]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/rcu/tree.c
Merge tag 'x86-boot-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/linux.git] / kernel / rcu / tree.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 *
5 * Copyright IBM Corporation, 2008
6 *
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
9 * Paul E. McKenney <paulmck@linux.ibm.com>
10 *
11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13 *
14 * For detailed explanation of Read-Copy Update mechanism see -
15 * Documentation/RCU
16 */
17
18 #define pr_fmt(fmt) "rcu: " fmt
19
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/percpu.h>
36 #include <linux/notifier.h>
37 #include <linux/cpu.h>
38 #include <linux/mutex.h>
39 #include <linux/time.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/wait.h>
42 #include <linux/kthread.h>
43 #include <uapi/linux/sched/types.h>
44 #include <linux/prefetch.h>
45 #include <linux/delay.h>
46 #include <linux/random.h>
47 #include <linux/trace_events.h>
48 #include <linux/suspend.h>
49 #include <linux/ftrace.h>
50 #include <linux/tick.h>
51 #include <linux/sysrq.h>
52 #include <linux/kprobes.h>
53 #include <linux/gfp.h>
54 #include <linux/oom.h>
55 #include <linux/smpboot.h>
56 #include <linux/jiffies.h>
57 #include <linux/slab.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/sched/clock.h>
60 #include "../time/tick-internal.h"
61
62 #include "tree.h"
63 #include "rcu.h"
64
65 #ifdef MODULE_PARAM_PREFIX
66 #undef MODULE_PARAM_PREFIX
67 #endif
68 #define MODULE_PARAM_PREFIX "rcutree."
69
70 #ifndef data_race
71 #define data_race(expr) \
72 ({ \
73 expr; \
74 })
75 #endif
76 #ifndef ASSERT_EXCLUSIVE_WRITER
77 #define ASSERT_EXCLUSIVE_WRITER(var) do { } while (0)
78 #endif
79 #ifndef ASSERT_EXCLUSIVE_ACCESS
80 #define ASSERT_EXCLUSIVE_ACCESS(var) do { } while (0)
81 #endif
82
83 /* Data structures. */
84
85 /*
86 * Steal a bit from the bottom of ->dynticks for idle entry/exit
87 * control. Initially this is for TLB flushing.
88 */
89 #define RCU_DYNTICK_CTRL_MASK 0x1
90 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
91
92 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
93 .dynticks_nesting = 1,
94 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
95 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
96 };
97 static struct rcu_state rcu_state = {
98 .level = { &rcu_state.node[0] },
99 .gp_state = RCU_GP_IDLE,
100 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
101 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
102 .name = RCU_NAME,
103 .abbr = RCU_ABBR,
104 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
105 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
106 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
107 };
108
109 /* Dump rcu_node combining tree at boot to verify correct setup. */
110 static bool dump_tree;
111 module_param(dump_tree, bool, 0444);
112 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
113 static bool use_softirq = true;
114 module_param(use_softirq, bool, 0444);
115 /* Control rcu_node-tree auto-balancing at boot time. */
116 static bool rcu_fanout_exact;
117 module_param(rcu_fanout_exact, bool, 0444);
118 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
119 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
120 module_param(rcu_fanout_leaf, int, 0444);
121 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
122 /* Number of rcu_nodes at specified level. */
123 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
124 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
125
126 /*
127 * The rcu_scheduler_active variable is initialized to the value
128 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
129 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
130 * RCU can assume that there is but one task, allowing RCU to (for example)
131 * optimize synchronize_rcu() to a simple barrier(). When this variable
132 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
133 * to detect real grace periods. This variable is also used to suppress
134 * boot-time false positives from lockdep-RCU error checking. Finally, it
135 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
136 * is fully initialized, including all of its kthreads having been spawned.
137 */
138 int rcu_scheduler_active __read_mostly;
139 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
140
141 /*
142 * The rcu_scheduler_fully_active variable transitions from zero to one
143 * during the early_initcall() processing, which is after the scheduler
144 * is capable of creating new tasks. So RCU processing (for example,
145 * creating tasks for RCU priority boosting) must be delayed until after
146 * rcu_scheduler_fully_active transitions from zero to one. We also
147 * currently delay invocation of any RCU callbacks until after this point.
148 *
149 * It might later prove better for people registering RCU callbacks during
150 * early boot to take responsibility for these callbacks, but one step at
151 * a time.
152 */
153 static int rcu_scheduler_fully_active __read_mostly;
154
155 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
156 unsigned long gps, unsigned long flags);
157 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
158 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
159 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
160 static void invoke_rcu_core(void);
161 static void rcu_report_exp_rdp(struct rcu_data *rdp);
162 static void sync_sched_exp_online_cleanup(int cpu);
163 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
164
165 /* rcuc/rcub kthread realtime priority */
166 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
167 module_param(kthread_prio, int, 0444);
168
169 /* Delay in jiffies for grace-period initialization delays, debug only. */
170
171 static int gp_preinit_delay;
172 module_param(gp_preinit_delay, int, 0444);
173 static int gp_init_delay;
174 module_param(gp_init_delay, int, 0444);
175 static int gp_cleanup_delay;
176 module_param(gp_cleanup_delay, int, 0444);
177
178 /* Retrieve RCU kthreads priority for rcutorture */
179 int rcu_get_gp_kthreads_prio(void)
180 {
181 return kthread_prio;
182 }
183 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
184
185 /*
186 * Number of grace periods between delays, normalized by the duration of
187 * the delay. The longer the delay, the more the grace periods between
188 * each delay. The reason for this normalization is that it means that,
189 * for non-zero delays, the overall slowdown of grace periods is constant
190 * regardless of the duration of the delay. This arrangement balances
191 * the need for long delays to increase some race probabilities with the
192 * need for fast grace periods to increase other race probabilities.
193 */
194 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
195
196 /*
197 * Compute the mask of online CPUs for the specified rcu_node structure.
198 * This will not be stable unless the rcu_node structure's ->lock is
199 * held, but the bit corresponding to the current CPU will be stable
200 * in most contexts.
201 */
202 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
203 {
204 return READ_ONCE(rnp->qsmaskinitnext);
205 }
206
207 /*
208 * Return true if an RCU grace period is in progress. The READ_ONCE()s
209 * permit this function to be invoked without holding the root rcu_node
210 * structure's ->lock, but of course results can be subject to change.
211 */
212 static int rcu_gp_in_progress(void)
213 {
214 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
215 }
216
217 /*
218 * Return the number of callbacks queued on the specified CPU.
219 * Handles both the nocbs and normal cases.
220 */
221 static long rcu_get_n_cbs_cpu(int cpu)
222 {
223 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
224
225 if (rcu_segcblist_is_enabled(&rdp->cblist))
226 return rcu_segcblist_n_cbs(&rdp->cblist);
227 return 0;
228 }
229
230 void rcu_softirq_qs(void)
231 {
232 rcu_qs();
233 rcu_preempt_deferred_qs(current);
234 }
235
236 /*
237 * Record entry into an extended quiescent state. This is only to be
238 * called when not already in an extended quiescent state, that is,
239 * RCU is watching prior to the call to this function and is no longer
240 * watching upon return.
241 */
242 static noinstr void rcu_dynticks_eqs_enter(void)
243 {
244 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
245 int seq;
246
247 /*
248 * CPUs seeing atomic_add_return() must see prior RCU read-side
249 * critical sections, and we also must force ordering with the
250 * next idle sojourn.
251 */
252 rcu_dynticks_task_trace_enter(); // Before ->dynticks update!
253 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
254 // RCU is no longer watching. Better be in extended quiescent state!
255 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
256 (seq & RCU_DYNTICK_CTRL_CTR));
257 /* Better not have special action (TLB flush) pending! */
258 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
259 (seq & RCU_DYNTICK_CTRL_MASK));
260 }
261
262 /*
263 * Record exit from an extended quiescent state. This is only to be
264 * called from an extended quiescent state, that is, RCU is not watching
265 * prior to the call to this function and is watching upon return.
266 */
267 static noinstr void rcu_dynticks_eqs_exit(void)
268 {
269 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
270 int seq;
271
272 /*
273 * CPUs seeing atomic_add_return() must see prior idle sojourns,
274 * and we also must force ordering with the next RCU read-side
275 * critical section.
276 */
277 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
278 // RCU is now watching. Better not be in an extended quiescent state!
279 rcu_dynticks_task_trace_exit(); // After ->dynticks update!
280 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
281 !(seq & RCU_DYNTICK_CTRL_CTR));
282 if (seq & RCU_DYNTICK_CTRL_MASK) {
283 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
284 smp_mb__after_atomic(); /* _exit after clearing mask. */
285 }
286 }
287
288 /*
289 * Reset the current CPU's ->dynticks counter to indicate that the
290 * newly onlined CPU is no longer in an extended quiescent state.
291 * This will either leave the counter unchanged, or increment it
292 * to the next non-quiescent value.
293 *
294 * The non-atomic test/increment sequence works because the upper bits
295 * of the ->dynticks counter are manipulated only by the corresponding CPU,
296 * or when the corresponding CPU is offline.
297 */
298 static void rcu_dynticks_eqs_online(void)
299 {
300 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
301
302 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
303 return;
304 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
305 }
306
307 /*
308 * Is the current CPU in an extended quiescent state?
309 *
310 * No ordering, as we are sampling CPU-local information.
311 */
312 static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void)
313 {
314 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
315
316 return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
317 }
318
319 /*
320 * Snapshot the ->dynticks counter with full ordering so as to allow
321 * stable comparison of this counter with past and future snapshots.
322 */
323 static int rcu_dynticks_snap(struct rcu_data *rdp)
324 {
325 int snap = atomic_add_return(0, &rdp->dynticks);
326
327 return snap & ~RCU_DYNTICK_CTRL_MASK;
328 }
329
330 /*
331 * Return true if the snapshot returned from rcu_dynticks_snap()
332 * indicates that RCU is in an extended quiescent state.
333 */
334 static bool rcu_dynticks_in_eqs(int snap)
335 {
336 return !(snap & RCU_DYNTICK_CTRL_CTR);
337 }
338
339 /*
340 * Return true if the CPU corresponding to the specified rcu_data
341 * structure has spent some time in an extended quiescent state since
342 * rcu_dynticks_snap() returned the specified snapshot.
343 */
344 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
345 {
346 return snap != rcu_dynticks_snap(rdp);
347 }
348
349 /*
350 * Return true if the referenced integer is zero while the specified
351 * CPU remains within a single extended quiescent state.
352 */
353 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
354 {
355 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
356 int snap;
357
358 // If not quiescent, force back to earlier extended quiescent state.
359 snap = atomic_read(&rdp->dynticks) & ~(RCU_DYNTICK_CTRL_MASK |
360 RCU_DYNTICK_CTRL_CTR);
361
362 smp_rmb(); // Order ->dynticks and *vp reads.
363 if (READ_ONCE(*vp))
364 return false; // Non-zero, so report failure;
365 smp_rmb(); // Order *vp read and ->dynticks re-read.
366
367 // If still in the same extended quiescent state, we are good!
368 return snap == (atomic_read(&rdp->dynticks) & ~RCU_DYNTICK_CTRL_MASK);
369 }
370
371 /*
372 * Set the special (bottom) bit of the specified CPU so that it
373 * will take special action (such as flushing its TLB) on the
374 * next exit from an extended quiescent state. Returns true if
375 * the bit was successfully set, or false if the CPU was not in
376 * an extended quiescent state.
377 */
378 bool rcu_eqs_special_set(int cpu)
379 {
380 int old;
381 int new;
382 int new_old;
383 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
384
385 new_old = atomic_read(&rdp->dynticks);
386 do {
387 old = new_old;
388 if (old & RCU_DYNTICK_CTRL_CTR)
389 return false;
390 new = old | RCU_DYNTICK_CTRL_MASK;
391 new_old = atomic_cmpxchg(&rdp->dynticks, old, new);
392 } while (new_old != old);
393 return true;
394 }
395
396 /*
397 * Let the RCU core know that this CPU has gone through the scheduler,
398 * which is a quiescent state. This is called when the need for a
399 * quiescent state is urgent, so we burn an atomic operation and full
400 * memory barriers to let the RCU core know about it, regardless of what
401 * this CPU might (or might not) do in the near future.
402 *
403 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
404 *
405 * The caller must have disabled interrupts and must not be idle.
406 */
407 void rcu_momentary_dyntick_idle(void)
408 {
409 int special;
410
411 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
412 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
413 &this_cpu_ptr(&rcu_data)->dynticks);
414 /* It is illegal to call this from idle state. */
415 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
416 rcu_preempt_deferred_qs(current);
417 }
418 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
419
420 /**
421 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
422 *
423 * If the current CPU is idle and running at a first-level (not nested)
424 * interrupt, or directly, from idle, return true.
425 *
426 * The caller must have at least disabled IRQs.
427 */
428 static int rcu_is_cpu_rrupt_from_idle(void)
429 {
430 long nesting;
431
432 /*
433 * Usually called from the tick; but also used from smp_function_call()
434 * for expedited grace periods. This latter can result in running from
435 * the idle task, instead of an actual IPI.
436 */
437 lockdep_assert_irqs_disabled();
438
439 /* Check for counter underflows */
440 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
441 "RCU dynticks_nesting counter underflow!");
442 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
443 "RCU dynticks_nmi_nesting counter underflow/zero!");
444
445 /* Are we at first interrupt nesting level? */
446 nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting);
447 if (nesting > 1)
448 return false;
449
450 /*
451 * If we're not in an interrupt, we must be in the idle task!
452 */
453 WARN_ON_ONCE(!nesting && !is_idle_task(current));
454
455 /* Does CPU appear to be idle from an RCU standpoint? */
456 return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
457 }
458
459 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch ... */
460 #define DEFAULT_MAX_RCU_BLIMIT 10000 /* ... even during callback flood. */
461 static long blimit = DEFAULT_RCU_BLIMIT;
462 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
463 static long qhimark = DEFAULT_RCU_QHIMARK;
464 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
465 static long qlowmark = DEFAULT_RCU_QLOMARK;
466 #define DEFAULT_RCU_QOVLD_MULT 2
467 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
468 static long qovld = DEFAULT_RCU_QOVLD; /* If this many pending, hammer QS. */
469 static long qovld_calc = -1; /* No pre-initialization lock acquisitions! */
470
471 module_param(blimit, long, 0444);
472 module_param(qhimark, long, 0444);
473 module_param(qlowmark, long, 0444);
474 module_param(qovld, long, 0444);
475
476 static ulong jiffies_till_first_fqs = ULONG_MAX;
477 static ulong jiffies_till_next_fqs = ULONG_MAX;
478 static bool rcu_kick_kthreads;
479 static int rcu_divisor = 7;
480 module_param(rcu_divisor, int, 0644);
481
482 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
483 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
484 module_param(rcu_resched_ns, long, 0644);
485
486 /*
487 * How long the grace period must be before we start recruiting
488 * quiescent-state help from rcu_note_context_switch().
489 */
490 static ulong jiffies_till_sched_qs = ULONG_MAX;
491 module_param(jiffies_till_sched_qs, ulong, 0444);
492 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
493 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
494
495 /*
496 * Make sure that we give the grace-period kthread time to detect any
497 * idle CPUs before taking active measures to force quiescent states.
498 * However, don't go below 100 milliseconds, adjusted upwards for really
499 * large systems.
500 */
501 static void adjust_jiffies_till_sched_qs(void)
502 {
503 unsigned long j;
504
505 /* If jiffies_till_sched_qs was specified, respect the request. */
506 if (jiffies_till_sched_qs != ULONG_MAX) {
507 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
508 return;
509 }
510 /* Otherwise, set to third fqs scan, but bound below on large system. */
511 j = READ_ONCE(jiffies_till_first_fqs) +
512 2 * READ_ONCE(jiffies_till_next_fqs);
513 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
514 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
515 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
516 WRITE_ONCE(jiffies_to_sched_qs, j);
517 }
518
519 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
520 {
521 ulong j;
522 int ret = kstrtoul(val, 0, &j);
523
524 if (!ret) {
525 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
526 adjust_jiffies_till_sched_qs();
527 }
528 return ret;
529 }
530
531 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
532 {
533 ulong j;
534 int ret = kstrtoul(val, 0, &j);
535
536 if (!ret) {
537 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
538 adjust_jiffies_till_sched_qs();
539 }
540 return ret;
541 }
542
543 static struct kernel_param_ops first_fqs_jiffies_ops = {
544 .set = param_set_first_fqs_jiffies,
545 .get = param_get_ulong,
546 };
547
548 static struct kernel_param_ops next_fqs_jiffies_ops = {
549 .set = param_set_next_fqs_jiffies,
550 .get = param_get_ulong,
551 };
552
553 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
554 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
555 module_param(rcu_kick_kthreads, bool, 0644);
556
557 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
558 static int rcu_pending(int user);
559
560 /*
561 * Return the number of RCU GPs completed thus far for debug & stats.
562 */
563 unsigned long rcu_get_gp_seq(void)
564 {
565 return READ_ONCE(rcu_state.gp_seq);
566 }
567 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
568
569 /*
570 * Return the number of RCU expedited batches completed thus far for
571 * debug & stats. Odd numbers mean that a batch is in progress, even
572 * numbers mean idle. The value returned will thus be roughly double
573 * the cumulative batches since boot.
574 */
575 unsigned long rcu_exp_batches_completed(void)
576 {
577 return rcu_state.expedited_sequence;
578 }
579 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
580
581 /*
582 * Return the root node of the rcu_state structure.
583 */
584 static struct rcu_node *rcu_get_root(void)
585 {
586 return &rcu_state.node[0];
587 }
588
589 /*
590 * Send along grace-period-related data for rcutorture diagnostics.
591 */
592 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
593 unsigned long *gp_seq)
594 {
595 switch (test_type) {
596 case RCU_FLAVOR:
597 *flags = READ_ONCE(rcu_state.gp_flags);
598 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
599 break;
600 default:
601 break;
602 }
603 }
604 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
605
606 /*
607 * Enter an RCU extended quiescent state, which can be either the
608 * idle loop or adaptive-tickless usermode execution.
609 *
610 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
611 * the possibility of usermode upcalls having messed up our count
612 * of interrupt nesting level during the prior busy period.
613 */
614 static noinstr void rcu_eqs_enter(bool user)
615 {
616 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
617
618 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
619 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
620 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
621 rdp->dynticks_nesting == 0);
622 if (rdp->dynticks_nesting != 1) {
623 // RCU will still be watching, so just do accounting and leave.
624 rdp->dynticks_nesting--;
625 return;
626 }
627
628 lockdep_assert_irqs_disabled();
629 instrumentation_begin();
630 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks));
631 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
632 rdp = this_cpu_ptr(&rcu_data);
633 do_nocb_deferred_wakeup(rdp);
634 rcu_prepare_for_idle();
635 rcu_preempt_deferred_qs(current);
636 instrumentation_end();
637 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
638 // RCU is watching here ...
639 rcu_dynticks_eqs_enter();
640 // ... but is no longer watching here.
641 rcu_dynticks_task_enter();
642 }
643
644 /**
645 * rcu_idle_enter - inform RCU that current CPU is entering idle
646 *
647 * Enter idle mode, in other words, -leave- the mode in which RCU
648 * read-side critical sections can occur. (Though RCU read-side
649 * critical sections can occur in irq handlers in idle, a possibility
650 * handled by irq_enter() and irq_exit().)
651 *
652 * If you add or remove a call to rcu_idle_enter(), be sure to test with
653 * CONFIG_RCU_EQS_DEBUG=y.
654 */
655 void rcu_idle_enter(void)
656 {
657 lockdep_assert_irqs_disabled();
658 rcu_eqs_enter(false);
659 }
660
661 #ifdef CONFIG_NO_HZ_FULL
662 /**
663 * rcu_user_enter - inform RCU that we are resuming userspace.
664 *
665 * Enter RCU idle mode right before resuming userspace. No use of RCU
666 * is permitted between this call and rcu_user_exit(). This way the
667 * CPU doesn't need to maintain the tick for RCU maintenance purposes
668 * when the CPU runs in userspace.
669 *
670 * If you add or remove a call to rcu_user_enter(), be sure to test with
671 * CONFIG_RCU_EQS_DEBUG=y.
672 */
673 noinstr void rcu_user_enter(void)
674 {
675 lockdep_assert_irqs_disabled();
676 rcu_eqs_enter(true);
677 }
678 #endif /* CONFIG_NO_HZ_FULL */
679
680 /**
681 * rcu_nmi_exit - inform RCU of exit from NMI context
682 *
683 * If we are returning from the outermost NMI handler that interrupted an
684 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
685 * to let the RCU grace-period handling know that the CPU is back to
686 * being RCU-idle.
687 *
688 * If you add or remove a call to rcu_nmi_exit(), be sure to test
689 * with CONFIG_RCU_EQS_DEBUG=y.
690 */
691 noinstr void rcu_nmi_exit(void)
692 {
693 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
694
695 /*
696 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
697 * (We are exiting an NMI handler, so RCU better be paying attention
698 * to us!)
699 */
700 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
701 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
702
703 /*
704 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
705 * leave it in non-RCU-idle state.
706 */
707 if (rdp->dynticks_nmi_nesting != 1) {
708 instrumentation_begin();
709 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2,
710 atomic_read(&rdp->dynticks));
711 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
712 rdp->dynticks_nmi_nesting - 2);
713 instrumentation_end();
714 return;
715 }
716
717 instrumentation_begin();
718 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
719 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks));
720 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
721
722 if (!in_nmi())
723 rcu_prepare_for_idle();
724 instrumentation_end();
725
726 // RCU is watching here ...
727 rcu_dynticks_eqs_enter();
728 // ... but is no longer watching here.
729
730 if (!in_nmi())
731 rcu_dynticks_task_enter();
732 }
733
734 /**
735 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
736 *
737 * Exit from an interrupt handler, which might possibly result in entering
738 * idle mode, in other words, leaving the mode in which read-side critical
739 * sections can occur. The caller must have disabled interrupts.
740 *
741 * This code assumes that the idle loop never does anything that might
742 * result in unbalanced calls to irq_enter() and irq_exit(). If your
743 * architecture's idle loop violates this assumption, RCU will give you what
744 * you deserve, good and hard. But very infrequently and irreproducibly.
745 *
746 * Use things like work queues to work around this limitation.
747 *
748 * You have been warned.
749 *
750 * If you add or remove a call to rcu_irq_exit(), be sure to test with
751 * CONFIG_RCU_EQS_DEBUG=y.
752 */
753 void noinstr rcu_irq_exit(void)
754 {
755 lockdep_assert_irqs_disabled();
756 rcu_nmi_exit();
757 }
758
759 /**
760 * rcu_irq_exit_preempt - Inform RCU that current CPU is exiting irq
761 * towards in kernel preemption
762 *
763 * Same as rcu_irq_exit() but has a sanity check that scheduling is safe
764 * from RCU point of view. Invoked from return from interrupt before kernel
765 * preemption.
766 */
767 void rcu_irq_exit_preempt(void)
768 {
769 lockdep_assert_irqs_disabled();
770 rcu_nmi_exit();
771
772 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
773 "RCU dynticks_nesting counter underflow/zero!");
774 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
775 DYNTICK_IRQ_NONIDLE,
776 "Bad RCU dynticks_nmi_nesting counter\n");
777 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
778 "RCU in extended quiescent state!");
779 }
780
781 #ifdef CONFIG_PROVE_RCU
782 /**
783 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
784 */
785 void rcu_irq_exit_check_preempt(void)
786 {
787 lockdep_assert_irqs_disabled();
788
789 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
790 "RCU dynticks_nesting counter underflow/zero!");
791 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
792 DYNTICK_IRQ_NONIDLE,
793 "Bad RCU dynticks_nmi_nesting counter\n");
794 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
795 "RCU in extended quiescent state!");
796 }
797 #endif /* #ifdef CONFIG_PROVE_RCU */
798
799 /*
800 * Wrapper for rcu_irq_exit() where interrupts are enabled.
801 *
802 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
803 * with CONFIG_RCU_EQS_DEBUG=y.
804 */
805 void rcu_irq_exit_irqson(void)
806 {
807 unsigned long flags;
808
809 local_irq_save(flags);
810 rcu_irq_exit();
811 local_irq_restore(flags);
812 }
813
814 /*
815 * Exit an RCU extended quiescent state, which can be either the
816 * idle loop or adaptive-tickless usermode execution.
817 *
818 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
819 * allow for the possibility of usermode upcalls messing up our count of
820 * interrupt nesting level during the busy period that is just now starting.
821 */
822 static void noinstr rcu_eqs_exit(bool user)
823 {
824 struct rcu_data *rdp;
825 long oldval;
826
827 lockdep_assert_irqs_disabled();
828 rdp = this_cpu_ptr(&rcu_data);
829 oldval = rdp->dynticks_nesting;
830 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
831 if (oldval) {
832 // RCU was already watching, so just do accounting and leave.
833 rdp->dynticks_nesting++;
834 return;
835 }
836 rcu_dynticks_task_exit();
837 // RCU is not watching here ...
838 rcu_dynticks_eqs_exit();
839 // ... but is watching here.
840 instrumentation_begin();
841 rcu_cleanup_after_idle();
842 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks));
843 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
844 WRITE_ONCE(rdp->dynticks_nesting, 1);
845 WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
846 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
847 instrumentation_end();
848 }
849
850 /**
851 * rcu_idle_exit - inform RCU that current CPU is leaving idle
852 *
853 * Exit idle mode, in other words, -enter- the mode in which RCU
854 * read-side critical sections can occur.
855 *
856 * If you add or remove a call to rcu_idle_exit(), be sure to test with
857 * CONFIG_RCU_EQS_DEBUG=y.
858 */
859 void rcu_idle_exit(void)
860 {
861 unsigned long flags;
862
863 local_irq_save(flags);
864 rcu_eqs_exit(false);
865 local_irq_restore(flags);
866 }
867
868 #ifdef CONFIG_NO_HZ_FULL
869 /**
870 * rcu_user_exit - inform RCU that we are exiting userspace.
871 *
872 * Exit RCU idle mode while entering the kernel because it can
873 * run a RCU read side critical section anytime.
874 *
875 * If you add or remove a call to rcu_user_exit(), be sure to test with
876 * CONFIG_RCU_EQS_DEBUG=y.
877 */
878 void noinstr rcu_user_exit(void)
879 {
880 rcu_eqs_exit(1);
881 }
882
883 /**
884 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
885 *
886 * The scheduler tick is not normally enabled when CPUs enter the kernel
887 * from nohz_full userspace execution. After all, nohz_full userspace
888 * execution is an RCU quiescent state and the time executing in the kernel
889 * is quite short. Except of course when it isn't. And it is not hard to
890 * cause a large system to spend tens of seconds or even minutes looping
891 * in the kernel, which can cause a number of problems, include RCU CPU
892 * stall warnings.
893 *
894 * Therefore, if a nohz_full CPU fails to report a quiescent state
895 * in a timely manner, the RCU grace-period kthread sets that CPU's
896 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
897 * exception will invoke this function, which will turn on the scheduler
898 * tick, which will enable RCU to detect that CPU's quiescent states,
899 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
900 * The tick will be disabled once a quiescent state is reported for
901 * this CPU.
902 *
903 * Of course, in carefully tuned systems, there might never be an
904 * interrupt or exception. In that case, the RCU grace-period kthread
905 * will eventually cause one to happen. However, in less carefully
906 * controlled environments, this function allows RCU to get what it
907 * needs without creating otherwise useless interruptions.
908 */
909 void __rcu_irq_enter_check_tick(void)
910 {
911 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
912
913 // Enabling the tick is unsafe in NMI handlers.
914 if (WARN_ON_ONCE(in_nmi()))
915 return;
916
917 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
918 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
919
920 if (!tick_nohz_full_cpu(rdp->cpu) ||
921 !READ_ONCE(rdp->rcu_urgent_qs) ||
922 READ_ONCE(rdp->rcu_forced_tick)) {
923 // RCU doesn't need nohz_full help from this CPU, or it is
924 // already getting that help.
925 return;
926 }
927
928 // We get here only when not in an extended quiescent state and
929 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is
930 // already watching and (2) The fact that we are in an interrupt
931 // handler and that the rcu_node lock is an irq-disabled lock
932 // prevents self-deadlock. So we can safely recheck under the lock.
933 // Note that the nohz_full state currently cannot change.
934 raw_spin_lock_rcu_node(rdp->mynode);
935 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
936 // A nohz_full CPU is in the kernel and RCU needs a
937 // quiescent state. Turn on the tick!
938 WRITE_ONCE(rdp->rcu_forced_tick, true);
939 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
940 }
941 raw_spin_unlock_rcu_node(rdp->mynode);
942 }
943 #endif /* CONFIG_NO_HZ_FULL */
944
945 /**
946 * rcu_nmi_enter - inform RCU of entry to NMI context
947 * @irq: Is this call from rcu_irq_enter?
948 *
949 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
950 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
951 * that the CPU is active. This implementation permits nested NMIs, as
952 * long as the nesting level does not overflow an int. (You will probably
953 * run out of stack space first.)
954 *
955 * If you add or remove a call to rcu_nmi_enter(), be sure to test
956 * with CONFIG_RCU_EQS_DEBUG=y.
957 */
958 noinstr void rcu_nmi_enter(void)
959 {
960 long incby = 2;
961 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
962
963 /* Complain about underflow. */
964 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
965
966 /*
967 * If idle from RCU viewpoint, atomically increment ->dynticks
968 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
969 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
970 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
971 * to be in the outermost NMI handler that interrupted an RCU-idle
972 * period (observation due to Andy Lutomirski).
973 */
974 if (rcu_dynticks_curr_cpu_in_eqs()) {
975
976 if (!in_nmi())
977 rcu_dynticks_task_exit();
978
979 // RCU is not watching here ...
980 rcu_dynticks_eqs_exit();
981 // ... but is watching here.
982
983 if (!in_nmi())
984 rcu_cleanup_after_idle();
985
986 incby = 1;
987 } else if (!in_nmi()) {
988 instrumentation_begin();
989 rcu_irq_enter_check_tick();
990 instrumentation_end();
991 }
992 instrumentation_begin();
993 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
994 rdp->dynticks_nmi_nesting,
995 rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks));
996 instrumentation_end();
997 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
998 rdp->dynticks_nmi_nesting + incby);
999 barrier();
1000 }
1001
1002 /**
1003 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1004 *
1005 * Enter an interrupt handler, which might possibly result in exiting
1006 * idle mode, in other words, entering the mode in which read-side critical
1007 * sections can occur. The caller must have disabled interrupts.
1008 *
1009 * Note that the Linux kernel is fully capable of entering an interrupt
1010 * handler that it never exits, for example when doing upcalls to user mode!
1011 * This code assumes that the idle loop never does upcalls to user mode.
1012 * If your architecture's idle loop does do upcalls to user mode (or does
1013 * anything else that results in unbalanced calls to the irq_enter() and
1014 * irq_exit() functions), RCU will give you what you deserve, good and hard.
1015 * But very infrequently and irreproducibly.
1016 *
1017 * Use things like work queues to work around this limitation.
1018 *
1019 * You have been warned.
1020 *
1021 * If you add or remove a call to rcu_irq_enter(), be sure to test with
1022 * CONFIG_RCU_EQS_DEBUG=y.
1023 */
1024 noinstr void rcu_irq_enter(void)
1025 {
1026 lockdep_assert_irqs_disabled();
1027 rcu_nmi_enter();
1028 }
1029
1030 /*
1031 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1032 *
1033 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1034 * with CONFIG_RCU_EQS_DEBUG=y.
1035 */
1036 void rcu_irq_enter_irqson(void)
1037 {
1038 unsigned long flags;
1039
1040 local_irq_save(flags);
1041 rcu_irq_enter();
1042 local_irq_restore(flags);
1043 }
1044
1045 /*
1046 * If any sort of urgency was applied to the current CPU (for example,
1047 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
1048 * to get to a quiescent state, disable it.
1049 */
1050 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
1051 {
1052 raw_lockdep_assert_held_rcu_node(rdp->mynode);
1053 WRITE_ONCE(rdp->rcu_urgent_qs, false);
1054 WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
1055 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
1056 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
1057 WRITE_ONCE(rdp->rcu_forced_tick, false);
1058 }
1059 }
1060
1061 noinstr bool __rcu_is_watching(void)
1062 {
1063 return !rcu_dynticks_curr_cpu_in_eqs();
1064 }
1065
1066 /**
1067 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
1068 *
1069 * Return true if RCU is watching the running CPU, which means that this
1070 * CPU can safely enter RCU read-side critical sections. In other words,
1071 * if the current CPU is not in its idle loop or is in an interrupt or
1072 * NMI handler, return true.
1073 */
1074 bool rcu_is_watching(void)
1075 {
1076 bool ret;
1077
1078 preempt_disable_notrace();
1079 ret = !rcu_dynticks_curr_cpu_in_eqs();
1080 preempt_enable_notrace();
1081 return ret;
1082 }
1083 EXPORT_SYMBOL_GPL(rcu_is_watching);
1084
1085 /*
1086 * If a holdout task is actually running, request an urgent quiescent
1087 * state from its CPU. This is unsynchronized, so migrations can cause
1088 * the request to go to the wrong CPU. Which is OK, all that will happen
1089 * is that the CPU's next context switch will be a bit slower and next
1090 * time around this task will generate another request.
1091 */
1092 void rcu_request_urgent_qs_task(struct task_struct *t)
1093 {
1094 int cpu;
1095
1096 barrier();
1097 cpu = task_cpu(t);
1098 if (!task_curr(t))
1099 return; /* This task is not running on that CPU. */
1100 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
1101 }
1102
1103 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1104
1105 /*
1106 * Is the current CPU online as far as RCU is concerned?
1107 *
1108 * Disable preemption to avoid false positives that could otherwise
1109 * happen due to the current CPU number being sampled, this task being
1110 * preempted, its old CPU being taken offline, resuming on some other CPU,
1111 * then determining that its old CPU is now offline.
1112 *
1113 * Disable checking if in an NMI handler because we cannot safely
1114 * report errors from NMI handlers anyway. In addition, it is OK to use
1115 * RCU on an offline processor during initial boot, hence the check for
1116 * rcu_scheduler_fully_active.
1117 */
1118 bool rcu_lockdep_current_cpu_online(void)
1119 {
1120 struct rcu_data *rdp;
1121 struct rcu_node *rnp;
1122 bool ret = false;
1123
1124 if (in_nmi() || !rcu_scheduler_fully_active)
1125 return true;
1126 preempt_disable_notrace();
1127 rdp = this_cpu_ptr(&rcu_data);
1128 rnp = rdp->mynode;
1129 if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
1130 ret = true;
1131 preempt_enable_notrace();
1132 return ret;
1133 }
1134 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1135
1136 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1137
1138 /*
1139 * We are reporting a quiescent state on behalf of some other CPU, so
1140 * it is our responsibility to check for and handle potential overflow
1141 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
1142 * After all, the CPU might be in deep idle state, and thus executing no
1143 * code whatsoever.
1144 */
1145 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1146 {
1147 raw_lockdep_assert_held_rcu_node(rnp);
1148 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1149 rnp->gp_seq))
1150 WRITE_ONCE(rdp->gpwrap, true);
1151 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1152 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1153 }
1154
1155 /*
1156 * Snapshot the specified CPU's dynticks counter so that we can later
1157 * credit them with an implicit quiescent state. Return 1 if this CPU
1158 * is in dynticks idle mode, which is an extended quiescent state.
1159 */
1160 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1161 {
1162 rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1163 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1164 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1165 rcu_gpnum_ovf(rdp->mynode, rdp);
1166 return 1;
1167 }
1168 return 0;
1169 }
1170
1171 /*
1172 * Return true if the specified CPU has passed through a quiescent
1173 * state by virtue of being in or having passed through an dynticks
1174 * idle state since the last call to dyntick_save_progress_counter()
1175 * for this same CPU, or by virtue of having been offline.
1176 */
1177 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1178 {
1179 unsigned long jtsq;
1180 bool *rnhqp;
1181 bool *ruqp;
1182 struct rcu_node *rnp = rdp->mynode;
1183
1184 /*
1185 * If the CPU passed through or entered a dynticks idle phase with
1186 * no active irq/NMI handlers, then we can safely pretend that the CPU
1187 * already acknowledged the request to pass through a quiescent
1188 * state. Either way, that CPU cannot possibly be in an RCU
1189 * read-side critical section that started before the beginning
1190 * of the current RCU grace period.
1191 */
1192 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1193 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1194 rcu_gpnum_ovf(rnp, rdp);
1195 return 1;
1196 }
1197
1198 /* If waiting too long on an offline CPU, complain. */
1199 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
1200 time_after(jiffies, rcu_state.gp_start + HZ)) {
1201 bool onl;
1202 struct rcu_node *rnp1;
1203
1204 WARN_ON(1); /* Offline CPUs are supposed to report QS! */
1205 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1206 __func__, rnp->grplo, rnp->grphi, rnp->level,
1207 (long)rnp->gp_seq, (long)rnp->completedqs);
1208 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1209 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1210 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1211 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1212 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1213 __func__, rdp->cpu, ".o"[onl],
1214 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1215 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1216 return 1; /* Break things loose after complaining. */
1217 }
1218
1219 /*
1220 * A CPU running for an extended time within the kernel can
1221 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1222 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1223 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
1224 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1225 * variable are safe because the assignments are repeated if this
1226 * CPU failed to pass through a quiescent state. This code
1227 * also checks .jiffies_resched in case jiffies_to_sched_qs
1228 * is set way high.
1229 */
1230 jtsq = READ_ONCE(jiffies_to_sched_qs);
1231 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1232 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1233 if (!READ_ONCE(*rnhqp) &&
1234 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1235 time_after(jiffies, rcu_state.jiffies_resched) ||
1236 rcu_state.cbovld)) {
1237 WRITE_ONCE(*rnhqp, true);
1238 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1239 smp_store_release(ruqp, true);
1240 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1241 WRITE_ONCE(*ruqp, true);
1242 }
1243
1244 /*
1245 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1246 * The above code handles this, but only for straight cond_resched().
1247 * And some in-kernel loops check need_resched() before calling
1248 * cond_resched(), which defeats the above code for CPUs that are
1249 * running in-kernel with scheduling-clock interrupts disabled.
1250 * So hit them over the head with the resched_cpu() hammer!
1251 */
1252 if (tick_nohz_full_cpu(rdp->cpu) &&
1253 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
1254 rcu_state.cbovld)) {
1255 WRITE_ONCE(*ruqp, true);
1256 resched_cpu(rdp->cpu);
1257 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1258 }
1259
1260 /*
1261 * If more than halfway to RCU CPU stall-warning time, invoke
1262 * resched_cpu() more frequently to try to loosen things up a bit.
1263 * Also check to see if the CPU is getting hammered with interrupts,
1264 * but only once per grace period, just to keep the IPIs down to
1265 * a dull roar.
1266 */
1267 if (time_after(jiffies, rcu_state.jiffies_resched)) {
1268 if (time_after(jiffies,
1269 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1270 resched_cpu(rdp->cpu);
1271 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1272 }
1273 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1274 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1275 (rnp->ffmask & rdp->grpmask)) {
1276 init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1277 atomic_set(&rdp->rcu_iw.flags, IRQ_WORK_HARD_IRQ);
1278 rdp->rcu_iw_pending = true;
1279 rdp->rcu_iw_gp_seq = rnp->gp_seq;
1280 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1281 }
1282 }
1283
1284 return 0;
1285 }
1286
1287 /* Trace-event wrapper function for trace_rcu_future_grace_period. */
1288 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1289 unsigned long gp_seq_req, const char *s)
1290 {
1291 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
1292 gp_seq_req, rnp->level,
1293 rnp->grplo, rnp->grphi, s);
1294 }
1295
1296 /*
1297 * rcu_start_this_gp - Request the start of a particular grace period
1298 * @rnp_start: The leaf node of the CPU from which to start.
1299 * @rdp: The rcu_data corresponding to the CPU from which to start.
1300 * @gp_seq_req: The gp_seq of the grace period to start.
1301 *
1302 * Start the specified grace period, as needed to handle newly arrived
1303 * callbacks. The required future grace periods are recorded in each
1304 * rcu_node structure's ->gp_seq_needed field. Returns true if there
1305 * is reason to awaken the grace-period kthread.
1306 *
1307 * The caller must hold the specified rcu_node structure's ->lock, which
1308 * is why the caller is responsible for waking the grace-period kthread.
1309 *
1310 * Returns true if the GP thread needs to be awakened else false.
1311 */
1312 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1313 unsigned long gp_seq_req)
1314 {
1315 bool ret = false;
1316 struct rcu_node *rnp;
1317
1318 /*
1319 * Use funnel locking to either acquire the root rcu_node
1320 * structure's lock or bail out if the need for this grace period
1321 * has already been recorded -- or if that grace period has in
1322 * fact already started. If there is already a grace period in
1323 * progress in a non-leaf node, no recording is needed because the
1324 * end of the grace period will scan the leaf rcu_node structures.
1325 * Note that rnp_start->lock must not be released.
1326 */
1327 raw_lockdep_assert_held_rcu_node(rnp_start);
1328 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1329 for (rnp = rnp_start; 1; rnp = rnp->parent) {
1330 if (rnp != rnp_start)
1331 raw_spin_lock_rcu_node(rnp);
1332 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1333 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1334 (rnp != rnp_start &&
1335 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1336 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1337 TPS("Prestarted"));
1338 goto unlock_out;
1339 }
1340 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1341 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1342 /*
1343 * We just marked the leaf or internal node, and a
1344 * grace period is in progress, which means that
1345 * rcu_gp_cleanup() will see the marking. Bail to
1346 * reduce contention.
1347 */
1348 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1349 TPS("Startedleaf"));
1350 goto unlock_out;
1351 }
1352 if (rnp != rnp_start && rnp->parent != NULL)
1353 raw_spin_unlock_rcu_node(rnp);
1354 if (!rnp->parent)
1355 break; /* At root, and perhaps also leaf. */
1356 }
1357
1358 /* If GP already in progress, just leave, otherwise start one. */
1359 if (rcu_gp_in_progress()) {
1360 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1361 goto unlock_out;
1362 }
1363 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1364 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1365 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1366 if (!READ_ONCE(rcu_state.gp_kthread)) {
1367 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1368 goto unlock_out;
1369 }
1370 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1371 ret = true; /* Caller must wake GP kthread. */
1372 unlock_out:
1373 /* Push furthest requested GP to leaf node and rcu_data structure. */
1374 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1375 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1376 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1377 }
1378 if (rnp != rnp_start)
1379 raw_spin_unlock_rcu_node(rnp);
1380 return ret;
1381 }
1382
1383 /*
1384 * Clean up any old requests for the just-ended grace period. Also return
1385 * whether any additional grace periods have been requested.
1386 */
1387 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1388 {
1389 bool needmore;
1390 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1391
1392 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1393 if (!needmore)
1394 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1395 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1396 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1397 return needmore;
1398 }
1399
1400 /*
1401 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an
1402 * interrupt or softirq handler, in which case we just might immediately
1403 * sleep upon return, resulting in a grace-period hang), and don't bother
1404 * awakening when there is nothing for the grace-period kthread to do
1405 * (as in several CPUs raced to awaken, we lost), and finally don't try
1406 * to awaken a kthread that has not yet been created. If all those checks
1407 * are passed, track some debug information and awaken.
1408 *
1409 * So why do the self-wakeup when in an interrupt or softirq handler
1410 * in the grace-period kthread's context? Because the kthread might have
1411 * been interrupted just as it was going to sleep, and just after the final
1412 * pre-sleep check of the awaken condition. In this case, a wakeup really
1413 * is required, and is therefore supplied.
1414 */
1415 static void rcu_gp_kthread_wake(void)
1416 {
1417 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1418
1419 if ((current == t && !in_irq() && !in_serving_softirq()) ||
1420 !READ_ONCE(rcu_state.gp_flags) || !t)
1421 return;
1422 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1423 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1424 swake_up_one(&rcu_state.gp_wq);
1425 }
1426
1427 /*
1428 * If there is room, assign a ->gp_seq number to any callbacks on this
1429 * CPU that have not already been assigned. Also accelerate any callbacks
1430 * that were previously assigned a ->gp_seq number that has since proven
1431 * to be too conservative, which can happen if callbacks get assigned a
1432 * ->gp_seq number while RCU is idle, but with reference to a non-root
1433 * rcu_node structure. This function is idempotent, so it does not hurt
1434 * to call it repeatedly. Returns an flag saying that we should awaken
1435 * the RCU grace-period kthread.
1436 *
1437 * The caller must hold rnp->lock with interrupts disabled.
1438 */
1439 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1440 {
1441 unsigned long gp_seq_req;
1442 bool ret = false;
1443
1444 rcu_lockdep_assert_cblist_protected(rdp);
1445 raw_lockdep_assert_held_rcu_node(rnp);
1446
1447 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1448 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1449 return false;
1450
1451 /*
1452 * Callbacks are often registered with incomplete grace-period
1453 * information. Something about the fact that getting exact
1454 * information requires acquiring a global lock... RCU therefore
1455 * makes a conservative estimate of the grace period number at which
1456 * a given callback will become ready to invoke. The following
1457 * code checks this estimate and improves it when possible, thus
1458 * accelerating callback invocation to an earlier grace-period
1459 * number.
1460 */
1461 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1462 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1463 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1464
1465 /* Trace depending on how much we were able to accelerate. */
1466 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1467 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
1468 else
1469 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
1470 return ret;
1471 }
1472
1473 /*
1474 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1475 * rcu_node structure's ->lock be held. It consults the cached value
1476 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1477 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1478 * while holding the leaf rcu_node structure's ->lock.
1479 */
1480 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1481 struct rcu_data *rdp)
1482 {
1483 unsigned long c;
1484 bool needwake;
1485
1486 rcu_lockdep_assert_cblist_protected(rdp);
1487 c = rcu_seq_snap(&rcu_state.gp_seq);
1488 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1489 /* Old request still live, so mark recent callbacks. */
1490 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1491 return;
1492 }
1493 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1494 needwake = rcu_accelerate_cbs(rnp, rdp);
1495 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1496 if (needwake)
1497 rcu_gp_kthread_wake();
1498 }
1499
1500 /*
1501 * Move any callbacks whose grace period has completed to the
1502 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1503 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1504 * sublist. This function is idempotent, so it does not hurt to
1505 * invoke it repeatedly. As long as it is not invoked -too- often...
1506 * Returns true if the RCU grace-period kthread needs to be awakened.
1507 *
1508 * The caller must hold rnp->lock with interrupts disabled.
1509 */
1510 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1511 {
1512 rcu_lockdep_assert_cblist_protected(rdp);
1513 raw_lockdep_assert_held_rcu_node(rnp);
1514
1515 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1516 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1517 return false;
1518
1519 /*
1520 * Find all callbacks whose ->gp_seq numbers indicate that they
1521 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1522 */
1523 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1524
1525 /* Classify any remaining callbacks. */
1526 return rcu_accelerate_cbs(rnp, rdp);
1527 }
1528
1529 /*
1530 * Move and classify callbacks, but only if doing so won't require
1531 * that the RCU grace-period kthread be awakened.
1532 */
1533 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1534 struct rcu_data *rdp)
1535 {
1536 rcu_lockdep_assert_cblist_protected(rdp);
1537 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) ||
1538 !raw_spin_trylock_rcu_node(rnp))
1539 return;
1540 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1541 raw_spin_unlock_rcu_node(rnp);
1542 }
1543
1544 /*
1545 * Update CPU-local rcu_data state to record the beginnings and ends of
1546 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1547 * structure corresponding to the current CPU, and must have irqs disabled.
1548 * Returns true if the grace-period kthread needs to be awakened.
1549 */
1550 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1551 {
1552 bool ret = false;
1553 bool need_qs;
1554 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1555 rcu_segcblist_is_offloaded(&rdp->cblist);
1556
1557 raw_lockdep_assert_held_rcu_node(rnp);
1558
1559 if (rdp->gp_seq == rnp->gp_seq)
1560 return false; /* Nothing to do. */
1561
1562 /* Handle the ends of any preceding grace periods first. */
1563 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1564 unlikely(READ_ONCE(rdp->gpwrap))) {
1565 if (!offloaded)
1566 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1567 rdp->core_needs_qs = false;
1568 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1569 } else {
1570 if (!offloaded)
1571 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1572 if (rdp->core_needs_qs)
1573 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1574 }
1575
1576 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1577 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1578 unlikely(READ_ONCE(rdp->gpwrap))) {
1579 /*
1580 * If the current grace period is waiting for this CPU,
1581 * set up to detect a quiescent state, otherwise don't
1582 * go looking for one.
1583 */
1584 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1585 need_qs = !!(rnp->qsmask & rdp->grpmask);
1586 rdp->cpu_no_qs.b.norm = need_qs;
1587 rdp->core_needs_qs = need_qs;
1588 zero_cpu_stall_ticks(rdp);
1589 }
1590 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
1591 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1592 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1593 WRITE_ONCE(rdp->gpwrap, false);
1594 rcu_gpnum_ovf(rnp, rdp);
1595 return ret;
1596 }
1597
1598 static void note_gp_changes(struct rcu_data *rdp)
1599 {
1600 unsigned long flags;
1601 bool needwake;
1602 struct rcu_node *rnp;
1603
1604 local_irq_save(flags);
1605 rnp = rdp->mynode;
1606 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1607 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1608 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1609 local_irq_restore(flags);
1610 return;
1611 }
1612 needwake = __note_gp_changes(rnp, rdp);
1613 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1614 if (needwake)
1615 rcu_gp_kthread_wake();
1616 }
1617
1618 static void rcu_gp_slow(int delay)
1619 {
1620 if (delay > 0 &&
1621 !(rcu_seq_ctr(rcu_state.gp_seq) %
1622 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1623 schedule_timeout_uninterruptible(delay);
1624 }
1625
1626 static unsigned long sleep_duration;
1627
1628 /* Allow rcutorture to stall the grace-period kthread. */
1629 void rcu_gp_set_torture_wait(int duration)
1630 {
1631 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1632 WRITE_ONCE(sleep_duration, duration);
1633 }
1634 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1635
1636 /* Actually implement the aforementioned wait. */
1637 static void rcu_gp_torture_wait(void)
1638 {
1639 unsigned long duration;
1640
1641 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1642 return;
1643 duration = xchg(&sleep_duration, 0UL);
1644 if (duration > 0) {
1645 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1646 schedule_timeout_uninterruptible(duration);
1647 pr_alert("%s: Wait complete\n", __func__);
1648 }
1649 }
1650
1651 /*
1652 * Initialize a new grace period. Return false if no grace period required.
1653 */
1654 static bool rcu_gp_init(void)
1655 {
1656 unsigned long flags;
1657 unsigned long oldmask;
1658 unsigned long mask;
1659 struct rcu_data *rdp;
1660 struct rcu_node *rnp = rcu_get_root();
1661
1662 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1663 raw_spin_lock_irq_rcu_node(rnp);
1664 if (!READ_ONCE(rcu_state.gp_flags)) {
1665 /* Spurious wakeup, tell caller to go back to sleep. */
1666 raw_spin_unlock_irq_rcu_node(rnp);
1667 return false;
1668 }
1669 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1670
1671 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1672 /*
1673 * Grace period already in progress, don't start another.
1674 * Not supposed to be able to happen.
1675 */
1676 raw_spin_unlock_irq_rcu_node(rnp);
1677 return false;
1678 }
1679
1680 /* Advance to a new grace period and initialize state. */
1681 record_gp_stall_check_time();
1682 /* Record GP times before starting GP, hence rcu_seq_start(). */
1683 rcu_seq_start(&rcu_state.gp_seq);
1684 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1685 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1686 raw_spin_unlock_irq_rcu_node(rnp);
1687
1688 /*
1689 * Apply per-leaf buffered online and offline operations to the
1690 * rcu_node tree. Note that this new grace period need not wait
1691 * for subsequent online CPUs, and that quiescent-state forcing
1692 * will handle subsequent offline CPUs.
1693 */
1694 rcu_state.gp_state = RCU_GP_ONOFF;
1695 rcu_for_each_leaf_node(rnp) {
1696 raw_spin_lock(&rcu_state.ofl_lock);
1697 raw_spin_lock_irq_rcu_node(rnp);
1698 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1699 !rnp->wait_blkd_tasks) {
1700 /* Nothing to do on this leaf rcu_node structure. */
1701 raw_spin_unlock_irq_rcu_node(rnp);
1702 raw_spin_unlock(&rcu_state.ofl_lock);
1703 continue;
1704 }
1705
1706 /* Record old state, apply changes to ->qsmaskinit field. */
1707 oldmask = rnp->qsmaskinit;
1708 rnp->qsmaskinit = rnp->qsmaskinitnext;
1709
1710 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1711 if (!oldmask != !rnp->qsmaskinit) {
1712 if (!oldmask) { /* First online CPU for rcu_node. */
1713 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1714 rcu_init_new_rnp(rnp);
1715 } else if (rcu_preempt_has_tasks(rnp)) {
1716 rnp->wait_blkd_tasks = true; /* blocked tasks */
1717 } else { /* Last offline CPU and can propagate. */
1718 rcu_cleanup_dead_rnp(rnp);
1719 }
1720 }
1721
1722 /*
1723 * If all waited-on tasks from prior grace period are
1724 * done, and if all this rcu_node structure's CPUs are
1725 * still offline, propagate up the rcu_node tree and
1726 * clear ->wait_blkd_tasks. Otherwise, if one of this
1727 * rcu_node structure's CPUs has since come back online,
1728 * simply clear ->wait_blkd_tasks.
1729 */
1730 if (rnp->wait_blkd_tasks &&
1731 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1732 rnp->wait_blkd_tasks = false;
1733 if (!rnp->qsmaskinit)
1734 rcu_cleanup_dead_rnp(rnp);
1735 }
1736
1737 raw_spin_unlock_irq_rcu_node(rnp);
1738 raw_spin_unlock(&rcu_state.ofl_lock);
1739 }
1740 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1741
1742 /*
1743 * Set the quiescent-state-needed bits in all the rcu_node
1744 * structures for all currently online CPUs in breadth-first
1745 * order, starting from the root rcu_node structure, relying on the
1746 * layout of the tree within the rcu_state.node[] array. Note that
1747 * other CPUs will access only the leaves of the hierarchy, thus
1748 * seeing that no grace period is in progress, at least until the
1749 * corresponding leaf node has been initialized.
1750 *
1751 * The grace period cannot complete until the initialization
1752 * process finishes, because this kthread handles both.
1753 */
1754 rcu_state.gp_state = RCU_GP_INIT;
1755 rcu_for_each_node_breadth_first(rnp) {
1756 rcu_gp_slow(gp_init_delay);
1757 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1758 rdp = this_cpu_ptr(&rcu_data);
1759 rcu_preempt_check_blocked_tasks(rnp);
1760 rnp->qsmask = rnp->qsmaskinit;
1761 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1762 if (rnp == rdp->mynode)
1763 (void)__note_gp_changes(rnp, rdp);
1764 rcu_preempt_boost_start_gp(rnp);
1765 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1766 rnp->level, rnp->grplo,
1767 rnp->grphi, rnp->qsmask);
1768 /* Quiescent states for tasks on any now-offline CPUs. */
1769 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1770 rnp->rcu_gp_init_mask = mask;
1771 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1772 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1773 else
1774 raw_spin_unlock_irq_rcu_node(rnp);
1775 cond_resched_tasks_rcu_qs();
1776 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1777 }
1778
1779 return true;
1780 }
1781
1782 /*
1783 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1784 * time.
1785 */
1786 static bool rcu_gp_fqs_check_wake(int *gfp)
1787 {
1788 struct rcu_node *rnp = rcu_get_root();
1789
1790 // If under overload conditions, force an immediate FQS scan.
1791 if (*gfp & RCU_GP_FLAG_OVLD)
1792 return true;
1793
1794 // Someone like call_rcu() requested a force-quiescent-state scan.
1795 *gfp = READ_ONCE(rcu_state.gp_flags);
1796 if (*gfp & RCU_GP_FLAG_FQS)
1797 return true;
1798
1799 // The current grace period has completed.
1800 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1801 return true;
1802
1803 return false;
1804 }
1805
1806 /*
1807 * Do one round of quiescent-state forcing.
1808 */
1809 static void rcu_gp_fqs(bool first_time)
1810 {
1811 struct rcu_node *rnp = rcu_get_root();
1812
1813 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1814 rcu_state.n_force_qs++;
1815 if (first_time) {
1816 /* Collect dyntick-idle snapshots. */
1817 force_qs_rnp(dyntick_save_progress_counter);
1818 } else {
1819 /* Handle dyntick-idle and offline CPUs. */
1820 force_qs_rnp(rcu_implicit_dynticks_qs);
1821 }
1822 /* Clear flag to prevent immediate re-entry. */
1823 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1824 raw_spin_lock_irq_rcu_node(rnp);
1825 WRITE_ONCE(rcu_state.gp_flags,
1826 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1827 raw_spin_unlock_irq_rcu_node(rnp);
1828 }
1829 }
1830
1831 /*
1832 * Loop doing repeated quiescent-state forcing until the grace period ends.
1833 */
1834 static void rcu_gp_fqs_loop(void)
1835 {
1836 bool first_gp_fqs;
1837 int gf = 0;
1838 unsigned long j;
1839 int ret;
1840 struct rcu_node *rnp = rcu_get_root();
1841
1842 first_gp_fqs = true;
1843 j = READ_ONCE(jiffies_till_first_fqs);
1844 if (rcu_state.cbovld)
1845 gf = RCU_GP_FLAG_OVLD;
1846 ret = 0;
1847 for (;;) {
1848 if (!ret) {
1849 rcu_state.jiffies_force_qs = jiffies + j;
1850 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1851 jiffies + (j ? 3 * j : 2));
1852 }
1853 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1854 TPS("fqswait"));
1855 rcu_state.gp_state = RCU_GP_WAIT_FQS;
1856 ret = swait_event_idle_timeout_exclusive(
1857 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1858 rcu_gp_torture_wait();
1859 rcu_state.gp_state = RCU_GP_DOING_FQS;
1860 /* Locking provides needed memory barriers. */
1861 /* If grace period done, leave loop. */
1862 if (!READ_ONCE(rnp->qsmask) &&
1863 !rcu_preempt_blocked_readers_cgp(rnp))
1864 break;
1865 /* If time for quiescent-state forcing, do it. */
1866 if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1867 (gf & RCU_GP_FLAG_FQS)) {
1868 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1869 TPS("fqsstart"));
1870 rcu_gp_fqs(first_gp_fqs);
1871 gf = 0;
1872 if (first_gp_fqs) {
1873 first_gp_fqs = false;
1874 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1875 }
1876 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1877 TPS("fqsend"));
1878 cond_resched_tasks_rcu_qs();
1879 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1880 ret = 0; /* Force full wait till next FQS. */
1881 j = READ_ONCE(jiffies_till_next_fqs);
1882 } else {
1883 /* Deal with stray signal. */
1884 cond_resched_tasks_rcu_qs();
1885 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1886 WARN_ON(signal_pending(current));
1887 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1888 TPS("fqswaitsig"));
1889 ret = 1; /* Keep old FQS timing. */
1890 j = jiffies;
1891 if (time_after(jiffies, rcu_state.jiffies_force_qs))
1892 j = 1;
1893 else
1894 j = rcu_state.jiffies_force_qs - j;
1895 gf = 0;
1896 }
1897 }
1898 }
1899
1900 /*
1901 * Clean up after the old grace period.
1902 */
1903 static void rcu_gp_cleanup(void)
1904 {
1905 int cpu;
1906 bool needgp = false;
1907 unsigned long gp_duration;
1908 unsigned long new_gp_seq;
1909 bool offloaded;
1910 struct rcu_data *rdp;
1911 struct rcu_node *rnp = rcu_get_root();
1912 struct swait_queue_head *sq;
1913
1914 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1915 raw_spin_lock_irq_rcu_node(rnp);
1916 rcu_state.gp_end = jiffies;
1917 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1918 if (gp_duration > rcu_state.gp_max)
1919 rcu_state.gp_max = gp_duration;
1920
1921 /*
1922 * We know the grace period is complete, but to everyone else
1923 * it appears to still be ongoing. But it is also the case
1924 * that to everyone else it looks like there is nothing that
1925 * they can do to advance the grace period. It is therefore
1926 * safe for us to drop the lock in order to mark the grace
1927 * period as completed in all of the rcu_node structures.
1928 */
1929 raw_spin_unlock_irq_rcu_node(rnp);
1930
1931 /*
1932 * Propagate new ->gp_seq value to rcu_node structures so that
1933 * other CPUs don't have to wait until the start of the next grace
1934 * period to process their callbacks. This also avoids some nasty
1935 * RCU grace-period initialization races by forcing the end of
1936 * the current grace period to be completely recorded in all of
1937 * the rcu_node structures before the beginning of the next grace
1938 * period is recorded in any of the rcu_node structures.
1939 */
1940 new_gp_seq = rcu_state.gp_seq;
1941 rcu_seq_end(&new_gp_seq);
1942 rcu_for_each_node_breadth_first(rnp) {
1943 raw_spin_lock_irq_rcu_node(rnp);
1944 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1945 dump_blkd_tasks(rnp, 10);
1946 WARN_ON_ONCE(rnp->qsmask);
1947 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1948 rdp = this_cpu_ptr(&rcu_data);
1949 if (rnp == rdp->mynode)
1950 needgp = __note_gp_changes(rnp, rdp) || needgp;
1951 /* smp_mb() provided by prior unlock-lock pair. */
1952 needgp = rcu_future_gp_cleanup(rnp) || needgp;
1953 // Reset overload indication for CPUs no longer overloaded
1954 if (rcu_is_leaf_node(rnp))
1955 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1956 rdp = per_cpu_ptr(&rcu_data, cpu);
1957 check_cb_ovld_locked(rdp, rnp);
1958 }
1959 sq = rcu_nocb_gp_get(rnp);
1960 raw_spin_unlock_irq_rcu_node(rnp);
1961 rcu_nocb_gp_cleanup(sq);
1962 cond_resched_tasks_rcu_qs();
1963 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1964 rcu_gp_slow(gp_cleanup_delay);
1965 }
1966 rnp = rcu_get_root();
1967 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1968
1969 /* Declare grace period done, trace first to use old GP number. */
1970 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1971 rcu_seq_end(&rcu_state.gp_seq);
1972 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1973 rcu_state.gp_state = RCU_GP_IDLE;
1974 /* Check for GP requests since above loop. */
1975 rdp = this_cpu_ptr(&rcu_data);
1976 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1977 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1978 TPS("CleanupMore"));
1979 needgp = true;
1980 }
1981 /* Advance CBs to reduce false positives below. */
1982 offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1983 rcu_segcblist_is_offloaded(&rdp->cblist);
1984 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1985 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1986 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1987 trace_rcu_grace_period(rcu_state.name,
1988 rcu_state.gp_seq,
1989 TPS("newreq"));
1990 } else {
1991 WRITE_ONCE(rcu_state.gp_flags,
1992 rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1993 }
1994 raw_spin_unlock_irq_rcu_node(rnp);
1995 }
1996
1997 /*
1998 * Body of kthread that handles grace periods.
1999 */
2000 static int __noreturn rcu_gp_kthread(void *unused)
2001 {
2002 rcu_bind_gp_kthread();
2003 for (;;) {
2004
2005 /* Handle grace-period start. */
2006 for (;;) {
2007 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2008 TPS("reqwait"));
2009 rcu_state.gp_state = RCU_GP_WAIT_GPS;
2010 swait_event_idle_exclusive(rcu_state.gp_wq,
2011 READ_ONCE(rcu_state.gp_flags) &
2012 RCU_GP_FLAG_INIT);
2013 rcu_gp_torture_wait();
2014 rcu_state.gp_state = RCU_GP_DONE_GPS;
2015 /* Locking provides needed memory barrier. */
2016 if (rcu_gp_init())
2017 break;
2018 cond_resched_tasks_rcu_qs();
2019 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2020 WARN_ON(signal_pending(current));
2021 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2022 TPS("reqwaitsig"));
2023 }
2024
2025 /* Handle quiescent-state forcing. */
2026 rcu_gp_fqs_loop();
2027
2028 /* Handle grace-period end. */
2029 rcu_state.gp_state = RCU_GP_CLEANUP;
2030 rcu_gp_cleanup();
2031 rcu_state.gp_state = RCU_GP_CLEANED;
2032 }
2033 }
2034
2035 /*
2036 * Report a full set of quiescent states to the rcu_state data structure.
2037 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2038 * another grace period is required. Whether we wake the grace-period
2039 * kthread or it awakens itself for the next round of quiescent-state
2040 * forcing, that kthread will clean up after the just-completed grace
2041 * period. Note that the caller must hold rnp->lock, which is released
2042 * before return.
2043 */
2044 static void rcu_report_qs_rsp(unsigned long flags)
2045 __releases(rcu_get_root()->lock)
2046 {
2047 raw_lockdep_assert_held_rcu_node(rcu_get_root());
2048 WARN_ON_ONCE(!rcu_gp_in_progress());
2049 WRITE_ONCE(rcu_state.gp_flags,
2050 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2051 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2052 rcu_gp_kthread_wake();
2053 }
2054
2055 /*
2056 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2057 * Allows quiescent states for a group of CPUs to be reported at one go
2058 * to the specified rcu_node structure, though all the CPUs in the group
2059 * must be represented by the same rcu_node structure (which need not be a
2060 * leaf rcu_node structure, though it often will be). The gps parameter
2061 * is the grace-period snapshot, which means that the quiescent states
2062 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
2063 * must be held upon entry, and it is released before return.
2064 *
2065 * As a special case, if mask is zero, the bit-already-cleared check is
2066 * disabled. This allows propagating quiescent state due to resumed tasks
2067 * during grace-period initialization.
2068 */
2069 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2070 unsigned long gps, unsigned long flags)
2071 __releases(rnp->lock)
2072 {
2073 unsigned long oldmask = 0;
2074 struct rcu_node *rnp_c;
2075
2076 raw_lockdep_assert_held_rcu_node(rnp);
2077
2078 /* Walk up the rcu_node hierarchy. */
2079 for (;;) {
2080 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2081
2082 /*
2083 * Our bit has already been cleared, or the
2084 * relevant grace period is already over, so done.
2085 */
2086 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2087 return;
2088 }
2089 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2090 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2091 rcu_preempt_blocked_readers_cgp(rnp));
2092 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2093 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2094 mask, rnp->qsmask, rnp->level,
2095 rnp->grplo, rnp->grphi,
2096 !!rnp->gp_tasks);
2097 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2098
2099 /* Other bits still set at this level, so done. */
2100 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2101 return;
2102 }
2103 rnp->completedqs = rnp->gp_seq;
2104 mask = rnp->grpmask;
2105 if (rnp->parent == NULL) {
2106
2107 /* No more levels. Exit loop holding root lock. */
2108
2109 break;
2110 }
2111 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2112 rnp_c = rnp;
2113 rnp = rnp->parent;
2114 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2115 oldmask = READ_ONCE(rnp_c->qsmask);
2116 }
2117
2118 /*
2119 * Get here if we are the last CPU to pass through a quiescent
2120 * state for this grace period. Invoke rcu_report_qs_rsp()
2121 * to clean up and start the next grace period if one is needed.
2122 */
2123 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2124 }
2125
2126 /*
2127 * Record a quiescent state for all tasks that were previously queued
2128 * on the specified rcu_node structure and that were blocking the current
2129 * RCU grace period. The caller must hold the corresponding rnp->lock with
2130 * irqs disabled, and this lock is released upon return, but irqs remain
2131 * disabled.
2132 */
2133 static void __maybe_unused
2134 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2135 __releases(rnp->lock)
2136 {
2137 unsigned long gps;
2138 unsigned long mask;
2139 struct rcu_node *rnp_p;
2140
2141 raw_lockdep_assert_held_rcu_node(rnp);
2142 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2143 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2144 rnp->qsmask != 0) {
2145 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2146 return; /* Still need more quiescent states! */
2147 }
2148
2149 rnp->completedqs = rnp->gp_seq;
2150 rnp_p = rnp->parent;
2151 if (rnp_p == NULL) {
2152 /*
2153 * Only one rcu_node structure in the tree, so don't
2154 * try to report up to its nonexistent parent!
2155 */
2156 rcu_report_qs_rsp(flags);
2157 return;
2158 }
2159
2160 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2161 gps = rnp->gp_seq;
2162 mask = rnp->grpmask;
2163 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2164 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2165 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2166 }
2167
2168 /*
2169 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2170 * structure. This must be called from the specified CPU.
2171 */
2172 static void
2173 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
2174 {
2175 unsigned long flags;
2176 unsigned long mask;
2177 bool needwake = false;
2178 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2179 rcu_segcblist_is_offloaded(&rdp->cblist);
2180 struct rcu_node *rnp;
2181
2182 rnp = rdp->mynode;
2183 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2184 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2185 rdp->gpwrap) {
2186
2187 /*
2188 * The grace period in which this quiescent state was
2189 * recorded has ended, so don't report it upwards.
2190 * We will instead need a new quiescent state that lies
2191 * within the current grace period.
2192 */
2193 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2194 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2195 return;
2196 }
2197 mask = rdp->grpmask;
2198 if (rdp->cpu == smp_processor_id())
2199 rdp->core_needs_qs = false;
2200 if ((rnp->qsmask & mask) == 0) {
2201 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2202 } else {
2203 /*
2204 * This GP can't end until cpu checks in, so all of our
2205 * callbacks can be processed during the next GP.
2206 */
2207 if (!offloaded)
2208 needwake = rcu_accelerate_cbs(rnp, rdp);
2209
2210 rcu_disable_urgency_upon_qs(rdp);
2211 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2212 /* ^^^ Released rnp->lock */
2213 if (needwake)
2214 rcu_gp_kthread_wake();
2215 }
2216 }
2217
2218 /*
2219 * Check to see if there is a new grace period of which this CPU
2220 * is not yet aware, and if so, set up local rcu_data state for it.
2221 * Otherwise, see if this CPU has just passed through its first
2222 * quiescent state for this grace period, and record that fact if so.
2223 */
2224 static void
2225 rcu_check_quiescent_state(struct rcu_data *rdp)
2226 {
2227 /* Check for grace-period ends and beginnings. */
2228 note_gp_changes(rdp);
2229
2230 /*
2231 * Does this CPU still need to do its part for current grace period?
2232 * If no, return and let the other CPUs do their part as well.
2233 */
2234 if (!rdp->core_needs_qs)
2235 return;
2236
2237 /*
2238 * Was there a quiescent state since the beginning of the grace
2239 * period? If no, then exit and wait for the next call.
2240 */
2241 if (rdp->cpu_no_qs.b.norm)
2242 return;
2243
2244 /*
2245 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2246 * judge of that).
2247 */
2248 rcu_report_qs_rdp(rdp->cpu, rdp);
2249 }
2250
2251 /*
2252 * Near the end of the offline process. Trace the fact that this CPU
2253 * is going offline.
2254 */
2255 int rcutree_dying_cpu(unsigned int cpu)
2256 {
2257 bool blkd;
2258 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2259 struct rcu_node *rnp = rdp->mynode;
2260
2261 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2262 return 0;
2263
2264 blkd = !!(rnp->qsmask & rdp->grpmask);
2265 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2266 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2267 return 0;
2268 }
2269
2270 /*
2271 * All CPUs for the specified rcu_node structure have gone offline,
2272 * and all tasks that were preempted within an RCU read-side critical
2273 * section while running on one of those CPUs have since exited their RCU
2274 * read-side critical section. Some other CPU is reporting this fact with
2275 * the specified rcu_node structure's ->lock held and interrupts disabled.
2276 * This function therefore goes up the tree of rcu_node structures,
2277 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2278 * the leaf rcu_node structure's ->qsmaskinit field has already been
2279 * updated.
2280 *
2281 * This function does check that the specified rcu_node structure has
2282 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2283 * prematurely. That said, invoking it after the fact will cost you
2284 * a needless lock acquisition. So once it has done its work, don't
2285 * invoke it again.
2286 */
2287 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2288 {
2289 long mask;
2290 struct rcu_node *rnp = rnp_leaf;
2291
2292 raw_lockdep_assert_held_rcu_node(rnp_leaf);
2293 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2294 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2295 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2296 return;
2297 for (;;) {
2298 mask = rnp->grpmask;
2299 rnp = rnp->parent;
2300 if (!rnp)
2301 break;
2302 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2303 rnp->qsmaskinit &= ~mask;
2304 /* Between grace periods, so better already be zero! */
2305 WARN_ON_ONCE(rnp->qsmask);
2306 if (rnp->qsmaskinit) {
2307 raw_spin_unlock_rcu_node(rnp);
2308 /* irqs remain disabled. */
2309 return;
2310 }
2311 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2312 }
2313 }
2314
2315 /*
2316 * The CPU has been completely removed, and some other CPU is reporting
2317 * this fact from process context. Do the remainder of the cleanup.
2318 * There can only be one CPU hotplug operation at a time, so no need for
2319 * explicit locking.
2320 */
2321 int rcutree_dead_cpu(unsigned int cpu)
2322 {
2323 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2324 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2325
2326 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2327 return 0;
2328
2329 /* Adjust any no-longer-needed kthreads. */
2330 rcu_boost_kthread_setaffinity(rnp, -1);
2331 /* Do any needed no-CB deferred wakeups from this CPU. */
2332 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2333
2334 // Stop-machine done, so allow nohz_full to disable tick.
2335 tick_dep_clear(TICK_DEP_BIT_RCU);
2336 return 0;
2337 }
2338
2339 /*
2340 * Invoke any RCU callbacks that have made it to the end of their grace
2341 * period. Thottle as specified by rdp->blimit.
2342 */
2343 static void rcu_do_batch(struct rcu_data *rdp)
2344 {
2345 unsigned long flags;
2346 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2347 rcu_segcblist_is_offloaded(&rdp->cblist);
2348 struct rcu_head *rhp;
2349 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2350 long bl, count;
2351 long pending, tlimit = 0;
2352
2353 /* If no callbacks are ready, just return. */
2354 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2355 trace_rcu_batch_start(rcu_state.name,
2356 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2357 trace_rcu_batch_end(rcu_state.name, 0,
2358 !rcu_segcblist_empty(&rdp->cblist),
2359 need_resched(), is_idle_task(current),
2360 rcu_is_callbacks_kthread());
2361 return;
2362 }
2363
2364 /*
2365 * Extract the list of ready callbacks, disabling to prevent
2366 * races with call_rcu() from interrupt handlers. Leave the
2367 * callback counts, as rcu_barrier() needs to be conservative.
2368 */
2369 local_irq_save(flags);
2370 rcu_nocb_lock(rdp);
2371 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2372 pending = rcu_segcblist_n_cbs(&rdp->cblist);
2373 bl = max(rdp->blimit, pending >> rcu_divisor);
2374 if (unlikely(bl > 100))
2375 tlimit = local_clock() + rcu_resched_ns;
2376 trace_rcu_batch_start(rcu_state.name,
2377 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2378 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2379 if (offloaded)
2380 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2381 rcu_nocb_unlock_irqrestore(rdp, flags);
2382
2383 /* Invoke callbacks. */
2384 tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2385 rhp = rcu_cblist_dequeue(&rcl);
2386 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2387 rcu_callback_t f;
2388
2389 debug_rcu_head_unqueue(rhp);
2390
2391 rcu_lock_acquire(&rcu_callback_map);
2392 trace_rcu_invoke_callback(rcu_state.name, rhp);
2393
2394 f = rhp->func;
2395 WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2396 f(rhp);
2397
2398 rcu_lock_release(&rcu_callback_map);
2399
2400 /*
2401 * Stop only if limit reached and CPU has something to do.
2402 * Note: The rcl structure counts down from zero.
2403 */
2404 if (-rcl.len >= bl && !offloaded &&
2405 (need_resched() ||
2406 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2407 break;
2408 if (unlikely(tlimit)) {
2409 /* only call local_clock() every 32 callbacks */
2410 if (likely((-rcl.len & 31) || local_clock() < tlimit))
2411 continue;
2412 /* Exceeded the time limit, so leave. */
2413 break;
2414 }
2415 if (offloaded) {
2416 WARN_ON_ONCE(in_serving_softirq());
2417 local_bh_enable();
2418 lockdep_assert_irqs_enabled();
2419 cond_resched_tasks_rcu_qs();
2420 lockdep_assert_irqs_enabled();
2421 local_bh_disable();
2422 }
2423 }
2424
2425 local_irq_save(flags);
2426 rcu_nocb_lock(rdp);
2427 count = -rcl.len;
2428 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2429 is_idle_task(current), rcu_is_callbacks_kthread());
2430
2431 /* Update counts and requeue any remaining callbacks. */
2432 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2433 smp_mb(); /* List handling before counting for rcu_barrier(). */
2434 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2435
2436 /* Reinstate batch limit if we have worked down the excess. */
2437 count = rcu_segcblist_n_cbs(&rdp->cblist);
2438 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2439 rdp->blimit = blimit;
2440
2441 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2442 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2443 rdp->qlen_last_fqs_check = 0;
2444 rdp->n_force_qs_snap = rcu_state.n_force_qs;
2445 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2446 rdp->qlen_last_fqs_check = count;
2447
2448 /*
2449 * The following usually indicates a double call_rcu(). To track
2450 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2451 */
2452 WARN_ON_ONCE(count == 0 && !rcu_segcblist_empty(&rdp->cblist));
2453 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2454 count != 0 && rcu_segcblist_empty(&rdp->cblist));
2455
2456 rcu_nocb_unlock_irqrestore(rdp, flags);
2457
2458 /* Re-invoke RCU core processing if there are callbacks remaining. */
2459 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2460 invoke_rcu_core();
2461 tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2462 }
2463
2464 /*
2465 * This function is invoked from each scheduling-clock interrupt,
2466 * and checks to see if this CPU is in a non-context-switch quiescent
2467 * state, for example, user mode or idle loop. It also schedules RCU
2468 * core processing. If the current grace period has gone on too long,
2469 * it will ask the scheduler to manufacture a context switch for the sole
2470 * purpose of providing a providing the needed quiescent state.
2471 */
2472 void rcu_sched_clock_irq(int user)
2473 {
2474 trace_rcu_utilization(TPS("Start scheduler-tick"));
2475 raw_cpu_inc(rcu_data.ticks_this_gp);
2476 /* The load-acquire pairs with the store-release setting to true. */
2477 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2478 /* Idle and userspace execution already are quiescent states. */
2479 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2480 set_tsk_need_resched(current);
2481 set_preempt_need_resched();
2482 }
2483 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2484 }
2485 rcu_flavor_sched_clock_irq(user);
2486 if (rcu_pending(user))
2487 invoke_rcu_core();
2488
2489 trace_rcu_utilization(TPS("End scheduler-tick"));
2490 }
2491
2492 /*
2493 * Scan the leaf rcu_node structures. For each structure on which all
2494 * CPUs have reported a quiescent state and on which there are tasks
2495 * blocking the current grace period, initiate RCU priority boosting.
2496 * Otherwise, invoke the specified function to check dyntick state for
2497 * each CPU that has not yet reported a quiescent state.
2498 */
2499 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2500 {
2501 int cpu;
2502 unsigned long flags;
2503 unsigned long mask;
2504 struct rcu_data *rdp;
2505 struct rcu_node *rnp;
2506
2507 rcu_state.cbovld = rcu_state.cbovldnext;
2508 rcu_state.cbovldnext = false;
2509 rcu_for_each_leaf_node(rnp) {
2510 cond_resched_tasks_rcu_qs();
2511 mask = 0;
2512 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2513 rcu_state.cbovldnext |= !!rnp->cbovldmask;
2514 if (rnp->qsmask == 0) {
2515 if (!IS_ENABLED(CONFIG_PREEMPT_RCU) ||
2516 rcu_preempt_blocked_readers_cgp(rnp)) {
2517 /*
2518 * No point in scanning bits because they
2519 * are all zero. But we might need to
2520 * priority-boost blocked readers.
2521 */
2522 rcu_initiate_boost(rnp, flags);
2523 /* rcu_initiate_boost() releases rnp->lock */
2524 continue;
2525 }
2526 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2527 continue;
2528 }
2529 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2530 rdp = per_cpu_ptr(&rcu_data, cpu);
2531 if (f(rdp)) {
2532 mask |= rdp->grpmask;
2533 rcu_disable_urgency_upon_qs(rdp);
2534 }
2535 }
2536 if (mask != 0) {
2537 /* Idle/offline CPUs, report (releases rnp->lock). */
2538 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2539 } else {
2540 /* Nothing to do here, so just drop the lock. */
2541 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2542 }
2543 }
2544 }
2545
2546 /*
2547 * Force quiescent states on reluctant CPUs, and also detect which
2548 * CPUs are in dyntick-idle mode.
2549 */
2550 void rcu_force_quiescent_state(void)
2551 {
2552 unsigned long flags;
2553 bool ret;
2554 struct rcu_node *rnp;
2555 struct rcu_node *rnp_old = NULL;
2556
2557 /* Funnel through hierarchy to reduce memory contention. */
2558 rnp = __this_cpu_read(rcu_data.mynode);
2559 for (; rnp != NULL; rnp = rnp->parent) {
2560 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2561 !raw_spin_trylock(&rnp->fqslock);
2562 if (rnp_old != NULL)
2563 raw_spin_unlock(&rnp_old->fqslock);
2564 if (ret)
2565 return;
2566 rnp_old = rnp;
2567 }
2568 /* rnp_old == rcu_get_root(), rnp == NULL. */
2569
2570 /* Reached the root of the rcu_node tree, acquire lock. */
2571 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2572 raw_spin_unlock(&rnp_old->fqslock);
2573 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2574 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2575 return; /* Someone beat us to it. */
2576 }
2577 WRITE_ONCE(rcu_state.gp_flags,
2578 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2579 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2580 rcu_gp_kthread_wake();
2581 }
2582 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2583
2584 /* Perform RCU core processing work for the current CPU. */
2585 static __latent_entropy void rcu_core(void)
2586 {
2587 unsigned long flags;
2588 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2589 struct rcu_node *rnp = rdp->mynode;
2590 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2591 rcu_segcblist_is_offloaded(&rdp->cblist);
2592
2593 if (cpu_is_offline(smp_processor_id()))
2594 return;
2595 trace_rcu_utilization(TPS("Start RCU core"));
2596 WARN_ON_ONCE(!rdp->beenonline);
2597
2598 /* Report any deferred quiescent states if preemption enabled. */
2599 if (!(preempt_count() & PREEMPT_MASK)) {
2600 rcu_preempt_deferred_qs(current);
2601 } else if (rcu_preempt_need_deferred_qs(current)) {
2602 set_tsk_need_resched(current);
2603 set_preempt_need_resched();
2604 }
2605
2606 /* Update RCU state based on any recent quiescent states. */
2607 rcu_check_quiescent_state(rdp);
2608
2609 /* No grace period and unregistered callbacks? */
2610 if (!rcu_gp_in_progress() &&
2611 rcu_segcblist_is_enabled(&rdp->cblist) && !offloaded) {
2612 local_irq_save(flags);
2613 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2614 rcu_accelerate_cbs_unlocked(rnp, rdp);
2615 local_irq_restore(flags);
2616 }
2617
2618 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2619
2620 /* If there are callbacks ready, invoke them. */
2621 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2622 likely(READ_ONCE(rcu_scheduler_fully_active)))
2623 rcu_do_batch(rdp);
2624
2625 /* Do any needed deferred wakeups of rcuo kthreads. */
2626 do_nocb_deferred_wakeup(rdp);
2627 trace_rcu_utilization(TPS("End RCU core"));
2628 }
2629
2630 static void rcu_core_si(struct softirq_action *h)
2631 {
2632 rcu_core();
2633 }
2634
2635 static void rcu_wake_cond(struct task_struct *t, int status)
2636 {
2637 /*
2638 * If the thread is yielding, only wake it when this
2639 * is invoked from idle
2640 */
2641 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2642 wake_up_process(t);
2643 }
2644
2645 static void invoke_rcu_core_kthread(void)
2646 {
2647 struct task_struct *t;
2648 unsigned long flags;
2649
2650 local_irq_save(flags);
2651 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2652 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2653 if (t != NULL && t != current)
2654 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2655 local_irq_restore(flags);
2656 }
2657
2658 /*
2659 * Wake up this CPU's rcuc kthread to do RCU core processing.
2660 */
2661 static void invoke_rcu_core(void)
2662 {
2663 if (!cpu_online(smp_processor_id()))
2664 return;
2665 if (use_softirq)
2666 raise_softirq(RCU_SOFTIRQ);
2667 else
2668 invoke_rcu_core_kthread();
2669 }
2670
2671 static void rcu_cpu_kthread_park(unsigned int cpu)
2672 {
2673 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2674 }
2675
2676 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2677 {
2678 return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2679 }
2680
2681 /*
2682 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
2683 * the RCU softirq used in configurations of RCU that do not support RCU
2684 * priority boosting.
2685 */
2686 static void rcu_cpu_kthread(unsigned int cpu)
2687 {
2688 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2689 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2690 int spincnt;
2691
2692 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2693 for (spincnt = 0; spincnt < 10; spincnt++) {
2694 local_bh_disable();
2695 *statusp = RCU_KTHREAD_RUNNING;
2696 local_irq_disable();
2697 work = *workp;
2698 *workp = 0;
2699 local_irq_enable();
2700 if (work)
2701 rcu_core();
2702 local_bh_enable();
2703 if (*workp == 0) {
2704 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2705 *statusp = RCU_KTHREAD_WAITING;
2706 return;
2707 }
2708 }
2709 *statusp = RCU_KTHREAD_YIELDING;
2710 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2711 schedule_timeout_interruptible(2);
2712 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2713 *statusp = RCU_KTHREAD_WAITING;
2714 }
2715
2716 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2717 .store = &rcu_data.rcu_cpu_kthread_task,
2718 .thread_should_run = rcu_cpu_kthread_should_run,
2719 .thread_fn = rcu_cpu_kthread,
2720 .thread_comm = "rcuc/%u",
2721 .setup = rcu_cpu_kthread_setup,
2722 .park = rcu_cpu_kthread_park,
2723 };
2724
2725 /*
2726 * Spawn per-CPU RCU core processing kthreads.
2727 */
2728 static int __init rcu_spawn_core_kthreads(void)
2729 {
2730 int cpu;
2731
2732 for_each_possible_cpu(cpu)
2733 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2734 if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2735 return 0;
2736 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2737 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2738 return 0;
2739 }
2740 early_initcall(rcu_spawn_core_kthreads);
2741
2742 /*
2743 * Handle any core-RCU processing required by a call_rcu() invocation.
2744 */
2745 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2746 unsigned long flags)
2747 {
2748 /*
2749 * If called from an extended quiescent state, invoke the RCU
2750 * core in order to force a re-evaluation of RCU's idleness.
2751 */
2752 if (!rcu_is_watching())
2753 invoke_rcu_core();
2754
2755 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2756 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2757 return;
2758
2759 /*
2760 * Force the grace period if too many callbacks or too long waiting.
2761 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2762 * if some other CPU has recently done so. Also, don't bother
2763 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2764 * is the only one waiting for a grace period to complete.
2765 */
2766 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2767 rdp->qlen_last_fqs_check + qhimark)) {
2768
2769 /* Are we ignoring a completed grace period? */
2770 note_gp_changes(rdp);
2771
2772 /* Start a new grace period if one not already started. */
2773 if (!rcu_gp_in_progress()) {
2774 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2775 } else {
2776 /* Give the grace period a kick. */
2777 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2778 if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2779 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2780 rcu_force_quiescent_state();
2781 rdp->n_force_qs_snap = rcu_state.n_force_qs;
2782 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2783 }
2784 }
2785 }
2786
2787 /*
2788 * RCU callback function to leak a callback.
2789 */
2790 static void rcu_leak_callback(struct rcu_head *rhp)
2791 {
2792 }
2793
2794 /*
2795 * Check and if necessary update the leaf rcu_node structure's
2796 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2797 * number of queued RCU callbacks. The caller must hold the leaf rcu_node
2798 * structure's ->lock.
2799 */
2800 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2801 {
2802 raw_lockdep_assert_held_rcu_node(rnp);
2803 if (qovld_calc <= 0)
2804 return; // Early boot and wildcard value set.
2805 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2806 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2807 else
2808 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2809 }
2810
2811 /*
2812 * Check and if necessary update the leaf rcu_node structure's
2813 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2814 * number of queued RCU callbacks. No locks need be held, but the
2815 * caller must have disabled interrupts.
2816 *
2817 * Note that this function ignores the possibility that there are a lot
2818 * of callbacks all of which have already seen the end of their respective
2819 * grace periods. This omission is due to the need for no-CBs CPUs to
2820 * be holding ->nocb_lock to do this check, which is too heavy for a
2821 * common-case operation.
2822 */
2823 static void check_cb_ovld(struct rcu_data *rdp)
2824 {
2825 struct rcu_node *const rnp = rdp->mynode;
2826
2827 if (qovld_calc <= 0 ||
2828 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2829 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2830 return; // Early boot wildcard value or already set correctly.
2831 raw_spin_lock_rcu_node(rnp);
2832 check_cb_ovld_locked(rdp, rnp);
2833 raw_spin_unlock_rcu_node(rnp);
2834 }
2835
2836 /* Helper function for call_rcu() and friends. */
2837 static void
2838 __call_rcu(struct rcu_head *head, rcu_callback_t func)
2839 {
2840 unsigned long flags;
2841 struct rcu_data *rdp;
2842 bool was_alldone;
2843
2844 /* Misaligned rcu_head! */
2845 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2846
2847 if (debug_rcu_head_queue(head)) {
2848 /*
2849 * Probable double call_rcu(), so leak the callback.
2850 * Use rcu:rcu_callback trace event to find the previous
2851 * time callback was passed to __call_rcu().
2852 */
2853 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
2854 head, head->func);
2855 WRITE_ONCE(head->func, rcu_leak_callback);
2856 return;
2857 }
2858 head->func = func;
2859 head->next = NULL;
2860 local_irq_save(flags);
2861 rdp = this_cpu_ptr(&rcu_data);
2862
2863 /* Add the callback to our list. */
2864 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2865 // This can trigger due to call_rcu() from offline CPU:
2866 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2867 WARN_ON_ONCE(!rcu_is_watching());
2868 // Very early boot, before rcu_init(). Initialize if needed
2869 // and then drop through to queue the callback.
2870 if (rcu_segcblist_empty(&rdp->cblist))
2871 rcu_segcblist_init(&rdp->cblist);
2872 }
2873
2874 check_cb_ovld(rdp);
2875 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
2876 return; // Enqueued onto ->nocb_bypass, so just leave.
2877 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2878 rcu_segcblist_enqueue(&rdp->cblist, head);
2879 if (__is_kfree_rcu_offset((unsigned long)func))
2880 trace_rcu_kfree_callback(rcu_state.name, head,
2881 (unsigned long)func,
2882 rcu_segcblist_n_cbs(&rdp->cblist));
2883 else
2884 trace_rcu_callback(rcu_state.name, head,
2885 rcu_segcblist_n_cbs(&rdp->cblist));
2886
2887 /* Go handle any RCU core processing required. */
2888 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2889 unlikely(rcu_segcblist_is_offloaded(&rdp->cblist))) {
2890 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2891 } else {
2892 __call_rcu_core(rdp, head, flags);
2893 local_irq_restore(flags);
2894 }
2895 }
2896
2897 /**
2898 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2899 * @head: structure to be used for queueing the RCU updates.
2900 * @func: actual callback function to be invoked after the grace period
2901 *
2902 * The callback function will be invoked some time after a full grace
2903 * period elapses, in other words after all pre-existing RCU read-side
2904 * critical sections have completed. However, the callback function
2905 * might well execute concurrently with RCU read-side critical sections
2906 * that started after call_rcu() was invoked. RCU read-side critical
2907 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2908 * may be nested. In addition, regions of code across which interrupts,
2909 * preemption, or softirqs have been disabled also serve as RCU read-side
2910 * critical sections. This includes hardware interrupt handlers, softirq
2911 * handlers, and NMI handlers.
2912 *
2913 * Note that all CPUs must agree that the grace period extended beyond
2914 * all pre-existing RCU read-side critical section. On systems with more
2915 * than one CPU, this means that when "func()" is invoked, each CPU is
2916 * guaranteed to have executed a full memory barrier since the end of its
2917 * last RCU read-side critical section whose beginning preceded the call
2918 * to call_rcu(). It also means that each CPU executing an RCU read-side
2919 * critical section that continues beyond the start of "func()" must have
2920 * executed a memory barrier after the call_rcu() but before the beginning
2921 * of that RCU read-side critical section. Note that these guarantees
2922 * include CPUs that are offline, idle, or executing in user mode, as
2923 * well as CPUs that are executing in the kernel.
2924 *
2925 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2926 * resulting RCU callback function "func()", then both CPU A and CPU B are
2927 * guaranteed to execute a full memory barrier during the time interval
2928 * between the call to call_rcu() and the invocation of "func()" -- even
2929 * if CPU A and CPU B are the same CPU (but again only if the system has
2930 * more than one CPU).
2931 */
2932 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2933 {
2934 __call_rcu(head, func);
2935 }
2936 EXPORT_SYMBOL_GPL(call_rcu);
2937
2938
2939 /* Maximum number of jiffies to wait before draining a batch. */
2940 #define KFREE_DRAIN_JIFFIES (HZ / 50)
2941 #define KFREE_N_BATCHES 2
2942
2943 /*
2944 * This macro defines how many entries the "records" array
2945 * will contain. It is based on the fact that the size of
2946 * kfree_rcu_bulk_data structure becomes exactly one page.
2947 */
2948 #define KFREE_BULK_MAX_ENTR ((PAGE_SIZE / sizeof(void *)) - 3)
2949
2950 /**
2951 * struct kfree_rcu_bulk_data - single block to store kfree_rcu() pointers
2952 * @nr_records: Number of active pointers in the array
2953 * @records: Array of the kfree_rcu() pointers
2954 * @next: Next bulk object in the block chain
2955 * @head_free_debug: For debug, when CONFIG_DEBUG_OBJECTS_RCU_HEAD is set
2956 */
2957 struct kfree_rcu_bulk_data {
2958 unsigned long nr_records;
2959 void *records[KFREE_BULK_MAX_ENTR];
2960 struct kfree_rcu_bulk_data *next;
2961 struct rcu_head *head_free_debug;
2962 };
2963
2964 /**
2965 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
2966 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
2967 * @head_free: List of kfree_rcu() objects waiting for a grace period
2968 * @bhead_free: Bulk-List of kfree_rcu() objects waiting for a grace period
2969 * @krcp: Pointer to @kfree_rcu_cpu structure
2970 */
2971
2972 struct kfree_rcu_cpu_work {
2973 struct rcu_work rcu_work;
2974 struct rcu_head *head_free;
2975 struct kfree_rcu_bulk_data *bhead_free;
2976 struct kfree_rcu_cpu *krcp;
2977 };
2978
2979 /**
2980 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
2981 * @head: List of kfree_rcu() objects not yet waiting for a grace period
2982 * @bhead: Bulk-List of kfree_rcu() objects not yet waiting for a grace period
2983 * @bcached: Keeps at most one object for later reuse when build chain blocks
2984 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
2985 * @lock: Synchronize access to this structure
2986 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
2987 * @monitor_todo: Tracks whether a @monitor_work delayed work is pending
2988 * @initialized: The @lock and @rcu_work fields have been initialized
2989 *
2990 * This is a per-CPU structure. The reason that it is not included in
2991 * the rcu_data structure is to permit this code to be extracted from
2992 * the RCU files. Such extraction could allow further optimization of
2993 * the interactions with the slab allocators.
2994 */
2995 struct kfree_rcu_cpu {
2996 struct rcu_head *head;
2997 struct kfree_rcu_bulk_data *bhead;
2998 struct kfree_rcu_bulk_data *bcached;
2999 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
3000 spinlock_t lock;
3001 struct delayed_work monitor_work;
3002 bool monitor_todo;
3003 bool initialized;
3004 // Number of objects for which GP not started
3005 int count;
3006 };
3007
3008 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc);
3009
3010 static __always_inline void
3011 debug_rcu_head_unqueue_bulk(struct rcu_head *head)
3012 {
3013 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3014 for (; head; head = head->next)
3015 debug_rcu_head_unqueue(head);
3016 #endif
3017 }
3018
3019 /*
3020 * This function is invoked in workqueue context after a grace period.
3021 * It frees all the objects queued on ->bhead_free or ->head_free.
3022 */
3023 static void kfree_rcu_work(struct work_struct *work)
3024 {
3025 unsigned long flags;
3026 struct rcu_head *head, *next;
3027 struct kfree_rcu_bulk_data *bhead, *bnext;
3028 struct kfree_rcu_cpu *krcp;
3029 struct kfree_rcu_cpu_work *krwp;
3030
3031 krwp = container_of(to_rcu_work(work),
3032 struct kfree_rcu_cpu_work, rcu_work);
3033 krcp = krwp->krcp;
3034 spin_lock_irqsave(&krcp->lock, flags);
3035 head = krwp->head_free;
3036 krwp->head_free = NULL;
3037 bhead = krwp->bhead_free;
3038 krwp->bhead_free = NULL;
3039 spin_unlock_irqrestore(&krcp->lock, flags);
3040
3041 /* "bhead" is now private, so traverse locklessly. */
3042 for (; bhead; bhead = bnext) {
3043 bnext = bhead->next;
3044
3045 debug_rcu_head_unqueue_bulk(bhead->head_free_debug);
3046
3047 rcu_lock_acquire(&rcu_callback_map);
3048 trace_rcu_invoke_kfree_bulk_callback(rcu_state.name,
3049 bhead->nr_records, bhead->records);
3050
3051 kfree_bulk(bhead->nr_records, bhead->records);
3052 rcu_lock_release(&rcu_callback_map);
3053
3054 if (cmpxchg(&krcp->bcached, NULL, bhead))
3055 free_page((unsigned long) bhead);
3056
3057 cond_resched_tasks_rcu_qs();
3058 }
3059
3060 /*
3061 * Emergency case only. It can happen under low memory
3062 * condition when an allocation gets failed, so the "bulk"
3063 * path can not be temporary maintained.
3064 */
3065 for (; head; head = next) {
3066 unsigned long offset = (unsigned long)head->func;
3067
3068 next = head->next;
3069 debug_rcu_head_unqueue(head);
3070 rcu_lock_acquire(&rcu_callback_map);
3071 trace_rcu_invoke_kfree_callback(rcu_state.name, head, offset);
3072
3073 if (!WARN_ON_ONCE(!__is_kfree_rcu_offset(offset)))
3074 kfree((void *)head - offset);
3075
3076 rcu_lock_release(&rcu_callback_map);
3077 cond_resched_tasks_rcu_qs();
3078 }
3079 }
3080
3081 /*
3082 * Schedule the kfree batch RCU work to run in workqueue context after a GP.
3083 *
3084 * This function is invoked by kfree_rcu_monitor() when the KFREE_DRAIN_JIFFIES
3085 * timeout has been reached.
3086 */
3087 static inline bool queue_kfree_rcu_work(struct kfree_rcu_cpu *krcp)
3088 {
3089 struct kfree_rcu_cpu_work *krwp;
3090 bool queued = false;
3091 int i;
3092
3093 lockdep_assert_held(&krcp->lock);
3094
3095 for (i = 0; i < KFREE_N_BATCHES; i++) {
3096 krwp = &(krcp->krw_arr[i]);
3097
3098 /*
3099 * Try to detach bhead or head and attach it over any
3100 * available corresponding free channel. It can be that
3101 * a previous RCU batch is in progress, it means that
3102 * immediately to queue another one is not possible so
3103 * return false to tell caller to retry.
3104 */
3105 if ((krcp->bhead && !krwp->bhead_free) ||
3106 (krcp->head && !krwp->head_free)) {
3107 /* Channel 1. */
3108 if (!krwp->bhead_free) {
3109 krwp->bhead_free = krcp->bhead;
3110 krcp->bhead = NULL;
3111 }
3112
3113 /* Channel 2. */
3114 if (!krwp->head_free) {
3115 krwp->head_free = krcp->head;
3116 krcp->head = NULL;
3117 }
3118
3119 WRITE_ONCE(krcp->count, 0);
3120
3121 /*
3122 * One work is per one batch, so there are two "free channels",
3123 * "bhead_free" and "head_free" the batch can handle. It can be
3124 * that the work is in the pending state when two channels have
3125 * been detached following each other, one by one.
3126 */
3127 queue_rcu_work(system_wq, &krwp->rcu_work);
3128 queued = true;
3129 }
3130 }
3131
3132 return queued;
3133 }
3134
3135 static inline void kfree_rcu_drain_unlock(struct kfree_rcu_cpu *krcp,
3136 unsigned long flags)
3137 {
3138 // Attempt to start a new batch.
3139 krcp->monitor_todo = false;
3140 if (queue_kfree_rcu_work(krcp)) {
3141 // Success! Our job is done here.
3142 spin_unlock_irqrestore(&krcp->lock, flags);
3143 return;
3144 }
3145
3146 // Previous RCU batch still in progress, try again later.
3147 krcp->monitor_todo = true;
3148 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3149 spin_unlock_irqrestore(&krcp->lock, flags);
3150 }
3151
3152 /*
3153 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3154 * It invokes kfree_rcu_drain_unlock() to attempt to start another batch.
3155 */
3156 static void kfree_rcu_monitor(struct work_struct *work)
3157 {
3158 unsigned long flags;
3159 struct kfree_rcu_cpu *krcp = container_of(work, struct kfree_rcu_cpu,
3160 monitor_work.work);
3161
3162 spin_lock_irqsave(&krcp->lock, flags);
3163 if (krcp->monitor_todo)
3164 kfree_rcu_drain_unlock(krcp, flags);
3165 else
3166 spin_unlock_irqrestore(&krcp->lock, flags);
3167 }
3168
3169 static inline bool
3170 kfree_call_rcu_add_ptr_to_bulk(struct kfree_rcu_cpu *krcp,
3171 struct rcu_head *head, rcu_callback_t func)
3172 {
3173 struct kfree_rcu_bulk_data *bnode;
3174
3175 if (unlikely(!krcp->initialized))
3176 return false;
3177
3178 lockdep_assert_held(&krcp->lock);
3179
3180 /* Check if a new block is required. */
3181 if (!krcp->bhead ||
3182 krcp->bhead->nr_records == KFREE_BULK_MAX_ENTR) {
3183 bnode = xchg(&krcp->bcached, NULL);
3184 if (!bnode) {
3185 WARN_ON_ONCE(sizeof(struct kfree_rcu_bulk_data) > PAGE_SIZE);
3186
3187 bnode = (struct kfree_rcu_bulk_data *)
3188 __get_free_page(GFP_NOWAIT | __GFP_NOWARN);
3189 }
3190
3191 /* Switch to emergency path. */
3192 if (unlikely(!bnode))
3193 return false;
3194
3195 /* Initialize the new block. */
3196 bnode->nr_records = 0;
3197 bnode->next = krcp->bhead;
3198 bnode->head_free_debug = NULL;
3199
3200 /* Attach it to the head. */
3201 krcp->bhead = bnode;
3202 }
3203
3204 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3205 head->func = func;
3206 head->next = krcp->bhead->head_free_debug;
3207 krcp->bhead->head_free_debug = head;
3208 #endif
3209
3210 /* Finally insert. */
3211 krcp->bhead->records[krcp->bhead->nr_records++] =
3212 (void *) head - (unsigned long) func;
3213
3214 return true;
3215 }
3216
3217 /*
3218 * Queue a request for lazy invocation of kfree_bulk()/kfree() after a grace
3219 * period. Please note there are two paths are maintained, one is the main one
3220 * that uses kfree_bulk() interface and second one is emergency one, that is
3221 * used only when the main path can not be maintained temporary, due to memory
3222 * pressure.
3223 *
3224 * Each kfree_call_rcu() request is added to a batch. The batch will be drained
3225 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3226 * be free'd in workqueue context. This allows us to: batch requests together to
3227 * reduce the number of grace periods during heavy kfree_rcu() load.
3228 */
3229 void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3230 {
3231 unsigned long flags;
3232 struct kfree_rcu_cpu *krcp;
3233
3234 local_irq_save(flags); // For safely calling this_cpu_ptr().
3235 krcp = this_cpu_ptr(&krc);
3236 if (krcp->initialized)
3237 spin_lock(&krcp->lock);
3238
3239 // Queue the object but don't yet schedule the batch.
3240 if (debug_rcu_head_queue(head)) {
3241 // Probable double kfree_rcu(), just leak.
3242 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3243 __func__, head);
3244 goto unlock_return;
3245 }
3246
3247 /*
3248 * Under high memory pressure GFP_NOWAIT can fail,
3249 * in that case the emergency path is maintained.
3250 */
3251 if (unlikely(!kfree_call_rcu_add_ptr_to_bulk(krcp, head, func))) {
3252 head->func = func;
3253 head->next = krcp->head;
3254 krcp->head = head;
3255 }
3256
3257 WRITE_ONCE(krcp->count, krcp->count + 1);
3258
3259 // Set timer to drain after KFREE_DRAIN_JIFFIES.
3260 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3261 !krcp->monitor_todo) {
3262 krcp->monitor_todo = true;
3263 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3264 }
3265
3266 unlock_return:
3267 if (krcp->initialized)
3268 spin_unlock(&krcp->lock);
3269 local_irq_restore(flags);
3270 }
3271 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3272
3273 static unsigned long
3274 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3275 {
3276 int cpu;
3277 unsigned long count = 0;
3278
3279 /* Snapshot count of all CPUs */
3280 for_each_online_cpu(cpu) {
3281 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3282
3283 count += READ_ONCE(krcp->count);
3284 }
3285
3286 return count;
3287 }
3288
3289 static unsigned long
3290 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3291 {
3292 int cpu, freed = 0;
3293 unsigned long flags;
3294
3295 for_each_online_cpu(cpu) {
3296 int count;
3297 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3298
3299 count = krcp->count;
3300 spin_lock_irqsave(&krcp->lock, flags);
3301 if (krcp->monitor_todo)
3302 kfree_rcu_drain_unlock(krcp, flags);
3303 else
3304 spin_unlock_irqrestore(&krcp->lock, flags);
3305
3306 sc->nr_to_scan -= count;
3307 freed += count;
3308
3309 if (sc->nr_to_scan <= 0)
3310 break;
3311 }
3312
3313 return freed;
3314 }
3315
3316 static struct shrinker kfree_rcu_shrinker = {
3317 .count_objects = kfree_rcu_shrink_count,
3318 .scan_objects = kfree_rcu_shrink_scan,
3319 .batch = 0,
3320 .seeks = DEFAULT_SEEKS,
3321 };
3322
3323 void __init kfree_rcu_scheduler_running(void)
3324 {
3325 int cpu;
3326 unsigned long flags;
3327
3328 for_each_online_cpu(cpu) {
3329 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3330
3331 spin_lock_irqsave(&krcp->lock, flags);
3332 if (!krcp->head || krcp->monitor_todo) {
3333 spin_unlock_irqrestore(&krcp->lock, flags);
3334 continue;
3335 }
3336 krcp->monitor_todo = true;
3337 schedule_delayed_work_on(cpu, &krcp->monitor_work,
3338 KFREE_DRAIN_JIFFIES);
3339 spin_unlock_irqrestore(&krcp->lock, flags);
3340 }
3341 }
3342
3343 /*
3344 * During early boot, any blocking grace-period wait automatically
3345 * implies a grace period. Later on, this is never the case for PREEMPTION.
3346 *
3347 * Howevr, because a context switch is a grace period for !PREEMPTION, any
3348 * blocking grace-period wait automatically implies a grace period if
3349 * there is only one CPU online at any point time during execution of
3350 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to
3351 * occasionally incorrectly indicate that there are multiple CPUs online
3352 * when there was in fact only one the whole time, as this just adds some
3353 * overhead: RCU still operates correctly.
3354 */
3355 static int rcu_blocking_is_gp(void)
3356 {
3357 int ret;
3358
3359 if (IS_ENABLED(CONFIG_PREEMPTION))
3360 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
3361 might_sleep(); /* Check for RCU read-side critical section. */
3362 preempt_disable();
3363 ret = num_online_cpus() <= 1;
3364 preempt_enable();
3365 return ret;
3366 }
3367
3368 /**
3369 * synchronize_rcu - wait until a grace period has elapsed.
3370 *
3371 * Control will return to the caller some time after a full grace
3372 * period has elapsed, in other words after all currently executing RCU
3373 * read-side critical sections have completed. Note, however, that
3374 * upon return from synchronize_rcu(), the caller might well be executing
3375 * concurrently with new RCU read-side critical sections that began while
3376 * synchronize_rcu() was waiting. RCU read-side critical sections are
3377 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
3378 * In addition, regions of code across which interrupts, preemption, or
3379 * softirqs have been disabled also serve as RCU read-side critical
3380 * sections. This includes hardware interrupt handlers, softirq handlers,
3381 * and NMI handlers.
3382 *
3383 * Note that this guarantee implies further memory-ordering guarantees.
3384 * On systems with more than one CPU, when synchronize_rcu() returns,
3385 * each CPU is guaranteed to have executed a full memory barrier since
3386 * the end of its last RCU read-side critical section whose beginning
3387 * preceded the call to synchronize_rcu(). In addition, each CPU having
3388 * an RCU read-side critical section that extends beyond the return from
3389 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3390 * after the beginning of synchronize_rcu() and before the beginning of
3391 * that RCU read-side critical section. Note that these guarantees include
3392 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3393 * that are executing in the kernel.
3394 *
3395 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3396 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3397 * to have executed a full memory barrier during the execution of
3398 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3399 * again only if the system has more than one CPU).
3400 */
3401 void synchronize_rcu(void)
3402 {
3403 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3404 lock_is_held(&rcu_lock_map) ||
3405 lock_is_held(&rcu_sched_lock_map),
3406 "Illegal synchronize_rcu() in RCU read-side critical section");
3407 if (rcu_blocking_is_gp())
3408 return;
3409 if (rcu_gp_is_expedited())
3410 synchronize_rcu_expedited();
3411 else
3412 wait_rcu_gp(call_rcu);
3413 }
3414 EXPORT_SYMBOL_GPL(synchronize_rcu);
3415
3416 /**
3417 * get_state_synchronize_rcu - Snapshot current RCU state
3418 *
3419 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3420 * to determine whether or not a full grace period has elapsed in the
3421 * meantime.
3422 */
3423 unsigned long get_state_synchronize_rcu(void)
3424 {
3425 /*
3426 * Any prior manipulation of RCU-protected data must happen
3427 * before the load from ->gp_seq.
3428 */
3429 smp_mb(); /* ^^^ */
3430 return rcu_seq_snap(&rcu_state.gp_seq);
3431 }
3432 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3433
3434 /**
3435 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3436 *
3437 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3438 *
3439 * If a full RCU grace period has elapsed since the earlier call to
3440 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3441 * synchronize_rcu() to wait for a full grace period.
3442 *
3443 * Yes, this function does not take counter wrap into account. But
3444 * counter wrap is harmless. If the counter wraps, we have waited for
3445 * more than 2 billion grace periods (and way more on a 64-bit system!),
3446 * so waiting for one additional grace period should be just fine.
3447 */
3448 void cond_synchronize_rcu(unsigned long oldstate)
3449 {
3450 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
3451 synchronize_rcu();
3452 else
3453 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3454 }
3455 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3456
3457 /*
3458 * Check to see if there is any immediate RCU-related work to be done by
3459 * the current CPU, returning 1 if so and zero otherwise. The checks are
3460 * in order of increasing expense: checks that can be carried out against
3461 * CPU-local state are performed first. However, we must check for CPU
3462 * stalls first, else we might not get a chance.
3463 */
3464 static int rcu_pending(int user)
3465 {
3466 bool gp_in_progress;
3467 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3468 struct rcu_node *rnp = rdp->mynode;
3469
3470 /* Check for CPU stalls, if enabled. */
3471 check_cpu_stall(rdp);
3472
3473 /* Does this CPU need a deferred NOCB wakeup? */
3474 if (rcu_nocb_need_deferred_wakeup(rdp))
3475 return 1;
3476
3477 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */
3478 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3479 return 0;
3480
3481 /* Is the RCU core waiting for a quiescent state from this CPU? */
3482 gp_in_progress = rcu_gp_in_progress();
3483 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3484 return 1;
3485
3486 /* Does this CPU have callbacks ready to invoke? */
3487 if (rcu_segcblist_ready_cbs(&rdp->cblist))
3488 return 1;
3489
3490 /* Has RCU gone idle with this CPU needing another grace period? */
3491 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3492 (!IS_ENABLED(CONFIG_RCU_NOCB_CPU) ||
3493 !rcu_segcblist_is_offloaded(&rdp->cblist)) &&
3494 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3495 return 1;
3496
3497 /* Have RCU grace period completed or started? */
3498 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3499 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3500 return 1;
3501
3502 /* nothing to do */
3503 return 0;
3504 }
3505
3506 /*
3507 * Helper function for rcu_barrier() tracing. If tracing is disabled,
3508 * the compiler is expected to optimize this away.
3509 */
3510 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3511 {
3512 trace_rcu_barrier(rcu_state.name, s, cpu,
3513 atomic_read(&rcu_state.barrier_cpu_count), done);
3514 }
3515
3516 /*
3517 * RCU callback function for rcu_barrier(). If we are last, wake
3518 * up the task executing rcu_barrier().
3519 *
3520 * Note that the value of rcu_state.barrier_sequence must be captured
3521 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last,
3522 * other CPUs might count the value down to zero before this CPU gets
3523 * around to invoking rcu_barrier_trace(), which might result in bogus
3524 * data from the next instance of rcu_barrier().
3525 */
3526 static void rcu_barrier_callback(struct rcu_head *rhp)
3527 {
3528 unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3529
3530 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3531 rcu_barrier_trace(TPS("LastCB"), -1, s);
3532 complete(&rcu_state.barrier_completion);
3533 } else {
3534 rcu_barrier_trace(TPS("CB"), -1, s);
3535 }
3536 }
3537
3538 /*
3539 * Called with preemption disabled, and from cross-cpu IRQ context.
3540 */
3541 static void rcu_barrier_func(void *cpu_in)
3542 {
3543 uintptr_t cpu = (uintptr_t)cpu_in;
3544 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3545
3546 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3547 rdp->barrier_head.func = rcu_barrier_callback;
3548 debug_rcu_head_queue(&rdp->barrier_head);
3549 rcu_nocb_lock(rdp);
3550 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
3551 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3552 atomic_inc(&rcu_state.barrier_cpu_count);
3553 } else {
3554 debug_rcu_head_unqueue(&rdp->barrier_head);
3555 rcu_barrier_trace(TPS("IRQNQ"), -1,
3556 rcu_state.barrier_sequence);
3557 }
3558 rcu_nocb_unlock(rdp);
3559 }
3560
3561 /**
3562 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3563 *
3564 * Note that this primitive does not necessarily wait for an RCU grace period
3565 * to complete. For example, if there are no RCU callbacks queued anywhere
3566 * in the system, then rcu_barrier() is within its rights to return
3567 * immediately, without waiting for anything, much less an RCU grace period.
3568 */
3569 void rcu_barrier(void)
3570 {
3571 uintptr_t cpu;
3572 struct rcu_data *rdp;
3573 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3574
3575 rcu_barrier_trace(TPS("Begin"), -1, s);
3576
3577 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3578 mutex_lock(&rcu_state.barrier_mutex);
3579
3580 /* Did someone else do our work for us? */
3581 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3582 rcu_barrier_trace(TPS("EarlyExit"), -1,
3583 rcu_state.barrier_sequence);
3584 smp_mb(); /* caller's subsequent code after above check. */
3585 mutex_unlock(&rcu_state.barrier_mutex);
3586 return;
3587 }
3588
3589 /* Mark the start of the barrier operation. */
3590 rcu_seq_start(&rcu_state.barrier_sequence);
3591 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
3592
3593 /*
3594 * Initialize the count to two rather than to zero in order
3595 * to avoid a too-soon return to zero in case of an immediate
3596 * invocation of the just-enqueued callback (or preemption of
3597 * this task). Exclude CPU-hotplug operations to ensure that no
3598 * offline non-offloaded CPU has callbacks queued.
3599 */
3600 init_completion(&rcu_state.barrier_completion);
3601 atomic_set(&rcu_state.barrier_cpu_count, 2);
3602 get_online_cpus();
3603
3604 /*
3605 * Force each CPU with callbacks to register a new callback.
3606 * When that callback is invoked, we will know that all of the
3607 * corresponding CPU's preceding callbacks have been invoked.
3608 */
3609 for_each_possible_cpu(cpu) {
3610 rdp = per_cpu_ptr(&rcu_data, cpu);
3611 if (cpu_is_offline(cpu) &&
3612 !rcu_segcblist_is_offloaded(&rdp->cblist))
3613 continue;
3614 if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) {
3615 rcu_barrier_trace(TPS("OnlineQ"), cpu,
3616 rcu_state.barrier_sequence);
3617 smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1);
3618 } else if (rcu_segcblist_n_cbs(&rdp->cblist) &&
3619 cpu_is_offline(cpu)) {
3620 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu,
3621 rcu_state.barrier_sequence);
3622 local_irq_disable();
3623 rcu_barrier_func((void *)cpu);
3624 local_irq_enable();
3625 } else if (cpu_is_offline(cpu)) {
3626 rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu,
3627 rcu_state.barrier_sequence);
3628 } else {
3629 rcu_barrier_trace(TPS("OnlineNQ"), cpu,
3630 rcu_state.barrier_sequence);
3631 }
3632 }
3633 put_online_cpus();
3634
3635 /*
3636 * Now that we have an rcu_barrier_callback() callback on each
3637 * CPU, and thus each counted, remove the initial count.
3638 */
3639 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
3640 complete(&rcu_state.barrier_completion);
3641
3642 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3643 wait_for_completion(&rcu_state.barrier_completion);
3644
3645 /* Mark the end of the barrier operation. */
3646 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
3647 rcu_seq_end(&rcu_state.barrier_sequence);
3648
3649 /* Other rcu_barrier() invocations can now safely proceed. */
3650 mutex_unlock(&rcu_state.barrier_mutex);
3651 }
3652 EXPORT_SYMBOL_GPL(rcu_barrier);
3653
3654 /*
3655 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3656 * first CPU in a given leaf rcu_node structure coming online. The caller
3657 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3658 * disabled.
3659 */
3660 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3661 {
3662 long mask;
3663 long oldmask;
3664 struct rcu_node *rnp = rnp_leaf;
3665
3666 raw_lockdep_assert_held_rcu_node(rnp_leaf);
3667 WARN_ON_ONCE(rnp->wait_blkd_tasks);
3668 for (;;) {
3669 mask = rnp->grpmask;
3670 rnp = rnp->parent;
3671 if (rnp == NULL)
3672 return;
3673 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3674 oldmask = rnp->qsmaskinit;
3675 rnp->qsmaskinit |= mask;
3676 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3677 if (oldmask)
3678 return;
3679 }
3680 }
3681
3682 /*
3683 * Do boot-time initialization of a CPU's per-CPU RCU data.
3684 */
3685 static void __init
3686 rcu_boot_init_percpu_data(int cpu)
3687 {
3688 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3689
3690 /* Set up local state, ensuring consistent view of global state. */
3691 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3692 WARN_ON_ONCE(rdp->dynticks_nesting != 1);
3693 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
3694 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
3695 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3696 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
3697 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
3698 rdp->cpu = cpu;
3699 rcu_boot_init_nocb_percpu_data(rdp);
3700 }
3701
3702 /*
3703 * Invoked early in the CPU-online process, when pretty much all services
3704 * are available. The incoming CPU is not present.
3705 *
3706 * Initializes a CPU's per-CPU RCU data. Note that only one online or
3707 * offline event can be happening at a given time. Note also that we can
3708 * accept some slop in the rsp->gp_seq access due to the fact that this
3709 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
3710 * And any offloaded callbacks are being numbered elsewhere.
3711 */
3712 int rcutree_prepare_cpu(unsigned int cpu)
3713 {
3714 unsigned long flags;
3715 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3716 struct rcu_node *rnp = rcu_get_root();
3717
3718 /* Set up local state, ensuring consistent view of global state. */
3719 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3720 rdp->qlen_last_fqs_check = 0;
3721 rdp->n_force_qs_snap = rcu_state.n_force_qs;
3722 rdp->blimit = blimit;
3723 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3724 !rcu_segcblist_is_offloaded(&rdp->cblist))
3725 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
3726 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */
3727 rcu_dynticks_eqs_online();
3728 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
3729
3730 /*
3731 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3732 * propagation up the rcu_node tree will happen at the beginning
3733 * of the next grace period.
3734 */
3735 rnp = rdp->mynode;
3736 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
3737 rdp->beenonline = true; /* We have now been online. */
3738 rdp->gp_seq = READ_ONCE(rnp->gp_seq);
3739 rdp->gp_seq_needed = rdp->gp_seq;
3740 rdp->cpu_no_qs.b.norm = true;
3741 rdp->core_needs_qs = false;
3742 rdp->rcu_iw_pending = false;
3743 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
3744 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
3745 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3746 rcu_prepare_kthreads(cpu);
3747 rcu_spawn_cpu_nocb_kthread(cpu);
3748
3749 return 0;
3750 }
3751
3752 /*
3753 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3754 */
3755 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3756 {
3757 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3758
3759 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3760 }
3761
3762 /*
3763 * Near the end of the CPU-online process. Pretty much all services
3764 * enabled, and the CPU is now very much alive.
3765 */
3766 int rcutree_online_cpu(unsigned int cpu)
3767 {
3768 unsigned long flags;
3769 struct rcu_data *rdp;
3770 struct rcu_node *rnp;
3771
3772 rdp = per_cpu_ptr(&rcu_data, cpu);
3773 rnp = rdp->mynode;
3774 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3775 rnp->ffmask |= rdp->grpmask;
3776 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3777 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3778 return 0; /* Too early in boot for scheduler work. */
3779 sync_sched_exp_online_cleanup(cpu);
3780 rcutree_affinity_setting(cpu, -1);
3781
3782 // Stop-machine done, so allow nohz_full to disable tick.
3783 tick_dep_clear(TICK_DEP_BIT_RCU);
3784 return 0;
3785 }
3786
3787 /*
3788 * Near the beginning of the process. The CPU is still very much alive
3789 * with pretty much all services enabled.
3790 */
3791 int rcutree_offline_cpu(unsigned int cpu)
3792 {
3793 unsigned long flags;
3794 struct rcu_data *rdp;
3795 struct rcu_node *rnp;
3796
3797 rdp = per_cpu_ptr(&rcu_data, cpu);
3798 rnp = rdp->mynode;
3799 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3800 rnp->ffmask &= ~rdp->grpmask;
3801 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3802
3803 rcutree_affinity_setting(cpu, cpu);
3804
3805 // nohz_full CPUs need the tick for stop-machine to work quickly
3806 tick_dep_set(TICK_DEP_BIT_RCU);
3807 return 0;
3808 }
3809
3810 static DEFINE_PER_CPU(int, rcu_cpu_started);
3811
3812 /*
3813 * Mark the specified CPU as being online so that subsequent grace periods
3814 * (both expedited and normal) will wait on it. Note that this means that
3815 * incoming CPUs are not allowed to use RCU read-side critical sections
3816 * until this function is called. Failing to observe this restriction
3817 * will result in lockdep splats.
3818 *
3819 * Note that this function is special in that it is invoked directly
3820 * from the incoming CPU rather than from the cpuhp_step mechanism.
3821 * This is because this function must be invoked at a precise location.
3822 */
3823 void rcu_cpu_starting(unsigned int cpu)
3824 {
3825 unsigned long flags;
3826 unsigned long mask;
3827 int nbits;
3828 unsigned long oldmask;
3829 struct rcu_data *rdp;
3830 struct rcu_node *rnp;
3831
3832 if (per_cpu(rcu_cpu_started, cpu))
3833 return;
3834
3835 per_cpu(rcu_cpu_started, cpu) = 1;
3836
3837 rdp = per_cpu_ptr(&rcu_data, cpu);
3838 rnp = rdp->mynode;
3839 mask = rdp->grpmask;
3840 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3841 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
3842 oldmask = rnp->expmaskinitnext;
3843 rnp->expmaskinitnext |= mask;
3844 oldmask ^= rnp->expmaskinitnext;
3845 nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3846 /* Allow lockless access for expedited grace periods. */
3847 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
3848 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
3849 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
3850 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3851 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3852 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
3853 rcu_disable_urgency_upon_qs(rdp);
3854 /* Report QS -after- changing ->qsmaskinitnext! */
3855 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3856 } else {
3857 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3858 }
3859 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3860 }
3861
3862 #ifdef CONFIG_HOTPLUG_CPU
3863 /*
3864 * The outgoing function has no further need of RCU, so remove it from
3865 * the rcu_node tree's ->qsmaskinitnext bit masks.
3866 *
3867 * Note that this function is special in that it is invoked directly
3868 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3869 * This is because this function must be invoked at a precise location.
3870 */
3871 void rcu_report_dead(unsigned int cpu)
3872 {
3873 unsigned long flags;
3874 unsigned long mask;
3875 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3876 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3877
3878 /* QS for any half-done expedited grace period. */
3879 preempt_disable();
3880 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
3881 preempt_enable();
3882 rcu_preempt_deferred_qs(current);
3883
3884 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3885 mask = rdp->grpmask;
3886 raw_spin_lock(&rcu_state.ofl_lock);
3887 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3888 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3889 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3890 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3891 /* Report quiescent state -before- changing ->qsmaskinitnext! */
3892 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3893 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3894 }
3895 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
3896 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3897 raw_spin_unlock(&rcu_state.ofl_lock);
3898
3899 per_cpu(rcu_cpu_started, cpu) = 0;
3900 }
3901
3902 /*
3903 * The outgoing CPU has just passed through the dying-idle state, and we
3904 * are being invoked from the CPU that was IPIed to continue the offline
3905 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
3906 */
3907 void rcutree_migrate_callbacks(int cpu)
3908 {
3909 unsigned long flags;
3910 struct rcu_data *my_rdp;
3911 struct rcu_node *my_rnp;
3912 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3913 bool needwake;
3914
3915 if (rcu_segcblist_is_offloaded(&rdp->cblist) ||
3916 rcu_segcblist_empty(&rdp->cblist))
3917 return; /* No callbacks to migrate. */
3918
3919 local_irq_save(flags);
3920 my_rdp = this_cpu_ptr(&rcu_data);
3921 my_rnp = my_rdp->mynode;
3922 rcu_nocb_lock(my_rdp); /* irqs already disabled. */
3923 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
3924 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
3925 /* Leverage recent GPs and set GP for new callbacks. */
3926 needwake = rcu_advance_cbs(my_rnp, rdp) ||
3927 rcu_advance_cbs(my_rnp, my_rdp);
3928 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3929 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
3930 rcu_segcblist_disable(&rdp->cblist);
3931 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3932 !rcu_segcblist_n_cbs(&my_rdp->cblist));
3933 if (rcu_segcblist_is_offloaded(&my_rdp->cblist)) {
3934 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
3935 __call_rcu_nocb_wake(my_rdp, true, flags);
3936 } else {
3937 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
3938 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
3939 }
3940 if (needwake)
3941 rcu_gp_kthread_wake();
3942 lockdep_assert_irqs_enabled();
3943 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3944 !rcu_segcblist_empty(&rdp->cblist),
3945 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3946 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3947 rcu_segcblist_first_cb(&rdp->cblist));
3948 }
3949 #endif
3950
3951 /*
3952 * On non-huge systems, use expedited RCU grace periods to make suspend
3953 * and hibernation run faster.
3954 */
3955 static int rcu_pm_notify(struct notifier_block *self,
3956 unsigned long action, void *hcpu)
3957 {
3958 switch (action) {
3959 case PM_HIBERNATION_PREPARE:
3960 case PM_SUSPEND_PREPARE:
3961 rcu_expedite_gp();
3962 break;
3963 case PM_POST_HIBERNATION:
3964 case PM_POST_SUSPEND:
3965 rcu_unexpedite_gp();
3966 break;
3967 default:
3968 break;
3969 }
3970 return NOTIFY_OK;
3971 }
3972
3973 /*
3974 * Spawn the kthreads that handle RCU's grace periods.
3975 */
3976 static int __init rcu_spawn_gp_kthread(void)
3977 {
3978 unsigned long flags;
3979 int kthread_prio_in = kthread_prio;
3980 struct rcu_node *rnp;
3981 struct sched_param sp;
3982 struct task_struct *t;
3983
3984 /* Force priority into range. */
3985 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3986 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3987 kthread_prio = 2;
3988 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3989 kthread_prio = 1;
3990 else if (kthread_prio < 0)
3991 kthread_prio = 0;
3992 else if (kthread_prio > 99)
3993 kthread_prio = 99;
3994
3995 if (kthread_prio != kthread_prio_in)
3996 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3997 kthread_prio, kthread_prio_in);
3998
3999 rcu_scheduler_fully_active = 1;
4000 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4001 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4002 return 0;
4003 if (kthread_prio) {
4004 sp.sched_priority = kthread_prio;
4005 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4006 }
4007 rnp = rcu_get_root();
4008 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4009 WRITE_ONCE(rcu_state.gp_activity, jiffies);
4010 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4011 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4012 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */
4013 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4014 wake_up_process(t);
4015 rcu_spawn_nocb_kthreads();
4016 rcu_spawn_boost_kthreads();
4017 return 0;
4018 }
4019 early_initcall(rcu_spawn_gp_kthread);
4020
4021 /*
4022 * This function is invoked towards the end of the scheduler's
4023 * initialization process. Before this is called, the idle task might
4024 * contain synchronous grace-period primitives (during which time, this idle
4025 * task is booting the system, and such primitives are no-ops). After this
4026 * function is called, any synchronous grace-period primitives are run as
4027 * expedited, with the requesting task driving the grace period forward.
4028 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4029 * runtime RCU functionality.
4030 */
4031 void rcu_scheduler_starting(void)
4032 {
4033 WARN_ON(num_online_cpus() != 1);
4034 WARN_ON(nr_context_switches() > 0);
4035 rcu_test_sync_prims();
4036 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4037 rcu_test_sync_prims();
4038 }
4039
4040 /*
4041 * Helper function for rcu_init() that initializes the rcu_state structure.
4042 */
4043 static void __init rcu_init_one(void)
4044 {
4045 static const char * const buf[] = RCU_NODE_NAME_INIT;
4046 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4047 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4048 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4049
4050 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4051 int cpustride = 1;
4052 int i;
4053 int j;
4054 struct rcu_node *rnp;
4055
4056 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4057
4058 /* Silence gcc 4.8 false positive about array index out of range. */
4059 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4060 panic("rcu_init_one: rcu_num_lvls out of range");
4061
4062 /* Initialize the level-tracking arrays. */
4063
4064 for (i = 1; i < rcu_num_lvls; i++)
4065 rcu_state.level[i] =
4066 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4067 rcu_init_levelspread(levelspread, num_rcu_lvl);
4068
4069 /* Initialize the elements themselves, starting from the leaves. */
4070
4071 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4072 cpustride *= levelspread[i];
4073 rnp = rcu_state.level[i];
4074 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4075 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4076 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4077 &rcu_node_class[i], buf[i]);
4078 raw_spin_lock_init(&rnp->fqslock);
4079 lockdep_set_class_and_name(&rnp->fqslock,
4080 &rcu_fqs_class[i], fqs[i]);
4081 rnp->gp_seq = rcu_state.gp_seq;
4082 rnp->gp_seq_needed = rcu_state.gp_seq;
4083 rnp->completedqs = rcu_state.gp_seq;
4084 rnp->qsmask = 0;
4085 rnp->qsmaskinit = 0;
4086 rnp->grplo = j * cpustride;
4087 rnp->grphi = (j + 1) * cpustride - 1;
4088 if (rnp->grphi >= nr_cpu_ids)
4089 rnp->grphi = nr_cpu_ids - 1;
4090 if (i == 0) {
4091 rnp->grpnum = 0;
4092 rnp->grpmask = 0;
4093 rnp->parent = NULL;
4094 } else {
4095 rnp->grpnum = j % levelspread[i - 1];
4096 rnp->grpmask = BIT(rnp->grpnum);
4097 rnp->parent = rcu_state.level[i - 1] +
4098 j / levelspread[i - 1];
4099 }
4100 rnp->level = i;
4101 INIT_LIST_HEAD(&rnp->blkd_tasks);
4102 rcu_init_one_nocb(rnp);
4103 init_waitqueue_head(&rnp->exp_wq[0]);
4104 init_waitqueue_head(&rnp->exp_wq[1]);
4105 init_waitqueue_head(&rnp->exp_wq[2]);
4106 init_waitqueue_head(&rnp->exp_wq[3]);
4107 spin_lock_init(&rnp->exp_lock);
4108 }
4109 }
4110
4111 init_swait_queue_head(&rcu_state.gp_wq);
4112 init_swait_queue_head(&rcu_state.expedited_wq);
4113 rnp = rcu_first_leaf_node();
4114 for_each_possible_cpu(i) {
4115 while (i > rnp->grphi)
4116 rnp++;
4117 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4118 rcu_boot_init_percpu_data(i);
4119 }
4120 }
4121
4122 /*
4123 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4124 * replace the definitions in tree.h because those are needed to size
4125 * the ->node array in the rcu_state structure.
4126 */
4127 static void __init rcu_init_geometry(void)
4128 {
4129 ulong d;
4130 int i;
4131 int rcu_capacity[RCU_NUM_LVLS];
4132
4133 /*
4134 * Initialize any unspecified boot parameters.
4135 * The default values of jiffies_till_first_fqs and
4136 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4137 * value, which is a function of HZ, then adding one for each
4138 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4139 */
4140 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4141 if (jiffies_till_first_fqs == ULONG_MAX)
4142 jiffies_till_first_fqs = d;
4143 if (jiffies_till_next_fqs == ULONG_MAX)
4144 jiffies_till_next_fqs = d;
4145 adjust_jiffies_till_sched_qs();
4146
4147 /* If the compile-time values are accurate, just leave. */
4148 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4149 nr_cpu_ids == NR_CPUS)
4150 return;
4151 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4152 rcu_fanout_leaf, nr_cpu_ids);
4153
4154 /*
4155 * The boot-time rcu_fanout_leaf parameter must be at least two
4156 * and cannot exceed the number of bits in the rcu_node masks.
4157 * Complain and fall back to the compile-time values if this
4158 * limit is exceeded.
4159 */
4160 if (rcu_fanout_leaf < 2 ||
4161 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4162 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4163 WARN_ON(1);
4164 return;
4165 }
4166
4167 /*
4168 * Compute number of nodes that can be handled an rcu_node tree
4169 * with the given number of levels.
4170 */
4171 rcu_capacity[0] = rcu_fanout_leaf;
4172 for (i = 1; i < RCU_NUM_LVLS; i++)
4173 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4174
4175 /*
4176 * The tree must be able to accommodate the configured number of CPUs.
4177 * If this limit is exceeded, fall back to the compile-time values.
4178 */
4179 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4180 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4181 WARN_ON(1);
4182 return;
4183 }
4184
4185 /* Calculate the number of levels in the tree. */
4186 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4187 }
4188 rcu_num_lvls = i + 1;
4189
4190 /* Calculate the number of rcu_nodes at each level of the tree. */
4191 for (i = 0; i < rcu_num_lvls; i++) {
4192 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4193 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4194 }
4195
4196 /* Calculate the total number of rcu_node structures. */
4197 rcu_num_nodes = 0;
4198 for (i = 0; i < rcu_num_lvls; i++)
4199 rcu_num_nodes += num_rcu_lvl[i];
4200 }
4201
4202 /*
4203 * Dump out the structure of the rcu_node combining tree associated
4204 * with the rcu_state structure.
4205 */
4206 static void __init rcu_dump_rcu_node_tree(void)
4207 {
4208 int level = 0;
4209 struct rcu_node *rnp;
4210
4211 pr_info("rcu_node tree layout dump\n");
4212 pr_info(" ");
4213 rcu_for_each_node_breadth_first(rnp) {
4214 if (rnp->level != level) {
4215 pr_cont("\n");
4216 pr_info(" ");
4217 level = rnp->level;
4218 }
4219 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4220 }
4221 pr_cont("\n");
4222 }
4223
4224 struct workqueue_struct *rcu_gp_wq;
4225 struct workqueue_struct *rcu_par_gp_wq;
4226
4227 static void __init kfree_rcu_batch_init(void)
4228 {
4229 int cpu;
4230 int i;
4231
4232 for_each_possible_cpu(cpu) {
4233 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4234
4235 spin_lock_init(&krcp->lock);
4236 for (i = 0; i < KFREE_N_BATCHES; i++) {
4237 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4238 krcp->krw_arr[i].krcp = krcp;
4239 }
4240
4241 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4242 krcp->initialized = true;
4243 }
4244 if (register_shrinker(&kfree_rcu_shrinker))
4245 pr_err("Failed to register kfree_rcu() shrinker!\n");
4246 }
4247
4248 void __init rcu_init(void)
4249 {
4250 int cpu;
4251
4252 rcu_early_boot_tests();
4253
4254 kfree_rcu_batch_init();
4255 rcu_bootup_announce();
4256 rcu_init_geometry();
4257 rcu_init_one();
4258 if (dump_tree)
4259 rcu_dump_rcu_node_tree();
4260 if (use_softirq)
4261 open_softirq(RCU_SOFTIRQ, rcu_core_si);
4262
4263 /*
4264 * We don't need protection against CPU-hotplug here because
4265 * this is called early in boot, before either interrupts
4266 * or the scheduler are operational.
4267 */
4268 pm_notifier(rcu_pm_notify, 0);
4269 for_each_online_cpu(cpu) {
4270 rcutree_prepare_cpu(cpu);
4271 rcu_cpu_starting(cpu);
4272 rcutree_online_cpu(cpu);
4273 }
4274
4275 /* Create workqueue for expedited GPs and for Tree SRCU. */
4276 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4277 WARN_ON(!rcu_gp_wq);
4278 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4279 WARN_ON(!rcu_par_gp_wq);
4280 srcu_init();
4281
4282 /* Fill in default value for rcutree.qovld boot parameter. */
4283 /* -After- the rcu_node ->lock fields are initialized! */
4284 if (qovld < 0)
4285 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4286 else
4287 qovld_calc = qovld;
4288 }
4289
4290 #include "tree_stall.h"
4291 #include "tree_exp.h"
4292 #include "tree_plugin.h"