]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/printk/printk.c
Revert "printk: make reading the kernel log flush pending lines"
[thirdparty/linux.git] / kernel / printk / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/delay.h>
30 #include <linux/smp.h>
31 #include <linux/security.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/syscalls.h>
35 #include <linux/kexec.h>
36 #include <linux/kdb.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kmsg_dump.h>
39 #include <linux/syslog.h>
40 #include <linux/cpu.h>
41 #include <linux/notifier.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/utsname.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48
49 #include <asm/uaccess.h>
50 #include <asm/sections.h>
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/printk.h>
54
55 #include "console_cmdline.h"
56 #include "braille.h"
57 #include "internal.h"
58
59 int console_printk[4] = {
60 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
61 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
62 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
63 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
64 };
65
66 /*
67 * Low level drivers may need that to know if they can schedule in
68 * their unblank() callback or not. So let's export it.
69 */
70 int oops_in_progress;
71 EXPORT_SYMBOL(oops_in_progress);
72
73 /*
74 * console_sem protects the console_drivers list, and also
75 * provides serialisation for access to the entire console
76 * driver system.
77 */
78 static DEFINE_SEMAPHORE(console_sem);
79 struct console *console_drivers;
80 EXPORT_SYMBOL_GPL(console_drivers);
81
82 #ifdef CONFIG_LOCKDEP
83 static struct lockdep_map console_lock_dep_map = {
84 .name = "console_lock"
85 };
86 #endif
87
88 enum devkmsg_log_bits {
89 __DEVKMSG_LOG_BIT_ON = 0,
90 __DEVKMSG_LOG_BIT_OFF,
91 __DEVKMSG_LOG_BIT_LOCK,
92 };
93
94 enum devkmsg_log_masks {
95 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON),
96 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF),
97 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK),
98 };
99
100 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
101 #define DEVKMSG_LOG_MASK_DEFAULT 0
102
103 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
104
105 static int __control_devkmsg(char *str)
106 {
107 if (!str)
108 return -EINVAL;
109
110 if (!strncmp(str, "on", 2)) {
111 devkmsg_log = DEVKMSG_LOG_MASK_ON;
112 return 2;
113 } else if (!strncmp(str, "off", 3)) {
114 devkmsg_log = DEVKMSG_LOG_MASK_OFF;
115 return 3;
116 } else if (!strncmp(str, "ratelimit", 9)) {
117 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
118 return 9;
119 }
120 return -EINVAL;
121 }
122
123 static int __init control_devkmsg(char *str)
124 {
125 if (__control_devkmsg(str) < 0)
126 return 1;
127
128 /*
129 * Set sysctl string accordingly:
130 */
131 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) {
132 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
133 strncpy(devkmsg_log_str, "on", 2);
134 } else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) {
135 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
136 strncpy(devkmsg_log_str, "off", 3);
137 }
138 /* else "ratelimit" which is set by default. */
139
140 /*
141 * Sysctl cannot change it anymore. The kernel command line setting of
142 * this parameter is to force the setting to be permanent throughout the
143 * runtime of the system. This is a precation measure against userspace
144 * trying to be a smarta** and attempting to change it up on us.
145 */
146 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
147
148 return 0;
149 }
150 __setup("printk.devkmsg=", control_devkmsg);
151
152 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
153
154 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
155 void __user *buffer, size_t *lenp, loff_t *ppos)
156 {
157 char old_str[DEVKMSG_STR_MAX_SIZE];
158 unsigned int old;
159 int err;
160
161 if (write) {
162 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
163 return -EINVAL;
164
165 old = devkmsg_log;
166 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
167 }
168
169 err = proc_dostring(table, write, buffer, lenp, ppos);
170 if (err)
171 return err;
172
173 if (write) {
174 err = __control_devkmsg(devkmsg_log_str);
175
176 /*
177 * Do not accept an unknown string OR a known string with
178 * trailing crap...
179 */
180 if (err < 0 || (err + 1 != *lenp)) {
181
182 /* ... and restore old setting. */
183 devkmsg_log = old;
184 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
185
186 return -EINVAL;
187 }
188 }
189
190 return 0;
191 }
192
193 /*
194 * Number of registered extended console drivers.
195 *
196 * If extended consoles are present, in-kernel cont reassembly is disabled
197 * and each fragment is stored as a separate log entry with proper
198 * continuation flag so that every emitted message has full metadata. This
199 * doesn't change the result for regular consoles or /proc/kmsg. For
200 * /dev/kmsg, as long as the reader concatenates messages according to
201 * consecutive continuation flags, the end result should be the same too.
202 */
203 static int nr_ext_console_drivers;
204
205 /*
206 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
207 * macros instead of functions so that _RET_IP_ contains useful information.
208 */
209 #define down_console_sem() do { \
210 down(&console_sem);\
211 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
212 } while (0)
213
214 static int __down_trylock_console_sem(unsigned long ip)
215 {
216 if (down_trylock(&console_sem))
217 return 1;
218 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
219 return 0;
220 }
221 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
222
223 #define up_console_sem() do { \
224 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
225 up(&console_sem);\
226 } while (0)
227
228 /*
229 * This is used for debugging the mess that is the VT code by
230 * keeping track if we have the console semaphore held. It's
231 * definitely not the perfect debug tool (we don't know if _WE_
232 * hold it and are racing, but it helps tracking those weird code
233 * paths in the console code where we end up in places I want
234 * locked without the console sempahore held).
235 */
236 static int console_locked, console_suspended;
237
238 /*
239 * If exclusive_console is non-NULL then only this console is to be printed to.
240 */
241 static struct console *exclusive_console;
242
243 /*
244 * Array of consoles built from command line options (console=)
245 */
246
247 #define MAX_CMDLINECONSOLES 8
248
249 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
250
251 static int selected_console = -1;
252 static int preferred_console = -1;
253 int console_set_on_cmdline;
254 EXPORT_SYMBOL(console_set_on_cmdline);
255
256 /* Flag: console code may call schedule() */
257 static int console_may_schedule;
258
259 /*
260 * The printk log buffer consists of a chain of concatenated variable
261 * length records. Every record starts with a record header, containing
262 * the overall length of the record.
263 *
264 * The heads to the first and last entry in the buffer, as well as the
265 * sequence numbers of these entries are maintained when messages are
266 * stored.
267 *
268 * If the heads indicate available messages, the length in the header
269 * tells the start next message. A length == 0 for the next message
270 * indicates a wrap-around to the beginning of the buffer.
271 *
272 * Every record carries the monotonic timestamp in microseconds, as well as
273 * the standard userspace syslog level and syslog facility. The usual
274 * kernel messages use LOG_KERN; userspace-injected messages always carry
275 * a matching syslog facility, by default LOG_USER. The origin of every
276 * message can be reliably determined that way.
277 *
278 * The human readable log message directly follows the message header. The
279 * length of the message text is stored in the header, the stored message
280 * is not terminated.
281 *
282 * Optionally, a message can carry a dictionary of properties (key/value pairs),
283 * to provide userspace with a machine-readable message context.
284 *
285 * Examples for well-defined, commonly used property names are:
286 * DEVICE=b12:8 device identifier
287 * b12:8 block dev_t
288 * c127:3 char dev_t
289 * n8 netdev ifindex
290 * +sound:card0 subsystem:devname
291 * SUBSYSTEM=pci driver-core subsystem name
292 *
293 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
294 * follows directly after a '=' character. Every property is terminated by
295 * a '\0' character. The last property is not terminated.
296 *
297 * Example of a message structure:
298 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
299 * 0008 34 00 record is 52 bytes long
300 * 000a 0b 00 text is 11 bytes long
301 * 000c 1f 00 dictionary is 23 bytes long
302 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
303 * 0010 69 74 27 73 20 61 20 6c "it's a l"
304 * 69 6e 65 "ine"
305 * 001b 44 45 56 49 43 "DEVIC"
306 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
307 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
308 * 67 "g"
309 * 0032 00 00 00 padding to next message header
310 *
311 * The 'struct printk_log' buffer header must never be directly exported to
312 * userspace, it is a kernel-private implementation detail that might
313 * need to be changed in the future, when the requirements change.
314 *
315 * /dev/kmsg exports the structured data in the following line format:
316 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
317 *
318 * Users of the export format should ignore possible additional values
319 * separated by ',', and find the message after the ';' character.
320 *
321 * The optional key/value pairs are attached as continuation lines starting
322 * with a space character and terminated by a newline. All possible
323 * non-prinatable characters are escaped in the "\xff" notation.
324 */
325
326 enum log_flags {
327 LOG_NOCONS = 1, /* already flushed, do not print to console */
328 LOG_NEWLINE = 2, /* text ended with a newline */
329 LOG_PREFIX = 4, /* text started with a prefix */
330 LOG_CONT = 8, /* text is a fragment of a continuation line */
331 };
332
333 struct printk_log {
334 u64 ts_nsec; /* timestamp in nanoseconds */
335 u16 len; /* length of entire record */
336 u16 text_len; /* length of text buffer */
337 u16 dict_len; /* length of dictionary buffer */
338 u8 facility; /* syslog facility */
339 u8 flags:5; /* internal record flags */
340 u8 level:3; /* syslog level */
341 }
342 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
343 __packed __aligned(4)
344 #endif
345 ;
346
347 /*
348 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
349 * within the scheduler's rq lock. It must be released before calling
350 * console_unlock() or anything else that might wake up a process.
351 */
352 DEFINE_RAW_SPINLOCK(logbuf_lock);
353
354 #ifdef CONFIG_PRINTK
355 DECLARE_WAIT_QUEUE_HEAD(log_wait);
356 /* the next printk record to read by syslog(READ) or /proc/kmsg */
357 static u64 syslog_seq;
358 static u32 syslog_idx;
359 static enum log_flags syslog_prev;
360 static size_t syslog_partial;
361
362 /* index and sequence number of the first record stored in the buffer */
363 static u64 log_first_seq;
364 static u32 log_first_idx;
365
366 /* index and sequence number of the next record to store in the buffer */
367 static u64 log_next_seq;
368 static u32 log_next_idx;
369
370 /* the next printk record to write to the console */
371 static u64 console_seq;
372 static u32 console_idx;
373 static enum log_flags console_prev;
374
375 /* the next printk record to read after the last 'clear' command */
376 static u64 clear_seq;
377 static u32 clear_idx;
378
379 #define PREFIX_MAX 32
380 #define LOG_LINE_MAX (1024 - PREFIX_MAX)
381
382 #define LOG_LEVEL(v) ((v) & 0x07)
383 #define LOG_FACILITY(v) ((v) >> 3 & 0xff)
384
385 /* record buffer */
386 #define LOG_ALIGN __alignof__(struct printk_log)
387 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
388 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
389 static char *log_buf = __log_buf;
390 static u32 log_buf_len = __LOG_BUF_LEN;
391
392 /* Return log buffer address */
393 char *log_buf_addr_get(void)
394 {
395 return log_buf;
396 }
397
398 /* Return log buffer size */
399 u32 log_buf_len_get(void)
400 {
401 return log_buf_len;
402 }
403
404 /* human readable text of the record */
405 static char *log_text(const struct printk_log *msg)
406 {
407 return (char *)msg + sizeof(struct printk_log);
408 }
409
410 /* optional key/value pair dictionary attached to the record */
411 static char *log_dict(const struct printk_log *msg)
412 {
413 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
414 }
415
416 /* get record by index; idx must point to valid msg */
417 static struct printk_log *log_from_idx(u32 idx)
418 {
419 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
420
421 /*
422 * A length == 0 record is the end of buffer marker. Wrap around and
423 * read the message at the start of the buffer.
424 */
425 if (!msg->len)
426 return (struct printk_log *)log_buf;
427 return msg;
428 }
429
430 /* get next record; idx must point to valid msg */
431 static u32 log_next(u32 idx)
432 {
433 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
434
435 /* length == 0 indicates the end of the buffer; wrap */
436 /*
437 * A length == 0 record is the end of buffer marker. Wrap around and
438 * read the message at the start of the buffer as *this* one, and
439 * return the one after that.
440 */
441 if (!msg->len) {
442 msg = (struct printk_log *)log_buf;
443 return msg->len;
444 }
445 return idx + msg->len;
446 }
447
448 /*
449 * Check whether there is enough free space for the given message.
450 *
451 * The same values of first_idx and next_idx mean that the buffer
452 * is either empty or full.
453 *
454 * If the buffer is empty, we must respect the position of the indexes.
455 * They cannot be reset to the beginning of the buffer.
456 */
457 static int logbuf_has_space(u32 msg_size, bool empty)
458 {
459 u32 free;
460
461 if (log_next_idx > log_first_idx || empty)
462 free = max(log_buf_len - log_next_idx, log_first_idx);
463 else
464 free = log_first_idx - log_next_idx;
465
466 /*
467 * We need space also for an empty header that signalizes wrapping
468 * of the buffer.
469 */
470 return free >= msg_size + sizeof(struct printk_log);
471 }
472
473 static int log_make_free_space(u32 msg_size)
474 {
475 while (log_first_seq < log_next_seq &&
476 !logbuf_has_space(msg_size, false)) {
477 /* drop old messages until we have enough contiguous space */
478 log_first_idx = log_next(log_first_idx);
479 log_first_seq++;
480 }
481
482 if (clear_seq < log_first_seq) {
483 clear_seq = log_first_seq;
484 clear_idx = log_first_idx;
485 }
486
487 /* sequence numbers are equal, so the log buffer is empty */
488 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
489 return 0;
490
491 return -ENOMEM;
492 }
493
494 /* compute the message size including the padding bytes */
495 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
496 {
497 u32 size;
498
499 size = sizeof(struct printk_log) + text_len + dict_len;
500 *pad_len = (-size) & (LOG_ALIGN - 1);
501 size += *pad_len;
502
503 return size;
504 }
505
506 /*
507 * Define how much of the log buffer we could take at maximum. The value
508 * must be greater than two. Note that only half of the buffer is available
509 * when the index points to the middle.
510 */
511 #define MAX_LOG_TAKE_PART 4
512 static const char trunc_msg[] = "<truncated>";
513
514 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
515 u16 *dict_len, u32 *pad_len)
516 {
517 /*
518 * The message should not take the whole buffer. Otherwise, it might
519 * get removed too soon.
520 */
521 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
522 if (*text_len > max_text_len)
523 *text_len = max_text_len;
524 /* enable the warning message */
525 *trunc_msg_len = strlen(trunc_msg);
526 /* disable the "dict" completely */
527 *dict_len = 0;
528 /* compute the size again, count also the warning message */
529 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
530 }
531
532 /* insert record into the buffer, discard old ones, update heads */
533 static int log_store(int facility, int level,
534 enum log_flags flags, u64 ts_nsec,
535 const char *dict, u16 dict_len,
536 const char *text, u16 text_len)
537 {
538 struct printk_log *msg;
539 u32 size, pad_len;
540 u16 trunc_msg_len = 0;
541
542 /* number of '\0' padding bytes to next message */
543 size = msg_used_size(text_len, dict_len, &pad_len);
544
545 if (log_make_free_space(size)) {
546 /* truncate the message if it is too long for empty buffer */
547 size = truncate_msg(&text_len, &trunc_msg_len,
548 &dict_len, &pad_len);
549 /* survive when the log buffer is too small for trunc_msg */
550 if (log_make_free_space(size))
551 return 0;
552 }
553
554 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
555 /*
556 * This message + an additional empty header does not fit
557 * at the end of the buffer. Add an empty header with len == 0
558 * to signify a wrap around.
559 */
560 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
561 log_next_idx = 0;
562 }
563
564 /* fill message */
565 msg = (struct printk_log *)(log_buf + log_next_idx);
566 memcpy(log_text(msg), text, text_len);
567 msg->text_len = text_len;
568 if (trunc_msg_len) {
569 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
570 msg->text_len += trunc_msg_len;
571 }
572 memcpy(log_dict(msg), dict, dict_len);
573 msg->dict_len = dict_len;
574 msg->facility = facility;
575 msg->level = level & 7;
576 msg->flags = flags & 0x1f;
577 if (ts_nsec > 0)
578 msg->ts_nsec = ts_nsec;
579 else
580 msg->ts_nsec = local_clock();
581 memset(log_dict(msg) + dict_len, 0, pad_len);
582 msg->len = size;
583
584 /* insert message */
585 log_next_idx += msg->len;
586 log_next_seq++;
587
588 return msg->text_len;
589 }
590
591 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
592
593 static int syslog_action_restricted(int type)
594 {
595 if (dmesg_restrict)
596 return 1;
597 /*
598 * Unless restricted, we allow "read all" and "get buffer size"
599 * for everybody.
600 */
601 return type != SYSLOG_ACTION_READ_ALL &&
602 type != SYSLOG_ACTION_SIZE_BUFFER;
603 }
604
605 int check_syslog_permissions(int type, int source)
606 {
607 /*
608 * If this is from /proc/kmsg and we've already opened it, then we've
609 * already done the capabilities checks at open time.
610 */
611 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
612 goto ok;
613
614 if (syslog_action_restricted(type)) {
615 if (capable(CAP_SYSLOG))
616 goto ok;
617 /*
618 * For historical reasons, accept CAP_SYS_ADMIN too, with
619 * a warning.
620 */
621 if (capable(CAP_SYS_ADMIN)) {
622 pr_warn_once("%s (%d): Attempt to access syslog with "
623 "CAP_SYS_ADMIN but no CAP_SYSLOG "
624 "(deprecated).\n",
625 current->comm, task_pid_nr(current));
626 goto ok;
627 }
628 return -EPERM;
629 }
630 ok:
631 return security_syslog(type);
632 }
633 EXPORT_SYMBOL_GPL(check_syslog_permissions);
634
635 static void append_char(char **pp, char *e, char c)
636 {
637 if (*pp < e)
638 *(*pp)++ = c;
639 }
640
641 static ssize_t msg_print_ext_header(char *buf, size_t size,
642 struct printk_log *msg, u64 seq,
643 enum log_flags prev_flags)
644 {
645 u64 ts_usec = msg->ts_nsec;
646 char cont = '-';
647
648 do_div(ts_usec, 1000);
649
650 /*
651 * If we couldn't merge continuation line fragments during the print,
652 * export the stored flags to allow an optional external merge of the
653 * records. Merging the records isn't always neccessarily correct, like
654 * when we hit a race during printing. In most cases though, it produces
655 * better readable output. 'c' in the record flags mark the first
656 * fragment of a line, '+' the following.
657 */
658 if (msg->flags & LOG_CONT)
659 cont = (prev_flags & LOG_CONT) ? '+' : 'c';
660
661 return scnprintf(buf, size, "%u,%llu,%llu,%c;",
662 (msg->facility << 3) | msg->level, seq, ts_usec, cont);
663 }
664
665 static ssize_t msg_print_ext_body(char *buf, size_t size,
666 char *dict, size_t dict_len,
667 char *text, size_t text_len)
668 {
669 char *p = buf, *e = buf + size;
670 size_t i;
671
672 /* escape non-printable characters */
673 for (i = 0; i < text_len; i++) {
674 unsigned char c = text[i];
675
676 if (c < ' ' || c >= 127 || c == '\\')
677 p += scnprintf(p, e - p, "\\x%02x", c);
678 else
679 append_char(&p, e, c);
680 }
681 append_char(&p, e, '\n');
682
683 if (dict_len) {
684 bool line = true;
685
686 for (i = 0; i < dict_len; i++) {
687 unsigned char c = dict[i];
688
689 if (line) {
690 append_char(&p, e, ' ');
691 line = false;
692 }
693
694 if (c == '\0') {
695 append_char(&p, e, '\n');
696 line = true;
697 continue;
698 }
699
700 if (c < ' ' || c >= 127 || c == '\\') {
701 p += scnprintf(p, e - p, "\\x%02x", c);
702 continue;
703 }
704
705 append_char(&p, e, c);
706 }
707 append_char(&p, e, '\n');
708 }
709
710 return p - buf;
711 }
712
713 /* /dev/kmsg - userspace message inject/listen interface */
714 struct devkmsg_user {
715 u64 seq;
716 u32 idx;
717 enum log_flags prev;
718 struct ratelimit_state rs;
719 struct mutex lock;
720 char buf[CONSOLE_EXT_LOG_MAX];
721 };
722
723 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
724 {
725 char *buf, *line;
726 int level = default_message_loglevel;
727 int facility = 1; /* LOG_USER */
728 struct file *file = iocb->ki_filp;
729 struct devkmsg_user *user = file->private_data;
730 size_t len = iov_iter_count(from);
731 ssize_t ret = len;
732
733 if (!user || len > LOG_LINE_MAX)
734 return -EINVAL;
735
736 /* Ignore when user logging is disabled. */
737 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
738 return len;
739
740 /* Ratelimit when not explicitly enabled. */
741 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
742 if (!___ratelimit(&user->rs, current->comm))
743 return ret;
744 }
745
746 buf = kmalloc(len+1, GFP_KERNEL);
747 if (buf == NULL)
748 return -ENOMEM;
749
750 buf[len] = '\0';
751 if (copy_from_iter(buf, len, from) != len) {
752 kfree(buf);
753 return -EFAULT;
754 }
755
756 /*
757 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
758 * the decimal value represents 32bit, the lower 3 bit are the log
759 * level, the rest are the log facility.
760 *
761 * If no prefix or no userspace facility is specified, we
762 * enforce LOG_USER, to be able to reliably distinguish
763 * kernel-generated messages from userspace-injected ones.
764 */
765 line = buf;
766 if (line[0] == '<') {
767 char *endp = NULL;
768 unsigned int u;
769
770 u = simple_strtoul(line + 1, &endp, 10);
771 if (endp && endp[0] == '>') {
772 level = LOG_LEVEL(u);
773 if (LOG_FACILITY(u) != 0)
774 facility = LOG_FACILITY(u);
775 endp++;
776 len -= endp - line;
777 line = endp;
778 }
779 }
780
781 printk_emit(facility, level, NULL, 0, "%s", line);
782 kfree(buf);
783 return ret;
784 }
785
786 static ssize_t devkmsg_read(struct file *file, char __user *buf,
787 size_t count, loff_t *ppos)
788 {
789 struct devkmsg_user *user = file->private_data;
790 struct printk_log *msg;
791 size_t len;
792 ssize_t ret;
793
794 if (!user)
795 return -EBADF;
796
797 ret = mutex_lock_interruptible(&user->lock);
798 if (ret)
799 return ret;
800 raw_spin_lock_irq(&logbuf_lock);
801 while (user->seq == log_next_seq) {
802 if (file->f_flags & O_NONBLOCK) {
803 ret = -EAGAIN;
804 raw_spin_unlock_irq(&logbuf_lock);
805 goto out;
806 }
807
808 raw_spin_unlock_irq(&logbuf_lock);
809 ret = wait_event_interruptible(log_wait,
810 user->seq != log_next_seq);
811 if (ret)
812 goto out;
813 raw_spin_lock_irq(&logbuf_lock);
814 }
815
816 if (user->seq < log_first_seq) {
817 /* our last seen message is gone, return error and reset */
818 user->idx = log_first_idx;
819 user->seq = log_first_seq;
820 ret = -EPIPE;
821 raw_spin_unlock_irq(&logbuf_lock);
822 goto out;
823 }
824
825 msg = log_from_idx(user->idx);
826 len = msg_print_ext_header(user->buf, sizeof(user->buf),
827 msg, user->seq, user->prev);
828 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
829 log_dict(msg), msg->dict_len,
830 log_text(msg), msg->text_len);
831
832 user->prev = msg->flags;
833 user->idx = log_next(user->idx);
834 user->seq++;
835 raw_spin_unlock_irq(&logbuf_lock);
836
837 if (len > count) {
838 ret = -EINVAL;
839 goto out;
840 }
841
842 if (copy_to_user(buf, user->buf, len)) {
843 ret = -EFAULT;
844 goto out;
845 }
846 ret = len;
847 out:
848 mutex_unlock(&user->lock);
849 return ret;
850 }
851
852 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
853 {
854 struct devkmsg_user *user = file->private_data;
855 loff_t ret = 0;
856
857 if (!user)
858 return -EBADF;
859 if (offset)
860 return -ESPIPE;
861
862 raw_spin_lock_irq(&logbuf_lock);
863 switch (whence) {
864 case SEEK_SET:
865 /* the first record */
866 user->idx = log_first_idx;
867 user->seq = log_first_seq;
868 break;
869 case SEEK_DATA:
870 /*
871 * The first record after the last SYSLOG_ACTION_CLEAR,
872 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
873 * changes no global state, and does not clear anything.
874 */
875 user->idx = clear_idx;
876 user->seq = clear_seq;
877 break;
878 case SEEK_END:
879 /* after the last record */
880 user->idx = log_next_idx;
881 user->seq = log_next_seq;
882 break;
883 default:
884 ret = -EINVAL;
885 }
886 raw_spin_unlock_irq(&logbuf_lock);
887 return ret;
888 }
889
890 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
891 {
892 struct devkmsg_user *user = file->private_data;
893 int ret = 0;
894
895 if (!user)
896 return POLLERR|POLLNVAL;
897
898 poll_wait(file, &log_wait, wait);
899
900 raw_spin_lock_irq(&logbuf_lock);
901 if (user->seq < log_next_seq) {
902 /* return error when data has vanished underneath us */
903 if (user->seq < log_first_seq)
904 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
905 else
906 ret = POLLIN|POLLRDNORM;
907 }
908 raw_spin_unlock_irq(&logbuf_lock);
909
910 return ret;
911 }
912
913 static int devkmsg_open(struct inode *inode, struct file *file)
914 {
915 struct devkmsg_user *user;
916 int err;
917
918 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
919 return -EPERM;
920
921 /* write-only does not need any file context */
922 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
923 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
924 SYSLOG_FROM_READER);
925 if (err)
926 return err;
927 }
928
929 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
930 if (!user)
931 return -ENOMEM;
932
933 ratelimit_default_init(&user->rs);
934 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
935
936 mutex_init(&user->lock);
937
938 raw_spin_lock_irq(&logbuf_lock);
939 user->idx = log_first_idx;
940 user->seq = log_first_seq;
941 raw_spin_unlock_irq(&logbuf_lock);
942
943 file->private_data = user;
944 return 0;
945 }
946
947 static int devkmsg_release(struct inode *inode, struct file *file)
948 {
949 struct devkmsg_user *user = file->private_data;
950
951 if (!user)
952 return 0;
953
954 ratelimit_state_exit(&user->rs);
955
956 mutex_destroy(&user->lock);
957 kfree(user);
958 return 0;
959 }
960
961 const struct file_operations kmsg_fops = {
962 .open = devkmsg_open,
963 .read = devkmsg_read,
964 .write_iter = devkmsg_write,
965 .llseek = devkmsg_llseek,
966 .poll = devkmsg_poll,
967 .release = devkmsg_release,
968 };
969
970 #ifdef CONFIG_KEXEC_CORE
971 /*
972 * This appends the listed symbols to /proc/vmcore
973 *
974 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
975 * obtain access to symbols that are otherwise very difficult to locate. These
976 * symbols are specifically used so that utilities can access and extract the
977 * dmesg log from a vmcore file after a crash.
978 */
979 void log_buf_kexec_setup(void)
980 {
981 VMCOREINFO_SYMBOL(log_buf);
982 VMCOREINFO_SYMBOL(log_buf_len);
983 VMCOREINFO_SYMBOL(log_first_idx);
984 VMCOREINFO_SYMBOL(clear_idx);
985 VMCOREINFO_SYMBOL(log_next_idx);
986 /*
987 * Export struct printk_log size and field offsets. User space tools can
988 * parse it and detect any changes to structure down the line.
989 */
990 VMCOREINFO_STRUCT_SIZE(printk_log);
991 VMCOREINFO_OFFSET(printk_log, ts_nsec);
992 VMCOREINFO_OFFSET(printk_log, len);
993 VMCOREINFO_OFFSET(printk_log, text_len);
994 VMCOREINFO_OFFSET(printk_log, dict_len);
995 }
996 #endif
997
998 /* requested log_buf_len from kernel cmdline */
999 static unsigned long __initdata new_log_buf_len;
1000
1001 /* we practice scaling the ring buffer by powers of 2 */
1002 static void __init log_buf_len_update(unsigned size)
1003 {
1004 if (size)
1005 size = roundup_pow_of_two(size);
1006 if (size > log_buf_len)
1007 new_log_buf_len = size;
1008 }
1009
1010 /* save requested log_buf_len since it's too early to process it */
1011 static int __init log_buf_len_setup(char *str)
1012 {
1013 unsigned size = memparse(str, &str);
1014
1015 log_buf_len_update(size);
1016
1017 return 0;
1018 }
1019 early_param("log_buf_len", log_buf_len_setup);
1020
1021 #ifdef CONFIG_SMP
1022 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1023
1024 static void __init log_buf_add_cpu(void)
1025 {
1026 unsigned int cpu_extra;
1027
1028 /*
1029 * archs should set up cpu_possible_bits properly with
1030 * set_cpu_possible() after setup_arch() but just in
1031 * case lets ensure this is valid.
1032 */
1033 if (num_possible_cpus() == 1)
1034 return;
1035
1036 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1037
1038 /* by default this will only continue through for large > 64 CPUs */
1039 if (cpu_extra <= __LOG_BUF_LEN / 2)
1040 return;
1041
1042 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1043 __LOG_CPU_MAX_BUF_LEN);
1044 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1045 cpu_extra);
1046 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1047
1048 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1049 }
1050 #else /* !CONFIG_SMP */
1051 static inline void log_buf_add_cpu(void) {}
1052 #endif /* CONFIG_SMP */
1053
1054 void __init setup_log_buf(int early)
1055 {
1056 unsigned long flags;
1057 char *new_log_buf;
1058 int free;
1059
1060 if (log_buf != __log_buf)
1061 return;
1062
1063 if (!early && !new_log_buf_len)
1064 log_buf_add_cpu();
1065
1066 if (!new_log_buf_len)
1067 return;
1068
1069 if (early) {
1070 new_log_buf =
1071 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1072 } else {
1073 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1074 LOG_ALIGN);
1075 }
1076
1077 if (unlikely(!new_log_buf)) {
1078 pr_err("log_buf_len: %ld bytes not available\n",
1079 new_log_buf_len);
1080 return;
1081 }
1082
1083 raw_spin_lock_irqsave(&logbuf_lock, flags);
1084 log_buf_len = new_log_buf_len;
1085 log_buf = new_log_buf;
1086 new_log_buf_len = 0;
1087 free = __LOG_BUF_LEN - log_next_idx;
1088 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1089 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
1090
1091 pr_info("log_buf_len: %d bytes\n", log_buf_len);
1092 pr_info("early log buf free: %d(%d%%)\n",
1093 free, (free * 100) / __LOG_BUF_LEN);
1094 }
1095
1096 static bool __read_mostly ignore_loglevel;
1097
1098 static int __init ignore_loglevel_setup(char *str)
1099 {
1100 ignore_loglevel = true;
1101 pr_info("debug: ignoring loglevel setting.\n");
1102
1103 return 0;
1104 }
1105
1106 early_param("ignore_loglevel", ignore_loglevel_setup);
1107 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1108 MODULE_PARM_DESC(ignore_loglevel,
1109 "ignore loglevel setting (prints all kernel messages to the console)");
1110
1111 static bool suppress_message_printing(int level)
1112 {
1113 return (level >= console_loglevel && !ignore_loglevel);
1114 }
1115
1116 #ifdef CONFIG_BOOT_PRINTK_DELAY
1117
1118 static int boot_delay; /* msecs delay after each printk during bootup */
1119 static unsigned long long loops_per_msec; /* based on boot_delay */
1120
1121 static int __init boot_delay_setup(char *str)
1122 {
1123 unsigned long lpj;
1124
1125 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
1126 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1127
1128 get_option(&str, &boot_delay);
1129 if (boot_delay > 10 * 1000)
1130 boot_delay = 0;
1131
1132 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1133 "HZ: %d, loops_per_msec: %llu\n",
1134 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1135 return 0;
1136 }
1137 early_param("boot_delay", boot_delay_setup);
1138
1139 static void boot_delay_msec(int level)
1140 {
1141 unsigned long long k;
1142 unsigned long timeout;
1143
1144 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1145 || suppress_message_printing(level)) {
1146 return;
1147 }
1148
1149 k = (unsigned long long)loops_per_msec * boot_delay;
1150
1151 timeout = jiffies + msecs_to_jiffies(boot_delay);
1152 while (k) {
1153 k--;
1154 cpu_relax();
1155 /*
1156 * use (volatile) jiffies to prevent
1157 * compiler reduction; loop termination via jiffies
1158 * is secondary and may or may not happen.
1159 */
1160 if (time_after(jiffies, timeout))
1161 break;
1162 touch_nmi_watchdog();
1163 }
1164 }
1165 #else
1166 static inline void boot_delay_msec(int level)
1167 {
1168 }
1169 #endif
1170
1171 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1172 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1173
1174 static size_t print_time(u64 ts, char *buf)
1175 {
1176 unsigned long rem_nsec;
1177
1178 if (!printk_time)
1179 return 0;
1180
1181 rem_nsec = do_div(ts, 1000000000);
1182
1183 if (!buf)
1184 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1185
1186 return sprintf(buf, "[%5lu.%06lu] ",
1187 (unsigned long)ts, rem_nsec / 1000);
1188 }
1189
1190 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1191 {
1192 size_t len = 0;
1193 unsigned int prefix = (msg->facility << 3) | msg->level;
1194
1195 if (syslog) {
1196 if (buf) {
1197 len += sprintf(buf, "<%u>", prefix);
1198 } else {
1199 len += 3;
1200 if (prefix > 999)
1201 len += 3;
1202 else if (prefix > 99)
1203 len += 2;
1204 else if (prefix > 9)
1205 len++;
1206 }
1207 }
1208
1209 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1210 return len;
1211 }
1212
1213 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1214 bool syslog, char *buf, size_t size)
1215 {
1216 const char *text = log_text(msg);
1217 size_t text_size = msg->text_len;
1218 bool prefix = true;
1219 bool newline = true;
1220 size_t len = 0;
1221
1222 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1223 prefix = false;
1224
1225 if (msg->flags & LOG_CONT) {
1226 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1227 prefix = false;
1228
1229 if (!(msg->flags & LOG_NEWLINE))
1230 newline = false;
1231 }
1232
1233 do {
1234 const char *next = memchr(text, '\n', text_size);
1235 size_t text_len;
1236
1237 if (next) {
1238 text_len = next - text;
1239 next++;
1240 text_size -= next - text;
1241 } else {
1242 text_len = text_size;
1243 }
1244
1245 if (buf) {
1246 if (print_prefix(msg, syslog, NULL) +
1247 text_len + 1 >= size - len)
1248 break;
1249
1250 if (prefix)
1251 len += print_prefix(msg, syslog, buf + len);
1252 memcpy(buf + len, text, text_len);
1253 len += text_len;
1254 if (next || newline)
1255 buf[len++] = '\n';
1256 } else {
1257 /* SYSLOG_ACTION_* buffer size only calculation */
1258 if (prefix)
1259 len += print_prefix(msg, syslog, NULL);
1260 len += text_len;
1261 if (next || newline)
1262 len++;
1263 }
1264
1265 prefix = true;
1266 text = next;
1267 } while (text);
1268
1269 return len;
1270 }
1271
1272 static int syslog_print(char __user *buf, int size)
1273 {
1274 char *text;
1275 struct printk_log *msg;
1276 int len = 0;
1277
1278 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1279 if (!text)
1280 return -ENOMEM;
1281
1282 while (size > 0) {
1283 size_t n;
1284 size_t skip;
1285
1286 raw_spin_lock_irq(&logbuf_lock);
1287 if (syslog_seq < log_first_seq) {
1288 /* messages are gone, move to first one */
1289 syslog_seq = log_first_seq;
1290 syslog_idx = log_first_idx;
1291 syslog_prev = 0;
1292 syslog_partial = 0;
1293 }
1294 if (syslog_seq == log_next_seq) {
1295 raw_spin_unlock_irq(&logbuf_lock);
1296 break;
1297 }
1298
1299 skip = syslog_partial;
1300 msg = log_from_idx(syslog_idx);
1301 n = msg_print_text(msg, syslog_prev, true, text,
1302 LOG_LINE_MAX + PREFIX_MAX);
1303 if (n - syslog_partial <= size) {
1304 /* message fits into buffer, move forward */
1305 syslog_idx = log_next(syslog_idx);
1306 syslog_seq++;
1307 syslog_prev = msg->flags;
1308 n -= syslog_partial;
1309 syslog_partial = 0;
1310 } else if (!len){
1311 /* partial read(), remember position */
1312 n = size;
1313 syslog_partial += n;
1314 } else
1315 n = 0;
1316 raw_spin_unlock_irq(&logbuf_lock);
1317
1318 if (!n)
1319 break;
1320
1321 if (copy_to_user(buf, text + skip, n)) {
1322 if (!len)
1323 len = -EFAULT;
1324 break;
1325 }
1326
1327 len += n;
1328 size -= n;
1329 buf += n;
1330 }
1331
1332 kfree(text);
1333 return len;
1334 }
1335
1336 static int syslog_print_all(char __user *buf, int size, bool clear)
1337 {
1338 char *text;
1339 int len = 0;
1340
1341 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1342 if (!text)
1343 return -ENOMEM;
1344
1345 raw_spin_lock_irq(&logbuf_lock);
1346 if (buf) {
1347 u64 next_seq;
1348 u64 seq;
1349 u32 idx;
1350 enum log_flags prev;
1351
1352 /*
1353 * Find first record that fits, including all following records,
1354 * into the user-provided buffer for this dump.
1355 */
1356 seq = clear_seq;
1357 idx = clear_idx;
1358 prev = 0;
1359 while (seq < log_next_seq) {
1360 struct printk_log *msg = log_from_idx(idx);
1361
1362 len += msg_print_text(msg, prev, true, NULL, 0);
1363 prev = msg->flags;
1364 idx = log_next(idx);
1365 seq++;
1366 }
1367
1368 /* move first record forward until length fits into the buffer */
1369 seq = clear_seq;
1370 idx = clear_idx;
1371 prev = 0;
1372 while (len > size && seq < log_next_seq) {
1373 struct printk_log *msg = log_from_idx(idx);
1374
1375 len -= msg_print_text(msg, prev, true, NULL, 0);
1376 prev = msg->flags;
1377 idx = log_next(idx);
1378 seq++;
1379 }
1380
1381 /* last message fitting into this dump */
1382 next_seq = log_next_seq;
1383
1384 len = 0;
1385 while (len >= 0 && seq < next_seq) {
1386 struct printk_log *msg = log_from_idx(idx);
1387 int textlen;
1388
1389 textlen = msg_print_text(msg, prev, true, text,
1390 LOG_LINE_MAX + PREFIX_MAX);
1391 if (textlen < 0) {
1392 len = textlen;
1393 break;
1394 }
1395 idx = log_next(idx);
1396 seq++;
1397 prev = msg->flags;
1398
1399 raw_spin_unlock_irq(&logbuf_lock);
1400 if (copy_to_user(buf + len, text, textlen))
1401 len = -EFAULT;
1402 else
1403 len += textlen;
1404 raw_spin_lock_irq(&logbuf_lock);
1405
1406 if (seq < log_first_seq) {
1407 /* messages are gone, move to next one */
1408 seq = log_first_seq;
1409 idx = log_first_idx;
1410 prev = 0;
1411 }
1412 }
1413 }
1414
1415 if (clear) {
1416 clear_seq = log_next_seq;
1417 clear_idx = log_next_idx;
1418 }
1419 raw_spin_unlock_irq(&logbuf_lock);
1420
1421 kfree(text);
1422 return len;
1423 }
1424
1425 int do_syslog(int type, char __user *buf, int len, int source)
1426 {
1427 bool clear = false;
1428 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1429 int error;
1430
1431 error = check_syslog_permissions(type, source);
1432 if (error)
1433 goto out;
1434
1435 switch (type) {
1436 case SYSLOG_ACTION_CLOSE: /* Close log */
1437 break;
1438 case SYSLOG_ACTION_OPEN: /* Open log */
1439 break;
1440 case SYSLOG_ACTION_READ: /* Read from log */
1441 error = -EINVAL;
1442 if (!buf || len < 0)
1443 goto out;
1444 error = 0;
1445 if (!len)
1446 goto out;
1447 if (!access_ok(VERIFY_WRITE, buf, len)) {
1448 error = -EFAULT;
1449 goto out;
1450 }
1451 error = wait_event_interruptible(log_wait,
1452 syslog_seq != log_next_seq);
1453 if (error)
1454 goto out;
1455 error = syslog_print(buf, len);
1456 break;
1457 /* Read/clear last kernel messages */
1458 case SYSLOG_ACTION_READ_CLEAR:
1459 clear = true;
1460 /* FALL THRU */
1461 /* Read last kernel messages */
1462 case SYSLOG_ACTION_READ_ALL:
1463 error = -EINVAL;
1464 if (!buf || len < 0)
1465 goto out;
1466 error = 0;
1467 if (!len)
1468 goto out;
1469 if (!access_ok(VERIFY_WRITE, buf, len)) {
1470 error = -EFAULT;
1471 goto out;
1472 }
1473 error = syslog_print_all(buf, len, clear);
1474 break;
1475 /* Clear ring buffer */
1476 case SYSLOG_ACTION_CLEAR:
1477 syslog_print_all(NULL, 0, true);
1478 break;
1479 /* Disable logging to console */
1480 case SYSLOG_ACTION_CONSOLE_OFF:
1481 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1482 saved_console_loglevel = console_loglevel;
1483 console_loglevel = minimum_console_loglevel;
1484 break;
1485 /* Enable logging to console */
1486 case SYSLOG_ACTION_CONSOLE_ON:
1487 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1488 console_loglevel = saved_console_loglevel;
1489 saved_console_loglevel = LOGLEVEL_DEFAULT;
1490 }
1491 break;
1492 /* Set level of messages printed to console */
1493 case SYSLOG_ACTION_CONSOLE_LEVEL:
1494 error = -EINVAL;
1495 if (len < 1 || len > 8)
1496 goto out;
1497 if (len < minimum_console_loglevel)
1498 len = minimum_console_loglevel;
1499 console_loglevel = len;
1500 /* Implicitly re-enable logging to console */
1501 saved_console_loglevel = LOGLEVEL_DEFAULT;
1502 error = 0;
1503 break;
1504 /* Number of chars in the log buffer */
1505 case SYSLOG_ACTION_SIZE_UNREAD:
1506 raw_spin_lock_irq(&logbuf_lock);
1507 if (syslog_seq < log_first_seq) {
1508 /* messages are gone, move to first one */
1509 syslog_seq = log_first_seq;
1510 syslog_idx = log_first_idx;
1511 syslog_prev = 0;
1512 syslog_partial = 0;
1513 }
1514 if (source == SYSLOG_FROM_PROC) {
1515 /*
1516 * Short-cut for poll(/"proc/kmsg") which simply checks
1517 * for pending data, not the size; return the count of
1518 * records, not the length.
1519 */
1520 error = log_next_seq - syslog_seq;
1521 } else {
1522 u64 seq = syslog_seq;
1523 u32 idx = syslog_idx;
1524 enum log_flags prev = syslog_prev;
1525
1526 error = 0;
1527 while (seq < log_next_seq) {
1528 struct printk_log *msg = log_from_idx(idx);
1529
1530 error += msg_print_text(msg, prev, true, NULL, 0);
1531 idx = log_next(idx);
1532 seq++;
1533 prev = msg->flags;
1534 }
1535 error -= syslog_partial;
1536 }
1537 raw_spin_unlock_irq(&logbuf_lock);
1538 break;
1539 /* Size of the log buffer */
1540 case SYSLOG_ACTION_SIZE_BUFFER:
1541 error = log_buf_len;
1542 break;
1543 default:
1544 error = -EINVAL;
1545 break;
1546 }
1547 out:
1548 return error;
1549 }
1550
1551 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1552 {
1553 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1554 }
1555
1556 /*
1557 * Call the console drivers, asking them to write out
1558 * log_buf[start] to log_buf[end - 1].
1559 * The console_lock must be held.
1560 */
1561 static void call_console_drivers(int level,
1562 const char *ext_text, size_t ext_len,
1563 const char *text, size_t len)
1564 {
1565 struct console *con;
1566
1567 trace_console(text, len);
1568
1569 if (!console_drivers)
1570 return;
1571
1572 for_each_console(con) {
1573 if (exclusive_console && con != exclusive_console)
1574 continue;
1575 if (!(con->flags & CON_ENABLED))
1576 continue;
1577 if (!con->write)
1578 continue;
1579 if (!cpu_online(smp_processor_id()) &&
1580 !(con->flags & CON_ANYTIME))
1581 continue;
1582 if (con->flags & CON_EXTENDED)
1583 con->write(con, ext_text, ext_len);
1584 else
1585 con->write(con, text, len);
1586 }
1587 }
1588
1589 /*
1590 * Zap console related locks when oopsing.
1591 * To leave time for slow consoles to print a full oops,
1592 * only zap at most once every 30 seconds.
1593 */
1594 static void zap_locks(void)
1595 {
1596 static unsigned long oops_timestamp;
1597
1598 if (time_after_eq(jiffies, oops_timestamp) &&
1599 !time_after(jiffies, oops_timestamp + 30 * HZ))
1600 return;
1601
1602 oops_timestamp = jiffies;
1603
1604 debug_locks_off();
1605 /* If a crash is occurring, make sure we can't deadlock */
1606 raw_spin_lock_init(&logbuf_lock);
1607 /* And make sure that we print immediately */
1608 sema_init(&console_sem, 1);
1609 }
1610
1611 int printk_delay_msec __read_mostly;
1612
1613 static inline void printk_delay(void)
1614 {
1615 if (unlikely(printk_delay_msec)) {
1616 int m = printk_delay_msec;
1617
1618 while (m--) {
1619 mdelay(1);
1620 touch_nmi_watchdog();
1621 }
1622 }
1623 }
1624
1625 /*
1626 * Continuation lines are buffered, and not committed to the record buffer
1627 * until the line is complete, or a race forces it. The line fragments
1628 * though, are printed immediately to the consoles to ensure everything has
1629 * reached the console in case of a kernel crash.
1630 */
1631 static struct cont {
1632 char buf[LOG_LINE_MAX];
1633 size_t len; /* length == 0 means unused buffer */
1634 size_t cons; /* bytes written to console */
1635 struct task_struct *owner; /* task of first print*/
1636 u64 ts_nsec; /* time of first print */
1637 u8 level; /* log level of first message */
1638 u8 facility; /* log facility of first message */
1639 enum log_flags flags; /* prefix, newline flags */
1640 bool flushed:1; /* buffer sealed and committed */
1641 } cont;
1642
1643 static void cont_flush(void)
1644 {
1645 if (cont.flushed)
1646 return;
1647 if (cont.len == 0)
1648 return;
1649 if (cont.cons) {
1650 /*
1651 * If a fragment of this line was directly flushed to the
1652 * console; wait for the console to pick up the rest of the
1653 * line. LOG_NOCONS suppresses a duplicated output.
1654 */
1655 log_store(cont.facility, cont.level, cont.flags | LOG_NOCONS,
1656 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1657 cont.flushed = true;
1658 } else {
1659 /*
1660 * If no fragment of this line ever reached the console,
1661 * just submit it to the store and free the buffer.
1662 */
1663 log_store(cont.facility, cont.level, cont.flags, 0,
1664 NULL, 0, cont.buf, cont.len);
1665 cont.len = 0;
1666 }
1667 }
1668
1669 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
1670 {
1671 if (cont.len && cont.flushed)
1672 return false;
1673
1674 /*
1675 * If ext consoles are present, flush and skip in-kernel
1676 * continuation. See nr_ext_console_drivers definition. Also, if
1677 * the line gets too long, split it up in separate records.
1678 */
1679 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1680 cont_flush();
1681 return false;
1682 }
1683
1684 if (!cont.len) {
1685 cont.facility = facility;
1686 cont.level = level;
1687 cont.owner = current;
1688 cont.ts_nsec = local_clock();
1689 cont.flags = flags;
1690 cont.cons = 0;
1691 cont.flushed = false;
1692 }
1693
1694 memcpy(cont.buf + cont.len, text, len);
1695 cont.len += len;
1696
1697 // The original flags come from the first line,
1698 // but later continuations can add a newline.
1699 if (flags & LOG_NEWLINE) {
1700 cont.flags |= LOG_NEWLINE;
1701 cont_flush();
1702 }
1703
1704 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1705 cont_flush();
1706
1707 return true;
1708 }
1709
1710 static size_t cont_print_text(char *text, size_t size)
1711 {
1712 size_t textlen = 0;
1713 size_t len;
1714
1715 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1716 textlen += print_time(cont.ts_nsec, text);
1717 size -= textlen;
1718 }
1719
1720 len = cont.len - cont.cons;
1721 if (len > 0) {
1722 if (len+1 > size)
1723 len = size-1;
1724 memcpy(text + textlen, cont.buf + cont.cons, len);
1725 textlen += len;
1726 cont.cons = cont.len;
1727 }
1728
1729 if (cont.flushed) {
1730 if (cont.flags & LOG_NEWLINE)
1731 text[textlen++] = '\n';
1732 /* got everything, release buffer */
1733 cont.len = 0;
1734 }
1735 return textlen;
1736 }
1737
1738 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1739 {
1740 /*
1741 * If an earlier line was buffered, and we're a continuation
1742 * write from the same process, try to add it to the buffer.
1743 */
1744 if (cont.len) {
1745 if (cont.owner == current && (lflags & LOG_CONT)) {
1746 if (cont_add(facility, level, lflags, text, text_len))
1747 return text_len;
1748 }
1749 /* Otherwise, make sure it's flushed */
1750 cont_flush();
1751 }
1752
1753 /* Skip empty continuation lines that couldn't be added - they just flush */
1754 if (!text_len && (lflags & LOG_CONT))
1755 return 0;
1756
1757 /* If it doesn't end in a newline, try to buffer the current line */
1758 if (!(lflags & LOG_NEWLINE)) {
1759 if (cont_add(facility, level, lflags, text, text_len))
1760 return text_len;
1761 }
1762
1763 /* Store it in the record log */
1764 return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1765 }
1766
1767 asmlinkage int vprintk_emit(int facility, int level,
1768 const char *dict, size_t dictlen,
1769 const char *fmt, va_list args)
1770 {
1771 static bool recursion_bug;
1772 static char textbuf[LOG_LINE_MAX];
1773 char *text = textbuf;
1774 size_t text_len = 0;
1775 enum log_flags lflags = 0;
1776 unsigned long flags;
1777 int this_cpu;
1778 int printed_len = 0;
1779 int nmi_message_lost;
1780 bool in_sched = false;
1781 /* cpu currently holding logbuf_lock in this function */
1782 static unsigned int logbuf_cpu = UINT_MAX;
1783
1784 if (level == LOGLEVEL_SCHED) {
1785 level = LOGLEVEL_DEFAULT;
1786 in_sched = true;
1787 }
1788
1789 boot_delay_msec(level);
1790 printk_delay();
1791
1792 local_irq_save(flags);
1793 this_cpu = smp_processor_id();
1794
1795 /*
1796 * Ouch, printk recursed into itself!
1797 */
1798 if (unlikely(logbuf_cpu == this_cpu)) {
1799 /*
1800 * If a crash is occurring during printk() on this CPU,
1801 * then try to get the crash message out but make sure
1802 * we can't deadlock. Otherwise just return to avoid the
1803 * recursion and return - but flag the recursion so that
1804 * it can be printed at the next appropriate moment:
1805 */
1806 if (!oops_in_progress && !lockdep_recursing(current)) {
1807 recursion_bug = true;
1808 local_irq_restore(flags);
1809 return 0;
1810 }
1811 zap_locks();
1812 }
1813
1814 lockdep_off();
1815 /* This stops the holder of console_sem just where we want him */
1816 raw_spin_lock(&logbuf_lock);
1817 logbuf_cpu = this_cpu;
1818
1819 if (unlikely(recursion_bug)) {
1820 static const char recursion_msg[] =
1821 "BUG: recent printk recursion!";
1822
1823 recursion_bug = false;
1824 /* emit KERN_CRIT message */
1825 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1826 NULL, 0, recursion_msg,
1827 strlen(recursion_msg));
1828 }
1829
1830 nmi_message_lost = get_nmi_message_lost();
1831 if (unlikely(nmi_message_lost)) {
1832 text_len = scnprintf(textbuf, sizeof(textbuf),
1833 "BAD LUCK: lost %d message(s) from NMI context!",
1834 nmi_message_lost);
1835 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1836 NULL, 0, textbuf, text_len);
1837 }
1838
1839 /*
1840 * The printf needs to come first; we need the syslog
1841 * prefix which might be passed-in as a parameter.
1842 */
1843 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1844
1845 /* mark and strip a trailing newline */
1846 if (text_len && text[text_len-1] == '\n') {
1847 text_len--;
1848 lflags |= LOG_NEWLINE;
1849 }
1850
1851 /* strip kernel syslog prefix and extract log level or control flags */
1852 if (facility == 0) {
1853 int kern_level;
1854
1855 while ((kern_level = printk_get_level(text)) != 0) {
1856 switch (kern_level) {
1857 case '0' ... '7':
1858 if (level == LOGLEVEL_DEFAULT)
1859 level = kern_level - '0';
1860 /* fallthrough */
1861 case 'd': /* KERN_DEFAULT */
1862 lflags |= LOG_PREFIX;
1863 break;
1864 case 'c': /* KERN_CONT */
1865 lflags |= LOG_CONT;
1866 }
1867
1868 text_len -= 2;
1869 text += 2;
1870 }
1871 }
1872
1873 if (level == LOGLEVEL_DEFAULT)
1874 level = default_message_loglevel;
1875
1876 if (dict)
1877 lflags |= LOG_PREFIX|LOG_NEWLINE;
1878
1879 printed_len += log_output(facility, level, lflags, dict, dictlen, text, text_len);
1880
1881 logbuf_cpu = UINT_MAX;
1882 raw_spin_unlock(&logbuf_lock);
1883 lockdep_on();
1884 local_irq_restore(flags);
1885
1886 /* If called from the scheduler, we can not call up(). */
1887 if (!in_sched) {
1888 lockdep_off();
1889 /*
1890 * Try to acquire and then immediately release the console
1891 * semaphore. The release will print out buffers and wake up
1892 * /dev/kmsg and syslog() users.
1893 */
1894 if (console_trylock())
1895 console_unlock();
1896 lockdep_on();
1897 }
1898
1899 return printed_len;
1900 }
1901 EXPORT_SYMBOL(vprintk_emit);
1902
1903 asmlinkage int vprintk(const char *fmt, va_list args)
1904 {
1905 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1906 }
1907 EXPORT_SYMBOL(vprintk);
1908
1909 asmlinkage int printk_emit(int facility, int level,
1910 const char *dict, size_t dictlen,
1911 const char *fmt, ...)
1912 {
1913 va_list args;
1914 int r;
1915
1916 va_start(args, fmt);
1917 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1918 va_end(args);
1919
1920 return r;
1921 }
1922 EXPORT_SYMBOL(printk_emit);
1923
1924 int vprintk_default(const char *fmt, va_list args)
1925 {
1926 int r;
1927
1928 #ifdef CONFIG_KGDB_KDB
1929 if (unlikely(kdb_trap_printk)) {
1930 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1931 return r;
1932 }
1933 #endif
1934 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1935
1936 return r;
1937 }
1938 EXPORT_SYMBOL_GPL(vprintk_default);
1939
1940 /**
1941 * printk - print a kernel message
1942 * @fmt: format string
1943 *
1944 * This is printk(). It can be called from any context. We want it to work.
1945 *
1946 * We try to grab the console_lock. If we succeed, it's easy - we log the
1947 * output and call the console drivers. If we fail to get the semaphore, we
1948 * place the output into the log buffer and return. The current holder of
1949 * the console_sem will notice the new output in console_unlock(); and will
1950 * send it to the consoles before releasing the lock.
1951 *
1952 * One effect of this deferred printing is that code which calls printk() and
1953 * then changes console_loglevel may break. This is because console_loglevel
1954 * is inspected when the actual printing occurs.
1955 *
1956 * See also:
1957 * printf(3)
1958 *
1959 * See the vsnprintf() documentation for format string extensions over C99.
1960 */
1961 asmlinkage __visible int printk(const char *fmt, ...)
1962 {
1963 va_list args;
1964 int r;
1965
1966 va_start(args, fmt);
1967 r = vprintk_func(fmt, args);
1968 va_end(args);
1969
1970 return r;
1971 }
1972 EXPORT_SYMBOL(printk);
1973
1974 #else /* CONFIG_PRINTK */
1975
1976 #define LOG_LINE_MAX 0
1977 #define PREFIX_MAX 0
1978
1979 static u64 syslog_seq;
1980 static u32 syslog_idx;
1981 static u64 console_seq;
1982 static u32 console_idx;
1983 static enum log_flags syslog_prev;
1984 static u64 log_first_seq;
1985 static u32 log_first_idx;
1986 static u64 log_next_seq;
1987 static enum log_flags console_prev;
1988 static struct cont {
1989 size_t len;
1990 size_t cons;
1991 u8 level;
1992 bool flushed:1;
1993 } cont;
1994 static char *log_text(const struct printk_log *msg) { return NULL; }
1995 static char *log_dict(const struct printk_log *msg) { return NULL; }
1996 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1997 static u32 log_next(u32 idx) { return 0; }
1998 static ssize_t msg_print_ext_header(char *buf, size_t size,
1999 struct printk_log *msg, u64 seq,
2000 enum log_flags prev_flags) { return 0; }
2001 static ssize_t msg_print_ext_body(char *buf, size_t size,
2002 char *dict, size_t dict_len,
2003 char *text, size_t text_len) { return 0; }
2004 static void call_console_drivers(int level,
2005 const char *ext_text, size_t ext_len,
2006 const char *text, size_t len) {}
2007 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
2008 bool syslog, char *buf, size_t size) { return 0; }
2009 static size_t cont_print_text(char *text, size_t size) { return 0; }
2010 static bool suppress_message_printing(int level) { return false; }
2011
2012 /* Still needs to be defined for users */
2013 DEFINE_PER_CPU(printk_func_t, printk_func);
2014
2015 #endif /* CONFIG_PRINTK */
2016
2017 #ifdef CONFIG_EARLY_PRINTK
2018 struct console *early_console;
2019
2020 asmlinkage __visible void early_printk(const char *fmt, ...)
2021 {
2022 va_list ap;
2023 char buf[512];
2024 int n;
2025
2026 if (!early_console)
2027 return;
2028
2029 va_start(ap, fmt);
2030 n = vscnprintf(buf, sizeof(buf), fmt, ap);
2031 va_end(ap);
2032
2033 early_console->write(early_console, buf, n);
2034 }
2035 #endif
2036
2037 static int __add_preferred_console(char *name, int idx, char *options,
2038 char *brl_options)
2039 {
2040 struct console_cmdline *c;
2041 int i;
2042
2043 /*
2044 * See if this tty is not yet registered, and
2045 * if we have a slot free.
2046 */
2047 for (i = 0, c = console_cmdline;
2048 i < MAX_CMDLINECONSOLES && c->name[0];
2049 i++, c++) {
2050 if (strcmp(c->name, name) == 0 && c->index == idx) {
2051 if (!brl_options)
2052 selected_console = i;
2053 return 0;
2054 }
2055 }
2056 if (i == MAX_CMDLINECONSOLES)
2057 return -E2BIG;
2058 if (!brl_options)
2059 selected_console = i;
2060 strlcpy(c->name, name, sizeof(c->name));
2061 c->options = options;
2062 braille_set_options(c, brl_options);
2063
2064 c->index = idx;
2065 return 0;
2066 }
2067 /*
2068 * Set up a console. Called via do_early_param() in init/main.c
2069 * for each "console=" parameter in the boot command line.
2070 */
2071 static int __init console_setup(char *str)
2072 {
2073 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2074 char *s, *options, *brl_options = NULL;
2075 int idx;
2076
2077 if (_braille_console_setup(&str, &brl_options))
2078 return 1;
2079
2080 /*
2081 * Decode str into name, index, options.
2082 */
2083 if (str[0] >= '0' && str[0] <= '9') {
2084 strcpy(buf, "ttyS");
2085 strncpy(buf + 4, str, sizeof(buf) - 5);
2086 } else {
2087 strncpy(buf, str, sizeof(buf) - 1);
2088 }
2089 buf[sizeof(buf) - 1] = 0;
2090 options = strchr(str, ',');
2091 if (options)
2092 *(options++) = 0;
2093 #ifdef __sparc__
2094 if (!strcmp(str, "ttya"))
2095 strcpy(buf, "ttyS0");
2096 if (!strcmp(str, "ttyb"))
2097 strcpy(buf, "ttyS1");
2098 #endif
2099 for (s = buf; *s; s++)
2100 if (isdigit(*s) || *s == ',')
2101 break;
2102 idx = simple_strtoul(s, NULL, 10);
2103 *s = 0;
2104
2105 __add_preferred_console(buf, idx, options, brl_options);
2106 console_set_on_cmdline = 1;
2107 return 1;
2108 }
2109 __setup("console=", console_setup);
2110
2111 /**
2112 * add_preferred_console - add a device to the list of preferred consoles.
2113 * @name: device name
2114 * @idx: device index
2115 * @options: options for this console
2116 *
2117 * The last preferred console added will be used for kernel messages
2118 * and stdin/out/err for init. Normally this is used by console_setup
2119 * above to handle user-supplied console arguments; however it can also
2120 * be used by arch-specific code either to override the user or more
2121 * commonly to provide a default console (ie from PROM variables) when
2122 * the user has not supplied one.
2123 */
2124 int add_preferred_console(char *name, int idx, char *options)
2125 {
2126 return __add_preferred_console(name, idx, options, NULL);
2127 }
2128
2129 bool console_suspend_enabled = true;
2130 EXPORT_SYMBOL(console_suspend_enabled);
2131
2132 static int __init console_suspend_disable(char *str)
2133 {
2134 console_suspend_enabled = false;
2135 return 1;
2136 }
2137 __setup("no_console_suspend", console_suspend_disable);
2138 module_param_named(console_suspend, console_suspend_enabled,
2139 bool, S_IRUGO | S_IWUSR);
2140 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2141 " and hibernate operations");
2142
2143 /**
2144 * suspend_console - suspend the console subsystem
2145 *
2146 * This disables printk() while we go into suspend states
2147 */
2148 void suspend_console(void)
2149 {
2150 if (!console_suspend_enabled)
2151 return;
2152 printk("Suspending console(s) (use no_console_suspend to debug)\n");
2153 console_lock();
2154 console_suspended = 1;
2155 up_console_sem();
2156 }
2157
2158 void resume_console(void)
2159 {
2160 if (!console_suspend_enabled)
2161 return;
2162 down_console_sem();
2163 console_suspended = 0;
2164 console_unlock();
2165 }
2166
2167 /**
2168 * console_cpu_notify - print deferred console messages after CPU hotplug
2169 * @self: notifier struct
2170 * @action: CPU hotplug event
2171 * @hcpu: unused
2172 *
2173 * If printk() is called from a CPU that is not online yet, the messages
2174 * will be spooled but will not show up on the console. This function is
2175 * called when a new CPU comes online (or fails to come up), and ensures
2176 * that any such output gets printed.
2177 */
2178 static int console_cpu_notify(struct notifier_block *self,
2179 unsigned long action, void *hcpu)
2180 {
2181 switch (action) {
2182 case CPU_ONLINE:
2183 case CPU_DEAD:
2184 case CPU_DOWN_FAILED:
2185 case CPU_UP_CANCELED:
2186 console_lock();
2187 console_unlock();
2188 }
2189 return NOTIFY_OK;
2190 }
2191
2192 /**
2193 * console_lock - lock the console system for exclusive use.
2194 *
2195 * Acquires a lock which guarantees that the caller has
2196 * exclusive access to the console system and the console_drivers list.
2197 *
2198 * Can sleep, returns nothing.
2199 */
2200 void console_lock(void)
2201 {
2202 might_sleep();
2203
2204 down_console_sem();
2205 if (console_suspended)
2206 return;
2207 console_locked = 1;
2208 console_may_schedule = 1;
2209 }
2210 EXPORT_SYMBOL(console_lock);
2211
2212 /**
2213 * console_trylock - try to lock the console system for exclusive use.
2214 *
2215 * Try to acquire a lock which guarantees that the caller has exclusive
2216 * access to the console system and the console_drivers list.
2217 *
2218 * returns 1 on success, and 0 on failure to acquire the lock.
2219 */
2220 int console_trylock(void)
2221 {
2222 if (down_trylock_console_sem())
2223 return 0;
2224 if (console_suspended) {
2225 up_console_sem();
2226 return 0;
2227 }
2228 console_locked = 1;
2229 /*
2230 * When PREEMPT_COUNT disabled we can't reliably detect if it's
2231 * safe to schedule (e.g. calling printk while holding a spin_lock),
2232 * because preempt_disable()/preempt_enable() are just barriers there
2233 * and preempt_count() is always 0.
2234 *
2235 * RCU read sections have a separate preemption counter when
2236 * PREEMPT_RCU enabled thus we must take extra care and check
2237 * rcu_preempt_depth(), otherwise RCU read sections modify
2238 * preempt_count().
2239 */
2240 console_may_schedule = !oops_in_progress &&
2241 preemptible() &&
2242 !rcu_preempt_depth();
2243 return 1;
2244 }
2245 EXPORT_SYMBOL(console_trylock);
2246
2247 int is_console_locked(void)
2248 {
2249 return console_locked;
2250 }
2251
2252 /*
2253 * Check if we have any console that is capable of printing while cpu is
2254 * booting or shutting down. Requires console_sem.
2255 */
2256 static int have_callable_console(void)
2257 {
2258 struct console *con;
2259
2260 for_each_console(con)
2261 if ((con->flags & CON_ENABLED) &&
2262 (con->flags & CON_ANYTIME))
2263 return 1;
2264
2265 return 0;
2266 }
2267
2268 /*
2269 * Can we actually use the console at this time on this cpu?
2270 *
2271 * Console drivers may assume that per-cpu resources have been allocated. So
2272 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2273 * call them until this CPU is officially up.
2274 */
2275 static inline int can_use_console(void)
2276 {
2277 return cpu_online(raw_smp_processor_id()) || have_callable_console();
2278 }
2279
2280 static void console_cont_flush(char *text, size_t size)
2281 {
2282 unsigned long flags;
2283 size_t len;
2284
2285 raw_spin_lock_irqsave(&logbuf_lock, flags);
2286
2287 if (!cont.len)
2288 goto out;
2289
2290 if (suppress_message_printing(cont.level)) {
2291 cont.cons = cont.len;
2292 if (cont.flushed)
2293 cont.len = 0;
2294 goto out;
2295 }
2296
2297 /*
2298 * We still queue earlier records, likely because the console was
2299 * busy. The earlier ones need to be printed before this one, we
2300 * did not flush any fragment so far, so just let it queue up.
2301 */
2302 if (console_seq < log_next_seq && !cont.cons)
2303 goto out;
2304
2305 len = cont_print_text(text, size);
2306 raw_spin_unlock(&logbuf_lock);
2307 stop_critical_timings();
2308 call_console_drivers(cont.level, NULL, 0, text, len);
2309 start_critical_timings();
2310 local_irq_restore(flags);
2311 return;
2312 out:
2313 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2314 }
2315
2316 /**
2317 * console_unlock - unlock the console system
2318 *
2319 * Releases the console_lock which the caller holds on the console system
2320 * and the console driver list.
2321 *
2322 * While the console_lock was held, console output may have been buffered
2323 * by printk(). If this is the case, console_unlock(); emits
2324 * the output prior to releasing the lock.
2325 *
2326 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2327 *
2328 * console_unlock(); may be called from any context.
2329 */
2330 void console_unlock(void)
2331 {
2332 static char ext_text[CONSOLE_EXT_LOG_MAX];
2333 static char text[LOG_LINE_MAX + PREFIX_MAX];
2334 static u64 seen_seq;
2335 unsigned long flags;
2336 bool wake_klogd = false;
2337 bool do_cond_resched, retry;
2338
2339 if (console_suspended) {
2340 up_console_sem();
2341 return;
2342 }
2343
2344 /*
2345 * Console drivers are called under logbuf_lock, so
2346 * @console_may_schedule should be cleared before; however, we may
2347 * end up dumping a lot of lines, for example, if called from
2348 * console registration path, and should invoke cond_resched()
2349 * between lines if allowable. Not doing so can cause a very long
2350 * scheduling stall on a slow console leading to RCU stall and
2351 * softlockup warnings which exacerbate the issue with more
2352 * messages practically incapacitating the system.
2353 */
2354 do_cond_resched = console_may_schedule;
2355 console_may_schedule = 0;
2356
2357 again:
2358 /*
2359 * We released the console_sem lock, so we need to recheck if
2360 * cpu is online and (if not) is there at least one CON_ANYTIME
2361 * console.
2362 */
2363 if (!can_use_console()) {
2364 console_locked = 0;
2365 up_console_sem();
2366 return;
2367 }
2368
2369 /* flush buffered message fragment immediately to console */
2370 console_cont_flush(text, sizeof(text));
2371
2372 for (;;) {
2373 struct printk_log *msg;
2374 size_t ext_len = 0;
2375 size_t len;
2376 int level;
2377
2378 raw_spin_lock_irqsave(&logbuf_lock, flags);
2379 if (seen_seq != log_next_seq) {
2380 wake_klogd = true;
2381 seen_seq = log_next_seq;
2382 }
2383
2384 if (console_seq < log_first_seq) {
2385 len = sprintf(text, "** %u printk messages dropped ** ",
2386 (unsigned)(log_first_seq - console_seq));
2387
2388 /* messages are gone, move to first one */
2389 console_seq = log_first_seq;
2390 console_idx = log_first_idx;
2391 console_prev = 0;
2392 } else {
2393 len = 0;
2394 }
2395 skip:
2396 if (console_seq == log_next_seq)
2397 break;
2398
2399 msg = log_from_idx(console_idx);
2400 level = msg->level;
2401 if ((msg->flags & LOG_NOCONS) ||
2402 suppress_message_printing(level)) {
2403 /*
2404 * Skip record we have buffered and already printed
2405 * directly to the console when we received it, and
2406 * record that has level above the console loglevel.
2407 */
2408 console_idx = log_next(console_idx);
2409 console_seq++;
2410 /*
2411 * We will get here again when we register a new
2412 * CON_PRINTBUFFER console. Clear the flag so we
2413 * will properly dump everything later.
2414 */
2415 msg->flags &= ~LOG_NOCONS;
2416 console_prev = msg->flags;
2417 goto skip;
2418 }
2419
2420 len += msg_print_text(msg, console_prev, false,
2421 text + len, sizeof(text) - len);
2422 if (nr_ext_console_drivers) {
2423 ext_len = msg_print_ext_header(ext_text,
2424 sizeof(ext_text),
2425 msg, console_seq, console_prev);
2426 ext_len += msg_print_ext_body(ext_text + ext_len,
2427 sizeof(ext_text) - ext_len,
2428 log_dict(msg), msg->dict_len,
2429 log_text(msg), msg->text_len);
2430 }
2431 console_idx = log_next(console_idx);
2432 console_seq++;
2433 console_prev = msg->flags;
2434 raw_spin_unlock(&logbuf_lock);
2435
2436 stop_critical_timings(); /* don't trace print latency */
2437 call_console_drivers(level, ext_text, ext_len, text, len);
2438 start_critical_timings();
2439 local_irq_restore(flags);
2440
2441 if (do_cond_resched)
2442 cond_resched();
2443 }
2444 console_locked = 0;
2445
2446 /* Release the exclusive_console once it is used */
2447 if (unlikely(exclusive_console))
2448 exclusive_console = NULL;
2449
2450 raw_spin_unlock(&logbuf_lock);
2451
2452 up_console_sem();
2453
2454 /*
2455 * Someone could have filled up the buffer again, so re-check if there's
2456 * something to flush. In case we cannot trylock the console_sem again,
2457 * there's a new owner and the console_unlock() from them will do the
2458 * flush, no worries.
2459 */
2460 raw_spin_lock(&logbuf_lock);
2461 retry = console_seq != log_next_seq;
2462 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2463
2464 if (retry && console_trylock())
2465 goto again;
2466
2467 if (wake_klogd)
2468 wake_up_klogd();
2469 }
2470 EXPORT_SYMBOL(console_unlock);
2471
2472 /**
2473 * console_conditional_schedule - yield the CPU if required
2474 *
2475 * If the console code is currently allowed to sleep, and
2476 * if this CPU should yield the CPU to another task, do
2477 * so here.
2478 *
2479 * Must be called within console_lock();.
2480 */
2481 void __sched console_conditional_schedule(void)
2482 {
2483 if (console_may_schedule)
2484 cond_resched();
2485 }
2486 EXPORT_SYMBOL(console_conditional_schedule);
2487
2488 void console_unblank(void)
2489 {
2490 struct console *c;
2491
2492 /*
2493 * console_unblank can no longer be called in interrupt context unless
2494 * oops_in_progress is set to 1..
2495 */
2496 if (oops_in_progress) {
2497 if (down_trylock_console_sem() != 0)
2498 return;
2499 } else
2500 console_lock();
2501
2502 console_locked = 1;
2503 console_may_schedule = 0;
2504 for_each_console(c)
2505 if ((c->flags & CON_ENABLED) && c->unblank)
2506 c->unblank();
2507 console_unlock();
2508 }
2509
2510 /**
2511 * console_flush_on_panic - flush console content on panic
2512 *
2513 * Immediately output all pending messages no matter what.
2514 */
2515 void console_flush_on_panic(void)
2516 {
2517 /*
2518 * If someone else is holding the console lock, trylock will fail
2519 * and may_schedule may be set. Ignore and proceed to unlock so
2520 * that messages are flushed out. As this can be called from any
2521 * context and we don't want to get preempted while flushing,
2522 * ensure may_schedule is cleared.
2523 */
2524 console_trylock();
2525 console_may_schedule = 0;
2526 console_unlock();
2527 }
2528
2529 /*
2530 * Return the console tty driver structure and its associated index
2531 */
2532 struct tty_driver *console_device(int *index)
2533 {
2534 struct console *c;
2535 struct tty_driver *driver = NULL;
2536
2537 console_lock();
2538 for_each_console(c) {
2539 if (!c->device)
2540 continue;
2541 driver = c->device(c, index);
2542 if (driver)
2543 break;
2544 }
2545 console_unlock();
2546 return driver;
2547 }
2548
2549 /*
2550 * Prevent further output on the passed console device so that (for example)
2551 * serial drivers can disable console output before suspending a port, and can
2552 * re-enable output afterwards.
2553 */
2554 void console_stop(struct console *console)
2555 {
2556 console_lock();
2557 console->flags &= ~CON_ENABLED;
2558 console_unlock();
2559 }
2560 EXPORT_SYMBOL(console_stop);
2561
2562 void console_start(struct console *console)
2563 {
2564 console_lock();
2565 console->flags |= CON_ENABLED;
2566 console_unlock();
2567 }
2568 EXPORT_SYMBOL(console_start);
2569
2570 static int __read_mostly keep_bootcon;
2571
2572 static int __init keep_bootcon_setup(char *str)
2573 {
2574 keep_bootcon = 1;
2575 pr_info("debug: skip boot console de-registration.\n");
2576
2577 return 0;
2578 }
2579
2580 early_param("keep_bootcon", keep_bootcon_setup);
2581
2582 /*
2583 * The console driver calls this routine during kernel initialization
2584 * to register the console printing procedure with printk() and to
2585 * print any messages that were printed by the kernel before the
2586 * console driver was initialized.
2587 *
2588 * This can happen pretty early during the boot process (because of
2589 * early_printk) - sometimes before setup_arch() completes - be careful
2590 * of what kernel features are used - they may not be initialised yet.
2591 *
2592 * There are two types of consoles - bootconsoles (early_printk) and
2593 * "real" consoles (everything which is not a bootconsole) which are
2594 * handled differently.
2595 * - Any number of bootconsoles can be registered at any time.
2596 * - As soon as a "real" console is registered, all bootconsoles
2597 * will be unregistered automatically.
2598 * - Once a "real" console is registered, any attempt to register a
2599 * bootconsoles will be rejected
2600 */
2601 void register_console(struct console *newcon)
2602 {
2603 int i;
2604 unsigned long flags;
2605 struct console *bcon = NULL;
2606 struct console_cmdline *c;
2607
2608 if (console_drivers)
2609 for_each_console(bcon)
2610 if (WARN(bcon == newcon,
2611 "console '%s%d' already registered\n",
2612 bcon->name, bcon->index))
2613 return;
2614
2615 /*
2616 * before we register a new CON_BOOT console, make sure we don't
2617 * already have a valid console
2618 */
2619 if (console_drivers && newcon->flags & CON_BOOT) {
2620 /* find the last or real console */
2621 for_each_console(bcon) {
2622 if (!(bcon->flags & CON_BOOT)) {
2623 pr_info("Too late to register bootconsole %s%d\n",
2624 newcon->name, newcon->index);
2625 return;
2626 }
2627 }
2628 }
2629
2630 if (console_drivers && console_drivers->flags & CON_BOOT)
2631 bcon = console_drivers;
2632
2633 if (preferred_console < 0 || bcon || !console_drivers)
2634 preferred_console = selected_console;
2635
2636 /*
2637 * See if we want to use this console driver. If we
2638 * didn't select a console we take the first one
2639 * that registers here.
2640 */
2641 if (preferred_console < 0) {
2642 if (newcon->index < 0)
2643 newcon->index = 0;
2644 if (newcon->setup == NULL ||
2645 newcon->setup(newcon, NULL) == 0) {
2646 newcon->flags |= CON_ENABLED;
2647 if (newcon->device) {
2648 newcon->flags |= CON_CONSDEV;
2649 preferred_console = 0;
2650 }
2651 }
2652 }
2653
2654 /*
2655 * See if this console matches one we selected on
2656 * the command line.
2657 */
2658 for (i = 0, c = console_cmdline;
2659 i < MAX_CMDLINECONSOLES && c->name[0];
2660 i++, c++) {
2661 if (!newcon->match ||
2662 newcon->match(newcon, c->name, c->index, c->options) != 0) {
2663 /* default matching */
2664 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2665 if (strcmp(c->name, newcon->name) != 0)
2666 continue;
2667 if (newcon->index >= 0 &&
2668 newcon->index != c->index)
2669 continue;
2670 if (newcon->index < 0)
2671 newcon->index = c->index;
2672
2673 if (_braille_register_console(newcon, c))
2674 return;
2675
2676 if (newcon->setup &&
2677 newcon->setup(newcon, c->options) != 0)
2678 break;
2679 }
2680
2681 newcon->flags |= CON_ENABLED;
2682 if (i == selected_console) {
2683 newcon->flags |= CON_CONSDEV;
2684 preferred_console = selected_console;
2685 }
2686 break;
2687 }
2688
2689 if (!(newcon->flags & CON_ENABLED))
2690 return;
2691
2692 /*
2693 * If we have a bootconsole, and are switching to a real console,
2694 * don't print everything out again, since when the boot console, and
2695 * the real console are the same physical device, it's annoying to
2696 * see the beginning boot messages twice
2697 */
2698 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2699 newcon->flags &= ~CON_PRINTBUFFER;
2700
2701 /*
2702 * Put this console in the list - keep the
2703 * preferred driver at the head of the list.
2704 */
2705 console_lock();
2706 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2707 newcon->next = console_drivers;
2708 console_drivers = newcon;
2709 if (newcon->next)
2710 newcon->next->flags &= ~CON_CONSDEV;
2711 } else {
2712 newcon->next = console_drivers->next;
2713 console_drivers->next = newcon;
2714 }
2715
2716 if (newcon->flags & CON_EXTENDED)
2717 if (!nr_ext_console_drivers++)
2718 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2719
2720 if (newcon->flags & CON_PRINTBUFFER) {
2721 /*
2722 * console_unlock(); will print out the buffered messages
2723 * for us.
2724 */
2725 raw_spin_lock_irqsave(&logbuf_lock, flags);
2726 console_seq = syslog_seq;
2727 console_idx = syslog_idx;
2728 console_prev = syslog_prev;
2729 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2730 /*
2731 * We're about to replay the log buffer. Only do this to the
2732 * just-registered console to avoid excessive message spam to
2733 * the already-registered consoles.
2734 */
2735 exclusive_console = newcon;
2736 }
2737 console_unlock();
2738 console_sysfs_notify();
2739
2740 /*
2741 * By unregistering the bootconsoles after we enable the real console
2742 * we get the "console xxx enabled" message on all the consoles -
2743 * boot consoles, real consoles, etc - this is to ensure that end
2744 * users know there might be something in the kernel's log buffer that
2745 * went to the bootconsole (that they do not see on the real console)
2746 */
2747 pr_info("%sconsole [%s%d] enabled\n",
2748 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2749 newcon->name, newcon->index);
2750 if (bcon &&
2751 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2752 !keep_bootcon) {
2753 /* We need to iterate through all boot consoles, to make
2754 * sure we print everything out, before we unregister them.
2755 */
2756 for_each_console(bcon)
2757 if (bcon->flags & CON_BOOT)
2758 unregister_console(bcon);
2759 }
2760 }
2761 EXPORT_SYMBOL(register_console);
2762
2763 int unregister_console(struct console *console)
2764 {
2765 struct console *a, *b;
2766 int res;
2767
2768 pr_info("%sconsole [%s%d] disabled\n",
2769 (console->flags & CON_BOOT) ? "boot" : "" ,
2770 console->name, console->index);
2771
2772 res = _braille_unregister_console(console);
2773 if (res)
2774 return res;
2775
2776 res = 1;
2777 console_lock();
2778 if (console_drivers == console) {
2779 console_drivers=console->next;
2780 res = 0;
2781 } else if (console_drivers) {
2782 for (a=console_drivers->next, b=console_drivers ;
2783 a; b=a, a=b->next) {
2784 if (a == console) {
2785 b->next = a->next;
2786 res = 0;
2787 break;
2788 }
2789 }
2790 }
2791
2792 if (!res && (console->flags & CON_EXTENDED))
2793 nr_ext_console_drivers--;
2794
2795 /*
2796 * If this isn't the last console and it has CON_CONSDEV set, we
2797 * need to set it on the next preferred console.
2798 */
2799 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2800 console_drivers->flags |= CON_CONSDEV;
2801
2802 console->flags &= ~CON_ENABLED;
2803 console_unlock();
2804 console_sysfs_notify();
2805 return res;
2806 }
2807 EXPORT_SYMBOL(unregister_console);
2808
2809 /*
2810 * Some boot consoles access data that is in the init section and which will
2811 * be discarded after the initcalls have been run. To make sure that no code
2812 * will access this data, unregister the boot consoles in a late initcall.
2813 *
2814 * If for some reason, such as deferred probe or the driver being a loadable
2815 * module, the real console hasn't registered yet at this point, there will
2816 * be a brief interval in which no messages are logged to the console, which
2817 * makes it difficult to diagnose problems that occur during this time.
2818 *
2819 * To mitigate this problem somewhat, only unregister consoles whose memory
2820 * intersects with the init section. Note that code exists elsewhere to get
2821 * rid of the boot console as soon as the proper console shows up, so there
2822 * won't be side-effects from postponing the removal.
2823 */
2824 static int __init printk_late_init(void)
2825 {
2826 struct console *con;
2827
2828 for_each_console(con) {
2829 if (!keep_bootcon && con->flags & CON_BOOT) {
2830 /*
2831 * Make sure to unregister boot consoles whose data
2832 * resides in the init section before the init section
2833 * is discarded. Boot consoles whose data will stick
2834 * around will automatically be unregistered when the
2835 * proper console replaces them.
2836 */
2837 if (init_section_intersects(con, sizeof(*con)))
2838 unregister_console(con);
2839 }
2840 }
2841 hotcpu_notifier(console_cpu_notify, 0);
2842 return 0;
2843 }
2844 late_initcall(printk_late_init);
2845
2846 #if defined CONFIG_PRINTK
2847 /*
2848 * Delayed printk version, for scheduler-internal messages:
2849 */
2850 #define PRINTK_PENDING_WAKEUP 0x01
2851 #define PRINTK_PENDING_OUTPUT 0x02
2852
2853 static DEFINE_PER_CPU(int, printk_pending);
2854
2855 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2856 {
2857 int pending = __this_cpu_xchg(printk_pending, 0);
2858
2859 if (pending & PRINTK_PENDING_OUTPUT) {
2860 /* If trylock fails, someone else is doing the printing */
2861 if (console_trylock())
2862 console_unlock();
2863 }
2864
2865 if (pending & PRINTK_PENDING_WAKEUP)
2866 wake_up_interruptible(&log_wait);
2867 }
2868
2869 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2870 .func = wake_up_klogd_work_func,
2871 .flags = IRQ_WORK_LAZY,
2872 };
2873
2874 void wake_up_klogd(void)
2875 {
2876 preempt_disable();
2877 if (waitqueue_active(&log_wait)) {
2878 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2879 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2880 }
2881 preempt_enable();
2882 }
2883
2884 int printk_deferred(const char *fmt, ...)
2885 {
2886 va_list args;
2887 int r;
2888
2889 preempt_disable();
2890 va_start(args, fmt);
2891 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2892 va_end(args);
2893
2894 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2895 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2896 preempt_enable();
2897
2898 return r;
2899 }
2900
2901 /*
2902 * printk rate limiting, lifted from the networking subsystem.
2903 *
2904 * This enforces a rate limit: not more than 10 kernel messages
2905 * every 5s to make a denial-of-service attack impossible.
2906 */
2907 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2908
2909 int __printk_ratelimit(const char *func)
2910 {
2911 return ___ratelimit(&printk_ratelimit_state, func);
2912 }
2913 EXPORT_SYMBOL(__printk_ratelimit);
2914
2915 /**
2916 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2917 * @caller_jiffies: pointer to caller's state
2918 * @interval_msecs: minimum interval between prints
2919 *
2920 * printk_timed_ratelimit() returns true if more than @interval_msecs
2921 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2922 * returned true.
2923 */
2924 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2925 unsigned int interval_msecs)
2926 {
2927 unsigned long elapsed = jiffies - *caller_jiffies;
2928
2929 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2930 return false;
2931
2932 *caller_jiffies = jiffies;
2933 return true;
2934 }
2935 EXPORT_SYMBOL(printk_timed_ratelimit);
2936
2937 static DEFINE_SPINLOCK(dump_list_lock);
2938 static LIST_HEAD(dump_list);
2939
2940 /**
2941 * kmsg_dump_register - register a kernel log dumper.
2942 * @dumper: pointer to the kmsg_dumper structure
2943 *
2944 * Adds a kernel log dumper to the system. The dump callback in the
2945 * structure will be called when the kernel oopses or panics and must be
2946 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2947 */
2948 int kmsg_dump_register(struct kmsg_dumper *dumper)
2949 {
2950 unsigned long flags;
2951 int err = -EBUSY;
2952
2953 /* The dump callback needs to be set */
2954 if (!dumper->dump)
2955 return -EINVAL;
2956
2957 spin_lock_irqsave(&dump_list_lock, flags);
2958 /* Don't allow registering multiple times */
2959 if (!dumper->registered) {
2960 dumper->registered = 1;
2961 list_add_tail_rcu(&dumper->list, &dump_list);
2962 err = 0;
2963 }
2964 spin_unlock_irqrestore(&dump_list_lock, flags);
2965
2966 return err;
2967 }
2968 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2969
2970 /**
2971 * kmsg_dump_unregister - unregister a kmsg dumper.
2972 * @dumper: pointer to the kmsg_dumper structure
2973 *
2974 * Removes a dump device from the system. Returns zero on success and
2975 * %-EINVAL otherwise.
2976 */
2977 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2978 {
2979 unsigned long flags;
2980 int err = -EINVAL;
2981
2982 spin_lock_irqsave(&dump_list_lock, flags);
2983 if (dumper->registered) {
2984 dumper->registered = 0;
2985 list_del_rcu(&dumper->list);
2986 err = 0;
2987 }
2988 spin_unlock_irqrestore(&dump_list_lock, flags);
2989 synchronize_rcu();
2990
2991 return err;
2992 }
2993 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2994
2995 static bool always_kmsg_dump;
2996 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2997
2998 /**
2999 * kmsg_dump - dump kernel log to kernel message dumpers.
3000 * @reason: the reason (oops, panic etc) for dumping
3001 *
3002 * Call each of the registered dumper's dump() callback, which can
3003 * retrieve the kmsg records with kmsg_dump_get_line() or
3004 * kmsg_dump_get_buffer().
3005 */
3006 void kmsg_dump(enum kmsg_dump_reason reason)
3007 {
3008 struct kmsg_dumper *dumper;
3009 unsigned long flags;
3010
3011 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3012 return;
3013
3014 rcu_read_lock();
3015 list_for_each_entry_rcu(dumper, &dump_list, list) {
3016 if (dumper->max_reason && reason > dumper->max_reason)
3017 continue;
3018
3019 /* initialize iterator with data about the stored records */
3020 dumper->active = true;
3021
3022 raw_spin_lock_irqsave(&logbuf_lock, flags);
3023 dumper->cur_seq = clear_seq;
3024 dumper->cur_idx = clear_idx;
3025 dumper->next_seq = log_next_seq;
3026 dumper->next_idx = log_next_idx;
3027 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3028
3029 /* invoke dumper which will iterate over records */
3030 dumper->dump(dumper, reason);
3031
3032 /* reset iterator */
3033 dumper->active = false;
3034 }
3035 rcu_read_unlock();
3036 }
3037
3038 /**
3039 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3040 * @dumper: registered kmsg dumper
3041 * @syslog: include the "<4>" prefixes
3042 * @line: buffer to copy the line to
3043 * @size: maximum size of the buffer
3044 * @len: length of line placed into buffer
3045 *
3046 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3047 * record, and copy one record into the provided buffer.
3048 *
3049 * Consecutive calls will return the next available record moving
3050 * towards the end of the buffer with the youngest messages.
3051 *
3052 * A return value of FALSE indicates that there are no more records to
3053 * read.
3054 *
3055 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3056 */
3057 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3058 char *line, size_t size, size_t *len)
3059 {
3060 struct printk_log *msg;
3061 size_t l = 0;
3062 bool ret = false;
3063
3064 if (!dumper->active)
3065 goto out;
3066
3067 if (dumper->cur_seq < log_first_seq) {
3068 /* messages are gone, move to first available one */
3069 dumper->cur_seq = log_first_seq;
3070 dumper->cur_idx = log_first_idx;
3071 }
3072
3073 /* last entry */
3074 if (dumper->cur_seq >= log_next_seq)
3075 goto out;
3076
3077 msg = log_from_idx(dumper->cur_idx);
3078 l = msg_print_text(msg, 0, syslog, line, size);
3079
3080 dumper->cur_idx = log_next(dumper->cur_idx);
3081 dumper->cur_seq++;
3082 ret = true;
3083 out:
3084 if (len)
3085 *len = l;
3086 return ret;
3087 }
3088
3089 /**
3090 * kmsg_dump_get_line - retrieve one kmsg log line
3091 * @dumper: registered kmsg dumper
3092 * @syslog: include the "<4>" prefixes
3093 * @line: buffer to copy the line to
3094 * @size: maximum size of the buffer
3095 * @len: length of line placed into buffer
3096 *
3097 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3098 * record, and copy one record into the provided buffer.
3099 *
3100 * Consecutive calls will return the next available record moving
3101 * towards the end of the buffer with the youngest messages.
3102 *
3103 * A return value of FALSE indicates that there are no more records to
3104 * read.
3105 */
3106 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3107 char *line, size_t size, size_t *len)
3108 {
3109 unsigned long flags;
3110 bool ret;
3111
3112 raw_spin_lock_irqsave(&logbuf_lock, flags);
3113 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3114 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3115
3116 return ret;
3117 }
3118 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3119
3120 /**
3121 * kmsg_dump_get_buffer - copy kmsg log lines
3122 * @dumper: registered kmsg dumper
3123 * @syslog: include the "<4>" prefixes
3124 * @buf: buffer to copy the line to
3125 * @size: maximum size of the buffer
3126 * @len: length of line placed into buffer
3127 *
3128 * Start at the end of the kmsg buffer and fill the provided buffer
3129 * with as many of the the *youngest* kmsg records that fit into it.
3130 * If the buffer is large enough, all available kmsg records will be
3131 * copied with a single call.
3132 *
3133 * Consecutive calls will fill the buffer with the next block of
3134 * available older records, not including the earlier retrieved ones.
3135 *
3136 * A return value of FALSE indicates that there are no more records to
3137 * read.
3138 */
3139 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3140 char *buf, size_t size, size_t *len)
3141 {
3142 unsigned long flags;
3143 u64 seq;
3144 u32 idx;
3145 u64 next_seq;
3146 u32 next_idx;
3147 enum log_flags prev;
3148 size_t l = 0;
3149 bool ret = false;
3150
3151 if (!dumper->active)
3152 goto out;
3153
3154 raw_spin_lock_irqsave(&logbuf_lock, flags);
3155 if (dumper->cur_seq < log_first_seq) {
3156 /* messages are gone, move to first available one */
3157 dumper->cur_seq = log_first_seq;
3158 dumper->cur_idx = log_first_idx;
3159 }
3160
3161 /* last entry */
3162 if (dumper->cur_seq >= dumper->next_seq) {
3163 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3164 goto out;
3165 }
3166
3167 /* calculate length of entire buffer */
3168 seq = dumper->cur_seq;
3169 idx = dumper->cur_idx;
3170 prev = 0;
3171 while (seq < dumper->next_seq) {
3172 struct printk_log *msg = log_from_idx(idx);
3173
3174 l += msg_print_text(msg, prev, true, NULL, 0);
3175 idx = log_next(idx);
3176 seq++;
3177 prev = msg->flags;
3178 }
3179
3180 /* move first record forward until length fits into the buffer */
3181 seq = dumper->cur_seq;
3182 idx = dumper->cur_idx;
3183 prev = 0;
3184 while (l > size && seq < dumper->next_seq) {
3185 struct printk_log *msg = log_from_idx(idx);
3186
3187 l -= msg_print_text(msg, prev, true, NULL, 0);
3188 idx = log_next(idx);
3189 seq++;
3190 prev = msg->flags;
3191 }
3192
3193 /* last message in next interation */
3194 next_seq = seq;
3195 next_idx = idx;
3196
3197 l = 0;
3198 while (seq < dumper->next_seq) {
3199 struct printk_log *msg = log_from_idx(idx);
3200
3201 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
3202 idx = log_next(idx);
3203 seq++;
3204 prev = msg->flags;
3205 }
3206
3207 dumper->next_seq = next_seq;
3208 dumper->next_idx = next_idx;
3209 ret = true;
3210 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3211 out:
3212 if (len)
3213 *len = l;
3214 return ret;
3215 }
3216 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3217
3218 /**
3219 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3220 * @dumper: registered kmsg dumper
3221 *
3222 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3223 * kmsg_dump_get_buffer() can be called again and used multiple
3224 * times within the same dumper.dump() callback.
3225 *
3226 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3227 */
3228 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3229 {
3230 dumper->cur_seq = clear_seq;
3231 dumper->cur_idx = clear_idx;
3232 dumper->next_seq = log_next_seq;
3233 dumper->next_idx = log_next_idx;
3234 }
3235
3236 /**
3237 * kmsg_dump_rewind - reset the interator
3238 * @dumper: registered kmsg dumper
3239 *
3240 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3241 * kmsg_dump_get_buffer() can be called again and used multiple
3242 * times within the same dumper.dump() callback.
3243 */
3244 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3245 {
3246 unsigned long flags;
3247
3248 raw_spin_lock_irqsave(&logbuf_lock, flags);
3249 kmsg_dump_rewind_nolock(dumper);
3250 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3251 }
3252 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3253
3254 static char dump_stack_arch_desc_str[128];
3255
3256 /**
3257 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3258 * @fmt: printf-style format string
3259 * @...: arguments for the format string
3260 *
3261 * The configured string will be printed right after utsname during task
3262 * dumps. Usually used to add arch-specific system identifiers. If an
3263 * arch wants to make use of such an ID string, it should initialize this
3264 * as soon as possible during boot.
3265 */
3266 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3267 {
3268 va_list args;
3269
3270 va_start(args, fmt);
3271 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3272 fmt, args);
3273 va_end(args);
3274 }
3275
3276 /**
3277 * dump_stack_print_info - print generic debug info for dump_stack()
3278 * @log_lvl: log level
3279 *
3280 * Arch-specific dump_stack() implementations can use this function to
3281 * print out the same debug information as the generic dump_stack().
3282 */
3283 void dump_stack_print_info(const char *log_lvl)
3284 {
3285 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3286 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3287 print_tainted(), init_utsname()->release,
3288 (int)strcspn(init_utsname()->version, " "),
3289 init_utsname()->version);
3290
3291 if (dump_stack_arch_desc_str[0] != '\0')
3292 printk("%sHardware name: %s\n",
3293 log_lvl, dump_stack_arch_desc_str);
3294
3295 print_worker_info(log_lvl, current);
3296 }
3297
3298 /**
3299 * show_regs_print_info - print generic debug info for show_regs()
3300 * @log_lvl: log level
3301 *
3302 * show_regs() implementations can use this function to print out generic
3303 * debug information.
3304 */
3305 void show_regs_print_info(const char *log_lvl)
3306 {
3307 dump_stack_print_info(log_lvl);
3308
3309 printk("%stask: %p task.stack: %p\n",
3310 log_lvl, current, task_stack_page(current));
3311 }
3312
3313 #endif