]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/rcu/tasks.h
Merge branch 'uaccess.access_ok' of git://git.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/linux.git] / kernel / rcu / tasks.h
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Task-based RCU implementations.
4 *
5 * Copyright (C) 2020 Paul E. McKenney
6 */
7
8 #ifdef CONFIG_TASKS_RCU_GENERIC
9
10 ////////////////////////////////////////////////////////////////////////
11 //
12 // Generic data structures.
13
14 struct rcu_tasks;
15 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
16 typedef void (*pregp_func_t)(void);
17 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop);
18 typedef void (*postscan_func_t)(struct list_head *hop);
19 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp);
20 typedef void (*postgp_func_t)(struct rcu_tasks *rtp);
21
22 /**
23 * Definition for a Tasks-RCU-like mechanism.
24 * @cbs_head: Head of callback list.
25 * @cbs_tail: Tail pointer for callback list.
26 * @cbs_wq: Wait queue allowning new callback to get kthread's attention.
27 * @cbs_lock: Lock protecting callback list.
28 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
29 * @gp_func: This flavor's grace-period-wait function.
30 * @gp_state: Grace period's most recent state transition (debugging).
31 * @gp_jiffies: Time of last @gp_state transition.
32 * @gp_start: Most recent grace-period start in jiffies.
33 * @n_gps: Number of grace periods completed since boot.
34 * @n_ipis: Number of IPIs sent to encourage grace periods to end.
35 * @n_ipis_fails: Number of IPI-send failures.
36 * @pregp_func: This flavor's pre-grace-period function (optional).
37 * @pertask_func: This flavor's per-task scan function (optional).
38 * @postscan_func: This flavor's post-task scan function (optional).
39 * @holdout_func: This flavor's holdout-list scan function (optional).
40 * @postgp_func: This flavor's post-grace-period function (optional).
41 * @call_func: This flavor's call_rcu()-equivalent function.
42 * @name: This flavor's textual name.
43 * @kname: This flavor's kthread name.
44 */
45 struct rcu_tasks {
46 struct rcu_head *cbs_head;
47 struct rcu_head **cbs_tail;
48 struct wait_queue_head cbs_wq;
49 raw_spinlock_t cbs_lock;
50 int gp_state;
51 unsigned long gp_jiffies;
52 unsigned long gp_start;
53 unsigned long n_gps;
54 unsigned long n_ipis;
55 unsigned long n_ipis_fails;
56 struct task_struct *kthread_ptr;
57 rcu_tasks_gp_func_t gp_func;
58 pregp_func_t pregp_func;
59 pertask_func_t pertask_func;
60 postscan_func_t postscan_func;
61 holdouts_func_t holdouts_func;
62 postgp_func_t postgp_func;
63 call_rcu_func_t call_func;
64 char *name;
65 char *kname;
66 };
67
68 #define DEFINE_RCU_TASKS(rt_name, gp, call, n) \
69 static struct rcu_tasks rt_name = \
70 { \
71 .cbs_tail = &rt_name.cbs_head, \
72 .cbs_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rt_name.cbs_wq), \
73 .cbs_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_lock), \
74 .gp_func = gp, \
75 .call_func = call, \
76 .name = n, \
77 .kname = #rt_name, \
78 }
79
80 /* Track exiting tasks in order to allow them to be waited for. */
81 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
82
83 /* Avoid IPIing CPUs early in the grace period. */
84 #define RCU_TASK_IPI_DELAY (HZ / 2)
85 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY;
86 module_param(rcu_task_ipi_delay, int, 0644);
87
88 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
89 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
90 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
91 module_param(rcu_task_stall_timeout, int, 0644);
92
93 /* RCU tasks grace-period state for debugging. */
94 #define RTGS_INIT 0
95 #define RTGS_WAIT_WAIT_CBS 1
96 #define RTGS_WAIT_GP 2
97 #define RTGS_PRE_WAIT_GP 3
98 #define RTGS_SCAN_TASKLIST 4
99 #define RTGS_POST_SCAN_TASKLIST 5
100 #define RTGS_WAIT_SCAN_HOLDOUTS 6
101 #define RTGS_SCAN_HOLDOUTS 7
102 #define RTGS_POST_GP 8
103 #define RTGS_WAIT_READERS 9
104 #define RTGS_INVOKE_CBS 10
105 #define RTGS_WAIT_CBS 11
106 static const char * const rcu_tasks_gp_state_names[] = {
107 "RTGS_INIT",
108 "RTGS_WAIT_WAIT_CBS",
109 "RTGS_WAIT_GP",
110 "RTGS_PRE_WAIT_GP",
111 "RTGS_SCAN_TASKLIST",
112 "RTGS_POST_SCAN_TASKLIST",
113 "RTGS_WAIT_SCAN_HOLDOUTS",
114 "RTGS_SCAN_HOLDOUTS",
115 "RTGS_POST_GP",
116 "RTGS_WAIT_READERS",
117 "RTGS_INVOKE_CBS",
118 "RTGS_WAIT_CBS",
119 };
120
121 ////////////////////////////////////////////////////////////////////////
122 //
123 // Generic code.
124
125 /* Record grace-period phase and time. */
126 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate)
127 {
128 rtp->gp_state = newstate;
129 rtp->gp_jiffies = jiffies;
130 }
131
132 /* Return state name. */
133 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
134 {
135 int i = data_race(rtp->gp_state); // Let KCSAN detect update races
136 int j = READ_ONCE(i); // Prevent the compiler from reading twice
137
138 if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names))
139 return "???";
140 return rcu_tasks_gp_state_names[j];
141 }
142
143 // Enqueue a callback for the specified flavor of Tasks RCU.
144 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
145 struct rcu_tasks *rtp)
146 {
147 unsigned long flags;
148 bool needwake;
149
150 rhp->next = NULL;
151 rhp->func = func;
152 raw_spin_lock_irqsave(&rtp->cbs_lock, flags);
153 needwake = !rtp->cbs_head;
154 WRITE_ONCE(*rtp->cbs_tail, rhp);
155 rtp->cbs_tail = &rhp->next;
156 raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags);
157 /* We can't create the thread unless interrupts are enabled. */
158 if (needwake && READ_ONCE(rtp->kthread_ptr))
159 wake_up(&rtp->cbs_wq);
160 }
161
162 // Wait for a grace period for the specified flavor of Tasks RCU.
163 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
164 {
165 /* Complain if the scheduler has not started. */
166 RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
167 "synchronize_rcu_tasks called too soon");
168
169 /* Wait for the grace period. */
170 wait_rcu_gp(rtp->call_func);
171 }
172
173 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
174 static int __noreturn rcu_tasks_kthread(void *arg)
175 {
176 unsigned long flags;
177 struct rcu_head *list;
178 struct rcu_head *next;
179 struct rcu_tasks *rtp = arg;
180
181 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
182 housekeeping_affine(current, HK_FLAG_RCU);
183 WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start!
184
185 /*
186 * Each pass through the following loop makes one check for
187 * newly arrived callbacks, and, if there are some, waits for
188 * one RCU-tasks grace period and then invokes the callbacks.
189 * This loop is terminated by the system going down. ;-)
190 */
191 for (;;) {
192
193 /* Pick up any new callbacks. */
194 raw_spin_lock_irqsave(&rtp->cbs_lock, flags);
195 smp_mb__after_spinlock(); // Order updates vs. GP.
196 list = rtp->cbs_head;
197 rtp->cbs_head = NULL;
198 rtp->cbs_tail = &rtp->cbs_head;
199 raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags);
200
201 /* If there were none, wait a bit and start over. */
202 if (!list) {
203 wait_event_interruptible(rtp->cbs_wq,
204 READ_ONCE(rtp->cbs_head));
205 if (!rtp->cbs_head) {
206 WARN_ON(signal_pending(current));
207 set_tasks_gp_state(rtp, RTGS_WAIT_WAIT_CBS);
208 schedule_timeout_interruptible(HZ/10);
209 }
210 continue;
211 }
212
213 // Wait for one grace period.
214 set_tasks_gp_state(rtp, RTGS_WAIT_GP);
215 rtp->gp_start = jiffies;
216 rtp->gp_func(rtp);
217 rtp->n_gps++;
218
219 /* Invoke the callbacks. */
220 set_tasks_gp_state(rtp, RTGS_INVOKE_CBS);
221 while (list) {
222 next = list->next;
223 local_bh_disable();
224 list->func(list);
225 local_bh_enable();
226 list = next;
227 cond_resched();
228 }
229 /* Paranoid sleep to keep this from entering a tight loop */
230 schedule_timeout_uninterruptible(HZ/10);
231
232 set_tasks_gp_state(rtp, RTGS_WAIT_CBS);
233 }
234 }
235
236 /* Spawn RCU-tasks grace-period kthread, e.g., at core_initcall() time. */
237 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
238 {
239 struct task_struct *t;
240
241 t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
242 if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
243 return;
244 smp_mb(); /* Ensure others see full kthread. */
245 }
246
247 #ifndef CONFIG_TINY_RCU
248
249 /*
250 * Print any non-default Tasks RCU settings.
251 */
252 static void __init rcu_tasks_bootup_oddness(void)
253 {
254 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
255 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
256 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
257 #endif /* #ifdef CONFIG_TASKS_RCU */
258 #ifdef CONFIG_TASKS_RCU
259 pr_info("\tTrampoline variant of Tasks RCU enabled.\n");
260 #endif /* #ifdef CONFIG_TASKS_RCU */
261 #ifdef CONFIG_TASKS_RUDE_RCU
262 pr_info("\tRude variant of Tasks RCU enabled.\n");
263 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
264 #ifdef CONFIG_TASKS_TRACE_RCU
265 pr_info("\tTracing variant of Tasks RCU enabled.\n");
266 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
267 }
268
269 #endif /* #ifndef CONFIG_TINY_RCU */
270
271 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */
272 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
273 {
274 pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n",
275 rtp->kname,
276 tasks_gp_state_getname(rtp), data_race(rtp->gp_state),
277 jiffies - data_race(rtp->gp_jiffies),
278 data_race(rtp->n_gps),
279 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis),
280 ".k"[!!data_race(rtp->kthread_ptr)],
281 ".C"[!!data_race(rtp->cbs_head)],
282 s);
283 }
284
285 static void exit_tasks_rcu_finish_trace(struct task_struct *t);
286
287 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
288
289 ////////////////////////////////////////////////////////////////////////
290 //
291 // Shared code between task-list-scanning variants of Tasks RCU.
292
293 /* Wait for one RCU-tasks grace period. */
294 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
295 {
296 struct task_struct *g, *t;
297 unsigned long lastreport;
298 LIST_HEAD(holdouts);
299 int fract;
300
301 set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP);
302 rtp->pregp_func();
303
304 /*
305 * There were callbacks, so we need to wait for an RCU-tasks
306 * grace period. Start off by scanning the task list for tasks
307 * that are not already voluntarily blocked. Mark these tasks
308 * and make a list of them in holdouts.
309 */
310 set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST);
311 rcu_read_lock();
312 for_each_process_thread(g, t)
313 rtp->pertask_func(t, &holdouts);
314 rcu_read_unlock();
315
316 set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST);
317 rtp->postscan_func(&holdouts);
318
319 /*
320 * Each pass through the following loop scans the list of holdout
321 * tasks, removing any that are no longer holdouts. When the list
322 * is empty, we are done.
323 */
324 lastreport = jiffies;
325
326 /* Start off with HZ/10 wait and slowly back off to 1 HZ wait. */
327 fract = 10;
328
329 for (;;) {
330 bool firstreport;
331 bool needreport;
332 int rtst;
333
334 if (list_empty(&holdouts))
335 break;
336
337 /* Slowly back off waiting for holdouts */
338 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
339 schedule_timeout_interruptible(HZ/fract);
340
341 if (fract > 1)
342 fract--;
343
344 rtst = READ_ONCE(rcu_task_stall_timeout);
345 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
346 if (needreport)
347 lastreport = jiffies;
348 firstreport = true;
349 WARN_ON(signal_pending(current));
350 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS);
351 rtp->holdouts_func(&holdouts, needreport, &firstreport);
352 }
353
354 set_tasks_gp_state(rtp, RTGS_POST_GP);
355 rtp->postgp_func(rtp);
356 }
357
358 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */
359
360 #ifdef CONFIG_TASKS_RCU
361
362 ////////////////////////////////////////////////////////////////////////
363 //
364 // Simple variant of RCU whose quiescent states are voluntary context
365 // switch, cond_resched_rcu_qs(), user-space execution, and idle.
366 // As such, grace periods can take one good long time. There are no
367 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
368 // because this implementation is intended to get the system into a safe
369 // state for some of the manipulations involved in tracing and the like.
370 // Finally, this implementation does not support high call_rcu_tasks()
371 // rates from multiple CPUs. If this is required, per-CPU callback lists
372 // will be needed.
373
374 /* Pre-grace-period preparation. */
375 static void rcu_tasks_pregp_step(void)
376 {
377 /*
378 * Wait for all pre-existing t->on_rq and t->nvcsw transitions
379 * to complete. Invoking synchronize_rcu() suffices because all
380 * these transitions occur with interrupts disabled. Without this
381 * synchronize_rcu(), a read-side critical section that started
382 * before the grace period might be incorrectly seen as having
383 * started after the grace period.
384 *
385 * This synchronize_rcu() also dispenses with the need for a
386 * memory barrier on the first store to t->rcu_tasks_holdout,
387 * as it forces the store to happen after the beginning of the
388 * grace period.
389 */
390 synchronize_rcu();
391 }
392
393 /* Per-task initial processing. */
394 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
395 {
396 if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) {
397 get_task_struct(t);
398 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
399 WRITE_ONCE(t->rcu_tasks_holdout, true);
400 list_add(&t->rcu_tasks_holdout_list, hop);
401 }
402 }
403
404 /* Processing between scanning taskslist and draining the holdout list. */
405 void rcu_tasks_postscan(struct list_head *hop)
406 {
407 /*
408 * Wait for tasks that are in the process of exiting. This
409 * does only part of the job, ensuring that all tasks that were
410 * previously exiting reach the point where they have disabled
411 * preemption, allowing the later synchronize_rcu() to finish
412 * the job.
413 */
414 synchronize_srcu(&tasks_rcu_exit_srcu);
415 }
416
417 /* See if tasks are still holding out, complain if so. */
418 static void check_holdout_task(struct task_struct *t,
419 bool needreport, bool *firstreport)
420 {
421 int cpu;
422
423 if (!READ_ONCE(t->rcu_tasks_holdout) ||
424 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
425 !READ_ONCE(t->on_rq) ||
426 (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
427 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
428 WRITE_ONCE(t->rcu_tasks_holdout, false);
429 list_del_init(&t->rcu_tasks_holdout_list);
430 put_task_struct(t);
431 return;
432 }
433 rcu_request_urgent_qs_task(t);
434 if (!needreport)
435 return;
436 if (*firstreport) {
437 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
438 *firstreport = false;
439 }
440 cpu = task_cpu(t);
441 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
442 t, ".I"[is_idle_task(t)],
443 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
444 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
445 t->rcu_tasks_idle_cpu, cpu);
446 sched_show_task(t);
447 }
448
449 /* Scan the holdout lists for tasks no longer holding out. */
450 static void check_all_holdout_tasks(struct list_head *hop,
451 bool needreport, bool *firstreport)
452 {
453 struct task_struct *t, *t1;
454
455 list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) {
456 check_holdout_task(t, needreport, firstreport);
457 cond_resched();
458 }
459 }
460
461 /* Finish off the Tasks-RCU grace period. */
462 static void rcu_tasks_postgp(struct rcu_tasks *rtp)
463 {
464 /*
465 * Because ->on_rq and ->nvcsw are not guaranteed to have a full
466 * memory barriers prior to them in the schedule() path, memory
467 * reordering on other CPUs could cause their RCU-tasks read-side
468 * critical sections to extend past the end of the grace period.
469 * However, because these ->nvcsw updates are carried out with
470 * interrupts disabled, we can use synchronize_rcu() to force the
471 * needed ordering on all such CPUs.
472 *
473 * This synchronize_rcu() also confines all ->rcu_tasks_holdout
474 * accesses to be within the grace period, avoiding the need for
475 * memory barriers for ->rcu_tasks_holdout accesses.
476 *
477 * In addition, this synchronize_rcu() waits for exiting tasks
478 * to complete their final preempt_disable() region of execution,
479 * cleaning up after the synchronize_srcu() above.
480 */
481 synchronize_rcu();
482 }
483
484 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
485 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
486
487 /**
488 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
489 * @rhp: structure to be used for queueing the RCU updates.
490 * @func: actual callback function to be invoked after the grace period
491 *
492 * The callback function will be invoked some time after a full grace
493 * period elapses, in other words after all currently executing RCU
494 * read-side critical sections have completed. call_rcu_tasks() assumes
495 * that the read-side critical sections end at a voluntary context
496 * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
497 * or transition to usermode execution. As such, there are no read-side
498 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
499 * this primitive is intended to determine that all tasks have passed
500 * through a safe state, not so much for data-strcuture synchronization.
501 *
502 * See the description of call_rcu() for more detailed information on
503 * memory ordering guarantees.
504 */
505 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
506 {
507 call_rcu_tasks_generic(rhp, func, &rcu_tasks);
508 }
509 EXPORT_SYMBOL_GPL(call_rcu_tasks);
510
511 /**
512 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
513 *
514 * Control will return to the caller some time after a full rcu-tasks
515 * grace period has elapsed, in other words after all currently
516 * executing rcu-tasks read-side critical sections have elapsed. These
517 * read-side critical sections are delimited by calls to schedule(),
518 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
519 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
520 *
521 * This is a very specialized primitive, intended only for a few uses in
522 * tracing and other situations requiring manipulation of function
523 * preambles and profiling hooks. The synchronize_rcu_tasks() function
524 * is not (yet) intended for heavy use from multiple CPUs.
525 *
526 * See the description of synchronize_rcu() for more detailed information
527 * on memory ordering guarantees.
528 */
529 void synchronize_rcu_tasks(void)
530 {
531 synchronize_rcu_tasks_generic(&rcu_tasks);
532 }
533 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
534
535 /**
536 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
537 *
538 * Although the current implementation is guaranteed to wait, it is not
539 * obligated to, for example, if there are no pending callbacks.
540 */
541 void rcu_barrier_tasks(void)
542 {
543 /* There is only one callback queue, so this is easy. ;-) */
544 synchronize_rcu_tasks();
545 }
546 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
547
548 static int __init rcu_spawn_tasks_kthread(void)
549 {
550 rcu_tasks.pregp_func = rcu_tasks_pregp_step;
551 rcu_tasks.pertask_func = rcu_tasks_pertask;
552 rcu_tasks.postscan_func = rcu_tasks_postscan;
553 rcu_tasks.holdouts_func = check_all_holdout_tasks;
554 rcu_tasks.postgp_func = rcu_tasks_postgp;
555 rcu_spawn_tasks_kthread_generic(&rcu_tasks);
556 return 0;
557 }
558 core_initcall(rcu_spawn_tasks_kthread);
559
560 static void show_rcu_tasks_classic_gp_kthread(void)
561 {
562 show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
563 }
564
565 /* Do the srcu_read_lock() for the above synchronize_srcu(). */
566 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
567 {
568 preempt_disable();
569 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
570 preempt_enable();
571 }
572
573 /* Do the srcu_read_unlock() for the above synchronize_srcu(). */
574 void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu)
575 {
576 struct task_struct *t = current;
577
578 preempt_disable();
579 __srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx);
580 preempt_enable();
581 exit_tasks_rcu_finish_trace(t);
582 }
583
584 #else /* #ifdef CONFIG_TASKS_RCU */
585 static void show_rcu_tasks_classic_gp_kthread(void) { }
586 void exit_tasks_rcu_start(void) { }
587 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
588 #endif /* #else #ifdef CONFIG_TASKS_RCU */
589
590 #ifdef CONFIG_TASKS_RUDE_RCU
591
592 ////////////////////////////////////////////////////////////////////////
593 //
594 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of
595 // passing an empty function to schedule_on_each_cpu(). This approach
596 // provides an asynchronous call_rcu_tasks_rude() API and batching
597 // of concurrent calls to the synchronous synchronize_rcu_rude() API.
598 // This sends IPIs far and wide and induces otherwise unnecessary context
599 // switches on all online CPUs, whether idle or not.
600
601 // Empty function to allow workqueues to force a context switch.
602 static void rcu_tasks_be_rude(struct work_struct *work)
603 {
604 }
605
606 // Wait for one rude RCU-tasks grace period.
607 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
608 {
609 rtp->n_ipis += cpumask_weight(cpu_online_mask);
610 schedule_on_each_cpu(rcu_tasks_be_rude);
611 }
612
613 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
614 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
615 "RCU Tasks Rude");
616
617 /**
618 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period
619 * @rhp: structure to be used for queueing the RCU updates.
620 * @func: actual callback function to be invoked after the grace period
621 *
622 * The callback function will be invoked some time after a full grace
623 * period elapses, in other words after all currently executing RCU
624 * read-side critical sections have completed. call_rcu_tasks_rude()
625 * assumes that the read-side critical sections end at context switch,
626 * cond_resched_rcu_qs(), or transition to usermode execution. As such,
627 * there are no read-side primitives analogous to rcu_read_lock() and
628 * rcu_read_unlock() because this primitive is intended to determine
629 * that all tasks have passed through a safe state, not so much for
630 * data-strcuture synchronization.
631 *
632 * See the description of call_rcu() for more detailed information on
633 * memory ordering guarantees.
634 */
635 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
636 {
637 call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
638 }
639 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude);
640
641 /**
642 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
643 *
644 * Control will return to the caller some time after a rude rcu-tasks
645 * grace period has elapsed, in other words after all currently
646 * executing rcu-tasks read-side critical sections have elapsed. These
647 * read-side critical sections are delimited by calls to schedule(),
648 * cond_resched_tasks_rcu_qs(), userspace execution, and (in theory,
649 * anyway) cond_resched().
650 *
651 * This is a very specialized primitive, intended only for a few uses in
652 * tracing and other situations requiring manipulation of function preambles
653 * and profiling hooks. The synchronize_rcu_tasks_rude() function is not
654 * (yet) intended for heavy use from multiple CPUs.
655 *
656 * See the description of synchronize_rcu() for more detailed information
657 * on memory ordering guarantees.
658 */
659 void synchronize_rcu_tasks_rude(void)
660 {
661 synchronize_rcu_tasks_generic(&rcu_tasks_rude);
662 }
663 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
664
665 /**
666 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks.
667 *
668 * Although the current implementation is guaranteed to wait, it is not
669 * obligated to, for example, if there are no pending callbacks.
670 */
671 void rcu_barrier_tasks_rude(void)
672 {
673 /* There is only one callback queue, so this is easy. ;-) */
674 synchronize_rcu_tasks_rude();
675 }
676 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude);
677
678 static int __init rcu_spawn_tasks_rude_kthread(void)
679 {
680 rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
681 return 0;
682 }
683 core_initcall(rcu_spawn_tasks_rude_kthread);
684
685 static void show_rcu_tasks_rude_gp_kthread(void)
686 {
687 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
688 }
689
690 #else /* #ifdef CONFIG_TASKS_RUDE_RCU */
691 static void show_rcu_tasks_rude_gp_kthread(void) {}
692 #endif /* #else #ifdef CONFIG_TASKS_RUDE_RCU */
693
694 ////////////////////////////////////////////////////////////////////////
695 //
696 // Tracing variant of Tasks RCU. This variant is designed to be used
697 // to protect tracing hooks, including those of BPF. This variant
698 // therefore:
699 //
700 // 1. Has explicit read-side markers to allow finite grace periods
701 // in the face of in-kernel loops for PREEMPT=n builds.
702 //
703 // 2. Protects code in the idle loop, exception entry/exit, and
704 // CPU-hotplug code paths, similar to the capabilities of SRCU.
705 //
706 // 3. Avoids expensive read-side instruction, having overhead similar
707 // to that of Preemptible RCU.
708 //
709 // There are of course downsides. The grace-period code can send IPIs to
710 // CPUs, even when those CPUs are in the idle loop or in nohz_full userspace.
711 // It is necessary to scan the full tasklist, much as for Tasks RCU. There
712 // is a single callback queue guarded by a single lock, again, much as for
713 // Tasks RCU. If needed, these downsides can be at least partially remedied.
714 //
715 // Perhaps most important, this variant of RCU does not affect the vanilla
716 // flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace
717 // readers can operate from idle, offline, and exception entry/exit in no
718 // way allows rcu_preempt and rcu_sched readers to also do so.
719
720 // The lockdep state must be outside of #ifdef to be useful.
721 #ifdef CONFIG_DEBUG_LOCK_ALLOC
722 static struct lock_class_key rcu_lock_trace_key;
723 struct lockdep_map rcu_trace_lock_map =
724 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key);
725 EXPORT_SYMBOL_GPL(rcu_trace_lock_map);
726 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
727
728 #ifdef CONFIG_TASKS_TRACE_RCU
729
730 atomic_t trc_n_readers_need_end; // Number of waited-for readers.
731 DECLARE_WAIT_QUEUE_HEAD(trc_wait); // List of holdout tasks.
732
733 // Record outstanding IPIs to each CPU. No point in sending two...
734 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu);
735
736 // The number of detections of task quiescent state relying on
737 // heavyweight readers executing explicit memory barriers.
738 unsigned long n_heavy_reader_attempts;
739 unsigned long n_heavy_reader_updates;
740 unsigned long n_heavy_reader_ofl_updates;
741
742 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func);
743 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace,
744 "RCU Tasks Trace");
745
746 /*
747 * This irq_work handler allows rcu_read_unlock_trace() to be invoked
748 * while the scheduler locks are held.
749 */
750 static void rcu_read_unlock_iw(struct irq_work *iwp)
751 {
752 wake_up(&trc_wait);
753 }
754 static DEFINE_IRQ_WORK(rcu_tasks_trace_iw, rcu_read_unlock_iw);
755
756 /* If we are the last reader, wake up the grace-period kthread. */
757 void rcu_read_unlock_trace_special(struct task_struct *t, int nesting)
758 {
759 int nq = t->trc_reader_special.b.need_qs;
760
761 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) &&
762 t->trc_reader_special.b.need_mb)
763 smp_mb(); // Pairs with update-side barriers.
764 // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers.
765 if (nq)
766 WRITE_ONCE(t->trc_reader_special.b.need_qs, false);
767 WRITE_ONCE(t->trc_reader_nesting, nesting);
768 if (nq && atomic_dec_and_test(&trc_n_readers_need_end))
769 irq_work_queue(&rcu_tasks_trace_iw);
770 }
771 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special);
772
773 /* Add a task to the holdout list, if it is not already on the list. */
774 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp)
775 {
776 if (list_empty(&t->trc_holdout_list)) {
777 get_task_struct(t);
778 list_add(&t->trc_holdout_list, bhp);
779 }
780 }
781
782 /* Remove a task from the holdout list, if it is in fact present. */
783 static void trc_del_holdout(struct task_struct *t)
784 {
785 if (!list_empty(&t->trc_holdout_list)) {
786 list_del_init(&t->trc_holdout_list);
787 put_task_struct(t);
788 }
789 }
790
791 /* IPI handler to check task state. */
792 static void trc_read_check_handler(void *t_in)
793 {
794 struct task_struct *t = current;
795 struct task_struct *texp = t_in;
796
797 // If the task is no longer running on this CPU, leave.
798 if (unlikely(texp != t)) {
799 if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end)))
800 wake_up(&trc_wait);
801 goto reset_ipi; // Already on holdout list, so will check later.
802 }
803
804 // If the task is not in a read-side critical section, and
805 // if this is the last reader, awaken the grace-period kthread.
806 if (likely(!t->trc_reader_nesting)) {
807 if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end)))
808 wake_up(&trc_wait);
809 // Mark as checked after decrement to avoid false
810 // positives on the above WARN_ON_ONCE().
811 WRITE_ONCE(t->trc_reader_checked, true);
812 goto reset_ipi;
813 }
814 WRITE_ONCE(t->trc_reader_checked, true);
815
816 // Get here if the task is in a read-side critical section. Set
817 // its state so that it will awaken the grace-period kthread upon
818 // exit from that critical section.
819 WARN_ON_ONCE(t->trc_reader_special.b.need_qs);
820 WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
821
822 reset_ipi:
823 // Allow future IPIs to be sent on CPU and for task.
824 // Also order this IPI handler against any later manipulations of
825 // the intended task.
826 smp_store_release(&per_cpu(trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
827 smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
828 }
829
830 /* Callback function for scheduler to check locked-down task. */
831 static bool trc_inspect_reader(struct task_struct *t, void *arg)
832 {
833 int cpu = task_cpu(t);
834 bool in_qs = false;
835 bool ofl = cpu_is_offline(cpu);
836
837 if (task_curr(t)) {
838 WARN_ON_ONCE(ofl & !is_idle_task(t));
839
840 // If no chance of heavyweight readers, do it the hard way.
841 if (!ofl && !IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
842 return false;
843
844 // If heavyweight readers are enabled on the remote task,
845 // we can inspect its state despite its currently running.
846 // However, we cannot safely change its state.
847 n_heavy_reader_attempts++;
848 if (!ofl && // Check for "running" idle tasks on offline CPUs.
849 !rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting))
850 return false; // No quiescent state, do it the hard way.
851 n_heavy_reader_updates++;
852 if (ofl)
853 n_heavy_reader_ofl_updates++;
854 in_qs = true;
855 } else {
856 in_qs = likely(!t->trc_reader_nesting);
857 }
858
859 // Mark as checked. Because this is called from the grace-period
860 // kthread, also remove the task from the holdout list.
861 t->trc_reader_checked = true;
862 trc_del_holdout(t);
863
864 if (in_qs)
865 return true; // Already in quiescent state, done!!!
866
867 // The task is in a read-side critical section, so set up its
868 // state so that it will awaken the grace-period kthread upon exit
869 // from that critical section.
870 atomic_inc(&trc_n_readers_need_end); // One more to wait on.
871 WARN_ON_ONCE(t->trc_reader_special.b.need_qs);
872 WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
873 return true;
874 }
875
876 /* Attempt to extract the state for the specified task. */
877 static void trc_wait_for_one_reader(struct task_struct *t,
878 struct list_head *bhp)
879 {
880 int cpu;
881
882 // If a previous IPI is still in flight, let it complete.
883 if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI
884 return;
885
886 // The current task had better be in a quiescent state.
887 if (t == current) {
888 t->trc_reader_checked = true;
889 trc_del_holdout(t);
890 WARN_ON_ONCE(t->trc_reader_nesting);
891 return;
892 }
893
894 // Attempt to nail down the task for inspection.
895 get_task_struct(t);
896 if (try_invoke_on_locked_down_task(t, trc_inspect_reader, NULL)) {
897 put_task_struct(t);
898 return;
899 }
900 put_task_struct(t);
901
902 // If currently running, send an IPI, either way, add to list.
903 trc_add_holdout(t, bhp);
904 if (task_curr(t) && time_after(jiffies, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) {
905 // The task is currently running, so try IPIing it.
906 cpu = task_cpu(t);
907
908 // If there is already an IPI outstanding, let it happen.
909 if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0)
910 return;
911
912 atomic_inc(&trc_n_readers_need_end);
913 per_cpu(trc_ipi_to_cpu, cpu) = true;
914 t->trc_ipi_to_cpu = cpu;
915 rcu_tasks_trace.n_ipis++;
916 if (smp_call_function_single(cpu,
917 trc_read_check_handler, t, 0)) {
918 // Just in case there is some other reason for
919 // failure than the target CPU being offline.
920 rcu_tasks_trace.n_ipis_fails++;
921 per_cpu(trc_ipi_to_cpu, cpu) = false;
922 t->trc_ipi_to_cpu = cpu;
923 if (atomic_dec_and_test(&trc_n_readers_need_end)) {
924 WARN_ON_ONCE(1);
925 wake_up(&trc_wait);
926 }
927 }
928 }
929 }
930
931 /* Initialize for a new RCU-tasks-trace grace period. */
932 static void rcu_tasks_trace_pregp_step(void)
933 {
934 int cpu;
935
936 // Allow for fast-acting IPIs.
937 atomic_set(&trc_n_readers_need_end, 1);
938
939 // There shouldn't be any old IPIs, but...
940 for_each_possible_cpu(cpu)
941 WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu));
942
943 // Disable CPU hotplug across the tasklist scan.
944 // This also waits for all readers in CPU-hotplug code paths.
945 cpus_read_lock();
946 }
947
948 /* Do first-round processing for the specified task. */
949 static void rcu_tasks_trace_pertask(struct task_struct *t,
950 struct list_head *hop)
951 {
952 WRITE_ONCE(t->trc_reader_special.b.need_qs, false);
953 WRITE_ONCE(t->trc_reader_checked, false);
954 t->trc_ipi_to_cpu = -1;
955 trc_wait_for_one_reader(t, hop);
956 }
957
958 /*
959 * Do intermediate processing between task and holdout scans and
960 * pick up the idle tasks.
961 */
962 static void rcu_tasks_trace_postscan(struct list_head *hop)
963 {
964 int cpu;
965
966 for_each_possible_cpu(cpu)
967 rcu_tasks_trace_pertask(idle_task(cpu), hop);
968
969 // Re-enable CPU hotplug now that the tasklist scan has completed.
970 cpus_read_unlock();
971
972 // Wait for late-stage exiting tasks to finish exiting.
973 // These might have passed the call to exit_tasks_rcu_finish().
974 synchronize_rcu();
975 // Any tasks that exit after this point will set ->trc_reader_checked.
976 }
977
978 /* Show the state of a task stalling the current RCU tasks trace GP. */
979 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
980 {
981 int cpu;
982
983 if (*firstreport) {
984 pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n");
985 *firstreport = false;
986 }
987 // FIXME: This should attempt to use try_invoke_on_nonrunning_task().
988 cpu = task_cpu(t);
989 pr_alert("P%d: %c%c%c nesting: %d%c cpu: %d\n",
990 t->pid,
991 ".I"[READ_ONCE(t->trc_ipi_to_cpu) > 0],
992 ".i"[is_idle_task(t)],
993 ".N"[cpu > 0 && tick_nohz_full_cpu(cpu)],
994 t->trc_reader_nesting,
995 " N"[!!t->trc_reader_special.b.need_qs],
996 cpu);
997 sched_show_task(t);
998 }
999
1000 /* List stalled IPIs for RCU tasks trace. */
1001 static void show_stalled_ipi_trace(void)
1002 {
1003 int cpu;
1004
1005 for_each_possible_cpu(cpu)
1006 if (per_cpu(trc_ipi_to_cpu, cpu))
1007 pr_alert("\tIPI outstanding to CPU %d\n", cpu);
1008 }
1009
1010 /* Do one scan of the holdout list. */
1011 static void check_all_holdout_tasks_trace(struct list_head *hop,
1012 bool needreport, bool *firstreport)
1013 {
1014 struct task_struct *g, *t;
1015
1016 // Disable CPU hotplug across the holdout list scan.
1017 cpus_read_lock();
1018
1019 list_for_each_entry_safe(t, g, hop, trc_holdout_list) {
1020 // If safe and needed, try to check the current task.
1021 if (READ_ONCE(t->trc_ipi_to_cpu) == -1 &&
1022 !READ_ONCE(t->trc_reader_checked))
1023 trc_wait_for_one_reader(t, hop);
1024
1025 // If check succeeded, remove this task from the list.
1026 if (READ_ONCE(t->trc_reader_checked))
1027 trc_del_holdout(t);
1028 else if (needreport)
1029 show_stalled_task_trace(t, firstreport);
1030 }
1031
1032 // Re-enable CPU hotplug now that the holdout list scan has completed.
1033 cpus_read_unlock();
1034
1035 if (needreport) {
1036 if (firstreport)
1037 pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n");
1038 show_stalled_ipi_trace();
1039 }
1040 }
1041
1042 /* Wait for grace period to complete and provide ordering. */
1043 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
1044 {
1045 bool firstreport;
1046 struct task_struct *g, *t;
1047 LIST_HEAD(holdouts);
1048 long ret;
1049
1050 // Remove the safety count.
1051 smp_mb__before_atomic(); // Order vs. earlier atomics
1052 atomic_dec(&trc_n_readers_need_end);
1053 smp_mb__after_atomic(); // Order vs. later atomics
1054
1055 // Wait for readers.
1056 set_tasks_gp_state(rtp, RTGS_WAIT_READERS);
1057 for (;;) {
1058 ret = wait_event_idle_exclusive_timeout(
1059 trc_wait,
1060 atomic_read(&trc_n_readers_need_end) == 0,
1061 READ_ONCE(rcu_task_stall_timeout));
1062 if (ret)
1063 break; // Count reached zero.
1064 // Stall warning time, so make a list of the offenders.
1065 for_each_process_thread(g, t)
1066 if (READ_ONCE(t->trc_reader_special.b.need_qs))
1067 trc_add_holdout(t, &holdouts);
1068 firstreport = true;
1069 list_for_each_entry_safe(t, g, &holdouts, trc_holdout_list)
1070 if (READ_ONCE(t->trc_reader_special.b.need_qs)) {
1071 show_stalled_task_trace(t, &firstreport);
1072 trc_del_holdout(t);
1073 }
1074 if (firstreport)
1075 pr_err("INFO: rcu_tasks_trace detected stalls? (Counter/taskslist mismatch?)\n");
1076 show_stalled_ipi_trace();
1077 pr_err("\t%d holdouts\n", atomic_read(&trc_n_readers_need_end));
1078 }
1079 smp_mb(); // Caller's code must be ordered after wakeup.
1080 // Pairs with pretty much every ordering primitive.
1081 }
1082
1083 /* Report any needed quiescent state for this exiting task. */
1084 static void exit_tasks_rcu_finish_trace(struct task_struct *t)
1085 {
1086 WRITE_ONCE(t->trc_reader_checked, true);
1087 WARN_ON_ONCE(t->trc_reader_nesting);
1088 WRITE_ONCE(t->trc_reader_nesting, 0);
1089 if (WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs)))
1090 rcu_read_unlock_trace_special(t, 0);
1091 }
1092
1093 /**
1094 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period
1095 * @rhp: structure to be used for queueing the RCU updates.
1096 * @func: actual callback function to be invoked after the grace period
1097 *
1098 * The callback function will be invoked some time after a full grace
1099 * period elapses, in other words after all currently executing RCU
1100 * read-side critical sections have completed. call_rcu_tasks_trace()
1101 * assumes that the read-side critical sections end at context switch,
1102 * cond_resched_rcu_qs(), or transition to usermode execution. As such,
1103 * there are no read-side primitives analogous to rcu_read_lock() and
1104 * rcu_read_unlock() because this primitive is intended to determine
1105 * that all tasks have passed through a safe state, not so much for
1106 * data-strcuture synchronization.
1107 *
1108 * See the description of call_rcu() for more detailed information on
1109 * memory ordering guarantees.
1110 */
1111 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func)
1112 {
1113 call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace);
1114 }
1115 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace);
1116
1117 /**
1118 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period
1119 *
1120 * Control will return to the caller some time after a trace rcu-tasks
1121 * grace period has elapsed, in other words after all currently
1122 * executing rcu-tasks read-side critical sections have elapsed. These
1123 * read-side critical sections are delimited by calls to schedule(),
1124 * cond_resched_tasks_rcu_qs(), userspace execution, and (in theory,
1125 * anyway) cond_resched().
1126 *
1127 * This is a very specialized primitive, intended only for a few uses in
1128 * tracing and other situations requiring manipulation of function preambles
1129 * and profiling hooks. The synchronize_rcu_tasks_trace() function is not
1130 * (yet) intended for heavy use from multiple CPUs.
1131 *
1132 * See the description of synchronize_rcu() for more detailed information
1133 * on memory ordering guarantees.
1134 */
1135 void synchronize_rcu_tasks_trace(void)
1136 {
1137 RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section");
1138 synchronize_rcu_tasks_generic(&rcu_tasks_trace);
1139 }
1140 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace);
1141
1142 /**
1143 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks.
1144 *
1145 * Although the current implementation is guaranteed to wait, it is not
1146 * obligated to, for example, if there are no pending callbacks.
1147 */
1148 void rcu_barrier_tasks_trace(void)
1149 {
1150 /* There is only one callback queue, so this is easy. ;-) */
1151 synchronize_rcu_tasks_trace();
1152 }
1153 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace);
1154
1155 static int __init rcu_spawn_tasks_trace_kthread(void)
1156 {
1157 rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step;
1158 rcu_tasks_trace.pertask_func = rcu_tasks_trace_pertask;
1159 rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan;
1160 rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace;
1161 rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp;
1162 rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace);
1163 return 0;
1164 }
1165 core_initcall(rcu_spawn_tasks_trace_kthread);
1166
1167 static void show_rcu_tasks_trace_gp_kthread(void)
1168 {
1169 char buf[64];
1170
1171 sprintf(buf, "N%d h:%lu/%lu/%lu", atomic_read(&trc_n_readers_need_end),
1172 data_race(n_heavy_reader_ofl_updates),
1173 data_race(n_heavy_reader_updates),
1174 data_race(n_heavy_reader_attempts));
1175 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
1176 }
1177
1178 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */
1179 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
1180 static inline void show_rcu_tasks_trace_gp_kthread(void) {}
1181 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
1182
1183 void show_rcu_tasks_gp_kthreads(void)
1184 {
1185 show_rcu_tasks_classic_gp_kthread();
1186 show_rcu_tasks_rude_gp_kthread();
1187 show_rcu_tasks_trace_gp_kthread();
1188 }
1189
1190 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
1191 static inline void rcu_tasks_bootup_oddness(void) {}
1192 void show_rcu_tasks_gp_kthreads(void) {}
1193 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */