]> git.ipfire.org Git - people/ms/linux.git/blob - kernel/printk/printk.c
vfs: do bulk POLL* -> EPOLL* replacement
[people/ms/linux.git] / kernel / printk / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/delay.h>
30 #include <linux/smp.h>
31 #include <linux/security.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/syscalls.h>
35 #include <linux/crash_core.h>
36 #include <linux/kdb.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kmsg_dump.h>
39 #include <linux/syslog.h>
40 #include <linux/cpu.h>
41 #include <linux/notifier.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/utsname.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/debug.h>
50 #include <linux/sched/task_stack.h>
51
52 #include <linux/uaccess.h>
53 #include <asm/sections.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57
58 #include "console_cmdline.h"
59 #include "braille.h"
60 #include "internal.h"
61
62 int console_printk[4] = {
63 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
64 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
65 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
66 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
67 };
68
69 /*
70 * Low level drivers may need that to know if they can schedule in
71 * their unblank() callback or not. So let's export it.
72 */
73 int oops_in_progress;
74 EXPORT_SYMBOL(oops_in_progress);
75
76 /*
77 * console_sem protects the console_drivers list, and also
78 * provides serialisation for access to the entire console
79 * driver system.
80 */
81 static DEFINE_SEMAPHORE(console_sem);
82 struct console *console_drivers;
83 EXPORT_SYMBOL_GPL(console_drivers);
84
85 #ifdef CONFIG_LOCKDEP
86 static struct lockdep_map console_lock_dep_map = {
87 .name = "console_lock"
88 };
89 #endif
90
91 enum devkmsg_log_bits {
92 __DEVKMSG_LOG_BIT_ON = 0,
93 __DEVKMSG_LOG_BIT_OFF,
94 __DEVKMSG_LOG_BIT_LOCK,
95 };
96
97 enum devkmsg_log_masks {
98 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON),
99 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF),
100 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK),
101 };
102
103 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
104 #define DEVKMSG_LOG_MASK_DEFAULT 0
105
106 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
107
108 static int __control_devkmsg(char *str)
109 {
110 if (!str)
111 return -EINVAL;
112
113 if (!strncmp(str, "on", 2)) {
114 devkmsg_log = DEVKMSG_LOG_MASK_ON;
115 return 2;
116 } else if (!strncmp(str, "off", 3)) {
117 devkmsg_log = DEVKMSG_LOG_MASK_OFF;
118 return 3;
119 } else if (!strncmp(str, "ratelimit", 9)) {
120 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
121 return 9;
122 }
123 return -EINVAL;
124 }
125
126 static int __init control_devkmsg(char *str)
127 {
128 if (__control_devkmsg(str) < 0)
129 return 1;
130
131 /*
132 * Set sysctl string accordingly:
133 */
134 if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
135 strcpy(devkmsg_log_str, "on");
136 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
137 strcpy(devkmsg_log_str, "off");
138 /* else "ratelimit" which is set by default. */
139
140 /*
141 * Sysctl cannot change it anymore. The kernel command line setting of
142 * this parameter is to force the setting to be permanent throughout the
143 * runtime of the system. This is a precation measure against userspace
144 * trying to be a smarta** and attempting to change it up on us.
145 */
146 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
147
148 return 0;
149 }
150 __setup("printk.devkmsg=", control_devkmsg);
151
152 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
153
154 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
155 void __user *buffer, size_t *lenp, loff_t *ppos)
156 {
157 char old_str[DEVKMSG_STR_MAX_SIZE];
158 unsigned int old;
159 int err;
160
161 if (write) {
162 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
163 return -EINVAL;
164
165 old = devkmsg_log;
166 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
167 }
168
169 err = proc_dostring(table, write, buffer, lenp, ppos);
170 if (err)
171 return err;
172
173 if (write) {
174 err = __control_devkmsg(devkmsg_log_str);
175
176 /*
177 * Do not accept an unknown string OR a known string with
178 * trailing crap...
179 */
180 if (err < 0 || (err + 1 != *lenp)) {
181
182 /* ... and restore old setting. */
183 devkmsg_log = old;
184 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
185
186 return -EINVAL;
187 }
188 }
189
190 return 0;
191 }
192
193 /*
194 * Number of registered extended console drivers.
195 *
196 * If extended consoles are present, in-kernel cont reassembly is disabled
197 * and each fragment is stored as a separate log entry with proper
198 * continuation flag so that every emitted message has full metadata. This
199 * doesn't change the result for regular consoles or /proc/kmsg. For
200 * /dev/kmsg, as long as the reader concatenates messages according to
201 * consecutive continuation flags, the end result should be the same too.
202 */
203 static int nr_ext_console_drivers;
204
205 /*
206 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
207 * macros instead of functions so that _RET_IP_ contains useful information.
208 */
209 #define down_console_sem() do { \
210 down(&console_sem);\
211 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
212 } while (0)
213
214 static int __down_trylock_console_sem(unsigned long ip)
215 {
216 int lock_failed;
217 unsigned long flags;
218
219 /*
220 * Here and in __up_console_sem() we need to be in safe mode,
221 * because spindump/WARN/etc from under console ->lock will
222 * deadlock in printk()->down_trylock_console_sem() otherwise.
223 */
224 printk_safe_enter_irqsave(flags);
225 lock_failed = down_trylock(&console_sem);
226 printk_safe_exit_irqrestore(flags);
227
228 if (lock_failed)
229 return 1;
230 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
231 return 0;
232 }
233 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
234
235 static void __up_console_sem(unsigned long ip)
236 {
237 unsigned long flags;
238
239 mutex_release(&console_lock_dep_map, 1, ip);
240
241 printk_safe_enter_irqsave(flags);
242 up(&console_sem);
243 printk_safe_exit_irqrestore(flags);
244 }
245 #define up_console_sem() __up_console_sem(_RET_IP_)
246
247 /*
248 * This is used for debugging the mess that is the VT code by
249 * keeping track if we have the console semaphore held. It's
250 * definitely not the perfect debug tool (we don't know if _WE_
251 * hold it and are racing, but it helps tracking those weird code
252 * paths in the console code where we end up in places I want
253 * locked without the console sempahore held).
254 */
255 static int console_locked, console_suspended;
256
257 /*
258 * If exclusive_console is non-NULL then only this console is to be printed to.
259 */
260 static struct console *exclusive_console;
261
262 /*
263 * Array of consoles built from command line options (console=)
264 */
265
266 #define MAX_CMDLINECONSOLES 8
267
268 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
269
270 static int preferred_console = -1;
271 int console_set_on_cmdline;
272 EXPORT_SYMBOL(console_set_on_cmdline);
273
274 /* Flag: console code may call schedule() */
275 static int console_may_schedule;
276
277 enum con_msg_format_flags {
278 MSG_FORMAT_DEFAULT = 0,
279 MSG_FORMAT_SYSLOG = (1 << 0),
280 };
281
282 static int console_msg_format = MSG_FORMAT_DEFAULT;
283
284 /*
285 * The printk log buffer consists of a chain of concatenated variable
286 * length records. Every record starts with a record header, containing
287 * the overall length of the record.
288 *
289 * The heads to the first and last entry in the buffer, as well as the
290 * sequence numbers of these entries are maintained when messages are
291 * stored.
292 *
293 * If the heads indicate available messages, the length in the header
294 * tells the start next message. A length == 0 for the next message
295 * indicates a wrap-around to the beginning of the buffer.
296 *
297 * Every record carries the monotonic timestamp in microseconds, as well as
298 * the standard userspace syslog level and syslog facility. The usual
299 * kernel messages use LOG_KERN; userspace-injected messages always carry
300 * a matching syslog facility, by default LOG_USER. The origin of every
301 * message can be reliably determined that way.
302 *
303 * The human readable log message directly follows the message header. The
304 * length of the message text is stored in the header, the stored message
305 * is not terminated.
306 *
307 * Optionally, a message can carry a dictionary of properties (key/value pairs),
308 * to provide userspace with a machine-readable message context.
309 *
310 * Examples for well-defined, commonly used property names are:
311 * DEVICE=b12:8 device identifier
312 * b12:8 block dev_t
313 * c127:3 char dev_t
314 * n8 netdev ifindex
315 * +sound:card0 subsystem:devname
316 * SUBSYSTEM=pci driver-core subsystem name
317 *
318 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
319 * follows directly after a '=' character. Every property is terminated by
320 * a '\0' character. The last property is not terminated.
321 *
322 * Example of a message structure:
323 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
324 * 0008 34 00 record is 52 bytes long
325 * 000a 0b 00 text is 11 bytes long
326 * 000c 1f 00 dictionary is 23 bytes long
327 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
328 * 0010 69 74 27 73 20 61 20 6c "it's a l"
329 * 69 6e 65 "ine"
330 * 001b 44 45 56 49 43 "DEVIC"
331 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
332 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
333 * 67 "g"
334 * 0032 00 00 00 padding to next message header
335 *
336 * The 'struct printk_log' buffer header must never be directly exported to
337 * userspace, it is a kernel-private implementation detail that might
338 * need to be changed in the future, when the requirements change.
339 *
340 * /dev/kmsg exports the structured data in the following line format:
341 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
342 *
343 * Users of the export format should ignore possible additional values
344 * separated by ',', and find the message after the ';' character.
345 *
346 * The optional key/value pairs are attached as continuation lines starting
347 * with a space character and terminated by a newline. All possible
348 * non-prinatable characters are escaped in the "\xff" notation.
349 */
350
351 enum log_flags {
352 LOG_NOCONS = 1, /* already flushed, do not print to console */
353 LOG_NEWLINE = 2, /* text ended with a newline */
354 LOG_PREFIX = 4, /* text started with a prefix */
355 LOG_CONT = 8, /* text is a fragment of a continuation line */
356 };
357
358 struct printk_log {
359 u64 ts_nsec; /* timestamp in nanoseconds */
360 u16 len; /* length of entire record */
361 u16 text_len; /* length of text buffer */
362 u16 dict_len; /* length of dictionary buffer */
363 u8 facility; /* syslog facility */
364 u8 flags:5; /* internal record flags */
365 u8 level:3; /* syslog level */
366 }
367 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
368 __packed __aligned(4)
369 #endif
370 ;
371
372 /*
373 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
374 * within the scheduler's rq lock. It must be released before calling
375 * console_unlock() or anything else that might wake up a process.
376 */
377 DEFINE_RAW_SPINLOCK(logbuf_lock);
378
379 /*
380 * Helper macros to lock/unlock logbuf_lock and switch between
381 * printk-safe/unsafe modes.
382 */
383 #define logbuf_lock_irq() \
384 do { \
385 printk_safe_enter_irq(); \
386 raw_spin_lock(&logbuf_lock); \
387 } while (0)
388
389 #define logbuf_unlock_irq() \
390 do { \
391 raw_spin_unlock(&logbuf_lock); \
392 printk_safe_exit_irq(); \
393 } while (0)
394
395 #define logbuf_lock_irqsave(flags) \
396 do { \
397 printk_safe_enter_irqsave(flags); \
398 raw_spin_lock(&logbuf_lock); \
399 } while (0)
400
401 #define logbuf_unlock_irqrestore(flags) \
402 do { \
403 raw_spin_unlock(&logbuf_lock); \
404 printk_safe_exit_irqrestore(flags); \
405 } while (0)
406
407 #ifdef CONFIG_PRINTK
408 DECLARE_WAIT_QUEUE_HEAD(log_wait);
409 /* the next printk record to read by syslog(READ) or /proc/kmsg */
410 static u64 syslog_seq;
411 static u32 syslog_idx;
412 static size_t syslog_partial;
413
414 /* index and sequence number of the first record stored in the buffer */
415 static u64 log_first_seq;
416 static u32 log_first_idx;
417
418 /* index and sequence number of the next record to store in the buffer */
419 static u64 log_next_seq;
420 static u32 log_next_idx;
421
422 /* the next printk record to write to the console */
423 static u64 console_seq;
424 static u32 console_idx;
425
426 /* the next printk record to read after the last 'clear' command */
427 static u64 clear_seq;
428 static u32 clear_idx;
429
430 #define PREFIX_MAX 32
431 #define LOG_LINE_MAX (1024 - PREFIX_MAX)
432
433 #define LOG_LEVEL(v) ((v) & 0x07)
434 #define LOG_FACILITY(v) ((v) >> 3 & 0xff)
435
436 /* record buffer */
437 #define LOG_ALIGN __alignof__(struct printk_log)
438 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
439 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
440 static char *log_buf = __log_buf;
441 static u32 log_buf_len = __LOG_BUF_LEN;
442
443 /* Return log buffer address */
444 char *log_buf_addr_get(void)
445 {
446 return log_buf;
447 }
448
449 /* Return log buffer size */
450 u32 log_buf_len_get(void)
451 {
452 return log_buf_len;
453 }
454
455 /* human readable text of the record */
456 static char *log_text(const struct printk_log *msg)
457 {
458 return (char *)msg + sizeof(struct printk_log);
459 }
460
461 /* optional key/value pair dictionary attached to the record */
462 static char *log_dict(const struct printk_log *msg)
463 {
464 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
465 }
466
467 /* get record by index; idx must point to valid msg */
468 static struct printk_log *log_from_idx(u32 idx)
469 {
470 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
471
472 /*
473 * A length == 0 record is the end of buffer marker. Wrap around and
474 * read the message at the start of the buffer.
475 */
476 if (!msg->len)
477 return (struct printk_log *)log_buf;
478 return msg;
479 }
480
481 /* get next record; idx must point to valid msg */
482 static u32 log_next(u32 idx)
483 {
484 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
485
486 /* length == 0 indicates the end of the buffer; wrap */
487 /*
488 * A length == 0 record is the end of buffer marker. Wrap around and
489 * read the message at the start of the buffer as *this* one, and
490 * return the one after that.
491 */
492 if (!msg->len) {
493 msg = (struct printk_log *)log_buf;
494 return msg->len;
495 }
496 return idx + msg->len;
497 }
498
499 /*
500 * Check whether there is enough free space for the given message.
501 *
502 * The same values of first_idx and next_idx mean that the buffer
503 * is either empty or full.
504 *
505 * If the buffer is empty, we must respect the position of the indexes.
506 * They cannot be reset to the beginning of the buffer.
507 */
508 static int logbuf_has_space(u32 msg_size, bool empty)
509 {
510 u32 free;
511
512 if (log_next_idx > log_first_idx || empty)
513 free = max(log_buf_len - log_next_idx, log_first_idx);
514 else
515 free = log_first_idx - log_next_idx;
516
517 /*
518 * We need space also for an empty header that signalizes wrapping
519 * of the buffer.
520 */
521 return free >= msg_size + sizeof(struct printk_log);
522 }
523
524 static int log_make_free_space(u32 msg_size)
525 {
526 while (log_first_seq < log_next_seq &&
527 !logbuf_has_space(msg_size, false)) {
528 /* drop old messages until we have enough contiguous space */
529 log_first_idx = log_next(log_first_idx);
530 log_first_seq++;
531 }
532
533 if (clear_seq < log_first_seq) {
534 clear_seq = log_first_seq;
535 clear_idx = log_first_idx;
536 }
537
538 /* sequence numbers are equal, so the log buffer is empty */
539 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
540 return 0;
541
542 return -ENOMEM;
543 }
544
545 /* compute the message size including the padding bytes */
546 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
547 {
548 u32 size;
549
550 size = sizeof(struct printk_log) + text_len + dict_len;
551 *pad_len = (-size) & (LOG_ALIGN - 1);
552 size += *pad_len;
553
554 return size;
555 }
556
557 /*
558 * Define how much of the log buffer we could take at maximum. The value
559 * must be greater than two. Note that only half of the buffer is available
560 * when the index points to the middle.
561 */
562 #define MAX_LOG_TAKE_PART 4
563 static const char trunc_msg[] = "<truncated>";
564
565 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
566 u16 *dict_len, u32 *pad_len)
567 {
568 /*
569 * The message should not take the whole buffer. Otherwise, it might
570 * get removed too soon.
571 */
572 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
573 if (*text_len > max_text_len)
574 *text_len = max_text_len;
575 /* enable the warning message */
576 *trunc_msg_len = strlen(trunc_msg);
577 /* disable the "dict" completely */
578 *dict_len = 0;
579 /* compute the size again, count also the warning message */
580 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
581 }
582
583 /* insert record into the buffer, discard old ones, update heads */
584 static int log_store(int facility, int level,
585 enum log_flags flags, u64 ts_nsec,
586 const char *dict, u16 dict_len,
587 const char *text, u16 text_len)
588 {
589 struct printk_log *msg;
590 u32 size, pad_len;
591 u16 trunc_msg_len = 0;
592
593 /* number of '\0' padding bytes to next message */
594 size = msg_used_size(text_len, dict_len, &pad_len);
595
596 if (log_make_free_space(size)) {
597 /* truncate the message if it is too long for empty buffer */
598 size = truncate_msg(&text_len, &trunc_msg_len,
599 &dict_len, &pad_len);
600 /* survive when the log buffer is too small for trunc_msg */
601 if (log_make_free_space(size))
602 return 0;
603 }
604
605 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
606 /*
607 * This message + an additional empty header does not fit
608 * at the end of the buffer. Add an empty header with len == 0
609 * to signify a wrap around.
610 */
611 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
612 log_next_idx = 0;
613 }
614
615 /* fill message */
616 msg = (struct printk_log *)(log_buf + log_next_idx);
617 memcpy(log_text(msg), text, text_len);
618 msg->text_len = text_len;
619 if (trunc_msg_len) {
620 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
621 msg->text_len += trunc_msg_len;
622 }
623 memcpy(log_dict(msg), dict, dict_len);
624 msg->dict_len = dict_len;
625 msg->facility = facility;
626 msg->level = level & 7;
627 msg->flags = flags & 0x1f;
628 if (ts_nsec > 0)
629 msg->ts_nsec = ts_nsec;
630 else
631 msg->ts_nsec = local_clock();
632 memset(log_dict(msg) + dict_len, 0, pad_len);
633 msg->len = size;
634
635 /* insert message */
636 log_next_idx += msg->len;
637 log_next_seq++;
638
639 return msg->text_len;
640 }
641
642 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
643
644 static int syslog_action_restricted(int type)
645 {
646 if (dmesg_restrict)
647 return 1;
648 /*
649 * Unless restricted, we allow "read all" and "get buffer size"
650 * for everybody.
651 */
652 return type != SYSLOG_ACTION_READ_ALL &&
653 type != SYSLOG_ACTION_SIZE_BUFFER;
654 }
655
656 static int check_syslog_permissions(int type, int source)
657 {
658 /*
659 * If this is from /proc/kmsg and we've already opened it, then we've
660 * already done the capabilities checks at open time.
661 */
662 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
663 goto ok;
664
665 if (syslog_action_restricted(type)) {
666 if (capable(CAP_SYSLOG))
667 goto ok;
668 /*
669 * For historical reasons, accept CAP_SYS_ADMIN too, with
670 * a warning.
671 */
672 if (capable(CAP_SYS_ADMIN)) {
673 pr_warn_once("%s (%d): Attempt to access syslog with "
674 "CAP_SYS_ADMIN but no CAP_SYSLOG "
675 "(deprecated).\n",
676 current->comm, task_pid_nr(current));
677 goto ok;
678 }
679 return -EPERM;
680 }
681 ok:
682 return security_syslog(type);
683 }
684
685 static void append_char(char **pp, char *e, char c)
686 {
687 if (*pp < e)
688 *(*pp)++ = c;
689 }
690
691 static ssize_t msg_print_ext_header(char *buf, size_t size,
692 struct printk_log *msg, u64 seq)
693 {
694 u64 ts_usec = msg->ts_nsec;
695
696 do_div(ts_usec, 1000);
697
698 return scnprintf(buf, size, "%u,%llu,%llu,%c;",
699 (msg->facility << 3) | msg->level, seq, ts_usec,
700 msg->flags & LOG_CONT ? 'c' : '-');
701 }
702
703 static ssize_t msg_print_ext_body(char *buf, size_t size,
704 char *dict, size_t dict_len,
705 char *text, size_t text_len)
706 {
707 char *p = buf, *e = buf + size;
708 size_t i;
709
710 /* escape non-printable characters */
711 for (i = 0; i < text_len; i++) {
712 unsigned char c = text[i];
713
714 if (c < ' ' || c >= 127 || c == '\\')
715 p += scnprintf(p, e - p, "\\x%02x", c);
716 else
717 append_char(&p, e, c);
718 }
719 append_char(&p, e, '\n');
720
721 if (dict_len) {
722 bool line = true;
723
724 for (i = 0; i < dict_len; i++) {
725 unsigned char c = dict[i];
726
727 if (line) {
728 append_char(&p, e, ' ');
729 line = false;
730 }
731
732 if (c == '\0') {
733 append_char(&p, e, '\n');
734 line = true;
735 continue;
736 }
737
738 if (c < ' ' || c >= 127 || c == '\\') {
739 p += scnprintf(p, e - p, "\\x%02x", c);
740 continue;
741 }
742
743 append_char(&p, e, c);
744 }
745 append_char(&p, e, '\n');
746 }
747
748 return p - buf;
749 }
750
751 /* /dev/kmsg - userspace message inject/listen interface */
752 struct devkmsg_user {
753 u64 seq;
754 u32 idx;
755 struct ratelimit_state rs;
756 struct mutex lock;
757 char buf[CONSOLE_EXT_LOG_MAX];
758 };
759
760 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
761 {
762 char *buf, *line;
763 int level = default_message_loglevel;
764 int facility = 1; /* LOG_USER */
765 struct file *file = iocb->ki_filp;
766 struct devkmsg_user *user = file->private_data;
767 size_t len = iov_iter_count(from);
768 ssize_t ret = len;
769
770 if (!user || len > LOG_LINE_MAX)
771 return -EINVAL;
772
773 /* Ignore when user logging is disabled. */
774 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
775 return len;
776
777 /* Ratelimit when not explicitly enabled. */
778 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
779 if (!___ratelimit(&user->rs, current->comm))
780 return ret;
781 }
782
783 buf = kmalloc(len+1, GFP_KERNEL);
784 if (buf == NULL)
785 return -ENOMEM;
786
787 buf[len] = '\0';
788 if (!copy_from_iter_full(buf, len, from)) {
789 kfree(buf);
790 return -EFAULT;
791 }
792
793 /*
794 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
795 * the decimal value represents 32bit, the lower 3 bit are the log
796 * level, the rest are the log facility.
797 *
798 * If no prefix or no userspace facility is specified, we
799 * enforce LOG_USER, to be able to reliably distinguish
800 * kernel-generated messages from userspace-injected ones.
801 */
802 line = buf;
803 if (line[0] == '<') {
804 char *endp = NULL;
805 unsigned int u;
806
807 u = simple_strtoul(line + 1, &endp, 10);
808 if (endp && endp[0] == '>') {
809 level = LOG_LEVEL(u);
810 if (LOG_FACILITY(u) != 0)
811 facility = LOG_FACILITY(u);
812 endp++;
813 len -= endp - line;
814 line = endp;
815 }
816 }
817
818 printk_emit(facility, level, NULL, 0, "%s", line);
819 kfree(buf);
820 return ret;
821 }
822
823 static ssize_t devkmsg_read(struct file *file, char __user *buf,
824 size_t count, loff_t *ppos)
825 {
826 struct devkmsg_user *user = file->private_data;
827 struct printk_log *msg;
828 size_t len;
829 ssize_t ret;
830
831 if (!user)
832 return -EBADF;
833
834 ret = mutex_lock_interruptible(&user->lock);
835 if (ret)
836 return ret;
837
838 logbuf_lock_irq();
839 while (user->seq == log_next_seq) {
840 if (file->f_flags & O_NONBLOCK) {
841 ret = -EAGAIN;
842 logbuf_unlock_irq();
843 goto out;
844 }
845
846 logbuf_unlock_irq();
847 ret = wait_event_interruptible(log_wait,
848 user->seq != log_next_seq);
849 if (ret)
850 goto out;
851 logbuf_lock_irq();
852 }
853
854 if (user->seq < log_first_seq) {
855 /* our last seen message is gone, return error and reset */
856 user->idx = log_first_idx;
857 user->seq = log_first_seq;
858 ret = -EPIPE;
859 logbuf_unlock_irq();
860 goto out;
861 }
862
863 msg = log_from_idx(user->idx);
864 len = msg_print_ext_header(user->buf, sizeof(user->buf),
865 msg, user->seq);
866 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
867 log_dict(msg), msg->dict_len,
868 log_text(msg), msg->text_len);
869
870 user->idx = log_next(user->idx);
871 user->seq++;
872 logbuf_unlock_irq();
873
874 if (len > count) {
875 ret = -EINVAL;
876 goto out;
877 }
878
879 if (copy_to_user(buf, user->buf, len)) {
880 ret = -EFAULT;
881 goto out;
882 }
883 ret = len;
884 out:
885 mutex_unlock(&user->lock);
886 return ret;
887 }
888
889 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
890 {
891 struct devkmsg_user *user = file->private_data;
892 loff_t ret = 0;
893
894 if (!user)
895 return -EBADF;
896 if (offset)
897 return -ESPIPE;
898
899 logbuf_lock_irq();
900 switch (whence) {
901 case SEEK_SET:
902 /* the first record */
903 user->idx = log_first_idx;
904 user->seq = log_first_seq;
905 break;
906 case SEEK_DATA:
907 /*
908 * The first record after the last SYSLOG_ACTION_CLEAR,
909 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
910 * changes no global state, and does not clear anything.
911 */
912 user->idx = clear_idx;
913 user->seq = clear_seq;
914 break;
915 case SEEK_END:
916 /* after the last record */
917 user->idx = log_next_idx;
918 user->seq = log_next_seq;
919 break;
920 default:
921 ret = -EINVAL;
922 }
923 logbuf_unlock_irq();
924 return ret;
925 }
926
927 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
928 {
929 struct devkmsg_user *user = file->private_data;
930 __poll_t ret = 0;
931
932 if (!user)
933 return EPOLLERR|EPOLLNVAL;
934
935 poll_wait(file, &log_wait, wait);
936
937 logbuf_lock_irq();
938 if (user->seq < log_next_seq) {
939 /* return error when data has vanished underneath us */
940 if (user->seq < log_first_seq)
941 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
942 else
943 ret = EPOLLIN|EPOLLRDNORM;
944 }
945 logbuf_unlock_irq();
946
947 return ret;
948 }
949
950 static int devkmsg_open(struct inode *inode, struct file *file)
951 {
952 struct devkmsg_user *user;
953 int err;
954
955 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
956 return -EPERM;
957
958 /* write-only does not need any file context */
959 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
960 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
961 SYSLOG_FROM_READER);
962 if (err)
963 return err;
964 }
965
966 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
967 if (!user)
968 return -ENOMEM;
969
970 ratelimit_default_init(&user->rs);
971 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
972
973 mutex_init(&user->lock);
974
975 logbuf_lock_irq();
976 user->idx = log_first_idx;
977 user->seq = log_first_seq;
978 logbuf_unlock_irq();
979
980 file->private_data = user;
981 return 0;
982 }
983
984 static int devkmsg_release(struct inode *inode, struct file *file)
985 {
986 struct devkmsg_user *user = file->private_data;
987
988 if (!user)
989 return 0;
990
991 ratelimit_state_exit(&user->rs);
992
993 mutex_destroy(&user->lock);
994 kfree(user);
995 return 0;
996 }
997
998 const struct file_operations kmsg_fops = {
999 .open = devkmsg_open,
1000 .read = devkmsg_read,
1001 .write_iter = devkmsg_write,
1002 .llseek = devkmsg_llseek,
1003 .poll = devkmsg_poll,
1004 .release = devkmsg_release,
1005 };
1006
1007 #ifdef CONFIG_CRASH_CORE
1008 /*
1009 * This appends the listed symbols to /proc/vmcore
1010 *
1011 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1012 * obtain access to symbols that are otherwise very difficult to locate. These
1013 * symbols are specifically used so that utilities can access and extract the
1014 * dmesg log from a vmcore file after a crash.
1015 */
1016 void log_buf_vmcoreinfo_setup(void)
1017 {
1018 VMCOREINFO_SYMBOL(log_buf);
1019 VMCOREINFO_SYMBOL(log_buf_len);
1020 VMCOREINFO_SYMBOL(log_first_idx);
1021 VMCOREINFO_SYMBOL(clear_idx);
1022 VMCOREINFO_SYMBOL(log_next_idx);
1023 /*
1024 * Export struct printk_log size and field offsets. User space tools can
1025 * parse it and detect any changes to structure down the line.
1026 */
1027 VMCOREINFO_STRUCT_SIZE(printk_log);
1028 VMCOREINFO_OFFSET(printk_log, ts_nsec);
1029 VMCOREINFO_OFFSET(printk_log, len);
1030 VMCOREINFO_OFFSET(printk_log, text_len);
1031 VMCOREINFO_OFFSET(printk_log, dict_len);
1032 }
1033 #endif
1034
1035 /* requested log_buf_len from kernel cmdline */
1036 static unsigned long __initdata new_log_buf_len;
1037
1038 /* we practice scaling the ring buffer by powers of 2 */
1039 static void __init log_buf_len_update(unsigned size)
1040 {
1041 if (size)
1042 size = roundup_pow_of_two(size);
1043 if (size > log_buf_len)
1044 new_log_buf_len = size;
1045 }
1046
1047 /* save requested log_buf_len since it's too early to process it */
1048 static int __init log_buf_len_setup(char *str)
1049 {
1050 unsigned size = memparse(str, &str);
1051
1052 log_buf_len_update(size);
1053
1054 return 0;
1055 }
1056 early_param("log_buf_len", log_buf_len_setup);
1057
1058 #ifdef CONFIG_SMP
1059 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1060
1061 static void __init log_buf_add_cpu(void)
1062 {
1063 unsigned int cpu_extra;
1064
1065 /*
1066 * archs should set up cpu_possible_bits properly with
1067 * set_cpu_possible() after setup_arch() but just in
1068 * case lets ensure this is valid.
1069 */
1070 if (num_possible_cpus() == 1)
1071 return;
1072
1073 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1074
1075 /* by default this will only continue through for large > 64 CPUs */
1076 if (cpu_extra <= __LOG_BUF_LEN / 2)
1077 return;
1078
1079 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1080 __LOG_CPU_MAX_BUF_LEN);
1081 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1082 cpu_extra);
1083 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1084
1085 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1086 }
1087 #else /* !CONFIG_SMP */
1088 static inline void log_buf_add_cpu(void) {}
1089 #endif /* CONFIG_SMP */
1090
1091 void __init setup_log_buf(int early)
1092 {
1093 unsigned long flags;
1094 char *new_log_buf;
1095 int free;
1096
1097 if (log_buf != __log_buf)
1098 return;
1099
1100 if (!early && !new_log_buf_len)
1101 log_buf_add_cpu();
1102
1103 if (!new_log_buf_len)
1104 return;
1105
1106 if (early) {
1107 new_log_buf =
1108 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1109 } else {
1110 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1111 LOG_ALIGN);
1112 }
1113
1114 if (unlikely(!new_log_buf)) {
1115 pr_err("log_buf_len: %ld bytes not available\n",
1116 new_log_buf_len);
1117 return;
1118 }
1119
1120 logbuf_lock_irqsave(flags);
1121 log_buf_len = new_log_buf_len;
1122 log_buf = new_log_buf;
1123 new_log_buf_len = 0;
1124 free = __LOG_BUF_LEN - log_next_idx;
1125 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1126 logbuf_unlock_irqrestore(flags);
1127
1128 pr_info("log_buf_len: %d bytes\n", log_buf_len);
1129 pr_info("early log buf free: %d(%d%%)\n",
1130 free, (free * 100) / __LOG_BUF_LEN);
1131 }
1132
1133 static bool __read_mostly ignore_loglevel;
1134
1135 static int __init ignore_loglevel_setup(char *str)
1136 {
1137 ignore_loglevel = true;
1138 pr_info("debug: ignoring loglevel setting.\n");
1139
1140 return 0;
1141 }
1142
1143 early_param("ignore_loglevel", ignore_loglevel_setup);
1144 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1145 MODULE_PARM_DESC(ignore_loglevel,
1146 "ignore loglevel setting (prints all kernel messages to the console)");
1147
1148 static bool suppress_message_printing(int level)
1149 {
1150 return (level >= console_loglevel && !ignore_loglevel);
1151 }
1152
1153 #ifdef CONFIG_BOOT_PRINTK_DELAY
1154
1155 static int boot_delay; /* msecs delay after each printk during bootup */
1156 static unsigned long long loops_per_msec; /* based on boot_delay */
1157
1158 static int __init boot_delay_setup(char *str)
1159 {
1160 unsigned long lpj;
1161
1162 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
1163 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1164
1165 get_option(&str, &boot_delay);
1166 if (boot_delay > 10 * 1000)
1167 boot_delay = 0;
1168
1169 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1170 "HZ: %d, loops_per_msec: %llu\n",
1171 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1172 return 0;
1173 }
1174 early_param("boot_delay", boot_delay_setup);
1175
1176 static void boot_delay_msec(int level)
1177 {
1178 unsigned long long k;
1179 unsigned long timeout;
1180
1181 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1182 || suppress_message_printing(level)) {
1183 return;
1184 }
1185
1186 k = (unsigned long long)loops_per_msec * boot_delay;
1187
1188 timeout = jiffies + msecs_to_jiffies(boot_delay);
1189 while (k) {
1190 k--;
1191 cpu_relax();
1192 /*
1193 * use (volatile) jiffies to prevent
1194 * compiler reduction; loop termination via jiffies
1195 * is secondary and may or may not happen.
1196 */
1197 if (time_after(jiffies, timeout))
1198 break;
1199 touch_nmi_watchdog();
1200 }
1201 }
1202 #else
1203 static inline void boot_delay_msec(int level)
1204 {
1205 }
1206 #endif
1207
1208 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1209 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1210
1211 static size_t print_time(u64 ts, char *buf)
1212 {
1213 unsigned long rem_nsec;
1214
1215 if (!printk_time)
1216 return 0;
1217
1218 rem_nsec = do_div(ts, 1000000000);
1219
1220 if (!buf)
1221 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1222
1223 return sprintf(buf, "[%5lu.%06lu] ",
1224 (unsigned long)ts, rem_nsec / 1000);
1225 }
1226
1227 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1228 {
1229 size_t len = 0;
1230 unsigned int prefix = (msg->facility << 3) | msg->level;
1231
1232 if (syslog) {
1233 if (buf) {
1234 len += sprintf(buf, "<%u>", prefix);
1235 } else {
1236 len += 3;
1237 if (prefix > 999)
1238 len += 3;
1239 else if (prefix > 99)
1240 len += 2;
1241 else if (prefix > 9)
1242 len++;
1243 }
1244 }
1245
1246 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1247 return len;
1248 }
1249
1250 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size)
1251 {
1252 const char *text = log_text(msg);
1253 size_t text_size = msg->text_len;
1254 size_t len = 0;
1255
1256 do {
1257 const char *next = memchr(text, '\n', text_size);
1258 size_t text_len;
1259
1260 if (next) {
1261 text_len = next - text;
1262 next++;
1263 text_size -= next - text;
1264 } else {
1265 text_len = text_size;
1266 }
1267
1268 if (buf) {
1269 if (print_prefix(msg, syslog, NULL) +
1270 text_len + 1 >= size - len)
1271 break;
1272
1273 len += print_prefix(msg, syslog, buf + len);
1274 memcpy(buf + len, text, text_len);
1275 len += text_len;
1276 buf[len++] = '\n';
1277 } else {
1278 /* SYSLOG_ACTION_* buffer size only calculation */
1279 len += print_prefix(msg, syslog, NULL);
1280 len += text_len;
1281 len++;
1282 }
1283
1284 text = next;
1285 } while (text);
1286
1287 return len;
1288 }
1289
1290 static int syslog_print(char __user *buf, int size)
1291 {
1292 char *text;
1293 struct printk_log *msg;
1294 int len = 0;
1295
1296 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1297 if (!text)
1298 return -ENOMEM;
1299
1300 while (size > 0) {
1301 size_t n;
1302 size_t skip;
1303
1304 logbuf_lock_irq();
1305 if (syslog_seq < log_first_seq) {
1306 /* messages are gone, move to first one */
1307 syslog_seq = log_first_seq;
1308 syslog_idx = log_first_idx;
1309 syslog_partial = 0;
1310 }
1311 if (syslog_seq == log_next_seq) {
1312 logbuf_unlock_irq();
1313 break;
1314 }
1315
1316 skip = syslog_partial;
1317 msg = log_from_idx(syslog_idx);
1318 n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX);
1319 if (n - syslog_partial <= size) {
1320 /* message fits into buffer, move forward */
1321 syslog_idx = log_next(syslog_idx);
1322 syslog_seq++;
1323 n -= syslog_partial;
1324 syslog_partial = 0;
1325 } else if (!len){
1326 /* partial read(), remember position */
1327 n = size;
1328 syslog_partial += n;
1329 } else
1330 n = 0;
1331 logbuf_unlock_irq();
1332
1333 if (!n)
1334 break;
1335
1336 if (copy_to_user(buf, text + skip, n)) {
1337 if (!len)
1338 len = -EFAULT;
1339 break;
1340 }
1341
1342 len += n;
1343 size -= n;
1344 buf += n;
1345 }
1346
1347 kfree(text);
1348 return len;
1349 }
1350
1351 static int syslog_print_all(char __user *buf, int size, bool clear)
1352 {
1353 char *text;
1354 int len = 0;
1355
1356 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1357 if (!text)
1358 return -ENOMEM;
1359
1360 logbuf_lock_irq();
1361 if (buf) {
1362 u64 next_seq;
1363 u64 seq;
1364 u32 idx;
1365
1366 /*
1367 * Find first record that fits, including all following records,
1368 * into the user-provided buffer for this dump.
1369 */
1370 seq = clear_seq;
1371 idx = clear_idx;
1372 while (seq < log_next_seq) {
1373 struct printk_log *msg = log_from_idx(idx);
1374
1375 len += msg_print_text(msg, true, NULL, 0);
1376 idx = log_next(idx);
1377 seq++;
1378 }
1379
1380 /* move first record forward until length fits into the buffer */
1381 seq = clear_seq;
1382 idx = clear_idx;
1383 while (len > size && seq < log_next_seq) {
1384 struct printk_log *msg = log_from_idx(idx);
1385
1386 len -= msg_print_text(msg, true, NULL, 0);
1387 idx = log_next(idx);
1388 seq++;
1389 }
1390
1391 /* last message fitting into this dump */
1392 next_seq = log_next_seq;
1393
1394 len = 0;
1395 while (len >= 0 && seq < next_seq) {
1396 struct printk_log *msg = log_from_idx(idx);
1397 int textlen;
1398
1399 textlen = msg_print_text(msg, true, text,
1400 LOG_LINE_MAX + PREFIX_MAX);
1401 if (textlen < 0) {
1402 len = textlen;
1403 break;
1404 }
1405 idx = log_next(idx);
1406 seq++;
1407
1408 logbuf_unlock_irq();
1409 if (copy_to_user(buf + len, text, textlen))
1410 len = -EFAULT;
1411 else
1412 len += textlen;
1413 logbuf_lock_irq();
1414
1415 if (seq < log_first_seq) {
1416 /* messages are gone, move to next one */
1417 seq = log_first_seq;
1418 idx = log_first_idx;
1419 }
1420 }
1421 }
1422
1423 if (clear) {
1424 clear_seq = log_next_seq;
1425 clear_idx = log_next_idx;
1426 }
1427 logbuf_unlock_irq();
1428
1429 kfree(text);
1430 return len;
1431 }
1432
1433 int do_syslog(int type, char __user *buf, int len, int source)
1434 {
1435 bool clear = false;
1436 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1437 int error;
1438
1439 error = check_syslog_permissions(type, source);
1440 if (error)
1441 return error;
1442
1443 switch (type) {
1444 case SYSLOG_ACTION_CLOSE: /* Close log */
1445 break;
1446 case SYSLOG_ACTION_OPEN: /* Open log */
1447 break;
1448 case SYSLOG_ACTION_READ: /* Read from log */
1449 if (!buf || len < 0)
1450 return -EINVAL;
1451 if (!len)
1452 return 0;
1453 if (!access_ok(VERIFY_WRITE, buf, len))
1454 return -EFAULT;
1455 error = wait_event_interruptible(log_wait,
1456 syslog_seq != log_next_seq);
1457 if (error)
1458 return error;
1459 error = syslog_print(buf, len);
1460 break;
1461 /* Read/clear last kernel messages */
1462 case SYSLOG_ACTION_READ_CLEAR:
1463 clear = true;
1464 /* FALL THRU */
1465 /* Read last kernel messages */
1466 case SYSLOG_ACTION_READ_ALL:
1467 if (!buf || len < 0)
1468 return -EINVAL;
1469 if (!len)
1470 return 0;
1471 if (!access_ok(VERIFY_WRITE, buf, len))
1472 return -EFAULT;
1473 error = syslog_print_all(buf, len, clear);
1474 break;
1475 /* Clear ring buffer */
1476 case SYSLOG_ACTION_CLEAR:
1477 syslog_print_all(NULL, 0, true);
1478 break;
1479 /* Disable logging to console */
1480 case SYSLOG_ACTION_CONSOLE_OFF:
1481 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1482 saved_console_loglevel = console_loglevel;
1483 console_loglevel = minimum_console_loglevel;
1484 break;
1485 /* Enable logging to console */
1486 case SYSLOG_ACTION_CONSOLE_ON:
1487 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1488 console_loglevel = saved_console_loglevel;
1489 saved_console_loglevel = LOGLEVEL_DEFAULT;
1490 }
1491 break;
1492 /* Set level of messages printed to console */
1493 case SYSLOG_ACTION_CONSOLE_LEVEL:
1494 if (len < 1 || len > 8)
1495 return -EINVAL;
1496 if (len < minimum_console_loglevel)
1497 len = minimum_console_loglevel;
1498 console_loglevel = len;
1499 /* Implicitly re-enable logging to console */
1500 saved_console_loglevel = LOGLEVEL_DEFAULT;
1501 break;
1502 /* Number of chars in the log buffer */
1503 case SYSLOG_ACTION_SIZE_UNREAD:
1504 logbuf_lock_irq();
1505 if (syslog_seq < log_first_seq) {
1506 /* messages are gone, move to first one */
1507 syslog_seq = log_first_seq;
1508 syslog_idx = log_first_idx;
1509 syslog_partial = 0;
1510 }
1511 if (source == SYSLOG_FROM_PROC) {
1512 /*
1513 * Short-cut for poll(/"proc/kmsg") which simply checks
1514 * for pending data, not the size; return the count of
1515 * records, not the length.
1516 */
1517 error = log_next_seq - syslog_seq;
1518 } else {
1519 u64 seq = syslog_seq;
1520 u32 idx = syslog_idx;
1521
1522 while (seq < log_next_seq) {
1523 struct printk_log *msg = log_from_idx(idx);
1524
1525 error += msg_print_text(msg, true, NULL, 0);
1526 idx = log_next(idx);
1527 seq++;
1528 }
1529 error -= syslog_partial;
1530 }
1531 logbuf_unlock_irq();
1532 break;
1533 /* Size of the log buffer */
1534 case SYSLOG_ACTION_SIZE_BUFFER:
1535 error = log_buf_len;
1536 break;
1537 default:
1538 error = -EINVAL;
1539 break;
1540 }
1541
1542 return error;
1543 }
1544
1545 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1546 {
1547 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1548 }
1549
1550 /*
1551 * Special console_lock variants that help to reduce the risk of soft-lockups.
1552 * They allow to pass console_lock to another printk() call using a busy wait.
1553 */
1554
1555 #ifdef CONFIG_LOCKDEP
1556 static struct lockdep_map console_owner_dep_map = {
1557 .name = "console_owner"
1558 };
1559 #endif
1560
1561 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1562 static struct task_struct *console_owner;
1563 static bool console_waiter;
1564
1565 /**
1566 * console_lock_spinning_enable - mark beginning of code where another
1567 * thread might safely busy wait
1568 *
1569 * This basically converts console_lock into a spinlock. This marks
1570 * the section where the console_lock owner can not sleep, because
1571 * there may be a waiter spinning (like a spinlock). Also it must be
1572 * ready to hand over the lock at the end of the section.
1573 */
1574 static void console_lock_spinning_enable(void)
1575 {
1576 raw_spin_lock(&console_owner_lock);
1577 console_owner = current;
1578 raw_spin_unlock(&console_owner_lock);
1579
1580 /* The waiter may spin on us after setting console_owner */
1581 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1582 }
1583
1584 /**
1585 * console_lock_spinning_disable_and_check - mark end of code where another
1586 * thread was able to busy wait and check if there is a waiter
1587 *
1588 * This is called at the end of the section where spinning is allowed.
1589 * It has two functions. First, it is a signal that it is no longer
1590 * safe to start busy waiting for the lock. Second, it checks if
1591 * there is a busy waiter and passes the lock rights to her.
1592 *
1593 * Important: Callers lose the lock if there was a busy waiter.
1594 * They must not touch items synchronized by console_lock
1595 * in this case.
1596 *
1597 * Return: 1 if the lock rights were passed, 0 otherwise.
1598 */
1599 static int console_lock_spinning_disable_and_check(void)
1600 {
1601 int waiter;
1602
1603 raw_spin_lock(&console_owner_lock);
1604 waiter = READ_ONCE(console_waiter);
1605 console_owner = NULL;
1606 raw_spin_unlock(&console_owner_lock);
1607
1608 if (!waiter) {
1609 spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1610 return 0;
1611 }
1612
1613 /* The waiter is now free to continue */
1614 WRITE_ONCE(console_waiter, false);
1615
1616 spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1617
1618 /*
1619 * Hand off console_lock to waiter. The waiter will perform
1620 * the up(). After this, the waiter is the console_lock owner.
1621 */
1622 mutex_release(&console_lock_dep_map, 1, _THIS_IP_);
1623 return 1;
1624 }
1625
1626 /**
1627 * console_trylock_spinning - try to get console_lock by busy waiting
1628 *
1629 * This allows to busy wait for the console_lock when the current
1630 * owner is running in specially marked sections. It means that
1631 * the current owner is running and cannot reschedule until it
1632 * is ready to lose the lock.
1633 *
1634 * Return: 1 if we got the lock, 0 othrewise
1635 */
1636 static int console_trylock_spinning(void)
1637 {
1638 struct task_struct *owner = NULL;
1639 bool waiter;
1640 bool spin = false;
1641 unsigned long flags;
1642
1643 if (console_trylock())
1644 return 1;
1645
1646 printk_safe_enter_irqsave(flags);
1647
1648 raw_spin_lock(&console_owner_lock);
1649 owner = READ_ONCE(console_owner);
1650 waiter = READ_ONCE(console_waiter);
1651 if (!waiter && owner && owner != current) {
1652 WRITE_ONCE(console_waiter, true);
1653 spin = true;
1654 }
1655 raw_spin_unlock(&console_owner_lock);
1656
1657 /*
1658 * If there is an active printk() writing to the
1659 * consoles, instead of having it write our data too,
1660 * see if we can offload that load from the active
1661 * printer, and do some printing ourselves.
1662 * Go into a spin only if there isn't already a waiter
1663 * spinning, and there is an active printer, and
1664 * that active printer isn't us (recursive printk?).
1665 */
1666 if (!spin) {
1667 printk_safe_exit_irqrestore(flags);
1668 return 0;
1669 }
1670
1671 /* We spin waiting for the owner to release us */
1672 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1673 /* Owner will clear console_waiter on hand off */
1674 while (READ_ONCE(console_waiter))
1675 cpu_relax();
1676 spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1677
1678 printk_safe_exit_irqrestore(flags);
1679 /*
1680 * The owner passed the console lock to us.
1681 * Since we did not spin on console lock, annotate
1682 * this as a trylock. Otherwise lockdep will
1683 * complain.
1684 */
1685 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1686
1687 return 1;
1688 }
1689
1690 /*
1691 * Call the console drivers, asking them to write out
1692 * log_buf[start] to log_buf[end - 1].
1693 * The console_lock must be held.
1694 */
1695 static void call_console_drivers(const char *ext_text, size_t ext_len,
1696 const char *text, size_t len)
1697 {
1698 struct console *con;
1699
1700 trace_console_rcuidle(text, len);
1701
1702 if (!console_drivers)
1703 return;
1704
1705 for_each_console(con) {
1706 if (exclusive_console && con != exclusive_console)
1707 continue;
1708 if (!(con->flags & CON_ENABLED))
1709 continue;
1710 if (!con->write)
1711 continue;
1712 if (!cpu_online(smp_processor_id()) &&
1713 !(con->flags & CON_ANYTIME))
1714 continue;
1715 if (con->flags & CON_EXTENDED)
1716 con->write(con, ext_text, ext_len);
1717 else
1718 con->write(con, text, len);
1719 }
1720 }
1721
1722 int printk_delay_msec __read_mostly;
1723
1724 static inline void printk_delay(void)
1725 {
1726 if (unlikely(printk_delay_msec)) {
1727 int m = printk_delay_msec;
1728
1729 while (m--) {
1730 mdelay(1);
1731 touch_nmi_watchdog();
1732 }
1733 }
1734 }
1735
1736 /*
1737 * Continuation lines are buffered, and not committed to the record buffer
1738 * until the line is complete, or a race forces it. The line fragments
1739 * though, are printed immediately to the consoles to ensure everything has
1740 * reached the console in case of a kernel crash.
1741 */
1742 static struct cont {
1743 char buf[LOG_LINE_MAX];
1744 size_t len; /* length == 0 means unused buffer */
1745 struct task_struct *owner; /* task of first print*/
1746 u64 ts_nsec; /* time of first print */
1747 u8 level; /* log level of first message */
1748 u8 facility; /* log facility of first message */
1749 enum log_flags flags; /* prefix, newline flags */
1750 } cont;
1751
1752 static void cont_flush(void)
1753 {
1754 if (cont.len == 0)
1755 return;
1756
1757 log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec,
1758 NULL, 0, cont.buf, cont.len);
1759 cont.len = 0;
1760 }
1761
1762 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
1763 {
1764 /*
1765 * If ext consoles are present, flush and skip in-kernel
1766 * continuation. See nr_ext_console_drivers definition. Also, if
1767 * the line gets too long, split it up in separate records.
1768 */
1769 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1770 cont_flush();
1771 return false;
1772 }
1773
1774 if (!cont.len) {
1775 cont.facility = facility;
1776 cont.level = level;
1777 cont.owner = current;
1778 cont.ts_nsec = local_clock();
1779 cont.flags = flags;
1780 }
1781
1782 memcpy(cont.buf + cont.len, text, len);
1783 cont.len += len;
1784
1785 // The original flags come from the first line,
1786 // but later continuations can add a newline.
1787 if (flags & LOG_NEWLINE) {
1788 cont.flags |= LOG_NEWLINE;
1789 cont_flush();
1790 }
1791
1792 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1793 cont_flush();
1794
1795 return true;
1796 }
1797
1798 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1799 {
1800 /*
1801 * If an earlier line was buffered, and we're a continuation
1802 * write from the same process, try to add it to the buffer.
1803 */
1804 if (cont.len) {
1805 if (cont.owner == current && (lflags & LOG_CONT)) {
1806 if (cont_add(facility, level, lflags, text, text_len))
1807 return text_len;
1808 }
1809 /* Otherwise, make sure it's flushed */
1810 cont_flush();
1811 }
1812
1813 /* Skip empty continuation lines that couldn't be added - they just flush */
1814 if (!text_len && (lflags & LOG_CONT))
1815 return 0;
1816
1817 /* If it doesn't end in a newline, try to buffer the current line */
1818 if (!(lflags & LOG_NEWLINE)) {
1819 if (cont_add(facility, level, lflags, text, text_len))
1820 return text_len;
1821 }
1822
1823 /* Store it in the record log */
1824 return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1825 }
1826
1827 asmlinkage int vprintk_emit(int facility, int level,
1828 const char *dict, size_t dictlen,
1829 const char *fmt, va_list args)
1830 {
1831 static char textbuf[LOG_LINE_MAX];
1832 char *text = textbuf;
1833 size_t text_len;
1834 enum log_flags lflags = 0;
1835 unsigned long flags;
1836 int printed_len;
1837 bool in_sched = false;
1838
1839 if (level == LOGLEVEL_SCHED) {
1840 level = LOGLEVEL_DEFAULT;
1841 in_sched = true;
1842 }
1843
1844 boot_delay_msec(level);
1845 printk_delay();
1846
1847 /* This stops the holder of console_sem just where we want him */
1848 logbuf_lock_irqsave(flags);
1849 /*
1850 * The printf needs to come first; we need the syslog
1851 * prefix which might be passed-in as a parameter.
1852 */
1853 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1854
1855 /* mark and strip a trailing newline */
1856 if (text_len && text[text_len-1] == '\n') {
1857 text_len--;
1858 lflags |= LOG_NEWLINE;
1859 }
1860
1861 /* strip kernel syslog prefix and extract log level or control flags */
1862 if (facility == 0) {
1863 int kern_level;
1864
1865 while ((kern_level = printk_get_level(text)) != 0) {
1866 switch (kern_level) {
1867 case '0' ... '7':
1868 if (level == LOGLEVEL_DEFAULT)
1869 level = kern_level - '0';
1870 /* fallthrough */
1871 case 'd': /* KERN_DEFAULT */
1872 lflags |= LOG_PREFIX;
1873 break;
1874 case 'c': /* KERN_CONT */
1875 lflags |= LOG_CONT;
1876 }
1877
1878 text_len -= 2;
1879 text += 2;
1880 }
1881 }
1882
1883 if (level == LOGLEVEL_DEFAULT)
1884 level = default_message_loglevel;
1885
1886 if (dict)
1887 lflags |= LOG_PREFIX|LOG_NEWLINE;
1888
1889 printed_len = log_output(facility, level, lflags, dict, dictlen, text, text_len);
1890
1891 logbuf_unlock_irqrestore(flags);
1892
1893 /* If called from the scheduler, we can not call up(). */
1894 if (!in_sched) {
1895 /*
1896 * Disable preemption to avoid being preempted while holding
1897 * console_sem which would prevent anyone from printing to
1898 * console
1899 */
1900 preempt_disable();
1901 /*
1902 * Try to acquire and then immediately release the console
1903 * semaphore. The release will print out buffers and wake up
1904 * /dev/kmsg and syslog() users.
1905 */
1906 if (console_trylock_spinning())
1907 console_unlock();
1908 preempt_enable();
1909 }
1910
1911 return printed_len;
1912 }
1913 EXPORT_SYMBOL(vprintk_emit);
1914
1915 asmlinkage int vprintk(const char *fmt, va_list args)
1916 {
1917 return vprintk_func(fmt, args);
1918 }
1919 EXPORT_SYMBOL(vprintk);
1920
1921 asmlinkage int printk_emit(int facility, int level,
1922 const char *dict, size_t dictlen,
1923 const char *fmt, ...)
1924 {
1925 va_list args;
1926 int r;
1927
1928 va_start(args, fmt);
1929 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1930 va_end(args);
1931
1932 return r;
1933 }
1934 EXPORT_SYMBOL(printk_emit);
1935
1936 int vprintk_default(const char *fmt, va_list args)
1937 {
1938 int r;
1939
1940 #ifdef CONFIG_KGDB_KDB
1941 /* Allow to pass printk() to kdb but avoid a recursion. */
1942 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
1943 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1944 return r;
1945 }
1946 #endif
1947 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1948
1949 return r;
1950 }
1951 EXPORT_SYMBOL_GPL(vprintk_default);
1952
1953 /**
1954 * printk - print a kernel message
1955 * @fmt: format string
1956 *
1957 * This is printk(). It can be called from any context. We want it to work.
1958 *
1959 * We try to grab the console_lock. If we succeed, it's easy - we log the
1960 * output and call the console drivers. If we fail to get the semaphore, we
1961 * place the output into the log buffer and return. The current holder of
1962 * the console_sem will notice the new output in console_unlock(); and will
1963 * send it to the consoles before releasing the lock.
1964 *
1965 * One effect of this deferred printing is that code which calls printk() and
1966 * then changes console_loglevel may break. This is because console_loglevel
1967 * is inspected when the actual printing occurs.
1968 *
1969 * See also:
1970 * printf(3)
1971 *
1972 * See the vsnprintf() documentation for format string extensions over C99.
1973 */
1974 asmlinkage __visible int printk(const char *fmt, ...)
1975 {
1976 va_list args;
1977 int r;
1978
1979 va_start(args, fmt);
1980 r = vprintk_func(fmt, args);
1981 va_end(args);
1982
1983 return r;
1984 }
1985 EXPORT_SYMBOL(printk);
1986
1987 #else /* CONFIG_PRINTK */
1988
1989 #define LOG_LINE_MAX 0
1990 #define PREFIX_MAX 0
1991
1992 static u64 syslog_seq;
1993 static u32 syslog_idx;
1994 static u64 console_seq;
1995 static u32 console_idx;
1996 static u64 log_first_seq;
1997 static u32 log_first_idx;
1998 static u64 log_next_seq;
1999 static char *log_text(const struct printk_log *msg) { return NULL; }
2000 static char *log_dict(const struct printk_log *msg) { return NULL; }
2001 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2002 static u32 log_next(u32 idx) { return 0; }
2003 static ssize_t msg_print_ext_header(char *buf, size_t size,
2004 struct printk_log *msg,
2005 u64 seq) { return 0; }
2006 static ssize_t msg_print_ext_body(char *buf, size_t size,
2007 char *dict, size_t dict_len,
2008 char *text, size_t text_len) { return 0; }
2009 static void console_lock_spinning_enable(void) { }
2010 static int console_lock_spinning_disable_and_check(void) { return 0; }
2011 static void call_console_drivers(const char *ext_text, size_t ext_len,
2012 const char *text, size_t len) {}
2013 static size_t msg_print_text(const struct printk_log *msg,
2014 bool syslog, char *buf, size_t size) { return 0; }
2015 static bool suppress_message_printing(int level) { return false; }
2016
2017 #endif /* CONFIG_PRINTK */
2018
2019 #ifdef CONFIG_EARLY_PRINTK
2020 struct console *early_console;
2021
2022 asmlinkage __visible void early_printk(const char *fmt, ...)
2023 {
2024 va_list ap;
2025 char buf[512];
2026 int n;
2027
2028 if (!early_console)
2029 return;
2030
2031 va_start(ap, fmt);
2032 n = vscnprintf(buf, sizeof(buf), fmt, ap);
2033 va_end(ap);
2034
2035 early_console->write(early_console, buf, n);
2036 }
2037 #endif
2038
2039 static int __add_preferred_console(char *name, int idx, char *options,
2040 char *brl_options)
2041 {
2042 struct console_cmdline *c;
2043 int i;
2044
2045 /*
2046 * See if this tty is not yet registered, and
2047 * if we have a slot free.
2048 */
2049 for (i = 0, c = console_cmdline;
2050 i < MAX_CMDLINECONSOLES && c->name[0];
2051 i++, c++) {
2052 if (strcmp(c->name, name) == 0 && c->index == idx) {
2053 if (!brl_options)
2054 preferred_console = i;
2055 return 0;
2056 }
2057 }
2058 if (i == MAX_CMDLINECONSOLES)
2059 return -E2BIG;
2060 if (!brl_options)
2061 preferred_console = i;
2062 strlcpy(c->name, name, sizeof(c->name));
2063 c->options = options;
2064 braille_set_options(c, brl_options);
2065
2066 c->index = idx;
2067 return 0;
2068 }
2069
2070 static int __init console_msg_format_setup(char *str)
2071 {
2072 if (!strcmp(str, "syslog"))
2073 console_msg_format = MSG_FORMAT_SYSLOG;
2074 if (!strcmp(str, "default"))
2075 console_msg_format = MSG_FORMAT_DEFAULT;
2076 return 1;
2077 }
2078 __setup("console_msg_format=", console_msg_format_setup);
2079
2080 /*
2081 * Set up a console. Called via do_early_param() in init/main.c
2082 * for each "console=" parameter in the boot command line.
2083 */
2084 static int __init console_setup(char *str)
2085 {
2086 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2087 char *s, *options, *brl_options = NULL;
2088 int idx;
2089
2090 if (_braille_console_setup(&str, &brl_options))
2091 return 1;
2092
2093 /*
2094 * Decode str into name, index, options.
2095 */
2096 if (str[0] >= '0' && str[0] <= '9') {
2097 strcpy(buf, "ttyS");
2098 strncpy(buf + 4, str, sizeof(buf) - 5);
2099 } else {
2100 strncpy(buf, str, sizeof(buf) - 1);
2101 }
2102 buf[sizeof(buf) - 1] = 0;
2103 options = strchr(str, ',');
2104 if (options)
2105 *(options++) = 0;
2106 #ifdef __sparc__
2107 if (!strcmp(str, "ttya"))
2108 strcpy(buf, "ttyS0");
2109 if (!strcmp(str, "ttyb"))
2110 strcpy(buf, "ttyS1");
2111 #endif
2112 for (s = buf; *s; s++)
2113 if (isdigit(*s) || *s == ',')
2114 break;
2115 idx = simple_strtoul(s, NULL, 10);
2116 *s = 0;
2117
2118 __add_preferred_console(buf, idx, options, brl_options);
2119 console_set_on_cmdline = 1;
2120 return 1;
2121 }
2122 __setup("console=", console_setup);
2123
2124 /**
2125 * add_preferred_console - add a device to the list of preferred consoles.
2126 * @name: device name
2127 * @idx: device index
2128 * @options: options for this console
2129 *
2130 * The last preferred console added will be used for kernel messages
2131 * and stdin/out/err for init. Normally this is used by console_setup
2132 * above to handle user-supplied console arguments; however it can also
2133 * be used by arch-specific code either to override the user or more
2134 * commonly to provide a default console (ie from PROM variables) when
2135 * the user has not supplied one.
2136 */
2137 int add_preferred_console(char *name, int idx, char *options)
2138 {
2139 return __add_preferred_console(name, idx, options, NULL);
2140 }
2141
2142 bool console_suspend_enabled = true;
2143 EXPORT_SYMBOL(console_suspend_enabled);
2144
2145 static int __init console_suspend_disable(char *str)
2146 {
2147 console_suspend_enabled = false;
2148 return 1;
2149 }
2150 __setup("no_console_suspend", console_suspend_disable);
2151 module_param_named(console_suspend, console_suspend_enabled,
2152 bool, S_IRUGO | S_IWUSR);
2153 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2154 " and hibernate operations");
2155
2156 /**
2157 * suspend_console - suspend the console subsystem
2158 *
2159 * This disables printk() while we go into suspend states
2160 */
2161 void suspend_console(void)
2162 {
2163 if (!console_suspend_enabled)
2164 return;
2165 printk("Suspending console(s) (use no_console_suspend to debug)\n");
2166 console_lock();
2167 console_suspended = 1;
2168 up_console_sem();
2169 }
2170
2171 void resume_console(void)
2172 {
2173 if (!console_suspend_enabled)
2174 return;
2175 down_console_sem();
2176 console_suspended = 0;
2177 console_unlock();
2178 }
2179
2180 /**
2181 * console_cpu_notify - print deferred console messages after CPU hotplug
2182 * @cpu: unused
2183 *
2184 * If printk() is called from a CPU that is not online yet, the messages
2185 * will be printed on the console only if there are CON_ANYTIME consoles.
2186 * This function is called when a new CPU comes online (or fails to come
2187 * up) or goes offline.
2188 */
2189 static int console_cpu_notify(unsigned int cpu)
2190 {
2191 if (!cpuhp_tasks_frozen) {
2192 /* If trylock fails, someone else is doing the printing */
2193 if (console_trylock())
2194 console_unlock();
2195 }
2196 return 0;
2197 }
2198
2199 /**
2200 * console_lock - lock the console system for exclusive use.
2201 *
2202 * Acquires a lock which guarantees that the caller has
2203 * exclusive access to the console system and the console_drivers list.
2204 *
2205 * Can sleep, returns nothing.
2206 */
2207 void console_lock(void)
2208 {
2209 might_sleep();
2210
2211 down_console_sem();
2212 if (console_suspended)
2213 return;
2214 console_locked = 1;
2215 console_may_schedule = 1;
2216 }
2217 EXPORT_SYMBOL(console_lock);
2218
2219 /**
2220 * console_trylock - try to lock the console system for exclusive use.
2221 *
2222 * Try to acquire a lock which guarantees that the caller has exclusive
2223 * access to the console system and the console_drivers list.
2224 *
2225 * returns 1 on success, and 0 on failure to acquire the lock.
2226 */
2227 int console_trylock(void)
2228 {
2229 if (down_trylock_console_sem())
2230 return 0;
2231 if (console_suspended) {
2232 up_console_sem();
2233 return 0;
2234 }
2235 console_locked = 1;
2236 console_may_schedule = 0;
2237 return 1;
2238 }
2239 EXPORT_SYMBOL(console_trylock);
2240
2241 int is_console_locked(void)
2242 {
2243 return console_locked;
2244 }
2245
2246 /*
2247 * Check if we have any console that is capable of printing while cpu is
2248 * booting or shutting down. Requires console_sem.
2249 */
2250 static int have_callable_console(void)
2251 {
2252 struct console *con;
2253
2254 for_each_console(con)
2255 if ((con->flags & CON_ENABLED) &&
2256 (con->flags & CON_ANYTIME))
2257 return 1;
2258
2259 return 0;
2260 }
2261
2262 /*
2263 * Can we actually use the console at this time on this cpu?
2264 *
2265 * Console drivers may assume that per-cpu resources have been allocated. So
2266 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2267 * call them until this CPU is officially up.
2268 */
2269 static inline int can_use_console(void)
2270 {
2271 return cpu_online(raw_smp_processor_id()) || have_callable_console();
2272 }
2273
2274 /**
2275 * console_unlock - unlock the console system
2276 *
2277 * Releases the console_lock which the caller holds on the console system
2278 * and the console driver list.
2279 *
2280 * While the console_lock was held, console output may have been buffered
2281 * by printk(). If this is the case, console_unlock(); emits
2282 * the output prior to releasing the lock.
2283 *
2284 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2285 *
2286 * console_unlock(); may be called from any context.
2287 */
2288 void console_unlock(void)
2289 {
2290 static char ext_text[CONSOLE_EXT_LOG_MAX];
2291 static char text[LOG_LINE_MAX + PREFIX_MAX];
2292 static u64 seen_seq;
2293 unsigned long flags;
2294 bool wake_klogd = false;
2295 bool do_cond_resched, retry;
2296
2297 if (console_suspended) {
2298 up_console_sem();
2299 return;
2300 }
2301
2302 /*
2303 * Console drivers are called with interrupts disabled, so
2304 * @console_may_schedule should be cleared before; however, we may
2305 * end up dumping a lot of lines, for example, if called from
2306 * console registration path, and should invoke cond_resched()
2307 * between lines if allowable. Not doing so can cause a very long
2308 * scheduling stall on a slow console leading to RCU stall and
2309 * softlockup warnings which exacerbate the issue with more
2310 * messages practically incapacitating the system.
2311 *
2312 * console_trylock() is not able to detect the preemptive
2313 * context reliably. Therefore the value must be stored before
2314 * and cleared after the the "again" goto label.
2315 */
2316 do_cond_resched = console_may_schedule;
2317 again:
2318 console_may_schedule = 0;
2319
2320 /*
2321 * We released the console_sem lock, so we need to recheck if
2322 * cpu is online and (if not) is there at least one CON_ANYTIME
2323 * console.
2324 */
2325 if (!can_use_console()) {
2326 console_locked = 0;
2327 up_console_sem();
2328 return;
2329 }
2330
2331 for (;;) {
2332 struct printk_log *msg;
2333 size_t ext_len = 0;
2334 size_t len;
2335
2336 printk_safe_enter_irqsave(flags);
2337 raw_spin_lock(&logbuf_lock);
2338 if (seen_seq != log_next_seq) {
2339 wake_klogd = true;
2340 seen_seq = log_next_seq;
2341 }
2342
2343 if (console_seq < log_first_seq) {
2344 len = sprintf(text, "** %u printk messages dropped **\n",
2345 (unsigned)(log_first_seq - console_seq));
2346
2347 /* messages are gone, move to first one */
2348 console_seq = log_first_seq;
2349 console_idx = log_first_idx;
2350 } else {
2351 len = 0;
2352 }
2353 skip:
2354 if (console_seq == log_next_seq)
2355 break;
2356
2357 msg = log_from_idx(console_idx);
2358 if (suppress_message_printing(msg->level)) {
2359 /*
2360 * Skip record we have buffered and already printed
2361 * directly to the console when we received it, and
2362 * record that has level above the console loglevel.
2363 */
2364 console_idx = log_next(console_idx);
2365 console_seq++;
2366 goto skip;
2367 }
2368
2369 len += msg_print_text(msg,
2370 console_msg_format & MSG_FORMAT_SYSLOG,
2371 text + len,
2372 sizeof(text) - len);
2373 if (nr_ext_console_drivers) {
2374 ext_len = msg_print_ext_header(ext_text,
2375 sizeof(ext_text),
2376 msg, console_seq);
2377 ext_len += msg_print_ext_body(ext_text + ext_len,
2378 sizeof(ext_text) - ext_len,
2379 log_dict(msg), msg->dict_len,
2380 log_text(msg), msg->text_len);
2381 }
2382 console_idx = log_next(console_idx);
2383 console_seq++;
2384 raw_spin_unlock(&logbuf_lock);
2385
2386 /*
2387 * While actively printing out messages, if another printk()
2388 * were to occur on another CPU, it may wait for this one to
2389 * finish. This task can not be preempted if there is a
2390 * waiter waiting to take over.
2391 */
2392 console_lock_spinning_enable();
2393
2394 stop_critical_timings(); /* don't trace print latency */
2395 call_console_drivers(ext_text, ext_len, text, len);
2396 start_critical_timings();
2397
2398 if (console_lock_spinning_disable_and_check()) {
2399 printk_safe_exit_irqrestore(flags);
2400 return;
2401 }
2402
2403 printk_safe_exit_irqrestore(flags);
2404
2405 if (do_cond_resched)
2406 cond_resched();
2407 }
2408
2409 console_locked = 0;
2410
2411 /* Release the exclusive_console once it is used */
2412 if (unlikely(exclusive_console))
2413 exclusive_console = NULL;
2414
2415 raw_spin_unlock(&logbuf_lock);
2416
2417 up_console_sem();
2418
2419 /*
2420 * Someone could have filled up the buffer again, so re-check if there's
2421 * something to flush. In case we cannot trylock the console_sem again,
2422 * there's a new owner and the console_unlock() from them will do the
2423 * flush, no worries.
2424 */
2425 raw_spin_lock(&logbuf_lock);
2426 retry = console_seq != log_next_seq;
2427 raw_spin_unlock(&logbuf_lock);
2428 printk_safe_exit_irqrestore(flags);
2429
2430 if (retry && console_trylock())
2431 goto again;
2432
2433 if (wake_klogd)
2434 wake_up_klogd();
2435 }
2436 EXPORT_SYMBOL(console_unlock);
2437
2438 /**
2439 * console_conditional_schedule - yield the CPU if required
2440 *
2441 * If the console code is currently allowed to sleep, and
2442 * if this CPU should yield the CPU to another task, do
2443 * so here.
2444 *
2445 * Must be called within console_lock();.
2446 */
2447 void __sched console_conditional_schedule(void)
2448 {
2449 if (console_may_schedule)
2450 cond_resched();
2451 }
2452 EXPORT_SYMBOL(console_conditional_schedule);
2453
2454 void console_unblank(void)
2455 {
2456 struct console *c;
2457
2458 /*
2459 * console_unblank can no longer be called in interrupt context unless
2460 * oops_in_progress is set to 1..
2461 */
2462 if (oops_in_progress) {
2463 if (down_trylock_console_sem() != 0)
2464 return;
2465 } else
2466 console_lock();
2467
2468 console_locked = 1;
2469 console_may_schedule = 0;
2470 for_each_console(c)
2471 if ((c->flags & CON_ENABLED) && c->unblank)
2472 c->unblank();
2473 console_unlock();
2474 }
2475
2476 /**
2477 * console_flush_on_panic - flush console content on panic
2478 *
2479 * Immediately output all pending messages no matter what.
2480 */
2481 void console_flush_on_panic(void)
2482 {
2483 /*
2484 * If someone else is holding the console lock, trylock will fail
2485 * and may_schedule may be set. Ignore and proceed to unlock so
2486 * that messages are flushed out. As this can be called from any
2487 * context and we don't want to get preempted while flushing,
2488 * ensure may_schedule is cleared.
2489 */
2490 console_trylock();
2491 console_may_schedule = 0;
2492 console_unlock();
2493 }
2494
2495 /*
2496 * Return the console tty driver structure and its associated index
2497 */
2498 struct tty_driver *console_device(int *index)
2499 {
2500 struct console *c;
2501 struct tty_driver *driver = NULL;
2502
2503 console_lock();
2504 for_each_console(c) {
2505 if (!c->device)
2506 continue;
2507 driver = c->device(c, index);
2508 if (driver)
2509 break;
2510 }
2511 console_unlock();
2512 return driver;
2513 }
2514
2515 /*
2516 * Prevent further output on the passed console device so that (for example)
2517 * serial drivers can disable console output before suspending a port, and can
2518 * re-enable output afterwards.
2519 */
2520 void console_stop(struct console *console)
2521 {
2522 console_lock();
2523 console->flags &= ~CON_ENABLED;
2524 console_unlock();
2525 }
2526 EXPORT_SYMBOL(console_stop);
2527
2528 void console_start(struct console *console)
2529 {
2530 console_lock();
2531 console->flags |= CON_ENABLED;
2532 console_unlock();
2533 }
2534 EXPORT_SYMBOL(console_start);
2535
2536 static int __read_mostly keep_bootcon;
2537
2538 static int __init keep_bootcon_setup(char *str)
2539 {
2540 keep_bootcon = 1;
2541 pr_info("debug: skip boot console de-registration.\n");
2542
2543 return 0;
2544 }
2545
2546 early_param("keep_bootcon", keep_bootcon_setup);
2547
2548 /*
2549 * The console driver calls this routine during kernel initialization
2550 * to register the console printing procedure with printk() and to
2551 * print any messages that were printed by the kernel before the
2552 * console driver was initialized.
2553 *
2554 * This can happen pretty early during the boot process (because of
2555 * early_printk) - sometimes before setup_arch() completes - be careful
2556 * of what kernel features are used - they may not be initialised yet.
2557 *
2558 * There are two types of consoles - bootconsoles (early_printk) and
2559 * "real" consoles (everything which is not a bootconsole) which are
2560 * handled differently.
2561 * - Any number of bootconsoles can be registered at any time.
2562 * - As soon as a "real" console is registered, all bootconsoles
2563 * will be unregistered automatically.
2564 * - Once a "real" console is registered, any attempt to register a
2565 * bootconsoles will be rejected
2566 */
2567 void register_console(struct console *newcon)
2568 {
2569 int i;
2570 unsigned long flags;
2571 struct console *bcon = NULL;
2572 struct console_cmdline *c;
2573 static bool has_preferred;
2574
2575 if (console_drivers)
2576 for_each_console(bcon)
2577 if (WARN(bcon == newcon,
2578 "console '%s%d' already registered\n",
2579 bcon->name, bcon->index))
2580 return;
2581
2582 /*
2583 * before we register a new CON_BOOT console, make sure we don't
2584 * already have a valid console
2585 */
2586 if (console_drivers && newcon->flags & CON_BOOT) {
2587 /* find the last or real console */
2588 for_each_console(bcon) {
2589 if (!(bcon->flags & CON_BOOT)) {
2590 pr_info("Too late to register bootconsole %s%d\n",
2591 newcon->name, newcon->index);
2592 return;
2593 }
2594 }
2595 }
2596
2597 if (console_drivers && console_drivers->flags & CON_BOOT)
2598 bcon = console_drivers;
2599
2600 if (!has_preferred || bcon || !console_drivers)
2601 has_preferred = preferred_console >= 0;
2602
2603 /*
2604 * See if we want to use this console driver. If we
2605 * didn't select a console we take the first one
2606 * that registers here.
2607 */
2608 if (!has_preferred) {
2609 if (newcon->index < 0)
2610 newcon->index = 0;
2611 if (newcon->setup == NULL ||
2612 newcon->setup(newcon, NULL) == 0) {
2613 newcon->flags |= CON_ENABLED;
2614 if (newcon->device) {
2615 newcon->flags |= CON_CONSDEV;
2616 has_preferred = true;
2617 }
2618 }
2619 }
2620
2621 /*
2622 * See if this console matches one we selected on
2623 * the command line.
2624 */
2625 for (i = 0, c = console_cmdline;
2626 i < MAX_CMDLINECONSOLES && c->name[0];
2627 i++, c++) {
2628 if (!newcon->match ||
2629 newcon->match(newcon, c->name, c->index, c->options) != 0) {
2630 /* default matching */
2631 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2632 if (strcmp(c->name, newcon->name) != 0)
2633 continue;
2634 if (newcon->index >= 0 &&
2635 newcon->index != c->index)
2636 continue;
2637 if (newcon->index < 0)
2638 newcon->index = c->index;
2639
2640 if (_braille_register_console(newcon, c))
2641 return;
2642
2643 if (newcon->setup &&
2644 newcon->setup(newcon, c->options) != 0)
2645 break;
2646 }
2647
2648 newcon->flags |= CON_ENABLED;
2649 if (i == preferred_console) {
2650 newcon->flags |= CON_CONSDEV;
2651 has_preferred = true;
2652 }
2653 break;
2654 }
2655
2656 if (!(newcon->flags & CON_ENABLED))
2657 return;
2658
2659 /*
2660 * If we have a bootconsole, and are switching to a real console,
2661 * don't print everything out again, since when the boot console, and
2662 * the real console are the same physical device, it's annoying to
2663 * see the beginning boot messages twice
2664 */
2665 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2666 newcon->flags &= ~CON_PRINTBUFFER;
2667
2668 /*
2669 * Put this console in the list - keep the
2670 * preferred driver at the head of the list.
2671 */
2672 console_lock();
2673 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2674 newcon->next = console_drivers;
2675 console_drivers = newcon;
2676 if (newcon->next)
2677 newcon->next->flags &= ~CON_CONSDEV;
2678 } else {
2679 newcon->next = console_drivers->next;
2680 console_drivers->next = newcon;
2681 }
2682
2683 if (newcon->flags & CON_EXTENDED)
2684 if (!nr_ext_console_drivers++)
2685 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2686
2687 if (newcon->flags & CON_PRINTBUFFER) {
2688 /*
2689 * console_unlock(); will print out the buffered messages
2690 * for us.
2691 */
2692 logbuf_lock_irqsave(flags);
2693 console_seq = syslog_seq;
2694 console_idx = syslog_idx;
2695 logbuf_unlock_irqrestore(flags);
2696 /*
2697 * We're about to replay the log buffer. Only do this to the
2698 * just-registered console to avoid excessive message spam to
2699 * the already-registered consoles.
2700 */
2701 exclusive_console = newcon;
2702 }
2703 console_unlock();
2704 console_sysfs_notify();
2705
2706 /*
2707 * By unregistering the bootconsoles after we enable the real console
2708 * we get the "console xxx enabled" message on all the consoles -
2709 * boot consoles, real consoles, etc - this is to ensure that end
2710 * users know there might be something in the kernel's log buffer that
2711 * went to the bootconsole (that they do not see on the real console)
2712 */
2713 pr_info("%sconsole [%s%d] enabled\n",
2714 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2715 newcon->name, newcon->index);
2716 if (bcon &&
2717 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2718 !keep_bootcon) {
2719 /* We need to iterate through all boot consoles, to make
2720 * sure we print everything out, before we unregister them.
2721 */
2722 for_each_console(bcon)
2723 if (bcon->flags & CON_BOOT)
2724 unregister_console(bcon);
2725 }
2726 }
2727 EXPORT_SYMBOL(register_console);
2728
2729 int unregister_console(struct console *console)
2730 {
2731 struct console *a, *b;
2732 int res;
2733
2734 pr_info("%sconsole [%s%d] disabled\n",
2735 (console->flags & CON_BOOT) ? "boot" : "" ,
2736 console->name, console->index);
2737
2738 res = _braille_unregister_console(console);
2739 if (res)
2740 return res;
2741
2742 res = 1;
2743 console_lock();
2744 if (console_drivers == console) {
2745 console_drivers=console->next;
2746 res = 0;
2747 } else if (console_drivers) {
2748 for (a=console_drivers->next, b=console_drivers ;
2749 a; b=a, a=b->next) {
2750 if (a == console) {
2751 b->next = a->next;
2752 res = 0;
2753 break;
2754 }
2755 }
2756 }
2757
2758 if (!res && (console->flags & CON_EXTENDED))
2759 nr_ext_console_drivers--;
2760
2761 /*
2762 * If this isn't the last console and it has CON_CONSDEV set, we
2763 * need to set it on the next preferred console.
2764 */
2765 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2766 console_drivers->flags |= CON_CONSDEV;
2767
2768 console->flags &= ~CON_ENABLED;
2769 console_unlock();
2770 console_sysfs_notify();
2771 return res;
2772 }
2773 EXPORT_SYMBOL(unregister_console);
2774
2775 /*
2776 * Initialize the console device. This is called *early*, so
2777 * we can't necessarily depend on lots of kernel help here.
2778 * Just do some early initializations, and do the complex setup
2779 * later.
2780 */
2781 void __init console_init(void)
2782 {
2783 initcall_t *call;
2784
2785 /* Setup the default TTY line discipline. */
2786 n_tty_init();
2787
2788 /*
2789 * set up the console device so that later boot sequences can
2790 * inform about problems etc..
2791 */
2792 call = __con_initcall_start;
2793 while (call < __con_initcall_end) {
2794 (*call)();
2795 call++;
2796 }
2797 }
2798
2799 /*
2800 * Some boot consoles access data that is in the init section and which will
2801 * be discarded after the initcalls have been run. To make sure that no code
2802 * will access this data, unregister the boot consoles in a late initcall.
2803 *
2804 * If for some reason, such as deferred probe or the driver being a loadable
2805 * module, the real console hasn't registered yet at this point, there will
2806 * be a brief interval in which no messages are logged to the console, which
2807 * makes it difficult to diagnose problems that occur during this time.
2808 *
2809 * To mitigate this problem somewhat, only unregister consoles whose memory
2810 * intersects with the init section. Note that all other boot consoles will
2811 * get unregistred when the real preferred console is registered.
2812 */
2813 static int __init printk_late_init(void)
2814 {
2815 struct console *con;
2816 int ret;
2817
2818 for_each_console(con) {
2819 if (!(con->flags & CON_BOOT))
2820 continue;
2821
2822 /* Check addresses that might be used for enabled consoles. */
2823 if (init_section_intersects(con, sizeof(*con)) ||
2824 init_section_contains(con->write, 0) ||
2825 init_section_contains(con->read, 0) ||
2826 init_section_contains(con->device, 0) ||
2827 init_section_contains(con->unblank, 0) ||
2828 init_section_contains(con->data, 0)) {
2829 /*
2830 * Please, consider moving the reported consoles out
2831 * of the init section.
2832 */
2833 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2834 con->name, con->index);
2835 unregister_console(con);
2836 }
2837 }
2838 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2839 console_cpu_notify);
2840 WARN_ON(ret < 0);
2841 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2842 console_cpu_notify, NULL);
2843 WARN_ON(ret < 0);
2844 return 0;
2845 }
2846 late_initcall(printk_late_init);
2847
2848 #if defined CONFIG_PRINTK
2849 /*
2850 * Delayed printk version, for scheduler-internal messages:
2851 */
2852 #define PRINTK_PENDING_WAKEUP 0x01
2853 #define PRINTK_PENDING_OUTPUT 0x02
2854
2855 static DEFINE_PER_CPU(int, printk_pending);
2856
2857 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2858 {
2859 int pending = __this_cpu_xchg(printk_pending, 0);
2860
2861 if (pending & PRINTK_PENDING_OUTPUT) {
2862 /* If trylock fails, someone else is doing the printing */
2863 if (console_trylock())
2864 console_unlock();
2865 }
2866
2867 if (pending & PRINTK_PENDING_WAKEUP)
2868 wake_up_interruptible(&log_wait);
2869 }
2870
2871 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2872 .func = wake_up_klogd_work_func,
2873 .flags = IRQ_WORK_LAZY,
2874 };
2875
2876 void wake_up_klogd(void)
2877 {
2878 preempt_disable();
2879 if (waitqueue_active(&log_wait)) {
2880 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2881 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2882 }
2883 preempt_enable();
2884 }
2885
2886 int vprintk_deferred(const char *fmt, va_list args)
2887 {
2888 int r;
2889
2890 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2891
2892 preempt_disable();
2893 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2894 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2895 preempt_enable();
2896
2897 return r;
2898 }
2899
2900 int printk_deferred(const char *fmt, ...)
2901 {
2902 va_list args;
2903 int r;
2904
2905 va_start(args, fmt);
2906 r = vprintk_deferred(fmt, args);
2907 va_end(args);
2908
2909 return r;
2910 }
2911
2912 /*
2913 * printk rate limiting, lifted from the networking subsystem.
2914 *
2915 * This enforces a rate limit: not more than 10 kernel messages
2916 * every 5s to make a denial-of-service attack impossible.
2917 */
2918 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2919
2920 int __printk_ratelimit(const char *func)
2921 {
2922 return ___ratelimit(&printk_ratelimit_state, func);
2923 }
2924 EXPORT_SYMBOL(__printk_ratelimit);
2925
2926 /**
2927 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2928 * @caller_jiffies: pointer to caller's state
2929 * @interval_msecs: minimum interval between prints
2930 *
2931 * printk_timed_ratelimit() returns true if more than @interval_msecs
2932 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2933 * returned true.
2934 */
2935 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2936 unsigned int interval_msecs)
2937 {
2938 unsigned long elapsed = jiffies - *caller_jiffies;
2939
2940 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2941 return false;
2942
2943 *caller_jiffies = jiffies;
2944 return true;
2945 }
2946 EXPORT_SYMBOL(printk_timed_ratelimit);
2947
2948 static DEFINE_SPINLOCK(dump_list_lock);
2949 static LIST_HEAD(dump_list);
2950
2951 /**
2952 * kmsg_dump_register - register a kernel log dumper.
2953 * @dumper: pointer to the kmsg_dumper structure
2954 *
2955 * Adds a kernel log dumper to the system. The dump callback in the
2956 * structure will be called when the kernel oopses or panics and must be
2957 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2958 */
2959 int kmsg_dump_register(struct kmsg_dumper *dumper)
2960 {
2961 unsigned long flags;
2962 int err = -EBUSY;
2963
2964 /* The dump callback needs to be set */
2965 if (!dumper->dump)
2966 return -EINVAL;
2967
2968 spin_lock_irqsave(&dump_list_lock, flags);
2969 /* Don't allow registering multiple times */
2970 if (!dumper->registered) {
2971 dumper->registered = 1;
2972 list_add_tail_rcu(&dumper->list, &dump_list);
2973 err = 0;
2974 }
2975 spin_unlock_irqrestore(&dump_list_lock, flags);
2976
2977 return err;
2978 }
2979 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2980
2981 /**
2982 * kmsg_dump_unregister - unregister a kmsg dumper.
2983 * @dumper: pointer to the kmsg_dumper structure
2984 *
2985 * Removes a dump device from the system. Returns zero on success and
2986 * %-EINVAL otherwise.
2987 */
2988 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2989 {
2990 unsigned long flags;
2991 int err = -EINVAL;
2992
2993 spin_lock_irqsave(&dump_list_lock, flags);
2994 if (dumper->registered) {
2995 dumper->registered = 0;
2996 list_del_rcu(&dumper->list);
2997 err = 0;
2998 }
2999 spin_unlock_irqrestore(&dump_list_lock, flags);
3000 synchronize_rcu();
3001
3002 return err;
3003 }
3004 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3005
3006 static bool always_kmsg_dump;
3007 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3008
3009 /**
3010 * kmsg_dump - dump kernel log to kernel message dumpers.
3011 * @reason: the reason (oops, panic etc) for dumping
3012 *
3013 * Call each of the registered dumper's dump() callback, which can
3014 * retrieve the kmsg records with kmsg_dump_get_line() or
3015 * kmsg_dump_get_buffer().
3016 */
3017 void kmsg_dump(enum kmsg_dump_reason reason)
3018 {
3019 struct kmsg_dumper *dumper;
3020 unsigned long flags;
3021
3022 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3023 return;
3024
3025 rcu_read_lock();
3026 list_for_each_entry_rcu(dumper, &dump_list, list) {
3027 if (dumper->max_reason && reason > dumper->max_reason)
3028 continue;
3029
3030 /* initialize iterator with data about the stored records */
3031 dumper->active = true;
3032
3033 logbuf_lock_irqsave(flags);
3034 dumper->cur_seq = clear_seq;
3035 dumper->cur_idx = clear_idx;
3036 dumper->next_seq = log_next_seq;
3037 dumper->next_idx = log_next_idx;
3038 logbuf_unlock_irqrestore(flags);
3039
3040 /* invoke dumper which will iterate over records */
3041 dumper->dump(dumper, reason);
3042
3043 /* reset iterator */
3044 dumper->active = false;
3045 }
3046 rcu_read_unlock();
3047 }
3048
3049 /**
3050 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3051 * @dumper: registered kmsg dumper
3052 * @syslog: include the "<4>" prefixes
3053 * @line: buffer to copy the line to
3054 * @size: maximum size of the buffer
3055 * @len: length of line placed into buffer
3056 *
3057 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3058 * record, and copy one record into the provided buffer.
3059 *
3060 * Consecutive calls will return the next available record moving
3061 * towards the end of the buffer with the youngest messages.
3062 *
3063 * A return value of FALSE indicates that there are no more records to
3064 * read.
3065 *
3066 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3067 */
3068 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3069 char *line, size_t size, size_t *len)
3070 {
3071 struct printk_log *msg;
3072 size_t l = 0;
3073 bool ret = false;
3074
3075 if (!dumper->active)
3076 goto out;
3077
3078 if (dumper->cur_seq < log_first_seq) {
3079 /* messages are gone, move to first available one */
3080 dumper->cur_seq = log_first_seq;
3081 dumper->cur_idx = log_first_idx;
3082 }
3083
3084 /* last entry */
3085 if (dumper->cur_seq >= log_next_seq)
3086 goto out;
3087
3088 msg = log_from_idx(dumper->cur_idx);
3089 l = msg_print_text(msg, syslog, line, size);
3090
3091 dumper->cur_idx = log_next(dumper->cur_idx);
3092 dumper->cur_seq++;
3093 ret = true;
3094 out:
3095 if (len)
3096 *len = l;
3097 return ret;
3098 }
3099
3100 /**
3101 * kmsg_dump_get_line - retrieve one kmsg log line
3102 * @dumper: registered kmsg dumper
3103 * @syslog: include the "<4>" prefixes
3104 * @line: buffer to copy the line to
3105 * @size: maximum size of the buffer
3106 * @len: length of line placed into buffer
3107 *
3108 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3109 * record, and copy one record into the provided buffer.
3110 *
3111 * Consecutive calls will return the next available record moving
3112 * towards the end of the buffer with the youngest messages.
3113 *
3114 * A return value of FALSE indicates that there are no more records to
3115 * read.
3116 */
3117 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3118 char *line, size_t size, size_t *len)
3119 {
3120 unsigned long flags;
3121 bool ret;
3122
3123 logbuf_lock_irqsave(flags);
3124 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3125 logbuf_unlock_irqrestore(flags);
3126
3127 return ret;
3128 }
3129 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3130
3131 /**
3132 * kmsg_dump_get_buffer - copy kmsg log lines
3133 * @dumper: registered kmsg dumper
3134 * @syslog: include the "<4>" prefixes
3135 * @buf: buffer to copy the line to
3136 * @size: maximum size of the buffer
3137 * @len: length of line placed into buffer
3138 *
3139 * Start at the end of the kmsg buffer and fill the provided buffer
3140 * with as many of the the *youngest* kmsg records that fit into it.
3141 * If the buffer is large enough, all available kmsg records will be
3142 * copied with a single call.
3143 *
3144 * Consecutive calls will fill the buffer with the next block of
3145 * available older records, not including the earlier retrieved ones.
3146 *
3147 * A return value of FALSE indicates that there are no more records to
3148 * read.
3149 */
3150 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3151 char *buf, size_t size, size_t *len)
3152 {
3153 unsigned long flags;
3154 u64 seq;
3155 u32 idx;
3156 u64 next_seq;
3157 u32 next_idx;
3158 size_t l = 0;
3159 bool ret = false;
3160
3161 if (!dumper->active)
3162 goto out;
3163
3164 logbuf_lock_irqsave(flags);
3165 if (dumper->cur_seq < log_first_seq) {
3166 /* messages are gone, move to first available one */
3167 dumper->cur_seq = log_first_seq;
3168 dumper->cur_idx = log_first_idx;
3169 }
3170
3171 /* last entry */
3172 if (dumper->cur_seq >= dumper->next_seq) {
3173 logbuf_unlock_irqrestore(flags);
3174 goto out;
3175 }
3176
3177 /* calculate length of entire buffer */
3178 seq = dumper->cur_seq;
3179 idx = dumper->cur_idx;
3180 while (seq < dumper->next_seq) {
3181 struct printk_log *msg = log_from_idx(idx);
3182
3183 l += msg_print_text(msg, true, NULL, 0);
3184 idx = log_next(idx);
3185 seq++;
3186 }
3187
3188 /* move first record forward until length fits into the buffer */
3189 seq = dumper->cur_seq;
3190 idx = dumper->cur_idx;
3191 while (l > size && seq < dumper->next_seq) {
3192 struct printk_log *msg = log_from_idx(idx);
3193
3194 l -= msg_print_text(msg, true, NULL, 0);
3195 idx = log_next(idx);
3196 seq++;
3197 }
3198
3199 /* last message in next interation */
3200 next_seq = seq;
3201 next_idx = idx;
3202
3203 l = 0;
3204 while (seq < dumper->next_seq) {
3205 struct printk_log *msg = log_from_idx(idx);
3206
3207 l += msg_print_text(msg, syslog, buf + l, size - l);
3208 idx = log_next(idx);
3209 seq++;
3210 }
3211
3212 dumper->next_seq = next_seq;
3213 dumper->next_idx = next_idx;
3214 ret = true;
3215 logbuf_unlock_irqrestore(flags);
3216 out:
3217 if (len)
3218 *len = l;
3219 return ret;
3220 }
3221 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3222
3223 /**
3224 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3225 * @dumper: registered kmsg dumper
3226 *
3227 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3228 * kmsg_dump_get_buffer() can be called again and used multiple
3229 * times within the same dumper.dump() callback.
3230 *
3231 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3232 */
3233 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3234 {
3235 dumper->cur_seq = clear_seq;
3236 dumper->cur_idx = clear_idx;
3237 dumper->next_seq = log_next_seq;
3238 dumper->next_idx = log_next_idx;
3239 }
3240
3241 /**
3242 * kmsg_dump_rewind - reset the interator
3243 * @dumper: registered kmsg dumper
3244 *
3245 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3246 * kmsg_dump_get_buffer() can be called again and used multiple
3247 * times within the same dumper.dump() callback.
3248 */
3249 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3250 {
3251 unsigned long flags;
3252
3253 logbuf_lock_irqsave(flags);
3254 kmsg_dump_rewind_nolock(dumper);
3255 logbuf_unlock_irqrestore(flags);
3256 }
3257 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3258
3259 static char dump_stack_arch_desc_str[128];
3260
3261 /**
3262 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3263 * @fmt: printf-style format string
3264 * @...: arguments for the format string
3265 *
3266 * The configured string will be printed right after utsname during task
3267 * dumps. Usually used to add arch-specific system identifiers. If an
3268 * arch wants to make use of such an ID string, it should initialize this
3269 * as soon as possible during boot.
3270 */
3271 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3272 {
3273 va_list args;
3274
3275 va_start(args, fmt);
3276 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3277 fmt, args);
3278 va_end(args);
3279 }
3280
3281 /**
3282 * dump_stack_print_info - print generic debug info for dump_stack()
3283 * @log_lvl: log level
3284 *
3285 * Arch-specific dump_stack() implementations can use this function to
3286 * print out the same debug information as the generic dump_stack().
3287 */
3288 void dump_stack_print_info(const char *log_lvl)
3289 {
3290 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3291 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3292 print_tainted(), init_utsname()->release,
3293 (int)strcspn(init_utsname()->version, " "),
3294 init_utsname()->version);
3295
3296 if (dump_stack_arch_desc_str[0] != '\0')
3297 printk("%sHardware name: %s\n",
3298 log_lvl, dump_stack_arch_desc_str);
3299
3300 print_worker_info(log_lvl, current);
3301 }
3302
3303 /**
3304 * show_regs_print_info - print generic debug info for show_regs()
3305 * @log_lvl: log level
3306 *
3307 * show_regs() implementations can use this function to print out generic
3308 * debug information.
3309 */
3310 void show_regs_print_info(const char *log_lvl)
3311 {
3312 dump_stack_print_info(log_lvl);
3313 }
3314
3315 #endif