]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/printk/printk.c
Merge branch 'for-5.11-null-console' into for-linus
[thirdparty/linux.git] / kernel / printk / printk.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/printk.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * Modified to make sys_syslog() more flexible: added commands to
8 * return the last 4k of kernel messages, regardless of whether
9 * they've been read or not. Added option to suppress kernel printk's
10 * to the console. Added hook for sending the console messages
11 * elsewhere, in preparation for a serial line console (someday).
12 * Ted Ts'o, 2/11/93.
13 * Modified for sysctl support, 1/8/97, Chris Horn.
14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15 * manfred@colorfullife.com
16 * Rewrote bits to get rid of console_lock
17 * 01Mar01 Andrew Morton
18 */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/crash_core.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57
58 #include "printk_ringbuffer.h"
59 #include "console_cmdline.h"
60 #include "braille.h"
61 #include "internal.h"
62
63 int console_printk[4] = {
64 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
65 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
66 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
67 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
68 };
69 EXPORT_SYMBOL_GPL(console_printk);
70
71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
72 EXPORT_SYMBOL(ignore_console_lock_warning);
73
74 /*
75 * Low level drivers may need that to know if they can schedule in
76 * their unblank() callback or not. So let's export it.
77 */
78 int oops_in_progress;
79 EXPORT_SYMBOL(oops_in_progress);
80
81 /*
82 * console_sem protects the console_drivers list, and also
83 * provides serialisation for access to the entire console
84 * driver system.
85 */
86 static DEFINE_SEMAPHORE(console_sem);
87 struct console *console_drivers;
88 EXPORT_SYMBOL_GPL(console_drivers);
89
90 /*
91 * System may need to suppress printk message under certain
92 * circumstances, like after kernel panic happens.
93 */
94 int __read_mostly suppress_printk;
95
96 #ifdef CONFIG_LOCKDEP
97 static struct lockdep_map console_lock_dep_map = {
98 .name = "console_lock"
99 };
100 #endif
101
102 enum devkmsg_log_bits {
103 __DEVKMSG_LOG_BIT_ON = 0,
104 __DEVKMSG_LOG_BIT_OFF,
105 __DEVKMSG_LOG_BIT_LOCK,
106 };
107
108 enum devkmsg_log_masks {
109 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON),
110 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF),
111 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK),
112 };
113
114 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
115 #define DEVKMSG_LOG_MASK_DEFAULT 0
116
117 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
118
119 static int __control_devkmsg(char *str)
120 {
121 size_t len;
122
123 if (!str)
124 return -EINVAL;
125
126 len = str_has_prefix(str, "on");
127 if (len) {
128 devkmsg_log = DEVKMSG_LOG_MASK_ON;
129 return len;
130 }
131
132 len = str_has_prefix(str, "off");
133 if (len) {
134 devkmsg_log = DEVKMSG_LOG_MASK_OFF;
135 return len;
136 }
137
138 len = str_has_prefix(str, "ratelimit");
139 if (len) {
140 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
141 return len;
142 }
143
144 return -EINVAL;
145 }
146
147 static int __init control_devkmsg(char *str)
148 {
149 if (__control_devkmsg(str) < 0)
150 return 1;
151
152 /*
153 * Set sysctl string accordingly:
154 */
155 if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
156 strcpy(devkmsg_log_str, "on");
157 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
158 strcpy(devkmsg_log_str, "off");
159 /* else "ratelimit" which is set by default. */
160
161 /*
162 * Sysctl cannot change it anymore. The kernel command line setting of
163 * this parameter is to force the setting to be permanent throughout the
164 * runtime of the system. This is a precation measure against userspace
165 * trying to be a smarta** and attempting to change it up on us.
166 */
167 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
168
169 return 0;
170 }
171 __setup("printk.devkmsg=", control_devkmsg);
172
173 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
174
175 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
176 void *buffer, size_t *lenp, loff_t *ppos)
177 {
178 char old_str[DEVKMSG_STR_MAX_SIZE];
179 unsigned int old;
180 int err;
181
182 if (write) {
183 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
184 return -EINVAL;
185
186 old = devkmsg_log;
187 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
188 }
189
190 err = proc_dostring(table, write, buffer, lenp, ppos);
191 if (err)
192 return err;
193
194 if (write) {
195 err = __control_devkmsg(devkmsg_log_str);
196
197 /*
198 * Do not accept an unknown string OR a known string with
199 * trailing crap...
200 */
201 if (err < 0 || (err + 1 != *lenp)) {
202
203 /* ... and restore old setting. */
204 devkmsg_log = old;
205 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
206
207 return -EINVAL;
208 }
209 }
210
211 return 0;
212 }
213
214 /* Number of registered extended console drivers. */
215 static int nr_ext_console_drivers;
216
217 /*
218 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
219 * macros instead of functions so that _RET_IP_ contains useful information.
220 */
221 #define down_console_sem() do { \
222 down(&console_sem);\
223 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
224 } while (0)
225
226 static int __down_trylock_console_sem(unsigned long ip)
227 {
228 int lock_failed;
229 unsigned long flags;
230
231 /*
232 * Here and in __up_console_sem() we need to be in safe mode,
233 * because spindump/WARN/etc from under console ->lock will
234 * deadlock in printk()->down_trylock_console_sem() otherwise.
235 */
236 printk_safe_enter_irqsave(flags);
237 lock_failed = down_trylock(&console_sem);
238 printk_safe_exit_irqrestore(flags);
239
240 if (lock_failed)
241 return 1;
242 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
243 return 0;
244 }
245 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
246
247 static void __up_console_sem(unsigned long ip)
248 {
249 unsigned long flags;
250
251 mutex_release(&console_lock_dep_map, ip);
252
253 printk_safe_enter_irqsave(flags);
254 up(&console_sem);
255 printk_safe_exit_irqrestore(flags);
256 }
257 #define up_console_sem() __up_console_sem(_RET_IP_)
258
259 /*
260 * This is used for debugging the mess that is the VT code by
261 * keeping track if we have the console semaphore held. It's
262 * definitely not the perfect debug tool (we don't know if _WE_
263 * hold it and are racing, but it helps tracking those weird code
264 * paths in the console code where we end up in places I want
265 * locked without the console sempahore held).
266 */
267 static int console_locked, console_suspended;
268
269 /*
270 * If exclusive_console is non-NULL then only this console is to be printed to.
271 */
272 static struct console *exclusive_console;
273
274 /*
275 * Array of consoles built from command line options (console=)
276 */
277
278 #define MAX_CMDLINECONSOLES 8
279
280 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
281
282 static int preferred_console = -1;
283 static bool has_preferred_console;
284 int console_set_on_cmdline;
285 EXPORT_SYMBOL(console_set_on_cmdline);
286
287 /* Flag: console code may call schedule() */
288 static int console_may_schedule;
289
290 enum con_msg_format_flags {
291 MSG_FORMAT_DEFAULT = 0,
292 MSG_FORMAT_SYSLOG = (1 << 0),
293 };
294
295 static int console_msg_format = MSG_FORMAT_DEFAULT;
296
297 /*
298 * The printk log buffer consists of a sequenced collection of records, each
299 * containing variable length message text. Every record also contains its
300 * own meta-data (@info).
301 *
302 * Every record meta-data carries the timestamp in microseconds, as well as
303 * the standard userspace syslog level and syslog facility. The usual kernel
304 * messages use LOG_KERN; userspace-injected messages always carry a matching
305 * syslog facility, by default LOG_USER. The origin of every message can be
306 * reliably determined that way.
307 *
308 * The human readable log message of a record is available in @text, the
309 * length of the message text in @text_len. The stored message is not
310 * terminated.
311 *
312 * Optionally, a record can carry a dictionary of properties (key/value
313 * pairs), to provide userspace with a machine-readable message context.
314 *
315 * Examples for well-defined, commonly used property names are:
316 * DEVICE=b12:8 device identifier
317 * b12:8 block dev_t
318 * c127:3 char dev_t
319 * n8 netdev ifindex
320 * +sound:card0 subsystem:devname
321 * SUBSYSTEM=pci driver-core subsystem name
322 *
323 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
324 * and values are terminated by a '\0' character.
325 *
326 * Example of record values:
327 * record.text_buf = "it's a line" (unterminated)
328 * record.info.seq = 56
329 * record.info.ts_nsec = 36863
330 * record.info.text_len = 11
331 * record.info.facility = 0 (LOG_KERN)
332 * record.info.flags = 0
333 * record.info.level = 3 (LOG_ERR)
334 * record.info.caller_id = 299 (task 299)
335 * record.info.dev_info.subsystem = "pci" (terminated)
336 * record.info.dev_info.device = "+pci:0000:00:01.0" (terminated)
337 *
338 * The 'struct printk_info' buffer must never be directly exported to
339 * userspace, it is a kernel-private implementation detail that might
340 * need to be changed in the future, when the requirements change.
341 *
342 * /dev/kmsg exports the structured data in the following line format:
343 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
344 *
345 * Users of the export format should ignore possible additional values
346 * separated by ',', and find the message after the ';' character.
347 *
348 * The optional key/value pairs are attached as continuation lines starting
349 * with a space character and terminated by a newline. All possible
350 * non-prinatable characters are escaped in the "\xff" notation.
351 */
352
353 enum log_flags {
354 LOG_NEWLINE = 2, /* text ended with a newline */
355 LOG_CONT = 8, /* text is a fragment of a continuation line */
356 };
357
358 /*
359 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
360 * within the scheduler's rq lock. It must be released before calling
361 * console_unlock() or anything else that might wake up a process.
362 */
363 DEFINE_RAW_SPINLOCK(logbuf_lock);
364
365 /*
366 * Helper macros to lock/unlock logbuf_lock and switch between
367 * printk-safe/unsafe modes.
368 */
369 #define logbuf_lock_irq() \
370 do { \
371 printk_safe_enter_irq(); \
372 raw_spin_lock(&logbuf_lock); \
373 } while (0)
374
375 #define logbuf_unlock_irq() \
376 do { \
377 raw_spin_unlock(&logbuf_lock); \
378 printk_safe_exit_irq(); \
379 } while (0)
380
381 #define logbuf_lock_irqsave(flags) \
382 do { \
383 printk_safe_enter_irqsave(flags); \
384 raw_spin_lock(&logbuf_lock); \
385 } while (0)
386
387 #define logbuf_unlock_irqrestore(flags) \
388 do { \
389 raw_spin_unlock(&logbuf_lock); \
390 printk_safe_exit_irqrestore(flags); \
391 } while (0)
392
393 #ifdef CONFIG_PRINTK
394 DECLARE_WAIT_QUEUE_HEAD(log_wait);
395 /* the next printk record to read by syslog(READ) or /proc/kmsg */
396 static u64 syslog_seq;
397 static size_t syslog_partial;
398 static bool syslog_time;
399
400 /* the next printk record to write to the console */
401 static u64 console_seq;
402 static u64 exclusive_console_stop_seq;
403 static unsigned long console_dropped;
404
405 /* the next printk record to read after the last 'clear' command */
406 static u64 clear_seq;
407
408 #ifdef CONFIG_PRINTK_CALLER
409 #define PREFIX_MAX 48
410 #else
411 #define PREFIX_MAX 32
412 #endif
413 #define LOG_LINE_MAX (1024 - PREFIX_MAX)
414
415 #define LOG_LEVEL(v) ((v) & 0x07)
416 #define LOG_FACILITY(v) ((v) >> 3 & 0xff)
417
418 /* record buffer */
419 #define LOG_ALIGN __alignof__(unsigned long)
420 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
421 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
422 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
423 static char *log_buf = __log_buf;
424 static u32 log_buf_len = __LOG_BUF_LEN;
425
426 /*
427 * Define the average message size. This only affects the number of
428 * descriptors that will be available. Underestimating is better than
429 * overestimating (too many available descriptors is better than not enough).
430 */
431 #define PRB_AVGBITS 5 /* 32 character average length */
432
433 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
434 #error CONFIG_LOG_BUF_SHIFT value too small.
435 #endif
436 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
437 PRB_AVGBITS, &__log_buf[0]);
438
439 static struct printk_ringbuffer printk_rb_dynamic;
440
441 static struct printk_ringbuffer *prb = &printk_rb_static;
442
443 /*
444 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
445 * per_cpu_areas are initialised. This variable is set to true when
446 * it's safe to access per-CPU data.
447 */
448 static bool __printk_percpu_data_ready __read_mostly;
449
450 bool printk_percpu_data_ready(void)
451 {
452 return __printk_percpu_data_ready;
453 }
454
455 /* Return log buffer address */
456 char *log_buf_addr_get(void)
457 {
458 return log_buf;
459 }
460
461 /* Return log buffer size */
462 u32 log_buf_len_get(void)
463 {
464 return log_buf_len;
465 }
466
467 /*
468 * Define how much of the log buffer we could take at maximum. The value
469 * must be greater than two. Note that only half of the buffer is available
470 * when the index points to the middle.
471 */
472 #define MAX_LOG_TAKE_PART 4
473 static const char trunc_msg[] = "<truncated>";
474
475 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
476 {
477 /*
478 * The message should not take the whole buffer. Otherwise, it might
479 * get removed too soon.
480 */
481 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
482
483 if (*text_len > max_text_len)
484 *text_len = max_text_len;
485
486 /* enable the warning message (if there is room) */
487 *trunc_msg_len = strlen(trunc_msg);
488 if (*text_len >= *trunc_msg_len)
489 *text_len -= *trunc_msg_len;
490 else
491 *trunc_msg_len = 0;
492 }
493
494 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
495
496 static int syslog_action_restricted(int type)
497 {
498 if (dmesg_restrict)
499 return 1;
500 /*
501 * Unless restricted, we allow "read all" and "get buffer size"
502 * for everybody.
503 */
504 return type != SYSLOG_ACTION_READ_ALL &&
505 type != SYSLOG_ACTION_SIZE_BUFFER;
506 }
507
508 static int check_syslog_permissions(int type, int source)
509 {
510 /*
511 * If this is from /proc/kmsg and we've already opened it, then we've
512 * already done the capabilities checks at open time.
513 */
514 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
515 goto ok;
516
517 if (syslog_action_restricted(type)) {
518 if (capable(CAP_SYSLOG))
519 goto ok;
520 /*
521 * For historical reasons, accept CAP_SYS_ADMIN too, with
522 * a warning.
523 */
524 if (capable(CAP_SYS_ADMIN)) {
525 pr_warn_once("%s (%d): Attempt to access syslog with "
526 "CAP_SYS_ADMIN but no CAP_SYSLOG "
527 "(deprecated).\n",
528 current->comm, task_pid_nr(current));
529 goto ok;
530 }
531 return -EPERM;
532 }
533 ok:
534 return security_syslog(type);
535 }
536
537 static void append_char(char **pp, char *e, char c)
538 {
539 if (*pp < e)
540 *(*pp)++ = c;
541 }
542
543 static ssize_t info_print_ext_header(char *buf, size_t size,
544 struct printk_info *info)
545 {
546 u64 ts_usec = info->ts_nsec;
547 char caller[20];
548 #ifdef CONFIG_PRINTK_CALLER
549 u32 id = info->caller_id;
550
551 snprintf(caller, sizeof(caller), ",caller=%c%u",
552 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
553 #else
554 caller[0] = '\0';
555 #endif
556
557 do_div(ts_usec, 1000);
558
559 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
560 (info->facility << 3) | info->level, info->seq,
561 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
562 }
563
564 static ssize_t msg_add_ext_text(char *buf, size_t size,
565 const char *text, size_t text_len,
566 unsigned char endc)
567 {
568 char *p = buf, *e = buf + size;
569 size_t i;
570
571 /* escape non-printable characters */
572 for (i = 0; i < text_len; i++) {
573 unsigned char c = text[i];
574
575 if (c < ' ' || c >= 127 || c == '\\')
576 p += scnprintf(p, e - p, "\\x%02x", c);
577 else
578 append_char(&p, e, c);
579 }
580 append_char(&p, e, endc);
581
582 return p - buf;
583 }
584
585 static ssize_t msg_add_dict_text(char *buf, size_t size,
586 const char *key, const char *val)
587 {
588 size_t val_len = strlen(val);
589 ssize_t len;
590
591 if (!val_len)
592 return 0;
593
594 len = msg_add_ext_text(buf, size, "", 0, ' '); /* dict prefix */
595 len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
596 len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
597
598 return len;
599 }
600
601 static ssize_t msg_print_ext_body(char *buf, size_t size,
602 char *text, size_t text_len,
603 struct dev_printk_info *dev_info)
604 {
605 ssize_t len;
606
607 len = msg_add_ext_text(buf, size, text, text_len, '\n');
608
609 if (!dev_info)
610 goto out;
611
612 len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
613 dev_info->subsystem);
614 len += msg_add_dict_text(buf + len, size - len, "DEVICE",
615 dev_info->device);
616 out:
617 return len;
618 }
619
620 /* /dev/kmsg - userspace message inject/listen interface */
621 struct devkmsg_user {
622 u64 seq;
623 struct ratelimit_state rs;
624 struct mutex lock;
625 char buf[CONSOLE_EXT_LOG_MAX];
626
627 struct printk_info info;
628 char text_buf[CONSOLE_EXT_LOG_MAX];
629 struct printk_record record;
630 };
631
632 static __printf(3, 4) __cold
633 int devkmsg_emit(int facility, int level, const char *fmt, ...)
634 {
635 va_list args;
636 int r;
637
638 va_start(args, fmt);
639 r = vprintk_emit(facility, level, NULL, fmt, args);
640 va_end(args);
641
642 return r;
643 }
644
645 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
646 {
647 char *buf, *line;
648 int level = default_message_loglevel;
649 int facility = 1; /* LOG_USER */
650 struct file *file = iocb->ki_filp;
651 struct devkmsg_user *user = file->private_data;
652 size_t len = iov_iter_count(from);
653 ssize_t ret = len;
654
655 if (!user || len > LOG_LINE_MAX)
656 return -EINVAL;
657
658 /* Ignore when user logging is disabled. */
659 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
660 return len;
661
662 /* Ratelimit when not explicitly enabled. */
663 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
664 if (!___ratelimit(&user->rs, current->comm))
665 return ret;
666 }
667
668 buf = kmalloc(len+1, GFP_KERNEL);
669 if (buf == NULL)
670 return -ENOMEM;
671
672 buf[len] = '\0';
673 if (!copy_from_iter_full(buf, len, from)) {
674 kfree(buf);
675 return -EFAULT;
676 }
677
678 /*
679 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
680 * the decimal value represents 32bit, the lower 3 bit are the log
681 * level, the rest are the log facility.
682 *
683 * If no prefix or no userspace facility is specified, we
684 * enforce LOG_USER, to be able to reliably distinguish
685 * kernel-generated messages from userspace-injected ones.
686 */
687 line = buf;
688 if (line[0] == '<') {
689 char *endp = NULL;
690 unsigned int u;
691
692 u = simple_strtoul(line + 1, &endp, 10);
693 if (endp && endp[0] == '>') {
694 level = LOG_LEVEL(u);
695 if (LOG_FACILITY(u) != 0)
696 facility = LOG_FACILITY(u);
697 endp++;
698 len -= endp - line;
699 line = endp;
700 }
701 }
702
703 devkmsg_emit(facility, level, "%s", line);
704 kfree(buf);
705 return ret;
706 }
707
708 static ssize_t devkmsg_read(struct file *file, char __user *buf,
709 size_t count, loff_t *ppos)
710 {
711 struct devkmsg_user *user = file->private_data;
712 struct printk_record *r = &user->record;
713 size_t len;
714 ssize_t ret;
715
716 if (!user)
717 return -EBADF;
718
719 ret = mutex_lock_interruptible(&user->lock);
720 if (ret)
721 return ret;
722
723 logbuf_lock_irq();
724 if (!prb_read_valid(prb, user->seq, r)) {
725 if (file->f_flags & O_NONBLOCK) {
726 ret = -EAGAIN;
727 logbuf_unlock_irq();
728 goto out;
729 }
730
731 logbuf_unlock_irq();
732 ret = wait_event_interruptible(log_wait,
733 prb_read_valid(prb, user->seq, r));
734 if (ret)
735 goto out;
736 logbuf_lock_irq();
737 }
738
739 if (user->seq < prb_first_valid_seq(prb)) {
740 /* our last seen message is gone, return error and reset */
741 user->seq = prb_first_valid_seq(prb);
742 ret = -EPIPE;
743 logbuf_unlock_irq();
744 goto out;
745 }
746
747 len = info_print_ext_header(user->buf, sizeof(user->buf), r->info);
748 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
749 &r->text_buf[0], r->info->text_len,
750 &r->info->dev_info);
751
752 user->seq = r->info->seq + 1;
753 logbuf_unlock_irq();
754
755 if (len > count) {
756 ret = -EINVAL;
757 goto out;
758 }
759
760 if (copy_to_user(buf, user->buf, len)) {
761 ret = -EFAULT;
762 goto out;
763 }
764 ret = len;
765 out:
766 mutex_unlock(&user->lock);
767 return ret;
768 }
769
770 /*
771 * Be careful when modifying this function!!!
772 *
773 * Only few operations are supported because the device works only with the
774 * entire variable length messages (records). Non-standard values are
775 * returned in the other cases and has been this way for quite some time.
776 * User space applications might depend on this behavior.
777 */
778 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
779 {
780 struct devkmsg_user *user = file->private_data;
781 loff_t ret = 0;
782
783 if (!user)
784 return -EBADF;
785 if (offset)
786 return -ESPIPE;
787
788 logbuf_lock_irq();
789 switch (whence) {
790 case SEEK_SET:
791 /* the first record */
792 user->seq = prb_first_valid_seq(prb);
793 break;
794 case SEEK_DATA:
795 /*
796 * The first record after the last SYSLOG_ACTION_CLEAR,
797 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
798 * changes no global state, and does not clear anything.
799 */
800 user->seq = clear_seq;
801 break;
802 case SEEK_END:
803 /* after the last record */
804 user->seq = prb_next_seq(prb);
805 break;
806 default:
807 ret = -EINVAL;
808 }
809 logbuf_unlock_irq();
810 return ret;
811 }
812
813 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
814 {
815 struct devkmsg_user *user = file->private_data;
816 __poll_t ret = 0;
817
818 if (!user)
819 return EPOLLERR|EPOLLNVAL;
820
821 poll_wait(file, &log_wait, wait);
822
823 logbuf_lock_irq();
824 if (prb_read_valid(prb, user->seq, NULL)) {
825 /* return error when data has vanished underneath us */
826 if (user->seq < prb_first_valid_seq(prb))
827 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
828 else
829 ret = EPOLLIN|EPOLLRDNORM;
830 }
831 logbuf_unlock_irq();
832
833 return ret;
834 }
835
836 static int devkmsg_open(struct inode *inode, struct file *file)
837 {
838 struct devkmsg_user *user;
839 int err;
840
841 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
842 return -EPERM;
843
844 /* write-only does not need any file context */
845 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
846 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
847 SYSLOG_FROM_READER);
848 if (err)
849 return err;
850 }
851
852 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
853 if (!user)
854 return -ENOMEM;
855
856 ratelimit_default_init(&user->rs);
857 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
858
859 mutex_init(&user->lock);
860
861 prb_rec_init_rd(&user->record, &user->info,
862 &user->text_buf[0], sizeof(user->text_buf));
863
864 logbuf_lock_irq();
865 user->seq = prb_first_valid_seq(prb);
866 logbuf_unlock_irq();
867
868 file->private_data = user;
869 return 0;
870 }
871
872 static int devkmsg_release(struct inode *inode, struct file *file)
873 {
874 struct devkmsg_user *user = file->private_data;
875
876 if (!user)
877 return 0;
878
879 ratelimit_state_exit(&user->rs);
880
881 mutex_destroy(&user->lock);
882 kfree(user);
883 return 0;
884 }
885
886 const struct file_operations kmsg_fops = {
887 .open = devkmsg_open,
888 .read = devkmsg_read,
889 .write_iter = devkmsg_write,
890 .llseek = devkmsg_llseek,
891 .poll = devkmsg_poll,
892 .release = devkmsg_release,
893 };
894
895 #ifdef CONFIG_CRASH_CORE
896 /*
897 * This appends the listed symbols to /proc/vmcore
898 *
899 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
900 * obtain access to symbols that are otherwise very difficult to locate. These
901 * symbols are specifically used so that utilities can access and extract the
902 * dmesg log from a vmcore file after a crash.
903 */
904 void log_buf_vmcoreinfo_setup(void)
905 {
906 struct dev_printk_info *dev_info = NULL;
907
908 VMCOREINFO_SYMBOL(prb);
909 VMCOREINFO_SYMBOL(printk_rb_static);
910 VMCOREINFO_SYMBOL(clear_seq);
911
912 /*
913 * Export struct size and field offsets. User space tools can
914 * parse it and detect any changes to structure down the line.
915 */
916
917 VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
918 VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
919 VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
920 VMCOREINFO_OFFSET(printk_ringbuffer, fail);
921
922 VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
923 VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
924 VMCOREINFO_OFFSET(prb_desc_ring, descs);
925 VMCOREINFO_OFFSET(prb_desc_ring, infos);
926 VMCOREINFO_OFFSET(prb_desc_ring, head_id);
927 VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
928
929 VMCOREINFO_STRUCT_SIZE(prb_desc);
930 VMCOREINFO_OFFSET(prb_desc, state_var);
931 VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
932
933 VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
934 VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
935 VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
936
937 VMCOREINFO_STRUCT_SIZE(printk_info);
938 VMCOREINFO_OFFSET(printk_info, seq);
939 VMCOREINFO_OFFSET(printk_info, ts_nsec);
940 VMCOREINFO_OFFSET(printk_info, text_len);
941 VMCOREINFO_OFFSET(printk_info, caller_id);
942 VMCOREINFO_OFFSET(printk_info, dev_info);
943
944 VMCOREINFO_STRUCT_SIZE(dev_printk_info);
945 VMCOREINFO_OFFSET(dev_printk_info, subsystem);
946 VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
947 VMCOREINFO_OFFSET(dev_printk_info, device);
948 VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
949
950 VMCOREINFO_STRUCT_SIZE(prb_data_ring);
951 VMCOREINFO_OFFSET(prb_data_ring, size_bits);
952 VMCOREINFO_OFFSET(prb_data_ring, data);
953 VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
954 VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
955
956 VMCOREINFO_SIZE(atomic_long_t);
957 VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
958 }
959 #endif
960
961 /* requested log_buf_len from kernel cmdline */
962 static unsigned long __initdata new_log_buf_len;
963
964 /* we practice scaling the ring buffer by powers of 2 */
965 static void __init log_buf_len_update(u64 size)
966 {
967 if (size > (u64)LOG_BUF_LEN_MAX) {
968 size = (u64)LOG_BUF_LEN_MAX;
969 pr_err("log_buf over 2G is not supported.\n");
970 }
971
972 if (size)
973 size = roundup_pow_of_two(size);
974 if (size > log_buf_len)
975 new_log_buf_len = (unsigned long)size;
976 }
977
978 /* save requested log_buf_len since it's too early to process it */
979 static int __init log_buf_len_setup(char *str)
980 {
981 u64 size;
982
983 if (!str)
984 return -EINVAL;
985
986 size = memparse(str, &str);
987
988 log_buf_len_update(size);
989
990 return 0;
991 }
992 early_param("log_buf_len", log_buf_len_setup);
993
994 #ifdef CONFIG_SMP
995 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
996
997 static void __init log_buf_add_cpu(void)
998 {
999 unsigned int cpu_extra;
1000
1001 /*
1002 * archs should set up cpu_possible_bits properly with
1003 * set_cpu_possible() after setup_arch() but just in
1004 * case lets ensure this is valid.
1005 */
1006 if (num_possible_cpus() == 1)
1007 return;
1008
1009 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1010
1011 /* by default this will only continue through for large > 64 CPUs */
1012 if (cpu_extra <= __LOG_BUF_LEN / 2)
1013 return;
1014
1015 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1016 __LOG_CPU_MAX_BUF_LEN);
1017 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1018 cpu_extra);
1019 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1020
1021 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1022 }
1023 #else /* !CONFIG_SMP */
1024 static inline void log_buf_add_cpu(void) {}
1025 #endif /* CONFIG_SMP */
1026
1027 static void __init set_percpu_data_ready(void)
1028 {
1029 printk_safe_init();
1030 /* Make sure we set this flag only after printk_safe() init is done */
1031 barrier();
1032 __printk_percpu_data_ready = true;
1033 }
1034
1035 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1036 struct printk_record *r)
1037 {
1038 struct prb_reserved_entry e;
1039 struct printk_record dest_r;
1040
1041 prb_rec_init_wr(&dest_r, r->info->text_len);
1042
1043 if (!prb_reserve(&e, rb, &dest_r))
1044 return 0;
1045
1046 memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1047 dest_r.info->text_len = r->info->text_len;
1048 dest_r.info->facility = r->info->facility;
1049 dest_r.info->level = r->info->level;
1050 dest_r.info->flags = r->info->flags;
1051 dest_r.info->ts_nsec = r->info->ts_nsec;
1052 dest_r.info->caller_id = r->info->caller_id;
1053 memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1054
1055 prb_final_commit(&e);
1056
1057 return prb_record_text_space(&e);
1058 }
1059
1060 static char setup_text_buf[LOG_LINE_MAX] __initdata;
1061
1062 void __init setup_log_buf(int early)
1063 {
1064 struct printk_info *new_infos;
1065 unsigned int new_descs_count;
1066 struct prb_desc *new_descs;
1067 struct printk_info info;
1068 struct printk_record r;
1069 size_t new_descs_size;
1070 size_t new_infos_size;
1071 unsigned long flags;
1072 char *new_log_buf;
1073 unsigned int free;
1074 u64 seq;
1075
1076 /*
1077 * Some archs call setup_log_buf() multiple times - first is very
1078 * early, e.g. from setup_arch(), and second - when percpu_areas
1079 * are initialised.
1080 */
1081 if (!early)
1082 set_percpu_data_ready();
1083
1084 if (log_buf != __log_buf)
1085 return;
1086
1087 if (!early && !new_log_buf_len)
1088 log_buf_add_cpu();
1089
1090 if (!new_log_buf_len)
1091 return;
1092
1093 new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1094 if (new_descs_count == 0) {
1095 pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1096 return;
1097 }
1098
1099 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1100 if (unlikely(!new_log_buf)) {
1101 pr_err("log_buf_len: %lu text bytes not available\n",
1102 new_log_buf_len);
1103 return;
1104 }
1105
1106 new_descs_size = new_descs_count * sizeof(struct prb_desc);
1107 new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1108 if (unlikely(!new_descs)) {
1109 pr_err("log_buf_len: %zu desc bytes not available\n",
1110 new_descs_size);
1111 goto err_free_log_buf;
1112 }
1113
1114 new_infos_size = new_descs_count * sizeof(struct printk_info);
1115 new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1116 if (unlikely(!new_infos)) {
1117 pr_err("log_buf_len: %zu info bytes not available\n",
1118 new_infos_size);
1119 goto err_free_descs;
1120 }
1121
1122 prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1123
1124 prb_init(&printk_rb_dynamic,
1125 new_log_buf, ilog2(new_log_buf_len),
1126 new_descs, ilog2(new_descs_count),
1127 new_infos);
1128
1129 printk_safe_enter_irqsave(flags);
1130
1131 log_buf_len = new_log_buf_len;
1132 log_buf = new_log_buf;
1133 new_log_buf_len = 0;
1134
1135 free = __LOG_BUF_LEN;
1136 prb_for_each_record(0, &printk_rb_static, seq, &r)
1137 free -= add_to_rb(&printk_rb_dynamic, &r);
1138
1139 /*
1140 * This is early enough that everything is still running on the
1141 * boot CPU and interrupts are disabled. So no new messages will
1142 * appear during the transition to the dynamic buffer.
1143 */
1144 prb = &printk_rb_dynamic;
1145
1146 printk_safe_exit_irqrestore(flags);
1147
1148 if (seq != prb_next_seq(&printk_rb_static)) {
1149 pr_err("dropped %llu messages\n",
1150 prb_next_seq(&printk_rb_static) - seq);
1151 }
1152
1153 pr_info("log_buf_len: %u bytes\n", log_buf_len);
1154 pr_info("early log buf free: %u(%u%%)\n",
1155 free, (free * 100) / __LOG_BUF_LEN);
1156 return;
1157
1158 err_free_descs:
1159 memblock_free(__pa(new_descs), new_descs_size);
1160 err_free_log_buf:
1161 memblock_free(__pa(new_log_buf), new_log_buf_len);
1162 }
1163
1164 static bool __read_mostly ignore_loglevel;
1165
1166 static int __init ignore_loglevel_setup(char *str)
1167 {
1168 ignore_loglevel = true;
1169 pr_info("debug: ignoring loglevel setting.\n");
1170
1171 return 0;
1172 }
1173
1174 early_param("ignore_loglevel", ignore_loglevel_setup);
1175 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1176 MODULE_PARM_DESC(ignore_loglevel,
1177 "ignore loglevel setting (prints all kernel messages to the console)");
1178
1179 static bool suppress_message_printing(int level)
1180 {
1181 return (level >= console_loglevel && !ignore_loglevel);
1182 }
1183
1184 #ifdef CONFIG_BOOT_PRINTK_DELAY
1185
1186 static int boot_delay; /* msecs delay after each printk during bootup */
1187 static unsigned long long loops_per_msec; /* based on boot_delay */
1188
1189 static int __init boot_delay_setup(char *str)
1190 {
1191 unsigned long lpj;
1192
1193 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
1194 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1195
1196 get_option(&str, &boot_delay);
1197 if (boot_delay > 10 * 1000)
1198 boot_delay = 0;
1199
1200 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1201 "HZ: %d, loops_per_msec: %llu\n",
1202 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1203 return 0;
1204 }
1205 early_param("boot_delay", boot_delay_setup);
1206
1207 static void boot_delay_msec(int level)
1208 {
1209 unsigned long long k;
1210 unsigned long timeout;
1211
1212 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1213 || suppress_message_printing(level)) {
1214 return;
1215 }
1216
1217 k = (unsigned long long)loops_per_msec * boot_delay;
1218
1219 timeout = jiffies + msecs_to_jiffies(boot_delay);
1220 while (k) {
1221 k--;
1222 cpu_relax();
1223 /*
1224 * use (volatile) jiffies to prevent
1225 * compiler reduction; loop termination via jiffies
1226 * is secondary and may or may not happen.
1227 */
1228 if (time_after(jiffies, timeout))
1229 break;
1230 touch_nmi_watchdog();
1231 }
1232 }
1233 #else
1234 static inline void boot_delay_msec(int level)
1235 {
1236 }
1237 #endif
1238
1239 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1240 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1241
1242 static size_t print_syslog(unsigned int level, char *buf)
1243 {
1244 return sprintf(buf, "<%u>", level);
1245 }
1246
1247 static size_t print_time(u64 ts, char *buf)
1248 {
1249 unsigned long rem_nsec = do_div(ts, 1000000000);
1250
1251 return sprintf(buf, "[%5lu.%06lu]",
1252 (unsigned long)ts, rem_nsec / 1000);
1253 }
1254
1255 #ifdef CONFIG_PRINTK_CALLER
1256 static size_t print_caller(u32 id, char *buf)
1257 {
1258 char caller[12];
1259
1260 snprintf(caller, sizeof(caller), "%c%u",
1261 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1262 return sprintf(buf, "[%6s]", caller);
1263 }
1264 #else
1265 #define print_caller(id, buf) 0
1266 #endif
1267
1268 static size_t info_print_prefix(const struct printk_info *info, bool syslog,
1269 bool time, char *buf)
1270 {
1271 size_t len = 0;
1272
1273 if (syslog)
1274 len = print_syslog((info->facility << 3) | info->level, buf);
1275
1276 if (time)
1277 len += print_time(info->ts_nsec, buf + len);
1278
1279 len += print_caller(info->caller_id, buf + len);
1280
1281 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1282 buf[len++] = ' ';
1283 buf[len] = '\0';
1284 }
1285
1286 return len;
1287 }
1288
1289 /*
1290 * Prepare the record for printing. The text is shifted within the given
1291 * buffer to avoid a need for another one. The following operations are
1292 * done:
1293 *
1294 * - Add prefix for each line.
1295 * - Add the trailing newline that has been removed in vprintk_store().
1296 * - Drop truncated lines that do not longer fit into the buffer.
1297 *
1298 * Return: The length of the updated/prepared text, including the added
1299 * prefixes and the newline. The dropped line(s) are not counted.
1300 */
1301 static size_t record_print_text(struct printk_record *r, bool syslog,
1302 bool time)
1303 {
1304 size_t text_len = r->info->text_len;
1305 size_t buf_size = r->text_buf_size;
1306 char *text = r->text_buf;
1307 char prefix[PREFIX_MAX];
1308 bool truncated = false;
1309 size_t prefix_len;
1310 size_t line_len;
1311 size_t len = 0;
1312 char *next;
1313
1314 /*
1315 * If the message was truncated because the buffer was not large
1316 * enough, treat the available text as if it were the full text.
1317 */
1318 if (text_len > buf_size)
1319 text_len = buf_size;
1320
1321 prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1322
1323 /*
1324 * @text_len: bytes of unprocessed text
1325 * @line_len: bytes of current line _without_ newline
1326 * @text: pointer to beginning of current line
1327 * @len: number of bytes prepared in r->text_buf
1328 */
1329 for (;;) {
1330 next = memchr(text, '\n', text_len);
1331 if (next) {
1332 line_len = next - text;
1333 } else {
1334 /* Drop truncated line(s). */
1335 if (truncated)
1336 break;
1337 line_len = text_len;
1338 }
1339
1340 /*
1341 * Truncate the text if there is not enough space to add the
1342 * prefix and a trailing newline.
1343 */
1344 if (len + prefix_len + text_len + 1 > buf_size) {
1345 /* Drop even the current line if no space. */
1346 if (len + prefix_len + line_len + 1 > buf_size)
1347 break;
1348
1349 text_len = buf_size - len - prefix_len - 1;
1350 truncated = true;
1351 }
1352
1353 memmove(text + prefix_len, text, text_len);
1354 memcpy(text, prefix, prefix_len);
1355
1356 len += prefix_len + line_len + 1;
1357
1358 if (text_len == line_len) {
1359 /*
1360 * Add the trailing newline removed in
1361 * vprintk_store().
1362 */
1363 text[prefix_len + line_len] = '\n';
1364 break;
1365 }
1366
1367 /*
1368 * Advance beyond the added prefix and the related line with
1369 * its newline.
1370 */
1371 text += prefix_len + line_len + 1;
1372
1373 /*
1374 * The remaining text has only decreased by the line with its
1375 * newline.
1376 *
1377 * Note that @text_len can become zero. It happens when @text
1378 * ended with a newline (either due to truncation or the
1379 * original string ending with "\n\n"). The loop is correctly
1380 * repeated and (if not truncated) an empty line with a prefix
1381 * will be prepared.
1382 */
1383 text_len -= line_len + 1;
1384 }
1385
1386 return len;
1387 }
1388
1389 static size_t get_record_print_text_size(struct printk_info *info,
1390 unsigned int line_count,
1391 bool syslog, bool time)
1392 {
1393 char prefix[PREFIX_MAX];
1394 size_t prefix_len;
1395
1396 prefix_len = info_print_prefix(info, syslog, time, prefix);
1397
1398 /*
1399 * Each line will be preceded with a prefix. The intermediate
1400 * newlines are already within the text, but a final trailing
1401 * newline will be added.
1402 */
1403 return ((prefix_len * line_count) + info->text_len + 1);
1404 }
1405
1406 static int syslog_print(char __user *buf, int size)
1407 {
1408 struct printk_info info;
1409 struct printk_record r;
1410 char *text;
1411 int len = 0;
1412
1413 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1414 if (!text)
1415 return -ENOMEM;
1416
1417 prb_rec_init_rd(&r, &info, text, LOG_LINE_MAX + PREFIX_MAX);
1418
1419 while (size > 0) {
1420 size_t n;
1421 size_t skip;
1422
1423 logbuf_lock_irq();
1424 if (!prb_read_valid(prb, syslog_seq, &r)) {
1425 logbuf_unlock_irq();
1426 break;
1427 }
1428 if (r.info->seq != syslog_seq) {
1429 /* message is gone, move to next valid one */
1430 syslog_seq = r.info->seq;
1431 syslog_partial = 0;
1432 }
1433
1434 /*
1435 * To keep reading/counting partial line consistent,
1436 * use printk_time value as of the beginning of a line.
1437 */
1438 if (!syslog_partial)
1439 syslog_time = printk_time;
1440
1441 skip = syslog_partial;
1442 n = record_print_text(&r, true, syslog_time);
1443 if (n - syslog_partial <= size) {
1444 /* message fits into buffer, move forward */
1445 syslog_seq = r.info->seq + 1;
1446 n -= syslog_partial;
1447 syslog_partial = 0;
1448 } else if (!len){
1449 /* partial read(), remember position */
1450 n = size;
1451 syslog_partial += n;
1452 } else
1453 n = 0;
1454 logbuf_unlock_irq();
1455
1456 if (!n)
1457 break;
1458
1459 if (copy_to_user(buf, text + skip, n)) {
1460 if (!len)
1461 len = -EFAULT;
1462 break;
1463 }
1464
1465 len += n;
1466 size -= n;
1467 buf += n;
1468 }
1469
1470 kfree(text);
1471 return len;
1472 }
1473
1474 static int syslog_print_all(char __user *buf, int size, bool clear)
1475 {
1476 struct printk_info info;
1477 unsigned int line_count;
1478 struct printk_record r;
1479 char *text;
1480 int len = 0;
1481 u64 seq;
1482 bool time;
1483
1484 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1485 if (!text)
1486 return -ENOMEM;
1487
1488 time = printk_time;
1489 logbuf_lock_irq();
1490 /*
1491 * Find first record that fits, including all following records,
1492 * into the user-provided buffer for this dump.
1493 */
1494 prb_for_each_info(clear_seq, prb, seq, &info, &line_count)
1495 len += get_record_print_text_size(&info, line_count, true, time);
1496
1497 /* move first record forward until length fits into the buffer */
1498 prb_for_each_info(clear_seq, prb, seq, &info, &line_count) {
1499 if (len <= size)
1500 break;
1501 len -= get_record_print_text_size(&info, line_count, true, time);
1502 }
1503
1504 prb_rec_init_rd(&r, &info, text, LOG_LINE_MAX + PREFIX_MAX);
1505
1506 len = 0;
1507 prb_for_each_record(seq, prb, seq, &r) {
1508 int textlen;
1509
1510 textlen = record_print_text(&r, true, time);
1511
1512 if (len + textlen > size) {
1513 seq--;
1514 break;
1515 }
1516
1517 logbuf_unlock_irq();
1518 if (copy_to_user(buf + len, text, textlen))
1519 len = -EFAULT;
1520 else
1521 len += textlen;
1522 logbuf_lock_irq();
1523
1524 if (len < 0)
1525 break;
1526 }
1527
1528 if (clear)
1529 clear_seq = seq;
1530 logbuf_unlock_irq();
1531
1532 kfree(text);
1533 return len;
1534 }
1535
1536 static void syslog_clear(void)
1537 {
1538 logbuf_lock_irq();
1539 clear_seq = prb_next_seq(prb);
1540 logbuf_unlock_irq();
1541 }
1542
1543 int do_syslog(int type, char __user *buf, int len, int source)
1544 {
1545 bool clear = false;
1546 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1547 int error;
1548
1549 error = check_syslog_permissions(type, source);
1550 if (error)
1551 return error;
1552
1553 switch (type) {
1554 case SYSLOG_ACTION_CLOSE: /* Close log */
1555 break;
1556 case SYSLOG_ACTION_OPEN: /* Open log */
1557 break;
1558 case SYSLOG_ACTION_READ: /* Read from log */
1559 if (!buf || len < 0)
1560 return -EINVAL;
1561 if (!len)
1562 return 0;
1563 if (!access_ok(buf, len))
1564 return -EFAULT;
1565 error = wait_event_interruptible(log_wait,
1566 prb_read_valid(prb, syslog_seq, NULL));
1567 if (error)
1568 return error;
1569 error = syslog_print(buf, len);
1570 break;
1571 /* Read/clear last kernel messages */
1572 case SYSLOG_ACTION_READ_CLEAR:
1573 clear = true;
1574 fallthrough;
1575 /* Read last kernel messages */
1576 case SYSLOG_ACTION_READ_ALL:
1577 if (!buf || len < 0)
1578 return -EINVAL;
1579 if (!len)
1580 return 0;
1581 if (!access_ok(buf, len))
1582 return -EFAULT;
1583 error = syslog_print_all(buf, len, clear);
1584 break;
1585 /* Clear ring buffer */
1586 case SYSLOG_ACTION_CLEAR:
1587 syslog_clear();
1588 break;
1589 /* Disable logging to console */
1590 case SYSLOG_ACTION_CONSOLE_OFF:
1591 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1592 saved_console_loglevel = console_loglevel;
1593 console_loglevel = minimum_console_loglevel;
1594 break;
1595 /* Enable logging to console */
1596 case SYSLOG_ACTION_CONSOLE_ON:
1597 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1598 console_loglevel = saved_console_loglevel;
1599 saved_console_loglevel = LOGLEVEL_DEFAULT;
1600 }
1601 break;
1602 /* Set level of messages printed to console */
1603 case SYSLOG_ACTION_CONSOLE_LEVEL:
1604 if (len < 1 || len > 8)
1605 return -EINVAL;
1606 if (len < minimum_console_loglevel)
1607 len = minimum_console_loglevel;
1608 console_loglevel = len;
1609 /* Implicitly re-enable logging to console */
1610 saved_console_loglevel = LOGLEVEL_DEFAULT;
1611 break;
1612 /* Number of chars in the log buffer */
1613 case SYSLOG_ACTION_SIZE_UNREAD:
1614 logbuf_lock_irq();
1615 if (syslog_seq < prb_first_valid_seq(prb)) {
1616 /* messages are gone, move to first one */
1617 syslog_seq = prb_first_valid_seq(prb);
1618 syslog_partial = 0;
1619 }
1620 if (source == SYSLOG_FROM_PROC) {
1621 /*
1622 * Short-cut for poll(/"proc/kmsg") which simply checks
1623 * for pending data, not the size; return the count of
1624 * records, not the length.
1625 */
1626 error = prb_next_seq(prb) - syslog_seq;
1627 } else {
1628 bool time = syslog_partial ? syslog_time : printk_time;
1629 struct printk_info info;
1630 unsigned int line_count;
1631 u64 seq;
1632
1633 prb_for_each_info(syslog_seq, prb, seq, &info,
1634 &line_count) {
1635 error += get_record_print_text_size(&info, line_count,
1636 true, time);
1637 time = printk_time;
1638 }
1639 error -= syslog_partial;
1640 }
1641 logbuf_unlock_irq();
1642 break;
1643 /* Size of the log buffer */
1644 case SYSLOG_ACTION_SIZE_BUFFER:
1645 error = log_buf_len;
1646 break;
1647 default:
1648 error = -EINVAL;
1649 break;
1650 }
1651
1652 return error;
1653 }
1654
1655 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1656 {
1657 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1658 }
1659
1660 /*
1661 * Special console_lock variants that help to reduce the risk of soft-lockups.
1662 * They allow to pass console_lock to another printk() call using a busy wait.
1663 */
1664
1665 #ifdef CONFIG_LOCKDEP
1666 static struct lockdep_map console_owner_dep_map = {
1667 .name = "console_owner"
1668 };
1669 #endif
1670
1671 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1672 static struct task_struct *console_owner;
1673 static bool console_waiter;
1674
1675 /**
1676 * console_lock_spinning_enable - mark beginning of code where another
1677 * thread might safely busy wait
1678 *
1679 * This basically converts console_lock into a spinlock. This marks
1680 * the section where the console_lock owner can not sleep, because
1681 * there may be a waiter spinning (like a spinlock). Also it must be
1682 * ready to hand over the lock at the end of the section.
1683 */
1684 static void console_lock_spinning_enable(void)
1685 {
1686 raw_spin_lock(&console_owner_lock);
1687 console_owner = current;
1688 raw_spin_unlock(&console_owner_lock);
1689
1690 /* The waiter may spin on us after setting console_owner */
1691 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1692 }
1693
1694 /**
1695 * console_lock_spinning_disable_and_check - mark end of code where another
1696 * thread was able to busy wait and check if there is a waiter
1697 *
1698 * This is called at the end of the section where spinning is allowed.
1699 * It has two functions. First, it is a signal that it is no longer
1700 * safe to start busy waiting for the lock. Second, it checks if
1701 * there is a busy waiter and passes the lock rights to her.
1702 *
1703 * Important: Callers lose the lock if there was a busy waiter.
1704 * They must not touch items synchronized by console_lock
1705 * in this case.
1706 *
1707 * Return: 1 if the lock rights were passed, 0 otherwise.
1708 */
1709 static int console_lock_spinning_disable_and_check(void)
1710 {
1711 int waiter;
1712
1713 raw_spin_lock(&console_owner_lock);
1714 waiter = READ_ONCE(console_waiter);
1715 console_owner = NULL;
1716 raw_spin_unlock(&console_owner_lock);
1717
1718 if (!waiter) {
1719 spin_release(&console_owner_dep_map, _THIS_IP_);
1720 return 0;
1721 }
1722
1723 /* The waiter is now free to continue */
1724 WRITE_ONCE(console_waiter, false);
1725
1726 spin_release(&console_owner_dep_map, _THIS_IP_);
1727
1728 /*
1729 * Hand off console_lock to waiter. The waiter will perform
1730 * the up(). After this, the waiter is the console_lock owner.
1731 */
1732 mutex_release(&console_lock_dep_map, _THIS_IP_);
1733 return 1;
1734 }
1735
1736 /**
1737 * console_trylock_spinning - try to get console_lock by busy waiting
1738 *
1739 * This allows to busy wait for the console_lock when the current
1740 * owner is running in specially marked sections. It means that
1741 * the current owner is running and cannot reschedule until it
1742 * is ready to lose the lock.
1743 *
1744 * Return: 1 if we got the lock, 0 othrewise
1745 */
1746 static int console_trylock_spinning(void)
1747 {
1748 struct task_struct *owner = NULL;
1749 bool waiter;
1750 bool spin = false;
1751 unsigned long flags;
1752
1753 if (console_trylock())
1754 return 1;
1755
1756 printk_safe_enter_irqsave(flags);
1757
1758 raw_spin_lock(&console_owner_lock);
1759 owner = READ_ONCE(console_owner);
1760 waiter = READ_ONCE(console_waiter);
1761 if (!waiter && owner && owner != current) {
1762 WRITE_ONCE(console_waiter, true);
1763 spin = true;
1764 }
1765 raw_spin_unlock(&console_owner_lock);
1766
1767 /*
1768 * If there is an active printk() writing to the
1769 * consoles, instead of having it write our data too,
1770 * see if we can offload that load from the active
1771 * printer, and do some printing ourselves.
1772 * Go into a spin only if there isn't already a waiter
1773 * spinning, and there is an active printer, and
1774 * that active printer isn't us (recursive printk?).
1775 */
1776 if (!spin) {
1777 printk_safe_exit_irqrestore(flags);
1778 return 0;
1779 }
1780
1781 /* We spin waiting for the owner to release us */
1782 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1783 /* Owner will clear console_waiter on hand off */
1784 while (READ_ONCE(console_waiter))
1785 cpu_relax();
1786 spin_release(&console_owner_dep_map, _THIS_IP_);
1787
1788 printk_safe_exit_irqrestore(flags);
1789 /*
1790 * The owner passed the console lock to us.
1791 * Since we did not spin on console lock, annotate
1792 * this as a trylock. Otherwise lockdep will
1793 * complain.
1794 */
1795 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1796
1797 return 1;
1798 }
1799
1800 /*
1801 * Call the console drivers, asking them to write out
1802 * log_buf[start] to log_buf[end - 1].
1803 * The console_lock must be held.
1804 */
1805 static void call_console_drivers(const char *ext_text, size_t ext_len,
1806 const char *text, size_t len)
1807 {
1808 static char dropped_text[64];
1809 size_t dropped_len = 0;
1810 struct console *con;
1811
1812 trace_console_rcuidle(text, len);
1813
1814 if (!console_drivers)
1815 return;
1816
1817 if (console_dropped) {
1818 dropped_len = snprintf(dropped_text, sizeof(dropped_text),
1819 "** %lu printk messages dropped **\n",
1820 console_dropped);
1821 console_dropped = 0;
1822 }
1823
1824 for_each_console(con) {
1825 if (exclusive_console && con != exclusive_console)
1826 continue;
1827 if (!(con->flags & CON_ENABLED))
1828 continue;
1829 if (!con->write)
1830 continue;
1831 if (!cpu_online(smp_processor_id()) &&
1832 !(con->flags & CON_ANYTIME))
1833 continue;
1834 if (con->flags & CON_EXTENDED)
1835 con->write(con, ext_text, ext_len);
1836 else {
1837 if (dropped_len)
1838 con->write(con, dropped_text, dropped_len);
1839 con->write(con, text, len);
1840 }
1841 }
1842 }
1843
1844 int printk_delay_msec __read_mostly;
1845
1846 static inline void printk_delay(void)
1847 {
1848 if (unlikely(printk_delay_msec)) {
1849 int m = printk_delay_msec;
1850
1851 while (m--) {
1852 mdelay(1);
1853 touch_nmi_watchdog();
1854 }
1855 }
1856 }
1857
1858 static inline u32 printk_caller_id(void)
1859 {
1860 return in_task() ? task_pid_nr(current) :
1861 0x80000000 + raw_smp_processor_id();
1862 }
1863
1864 /**
1865 * parse_prefix - Parse level and control flags.
1866 *
1867 * @text: The terminated text message.
1868 * @level: A pointer to the current level value, will be updated.
1869 * @lflags: A pointer to the current log flags, will be updated.
1870 *
1871 * @level may be NULL if the caller is not interested in the parsed value.
1872 * Otherwise the variable pointed to by @level must be set to
1873 * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
1874 *
1875 * @lflags may be NULL if the caller is not interested in the parsed value.
1876 * Otherwise the variable pointed to by @lflags will be OR'd with the parsed
1877 * value.
1878 *
1879 * Return: The length of the parsed level and control flags.
1880 */
1881 static u16 parse_prefix(char *text, int *level, enum log_flags *lflags)
1882 {
1883 u16 prefix_len = 0;
1884 int kern_level;
1885
1886 while (*text) {
1887 kern_level = printk_get_level(text);
1888 if (!kern_level)
1889 break;
1890
1891 switch (kern_level) {
1892 case '0' ... '7':
1893 if (level && *level == LOGLEVEL_DEFAULT)
1894 *level = kern_level - '0';
1895 break;
1896 case 'c': /* KERN_CONT */
1897 if (lflags)
1898 *lflags |= LOG_CONT;
1899 }
1900
1901 prefix_len += 2;
1902 text += 2;
1903 }
1904
1905 return prefix_len;
1906 }
1907
1908 static u16 printk_sprint(char *text, u16 size, int facility, enum log_flags *lflags,
1909 const char *fmt, va_list args)
1910 {
1911 u16 text_len;
1912
1913 text_len = vscnprintf(text, size, fmt, args);
1914
1915 /* Mark and strip a trailing newline. */
1916 if (text_len && text[text_len - 1] == '\n') {
1917 text_len--;
1918 *lflags |= LOG_NEWLINE;
1919 }
1920
1921 /* Strip log level and control flags. */
1922 if (facility == 0) {
1923 u16 prefix_len;
1924
1925 prefix_len = parse_prefix(text, NULL, NULL);
1926 if (prefix_len) {
1927 text_len -= prefix_len;
1928 memmove(text, text + prefix_len, text_len);
1929 }
1930 }
1931
1932 return text_len;
1933 }
1934
1935 __printf(4, 0)
1936 int vprintk_store(int facility, int level,
1937 const struct dev_printk_info *dev_info,
1938 const char *fmt, va_list args)
1939 {
1940 const u32 caller_id = printk_caller_id();
1941 struct prb_reserved_entry e;
1942 enum log_flags lflags = 0;
1943 struct printk_record r;
1944 u16 trunc_msg_len = 0;
1945 char prefix_buf[8];
1946 u16 reserve_size;
1947 va_list args2;
1948 u16 text_len;
1949 u64 ts_nsec;
1950
1951 /*
1952 * Since the duration of printk() can vary depending on the message
1953 * and state of the ringbuffer, grab the timestamp now so that it is
1954 * close to the call of printk(). This provides a more deterministic
1955 * timestamp with respect to the caller.
1956 */
1957 ts_nsec = local_clock();
1958
1959 /*
1960 * The sprintf needs to come first since the syslog prefix might be
1961 * passed in as a parameter. An extra byte must be reserved so that
1962 * later the vscnprintf() into the reserved buffer has room for the
1963 * terminating '\0', which is not counted by vsnprintf().
1964 */
1965 va_copy(args2, args);
1966 reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
1967 va_end(args2);
1968
1969 if (reserve_size > LOG_LINE_MAX)
1970 reserve_size = LOG_LINE_MAX;
1971
1972 /* Extract log level or control flags. */
1973 if (facility == 0)
1974 parse_prefix(&prefix_buf[0], &level, &lflags);
1975
1976 if (level == LOGLEVEL_DEFAULT)
1977 level = default_message_loglevel;
1978
1979 if (dev_info)
1980 lflags |= LOG_NEWLINE;
1981
1982 if (lflags & LOG_CONT) {
1983 prb_rec_init_wr(&r, reserve_size);
1984 if (prb_reserve_in_last(&e, prb, &r, caller_id, LOG_LINE_MAX)) {
1985 text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
1986 facility, &lflags, fmt, args);
1987 r.info->text_len += text_len;
1988
1989 if (lflags & LOG_NEWLINE) {
1990 r.info->flags |= LOG_NEWLINE;
1991 prb_final_commit(&e);
1992 } else {
1993 prb_commit(&e);
1994 }
1995
1996 return text_len;
1997 }
1998 }
1999
2000 /*
2001 * Explicitly initialize the record before every prb_reserve() call.
2002 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2003 * structure when they fail.
2004 */
2005 prb_rec_init_wr(&r, reserve_size);
2006 if (!prb_reserve(&e, prb, &r)) {
2007 /* truncate the message if it is too long for empty buffer */
2008 truncate_msg(&reserve_size, &trunc_msg_len);
2009
2010 prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2011 if (!prb_reserve(&e, prb, &r))
2012 return 0;
2013 }
2014
2015 /* fill message */
2016 text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &lflags, fmt, args);
2017 if (trunc_msg_len)
2018 memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2019 r.info->text_len = text_len + trunc_msg_len;
2020 r.info->facility = facility;
2021 r.info->level = level & 7;
2022 r.info->flags = lflags & 0x1f;
2023 r.info->ts_nsec = ts_nsec;
2024 r.info->caller_id = caller_id;
2025 if (dev_info)
2026 memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2027
2028 /* A message without a trailing newline can be continued. */
2029 if (!(lflags & LOG_NEWLINE))
2030 prb_commit(&e);
2031 else
2032 prb_final_commit(&e);
2033
2034 return (text_len + trunc_msg_len);
2035 }
2036
2037 asmlinkage int vprintk_emit(int facility, int level,
2038 const struct dev_printk_info *dev_info,
2039 const char *fmt, va_list args)
2040 {
2041 int printed_len;
2042 bool in_sched = false;
2043 unsigned long flags;
2044
2045 /* Suppress unimportant messages after panic happens */
2046 if (unlikely(suppress_printk))
2047 return 0;
2048
2049 if (level == LOGLEVEL_SCHED) {
2050 level = LOGLEVEL_DEFAULT;
2051 in_sched = true;
2052 }
2053
2054 boot_delay_msec(level);
2055 printk_delay();
2056
2057 printk_safe_enter_irqsave(flags);
2058 printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2059 printk_safe_exit_irqrestore(flags);
2060
2061 /* If called from the scheduler, we can not call up(). */
2062 if (!in_sched) {
2063 /*
2064 * Disable preemption to avoid being preempted while holding
2065 * console_sem which would prevent anyone from printing to
2066 * console
2067 */
2068 preempt_disable();
2069 /*
2070 * Try to acquire and then immediately release the console
2071 * semaphore. The release will print out buffers and wake up
2072 * /dev/kmsg and syslog() users.
2073 */
2074 if (console_trylock_spinning())
2075 console_unlock();
2076 preempt_enable();
2077 }
2078
2079 wake_up_klogd();
2080 return printed_len;
2081 }
2082 EXPORT_SYMBOL(vprintk_emit);
2083
2084 asmlinkage int vprintk(const char *fmt, va_list args)
2085 {
2086 return vprintk_func(fmt, args);
2087 }
2088 EXPORT_SYMBOL(vprintk);
2089
2090 int vprintk_default(const char *fmt, va_list args)
2091 {
2092 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2093 }
2094 EXPORT_SYMBOL_GPL(vprintk_default);
2095
2096 /**
2097 * printk - print a kernel message
2098 * @fmt: format string
2099 *
2100 * This is printk(). It can be called from any context. We want it to work.
2101 *
2102 * We try to grab the console_lock. If we succeed, it's easy - we log the
2103 * output and call the console drivers. If we fail to get the semaphore, we
2104 * place the output into the log buffer and return. The current holder of
2105 * the console_sem will notice the new output in console_unlock(); and will
2106 * send it to the consoles before releasing the lock.
2107 *
2108 * One effect of this deferred printing is that code which calls printk() and
2109 * then changes console_loglevel may break. This is because console_loglevel
2110 * is inspected when the actual printing occurs.
2111 *
2112 * See also:
2113 * printf(3)
2114 *
2115 * See the vsnprintf() documentation for format string extensions over C99.
2116 */
2117 asmlinkage __visible int printk(const char *fmt, ...)
2118 {
2119 va_list args;
2120 int r;
2121
2122 va_start(args, fmt);
2123 r = vprintk_func(fmt, args);
2124 va_end(args);
2125
2126 return r;
2127 }
2128 EXPORT_SYMBOL(printk);
2129
2130 #else /* CONFIG_PRINTK */
2131
2132 #define LOG_LINE_MAX 0
2133 #define PREFIX_MAX 0
2134 #define printk_time false
2135
2136 #define prb_read_valid(rb, seq, r) false
2137 #define prb_first_valid_seq(rb) 0
2138
2139 static u64 syslog_seq;
2140 static u64 console_seq;
2141 static u64 exclusive_console_stop_seq;
2142 static unsigned long console_dropped;
2143
2144 static size_t record_print_text(const struct printk_record *r,
2145 bool syslog, bool time)
2146 {
2147 return 0;
2148 }
2149 static ssize_t info_print_ext_header(char *buf, size_t size,
2150 struct printk_info *info)
2151 {
2152 return 0;
2153 }
2154 static ssize_t msg_print_ext_body(char *buf, size_t size,
2155 char *text, size_t text_len,
2156 struct dev_printk_info *dev_info) { return 0; }
2157 static void console_lock_spinning_enable(void) { }
2158 static int console_lock_spinning_disable_and_check(void) { return 0; }
2159 static void call_console_drivers(const char *ext_text, size_t ext_len,
2160 const char *text, size_t len) {}
2161 static bool suppress_message_printing(int level) { return false; }
2162
2163 #endif /* CONFIG_PRINTK */
2164
2165 #ifdef CONFIG_EARLY_PRINTK
2166 struct console *early_console;
2167
2168 asmlinkage __visible void early_printk(const char *fmt, ...)
2169 {
2170 va_list ap;
2171 char buf[512];
2172 int n;
2173
2174 if (!early_console)
2175 return;
2176
2177 va_start(ap, fmt);
2178 n = vscnprintf(buf, sizeof(buf), fmt, ap);
2179 va_end(ap);
2180
2181 early_console->write(early_console, buf, n);
2182 }
2183 #endif
2184
2185 static int __add_preferred_console(char *name, int idx, char *options,
2186 char *brl_options, bool user_specified)
2187 {
2188 struct console_cmdline *c;
2189 int i;
2190
2191 /*
2192 * See if this tty is not yet registered, and
2193 * if we have a slot free.
2194 */
2195 for (i = 0, c = console_cmdline;
2196 i < MAX_CMDLINECONSOLES && c->name[0];
2197 i++, c++) {
2198 if (strcmp(c->name, name) == 0 && c->index == idx) {
2199 if (!brl_options)
2200 preferred_console = i;
2201 if (user_specified)
2202 c->user_specified = true;
2203 return 0;
2204 }
2205 }
2206 if (i == MAX_CMDLINECONSOLES)
2207 return -E2BIG;
2208 if (!brl_options)
2209 preferred_console = i;
2210 strlcpy(c->name, name, sizeof(c->name));
2211 c->options = options;
2212 c->user_specified = user_specified;
2213 braille_set_options(c, brl_options);
2214
2215 c->index = idx;
2216 return 0;
2217 }
2218
2219 static int __init console_msg_format_setup(char *str)
2220 {
2221 if (!strcmp(str, "syslog"))
2222 console_msg_format = MSG_FORMAT_SYSLOG;
2223 if (!strcmp(str, "default"))
2224 console_msg_format = MSG_FORMAT_DEFAULT;
2225 return 1;
2226 }
2227 __setup("console_msg_format=", console_msg_format_setup);
2228
2229 /*
2230 * Set up a console. Called via do_early_param() in init/main.c
2231 * for each "console=" parameter in the boot command line.
2232 */
2233 static int __init console_setup(char *str)
2234 {
2235 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2236 char *s, *options, *brl_options = NULL;
2237 int idx;
2238
2239 /*
2240 * console="" or console=null have been suggested as a way to
2241 * disable console output. Use ttynull that has been created
2242 * for exacly this purpose.
2243 */
2244 if (str[0] == 0 || strcmp(str, "null") == 0) {
2245 __add_preferred_console("ttynull", 0, NULL, NULL, true);
2246 return 1;
2247 }
2248
2249 if (_braille_console_setup(&str, &brl_options))
2250 return 1;
2251
2252 /*
2253 * Decode str into name, index, options.
2254 */
2255 if (str[0] >= '0' && str[0] <= '9') {
2256 strcpy(buf, "ttyS");
2257 strncpy(buf + 4, str, sizeof(buf) - 5);
2258 } else {
2259 strncpy(buf, str, sizeof(buf) - 1);
2260 }
2261 buf[sizeof(buf) - 1] = 0;
2262 options = strchr(str, ',');
2263 if (options)
2264 *(options++) = 0;
2265 #ifdef __sparc__
2266 if (!strcmp(str, "ttya"))
2267 strcpy(buf, "ttyS0");
2268 if (!strcmp(str, "ttyb"))
2269 strcpy(buf, "ttyS1");
2270 #endif
2271 for (s = buf; *s; s++)
2272 if (isdigit(*s) || *s == ',')
2273 break;
2274 idx = simple_strtoul(s, NULL, 10);
2275 *s = 0;
2276
2277 __add_preferred_console(buf, idx, options, brl_options, true);
2278 console_set_on_cmdline = 1;
2279 return 1;
2280 }
2281 __setup("console=", console_setup);
2282
2283 /**
2284 * add_preferred_console - add a device to the list of preferred consoles.
2285 * @name: device name
2286 * @idx: device index
2287 * @options: options for this console
2288 *
2289 * The last preferred console added will be used for kernel messages
2290 * and stdin/out/err for init. Normally this is used by console_setup
2291 * above to handle user-supplied console arguments; however it can also
2292 * be used by arch-specific code either to override the user or more
2293 * commonly to provide a default console (ie from PROM variables) when
2294 * the user has not supplied one.
2295 */
2296 int add_preferred_console(char *name, int idx, char *options)
2297 {
2298 return __add_preferred_console(name, idx, options, NULL, false);
2299 }
2300
2301 bool console_suspend_enabled = true;
2302 EXPORT_SYMBOL(console_suspend_enabled);
2303
2304 static int __init console_suspend_disable(char *str)
2305 {
2306 console_suspend_enabled = false;
2307 return 1;
2308 }
2309 __setup("no_console_suspend", console_suspend_disable);
2310 module_param_named(console_suspend, console_suspend_enabled,
2311 bool, S_IRUGO | S_IWUSR);
2312 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2313 " and hibernate operations");
2314
2315 /**
2316 * suspend_console - suspend the console subsystem
2317 *
2318 * This disables printk() while we go into suspend states
2319 */
2320 void suspend_console(void)
2321 {
2322 if (!console_suspend_enabled)
2323 return;
2324 pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2325 console_lock();
2326 console_suspended = 1;
2327 up_console_sem();
2328 }
2329
2330 void resume_console(void)
2331 {
2332 if (!console_suspend_enabled)
2333 return;
2334 down_console_sem();
2335 console_suspended = 0;
2336 console_unlock();
2337 }
2338
2339 /**
2340 * console_cpu_notify - print deferred console messages after CPU hotplug
2341 * @cpu: unused
2342 *
2343 * If printk() is called from a CPU that is not online yet, the messages
2344 * will be printed on the console only if there are CON_ANYTIME consoles.
2345 * This function is called when a new CPU comes online (or fails to come
2346 * up) or goes offline.
2347 */
2348 static int console_cpu_notify(unsigned int cpu)
2349 {
2350 if (!cpuhp_tasks_frozen) {
2351 /* If trylock fails, someone else is doing the printing */
2352 if (console_trylock())
2353 console_unlock();
2354 }
2355 return 0;
2356 }
2357
2358 /**
2359 * console_lock - lock the console system for exclusive use.
2360 *
2361 * Acquires a lock which guarantees that the caller has
2362 * exclusive access to the console system and the console_drivers list.
2363 *
2364 * Can sleep, returns nothing.
2365 */
2366 void console_lock(void)
2367 {
2368 might_sleep();
2369
2370 down_console_sem();
2371 if (console_suspended)
2372 return;
2373 console_locked = 1;
2374 console_may_schedule = 1;
2375 }
2376 EXPORT_SYMBOL(console_lock);
2377
2378 /**
2379 * console_trylock - try to lock the console system for exclusive use.
2380 *
2381 * Try to acquire a lock which guarantees that the caller has exclusive
2382 * access to the console system and the console_drivers list.
2383 *
2384 * returns 1 on success, and 0 on failure to acquire the lock.
2385 */
2386 int console_trylock(void)
2387 {
2388 if (down_trylock_console_sem())
2389 return 0;
2390 if (console_suspended) {
2391 up_console_sem();
2392 return 0;
2393 }
2394 console_locked = 1;
2395 console_may_schedule = 0;
2396 return 1;
2397 }
2398 EXPORT_SYMBOL(console_trylock);
2399
2400 int is_console_locked(void)
2401 {
2402 return console_locked;
2403 }
2404 EXPORT_SYMBOL(is_console_locked);
2405
2406 /*
2407 * Check if we have any console that is capable of printing while cpu is
2408 * booting or shutting down. Requires console_sem.
2409 */
2410 static int have_callable_console(void)
2411 {
2412 struct console *con;
2413
2414 for_each_console(con)
2415 if ((con->flags & CON_ENABLED) &&
2416 (con->flags & CON_ANYTIME))
2417 return 1;
2418
2419 return 0;
2420 }
2421
2422 /*
2423 * Can we actually use the console at this time on this cpu?
2424 *
2425 * Console drivers may assume that per-cpu resources have been allocated. So
2426 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2427 * call them until this CPU is officially up.
2428 */
2429 static inline int can_use_console(void)
2430 {
2431 return cpu_online(raw_smp_processor_id()) || have_callable_console();
2432 }
2433
2434 /**
2435 * console_unlock - unlock the console system
2436 *
2437 * Releases the console_lock which the caller holds on the console system
2438 * and the console driver list.
2439 *
2440 * While the console_lock was held, console output may have been buffered
2441 * by printk(). If this is the case, console_unlock(); emits
2442 * the output prior to releasing the lock.
2443 *
2444 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2445 *
2446 * console_unlock(); may be called from any context.
2447 */
2448 void console_unlock(void)
2449 {
2450 static char ext_text[CONSOLE_EXT_LOG_MAX];
2451 static char text[LOG_LINE_MAX + PREFIX_MAX];
2452 unsigned long flags;
2453 bool do_cond_resched, retry;
2454 struct printk_info info;
2455 struct printk_record r;
2456
2457 if (console_suspended) {
2458 up_console_sem();
2459 return;
2460 }
2461
2462 prb_rec_init_rd(&r, &info, text, sizeof(text));
2463
2464 /*
2465 * Console drivers are called with interrupts disabled, so
2466 * @console_may_schedule should be cleared before; however, we may
2467 * end up dumping a lot of lines, for example, if called from
2468 * console registration path, and should invoke cond_resched()
2469 * between lines if allowable. Not doing so can cause a very long
2470 * scheduling stall on a slow console leading to RCU stall and
2471 * softlockup warnings which exacerbate the issue with more
2472 * messages practically incapacitating the system.
2473 *
2474 * console_trylock() is not able to detect the preemptive
2475 * context reliably. Therefore the value must be stored before
2476 * and cleared after the "again" goto label.
2477 */
2478 do_cond_resched = console_may_schedule;
2479 again:
2480 console_may_schedule = 0;
2481
2482 /*
2483 * We released the console_sem lock, so we need to recheck if
2484 * cpu is online and (if not) is there at least one CON_ANYTIME
2485 * console.
2486 */
2487 if (!can_use_console()) {
2488 console_locked = 0;
2489 up_console_sem();
2490 return;
2491 }
2492
2493 for (;;) {
2494 size_t ext_len = 0;
2495 size_t len;
2496
2497 printk_safe_enter_irqsave(flags);
2498 raw_spin_lock(&logbuf_lock);
2499 skip:
2500 if (!prb_read_valid(prb, console_seq, &r))
2501 break;
2502
2503 if (console_seq != r.info->seq) {
2504 console_dropped += r.info->seq - console_seq;
2505 console_seq = r.info->seq;
2506 }
2507
2508 if (suppress_message_printing(r.info->level)) {
2509 /*
2510 * Skip record we have buffered and already printed
2511 * directly to the console when we received it, and
2512 * record that has level above the console loglevel.
2513 */
2514 console_seq++;
2515 goto skip;
2516 }
2517
2518 /* Output to all consoles once old messages replayed. */
2519 if (unlikely(exclusive_console &&
2520 console_seq >= exclusive_console_stop_seq)) {
2521 exclusive_console = NULL;
2522 }
2523
2524 /*
2525 * Handle extended console text first because later
2526 * record_print_text() will modify the record buffer in-place.
2527 */
2528 if (nr_ext_console_drivers) {
2529 ext_len = info_print_ext_header(ext_text,
2530 sizeof(ext_text),
2531 r.info);
2532 ext_len += msg_print_ext_body(ext_text + ext_len,
2533 sizeof(ext_text) - ext_len,
2534 &r.text_buf[0],
2535 r.info->text_len,
2536 &r.info->dev_info);
2537 }
2538 len = record_print_text(&r,
2539 console_msg_format & MSG_FORMAT_SYSLOG,
2540 printk_time);
2541 console_seq++;
2542 raw_spin_unlock(&logbuf_lock);
2543
2544 /*
2545 * While actively printing out messages, if another printk()
2546 * were to occur on another CPU, it may wait for this one to
2547 * finish. This task can not be preempted if there is a
2548 * waiter waiting to take over.
2549 */
2550 console_lock_spinning_enable();
2551
2552 stop_critical_timings(); /* don't trace print latency */
2553 call_console_drivers(ext_text, ext_len, text, len);
2554 start_critical_timings();
2555
2556 if (console_lock_spinning_disable_and_check()) {
2557 printk_safe_exit_irqrestore(flags);
2558 return;
2559 }
2560
2561 printk_safe_exit_irqrestore(flags);
2562
2563 if (do_cond_resched)
2564 cond_resched();
2565 }
2566
2567 console_locked = 0;
2568
2569 raw_spin_unlock(&logbuf_lock);
2570
2571 up_console_sem();
2572
2573 /*
2574 * Someone could have filled up the buffer again, so re-check if there's
2575 * something to flush. In case we cannot trylock the console_sem again,
2576 * there's a new owner and the console_unlock() from them will do the
2577 * flush, no worries.
2578 */
2579 raw_spin_lock(&logbuf_lock);
2580 retry = prb_read_valid(prb, console_seq, NULL);
2581 raw_spin_unlock(&logbuf_lock);
2582 printk_safe_exit_irqrestore(flags);
2583
2584 if (retry && console_trylock())
2585 goto again;
2586 }
2587 EXPORT_SYMBOL(console_unlock);
2588
2589 /**
2590 * console_conditional_schedule - yield the CPU if required
2591 *
2592 * If the console code is currently allowed to sleep, and
2593 * if this CPU should yield the CPU to another task, do
2594 * so here.
2595 *
2596 * Must be called within console_lock();.
2597 */
2598 void __sched console_conditional_schedule(void)
2599 {
2600 if (console_may_schedule)
2601 cond_resched();
2602 }
2603 EXPORT_SYMBOL(console_conditional_schedule);
2604
2605 void console_unblank(void)
2606 {
2607 struct console *c;
2608
2609 /*
2610 * console_unblank can no longer be called in interrupt context unless
2611 * oops_in_progress is set to 1..
2612 */
2613 if (oops_in_progress) {
2614 if (down_trylock_console_sem() != 0)
2615 return;
2616 } else
2617 console_lock();
2618
2619 console_locked = 1;
2620 console_may_schedule = 0;
2621 for_each_console(c)
2622 if ((c->flags & CON_ENABLED) && c->unblank)
2623 c->unblank();
2624 console_unlock();
2625 }
2626
2627 /**
2628 * console_flush_on_panic - flush console content on panic
2629 * @mode: flush all messages in buffer or just the pending ones
2630 *
2631 * Immediately output all pending messages no matter what.
2632 */
2633 void console_flush_on_panic(enum con_flush_mode mode)
2634 {
2635 /*
2636 * If someone else is holding the console lock, trylock will fail
2637 * and may_schedule may be set. Ignore and proceed to unlock so
2638 * that messages are flushed out. As this can be called from any
2639 * context and we don't want to get preempted while flushing,
2640 * ensure may_schedule is cleared.
2641 */
2642 console_trylock();
2643 console_may_schedule = 0;
2644
2645 if (mode == CONSOLE_REPLAY_ALL) {
2646 unsigned long flags;
2647
2648 logbuf_lock_irqsave(flags);
2649 console_seq = prb_first_valid_seq(prb);
2650 logbuf_unlock_irqrestore(flags);
2651 }
2652 console_unlock();
2653 }
2654
2655 /*
2656 * Return the console tty driver structure and its associated index
2657 */
2658 struct tty_driver *console_device(int *index)
2659 {
2660 struct console *c;
2661 struct tty_driver *driver = NULL;
2662
2663 console_lock();
2664 for_each_console(c) {
2665 if (!c->device)
2666 continue;
2667 driver = c->device(c, index);
2668 if (driver)
2669 break;
2670 }
2671 console_unlock();
2672 return driver;
2673 }
2674
2675 /*
2676 * Prevent further output on the passed console device so that (for example)
2677 * serial drivers can disable console output before suspending a port, and can
2678 * re-enable output afterwards.
2679 */
2680 void console_stop(struct console *console)
2681 {
2682 console_lock();
2683 console->flags &= ~CON_ENABLED;
2684 console_unlock();
2685 }
2686 EXPORT_SYMBOL(console_stop);
2687
2688 void console_start(struct console *console)
2689 {
2690 console_lock();
2691 console->flags |= CON_ENABLED;
2692 console_unlock();
2693 }
2694 EXPORT_SYMBOL(console_start);
2695
2696 static int __read_mostly keep_bootcon;
2697
2698 static int __init keep_bootcon_setup(char *str)
2699 {
2700 keep_bootcon = 1;
2701 pr_info("debug: skip boot console de-registration.\n");
2702
2703 return 0;
2704 }
2705
2706 early_param("keep_bootcon", keep_bootcon_setup);
2707
2708 /*
2709 * This is called by register_console() to try to match
2710 * the newly registered console with any of the ones selected
2711 * by either the command line or add_preferred_console() and
2712 * setup/enable it.
2713 *
2714 * Care need to be taken with consoles that are statically
2715 * enabled such as netconsole
2716 */
2717 static int try_enable_new_console(struct console *newcon, bool user_specified)
2718 {
2719 struct console_cmdline *c;
2720 int i, err;
2721
2722 for (i = 0, c = console_cmdline;
2723 i < MAX_CMDLINECONSOLES && c->name[0];
2724 i++, c++) {
2725 if (c->user_specified != user_specified)
2726 continue;
2727 if (!newcon->match ||
2728 newcon->match(newcon, c->name, c->index, c->options) != 0) {
2729 /* default matching */
2730 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2731 if (strcmp(c->name, newcon->name) != 0)
2732 continue;
2733 if (newcon->index >= 0 &&
2734 newcon->index != c->index)
2735 continue;
2736 if (newcon->index < 0)
2737 newcon->index = c->index;
2738
2739 if (_braille_register_console(newcon, c))
2740 return 0;
2741
2742 if (newcon->setup &&
2743 (err = newcon->setup(newcon, c->options)) != 0)
2744 return err;
2745 }
2746 newcon->flags |= CON_ENABLED;
2747 if (i == preferred_console) {
2748 newcon->flags |= CON_CONSDEV;
2749 has_preferred_console = true;
2750 }
2751 return 0;
2752 }
2753
2754 /*
2755 * Some consoles, such as pstore and netconsole, can be enabled even
2756 * without matching. Accept the pre-enabled consoles only when match()
2757 * and setup() had a chance to be called.
2758 */
2759 if (newcon->flags & CON_ENABLED && c->user_specified == user_specified)
2760 return 0;
2761
2762 return -ENOENT;
2763 }
2764
2765 /*
2766 * The console driver calls this routine during kernel initialization
2767 * to register the console printing procedure with printk() and to
2768 * print any messages that were printed by the kernel before the
2769 * console driver was initialized.
2770 *
2771 * This can happen pretty early during the boot process (because of
2772 * early_printk) - sometimes before setup_arch() completes - be careful
2773 * of what kernel features are used - they may not be initialised yet.
2774 *
2775 * There are two types of consoles - bootconsoles (early_printk) and
2776 * "real" consoles (everything which is not a bootconsole) which are
2777 * handled differently.
2778 * - Any number of bootconsoles can be registered at any time.
2779 * - As soon as a "real" console is registered, all bootconsoles
2780 * will be unregistered automatically.
2781 * - Once a "real" console is registered, any attempt to register a
2782 * bootconsoles will be rejected
2783 */
2784 void register_console(struct console *newcon)
2785 {
2786 unsigned long flags;
2787 struct console *bcon = NULL;
2788 int err;
2789
2790 for_each_console(bcon) {
2791 if (WARN(bcon == newcon, "console '%s%d' already registered\n",
2792 bcon->name, bcon->index))
2793 return;
2794 }
2795
2796 /*
2797 * before we register a new CON_BOOT console, make sure we don't
2798 * already have a valid console
2799 */
2800 if (newcon->flags & CON_BOOT) {
2801 for_each_console(bcon) {
2802 if (!(bcon->flags & CON_BOOT)) {
2803 pr_info("Too late to register bootconsole %s%d\n",
2804 newcon->name, newcon->index);
2805 return;
2806 }
2807 }
2808 }
2809
2810 if (console_drivers && console_drivers->flags & CON_BOOT)
2811 bcon = console_drivers;
2812
2813 if (!has_preferred_console || bcon || !console_drivers)
2814 has_preferred_console = preferred_console >= 0;
2815
2816 /*
2817 * See if we want to use this console driver. If we
2818 * didn't select a console we take the first one
2819 * that registers here.
2820 */
2821 if (!has_preferred_console) {
2822 if (newcon->index < 0)
2823 newcon->index = 0;
2824 if (newcon->setup == NULL ||
2825 newcon->setup(newcon, NULL) == 0) {
2826 newcon->flags |= CON_ENABLED;
2827 if (newcon->device) {
2828 newcon->flags |= CON_CONSDEV;
2829 has_preferred_console = true;
2830 }
2831 }
2832 }
2833
2834 /* See if this console matches one we selected on the command line */
2835 err = try_enable_new_console(newcon, true);
2836
2837 /* If not, try to match against the platform default(s) */
2838 if (err == -ENOENT)
2839 err = try_enable_new_console(newcon, false);
2840
2841 /* printk() messages are not printed to the Braille console. */
2842 if (err || newcon->flags & CON_BRL)
2843 return;
2844
2845 /*
2846 * If we have a bootconsole, and are switching to a real console,
2847 * don't print everything out again, since when the boot console, and
2848 * the real console are the same physical device, it's annoying to
2849 * see the beginning boot messages twice
2850 */
2851 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2852 newcon->flags &= ~CON_PRINTBUFFER;
2853
2854 /*
2855 * Put this console in the list - keep the
2856 * preferred driver at the head of the list.
2857 */
2858 console_lock();
2859 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2860 newcon->next = console_drivers;
2861 console_drivers = newcon;
2862 if (newcon->next)
2863 newcon->next->flags &= ~CON_CONSDEV;
2864 /* Ensure this flag is always set for the head of the list */
2865 newcon->flags |= CON_CONSDEV;
2866 } else {
2867 newcon->next = console_drivers->next;
2868 console_drivers->next = newcon;
2869 }
2870
2871 if (newcon->flags & CON_EXTENDED)
2872 nr_ext_console_drivers++;
2873
2874 if (newcon->flags & CON_PRINTBUFFER) {
2875 /*
2876 * console_unlock(); will print out the buffered messages
2877 * for us.
2878 */
2879 logbuf_lock_irqsave(flags);
2880 /*
2881 * We're about to replay the log buffer. Only do this to the
2882 * just-registered console to avoid excessive message spam to
2883 * the already-registered consoles.
2884 *
2885 * Set exclusive_console with disabled interrupts to reduce
2886 * race window with eventual console_flush_on_panic() that
2887 * ignores console_lock.
2888 */
2889 exclusive_console = newcon;
2890 exclusive_console_stop_seq = console_seq;
2891 console_seq = syslog_seq;
2892 logbuf_unlock_irqrestore(flags);
2893 }
2894 console_unlock();
2895 console_sysfs_notify();
2896
2897 /*
2898 * By unregistering the bootconsoles after we enable the real console
2899 * we get the "console xxx enabled" message on all the consoles -
2900 * boot consoles, real consoles, etc - this is to ensure that end
2901 * users know there might be something in the kernel's log buffer that
2902 * went to the bootconsole (that they do not see on the real console)
2903 */
2904 pr_info("%sconsole [%s%d] enabled\n",
2905 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2906 newcon->name, newcon->index);
2907 if (bcon &&
2908 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2909 !keep_bootcon) {
2910 /* We need to iterate through all boot consoles, to make
2911 * sure we print everything out, before we unregister them.
2912 */
2913 for_each_console(bcon)
2914 if (bcon->flags & CON_BOOT)
2915 unregister_console(bcon);
2916 }
2917 }
2918 EXPORT_SYMBOL(register_console);
2919
2920 int unregister_console(struct console *console)
2921 {
2922 struct console *con;
2923 int res;
2924
2925 pr_info("%sconsole [%s%d] disabled\n",
2926 (console->flags & CON_BOOT) ? "boot" : "" ,
2927 console->name, console->index);
2928
2929 res = _braille_unregister_console(console);
2930 if (res < 0)
2931 return res;
2932 if (res > 0)
2933 return 0;
2934
2935 res = -ENODEV;
2936 console_lock();
2937 if (console_drivers == console) {
2938 console_drivers=console->next;
2939 res = 0;
2940 } else {
2941 for_each_console(con) {
2942 if (con->next == console) {
2943 con->next = console->next;
2944 res = 0;
2945 break;
2946 }
2947 }
2948 }
2949
2950 if (res)
2951 goto out_disable_unlock;
2952
2953 if (console->flags & CON_EXTENDED)
2954 nr_ext_console_drivers--;
2955
2956 /*
2957 * If this isn't the last console and it has CON_CONSDEV set, we
2958 * need to set it on the next preferred console.
2959 */
2960 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2961 console_drivers->flags |= CON_CONSDEV;
2962
2963 console->flags &= ~CON_ENABLED;
2964 console_unlock();
2965 console_sysfs_notify();
2966
2967 if (console->exit)
2968 res = console->exit(console);
2969
2970 return res;
2971
2972 out_disable_unlock:
2973 console->flags &= ~CON_ENABLED;
2974 console_unlock();
2975
2976 return res;
2977 }
2978 EXPORT_SYMBOL(unregister_console);
2979
2980 /*
2981 * Initialize the console device. This is called *early*, so
2982 * we can't necessarily depend on lots of kernel help here.
2983 * Just do some early initializations, and do the complex setup
2984 * later.
2985 */
2986 void __init console_init(void)
2987 {
2988 int ret;
2989 initcall_t call;
2990 initcall_entry_t *ce;
2991
2992 /* Setup the default TTY line discipline. */
2993 n_tty_init();
2994
2995 /*
2996 * set up the console device so that later boot sequences can
2997 * inform about problems etc..
2998 */
2999 ce = __con_initcall_start;
3000 trace_initcall_level("console");
3001 while (ce < __con_initcall_end) {
3002 call = initcall_from_entry(ce);
3003 trace_initcall_start(call);
3004 ret = call();
3005 trace_initcall_finish(call, ret);
3006 ce++;
3007 }
3008 }
3009
3010 /*
3011 * Some boot consoles access data that is in the init section and which will
3012 * be discarded after the initcalls have been run. To make sure that no code
3013 * will access this data, unregister the boot consoles in a late initcall.
3014 *
3015 * If for some reason, such as deferred probe or the driver being a loadable
3016 * module, the real console hasn't registered yet at this point, there will
3017 * be a brief interval in which no messages are logged to the console, which
3018 * makes it difficult to diagnose problems that occur during this time.
3019 *
3020 * To mitigate this problem somewhat, only unregister consoles whose memory
3021 * intersects with the init section. Note that all other boot consoles will
3022 * get unregistred when the real preferred console is registered.
3023 */
3024 static int __init printk_late_init(void)
3025 {
3026 struct console *con;
3027 int ret;
3028
3029 for_each_console(con) {
3030 if (!(con->flags & CON_BOOT))
3031 continue;
3032
3033 /* Check addresses that might be used for enabled consoles. */
3034 if (init_section_intersects(con, sizeof(*con)) ||
3035 init_section_contains(con->write, 0) ||
3036 init_section_contains(con->read, 0) ||
3037 init_section_contains(con->device, 0) ||
3038 init_section_contains(con->unblank, 0) ||
3039 init_section_contains(con->data, 0)) {
3040 /*
3041 * Please, consider moving the reported consoles out
3042 * of the init section.
3043 */
3044 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3045 con->name, con->index);
3046 unregister_console(con);
3047 }
3048 }
3049 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3050 console_cpu_notify);
3051 WARN_ON(ret < 0);
3052 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3053 console_cpu_notify, NULL);
3054 WARN_ON(ret < 0);
3055 return 0;
3056 }
3057 late_initcall(printk_late_init);
3058
3059 #if defined CONFIG_PRINTK
3060 /*
3061 * Delayed printk version, for scheduler-internal messages:
3062 */
3063 #define PRINTK_PENDING_WAKEUP 0x01
3064 #define PRINTK_PENDING_OUTPUT 0x02
3065
3066 static DEFINE_PER_CPU(int, printk_pending);
3067
3068 static void wake_up_klogd_work_func(struct irq_work *irq_work)
3069 {
3070 int pending = __this_cpu_xchg(printk_pending, 0);
3071
3072 if (pending & PRINTK_PENDING_OUTPUT) {
3073 /* If trylock fails, someone else is doing the printing */
3074 if (console_trylock())
3075 console_unlock();
3076 }
3077
3078 if (pending & PRINTK_PENDING_WAKEUP)
3079 wake_up_interruptible(&log_wait);
3080 }
3081
3082 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
3083 .func = wake_up_klogd_work_func,
3084 .flags = ATOMIC_INIT(IRQ_WORK_LAZY),
3085 };
3086
3087 void wake_up_klogd(void)
3088 {
3089 if (!printk_percpu_data_ready())
3090 return;
3091
3092 preempt_disable();
3093 if (waitqueue_active(&log_wait)) {
3094 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
3095 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3096 }
3097 preempt_enable();
3098 }
3099
3100 void defer_console_output(void)
3101 {
3102 if (!printk_percpu_data_ready())
3103 return;
3104
3105 preempt_disable();
3106 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
3107 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3108 preempt_enable();
3109 }
3110
3111 int vprintk_deferred(const char *fmt, va_list args)
3112 {
3113 int r;
3114
3115 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
3116 defer_console_output();
3117
3118 return r;
3119 }
3120
3121 int printk_deferred(const char *fmt, ...)
3122 {
3123 va_list args;
3124 int r;
3125
3126 va_start(args, fmt);
3127 r = vprintk_deferred(fmt, args);
3128 va_end(args);
3129
3130 return r;
3131 }
3132
3133 /*
3134 * printk rate limiting, lifted from the networking subsystem.
3135 *
3136 * This enforces a rate limit: not more than 10 kernel messages
3137 * every 5s to make a denial-of-service attack impossible.
3138 */
3139 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3140
3141 int __printk_ratelimit(const char *func)
3142 {
3143 return ___ratelimit(&printk_ratelimit_state, func);
3144 }
3145 EXPORT_SYMBOL(__printk_ratelimit);
3146
3147 /**
3148 * printk_timed_ratelimit - caller-controlled printk ratelimiting
3149 * @caller_jiffies: pointer to caller's state
3150 * @interval_msecs: minimum interval between prints
3151 *
3152 * printk_timed_ratelimit() returns true if more than @interval_msecs
3153 * milliseconds have elapsed since the last time printk_timed_ratelimit()
3154 * returned true.
3155 */
3156 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3157 unsigned int interval_msecs)
3158 {
3159 unsigned long elapsed = jiffies - *caller_jiffies;
3160
3161 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3162 return false;
3163
3164 *caller_jiffies = jiffies;
3165 return true;
3166 }
3167 EXPORT_SYMBOL(printk_timed_ratelimit);
3168
3169 static DEFINE_SPINLOCK(dump_list_lock);
3170 static LIST_HEAD(dump_list);
3171
3172 /**
3173 * kmsg_dump_register - register a kernel log dumper.
3174 * @dumper: pointer to the kmsg_dumper structure
3175 *
3176 * Adds a kernel log dumper to the system. The dump callback in the
3177 * structure will be called when the kernel oopses or panics and must be
3178 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3179 */
3180 int kmsg_dump_register(struct kmsg_dumper *dumper)
3181 {
3182 unsigned long flags;
3183 int err = -EBUSY;
3184
3185 /* The dump callback needs to be set */
3186 if (!dumper->dump)
3187 return -EINVAL;
3188
3189 spin_lock_irqsave(&dump_list_lock, flags);
3190 /* Don't allow registering multiple times */
3191 if (!dumper->registered) {
3192 dumper->registered = 1;
3193 list_add_tail_rcu(&dumper->list, &dump_list);
3194 err = 0;
3195 }
3196 spin_unlock_irqrestore(&dump_list_lock, flags);
3197
3198 return err;
3199 }
3200 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3201
3202 /**
3203 * kmsg_dump_unregister - unregister a kmsg dumper.
3204 * @dumper: pointer to the kmsg_dumper structure
3205 *
3206 * Removes a dump device from the system. Returns zero on success and
3207 * %-EINVAL otherwise.
3208 */
3209 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3210 {
3211 unsigned long flags;
3212 int err = -EINVAL;
3213
3214 spin_lock_irqsave(&dump_list_lock, flags);
3215 if (dumper->registered) {
3216 dumper->registered = 0;
3217 list_del_rcu(&dumper->list);
3218 err = 0;
3219 }
3220 spin_unlock_irqrestore(&dump_list_lock, flags);
3221 synchronize_rcu();
3222
3223 return err;
3224 }
3225 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3226
3227 static bool always_kmsg_dump;
3228 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3229
3230 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
3231 {
3232 switch (reason) {
3233 case KMSG_DUMP_PANIC:
3234 return "Panic";
3235 case KMSG_DUMP_OOPS:
3236 return "Oops";
3237 case KMSG_DUMP_EMERG:
3238 return "Emergency";
3239 case KMSG_DUMP_SHUTDOWN:
3240 return "Shutdown";
3241 default:
3242 return "Unknown";
3243 }
3244 }
3245 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
3246
3247 /**
3248 * kmsg_dump - dump kernel log to kernel message dumpers.
3249 * @reason: the reason (oops, panic etc) for dumping
3250 *
3251 * Call each of the registered dumper's dump() callback, which can
3252 * retrieve the kmsg records with kmsg_dump_get_line() or
3253 * kmsg_dump_get_buffer().
3254 */
3255 void kmsg_dump(enum kmsg_dump_reason reason)
3256 {
3257 struct kmsg_dumper *dumper;
3258 unsigned long flags;
3259
3260 rcu_read_lock();
3261 list_for_each_entry_rcu(dumper, &dump_list, list) {
3262 enum kmsg_dump_reason max_reason = dumper->max_reason;
3263
3264 /*
3265 * If client has not provided a specific max_reason, default
3266 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
3267 */
3268 if (max_reason == KMSG_DUMP_UNDEF) {
3269 max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
3270 KMSG_DUMP_OOPS;
3271 }
3272 if (reason > max_reason)
3273 continue;
3274
3275 /* initialize iterator with data about the stored records */
3276 dumper->active = true;
3277
3278 logbuf_lock_irqsave(flags);
3279 dumper->cur_seq = clear_seq;
3280 dumper->next_seq = prb_next_seq(prb);
3281 logbuf_unlock_irqrestore(flags);
3282
3283 /* invoke dumper which will iterate over records */
3284 dumper->dump(dumper, reason);
3285
3286 /* reset iterator */
3287 dumper->active = false;
3288 }
3289 rcu_read_unlock();
3290 }
3291
3292 /**
3293 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3294 * @dumper: registered kmsg dumper
3295 * @syslog: include the "<4>" prefixes
3296 * @line: buffer to copy the line to
3297 * @size: maximum size of the buffer
3298 * @len: length of line placed into buffer
3299 *
3300 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3301 * record, and copy one record into the provided buffer.
3302 *
3303 * Consecutive calls will return the next available record moving
3304 * towards the end of the buffer with the youngest messages.
3305 *
3306 * A return value of FALSE indicates that there are no more records to
3307 * read.
3308 *
3309 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3310 */
3311 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3312 char *line, size_t size, size_t *len)
3313 {
3314 struct printk_info info;
3315 unsigned int line_count;
3316 struct printk_record r;
3317 size_t l = 0;
3318 bool ret = false;
3319
3320 prb_rec_init_rd(&r, &info, line, size);
3321
3322 if (!dumper->active)
3323 goto out;
3324
3325 /* Read text or count text lines? */
3326 if (line) {
3327 if (!prb_read_valid(prb, dumper->cur_seq, &r))
3328 goto out;
3329 l = record_print_text(&r, syslog, printk_time);
3330 } else {
3331 if (!prb_read_valid_info(prb, dumper->cur_seq,
3332 &info, &line_count)) {
3333 goto out;
3334 }
3335 l = get_record_print_text_size(&info, line_count, syslog,
3336 printk_time);
3337
3338 }
3339
3340 dumper->cur_seq = r.info->seq + 1;
3341 ret = true;
3342 out:
3343 if (len)
3344 *len = l;
3345 return ret;
3346 }
3347
3348 /**
3349 * kmsg_dump_get_line - retrieve one kmsg log line
3350 * @dumper: registered kmsg dumper
3351 * @syslog: include the "<4>" prefixes
3352 * @line: buffer to copy the line to
3353 * @size: maximum size of the buffer
3354 * @len: length of line placed into buffer
3355 *
3356 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3357 * record, and copy one record into the provided buffer.
3358 *
3359 * Consecutive calls will return the next available record moving
3360 * towards the end of the buffer with the youngest messages.
3361 *
3362 * A return value of FALSE indicates that there are no more records to
3363 * read.
3364 */
3365 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3366 char *line, size_t size, size_t *len)
3367 {
3368 unsigned long flags;
3369 bool ret;
3370
3371 logbuf_lock_irqsave(flags);
3372 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3373 logbuf_unlock_irqrestore(flags);
3374
3375 return ret;
3376 }
3377 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3378
3379 /**
3380 * kmsg_dump_get_buffer - copy kmsg log lines
3381 * @dumper: registered kmsg dumper
3382 * @syslog: include the "<4>" prefixes
3383 * @buf: buffer to copy the line to
3384 * @size: maximum size of the buffer
3385 * @len: length of line placed into buffer
3386 *
3387 * Start at the end of the kmsg buffer and fill the provided buffer
3388 * with as many of the *youngest* kmsg records that fit into it.
3389 * If the buffer is large enough, all available kmsg records will be
3390 * copied with a single call.
3391 *
3392 * Consecutive calls will fill the buffer with the next block of
3393 * available older records, not including the earlier retrieved ones.
3394 *
3395 * A return value of FALSE indicates that there are no more records to
3396 * read.
3397 */
3398 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3399 char *buf, size_t size, size_t *len)
3400 {
3401 struct printk_info info;
3402 unsigned int line_count;
3403 struct printk_record r;
3404 unsigned long flags;
3405 u64 seq;
3406 u64 next_seq;
3407 size_t l = 0;
3408 bool ret = false;
3409 bool time = printk_time;
3410
3411 prb_rec_init_rd(&r, &info, buf, size);
3412
3413 if (!dumper->active || !buf || !size)
3414 goto out;
3415
3416 logbuf_lock_irqsave(flags);
3417 if (dumper->cur_seq < prb_first_valid_seq(prb)) {
3418 /* messages are gone, move to first available one */
3419 dumper->cur_seq = prb_first_valid_seq(prb);
3420 }
3421
3422 /* last entry */
3423 if (dumper->cur_seq >= dumper->next_seq) {
3424 logbuf_unlock_irqrestore(flags);
3425 goto out;
3426 }
3427
3428 /* calculate length of entire buffer */
3429 seq = dumper->cur_seq;
3430 while (prb_read_valid_info(prb, seq, &info, &line_count)) {
3431 if (r.info->seq >= dumper->next_seq)
3432 break;
3433 l += get_record_print_text_size(&info, line_count, true, time);
3434 seq = r.info->seq + 1;
3435 }
3436
3437 /* move first record forward until length fits into the buffer */
3438 seq = dumper->cur_seq;
3439 while (l >= size && prb_read_valid_info(prb, seq,
3440 &info, &line_count)) {
3441 if (r.info->seq >= dumper->next_seq)
3442 break;
3443 l -= get_record_print_text_size(&info, line_count, true, time);
3444 seq = r.info->seq + 1;
3445 }
3446
3447 /* last message in next interation */
3448 next_seq = seq;
3449
3450 /* actually read text into the buffer now */
3451 l = 0;
3452 while (prb_read_valid(prb, seq, &r)) {
3453 if (r.info->seq >= dumper->next_seq)
3454 break;
3455
3456 l += record_print_text(&r, syslog, time);
3457
3458 /* adjust record to store to remaining buffer space */
3459 prb_rec_init_rd(&r, &info, buf + l, size - l);
3460
3461 seq = r.info->seq + 1;
3462 }
3463
3464 dumper->next_seq = next_seq;
3465 ret = true;
3466 logbuf_unlock_irqrestore(flags);
3467 out:
3468 if (len)
3469 *len = l;
3470 return ret;
3471 }
3472 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3473
3474 /**
3475 * kmsg_dump_rewind_nolock - reset the iterator (unlocked version)
3476 * @dumper: registered kmsg dumper
3477 *
3478 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3479 * kmsg_dump_get_buffer() can be called again and used multiple
3480 * times within the same dumper.dump() callback.
3481 *
3482 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3483 */
3484 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3485 {
3486 dumper->cur_seq = clear_seq;
3487 dumper->next_seq = prb_next_seq(prb);
3488 }
3489
3490 /**
3491 * kmsg_dump_rewind - reset the iterator
3492 * @dumper: registered kmsg dumper
3493 *
3494 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3495 * kmsg_dump_get_buffer() can be called again and used multiple
3496 * times within the same dumper.dump() callback.
3497 */
3498 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3499 {
3500 unsigned long flags;
3501
3502 logbuf_lock_irqsave(flags);
3503 kmsg_dump_rewind_nolock(dumper);
3504 logbuf_unlock_irqrestore(flags);
3505 }
3506 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3507
3508 #endif