]> git.ipfire.org Git - people/arne_f/kernel.git/blob - kernel/ptrace.c
timekeeping: Repair ktime_get_coarse*() granularity
[people/arne_f/kernel.git] / kernel / ptrace.c
1 /*
2 * linux/kernel/ptrace.c
3 *
4 * (C) Copyright 1999 Linus Torvalds
5 *
6 * Common interfaces for "ptrace()" which we do not want
7 * to continually duplicate across every architecture.
8 */
9
10 #include <linux/capability.h>
11 #include <linux/export.h>
12 #include <linux/sched.h>
13 #include <linux/sched/mm.h>
14 #include <linux/sched/coredump.h>
15 #include <linux/sched/task.h>
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/highmem.h>
19 #include <linux/pagemap.h>
20 #include <linux/ptrace.h>
21 #include <linux/security.h>
22 #include <linux/signal.h>
23 #include <linux/uio.h>
24 #include <linux/audit.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/syscalls.h>
27 #include <linux/uaccess.h>
28 #include <linux/regset.h>
29 #include <linux/hw_breakpoint.h>
30 #include <linux/cn_proc.h>
31 #include <linux/compat.h>
32 #include <linux/sched/signal.h>
33
34 /*
35 * Access another process' address space via ptrace.
36 * Source/target buffer must be kernel space,
37 * Do not walk the page table directly, use get_user_pages
38 */
39 int ptrace_access_vm(struct task_struct *tsk, unsigned long addr,
40 void *buf, int len, unsigned int gup_flags)
41 {
42 struct mm_struct *mm;
43 int ret;
44
45 mm = get_task_mm(tsk);
46 if (!mm)
47 return 0;
48
49 if (!tsk->ptrace ||
50 (current != tsk->parent) ||
51 ((get_dumpable(mm) != SUID_DUMP_USER) &&
52 !ptracer_capable(tsk, mm->user_ns))) {
53 mmput(mm);
54 return 0;
55 }
56
57 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
58 mmput(mm);
59
60 return ret;
61 }
62
63
64 void __ptrace_link(struct task_struct *child, struct task_struct *new_parent,
65 const struct cred *ptracer_cred)
66 {
67 BUG_ON(!list_empty(&child->ptrace_entry));
68 list_add(&child->ptrace_entry, &new_parent->ptraced);
69 child->parent = new_parent;
70 child->ptracer_cred = get_cred(ptracer_cred);
71 }
72
73 /*
74 * ptrace a task: make the debugger its new parent and
75 * move it to the ptrace list.
76 *
77 * Must be called with the tasklist lock write-held.
78 */
79 static void ptrace_link(struct task_struct *child, struct task_struct *new_parent)
80 {
81 rcu_read_lock();
82 __ptrace_link(child, new_parent, __task_cred(new_parent));
83 rcu_read_unlock();
84 }
85
86 /**
87 * __ptrace_unlink - unlink ptracee and restore its execution state
88 * @child: ptracee to be unlinked
89 *
90 * Remove @child from the ptrace list, move it back to the original parent,
91 * and restore the execution state so that it conforms to the group stop
92 * state.
93 *
94 * Unlinking can happen via two paths - explicit PTRACE_DETACH or ptracer
95 * exiting. For PTRACE_DETACH, unless the ptracee has been killed between
96 * ptrace_check_attach() and here, it's guaranteed to be in TASK_TRACED.
97 * If the ptracer is exiting, the ptracee can be in any state.
98 *
99 * After detach, the ptracee should be in a state which conforms to the
100 * group stop. If the group is stopped or in the process of stopping, the
101 * ptracee should be put into TASK_STOPPED; otherwise, it should be woken
102 * up from TASK_TRACED.
103 *
104 * If the ptracee is in TASK_TRACED and needs to be moved to TASK_STOPPED,
105 * it goes through TRACED -> RUNNING -> STOPPED transition which is similar
106 * to but in the opposite direction of what happens while attaching to a
107 * stopped task. However, in this direction, the intermediate RUNNING
108 * state is not hidden even from the current ptracer and if it immediately
109 * re-attaches and performs a WNOHANG wait(2), it may fail.
110 *
111 * CONTEXT:
112 * write_lock_irq(tasklist_lock)
113 */
114 void __ptrace_unlink(struct task_struct *child)
115 {
116 const struct cred *old_cred;
117 BUG_ON(!child->ptrace);
118
119 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
120
121 child->parent = child->real_parent;
122 list_del_init(&child->ptrace_entry);
123 old_cred = child->ptracer_cred;
124 child->ptracer_cred = NULL;
125 put_cred(old_cred);
126
127 spin_lock(&child->sighand->siglock);
128 child->ptrace = 0;
129 /*
130 * Clear all pending traps and TRAPPING. TRAPPING should be
131 * cleared regardless of JOBCTL_STOP_PENDING. Do it explicitly.
132 */
133 task_clear_jobctl_pending(child, JOBCTL_TRAP_MASK);
134 task_clear_jobctl_trapping(child);
135
136 /*
137 * Reinstate JOBCTL_STOP_PENDING if group stop is in effect and
138 * @child isn't dead.
139 */
140 if (!(child->flags & PF_EXITING) &&
141 (child->signal->flags & SIGNAL_STOP_STOPPED ||
142 child->signal->group_stop_count)) {
143 child->jobctl |= JOBCTL_STOP_PENDING;
144
145 /*
146 * This is only possible if this thread was cloned by the
147 * traced task running in the stopped group, set the signal
148 * for the future reports.
149 * FIXME: we should change ptrace_init_task() to handle this
150 * case.
151 */
152 if (!(child->jobctl & JOBCTL_STOP_SIGMASK))
153 child->jobctl |= SIGSTOP;
154 }
155
156 /*
157 * If transition to TASK_STOPPED is pending or in TASK_TRACED, kick
158 * @child in the butt. Note that @resume should be used iff @child
159 * is in TASK_TRACED; otherwise, we might unduly disrupt
160 * TASK_KILLABLE sleeps.
161 */
162 if (child->jobctl & JOBCTL_STOP_PENDING || task_is_traced(child))
163 ptrace_signal_wake_up(child, true);
164
165 spin_unlock(&child->sighand->siglock);
166 }
167
168 /* Ensure that nothing can wake it up, even SIGKILL */
169 static bool ptrace_freeze_traced(struct task_struct *task)
170 {
171 bool ret = false;
172
173 /* Lockless, nobody but us can set this flag */
174 if (task->jobctl & JOBCTL_LISTENING)
175 return ret;
176
177 spin_lock_irq(&task->sighand->siglock);
178 if (task_is_traced(task) && !__fatal_signal_pending(task)) {
179 task->state = __TASK_TRACED;
180 ret = true;
181 }
182 spin_unlock_irq(&task->sighand->siglock);
183
184 return ret;
185 }
186
187 static void ptrace_unfreeze_traced(struct task_struct *task)
188 {
189 if (task->state != __TASK_TRACED)
190 return;
191
192 WARN_ON(!task->ptrace || task->parent != current);
193
194 /*
195 * PTRACE_LISTEN can allow ptrace_trap_notify to wake us up remotely.
196 * Recheck state under the lock to close this race.
197 */
198 spin_lock_irq(&task->sighand->siglock);
199 if (task->state == __TASK_TRACED) {
200 if (__fatal_signal_pending(task))
201 wake_up_state(task, __TASK_TRACED);
202 else
203 task->state = TASK_TRACED;
204 }
205 spin_unlock_irq(&task->sighand->siglock);
206 }
207
208 /**
209 * ptrace_check_attach - check whether ptracee is ready for ptrace operation
210 * @child: ptracee to check for
211 * @ignore_state: don't check whether @child is currently %TASK_TRACED
212 *
213 * Check whether @child is being ptraced by %current and ready for further
214 * ptrace operations. If @ignore_state is %false, @child also should be in
215 * %TASK_TRACED state and on return the child is guaranteed to be traced
216 * and not executing. If @ignore_state is %true, @child can be in any
217 * state.
218 *
219 * CONTEXT:
220 * Grabs and releases tasklist_lock and @child->sighand->siglock.
221 *
222 * RETURNS:
223 * 0 on success, -ESRCH if %child is not ready.
224 */
225 static int ptrace_check_attach(struct task_struct *child, bool ignore_state)
226 {
227 int ret = -ESRCH;
228
229 /*
230 * We take the read lock around doing both checks to close a
231 * possible race where someone else was tracing our child and
232 * detached between these two checks. After this locked check,
233 * we are sure that this is our traced child and that can only
234 * be changed by us so it's not changing right after this.
235 */
236 read_lock(&tasklist_lock);
237 if (child->ptrace && child->parent == current) {
238 WARN_ON(child->state == __TASK_TRACED);
239 /*
240 * child->sighand can't be NULL, release_task()
241 * does ptrace_unlink() before __exit_signal().
242 */
243 if (ignore_state || ptrace_freeze_traced(child))
244 ret = 0;
245 }
246 read_unlock(&tasklist_lock);
247
248 if (!ret && !ignore_state) {
249 if (!wait_task_inactive(child, __TASK_TRACED)) {
250 /*
251 * This can only happen if may_ptrace_stop() fails and
252 * ptrace_stop() changes ->state back to TASK_RUNNING,
253 * so we should not worry about leaking __TASK_TRACED.
254 */
255 WARN_ON(child->state == __TASK_TRACED);
256 ret = -ESRCH;
257 }
258 }
259
260 return ret;
261 }
262
263 static int ptrace_has_cap(struct user_namespace *ns, unsigned int mode)
264 {
265 if (mode & PTRACE_MODE_NOAUDIT)
266 return has_ns_capability_noaudit(current, ns, CAP_SYS_PTRACE);
267 else
268 return has_ns_capability(current, ns, CAP_SYS_PTRACE);
269 }
270
271 /* Returns 0 on success, -errno on denial. */
272 static int __ptrace_may_access(struct task_struct *task, unsigned int mode)
273 {
274 const struct cred *cred = current_cred(), *tcred;
275 struct mm_struct *mm;
276 kuid_t caller_uid;
277 kgid_t caller_gid;
278
279 if (!(mode & PTRACE_MODE_FSCREDS) == !(mode & PTRACE_MODE_REALCREDS)) {
280 WARN(1, "denying ptrace access check without PTRACE_MODE_*CREDS\n");
281 return -EPERM;
282 }
283
284 /* May we inspect the given task?
285 * This check is used both for attaching with ptrace
286 * and for allowing access to sensitive information in /proc.
287 *
288 * ptrace_attach denies several cases that /proc allows
289 * because setting up the necessary parent/child relationship
290 * or halting the specified task is impossible.
291 */
292
293 /* Don't let security modules deny introspection */
294 if (same_thread_group(task, current))
295 return 0;
296 rcu_read_lock();
297 if (mode & PTRACE_MODE_FSCREDS) {
298 caller_uid = cred->fsuid;
299 caller_gid = cred->fsgid;
300 } else {
301 /*
302 * Using the euid would make more sense here, but something
303 * in userland might rely on the old behavior, and this
304 * shouldn't be a security problem since
305 * PTRACE_MODE_REALCREDS implies that the caller explicitly
306 * used a syscall that requests access to another process
307 * (and not a filesystem syscall to procfs).
308 */
309 caller_uid = cred->uid;
310 caller_gid = cred->gid;
311 }
312 tcred = __task_cred(task);
313 if (uid_eq(caller_uid, tcred->euid) &&
314 uid_eq(caller_uid, tcred->suid) &&
315 uid_eq(caller_uid, tcred->uid) &&
316 gid_eq(caller_gid, tcred->egid) &&
317 gid_eq(caller_gid, tcred->sgid) &&
318 gid_eq(caller_gid, tcred->gid))
319 goto ok;
320 if (ptrace_has_cap(tcred->user_ns, mode))
321 goto ok;
322 rcu_read_unlock();
323 return -EPERM;
324 ok:
325 rcu_read_unlock();
326 /*
327 * If a task drops privileges and becomes nondumpable (through a syscall
328 * like setresuid()) while we are trying to access it, we must ensure
329 * that the dumpability is read after the credentials; otherwise,
330 * we may be able to attach to a task that we shouldn't be able to
331 * attach to (as if the task had dropped privileges without becoming
332 * nondumpable).
333 * Pairs with a write barrier in commit_creds().
334 */
335 smp_rmb();
336 mm = task->mm;
337 if (mm &&
338 ((get_dumpable(mm) != SUID_DUMP_USER) &&
339 !ptrace_has_cap(mm->user_ns, mode)))
340 return -EPERM;
341
342 return security_ptrace_access_check(task, mode);
343 }
344
345 bool ptrace_may_access(struct task_struct *task, unsigned int mode)
346 {
347 int err;
348 task_lock(task);
349 err = __ptrace_may_access(task, mode);
350 task_unlock(task);
351 return !err;
352 }
353
354 static int ptrace_attach(struct task_struct *task, long request,
355 unsigned long addr,
356 unsigned long flags)
357 {
358 bool seize = (request == PTRACE_SEIZE);
359 int retval;
360
361 retval = -EIO;
362 if (seize) {
363 if (addr != 0)
364 goto out;
365 if (flags & ~(unsigned long)PTRACE_O_MASK)
366 goto out;
367 flags = PT_PTRACED | PT_SEIZED | (flags << PT_OPT_FLAG_SHIFT);
368 } else {
369 flags = PT_PTRACED;
370 }
371
372 audit_ptrace(task);
373
374 retval = -EPERM;
375 if (unlikely(task->flags & PF_KTHREAD))
376 goto out;
377 if (same_thread_group(task, current))
378 goto out;
379
380 /*
381 * Protect exec's credential calculations against our interference;
382 * SUID, SGID and LSM creds get determined differently
383 * under ptrace.
384 */
385 retval = -ERESTARTNOINTR;
386 if (mutex_lock_interruptible(&task->signal->cred_guard_mutex))
387 goto out;
388
389 task_lock(task);
390 retval = __ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS);
391 task_unlock(task);
392 if (retval)
393 goto unlock_creds;
394
395 write_lock_irq(&tasklist_lock);
396 retval = -EPERM;
397 if (unlikely(task->exit_state))
398 goto unlock_tasklist;
399 if (task->ptrace)
400 goto unlock_tasklist;
401
402 if (seize)
403 flags |= PT_SEIZED;
404 task->ptrace = flags;
405
406 ptrace_link(task, current);
407
408 /* SEIZE doesn't trap tracee on attach */
409 if (!seize)
410 send_sig_info(SIGSTOP, SEND_SIG_FORCED, task);
411
412 spin_lock(&task->sighand->siglock);
413
414 /*
415 * If the task is already STOPPED, set JOBCTL_TRAP_STOP and
416 * TRAPPING, and kick it so that it transits to TRACED. TRAPPING
417 * will be cleared if the child completes the transition or any
418 * event which clears the group stop states happens. We'll wait
419 * for the transition to complete before returning from this
420 * function.
421 *
422 * This hides STOPPED -> RUNNING -> TRACED transition from the
423 * attaching thread but a different thread in the same group can
424 * still observe the transient RUNNING state. IOW, if another
425 * thread's WNOHANG wait(2) on the stopped tracee races against
426 * ATTACH, the wait(2) may fail due to the transient RUNNING.
427 *
428 * The following task_is_stopped() test is safe as both transitions
429 * in and out of STOPPED are protected by siglock.
430 */
431 if (task_is_stopped(task) &&
432 task_set_jobctl_pending(task, JOBCTL_TRAP_STOP | JOBCTL_TRAPPING))
433 signal_wake_up_state(task, __TASK_STOPPED);
434
435 spin_unlock(&task->sighand->siglock);
436
437 retval = 0;
438 unlock_tasklist:
439 write_unlock_irq(&tasklist_lock);
440 unlock_creds:
441 mutex_unlock(&task->signal->cred_guard_mutex);
442 out:
443 if (!retval) {
444 /*
445 * We do not bother to change retval or clear JOBCTL_TRAPPING
446 * if wait_on_bit() was interrupted by SIGKILL. The tracer will
447 * not return to user-mode, it will exit and clear this bit in
448 * __ptrace_unlink() if it wasn't already cleared by the tracee;
449 * and until then nobody can ptrace this task.
450 */
451 wait_on_bit(&task->jobctl, JOBCTL_TRAPPING_BIT, TASK_KILLABLE);
452 proc_ptrace_connector(task, PTRACE_ATTACH);
453 }
454
455 return retval;
456 }
457
458 /**
459 * ptrace_traceme -- helper for PTRACE_TRACEME
460 *
461 * Performs checks and sets PT_PTRACED.
462 * Should be used by all ptrace implementations for PTRACE_TRACEME.
463 */
464 static int ptrace_traceme(void)
465 {
466 int ret = -EPERM;
467
468 write_lock_irq(&tasklist_lock);
469 /* Are we already being traced? */
470 if (!current->ptrace) {
471 ret = security_ptrace_traceme(current->parent);
472 /*
473 * Check PF_EXITING to ensure ->real_parent has not passed
474 * exit_ptrace(). Otherwise we don't report the error but
475 * pretend ->real_parent untraces us right after return.
476 */
477 if (!ret && !(current->real_parent->flags & PF_EXITING)) {
478 current->ptrace = PT_PTRACED;
479 ptrace_link(current, current->real_parent);
480 }
481 }
482 write_unlock_irq(&tasklist_lock);
483
484 return ret;
485 }
486
487 /*
488 * Called with irqs disabled, returns true if childs should reap themselves.
489 */
490 static int ignoring_children(struct sighand_struct *sigh)
491 {
492 int ret;
493 spin_lock(&sigh->siglock);
494 ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) ||
495 (sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT);
496 spin_unlock(&sigh->siglock);
497 return ret;
498 }
499
500 /*
501 * Called with tasklist_lock held for writing.
502 * Unlink a traced task, and clean it up if it was a traced zombie.
503 * Return true if it needs to be reaped with release_task().
504 * (We can't call release_task() here because we already hold tasklist_lock.)
505 *
506 * If it's a zombie, our attachedness prevented normal parent notification
507 * or self-reaping. Do notification now if it would have happened earlier.
508 * If it should reap itself, return true.
509 *
510 * If it's our own child, there is no notification to do. But if our normal
511 * children self-reap, then this child was prevented by ptrace and we must
512 * reap it now, in that case we must also wake up sub-threads sleeping in
513 * do_wait().
514 */
515 static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p)
516 {
517 bool dead;
518
519 __ptrace_unlink(p);
520
521 if (p->exit_state != EXIT_ZOMBIE)
522 return false;
523
524 dead = !thread_group_leader(p);
525
526 if (!dead && thread_group_empty(p)) {
527 if (!same_thread_group(p->real_parent, tracer))
528 dead = do_notify_parent(p, p->exit_signal);
529 else if (ignoring_children(tracer->sighand)) {
530 __wake_up_parent(p, tracer);
531 dead = true;
532 }
533 }
534 /* Mark it as in the process of being reaped. */
535 if (dead)
536 p->exit_state = EXIT_DEAD;
537 return dead;
538 }
539
540 static int ptrace_detach(struct task_struct *child, unsigned int data)
541 {
542 if (!valid_signal(data))
543 return -EIO;
544
545 /* Architecture-specific hardware disable .. */
546 ptrace_disable(child);
547
548 write_lock_irq(&tasklist_lock);
549 /*
550 * We rely on ptrace_freeze_traced(). It can't be killed and
551 * untraced by another thread, it can't be a zombie.
552 */
553 WARN_ON(!child->ptrace || child->exit_state);
554 /*
555 * tasklist_lock avoids the race with wait_task_stopped(), see
556 * the comment in ptrace_resume().
557 */
558 child->exit_code = data;
559 __ptrace_detach(current, child);
560 write_unlock_irq(&tasklist_lock);
561
562 proc_ptrace_connector(child, PTRACE_DETACH);
563
564 return 0;
565 }
566
567 /*
568 * Detach all tasks we were using ptrace on. Called with tasklist held
569 * for writing.
570 */
571 void exit_ptrace(struct task_struct *tracer, struct list_head *dead)
572 {
573 struct task_struct *p, *n;
574
575 list_for_each_entry_safe(p, n, &tracer->ptraced, ptrace_entry) {
576 if (unlikely(p->ptrace & PT_EXITKILL))
577 send_sig_info(SIGKILL, SEND_SIG_FORCED, p);
578
579 if (__ptrace_detach(tracer, p))
580 list_add(&p->ptrace_entry, dead);
581 }
582 }
583
584 int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len)
585 {
586 int copied = 0;
587
588 while (len > 0) {
589 char buf[128];
590 int this_len, retval;
591
592 this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
593 retval = ptrace_access_vm(tsk, src, buf, this_len, FOLL_FORCE);
594
595 if (!retval) {
596 if (copied)
597 break;
598 return -EIO;
599 }
600 if (copy_to_user(dst, buf, retval))
601 return -EFAULT;
602 copied += retval;
603 src += retval;
604 dst += retval;
605 len -= retval;
606 }
607 return copied;
608 }
609
610 int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len)
611 {
612 int copied = 0;
613
614 while (len > 0) {
615 char buf[128];
616 int this_len, retval;
617
618 this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
619 if (copy_from_user(buf, src, this_len))
620 return -EFAULT;
621 retval = ptrace_access_vm(tsk, dst, buf, this_len,
622 FOLL_FORCE | FOLL_WRITE);
623 if (!retval) {
624 if (copied)
625 break;
626 return -EIO;
627 }
628 copied += retval;
629 src += retval;
630 dst += retval;
631 len -= retval;
632 }
633 return copied;
634 }
635
636 static int ptrace_setoptions(struct task_struct *child, unsigned long data)
637 {
638 unsigned flags;
639
640 if (data & ~(unsigned long)PTRACE_O_MASK)
641 return -EINVAL;
642
643 if (unlikely(data & PTRACE_O_SUSPEND_SECCOMP)) {
644 if (!IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) ||
645 !IS_ENABLED(CONFIG_SECCOMP))
646 return -EINVAL;
647
648 if (!capable(CAP_SYS_ADMIN))
649 return -EPERM;
650
651 if (seccomp_mode(&current->seccomp) != SECCOMP_MODE_DISABLED ||
652 current->ptrace & PT_SUSPEND_SECCOMP)
653 return -EPERM;
654 }
655
656 /* Avoid intermediate state when all opts are cleared */
657 flags = child->ptrace;
658 flags &= ~(PTRACE_O_MASK << PT_OPT_FLAG_SHIFT);
659 flags |= (data << PT_OPT_FLAG_SHIFT);
660 child->ptrace = flags;
661
662 return 0;
663 }
664
665 static int ptrace_getsiginfo(struct task_struct *child, siginfo_t *info)
666 {
667 unsigned long flags;
668 int error = -ESRCH;
669
670 if (lock_task_sighand(child, &flags)) {
671 error = -EINVAL;
672 if (likely(child->last_siginfo != NULL)) {
673 copy_siginfo(info, child->last_siginfo);
674 error = 0;
675 }
676 unlock_task_sighand(child, &flags);
677 }
678 return error;
679 }
680
681 static int ptrace_setsiginfo(struct task_struct *child, const siginfo_t *info)
682 {
683 unsigned long flags;
684 int error = -ESRCH;
685
686 if (lock_task_sighand(child, &flags)) {
687 error = -EINVAL;
688 if (likely(child->last_siginfo != NULL)) {
689 copy_siginfo(child->last_siginfo, info);
690 error = 0;
691 }
692 unlock_task_sighand(child, &flags);
693 }
694 return error;
695 }
696
697 static int ptrace_peek_siginfo(struct task_struct *child,
698 unsigned long addr,
699 unsigned long data)
700 {
701 struct ptrace_peeksiginfo_args arg;
702 struct sigpending *pending;
703 struct sigqueue *q;
704 int ret, i;
705
706 ret = copy_from_user(&arg, (void __user *) addr,
707 sizeof(struct ptrace_peeksiginfo_args));
708 if (ret)
709 return -EFAULT;
710
711 if (arg.flags & ~PTRACE_PEEKSIGINFO_SHARED)
712 return -EINVAL; /* unknown flags */
713
714 if (arg.nr < 0)
715 return -EINVAL;
716
717 /* Ensure arg.off fits in an unsigned long */
718 if (arg.off > ULONG_MAX)
719 return 0;
720
721 if (arg.flags & PTRACE_PEEKSIGINFO_SHARED)
722 pending = &child->signal->shared_pending;
723 else
724 pending = &child->pending;
725
726 for (i = 0; i < arg.nr; ) {
727 siginfo_t info;
728 unsigned long off = arg.off + i;
729 bool found = false;
730
731 spin_lock_irq(&child->sighand->siglock);
732 list_for_each_entry(q, &pending->list, list) {
733 if (!off--) {
734 found = true;
735 copy_siginfo(&info, &q->info);
736 break;
737 }
738 }
739 spin_unlock_irq(&child->sighand->siglock);
740
741 if (!found) /* beyond the end of the list */
742 break;
743
744 #ifdef CONFIG_COMPAT
745 if (unlikely(in_compat_syscall())) {
746 compat_siginfo_t __user *uinfo = compat_ptr(data);
747
748 if (copy_siginfo_to_user32(uinfo, &info)) {
749 ret = -EFAULT;
750 break;
751 }
752
753 } else
754 #endif
755 {
756 siginfo_t __user *uinfo = (siginfo_t __user *) data;
757
758 if (copy_siginfo_to_user(uinfo, &info)) {
759 ret = -EFAULT;
760 break;
761 }
762 }
763
764 data += sizeof(siginfo_t);
765 i++;
766
767 if (signal_pending(current))
768 break;
769
770 cond_resched();
771 }
772
773 if (i > 0)
774 return i;
775
776 return ret;
777 }
778
779 #ifdef PTRACE_SINGLESTEP
780 #define is_singlestep(request) ((request) == PTRACE_SINGLESTEP)
781 #else
782 #define is_singlestep(request) 0
783 #endif
784
785 #ifdef PTRACE_SINGLEBLOCK
786 #define is_singleblock(request) ((request) == PTRACE_SINGLEBLOCK)
787 #else
788 #define is_singleblock(request) 0
789 #endif
790
791 #ifdef PTRACE_SYSEMU
792 #define is_sysemu_singlestep(request) ((request) == PTRACE_SYSEMU_SINGLESTEP)
793 #else
794 #define is_sysemu_singlestep(request) 0
795 #endif
796
797 static int ptrace_resume(struct task_struct *child, long request,
798 unsigned long data)
799 {
800 bool need_siglock;
801
802 if (!valid_signal(data))
803 return -EIO;
804
805 if (request == PTRACE_SYSCALL)
806 set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
807 else
808 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
809
810 #ifdef TIF_SYSCALL_EMU
811 if (request == PTRACE_SYSEMU || request == PTRACE_SYSEMU_SINGLESTEP)
812 set_tsk_thread_flag(child, TIF_SYSCALL_EMU);
813 else
814 clear_tsk_thread_flag(child, TIF_SYSCALL_EMU);
815 #endif
816
817 if (is_singleblock(request)) {
818 if (unlikely(!arch_has_block_step()))
819 return -EIO;
820 user_enable_block_step(child);
821 } else if (is_singlestep(request) || is_sysemu_singlestep(request)) {
822 if (unlikely(!arch_has_single_step()))
823 return -EIO;
824 user_enable_single_step(child);
825 } else {
826 user_disable_single_step(child);
827 }
828
829 /*
830 * Change ->exit_code and ->state under siglock to avoid the race
831 * with wait_task_stopped() in between; a non-zero ->exit_code will
832 * wrongly look like another report from tracee.
833 *
834 * Note that we need siglock even if ->exit_code == data and/or this
835 * status was not reported yet, the new status must not be cleared by
836 * wait_task_stopped() after resume.
837 *
838 * If data == 0 we do not care if wait_task_stopped() reports the old
839 * status and clears the code too; this can't race with the tracee, it
840 * takes siglock after resume.
841 */
842 need_siglock = data && !thread_group_empty(current);
843 if (need_siglock)
844 spin_lock_irq(&child->sighand->siglock);
845 child->exit_code = data;
846 wake_up_state(child, __TASK_TRACED);
847 if (need_siglock)
848 spin_unlock_irq(&child->sighand->siglock);
849
850 return 0;
851 }
852
853 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
854
855 static const struct user_regset *
856 find_regset(const struct user_regset_view *view, unsigned int type)
857 {
858 const struct user_regset *regset;
859 int n;
860
861 for (n = 0; n < view->n; ++n) {
862 regset = view->regsets + n;
863 if (regset->core_note_type == type)
864 return regset;
865 }
866
867 return NULL;
868 }
869
870 static int ptrace_regset(struct task_struct *task, int req, unsigned int type,
871 struct iovec *kiov)
872 {
873 const struct user_regset_view *view = task_user_regset_view(task);
874 const struct user_regset *regset = find_regset(view, type);
875 int regset_no;
876
877 if (!regset || (kiov->iov_len % regset->size) != 0)
878 return -EINVAL;
879
880 regset_no = regset - view->regsets;
881 kiov->iov_len = min(kiov->iov_len,
882 (__kernel_size_t) (regset->n * regset->size));
883
884 if (req == PTRACE_GETREGSET)
885 return copy_regset_to_user(task, view, regset_no, 0,
886 kiov->iov_len, kiov->iov_base);
887 else
888 return copy_regset_from_user(task, view, regset_no, 0,
889 kiov->iov_len, kiov->iov_base);
890 }
891
892 /*
893 * This is declared in linux/regset.h and defined in machine-dependent
894 * code. We put the export here, near the primary machine-neutral use,
895 * to ensure no machine forgets it.
896 */
897 EXPORT_SYMBOL_GPL(task_user_regset_view);
898 #endif
899
900 int ptrace_request(struct task_struct *child, long request,
901 unsigned long addr, unsigned long data)
902 {
903 bool seized = child->ptrace & PT_SEIZED;
904 int ret = -EIO;
905 siginfo_t siginfo, *si;
906 void __user *datavp = (void __user *) data;
907 unsigned long __user *datalp = datavp;
908 unsigned long flags;
909
910 switch (request) {
911 case PTRACE_PEEKTEXT:
912 case PTRACE_PEEKDATA:
913 return generic_ptrace_peekdata(child, addr, data);
914 case PTRACE_POKETEXT:
915 case PTRACE_POKEDATA:
916 return generic_ptrace_pokedata(child, addr, data);
917
918 #ifdef PTRACE_OLDSETOPTIONS
919 case PTRACE_OLDSETOPTIONS:
920 #endif
921 case PTRACE_SETOPTIONS:
922 ret = ptrace_setoptions(child, data);
923 break;
924 case PTRACE_GETEVENTMSG:
925 ret = put_user(child->ptrace_message, datalp);
926 break;
927
928 case PTRACE_PEEKSIGINFO:
929 ret = ptrace_peek_siginfo(child, addr, data);
930 break;
931
932 case PTRACE_GETSIGINFO:
933 ret = ptrace_getsiginfo(child, &siginfo);
934 if (!ret)
935 ret = copy_siginfo_to_user(datavp, &siginfo);
936 break;
937
938 case PTRACE_SETSIGINFO:
939 if (copy_from_user(&siginfo, datavp, sizeof siginfo))
940 ret = -EFAULT;
941 else
942 ret = ptrace_setsiginfo(child, &siginfo);
943 break;
944
945 case PTRACE_GETSIGMASK: {
946 sigset_t *mask;
947
948 if (addr != sizeof(sigset_t)) {
949 ret = -EINVAL;
950 break;
951 }
952
953 if (test_tsk_restore_sigmask(child))
954 mask = &child->saved_sigmask;
955 else
956 mask = &child->blocked;
957
958 if (copy_to_user(datavp, mask, sizeof(sigset_t)))
959 ret = -EFAULT;
960 else
961 ret = 0;
962
963 break;
964 }
965
966 case PTRACE_SETSIGMASK: {
967 sigset_t new_set;
968
969 if (addr != sizeof(sigset_t)) {
970 ret = -EINVAL;
971 break;
972 }
973
974 if (copy_from_user(&new_set, datavp, sizeof(sigset_t))) {
975 ret = -EFAULT;
976 break;
977 }
978
979 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
980
981 /*
982 * Every thread does recalc_sigpending() after resume, so
983 * retarget_shared_pending() and recalc_sigpending() are not
984 * called here.
985 */
986 spin_lock_irq(&child->sighand->siglock);
987 child->blocked = new_set;
988 spin_unlock_irq(&child->sighand->siglock);
989
990 clear_tsk_restore_sigmask(child);
991
992 ret = 0;
993 break;
994 }
995
996 case PTRACE_INTERRUPT:
997 /*
998 * Stop tracee without any side-effect on signal or job
999 * control. At least one trap is guaranteed to happen
1000 * after this request. If @child is already trapped, the
1001 * current trap is not disturbed and another trap will
1002 * happen after the current trap is ended with PTRACE_CONT.
1003 *
1004 * The actual trap might not be PTRACE_EVENT_STOP trap but
1005 * the pending condition is cleared regardless.
1006 */
1007 if (unlikely(!seized || !lock_task_sighand(child, &flags)))
1008 break;
1009
1010 /*
1011 * INTERRUPT doesn't disturb existing trap sans one
1012 * exception. If ptracer issued LISTEN for the current
1013 * STOP, this INTERRUPT should clear LISTEN and re-trap
1014 * tracee into STOP.
1015 */
1016 if (likely(task_set_jobctl_pending(child, JOBCTL_TRAP_STOP)))
1017 ptrace_signal_wake_up(child, child->jobctl & JOBCTL_LISTENING);
1018
1019 unlock_task_sighand(child, &flags);
1020 ret = 0;
1021 break;
1022
1023 case PTRACE_LISTEN:
1024 /*
1025 * Listen for events. Tracee must be in STOP. It's not
1026 * resumed per-se but is not considered to be in TRACED by
1027 * wait(2) or ptrace(2). If an async event (e.g. group
1028 * stop state change) happens, tracee will enter STOP trap
1029 * again. Alternatively, ptracer can issue INTERRUPT to
1030 * finish listening and re-trap tracee into STOP.
1031 */
1032 if (unlikely(!seized || !lock_task_sighand(child, &flags)))
1033 break;
1034
1035 si = child->last_siginfo;
1036 if (likely(si && (si->si_code >> 8) == PTRACE_EVENT_STOP)) {
1037 child->jobctl |= JOBCTL_LISTENING;
1038 /*
1039 * If NOTIFY is set, it means event happened between
1040 * start of this trap and now. Trigger re-trap.
1041 */
1042 if (child->jobctl & JOBCTL_TRAP_NOTIFY)
1043 ptrace_signal_wake_up(child, true);
1044 ret = 0;
1045 }
1046 unlock_task_sighand(child, &flags);
1047 break;
1048
1049 case PTRACE_DETACH: /* detach a process that was attached. */
1050 ret = ptrace_detach(child, data);
1051 break;
1052
1053 #ifdef CONFIG_BINFMT_ELF_FDPIC
1054 case PTRACE_GETFDPIC: {
1055 struct mm_struct *mm = get_task_mm(child);
1056 unsigned long tmp = 0;
1057
1058 ret = -ESRCH;
1059 if (!mm)
1060 break;
1061
1062 switch (addr) {
1063 case PTRACE_GETFDPIC_EXEC:
1064 tmp = mm->context.exec_fdpic_loadmap;
1065 break;
1066 case PTRACE_GETFDPIC_INTERP:
1067 tmp = mm->context.interp_fdpic_loadmap;
1068 break;
1069 default:
1070 break;
1071 }
1072 mmput(mm);
1073
1074 ret = put_user(tmp, datalp);
1075 break;
1076 }
1077 #endif
1078
1079 #ifdef PTRACE_SINGLESTEP
1080 case PTRACE_SINGLESTEP:
1081 #endif
1082 #ifdef PTRACE_SINGLEBLOCK
1083 case PTRACE_SINGLEBLOCK:
1084 #endif
1085 #ifdef PTRACE_SYSEMU
1086 case PTRACE_SYSEMU:
1087 case PTRACE_SYSEMU_SINGLESTEP:
1088 #endif
1089 case PTRACE_SYSCALL:
1090 case PTRACE_CONT:
1091 return ptrace_resume(child, request, data);
1092
1093 case PTRACE_KILL:
1094 if (child->exit_state) /* already dead */
1095 return 0;
1096 return ptrace_resume(child, request, SIGKILL);
1097
1098 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
1099 case PTRACE_GETREGSET:
1100 case PTRACE_SETREGSET: {
1101 struct iovec kiov;
1102 struct iovec __user *uiov = datavp;
1103
1104 if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov)))
1105 return -EFAULT;
1106
1107 if (__get_user(kiov.iov_base, &uiov->iov_base) ||
1108 __get_user(kiov.iov_len, &uiov->iov_len))
1109 return -EFAULT;
1110
1111 ret = ptrace_regset(child, request, addr, &kiov);
1112 if (!ret)
1113 ret = __put_user(kiov.iov_len, &uiov->iov_len);
1114 break;
1115 }
1116 #endif
1117
1118 case PTRACE_SECCOMP_GET_FILTER:
1119 ret = seccomp_get_filter(child, addr, datavp);
1120 break;
1121
1122 case PTRACE_SECCOMP_GET_METADATA:
1123 ret = seccomp_get_metadata(child, addr, datavp);
1124 break;
1125
1126 default:
1127 break;
1128 }
1129
1130 return ret;
1131 }
1132
1133 #ifndef arch_ptrace_attach
1134 #define arch_ptrace_attach(child) do { } while (0)
1135 #endif
1136
1137 SYSCALL_DEFINE4(ptrace, long, request, long, pid, unsigned long, addr,
1138 unsigned long, data)
1139 {
1140 struct task_struct *child;
1141 long ret;
1142
1143 if (request == PTRACE_TRACEME) {
1144 ret = ptrace_traceme();
1145 if (!ret)
1146 arch_ptrace_attach(current);
1147 goto out;
1148 }
1149
1150 child = find_get_task_by_vpid(pid);
1151 if (!child) {
1152 ret = -ESRCH;
1153 goto out;
1154 }
1155
1156 if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
1157 ret = ptrace_attach(child, request, addr, data);
1158 /*
1159 * Some architectures need to do book-keeping after
1160 * a ptrace attach.
1161 */
1162 if (!ret)
1163 arch_ptrace_attach(child);
1164 goto out_put_task_struct;
1165 }
1166
1167 ret = ptrace_check_attach(child, request == PTRACE_KILL ||
1168 request == PTRACE_INTERRUPT);
1169 if (ret < 0)
1170 goto out_put_task_struct;
1171
1172 ret = arch_ptrace(child, request, addr, data);
1173 if (ret || request != PTRACE_DETACH)
1174 ptrace_unfreeze_traced(child);
1175
1176 out_put_task_struct:
1177 put_task_struct(child);
1178 out:
1179 return ret;
1180 }
1181
1182 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
1183 unsigned long data)
1184 {
1185 unsigned long tmp;
1186 int copied;
1187
1188 copied = ptrace_access_vm(tsk, addr, &tmp, sizeof(tmp), FOLL_FORCE);
1189 if (copied != sizeof(tmp))
1190 return -EIO;
1191 return put_user(tmp, (unsigned long __user *)data);
1192 }
1193
1194 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
1195 unsigned long data)
1196 {
1197 int copied;
1198
1199 copied = ptrace_access_vm(tsk, addr, &data, sizeof(data),
1200 FOLL_FORCE | FOLL_WRITE);
1201 return (copied == sizeof(data)) ? 0 : -EIO;
1202 }
1203
1204 #if defined CONFIG_COMPAT
1205
1206 int compat_ptrace_request(struct task_struct *child, compat_long_t request,
1207 compat_ulong_t addr, compat_ulong_t data)
1208 {
1209 compat_ulong_t __user *datap = compat_ptr(data);
1210 compat_ulong_t word;
1211 siginfo_t siginfo;
1212 int ret;
1213
1214 switch (request) {
1215 case PTRACE_PEEKTEXT:
1216 case PTRACE_PEEKDATA:
1217 ret = ptrace_access_vm(child, addr, &word, sizeof(word),
1218 FOLL_FORCE);
1219 if (ret != sizeof(word))
1220 ret = -EIO;
1221 else
1222 ret = put_user(word, datap);
1223 break;
1224
1225 case PTRACE_POKETEXT:
1226 case PTRACE_POKEDATA:
1227 ret = ptrace_access_vm(child, addr, &data, sizeof(data),
1228 FOLL_FORCE | FOLL_WRITE);
1229 ret = (ret != sizeof(data) ? -EIO : 0);
1230 break;
1231
1232 case PTRACE_GETEVENTMSG:
1233 ret = put_user((compat_ulong_t) child->ptrace_message, datap);
1234 break;
1235
1236 case PTRACE_GETSIGINFO:
1237 ret = ptrace_getsiginfo(child, &siginfo);
1238 if (!ret)
1239 ret = copy_siginfo_to_user32(
1240 (struct compat_siginfo __user *) datap,
1241 &siginfo);
1242 break;
1243
1244 case PTRACE_SETSIGINFO:
1245 if (copy_siginfo_from_user32(
1246 &siginfo, (struct compat_siginfo __user *) datap))
1247 ret = -EFAULT;
1248 else
1249 ret = ptrace_setsiginfo(child, &siginfo);
1250 break;
1251 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
1252 case PTRACE_GETREGSET:
1253 case PTRACE_SETREGSET:
1254 {
1255 struct iovec kiov;
1256 struct compat_iovec __user *uiov =
1257 (struct compat_iovec __user *) datap;
1258 compat_uptr_t ptr;
1259 compat_size_t len;
1260
1261 if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov)))
1262 return -EFAULT;
1263
1264 if (__get_user(ptr, &uiov->iov_base) ||
1265 __get_user(len, &uiov->iov_len))
1266 return -EFAULT;
1267
1268 kiov.iov_base = compat_ptr(ptr);
1269 kiov.iov_len = len;
1270
1271 ret = ptrace_regset(child, request, addr, &kiov);
1272 if (!ret)
1273 ret = __put_user(kiov.iov_len, &uiov->iov_len);
1274 break;
1275 }
1276 #endif
1277
1278 default:
1279 ret = ptrace_request(child, request, addr, data);
1280 }
1281
1282 return ret;
1283 }
1284
1285 COMPAT_SYSCALL_DEFINE4(ptrace, compat_long_t, request, compat_long_t, pid,
1286 compat_long_t, addr, compat_long_t, data)
1287 {
1288 struct task_struct *child;
1289 long ret;
1290
1291 if (request == PTRACE_TRACEME) {
1292 ret = ptrace_traceme();
1293 goto out;
1294 }
1295
1296 child = find_get_task_by_vpid(pid);
1297 if (!child) {
1298 ret = -ESRCH;
1299 goto out;
1300 }
1301
1302 if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
1303 ret = ptrace_attach(child, request, addr, data);
1304 /*
1305 * Some architectures need to do book-keeping after
1306 * a ptrace attach.
1307 */
1308 if (!ret)
1309 arch_ptrace_attach(child);
1310 goto out_put_task_struct;
1311 }
1312
1313 ret = ptrace_check_attach(child, request == PTRACE_KILL ||
1314 request == PTRACE_INTERRUPT);
1315 if (!ret) {
1316 ret = compat_arch_ptrace(child, request, addr, data);
1317 if (ret || request != PTRACE_DETACH)
1318 ptrace_unfreeze_traced(child);
1319 }
1320
1321 out_put_task_struct:
1322 put_task_struct(child);
1323 out:
1324 return ret;
1325 }
1326 #endif /* CONFIG_COMPAT */