392 void console_unlock(void)
2393 {
2394 static char ext_text[CONSOLE_EXT_LOG_MAX];
2395 static char text[LOG_LINE_MAX + PREFIX_MAX];
2396 unsigned long flags;
2397 bool do_cond_resched, retry;
2398
2399 if (console_suspended) {
2400 up_console_sem();
2401 return;
2402 }
2403
2404 /*
2405 * Console drivers are called with interrupts disabled, so
2406 * @console_may_schedule should be cleared before; however, we may
2407 * end up dumping a lot of lines, for example, if called from
2408 * console registration path, and should invoke cond_resched()
2409 * between lines if allowable. Not doing so can cause a very long
2410 * scheduling stall on a slow console leading to RCU stall and
2411 * softlockup warnings which exacerbate the issue with more
2412 * messages practically incapacitating the system.
2413 *
2414 * console_trylock() is not able to detect the preemptive
2415 * context reliably. Therefore the value must be stored before
2416 * and cleared after the the "again" goto label.
2417 */
2418 do_cond_resched = console_may_schedule;
2419 again:
2420 console_may_schedule = 0;
2421
2422 /*
2423 * We released the console_sem lock, so we need to recheck if
2424 * cpu is online and (if not) is there at least one CON_ANYTIME
2425 * console.
2426 */
2427 if (!can_use_console()) {
2428 console_locked = 0;
2429 up_console_sem();
2430 return;
2431 }
2432
2433 for (;;) {
2434 struct printk_log *msg;
2435 size_t ext_len = 0;
2436 size_t len;
2437
2438 printk_safe_enter_irqsave(flags);
2439 raw_spin_lock(&logbuf_lock);
2440 if (console_seq < log_first_seq) {
2441 len = sprintf(text,
2442 "** %llu printk messages dropped **\n",
2443 log_first_seq - console_seq);
2444
2445 /* messages are gone, move to first one */
2446 console_seq = log_first_seq;
2447 console_idx = log_first_idx;
2448 } else {
2449 len = 0;
2450 }
2451 skip:
2452 if (console_seq == log_next_seq)
2453 break;
2454
2455 msg = log_from_idx(console_idx);
2456 if (suppress_message_printing(msg->level)) {
2457 /*
2458 * Skip record we have buffered and already printed
2459 * directly to the console when we received it, and
2460 * record that has level above the console loglevel.
2461 */
2462 console_idx = log_next(console_idx);
2463 console_seq++;
2464 goto skip;
2465 }
2466
2467 /* Output to all consoles once old messages replayed. */
2468 if (unlikely(exclusive_console &&
2469 console_seq >= exclusive_console_stop_seq)) {
2470 exclusive_console = NULL;
2471 }
2472
2473 len += msg_print_text(msg,
2474 console_msg_format & MSG_FORMAT_SYSLOG,
2475 printk_time, text + len, sizeof(text) - len);
2476 if (nr_ext_console_drivers) {
2477 ext_len = msg_print_ext_header(ext_text,
2478 sizeof(ext_text),
2479 msg, console_seq);
2480 ext_len += msg_print_ext_body(ext_text + ext_len,
2481 sizeof(ext_text) - ext_len,
2482 log_dict(msg), msg->dict_len,
2483 log_text(msg), msg->text_len);
2484 }
2485 console_idx = log_next(console_idx);
2486 console_seq++;
2487 raw_spin_unlock(&logbuf_lock);
2488
2489 /*
2490 * While actively printing out messages, if another printk()
2491 * were to occur on another CPU, it may wait for this one to
2492 * finish. This task can not be preempted if there is a
2493 * waiter waiting to take over.
2494 */
2495 console_lock_spinning_enable();
2496
2497 stop_critical_timings(); /* don't trace print latency */
2498 call_console_drivers(ext_text, ext_len, text, len);
2499 start_critical_timings();
2500
2501 if (console_lock_spinning_disable_and_check()) {
2502 printk_safe_exit_irqrestore(flags);
2503 return;
2504 }
2505
2506 printk_safe_exit_irqrestore(flags);
2507
2508 if (do_cond_resched)
2509 cond_resched();
2510 }
2511
2512 console_locked = 0;
2513
2514 raw_spin_unlock(&logbuf_lock);
2515
2516 up_console_sem();
2517
2518 /*
2519 * Someone could have filled up the buffer again, so re-check if there's
2520 * something to flush. In case we cannot trylock the console_sem again,
2521 * there's a new owner and the console_unlock() from them will do the
2522 * flush, no worries.
2523 */
2524 raw_spin_lock(&logbuf_lock);
2525 retry = console_seq != log_next_seq;
2526 raw_spin_unlock(&logbuf_lock);
2527 printk_safe_exit_irqrestore(flags);
2528
2529 if (retry && console_trylock())
2530 goto again;
2531 }
2532 EXPORT_SYMBOL(console_unlock);
2533
2534 /**
2535 * console_conditional_schedule - yield the CPU if required
2536 *
2537 * If the console code is currently allowed to sleep, and
2538 * if this CPU should yield the CPU to another task, do
2539 * so here.
2540 *
2541 * Must be called within console_lock();.
2542 */
2543 void __sched console_conditional_schedule(void)
2544 {
2545 if (console_may_schedule)
2546 cond_resched();
2547 }
2548 EXPORT_SYMBOL(console_conditional_schedule);
2549
2550 void console_unblank(void)
2551 {
2552 struct console *c;
2553
2554 /*
2555 * console_unblank can no longer be called in interrupt context unless
2556 * oops_in_progress is set to 1..
2557 */
2558 if (oops_in_progress) {
2559 if (down_trylock_console_sem() != 0)
2560 return;
2561 } else
2562 console_lock();
2563
2564 console_locked = 1;
2565 console_may_schedule = 0;
2566 for_each_console(c)
2567 if ((c->flags & CON_ENABLED) && c->unblank)
2568 c->unblank();
2569 console_unlock();
2570 }
2571
2572 /**
2573 * console_flush_on_panic - flush console content on panic
2574 * @mode: flush all messages in buffer or just the pending ones
2575 *
2576 * Immediately output all pending messages no matter what.
2577 */
2578 void console_flush_on_panic(enum con_flush_mode mode)
2579 {
2580 /*
2581 * If someone else is holding the console lock, trylock will fail
2582 * and may_schedule may be set. Ignore and proceed to unlock so
2583 * that messages are flushed out. As this can be called from any
2584 * context and we don't want to get preempted while flushing,
2585 * ensure may_schedule is cleared.
2586 */
2587 console_trylock();
2588 console_may_schedule = 0;
2589
2590 if (mode == CONSOLE_REPLAY_ALL) {
2591 unsigned long flags;
2592
2593 logbuf_lock_irqsave(flags);
2594 console_seq = log_first_seq;
2595 console_idx = log_first_idx;
2596 logbuf_unlock_irqrestore(flags);
2597 }
2598 console_unlock();
2599 }
2600
2601 /*
2602 * Return the console tty driver structure and its associated index
2603 */
2604 struct tty_driver *console_device(int *index)
2605 {
2606 struct console *c;
2607 struct tty_driver *driver = NULL;
2608
2609 console_lock();
2610 for_each_console(c) {
2611 if (!c->device)
2612 continue;
2613 driver = c->device(c, index);
2614 if (driver)
2615 break;
2616 }
2617 console_unlock();
2618 return driver;
2619 }
2620
2621 /*
2622 * Prevent further output on the passed console device so that (for example)
2623 * serial drivers can disable console output before suspending a port, and can
2624 * re-enable output afterwards.
2625 */
2626 void console_stop(struct console *console)
2627 {
2628 console_lock();
2629 console->flags &= ~CON_ENABLED;
2630 console_unlock();
2631 }
2632 EXPORT_SYMBOL(console_stop);
2633
2634 void console_start(struct console *console)
2635 {
2636 console_lock();
2637 console->flags |= CON_ENABLED;
2638 console_unlock();
2639 }
2640 EXPORT_SYMBOL(console_start);
2641
2642 static int __read_mostly keep_bootcon;
2643
2644 static int __init keep_bootcon_setup(char *str)
2645 {
2646 keep_bootcon = 1;
2647 pr_info("debug: skip boot console de-registration.\n");
2648
2649 return 0;
2650 }
2651
2652 early_param("keep_bootcon", keep_bootcon_setup);
2653
2654 /*
2655 * The console driver calls this routine during kernel initialization
2656 * to register the console printing procedure with printk() and to
2657 * print any messages that were printed by the kernel before the
2658 * console driver was initialized.
2659 *
2660 * This can happen pretty early during the boot process (because of
2661 * early_printk) - sometimes before setup_arch() completes - be careful
2662 * of what kernel features are used - they may not be initialised yet.
2663 *
2664 * There are two types of consoles - bootconsoles (early_printk) and
2665 * "real" consoles (everything which is not a bootconsole) which are
2666 * handled differently.
2667 * - Any number of bootconsoles can be registered at any time.
2668 * - As soon as a "real" console is registered, all bootconsoles
2669 * will be unregistered automatically.
2670 * - Once a "real" console is registered, any attempt to register a
2671 * bootconsoles will be rejected
2672 */
2673 void register_console(struct console *newcon)
2674 {
2675 int i;
2676 unsigned long flags;
2677 struct console *bcon = NULL;
2678 struct console_cmdline *c;
2679 static bool has_preferred;
2680
2681 for_each_console(bcon) {
2682 if (WARN(bcon == newcon, "console '%s%d' already registered\n",
2683 bcon->name, bcon->index))
2684 return;
2685 }
2686
2687 /*
2688 * before we register a new CON_BOOT console, make sure we don't
2689 * already have a valid console
2690 */
2691 if (newcon->flags & CON_BOOT) {
2692 for_each_console(bcon) {
2693 if (!(bcon->flags & CON_BOOT)) {
2694 pr_info("Too late to register bootconsole %s%d\n",
2695 newcon->name, newcon->index);
2696 return;
2697 }
2698 }
2699 }
2700
2701 if (console_drivers && console_drivers->flags & CON_BOOT)
2702 bcon = console_drivers;
2703
2704 if (!has_preferred || bcon || !console_drivers)
2705 has_preferred = preferred_console >= 0;
2706
2707 /*
2708 * See if we want to use this console driver. If we
2709 * didn't select a console we take the first one
2710 * that registers here.
2711 */
2712 if (!has_preferred) {
2713 if (newcon->index < 0)
2714 newcon->index = 0;
2715 if (newcon->setup == NULL ||
2716 newcon->setup(newcon, NULL) == 0) {
2717 newcon->flags |= CON_ENABLED;
2718 if (newcon->device) {
2719 newcon->flags |= CON_CONSDEV;
2720 has_preferred = true;
2721 }
2722 }
2723 }
2724
2725 /*
2726 * See if this console matches one we selected on
2727 * the command line.
2728 */
2729 for (i = 0, c = console_cmdline;
2730 i < MAX_CMDLINECONSOLES && c->name[0];
2731 i++, c++) {
2732 if (!newcon->match ||
2733 newcon->match(newcon, c->name, c->index, c->options) != 0) {
2734 /* default matching */
2735 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2736 if (strcmp(c->name, newcon->name) != 0)
2737 continue;
2738 if (newcon->index >= 0 &&
2739 newcon->index != c->index)
2740 continue;
2741 if (newcon->index < 0)
2742 newcon->index = c->index;
2743
2744 if (_braille_register_console(newcon, c))
2745 return;
2746
2747 if (newcon->setup &&
2748 newcon->setup(newcon, c->options) != 0)
2749 break;
2750 }
2751
2752 newcon->flags |= CON_ENABLED;
2753 if (i == preferred_console) {
2754 newcon->flags |= CON_CONSDEV;
2755 has_preferred = true;
2756 }
2757 break;
2758 }
2759
2760 if (!(newcon->flags & CON_ENABLED))
2761 return;
2762
2763 /*
2764 * If we have a bootconsole, and are switching to a real console,
2765 * don't print everything out again, since when the boot console, and
2766 * the real console are the same physical device, it's annoying to
2767 * see the beginning boot messages twice
2768 */
2769 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2770 newcon->flags &= ~CON_PRINTBUFFER;
2771
2772 /*
2773 * Put this console in the list - keep the
2774 * preferred driver at the head of the list.
2775 */
2776 console_lock();
2777 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2778 newcon->next = console_drivers;
2779 console_drivers = newcon;
2780 if (newcon->next)
2781 newcon->next->flags &= ~CON_CONSDEV;
2782 } else {
2783 newcon->next = console_drivers->next;
2784 console_drivers->next = newcon;
2785 }
2786
2787 if (newcon->flags & CON_EXTENDED)
2788 nr_ext_console_drivers++;
2789
2790 if (newcon->flags & CON_PRINTBUFFER) {
2791 /*
2792 * console_unlock(); will print out the buffered messages
2793 * for us.
2794 */
2795 logbuf_lock_irqsave(flags);
2796 /*
2797 * We're about to replay the log buffer. Only do this to the
2798 * just-registered console to avoid excessive message spam to
2799 * the already-registered consoles.
2800 *
2801 * Set exclusive_console with disabled interrupts to reduce
2802 * race window with eventual console_flush_on_panic() that
2803 * ignores console_lock.
2804 */
2805 exclusive_console = newcon;
2806 exclusive_console_stop_seq = console_seq;
2807 console_seq = syslog_seq;
2808 console_idx = syslog_idx;
2809 logbuf_unlock_irqrestore(flags);
2810 }
2811 console_unlock();
2812 console_sysfs_notify();
2813
2814 /*
2815 * By unregistering the bootconsoles after we enable the real console
2816 * we get the "console xxx enabled" message on all the consoles -
2817 * boot consoles, real consoles, etc - this is to ensure that end
2818 * users know there might be something in the kernel's log buffer that
2819 * went to the bootconsole (that they do not see on the real console)
2820 */
2821 pr_info("%sconsole [%s%d] enabled\n",
2822 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2823 newcon->name, newcon->index);
2824 if (bcon &&
2825 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2826 !keep_bootcon) {
2827 /* We need to iterate through all boot consoles, to make
2828 * sure we print everything out, before we unregister them.
2829 */
2830 for_each_console(bcon)
2831 if (bcon->flags & CON_BOOT)
2832 unregister_console(bcon);
2833 }
2834 }
2835 EXPORT_SYMBOL(register_console);
2836
2837 int unregister_console(struct console *console)
2838 {
2839 struct console *con;
2840 int res;
2841
2842 pr_info("%sconsole [%s%d] disabled\n",
2843 (console->flags & CON_BOOT) ? "boot" : "" ,
2844 console->name, console->index);
2845
2846 res = _braille_unregister_console(console);
2847 if (res < 0)
2848 return res;
2849 if (res > 0)
2850 return 0;
2851
2852 res = -ENODEV;
2853 console_lock();
2854 if (console_drivers == console) {
2855 console_drivers=console->next;
2856 res = 0;
2857 } else {
2858 for_each_console(con) {
2859 if (con->next == console) {
2860 con->next = console->next;
2861 res = 0;
2862 break;
2863 }
2864 }
2865 }
2866
2867 if (res)
2868 goto out_disable_unlock;
2869
2870 if (console->flags & CON_EXTENDED)
2871 nr_ext_console_drivers--;
2872
2873 /*
2874 * If this isn't the last console and it has CON_CONSDEV set, we
2875 * need to set it on the next preferred console.
2876 */
2877 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2878 console_drivers->flags |= CON_CONSDEV;
2879
2880 console->flags &= ~CON_ENABLED;
2881 console_unlock();
2882 console_sysfs_notify();
2883
2884 if (console->exit)
2885 res = console->exit(console);
2886
2887 return res;
2888
2889 out_disable_unlock:
2890 console->flags &= ~CON_ENABLED;
2891 console_unlock();
2892
2893 return res;
2894 }
2895 EXPORT_SYMBOL(unregister_console);
2896
2897 /*
2898 * Initialize the console device. This is called *early*, so
2899 * we can't necessarily depend on lots of kernel help here.
2900 * Just do some early initializations, and do the complex setup
2901 * later.
2902 */
2903 void __init console_init(void)
2904 {
2905 int ret;
2906 initcall_t call;
2907 initcall_entry_t *ce;
2908
2909 /* Setup the default TTY line discipline. */
2910 n_tty_init();
2911
2912 /*
2913 * set up the console device so that later boot sequences can
2914 * inform about problems etc..
2915 */
2916 ce = __con_initcall_start;
2917 trace_initcall_level("console");
2918 while (ce < __con_initcall_end) {
2919 call = initcall_from_entry(ce);
2920 trace_initcall_start(call);
2921 ret = call();
2922 trace_initcall_finish(call, ret);
2923 ce++;
2924 }
2925 }
2926
2927 /*
2928 * Some boot consoles access data that is in the init section and which will
2929 * be discarded after the initcalls have been run. To make sure that no code
2930 * will access this data, unregister the boot consoles in a late initcall.
2931 *
2932 * If for some reason, such as deferred probe or the driver being a loadable
2933 * module, the real console hasn't registered yet at this point, there will
2934 * be a brief interval in which no messages are logged to the console, which
2935 * makes it difficult to diagnose problems that occur during this time.
2936 *
2937 * To mitigate this problem somewhat, only unregister consoles whose memory
2938 * intersects with the init section. Note that all other boot consoles will
2939 * get unregistred when the real preferred console is registered.
2940 */
2941 static int __init printk_late_init(void)
2942 {
2943 struct console *con;
2944 int ret;
2945
2946 for_each_console(con) {
2947 if (!(con->flags & CON_BOOT))
2948 continue;
2949
2950 /* Check addresses that might be used for enabled consoles. */
2951 if (init_section_intersects(con, sizeof(*con)) ||
2952 init_section_contains(con->write, 0) ||
2953 init_section_contains(con->read, 0) ||
2954 init_section_contains(con->device, 0) ||
2955 init_section_contains(con->unblank, 0) ||
2956 init_section_contains(con->data, 0)) {
2957 /*
2958 * Please, consider moving the reported consoles out
2959 * of the init section.
2960 */
2961 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2962 con->name, con->index);
2963 unregister_console(con);
2964 }
2965 }
2966 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2967 console_cpu_notify);
2968 WARN_ON(ret < 0);
2969 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2970 console_cpu_notify, NULL);
2971 WARN_ON(ret < 0);
2972 return 0;
2973 }
2974 late_initcall(printk_late_init);
2975
2976 #if defined CONFIG_PRINTK
2977 /*
2978 * Delayed printk version, for scheduler-internal messages:
2979 */
2980 #define PRINTK_PENDING_WAKEUP 0x01
2981 #define PRINTK_PENDING_OUTPUT 0x02
2982
2983 static DEFINE_PER_CPU(int, printk_pending);
2984
2985 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2986 {
2987 int pending = __this_cpu_xchg(printk_pending, 0);
2988
2989 if (pending & PRINTK_PENDING_OUTPUT) {
2990 /* If trylock fails, someone else is doing the printing */
2991 if (console_trylock())
2992 console_unlock();
2993 }
2994
2995 if (pending & PRINTK_PENDING_WAKEUP)
2996 wake_up_interruptible(&log_wait);
2997 }
2998
2999 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
3000 .func = wake_up_klogd_work_func,
3001 .flags = ATOMIC_INIT(IRQ_WORK_LAZY),
3002 };
3003
3004 void wake_up_klogd(void)
3005 {
3006 if (!printk_percpu_data_ready())
3007 return;
3008
3009 preempt_disable();
3010 if (waitqueue_active(&log_wait)) {
3011 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
3012 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3013 }
3014 preempt_enable();
3015 }
3016
3017 void defer_console_output(void)
3018 {
3019 if (!printk_percpu_data_ready())
3020 return;
3021
3022 preempt_disable();
3023 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
3024 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3025 preempt_enable();
3026 }
3027
3028 int vprintk_deferred(const char *fmt, va_list args)
3029 {
3030 int r;
3031
3032 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
3033 defer_console_output();
3034
3035 return r;
3036 }
3037
3038 int printk_deferred(const char *fmt, ...)
3039 {
3040 va_list args;
3041 int r;
3042
3043 va_start(args, fmt);
3044 r = vprintk_deferred(fmt, args);
3045 va_end(args);
3046
3047 return r;
3048 }
3049
3050 /*
3051 * printk rate limiting, lifted from the networking subsystem.
3052 *
3053 * This enforces a rate limit: not more than 10 kernel messages
3054 * every 5s to make a denial-of-service attack impossible.
3055 */
3056 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3057
3058 int __printk_ratelimit(const char *func)
3059 {
3060 return ___ratelimit(&printk_ratelimit_state, func);
3061 }
3062 EXPORT_SYMBOL(__printk_ratelimit);
3063
3064 /**
3065 * printk_timed_ratelimit - caller-controlled printk ratelimiting
3066 * @caller_jiffies: pointer to caller's state
3067 * @interval_msecs: minimum interval between prints
3068 *
3069 * printk_timed_ratelimit() returns true if more than @interval_msecs
3070 * milliseconds have elapsed since the last time printk_timed_ratelimit()
3071 * returned true.
3072 */
3073 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3074 unsigned int interval_msecs)
3075 {
3076 unsigned long elapsed = jiffies - *caller_jiffies;
3077
3078 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3079 return false;
3080
3081 *caller_jiffies = jiffies;
3082 return true;
3083 }
3084 EXPORT_SYMBOL(printk_timed_ratelimit);
3085
3086 static DEFINE_SPINLOCK(dump_list_lock);
3087 static LIST_HEAD(dump_list);
3088
3089 /**
3090 * kmsg_dump_register - register a kernel log dumper.
3091 * @dumper: pointer to the kmsg_dumper structure
3092 *
3093 * Adds a kernel log dumper to the system. The dump callback in the
3094 * structure will be called when the kernel oopses or panics and must be
3095 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3096 */
3097 int kmsg_dump_register(struct kmsg_dumper *dumper)
3098 {
3099 unsigned long flags;
3100 int err = -EBUSY;
3101
3102 /* The dump callback needs to be set */
3103 if (!dumper->dump)
3104 return -EINVAL;
3105
3106 spin_lock_irqsave(&dump_list_lock, flags);
3107 /* Don't allow registering multiple times */
3108 if (!dumper->registered) {
3109 dumper->registered = 1;
3110 list_add_tail_rcu(&dumper->list, &dump_list);
3111 err = 0;
3112 }
3113 spin_unlock_irqrestore(&dump_list_lock, flags);
3114
3115 return err;
3116 }
3117 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3118
3119 /**
3120 * kmsg_dump_unregister - unregister a kmsg dumper.
3121 * @dumper: pointer to the kmsg_dumper structure
3122 *
3123 * Removes a dump device from the system. Returns zero on success and
3124 * %-EINVAL otherwise.
3125 */
3126 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3127 {
3128 unsigned long flags;
3129 int err = -EINVAL;
3130
3131 spin_lock_irqsave(&dump_list_lock, flags);
3132 if (dumper->registered) {
3133 dumper->registered = 0;
3134 list_del_rcu(&dumper->list);
3135 err = 0;
3136 }
3137 spin_unlock_irqrestore(&dump_list_lock, flags);
3138 synchronize_rcu();
3139
3140 return err;
3141 }
3142 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3143
3144 static bool always_kmsg_dump;
3145 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3146
3147 /**
3148 * kmsg_dump - dump kernel log to kernel message dumpers.
3149 * @reason: the reason (oops, panic etc) for dumping
3150 *
3151 * Call each of the registered dumper's dump() callback, which can
3152 * retrieve the kmsg records with kmsg_dump_get_line() or
3153 * kmsg_dump_get_buffer().
3154 */
3155 void kmsg_dump(enum kmsg_dump_reason reason)
3156 {
3157 struct kmsg_dumper *dumper;
3158 unsigned long flags;
3159
3160 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3161 return;
3162
3163 rcu_read_lock();
3164 list_for_each_entry_rcu(dumper, &dump_list, list) {
3165 if (dumper->max_reason && reason > dumper->max_reason)
3166 continue;
3167
3168 /* initialize iterator with data about the stored records */
3169 dumper->active = true;
3170
3171 logbuf_lock_irqsave(flags);
3172 dumper->cur_seq = clear_seq;
3173 dumper->cur_idx = clear_idx;
3174 dumper->next_seq = log_next_seq;
3175 dumper->next_idx = log_next_idx;
3176 logbuf_unlock_irqrestore(flags);
3177
3178 /* invoke dumper which will iterate over records */
3179 dumper->dump(dumper, reason);
3180
3181 /* reset iterator */
3182 dumper->active = false;
3183 }
3184 rcu_read_unlock();
3185 }
3186
3187 /**
3188 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3189 * @dumper: registered kmsg dumper
3190 * @syslog: include the "<4>" prefixes
3191 * @line: buffer to copy the line to
3192 * @size: maximum size of the buffer
3193 * @len: length of line placed into buffer
3194 *
3195 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3196 * record, and copy one record into the provided buffer.
3197 *
3198 * Consecutive calls will return the next available record moving
3199 * towards the end of the buffer with the youngest messages.
3200 *
3201 * A return value of FALSE indicates that there are no more records to
3202 * read.
3203 *
3204 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3205 */
3206 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3207 char *line, size_t size, size_t *len)
3208 {
3209 struct printk_log *msg;
3210 size_t l = 0;
3211 bool ret = false;
3212
3213 if (!dumper->active)
3214 goto out;
3215
3216 if (dumper->cur_seq < log_first_seq) {
3217 /* messages are gone, move to first available one */
3218 dumper->cur_seq = log_first_seq;
3219 dumper->cur_idx = log_first_idx;
3220 }
3221
3222 /* last entry */
3223 if (dumper->cur_seq >= log_next_seq)
3224 goto out;
3225
3226 msg = log_from_idx(dumper->cur_idx);
3227 l = msg_print_text(msg, syslog, printk_time, line, size);
3228
3229 dumper->cur_idx = log_next(dumper->cur_idx);
3230 dumper->cur_seq++;
3231 ret = true;
3232 out:
3233 if (len)
3234 *len = l;
3235 return ret;
3236 }
3237
3238 /**
3239 * kmsg_dump_get_line - retrieve one kmsg log line
3240 * @dumper: registered kmsg dumper
3241 * @syslog: include the "<4>" prefixes
3242 * @line: buffer to copy the line to
3243 * @size: maximum size of the buffer
3244 * @len: length of line placed into buffer
3245 *
3246 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3247 * record, and copy one record into the provided buffer.
3248 *
3249 * Consecutive calls will return the next available record moving
3250 * towards the end of the buffer with the youngest messages.
3251 *
3252 * A return value of FALSE indicates that there are no more records to
3253 * read.
3254 */
3255 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3256 char *line, size_t size, size_t *len)
3257 {
3258 unsigned long flags;
3259 bool ret;
3260
3261 logbuf_lock_irqsave(flags);
3262 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3263 logbuf_unlock_irqrestore(flags);
3264
3265 return ret;
3266 }
3267 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3268
3269 /**
3270 * kmsg_dump_get_buffer - copy kmsg log lines
3271 * @dumper: registered kmsg dumper
3272 * @syslog: include the "<4>" prefixes
3273 * @buf: buffer to copy the line to
3274 * @size: maximum size of the buffer
3275 * @len: length of line placed into buffer
3276 *
3277 * Start at the end of the kmsg buffer and fill the provided buffer
3278 * with as many of the the *youngest* kmsg records that fit into it.
3279 * If the buffer is large enough, all available kmsg records will be
3280 * copied with a single call.
3281 *
3282 * Consecutive calls will fill the buffer with the next block of
3283 * available older records, not including the earlier retrieved ones.
3284 *
3285 * A return value of FALSE indicates that there are no more records to
3286 * read.
3287 */
3288 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3289 char *buf, size_t size, size_t *len)
3290 {
3291 unsigned long flags;
3292 u64 seq;
3293 u32 idx;
3294 u64 next_seq;
3295 u32 next_idx;
3296 size_t l = 0;
3297 bool ret = false;
3298 bool time = printk_time;
3299
3300 if (!dumper->active)
3301 goto out;
3302
3303 logbuf_lock_irqsave(flags);
3304 if (dumper->cur_seq < log_first_seq) {
3305 /* messages are gone, move to first available one */
3306 dumper->cur_seq = log_first_seq;
3307 dumper->cur_idx = log_first_idx;
3308 }
3309
3310 /* last entry */
3311 if (dumper->cur_seq >= dumper->next_seq) {
3312 logbuf_unlock_irqrestore(flags);
3313 goto out;
3314 }
3315
3316 /* calculate length of entire buffer */
3317 seq = dumper->cur_seq;
3318 idx = dumper->cur_idx;
3319 while (seq < dumper->next_seq) {
3320 struct printk_log *msg = log_from_idx(idx);
3321
3322 l += msg_print_text(msg, true, time, NULL, 0);
3323 idx = log_next(idx);
3324 seq++;
3325 }
3326
3327 /* move first record forward until length fits into the buffer */
3328 seq = dumper->cur_seq;
3329 idx = dumper->cur_idx;
3330 while (l >= size && seq < dumper->next_seq) {
3331 struct printk_log *msg = log_from_idx(idx);
3332
3333 l -= msg_print_text(msg, true, time, NULL, 0);
3334 idx = log_next(idx);
3335 seq++;
3336 }
3337
3338 /* last message in next interation */
3339 next_seq = seq;
3340 next_idx = idx;
3341
3342 l = 0;
3343 while (seq < dumper->next_seq) {
3344 struct printk_log *msg = log_from_idx(idx);
3345
3346 l += msg_print_text(msg, syslog, time, buf + l, size - l);
3347 idx = log_next(idx);
3348 seq++;
3349 }
3350
3351 dumper->next_seq = next_seq;
3352 dumper->next_idx = next_idx;
3353 ret = true;
3354 logbuf_unlock_irqrestore(flags);
3355 out:
3356 if (len)
3357 *len = l;
3358 return ret;
3359 }
3360 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3361
3362 /**
3363 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3364 * @dumper: registered kmsg dumper
3365 *
3366 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3367 * kmsg_dump_get_buffer() can be called again and used multiple
3368 * times within the same dumper.dump() callback.
3369 *
3370 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3371 */
3372 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3373 {
3374 dumper->cur_seq = clear_seq;
3375 dumper->cur_idx = clear_idx;
3376 dumper->next_seq = log_next_seq;
3377 dumper->next_idx = log_next_idx;
3378 }
3379
3380 /**
3381 * kmsg_dump_rewind - reset the interator
3382 * @dumper: registered kmsg dumper
3383 *
3384 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3385 * kmsg_dump_get_buffer() can be called again and used multiple
3386 * times within the same dumper.dump() callback.
3387 */
3388 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3389 {
3390 unsigned long flags;
3391
3392 logbuf_lock_irqsave(flags);
3393 kmsg_dump_rewind_nolock(dumper);
3394 logbuf_unlock_irqrestore(flags);
3395 }
3396 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3397
3398 #endif