]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/rcu/tree.c
x86/fpu/xstate: Restore supervisor states for signal return
[thirdparty/linux.git] / kernel / rcu / tree.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 *
5 * Copyright IBM Corporation, 2008
6 *
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
9 * Paul E. McKenney <paulmck@linux.ibm.com>
10 *
11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13 *
14 * For detailed explanation of Read-Copy Update mechanism see -
15 * Documentation/RCU
16 */
17
18 #define pr_fmt(fmt) "rcu: " fmt
19
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/percpu.h>
36 #include <linux/notifier.h>
37 #include <linux/cpu.h>
38 #include <linux/mutex.h>
39 #include <linux/time.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/wait.h>
42 #include <linux/kthread.h>
43 #include <uapi/linux/sched/types.h>
44 #include <linux/prefetch.h>
45 #include <linux/delay.h>
46 #include <linux/random.h>
47 #include <linux/trace_events.h>
48 #include <linux/suspend.h>
49 #include <linux/ftrace.h>
50 #include <linux/tick.h>
51 #include <linux/sysrq.h>
52 #include <linux/kprobes.h>
53 #include <linux/gfp.h>
54 #include <linux/oom.h>
55 #include <linux/smpboot.h>
56 #include <linux/jiffies.h>
57 #include <linux/slab.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/sched/clock.h>
60 #include "../time/tick-internal.h"
61
62 #include "tree.h"
63 #include "rcu.h"
64
65 #ifdef MODULE_PARAM_PREFIX
66 #undef MODULE_PARAM_PREFIX
67 #endif
68 #define MODULE_PARAM_PREFIX "rcutree."
69
70 /* Data structures. */
71
72 /*
73 * Steal a bit from the bottom of ->dynticks for idle entry/exit
74 * control. Initially this is for TLB flushing.
75 */
76 #define RCU_DYNTICK_CTRL_MASK 0x1
77 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
78 #ifndef rcu_eqs_special_exit
79 #define rcu_eqs_special_exit() do { } while (0)
80 #endif
81
82 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
83 .dynticks_nesting = 1,
84 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
85 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
86 };
87 static struct rcu_state rcu_state = {
88 .level = { &rcu_state.node[0] },
89 .gp_state = RCU_GP_IDLE,
90 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
91 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
92 .name = RCU_NAME,
93 .abbr = RCU_ABBR,
94 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
95 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
96 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
97 };
98
99 /* Dump rcu_node combining tree at boot to verify correct setup. */
100 static bool dump_tree;
101 module_param(dump_tree, bool, 0444);
102 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
103 static bool use_softirq = 1;
104 module_param(use_softirq, bool, 0444);
105 /* Control rcu_node-tree auto-balancing at boot time. */
106 static bool rcu_fanout_exact;
107 module_param(rcu_fanout_exact, bool, 0444);
108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
110 module_param(rcu_fanout_leaf, int, 0444);
111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
112 /* Number of rcu_nodes at specified level. */
113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
115
116 /*
117 * The rcu_scheduler_active variable is initialized to the value
118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
119 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
120 * RCU can assume that there is but one task, allowing RCU to (for example)
121 * optimize synchronize_rcu() to a simple barrier(). When this variable
122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
123 * to detect real grace periods. This variable is also used to suppress
124 * boot-time false positives from lockdep-RCU error checking. Finally, it
125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
126 * is fully initialized, including all of its kthreads having been spawned.
127 */
128 int rcu_scheduler_active __read_mostly;
129 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
130
131 /*
132 * The rcu_scheduler_fully_active variable transitions from zero to one
133 * during the early_initcall() processing, which is after the scheduler
134 * is capable of creating new tasks. So RCU processing (for example,
135 * creating tasks for RCU priority boosting) must be delayed until after
136 * rcu_scheduler_fully_active transitions from zero to one. We also
137 * currently delay invocation of any RCU callbacks until after this point.
138 *
139 * It might later prove better for people registering RCU callbacks during
140 * early boot to take responsibility for these callbacks, but one step at
141 * a time.
142 */
143 static int rcu_scheduler_fully_active __read_mostly;
144
145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
146 unsigned long gps, unsigned long flags);
147 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
148 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
149 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
150 static void invoke_rcu_core(void);
151 static void rcu_report_exp_rdp(struct rcu_data *rdp);
152 static void sync_sched_exp_online_cleanup(int cpu);
153 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
154
155 /* rcuc/rcub kthread realtime priority */
156 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
157 module_param(kthread_prio, int, 0444);
158
159 /* Delay in jiffies for grace-period initialization delays, debug only. */
160
161 static int gp_preinit_delay;
162 module_param(gp_preinit_delay, int, 0444);
163 static int gp_init_delay;
164 module_param(gp_init_delay, int, 0444);
165 static int gp_cleanup_delay;
166 module_param(gp_cleanup_delay, int, 0444);
167
168 /* Retrieve RCU kthreads priority for rcutorture */
169 int rcu_get_gp_kthreads_prio(void)
170 {
171 return kthread_prio;
172 }
173 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
174
175 /*
176 * Number of grace periods between delays, normalized by the duration of
177 * the delay. The longer the delay, the more the grace periods between
178 * each delay. The reason for this normalization is that it means that,
179 * for non-zero delays, the overall slowdown of grace periods is constant
180 * regardless of the duration of the delay. This arrangement balances
181 * the need for long delays to increase some race probabilities with the
182 * need for fast grace periods to increase other race probabilities.
183 */
184 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
185
186 /*
187 * Compute the mask of online CPUs for the specified rcu_node structure.
188 * This will not be stable unless the rcu_node structure's ->lock is
189 * held, but the bit corresponding to the current CPU will be stable
190 * in most contexts.
191 */
192 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
193 {
194 return READ_ONCE(rnp->qsmaskinitnext);
195 }
196
197 /*
198 * Return true if an RCU grace period is in progress. The READ_ONCE()s
199 * permit this function to be invoked without holding the root rcu_node
200 * structure's ->lock, but of course results can be subject to change.
201 */
202 static int rcu_gp_in_progress(void)
203 {
204 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
205 }
206
207 /*
208 * Return the number of callbacks queued on the specified CPU.
209 * Handles both the nocbs and normal cases.
210 */
211 static long rcu_get_n_cbs_cpu(int cpu)
212 {
213 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
214
215 if (rcu_segcblist_is_enabled(&rdp->cblist))
216 return rcu_segcblist_n_cbs(&rdp->cblist);
217 return 0;
218 }
219
220 void rcu_softirq_qs(void)
221 {
222 rcu_qs();
223 rcu_preempt_deferred_qs(current);
224 }
225
226 /*
227 * Record entry into an extended quiescent state. This is only to be
228 * called when not already in an extended quiescent state.
229 */
230 static void rcu_dynticks_eqs_enter(void)
231 {
232 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
233 int seq;
234
235 /*
236 * CPUs seeing atomic_add_return() must see prior RCU read-side
237 * critical sections, and we also must force ordering with the
238 * next idle sojourn.
239 */
240 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
241 /* Better be in an extended quiescent state! */
242 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
243 (seq & RCU_DYNTICK_CTRL_CTR));
244 /* Better not have special action (TLB flush) pending! */
245 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
246 (seq & RCU_DYNTICK_CTRL_MASK));
247 }
248
249 /*
250 * Record exit from an extended quiescent state. This is only to be
251 * called from an extended quiescent state.
252 */
253 static void rcu_dynticks_eqs_exit(void)
254 {
255 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
256 int seq;
257
258 /*
259 * CPUs seeing atomic_add_return() must see prior idle sojourns,
260 * and we also must force ordering with the next RCU read-side
261 * critical section.
262 */
263 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
264 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
265 !(seq & RCU_DYNTICK_CTRL_CTR));
266 if (seq & RCU_DYNTICK_CTRL_MASK) {
267 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
268 smp_mb__after_atomic(); /* _exit after clearing mask. */
269 /* Prefer duplicate flushes to losing a flush. */
270 rcu_eqs_special_exit();
271 }
272 }
273
274 /*
275 * Reset the current CPU's ->dynticks counter to indicate that the
276 * newly onlined CPU is no longer in an extended quiescent state.
277 * This will either leave the counter unchanged, or increment it
278 * to the next non-quiescent value.
279 *
280 * The non-atomic test/increment sequence works because the upper bits
281 * of the ->dynticks counter are manipulated only by the corresponding CPU,
282 * or when the corresponding CPU is offline.
283 */
284 static void rcu_dynticks_eqs_online(void)
285 {
286 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
287
288 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
289 return;
290 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
291 }
292
293 /*
294 * Is the current CPU in an extended quiescent state?
295 *
296 * No ordering, as we are sampling CPU-local information.
297 */
298 static bool rcu_dynticks_curr_cpu_in_eqs(void)
299 {
300 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
301
302 return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
303 }
304
305 /*
306 * Snapshot the ->dynticks counter with full ordering so as to allow
307 * stable comparison of this counter with past and future snapshots.
308 */
309 static int rcu_dynticks_snap(struct rcu_data *rdp)
310 {
311 int snap = atomic_add_return(0, &rdp->dynticks);
312
313 return snap & ~RCU_DYNTICK_CTRL_MASK;
314 }
315
316 /*
317 * Return true if the snapshot returned from rcu_dynticks_snap()
318 * indicates that RCU is in an extended quiescent state.
319 */
320 static bool rcu_dynticks_in_eqs(int snap)
321 {
322 return !(snap & RCU_DYNTICK_CTRL_CTR);
323 }
324
325 /*
326 * Return true if the CPU corresponding to the specified rcu_data
327 * structure has spent some time in an extended quiescent state since
328 * rcu_dynticks_snap() returned the specified snapshot.
329 */
330 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
331 {
332 return snap != rcu_dynticks_snap(rdp);
333 }
334
335 /*
336 * Set the special (bottom) bit of the specified CPU so that it
337 * will take special action (such as flushing its TLB) on the
338 * next exit from an extended quiescent state. Returns true if
339 * the bit was successfully set, or false if the CPU was not in
340 * an extended quiescent state.
341 */
342 bool rcu_eqs_special_set(int cpu)
343 {
344 int old;
345 int new;
346 int new_old;
347 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
348
349 new_old = atomic_read(&rdp->dynticks);
350 do {
351 old = new_old;
352 if (old & RCU_DYNTICK_CTRL_CTR)
353 return false;
354 new = old | RCU_DYNTICK_CTRL_MASK;
355 new_old = atomic_cmpxchg(&rdp->dynticks, old, new);
356 } while (new_old != old);
357 return true;
358 }
359
360 /*
361 * Let the RCU core know that this CPU has gone through the scheduler,
362 * which is a quiescent state. This is called when the need for a
363 * quiescent state is urgent, so we burn an atomic operation and full
364 * memory barriers to let the RCU core know about it, regardless of what
365 * this CPU might (or might not) do in the near future.
366 *
367 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
368 *
369 * The caller must have disabled interrupts and must not be idle.
370 */
371 void rcu_momentary_dyntick_idle(void)
372 {
373 int special;
374
375 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
376 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
377 &this_cpu_ptr(&rcu_data)->dynticks);
378 /* It is illegal to call this from idle state. */
379 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
380 rcu_preempt_deferred_qs(current);
381 }
382 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
383
384 /**
385 * rcu_is_cpu_rrupt_from_idle - see if interrupted from idle
386 *
387 * If the current CPU is idle and running at a first-level (not nested)
388 * interrupt from idle, return true. The caller must have at least
389 * disabled preemption.
390 */
391 static int rcu_is_cpu_rrupt_from_idle(void)
392 {
393 /* Called only from within the scheduling-clock interrupt */
394 lockdep_assert_in_irq();
395
396 /* Check for counter underflows */
397 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
398 "RCU dynticks_nesting counter underflow!");
399 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
400 "RCU dynticks_nmi_nesting counter underflow/zero!");
401
402 /* Are we at first interrupt nesting level? */
403 if (__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 1)
404 return false;
405
406 /* Does CPU appear to be idle from an RCU standpoint? */
407 return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
408 }
409
410 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch ... */
411 #define DEFAULT_MAX_RCU_BLIMIT 10000 /* ... even during callback flood. */
412 static long blimit = DEFAULT_RCU_BLIMIT;
413 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
414 static long qhimark = DEFAULT_RCU_QHIMARK;
415 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
416 static long qlowmark = DEFAULT_RCU_QLOMARK;
417 #define DEFAULT_RCU_QOVLD_MULT 2
418 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
419 static long qovld = DEFAULT_RCU_QOVLD; /* If this many pending, hammer QS. */
420 static long qovld_calc = -1; /* No pre-initialization lock acquisitions! */
421
422 module_param(blimit, long, 0444);
423 module_param(qhimark, long, 0444);
424 module_param(qlowmark, long, 0444);
425 module_param(qovld, long, 0444);
426
427 static ulong jiffies_till_first_fqs = ULONG_MAX;
428 static ulong jiffies_till_next_fqs = ULONG_MAX;
429 static bool rcu_kick_kthreads;
430 static int rcu_divisor = 7;
431 module_param(rcu_divisor, int, 0644);
432
433 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
434 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
435 module_param(rcu_resched_ns, long, 0644);
436
437 /*
438 * How long the grace period must be before we start recruiting
439 * quiescent-state help from rcu_note_context_switch().
440 */
441 static ulong jiffies_till_sched_qs = ULONG_MAX;
442 module_param(jiffies_till_sched_qs, ulong, 0444);
443 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
444 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
445
446 /*
447 * Make sure that we give the grace-period kthread time to detect any
448 * idle CPUs before taking active measures to force quiescent states.
449 * However, don't go below 100 milliseconds, adjusted upwards for really
450 * large systems.
451 */
452 static void adjust_jiffies_till_sched_qs(void)
453 {
454 unsigned long j;
455
456 /* If jiffies_till_sched_qs was specified, respect the request. */
457 if (jiffies_till_sched_qs != ULONG_MAX) {
458 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
459 return;
460 }
461 /* Otherwise, set to third fqs scan, but bound below on large system. */
462 j = READ_ONCE(jiffies_till_first_fqs) +
463 2 * READ_ONCE(jiffies_till_next_fqs);
464 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
465 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
466 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
467 WRITE_ONCE(jiffies_to_sched_qs, j);
468 }
469
470 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
471 {
472 ulong j;
473 int ret = kstrtoul(val, 0, &j);
474
475 if (!ret) {
476 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
477 adjust_jiffies_till_sched_qs();
478 }
479 return ret;
480 }
481
482 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
483 {
484 ulong j;
485 int ret = kstrtoul(val, 0, &j);
486
487 if (!ret) {
488 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
489 adjust_jiffies_till_sched_qs();
490 }
491 return ret;
492 }
493
494 static struct kernel_param_ops first_fqs_jiffies_ops = {
495 .set = param_set_first_fqs_jiffies,
496 .get = param_get_ulong,
497 };
498
499 static struct kernel_param_ops next_fqs_jiffies_ops = {
500 .set = param_set_next_fqs_jiffies,
501 .get = param_get_ulong,
502 };
503
504 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
505 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
506 module_param(rcu_kick_kthreads, bool, 0644);
507
508 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
509 static int rcu_pending(int user);
510
511 /*
512 * Return the number of RCU GPs completed thus far for debug & stats.
513 */
514 unsigned long rcu_get_gp_seq(void)
515 {
516 return READ_ONCE(rcu_state.gp_seq);
517 }
518 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
519
520 /*
521 * Return the number of RCU expedited batches completed thus far for
522 * debug & stats. Odd numbers mean that a batch is in progress, even
523 * numbers mean idle. The value returned will thus be roughly double
524 * the cumulative batches since boot.
525 */
526 unsigned long rcu_exp_batches_completed(void)
527 {
528 return rcu_state.expedited_sequence;
529 }
530 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
531
532 /*
533 * Return the root node of the rcu_state structure.
534 */
535 static struct rcu_node *rcu_get_root(void)
536 {
537 return &rcu_state.node[0];
538 }
539
540 /*
541 * Send along grace-period-related data for rcutorture diagnostics.
542 */
543 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
544 unsigned long *gp_seq)
545 {
546 switch (test_type) {
547 case RCU_FLAVOR:
548 *flags = READ_ONCE(rcu_state.gp_flags);
549 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
550 break;
551 default:
552 break;
553 }
554 }
555 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
556
557 /*
558 * Enter an RCU extended quiescent state, which can be either the
559 * idle loop or adaptive-tickless usermode execution.
560 *
561 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
562 * the possibility of usermode upcalls having messed up our count
563 * of interrupt nesting level during the prior busy period.
564 */
565 static void rcu_eqs_enter(bool user)
566 {
567 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
568
569 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
570 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
571 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
572 rdp->dynticks_nesting == 0);
573 if (rdp->dynticks_nesting != 1) {
574 rdp->dynticks_nesting--;
575 return;
576 }
577
578 lockdep_assert_irqs_disabled();
579 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks));
580 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
581 rdp = this_cpu_ptr(&rcu_data);
582 do_nocb_deferred_wakeup(rdp);
583 rcu_prepare_for_idle();
584 rcu_preempt_deferred_qs(current);
585 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
586 rcu_dynticks_eqs_enter();
587 rcu_dynticks_task_enter();
588 }
589
590 /**
591 * rcu_idle_enter - inform RCU that current CPU is entering idle
592 *
593 * Enter idle mode, in other words, -leave- the mode in which RCU
594 * read-side critical sections can occur. (Though RCU read-side
595 * critical sections can occur in irq handlers in idle, a possibility
596 * handled by irq_enter() and irq_exit().)
597 *
598 * If you add or remove a call to rcu_idle_enter(), be sure to test with
599 * CONFIG_RCU_EQS_DEBUG=y.
600 */
601 void rcu_idle_enter(void)
602 {
603 lockdep_assert_irqs_disabled();
604 rcu_eqs_enter(false);
605 }
606
607 #ifdef CONFIG_NO_HZ_FULL
608 /**
609 * rcu_user_enter - inform RCU that we are resuming userspace.
610 *
611 * Enter RCU idle mode right before resuming userspace. No use of RCU
612 * is permitted between this call and rcu_user_exit(). This way the
613 * CPU doesn't need to maintain the tick for RCU maintenance purposes
614 * when the CPU runs in userspace.
615 *
616 * If you add or remove a call to rcu_user_enter(), be sure to test with
617 * CONFIG_RCU_EQS_DEBUG=y.
618 */
619 void rcu_user_enter(void)
620 {
621 lockdep_assert_irqs_disabled();
622 rcu_eqs_enter(true);
623 }
624 #endif /* CONFIG_NO_HZ_FULL */
625
626 /*
627 * If we are returning from the outermost NMI handler that interrupted an
628 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
629 * to let the RCU grace-period handling know that the CPU is back to
630 * being RCU-idle.
631 *
632 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
633 * with CONFIG_RCU_EQS_DEBUG=y.
634 */
635 static __always_inline void rcu_nmi_exit_common(bool irq)
636 {
637 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
638
639 /*
640 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
641 * (We are exiting an NMI handler, so RCU better be paying attention
642 * to us!)
643 */
644 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
645 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
646
647 /*
648 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
649 * leave it in non-RCU-idle state.
650 */
651 if (rdp->dynticks_nmi_nesting != 1) {
652 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2,
653 atomic_read(&rdp->dynticks));
654 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
655 rdp->dynticks_nmi_nesting - 2);
656 return;
657 }
658
659 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
660 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks));
661 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
662
663 if (irq)
664 rcu_prepare_for_idle();
665
666 rcu_dynticks_eqs_enter();
667
668 if (irq)
669 rcu_dynticks_task_enter();
670 }
671
672 /**
673 * rcu_nmi_exit - inform RCU of exit from NMI context
674 *
675 * If you add or remove a call to rcu_nmi_exit(), be sure to test
676 * with CONFIG_RCU_EQS_DEBUG=y.
677 */
678 void rcu_nmi_exit(void)
679 {
680 rcu_nmi_exit_common(false);
681 }
682
683 /**
684 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
685 *
686 * Exit from an interrupt handler, which might possibly result in entering
687 * idle mode, in other words, leaving the mode in which read-side critical
688 * sections can occur. The caller must have disabled interrupts.
689 *
690 * This code assumes that the idle loop never does anything that might
691 * result in unbalanced calls to irq_enter() and irq_exit(). If your
692 * architecture's idle loop violates this assumption, RCU will give you what
693 * you deserve, good and hard. But very infrequently and irreproducibly.
694 *
695 * Use things like work queues to work around this limitation.
696 *
697 * You have been warned.
698 *
699 * If you add or remove a call to rcu_irq_exit(), be sure to test with
700 * CONFIG_RCU_EQS_DEBUG=y.
701 */
702 void rcu_irq_exit(void)
703 {
704 lockdep_assert_irqs_disabled();
705 rcu_nmi_exit_common(true);
706 }
707
708 /*
709 * Wrapper for rcu_irq_exit() where interrupts are enabled.
710 *
711 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
712 * with CONFIG_RCU_EQS_DEBUG=y.
713 */
714 void rcu_irq_exit_irqson(void)
715 {
716 unsigned long flags;
717
718 local_irq_save(flags);
719 rcu_irq_exit();
720 local_irq_restore(flags);
721 }
722
723 /*
724 * Exit an RCU extended quiescent state, which can be either the
725 * idle loop or adaptive-tickless usermode execution.
726 *
727 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
728 * allow for the possibility of usermode upcalls messing up our count of
729 * interrupt nesting level during the busy period that is just now starting.
730 */
731 static void rcu_eqs_exit(bool user)
732 {
733 struct rcu_data *rdp;
734 long oldval;
735
736 lockdep_assert_irqs_disabled();
737 rdp = this_cpu_ptr(&rcu_data);
738 oldval = rdp->dynticks_nesting;
739 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
740 if (oldval) {
741 rdp->dynticks_nesting++;
742 return;
743 }
744 rcu_dynticks_task_exit();
745 rcu_dynticks_eqs_exit();
746 rcu_cleanup_after_idle();
747 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks));
748 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
749 WRITE_ONCE(rdp->dynticks_nesting, 1);
750 WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
751 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
752 }
753
754 /**
755 * rcu_idle_exit - inform RCU that current CPU is leaving idle
756 *
757 * Exit idle mode, in other words, -enter- the mode in which RCU
758 * read-side critical sections can occur.
759 *
760 * If you add or remove a call to rcu_idle_exit(), be sure to test with
761 * CONFIG_RCU_EQS_DEBUG=y.
762 */
763 void rcu_idle_exit(void)
764 {
765 unsigned long flags;
766
767 local_irq_save(flags);
768 rcu_eqs_exit(false);
769 local_irq_restore(flags);
770 }
771
772 #ifdef CONFIG_NO_HZ_FULL
773 /**
774 * rcu_user_exit - inform RCU that we are exiting userspace.
775 *
776 * Exit RCU idle mode while entering the kernel because it can
777 * run a RCU read side critical section anytime.
778 *
779 * If you add or remove a call to rcu_user_exit(), be sure to test with
780 * CONFIG_RCU_EQS_DEBUG=y.
781 */
782 void rcu_user_exit(void)
783 {
784 rcu_eqs_exit(1);
785 }
786 #endif /* CONFIG_NO_HZ_FULL */
787
788 /**
789 * rcu_nmi_enter_common - inform RCU of entry to NMI context
790 * @irq: Is this call from rcu_irq_enter?
791 *
792 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
793 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
794 * that the CPU is active. This implementation permits nested NMIs, as
795 * long as the nesting level does not overflow an int. (You will probably
796 * run out of stack space first.)
797 *
798 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
799 * with CONFIG_RCU_EQS_DEBUG=y.
800 */
801 static __always_inline void rcu_nmi_enter_common(bool irq)
802 {
803 long incby = 2;
804 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
805
806 /* Complain about underflow. */
807 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
808
809 /*
810 * If idle from RCU viewpoint, atomically increment ->dynticks
811 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
812 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
813 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
814 * to be in the outermost NMI handler that interrupted an RCU-idle
815 * period (observation due to Andy Lutomirski).
816 */
817 if (rcu_dynticks_curr_cpu_in_eqs()) {
818
819 if (irq)
820 rcu_dynticks_task_exit();
821
822 rcu_dynticks_eqs_exit();
823
824 if (irq)
825 rcu_cleanup_after_idle();
826
827 incby = 1;
828 } else if (irq && tick_nohz_full_cpu(rdp->cpu) &&
829 rdp->dynticks_nmi_nesting == DYNTICK_IRQ_NONIDLE &&
830 READ_ONCE(rdp->rcu_urgent_qs) &&
831 !READ_ONCE(rdp->rcu_forced_tick)) {
832 raw_spin_lock_rcu_node(rdp->mynode);
833 // Recheck under lock.
834 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
835 WRITE_ONCE(rdp->rcu_forced_tick, true);
836 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
837 }
838 raw_spin_unlock_rcu_node(rdp->mynode);
839 }
840 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
841 rdp->dynticks_nmi_nesting,
842 rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks));
843 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
844 rdp->dynticks_nmi_nesting + incby);
845 barrier();
846 }
847
848 /**
849 * rcu_nmi_enter - inform RCU of entry to NMI context
850 */
851 void rcu_nmi_enter(void)
852 {
853 rcu_nmi_enter_common(false);
854 }
855 NOKPROBE_SYMBOL(rcu_nmi_enter);
856
857 /**
858 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
859 *
860 * Enter an interrupt handler, which might possibly result in exiting
861 * idle mode, in other words, entering the mode in which read-side critical
862 * sections can occur. The caller must have disabled interrupts.
863 *
864 * Note that the Linux kernel is fully capable of entering an interrupt
865 * handler that it never exits, for example when doing upcalls to user mode!
866 * This code assumes that the idle loop never does upcalls to user mode.
867 * If your architecture's idle loop does do upcalls to user mode (or does
868 * anything else that results in unbalanced calls to the irq_enter() and
869 * irq_exit() functions), RCU will give you what you deserve, good and hard.
870 * But very infrequently and irreproducibly.
871 *
872 * Use things like work queues to work around this limitation.
873 *
874 * You have been warned.
875 *
876 * If you add or remove a call to rcu_irq_enter(), be sure to test with
877 * CONFIG_RCU_EQS_DEBUG=y.
878 */
879 void rcu_irq_enter(void)
880 {
881 lockdep_assert_irqs_disabled();
882 rcu_nmi_enter_common(true);
883 }
884
885 /*
886 * Wrapper for rcu_irq_enter() where interrupts are enabled.
887 *
888 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
889 * with CONFIG_RCU_EQS_DEBUG=y.
890 */
891 void rcu_irq_enter_irqson(void)
892 {
893 unsigned long flags;
894
895 local_irq_save(flags);
896 rcu_irq_enter();
897 local_irq_restore(flags);
898 }
899
900 /*
901 * If any sort of urgency was applied to the current CPU (for example,
902 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
903 * to get to a quiescent state, disable it.
904 */
905 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
906 {
907 raw_lockdep_assert_held_rcu_node(rdp->mynode);
908 WRITE_ONCE(rdp->rcu_urgent_qs, false);
909 WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
910 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
911 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
912 WRITE_ONCE(rdp->rcu_forced_tick, false);
913 }
914 }
915
916 /**
917 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
918 *
919 * Return true if RCU is watching the running CPU, which means that this
920 * CPU can safely enter RCU read-side critical sections. In other words,
921 * if the current CPU is not in its idle loop or is in an interrupt or
922 * NMI handler, return true.
923 */
924 bool notrace rcu_is_watching(void)
925 {
926 bool ret;
927
928 preempt_disable_notrace();
929 ret = !rcu_dynticks_curr_cpu_in_eqs();
930 preempt_enable_notrace();
931 return ret;
932 }
933 EXPORT_SYMBOL_GPL(rcu_is_watching);
934
935 /*
936 * If a holdout task is actually running, request an urgent quiescent
937 * state from its CPU. This is unsynchronized, so migrations can cause
938 * the request to go to the wrong CPU. Which is OK, all that will happen
939 * is that the CPU's next context switch will be a bit slower and next
940 * time around this task will generate another request.
941 */
942 void rcu_request_urgent_qs_task(struct task_struct *t)
943 {
944 int cpu;
945
946 barrier();
947 cpu = task_cpu(t);
948 if (!task_curr(t))
949 return; /* This task is not running on that CPU. */
950 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
951 }
952
953 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
954
955 /*
956 * Is the current CPU online as far as RCU is concerned?
957 *
958 * Disable preemption to avoid false positives that could otherwise
959 * happen due to the current CPU number being sampled, this task being
960 * preempted, its old CPU being taken offline, resuming on some other CPU,
961 * then determining that its old CPU is now offline.
962 *
963 * Disable checking if in an NMI handler because we cannot safely
964 * report errors from NMI handlers anyway. In addition, it is OK to use
965 * RCU on an offline processor during initial boot, hence the check for
966 * rcu_scheduler_fully_active.
967 */
968 bool rcu_lockdep_current_cpu_online(void)
969 {
970 struct rcu_data *rdp;
971 struct rcu_node *rnp;
972 bool ret = false;
973
974 if (in_nmi() || !rcu_scheduler_fully_active)
975 return true;
976 preempt_disable();
977 rdp = this_cpu_ptr(&rcu_data);
978 rnp = rdp->mynode;
979 if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
980 ret = true;
981 preempt_enable();
982 return ret;
983 }
984 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
985
986 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
987
988 /*
989 * We are reporting a quiescent state on behalf of some other CPU, so
990 * it is our responsibility to check for and handle potential overflow
991 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
992 * After all, the CPU might be in deep idle state, and thus executing no
993 * code whatsoever.
994 */
995 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
996 {
997 raw_lockdep_assert_held_rcu_node(rnp);
998 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
999 rnp->gp_seq))
1000 WRITE_ONCE(rdp->gpwrap, true);
1001 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1002 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1003 }
1004
1005 /*
1006 * Snapshot the specified CPU's dynticks counter so that we can later
1007 * credit them with an implicit quiescent state. Return 1 if this CPU
1008 * is in dynticks idle mode, which is an extended quiescent state.
1009 */
1010 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1011 {
1012 rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1013 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1014 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1015 rcu_gpnum_ovf(rdp->mynode, rdp);
1016 return 1;
1017 }
1018 return 0;
1019 }
1020
1021 /*
1022 * Return true if the specified CPU has passed through a quiescent
1023 * state by virtue of being in or having passed through an dynticks
1024 * idle state since the last call to dyntick_save_progress_counter()
1025 * for this same CPU, or by virtue of having been offline.
1026 */
1027 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1028 {
1029 unsigned long jtsq;
1030 bool *rnhqp;
1031 bool *ruqp;
1032 struct rcu_node *rnp = rdp->mynode;
1033
1034 /*
1035 * If the CPU passed through or entered a dynticks idle phase with
1036 * no active irq/NMI handlers, then we can safely pretend that the CPU
1037 * already acknowledged the request to pass through a quiescent
1038 * state. Either way, that CPU cannot possibly be in an RCU
1039 * read-side critical section that started before the beginning
1040 * of the current RCU grace period.
1041 */
1042 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1043 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1044 rcu_gpnum_ovf(rnp, rdp);
1045 return 1;
1046 }
1047
1048 /* If waiting too long on an offline CPU, complain. */
1049 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
1050 time_after(jiffies, rcu_state.gp_start + HZ)) {
1051 bool onl;
1052 struct rcu_node *rnp1;
1053
1054 WARN_ON(1); /* Offline CPUs are supposed to report QS! */
1055 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1056 __func__, rnp->grplo, rnp->grphi, rnp->level,
1057 (long)rnp->gp_seq, (long)rnp->completedqs);
1058 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1059 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1060 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1061 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1062 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1063 __func__, rdp->cpu, ".o"[onl],
1064 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1065 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1066 return 1; /* Break things loose after complaining. */
1067 }
1068
1069 /*
1070 * A CPU running for an extended time within the kernel can
1071 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1072 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1073 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
1074 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1075 * variable are safe because the assignments are repeated if this
1076 * CPU failed to pass through a quiescent state. This code
1077 * also checks .jiffies_resched in case jiffies_to_sched_qs
1078 * is set way high.
1079 */
1080 jtsq = READ_ONCE(jiffies_to_sched_qs);
1081 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1082 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1083 if (!READ_ONCE(*rnhqp) &&
1084 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1085 time_after(jiffies, rcu_state.jiffies_resched) ||
1086 rcu_state.cbovld)) {
1087 WRITE_ONCE(*rnhqp, true);
1088 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1089 smp_store_release(ruqp, true);
1090 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1091 WRITE_ONCE(*ruqp, true);
1092 }
1093
1094 /*
1095 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1096 * The above code handles this, but only for straight cond_resched().
1097 * And some in-kernel loops check need_resched() before calling
1098 * cond_resched(), which defeats the above code for CPUs that are
1099 * running in-kernel with scheduling-clock interrupts disabled.
1100 * So hit them over the head with the resched_cpu() hammer!
1101 */
1102 if (tick_nohz_full_cpu(rdp->cpu) &&
1103 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
1104 rcu_state.cbovld)) {
1105 WRITE_ONCE(*ruqp, true);
1106 resched_cpu(rdp->cpu);
1107 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1108 }
1109
1110 /*
1111 * If more than halfway to RCU CPU stall-warning time, invoke
1112 * resched_cpu() more frequently to try to loosen things up a bit.
1113 * Also check to see if the CPU is getting hammered with interrupts,
1114 * but only once per grace period, just to keep the IPIs down to
1115 * a dull roar.
1116 */
1117 if (time_after(jiffies, rcu_state.jiffies_resched)) {
1118 if (time_after(jiffies,
1119 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1120 resched_cpu(rdp->cpu);
1121 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1122 }
1123 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1124 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1125 (rnp->ffmask & rdp->grpmask)) {
1126 init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1127 atomic_set(&rdp->rcu_iw.flags, IRQ_WORK_HARD_IRQ);
1128 rdp->rcu_iw_pending = true;
1129 rdp->rcu_iw_gp_seq = rnp->gp_seq;
1130 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1131 }
1132 }
1133
1134 return 0;
1135 }
1136
1137 /* Trace-event wrapper function for trace_rcu_future_grace_period. */
1138 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1139 unsigned long gp_seq_req, const char *s)
1140 {
1141 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
1142 gp_seq_req, rnp->level,
1143 rnp->grplo, rnp->grphi, s);
1144 }
1145
1146 /*
1147 * rcu_start_this_gp - Request the start of a particular grace period
1148 * @rnp_start: The leaf node of the CPU from which to start.
1149 * @rdp: The rcu_data corresponding to the CPU from which to start.
1150 * @gp_seq_req: The gp_seq of the grace period to start.
1151 *
1152 * Start the specified grace period, as needed to handle newly arrived
1153 * callbacks. The required future grace periods are recorded in each
1154 * rcu_node structure's ->gp_seq_needed field. Returns true if there
1155 * is reason to awaken the grace-period kthread.
1156 *
1157 * The caller must hold the specified rcu_node structure's ->lock, which
1158 * is why the caller is responsible for waking the grace-period kthread.
1159 *
1160 * Returns true if the GP thread needs to be awakened else false.
1161 */
1162 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1163 unsigned long gp_seq_req)
1164 {
1165 bool ret = false;
1166 struct rcu_node *rnp;
1167
1168 /*
1169 * Use funnel locking to either acquire the root rcu_node
1170 * structure's lock or bail out if the need for this grace period
1171 * has already been recorded -- or if that grace period has in
1172 * fact already started. If there is already a grace period in
1173 * progress in a non-leaf node, no recording is needed because the
1174 * end of the grace period will scan the leaf rcu_node structures.
1175 * Note that rnp_start->lock must not be released.
1176 */
1177 raw_lockdep_assert_held_rcu_node(rnp_start);
1178 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1179 for (rnp = rnp_start; 1; rnp = rnp->parent) {
1180 if (rnp != rnp_start)
1181 raw_spin_lock_rcu_node(rnp);
1182 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1183 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1184 (rnp != rnp_start &&
1185 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1186 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1187 TPS("Prestarted"));
1188 goto unlock_out;
1189 }
1190 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1191 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1192 /*
1193 * We just marked the leaf or internal node, and a
1194 * grace period is in progress, which means that
1195 * rcu_gp_cleanup() will see the marking. Bail to
1196 * reduce contention.
1197 */
1198 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1199 TPS("Startedleaf"));
1200 goto unlock_out;
1201 }
1202 if (rnp != rnp_start && rnp->parent != NULL)
1203 raw_spin_unlock_rcu_node(rnp);
1204 if (!rnp->parent)
1205 break; /* At root, and perhaps also leaf. */
1206 }
1207
1208 /* If GP already in progress, just leave, otherwise start one. */
1209 if (rcu_gp_in_progress()) {
1210 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1211 goto unlock_out;
1212 }
1213 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1214 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1215 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1216 if (!READ_ONCE(rcu_state.gp_kthread)) {
1217 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1218 goto unlock_out;
1219 }
1220 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
1221 ret = true; /* Caller must wake GP kthread. */
1222 unlock_out:
1223 /* Push furthest requested GP to leaf node and rcu_data structure. */
1224 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1225 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1226 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1227 }
1228 if (rnp != rnp_start)
1229 raw_spin_unlock_rcu_node(rnp);
1230 return ret;
1231 }
1232
1233 /*
1234 * Clean up any old requests for the just-ended grace period. Also return
1235 * whether any additional grace periods have been requested.
1236 */
1237 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1238 {
1239 bool needmore;
1240 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1241
1242 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1243 if (!needmore)
1244 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1245 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1246 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1247 return needmore;
1248 }
1249
1250 /*
1251 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an
1252 * interrupt or softirq handler, in which case we just might immediately
1253 * sleep upon return, resulting in a grace-period hang), and don't bother
1254 * awakening when there is nothing for the grace-period kthread to do
1255 * (as in several CPUs raced to awaken, we lost), and finally don't try
1256 * to awaken a kthread that has not yet been created. If all those checks
1257 * are passed, track some debug information and awaken.
1258 *
1259 * So why do the self-wakeup when in an interrupt or softirq handler
1260 * in the grace-period kthread's context? Because the kthread might have
1261 * been interrupted just as it was going to sleep, and just after the final
1262 * pre-sleep check of the awaken condition. In this case, a wakeup really
1263 * is required, and is therefore supplied.
1264 */
1265 static void rcu_gp_kthread_wake(void)
1266 {
1267 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1268
1269 if ((current == t && !in_irq() && !in_serving_softirq()) ||
1270 !READ_ONCE(rcu_state.gp_flags) || !t)
1271 return;
1272 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1273 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1274 swake_up_one(&rcu_state.gp_wq);
1275 }
1276
1277 /*
1278 * If there is room, assign a ->gp_seq number to any callbacks on this
1279 * CPU that have not already been assigned. Also accelerate any callbacks
1280 * that were previously assigned a ->gp_seq number that has since proven
1281 * to be too conservative, which can happen if callbacks get assigned a
1282 * ->gp_seq number while RCU is idle, but with reference to a non-root
1283 * rcu_node structure. This function is idempotent, so it does not hurt
1284 * to call it repeatedly. Returns an flag saying that we should awaken
1285 * the RCU grace-period kthread.
1286 *
1287 * The caller must hold rnp->lock with interrupts disabled.
1288 */
1289 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1290 {
1291 unsigned long gp_seq_req;
1292 bool ret = false;
1293
1294 rcu_lockdep_assert_cblist_protected(rdp);
1295 raw_lockdep_assert_held_rcu_node(rnp);
1296
1297 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1298 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1299 return false;
1300
1301 /*
1302 * Callbacks are often registered with incomplete grace-period
1303 * information. Something about the fact that getting exact
1304 * information requires acquiring a global lock... RCU therefore
1305 * makes a conservative estimate of the grace period number at which
1306 * a given callback will become ready to invoke. The following
1307 * code checks this estimate and improves it when possible, thus
1308 * accelerating callback invocation to an earlier grace-period
1309 * number.
1310 */
1311 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1312 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1313 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1314
1315 /* Trace depending on how much we were able to accelerate. */
1316 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1317 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
1318 else
1319 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
1320 return ret;
1321 }
1322
1323 /*
1324 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1325 * rcu_node structure's ->lock be held. It consults the cached value
1326 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1327 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1328 * while holding the leaf rcu_node structure's ->lock.
1329 */
1330 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1331 struct rcu_data *rdp)
1332 {
1333 unsigned long c;
1334 bool needwake;
1335
1336 rcu_lockdep_assert_cblist_protected(rdp);
1337 c = rcu_seq_snap(&rcu_state.gp_seq);
1338 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1339 /* Old request still live, so mark recent callbacks. */
1340 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1341 return;
1342 }
1343 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1344 needwake = rcu_accelerate_cbs(rnp, rdp);
1345 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1346 if (needwake)
1347 rcu_gp_kthread_wake();
1348 }
1349
1350 /*
1351 * Move any callbacks whose grace period has completed to the
1352 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1353 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1354 * sublist. This function is idempotent, so it does not hurt to
1355 * invoke it repeatedly. As long as it is not invoked -too- often...
1356 * Returns true if the RCU grace-period kthread needs to be awakened.
1357 *
1358 * The caller must hold rnp->lock with interrupts disabled.
1359 */
1360 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1361 {
1362 rcu_lockdep_assert_cblist_protected(rdp);
1363 raw_lockdep_assert_held_rcu_node(rnp);
1364
1365 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1366 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1367 return false;
1368
1369 /*
1370 * Find all callbacks whose ->gp_seq numbers indicate that they
1371 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1372 */
1373 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1374
1375 /* Classify any remaining callbacks. */
1376 return rcu_accelerate_cbs(rnp, rdp);
1377 }
1378
1379 /*
1380 * Move and classify callbacks, but only if doing so won't require
1381 * that the RCU grace-period kthread be awakened.
1382 */
1383 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1384 struct rcu_data *rdp)
1385 {
1386 rcu_lockdep_assert_cblist_protected(rdp);
1387 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) ||
1388 !raw_spin_trylock_rcu_node(rnp))
1389 return;
1390 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1391 raw_spin_unlock_rcu_node(rnp);
1392 }
1393
1394 /*
1395 * Update CPU-local rcu_data state to record the beginnings and ends of
1396 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1397 * structure corresponding to the current CPU, and must have irqs disabled.
1398 * Returns true if the grace-period kthread needs to be awakened.
1399 */
1400 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1401 {
1402 bool ret = false;
1403 bool need_qs;
1404 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1405 rcu_segcblist_is_offloaded(&rdp->cblist);
1406
1407 raw_lockdep_assert_held_rcu_node(rnp);
1408
1409 if (rdp->gp_seq == rnp->gp_seq)
1410 return false; /* Nothing to do. */
1411
1412 /* Handle the ends of any preceding grace periods first. */
1413 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1414 unlikely(READ_ONCE(rdp->gpwrap))) {
1415 if (!offloaded)
1416 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1417 rdp->core_needs_qs = false;
1418 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1419 } else {
1420 if (!offloaded)
1421 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1422 if (rdp->core_needs_qs)
1423 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1424 }
1425
1426 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1427 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1428 unlikely(READ_ONCE(rdp->gpwrap))) {
1429 /*
1430 * If the current grace period is waiting for this CPU,
1431 * set up to detect a quiescent state, otherwise don't
1432 * go looking for one.
1433 */
1434 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1435 need_qs = !!(rnp->qsmask & rdp->grpmask);
1436 rdp->cpu_no_qs.b.norm = need_qs;
1437 rdp->core_needs_qs = need_qs;
1438 zero_cpu_stall_ticks(rdp);
1439 }
1440 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
1441 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1442 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1443 WRITE_ONCE(rdp->gpwrap, false);
1444 rcu_gpnum_ovf(rnp, rdp);
1445 return ret;
1446 }
1447
1448 static void note_gp_changes(struct rcu_data *rdp)
1449 {
1450 unsigned long flags;
1451 bool needwake;
1452 struct rcu_node *rnp;
1453
1454 local_irq_save(flags);
1455 rnp = rdp->mynode;
1456 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1457 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1458 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1459 local_irq_restore(flags);
1460 return;
1461 }
1462 needwake = __note_gp_changes(rnp, rdp);
1463 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1464 if (needwake)
1465 rcu_gp_kthread_wake();
1466 }
1467
1468 static void rcu_gp_slow(int delay)
1469 {
1470 if (delay > 0 &&
1471 !(rcu_seq_ctr(rcu_state.gp_seq) %
1472 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1473 schedule_timeout_uninterruptible(delay);
1474 }
1475
1476 /*
1477 * Initialize a new grace period. Return false if no grace period required.
1478 */
1479 static bool rcu_gp_init(void)
1480 {
1481 unsigned long flags;
1482 unsigned long oldmask;
1483 unsigned long mask;
1484 struct rcu_data *rdp;
1485 struct rcu_node *rnp = rcu_get_root();
1486
1487 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1488 raw_spin_lock_irq_rcu_node(rnp);
1489 if (!READ_ONCE(rcu_state.gp_flags)) {
1490 /* Spurious wakeup, tell caller to go back to sleep. */
1491 raw_spin_unlock_irq_rcu_node(rnp);
1492 return false;
1493 }
1494 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1495
1496 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1497 /*
1498 * Grace period already in progress, don't start another.
1499 * Not supposed to be able to happen.
1500 */
1501 raw_spin_unlock_irq_rcu_node(rnp);
1502 return false;
1503 }
1504
1505 /* Advance to a new grace period and initialize state. */
1506 record_gp_stall_check_time();
1507 /* Record GP times before starting GP, hence rcu_seq_start(). */
1508 rcu_seq_start(&rcu_state.gp_seq);
1509 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1510 raw_spin_unlock_irq_rcu_node(rnp);
1511
1512 /*
1513 * Apply per-leaf buffered online and offline operations to the
1514 * rcu_node tree. Note that this new grace period need not wait
1515 * for subsequent online CPUs, and that quiescent-state forcing
1516 * will handle subsequent offline CPUs.
1517 */
1518 rcu_state.gp_state = RCU_GP_ONOFF;
1519 rcu_for_each_leaf_node(rnp) {
1520 raw_spin_lock(&rcu_state.ofl_lock);
1521 raw_spin_lock_irq_rcu_node(rnp);
1522 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1523 !rnp->wait_blkd_tasks) {
1524 /* Nothing to do on this leaf rcu_node structure. */
1525 raw_spin_unlock_irq_rcu_node(rnp);
1526 raw_spin_unlock(&rcu_state.ofl_lock);
1527 continue;
1528 }
1529
1530 /* Record old state, apply changes to ->qsmaskinit field. */
1531 oldmask = rnp->qsmaskinit;
1532 rnp->qsmaskinit = rnp->qsmaskinitnext;
1533
1534 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1535 if (!oldmask != !rnp->qsmaskinit) {
1536 if (!oldmask) { /* First online CPU for rcu_node. */
1537 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1538 rcu_init_new_rnp(rnp);
1539 } else if (rcu_preempt_has_tasks(rnp)) {
1540 rnp->wait_blkd_tasks = true; /* blocked tasks */
1541 } else { /* Last offline CPU and can propagate. */
1542 rcu_cleanup_dead_rnp(rnp);
1543 }
1544 }
1545
1546 /*
1547 * If all waited-on tasks from prior grace period are
1548 * done, and if all this rcu_node structure's CPUs are
1549 * still offline, propagate up the rcu_node tree and
1550 * clear ->wait_blkd_tasks. Otherwise, if one of this
1551 * rcu_node structure's CPUs has since come back online,
1552 * simply clear ->wait_blkd_tasks.
1553 */
1554 if (rnp->wait_blkd_tasks &&
1555 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1556 rnp->wait_blkd_tasks = false;
1557 if (!rnp->qsmaskinit)
1558 rcu_cleanup_dead_rnp(rnp);
1559 }
1560
1561 raw_spin_unlock_irq_rcu_node(rnp);
1562 raw_spin_unlock(&rcu_state.ofl_lock);
1563 }
1564 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1565
1566 /*
1567 * Set the quiescent-state-needed bits in all the rcu_node
1568 * structures for all currently online CPUs in breadth-first
1569 * order, starting from the root rcu_node structure, relying on the
1570 * layout of the tree within the rcu_state.node[] array. Note that
1571 * other CPUs will access only the leaves of the hierarchy, thus
1572 * seeing that no grace period is in progress, at least until the
1573 * corresponding leaf node has been initialized.
1574 *
1575 * The grace period cannot complete until the initialization
1576 * process finishes, because this kthread handles both.
1577 */
1578 rcu_state.gp_state = RCU_GP_INIT;
1579 rcu_for_each_node_breadth_first(rnp) {
1580 rcu_gp_slow(gp_init_delay);
1581 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1582 rdp = this_cpu_ptr(&rcu_data);
1583 rcu_preempt_check_blocked_tasks(rnp);
1584 rnp->qsmask = rnp->qsmaskinit;
1585 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1586 if (rnp == rdp->mynode)
1587 (void)__note_gp_changes(rnp, rdp);
1588 rcu_preempt_boost_start_gp(rnp);
1589 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1590 rnp->level, rnp->grplo,
1591 rnp->grphi, rnp->qsmask);
1592 /* Quiescent states for tasks on any now-offline CPUs. */
1593 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1594 rnp->rcu_gp_init_mask = mask;
1595 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1596 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1597 else
1598 raw_spin_unlock_irq_rcu_node(rnp);
1599 cond_resched_tasks_rcu_qs();
1600 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1601 }
1602
1603 return true;
1604 }
1605
1606 /*
1607 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1608 * time.
1609 */
1610 static bool rcu_gp_fqs_check_wake(int *gfp)
1611 {
1612 struct rcu_node *rnp = rcu_get_root();
1613
1614 /* Someone like call_rcu() requested a force-quiescent-state scan. */
1615 *gfp = READ_ONCE(rcu_state.gp_flags);
1616 if (*gfp & RCU_GP_FLAG_FQS)
1617 return true;
1618
1619 /* The current grace period has completed. */
1620 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1621 return true;
1622
1623 return false;
1624 }
1625
1626 /*
1627 * Do one round of quiescent-state forcing.
1628 */
1629 static void rcu_gp_fqs(bool first_time)
1630 {
1631 struct rcu_node *rnp = rcu_get_root();
1632
1633 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1634 rcu_state.n_force_qs++;
1635 if (first_time) {
1636 /* Collect dyntick-idle snapshots. */
1637 force_qs_rnp(dyntick_save_progress_counter);
1638 } else {
1639 /* Handle dyntick-idle and offline CPUs. */
1640 force_qs_rnp(rcu_implicit_dynticks_qs);
1641 }
1642 /* Clear flag to prevent immediate re-entry. */
1643 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1644 raw_spin_lock_irq_rcu_node(rnp);
1645 WRITE_ONCE(rcu_state.gp_flags,
1646 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1647 raw_spin_unlock_irq_rcu_node(rnp);
1648 }
1649 }
1650
1651 /*
1652 * Loop doing repeated quiescent-state forcing until the grace period ends.
1653 */
1654 static void rcu_gp_fqs_loop(void)
1655 {
1656 bool first_gp_fqs;
1657 int gf;
1658 unsigned long j;
1659 int ret;
1660 struct rcu_node *rnp = rcu_get_root();
1661
1662 first_gp_fqs = true;
1663 j = READ_ONCE(jiffies_till_first_fqs);
1664 ret = 0;
1665 for (;;) {
1666 if (!ret) {
1667 rcu_state.jiffies_force_qs = jiffies + j;
1668 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1669 jiffies + (j ? 3 * j : 2));
1670 }
1671 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1672 TPS("fqswait"));
1673 rcu_state.gp_state = RCU_GP_WAIT_FQS;
1674 ret = swait_event_idle_timeout_exclusive(
1675 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1676 rcu_state.gp_state = RCU_GP_DOING_FQS;
1677 /* Locking provides needed memory barriers. */
1678 /* If grace period done, leave loop. */
1679 if (!READ_ONCE(rnp->qsmask) &&
1680 !rcu_preempt_blocked_readers_cgp(rnp))
1681 break;
1682 /* If time for quiescent-state forcing, do it. */
1683 if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) ||
1684 (gf & RCU_GP_FLAG_FQS)) {
1685 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1686 TPS("fqsstart"));
1687 rcu_gp_fqs(first_gp_fqs);
1688 first_gp_fqs = false;
1689 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1690 TPS("fqsend"));
1691 cond_resched_tasks_rcu_qs();
1692 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1693 ret = 0; /* Force full wait till next FQS. */
1694 j = READ_ONCE(jiffies_till_next_fqs);
1695 } else {
1696 /* Deal with stray signal. */
1697 cond_resched_tasks_rcu_qs();
1698 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1699 WARN_ON(signal_pending(current));
1700 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1701 TPS("fqswaitsig"));
1702 ret = 1; /* Keep old FQS timing. */
1703 j = jiffies;
1704 if (time_after(jiffies, rcu_state.jiffies_force_qs))
1705 j = 1;
1706 else
1707 j = rcu_state.jiffies_force_qs - j;
1708 }
1709 }
1710 }
1711
1712 /*
1713 * Clean up after the old grace period.
1714 */
1715 static void rcu_gp_cleanup(void)
1716 {
1717 int cpu;
1718 bool needgp = false;
1719 unsigned long gp_duration;
1720 unsigned long new_gp_seq;
1721 bool offloaded;
1722 struct rcu_data *rdp;
1723 struct rcu_node *rnp = rcu_get_root();
1724 struct swait_queue_head *sq;
1725
1726 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1727 raw_spin_lock_irq_rcu_node(rnp);
1728 rcu_state.gp_end = jiffies;
1729 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1730 if (gp_duration > rcu_state.gp_max)
1731 rcu_state.gp_max = gp_duration;
1732
1733 /*
1734 * We know the grace period is complete, but to everyone else
1735 * it appears to still be ongoing. But it is also the case
1736 * that to everyone else it looks like there is nothing that
1737 * they can do to advance the grace period. It is therefore
1738 * safe for us to drop the lock in order to mark the grace
1739 * period as completed in all of the rcu_node structures.
1740 */
1741 raw_spin_unlock_irq_rcu_node(rnp);
1742
1743 /*
1744 * Propagate new ->gp_seq value to rcu_node structures so that
1745 * other CPUs don't have to wait until the start of the next grace
1746 * period to process their callbacks. This also avoids some nasty
1747 * RCU grace-period initialization races by forcing the end of
1748 * the current grace period to be completely recorded in all of
1749 * the rcu_node structures before the beginning of the next grace
1750 * period is recorded in any of the rcu_node structures.
1751 */
1752 new_gp_seq = rcu_state.gp_seq;
1753 rcu_seq_end(&new_gp_seq);
1754 rcu_for_each_node_breadth_first(rnp) {
1755 raw_spin_lock_irq_rcu_node(rnp);
1756 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1757 dump_blkd_tasks(rnp, 10);
1758 WARN_ON_ONCE(rnp->qsmask);
1759 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1760 rdp = this_cpu_ptr(&rcu_data);
1761 if (rnp == rdp->mynode)
1762 needgp = __note_gp_changes(rnp, rdp) || needgp;
1763 /* smp_mb() provided by prior unlock-lock pair. */
1764 needgp = rcu_future_gp_cleanup(rnp) || needgp;
1765 // Reset overload indication for CPUs no longer overloaded
1766 if (rcu_is_leaf_node(rnp))
1767 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1768 rdp = per_cpu_ptr(&rcu_data, cpu);
1769 check_cb_ovld_locked(rdp, rnp);
1770 }
1771 sq = rcu_nocb_gp_get(rnp);
1772 raw_spin_unlock_irq_rcu_node(rnp);
1773 rcu_nocb_gp_cleanup(sq);
1774 cond_resched_tasks_rcu_qs();
1775 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1776 rcu_gp_slow(gp_cleanup_delay);
1777 }
1778 rnp = rcu_get_root();
1779 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1780
1781 /* Declare grace period done, trace first to use old GP number. */
1782 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1783 rcu_seq_end(&rcu_state.gp_seq);
1784 rcu_state.gp_state = RCU_GP_IDLE;
1785 /* Check for GP requests since above loop. */
1786 rdp = this_cpu_ptr(&rcu_data);
1787 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1788 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1789 TPS("CleanupMore"));
1790 needgp = true;
1791 }
1792 /* Advance CBs to reduce false positives below. */
1793 offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1794 rcu_segcblist_is_offloaded(&rdp->cblist);
1795 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1796 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1797 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1798 trace_rcu_grace_period(rcu_state.name,
1799 rcu_state.gp_seq,
1800 TPS("newreq"));
1801 } else {
1802 WRITE_ONCE(rcu_state.gp_flags,
1803 rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1804 }
1805 raw_spin_unlock_irq_rcu_node(rnp);
1806 }
1807
1808 /*
1809 * Body of kthread that handles grace periods.
1810 */
1811 static int __noreturn rcu_gp_kthread(void *unused)
1812 {
1813 rcu_bind_gp_kthread();
1814 for (;;) {
1815
1816 /* Handle grace-period start. */
1817 for (;;) {
1818 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1819 TPS("reqwait"));
1820 rcu_state.gp_state = RCU_GP_WAIT_GPS;
1821 swait_event_idle_exclusive(rcu_state.gp_wq,
1822 READ_ONCE(rcu_state.gp_flags) &
1823 RCU_GP_FLAG_INIT);
1824 rcu_state.gp_state = RCU_GP_DONE_GPS;
1825 /* Locking provides needed memory barrier. */
1826 if (rcu_gp_init())
1827 break;
1828 cond_resched_tasks_rcu_qs();
1829 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1830 WARN_ON(signal_pending(current));
1831 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1832 TPS("reqwaitsig"));
1833 }
1834
1835 /* Handle quiescent-state forcing. */
1836 rcu_gp_fqs_loop();
1837
1838 /* Handle grace-period end. */
1839 rcu_state.gp_state = RCU_GP_CLEANUP;
1840 rcu_gp_cleanup();
1841 rcu_state.gp_state = RCU_GP_CLEANED;
1842 }
1843 }
1844
1845 /*
1846 * Report a full set of quiescent states to the rcu_state data structure.
1847 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1848 * another grace period is required. Whether we wake the grace-period
1849 * kthread or it awakens itself for the next round of quiescent-state
1850 * forcing, that kthread will clean up after the just-completed grace
1851 * period. Note that the caller must hold rnp->lock, which is released
1852 * before return.
1853 */
1854 static void rcu_report_qs_rsp(unsigned long flags)
1855 __releases(rcu_get_root()->lock)
1856 {
1857 raw_lockdep_assert_held_rcu_node(rcu_get_root());
1858 WARN_ON_ONCE(!rcu_gp_in_progress());
1859 WRITE_ONCE(rcu_state.gp_flags,
1860 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1861 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1862 rcu_gp_kthread_wake();
1863 }
1864
1865 /*
1866 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1867 * Allows quiescent states for a group of CPUs to be reported at one go
1868 * to the specified rcu_node structure, though all the CPUs in the group
1869 * must be represented by the same rcu_node structure (which need not be a
1870 * leaf rcu_node structure, though it often will be). The gps parameter
1871 * is the grace-period snapshot, which means that the quiescent states
1872 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
1873 * must be held upon entry, and it is released before return.
1874 *
1875 * As a special case, if mask is zero, the bit-already-cleared check is
1876 * disabled. This allows propagating quiescent state due to resumed tasks
1877 * during grace-period initialization.
1878 */
1879 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1880 unsigned long gps, unsigned long flags)
1881 __releases(rnp->lock)
1882 {
1883 unsigned long oldmask = 0;
1884 struct rcu_node *rnp_c;
1885
1886 raw_lockdep_assert_held_rcu_node(rnp);
1887
1888 /* Walk up the rcu_node hierarchy. */
1889 for (;;) {
1890 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1891
1892 /*
1893 * Our bit has already been cleared, or the
1894 * relevant grace period is already over, so done.
1895 */
1896 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1897 return;
1898 }
1899 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1900 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1901 rcu_preempt_blocked_readers_cgp(rnp));
1902 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
1903 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1904 mask, rnp->qsmask, rnp->level,
1905 rnp->grplo, rnp->grphi,
1906 !!rnp->gp_tasks);
1907 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1908
1909 /* Other bits still set at this level, so done. */
1910 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1911 return;
1912 }
1913 rnp->completedqs = rnp->gp_seq;
1914 mask = rnp->grpmask;
1915 if (rnp->parent == NULL) {
1916
1917 /* No more levels. Exit loop holding root lock. */
1918
1919 break;
1920 }
1921 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1922 rnp_c = rnp;
1923 rnp = rnp->parent;
1924 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1925 oldmask = READ_ONCE(rnp_c->qsmask);
1926 }
1927
1928 /*
1929 * Get here if we are the last CPU to pass through a quiescent
1930 * state for this grace period. Invoke rcu_report_qs_rsp()
1931 * to clean up and start the next grace period if one is needed.
1932 */
1933 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1934 }
1935
1936 /*
1937 * Record a quiescent state for all tasks that were previously queued
1938 * on the specified rcu_node structure and that were blocking the current
1939 * RCU grace period. The caller must hold the corresponding rnp->lock with
1940 * irqs disabled, and this lock is released upon return, but irqs remain
1941 * disabled.
1942 */
1943 static void __maybe_unused
1944 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1945 __releases(rnp->lock)
1946 {
1947 unsigned long gps;
1948 unsigned long mask;
1949 struct rcu_node *rnp_p;
1950
1951 raw_lockdep_assert_held_rcu_node(rnp);
1952 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
1953 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1954 rnp->qsmask != 0) {
1955 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1956 return; /* Still need more quiescent states! */
1957 }
1958
1959 rnp->completedqs = rnp->gp_seq;
1960 rnp_p = rnp->parent;
1961 if (rnp_p == NULL) {
1962 /*
1963 * Only one rcu_node structure in the tree, so don't
1964 * try to report up to its nonexistent parent!
1965 */
1966 rcu_report_qs_rsp(flags);
1967 return;
1968 }
1969
1970 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1971 gps = rnp->gp_seq;
1972 mask = rnp->grpmask;
1973 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1974 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
1975 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
1976 }
1977
1978 /*
1979 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1980 * structure. This must be called from the specified CPU.
1981 */
1982 static void
1983 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
1984 {
1985 unsigned long flags;
1986 unsigned long mask;
1987 bool needwake = false;
1988 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1989 rcu_segcblist_is_offloaded(&rdp->cblist);
1990 struct rcu_node *rnp;
1991
1992 rnp = rdp->mynode;
1993 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1994 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
1995 rdp->gpwrap) {
1996
1997 /*
1998 * The grace period in which this quiescent state was
1999 * recorded has ended, so don't report it upwards.
2000 * We will instead need a new quiescent state that lies
2001 * within the current grace period.
2002 */
2003 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2004 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2005 return;
2006 }
2007 mask = rdp->grpmask;
2008 if (rdp->cpu == smp_processor_id())
2009 rdp->core_needs_qs = false;
2010 if ((rnp->qsmask & mask) == 0) {
2011 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2012 } else {
2013 /*
2014 * This GP can't end until cpu checks in, so all of our
2015 * callbacks can be processed during the next GP.
2016 */
2017 if (!offloaded)
2018 needwake = rcu_accelerate_cbs(rnp, rdp);
2019
2020 rcu_disable_urgency_upon_qs(rdp);
2021 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2022 /* ^^^ Released rnp->lock */
2023 if (needwake)
2024 rcu_gp_kthread_wake();
2025 }
2026 }
2027
2028 /*
2029 * Check to see if there is a new grace period of which this CPU
2030 * is not yet aware, and if so, set up local rcu_data state for it.
2031 * Otherwise, see if this CPU has just passed through its first
2032 * quiescent state for this grace period, and record that fact if so.
2033 */
2034 static void
2035 rcu_check_quiescent_state(struct rcu_data *rdp)
2036 {
2037 /* Check for grace-period ends and beginnings. */
2038 note_gp_changes(rdp);
2039
2040 /*
2041 * Does this CPU still need to do its part for current grace period?
2042 * If no, return and let the other CPUs do their part as well.
2043 */
2044 if (!rdp->core_needs_qs)
2045 return;
2046
2047 /*
2048 * Was there a quiescent state since the beginning of the grace
2049 * period? If no, then exit and wait for the next call.
2050 */
2051 if (rdp->cpu_no_qs.b.norm)
2052 return;
2053
2054 /*
2055 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2056 * judge of that).
2057 */
2058 rcu_report_qs_rdp(rdp->cpu, rdp);
2059 }
2060
2061 /*
2062 * Near the end of the offline process. Trace the fact that this CPU
2063 * is going offline.
2064 */
2065 int rcutree_dying_cpu(unsigned int cpu)
2066 {
2067 bool blkd;
2068 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2069 struct rcu_node *rnp = rdp->mynode;
2070
2071 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2072 return 0;
2073
2074 blkd = !!(rnp->qsmask & rdp->grpmask);
2075 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2076 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2077 return 0;
2078 }
2079
2080 /*
2081 * All CPUs for the specified rcu_node structure have gone offline,
2082 * and all tasks that were preempted within an RCU read-side critical
2083 * section while running on one of those CPUs have since exited their RCU
2084 * read-side critical section. Some other CPU is reporting this fact with
2085 * the specified rcu_node structure's ->lock held and interrupts disabled.
2086 * This function therefore goes up the tree of rcu_node structures,
2087 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2088 * the leaf rcu_node structure's ->qsmaskinit field has already been
2089 * updated.
2090 *
2091 * This function does check that the specified rcu_node structure has
2092 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2093 * prematurely. That said, invoking it after the fact will cost you
2094 * a needless lock acquisition. So once it has done its work, don't
2095 * invoke it again.
2096 */
2097 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2098 {
2099 long mask;
2100 struct rcu_node *rnp = rnp_leaf;
2101
2102 raw_lockdep_assert_held_rcu_node(rnp_leaf);
2103 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2104 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2105 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2106 return;
2107 for (;;) {
2108 mask = rnp->grpmask;
2109 rnp = rnp->parent;
2110 if (!rnp)
2111 break;
2112 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2113 rnp->qsmaskinit &= ~mask;
2114 /* Between grace periods, so better already be zero! */
2115 WARN_ON_ONCE(rnp->qsmask);
2116 if (rnp->qsmaskinit) {
2117 raw_spin_unlock_rcu_node(rnp);
2118 /* irqs remain disabled. */
2119 return;
2120 }
2121 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2122 }
2123 }
2124
2125 /*
2126 * The CPU has been completely removed, and some other CPU is reporting
2127 * this fact from process context. Do the remainder of the cleanup.
2128 * There can only be one CPU hotplug operation at a time, so no need for
2129 * explicit locking.
2130 */
2131 int rcutree_dead_cpu(unsigned int cpu)
2132 {
2133 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2134 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2135
2136 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2137 return 0;
2138
2139 /* Adjust any no-longer-needed kthreads. */
2140 rcu_boost_kthread_setaffinity(rnp, -1);
2141 /* Do any needed no-CB deferred wakeups from this CPU. */
2142 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2143
2144 // Stop-machine done, so allow nohz_full to disable tick.
2145 tick_dep_clear(TICK_DEP_BIT_RCU);
2146 return 0;
2147 }
2148
2149 /*
2150 * Invoke any RCU callbacks that have made it to the end of their grace
2151 * period. Thottle as specified by rdp->blimit.
2152 */
2153 static void rcu_do_batch(struct rcu_data *rdp)
2154 {
2155 unsigned long flags;
2156 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2157 rcu_segcblist_is_offloaded(&rdp->cblist);
2158 struct rcu_head *rhp;
2159 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2160 long bl, count;
2161 long pending, tlimit = 0;
2162
2163 /* If no callbacks are ready, just return. */
2164 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2165 trace_rcu_batch_start(rcu_state.name,
2166 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2167 trace_rcu_batch_end(rcu_state.name, 0,
2168 !rcu_segcblist_empty(&rdp->cblist),
2169 need_resched(), is_idle_task(current),
2170 rcu_is_callbacks_kthread());
2171 return;
2172 }
2173
2174 /*
2175 * Extract the list of ready callbacks, disabling to prevent
2176 * races with call_rcu() from interrupt handlers. Leave the
2177 * callback counts, as rcu_barrier() needs to be conservative.
2178 */
2179 local_irq_save(flags);
2180 rcu_nocb_lock(rdp);
2181 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2182 pending = rcu_segcblist_n_cbs(&rdp->cblist);
2183 bl = max(rdp->blimit, pending >> rcu_divisor);
2184 if (unlikely(bl > 100))
2185 tlimit = local_clock() + rcu_resched_ns;
2186 trace_rcu_batch_start(rcu_state.name,
2187 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2188 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2189 if (offloaded)
2190 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2191 rcu_nocb_unlock_irqrestore(rdp, flags);
2192
2193 /* Invoke callbacks. */
2194 tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2195 rhp = rcu_cblist_dequeue(&rcl);
2196 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2197 rcu_callback_t f;
2198
2199 debug_rcu_head_unqueue(rhp);
2200
2201 rcu_lock_acquire(&rcu_callback_map);
2202 trace_rcu_invoke_callback(rcu_state.name, rhp);
2203
2204 f = rhp->func;
2205 WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2206 f(rhp);
2207
2208 rcu_lock_release(&rcu_callback_map);
2209
2210 /*
2211 * Stop only if limit reached and CPU has something to do.
2212 * Note: The rcl structure counts down from zero.
2213 */
2214 if (-rcl.len >= bl && !offloaded &&
2215 (need_resched() ||
2216 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2217 break;
2218 if (unlikely(tlimit)) {
2219 /* only call local_clock() every 32 callbacks */
2220 if (likely((-rcl.len & 31) || local_clock() < tlimit))
2221 continue;
2222 /* Exceeded the time limit, so leave. */
2223 break;
2224 }
2225 if (offloaded) {
2226 WARN_ON_ONCE(in_serving_softirq());
2227 local_bh_enable();
2228 lockdep_assert_irqs_enabled();
2229 cond_resched_tasks_rcu_qs();
2230 lockdep_assert_irqs_enabled();
2231 local_bh_disable();
2232 }
2233 }
2234
2235 local_irq_save(flags);
2236 rcu_nocb_lock(rdp);
2237 count = -rcl.len;
2238 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2239 is_idle_task(current), rcu_is_callbacks_kthread());
2240
2241 /* Update counts and requeue any remaining callbacks. */
2242 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2243 smp_mb(); /* List handling before counting for rcu_barrier(). */
2244 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2245
2246 /* Reinstate batch limit if we have worked down the excess. */
2247 count = rcu_segcblist_n_cbs(&rdp->cblist);
2248 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2249 rdp->blimit = blimit;
2250
2251 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2252 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2253 rdp->qlen_last_fqs_check = 0;
2254 rdp->n_force_qs_snap = rcu_state.n_force_qs;
2255 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2256 rdp->qlen_last_fqs_check = count;
2257
2258 /*
2259 * The following usually indicates a double call_rcu(). To track
2260 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2261 */
2262 WARN_ON_ONCE(count == 0 && !rcu_segcblist_empty(&rdp->cblist));
2263 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2264 count != 0 && rcu_segcblist_empty(&rdp->cblist));
2265
2266 rcu_nocb_unlock_irqrestore(rdp, flags);
2267
2268 /* Re-invoke RCU core processing if there are callbacks remaining. */
2269 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2270 invoke_rcu_core();
2271 tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2272 }
2273
2274 /*
2275 * This function is invoked from each scheduling-clock interrupt,
2276 * and checks to see if this CPU is in a non-context-switch quiescent
2277 * state, for example, user mode or idle loop. It also schedules RCU
2278 * core processing. If the current grace period has gone on too long,
2279 * it will ask the scheduler to manufacture a context switch for the sole
2280 * purpose of providing a providing the needed quiescent state.
2281 */
2282 void rcu_sched_clock_irq(int user)
2283 {
2284 trace_rcu_utilization(TPS("Start scheduler-tick"));
2285 raw_cpu_inc(rcu_data.ticks_this_gp);
2286 /* The load-acquire pairs with the store-release setting to true. */
2287 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2288 /* Idle and userspace execution already are quiescent states. */
2289 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2290 set_tsk_need_resched(current);
2291 set_preempt_need_resched();
2292 }
2293 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2294 }
2295 rcu_flavor_sched_clock_irq(user);
2296 if (rcu_pending(user))
2297 invoke_rcu_core();
2298
2299 trace_rcu_utilization(TPS("End scheduler-tick"));
2300 }
2301
2302 /*
2303 * Scan the leaf rcu_node structures. For each structure on which all
2304 * CPUs have reported a quiescent state and on which there are tasks
2305 * blocking the current grace period, initiate RCU priority boosting.
2306 * Otherwise, invoke the specified function to check dyntick state for
2307 * each CPU that has not yet reported a quiescent state.
2308 */
2309 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2310 {
2311 int cpu;
2312 unsigned long flags;
2313 unsigned long mask;
2314 struct rcu_data *rdp;
2315 struct rcu_node *rnp;
2316
2317 rcu_state.cbovld = rcu_state.cbovldnext;
2318 rcu_state.cbovldnext = false;
2319 rcu_for_each_leaf_node(rnp) {
2320 cond_resched_tasks_rcu_qs();
2321 mask = 0;
2322 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2323 rcu_state.cbovldnext |= !!rnp->cbovldmask;
2324 if (rnp->qsmask == 0) {
2325 if (!IS_ENABLED(CONFIG_PREEMPT_RCU) ||
2326 rcu_preempt_blocked_readers_cgp(rnp)) {
2327 /*
2328 * No point in scanning bits because they
2329 * are all zero. But we might need to
2330 * priority-boost blocked readers.
2331 */
2332 rcu_initiate_boost(rnp, flags);
2333 /* rcu_initiate_boost() releases rnp->lock */
2334 continue;
2335 }
2336 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2337 continue;
2338 }
2339 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2340 rdp = per_cpu_ptr(&rcu_data, cpu);
2341 if (f(rdp)) {
2342 mask |= rdp->grpmask;
2343 rcu_disable_urgency_upon_qs(rdp);
2344 }
2345 }
2346 if (mask != 0) {
2347 /* Idle/offline CPUs, report (releases rnp->lock). */
2348 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2349 } else {
2350 /* Nothing to do here, so just drop the lock. */
2351 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2352 }
2353 }
2354 }
2355
2356 /*
2357 * Force quiescent states on reluctant CPUs, and also detect which
2358 * CPUs are in dyntick-idle mode.
2359 */
2360 void rcu_force_quiescent_state(void)
2361 {
2362 unsigned long flags;
2363 bool ret;
2364 struct rcu_node *rnp;
2365 struct rcu_node *rnp_old = NULL;
2366
2367 /* Funnel through hierarchy to reduce memory contention. */
2368 rnp = __this_cpu_read(rcu_data.mynode);
2369 for (; rnp != NULL; rnp = rnp->parent) {
2370 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2371 !raw_spin_trylock(&rnp->fqslock);
2372 if (rnp_old != NULL)
2373 raw_spin_unlock(&rnp_old->fqslock);
2374 if (ret)
2375 return;
2376 rnp_old = rnp;
2377 }
2378 /* rnp_old == rcu_get_root(), rnp == NULL. */
2379
2380 /* Reached the root of the rcu_node tree, acquire lock. */
2381 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2382 raw_spin_unlock(&rnp_old->fqslock);
2383 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2384 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2385 return; /* Someone beat us to it. */
2386 }
2387 WRITE_ONCE(rcu_state.gp_flags,
2388 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2389 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2390 rcu_gp_kthread_wake();
2391 }
2392 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2393
2394 /* Perform RCU core processing work for the current CPU. */
2395 static __latent_entropy void rcu_core(void)
2396 {
2397 unsigned long flags;
2398 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2399 struct rcu_node *rnp = rdp->mynode;
2400 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2401 rcu_segcblist_is_offloaded(&rdp->cblist);
2402
2403 if (cpu_is_offline(smp_processor_id()))
2404 return;
2405 trace_rcu_utilization(TPS("Start RCU core"));
2406 WARN_ON_ONCE(!rdp->beenonline);
2407
2408 /* Report any deferred quiescent states if preemption enabled. */
2409 if (!(preempt_count() & PREEMPT_MASK)) {
2410 rcu_preempt_deferred_qs(current);
2411 } else if (rcu_preempt_need_deferred_qs(current)) {
2412 set_tsk_need_resched(current);
2413 set_preempt_need_resched();
2414 }
2415
2416 /* Update RCU state based on any recent quiescent states. */
2417 rcu_check_quiescent_state(rdp);
2418
2419 /* No grace period and unregistered callbacks? */
2420 if (!rcu_gp_in_progress() &&
2421 rcu_segcblist_is_enabled(&rdp->cblist) && !offloaded) {
2422 local_irq_save(flags);
2423 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2424 rcu_accelerate_cbs_unlocked(rnp, rdp);
2425 local_irq_restore(flags);
2426 }
2427
2428 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2429
2430 /* If there are callbacks ready, invoke them. */
2431 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2432 likely(READ_ONCE(rcu_scheduler_fully_active)))
2433 rcu_do_batch(rdp);
2434
2435 /* Do any needed deferred wakeups of rcuo kthreads. */
2436 do_nocb_deferred_wakeup(rdp);
2437 trace_rcu_utilization(TPS("End RCU core"));
2438 }
2439
2440 static void rcu_core_si(struct softirq_action *h)
2441 {
2442 rcu_core();
2443 }
2444
2445 static void rcu_wake_cond(struct task_struct *t, int status)
2446 {
2447 /*
2448 * If the thread is yielding, only wake it when this
2449 * is invoked from idle
2450 */
2451 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2452 wake_up_process(t);
2453 }
2454
2455 static void invoke_rcu_core_kthread(void)
2456 {
2457 struct task_struct *t;
2458 unsigned long flags;
2459
2460 local_irq_save(flags);
2461 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2462 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2463 if (t != NULL && t != current)
2464 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2465 local_irq_restore(flags);
2466 }
2467
2468 /*
2469 * Wake up this CPU's rcuc kthread to do RCU core processing.
2470 */
2471 static void invoke_rcu_core(void)
2472 {
2473 if (!cpu_online(smp_processor_id()))
2474 return;
2475 if (use_softirq)
2476 raise_softirq(RCU_SOFTIRQ);
2477 else
2478 invoke_rcu_core_kthread();
2479 }
2480
2481 static void rcu_cpu_kthread_park(unsigned int cpu)
2482 {
2483 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2484 }
2485
2486 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2487 {
2488 return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2489 }
2490
2491 /*
2492 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
2493 * the RCU softirq used in configurations of RCU that do not support RCU
2494 * priority boosting.
2495 */
2496 static void rcu_cpu_kthread(unsigned int cpu)
2497 {
2498 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2499 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2500 int spincnt;
2501
2502 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2503 for (spincnt = 0; spincnt < 10; spincnt++) {
2504 local_bh_disable();
2505 *statusp = RCU_KTHREAD_RUNNING;
2506 local_irq_disable();
2507 work = *workp;
2508 *workp = 0;
2509 local_irq_enable();
2510 if (work)
2511 rcu_core();
2512 local_bh_enable();
2513 if (*workp == 0) {
2514 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2515 *statusp = RCU_KTHREAD_WAITING;
2516 return;
2517 }
2518 }
2519 *statusp = RCU_KTHREAD_YIELDING;
2520 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2521 schedule_timeout_interruptible(2);
2522 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2523 *statusp = RCU_KTHREAD_WAITING;
2524 }
2525
2526 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2527 .store = &rcu_data.rcu_cpu_kthread_task,
2528 .thread_should_run = rcu_cpu_kthread_should_run,
2529 .thread_fn = rcu_cpu_kthread,
2530 .thread_comm = "rcuc/%u",
2531 .setup = rcu_cpu_kthread_setup,
2532 .park = rcu_cpu_kthread_park,
2533 };
2534
2535 /*
2536 * Spawn per-CPU RCU core processing kthreads.
2537 */
2538 static int __init rcu_spawn_core_kthreads(void)
2539 {
2540 int cpu;
2541
2542 for_each_possible_cpu(cpu)
2543 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2544 if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2545 return 0;
2546 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2547 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2548 return 0;
2549 }
2550 early_initcall(rcu_spawn_core_kthreads);
2551
2552 /*
2553 * Handle any core-RCU processing required by a call_rcu() invocation.
2554 */
2555 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2556 unsigned long flags)
2557 {
2558 /*
2559 * If called from an extended quiescent state, invoke the RCU
2560 * core in order to force a re-evaluation of RCU's idleness.
2561 */
2562 if (!rcu_is_watching())
2563 invoke_rcu_core();
2564
2565 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2566 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2567 return;
2568
2569 /*
2570 * Force the grace period if too many callbacks or too long waiting.
2571 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2572 * if some other CPU has recently done so. Also, don't bother
2573 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2574 * is the only one waiting for a grace period to complete.
2575 */
2576 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2577 rdp->qlen_last_fqs_check + qhimark)) {
2578
2579 /* Are we ignoring a completed grace period? */
2580 note_gp_changes(rdp);
2581
2582 /* Start a new grace period if one not already started. */
2583 if (!rcu_gp_in_progress()) {
2584 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2585 } else {
2586 /* Give the grace period a kick. */
2587 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2588 if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2589 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2590 rcu_force_quiescent_state();
2591 rdp->n_force_qs_snap = rcu_state.n_force_qs;
2592 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2593 }
2594 }
2595 }
2596
2597 /*
2598 * RCU callback function to leak a callback.
2599 */
2600 static void rcu_leak_callback(struct rcu_head *rhp)
2601 {
2602 }
2603
2604 /*
2605 * Check and if necessary update the leaf rcu_node structure's
2606 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2607 * number of queued RCU callbacks. The caller must hold the leaf rcu_node
2608 * structure's ->lock.
2609 */
2610 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2611 {
2612 raw_lockdep_assert_held_rcu_node(rnp);
2613 if (qovld_calc <= 0)
2614 return; // Early boot and wildcard value set.
2615 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2616 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2617 else
2618 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2619 }
2620
2621 /*
2622 * Check and if necessary update the leaf rcu_node structure's
2623 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2624 * number of queued RCU callbacks. No locks need be held, but the
2625 * caller must have disabled interrupts.
2626 *
2627 * Note that this function ignores the possibility that there are a lot
2628 * of callbacks all of which have already seen the end of their respective
2629 * grace periods. This omission is due to the need for no-CBs CPUs to
2630 * be holding ->nocb_lock to do this check, which is too heavy for a
2631 * common-case operation.
2632 */
2633 static void check_cb_ovld(struct rcu_data *rdp)
2634 {
2635 struct rcu_node *const rnp = rdp->mynode;
2636
2637 if (qovld_calc <= 0 ||
2638 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2639 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2640 return; // Early boot wildcard value or already set correctly.
2641 raw_spin_lock_rcu_node(rnp);
2642 check_cb_ovld_locked(rdp, rnp);
2643 raw_spin_unlock_rcu_node(rnp);
2644 }
2645
2646 /* Helper function for call_rcu() and friends. */
2647 static void
2648 __call_rcu(struct rcu_head *head, rcu_callback_t func)
2649 {
2650 unsigned long flags;
2651 struct rcu_data *rdp;
2652 bool was_alldone;
2653
2654 /* Misaligned rcu_head! */
2655 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2656
2657 if (debug_rcu_head_queue(head)) {
2658 /*
2659 * Probable double call_rcu(), so leak the callback.
2660 * Use rcu:rcu_callback trace event to find the previous
2661 * time callback was passed to __call_rcu().
2662 */
2663 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
2664 head, head->func);
2665 WRITE_ONCE(head->func, rcu_leak_callback);
2666 return;
2667 }
2668 head->func = func;
2669 head->next = NULL;
2670 local_irq_save(flags);
2671 rdp = this_cpu_ptr(&rcu_data);
2672
2673 /* Add the callback to our list. */
2674 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2675 // This can trigger due to call_rcu() from offline CPU:
2676 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2677 WARN_ON_ONCE(!rcu_is_watching());
2678 // Very early boot, before rcu_init(). Initialize if needed
2679 // and then drop through to queue the callback.
2680 if (rcu_segcblist_empty(&rdp->cblist))
2681 rcu_segcblist_init(&rdp->cblist);
2682 }
2683
2684 check_cb_ovld(rdp);
2685 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
2686 return; // Enqueued onto ->nocb_bypass, so just leave.
2687 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2688 rcu_segcblist_enqueue(&rdp->cblist, head);
2689 if (__is_kfree_rcu_offset((unsigned long)func))
2690 trace_rcu_kfree_callback(rcu_state.name, head,
2691 (unsigned long)func,
2692 rcu_segcblist_n_cbs(&rdp->cblist));
2693 else
2694 trace_rcu_callback(rcu_state.name, head,
2695 rcu_segcblist_n_cbs(&rdp->cblist));
2696
2697 /* Go handle any RCU core processing required. */
2698 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2699 unlikely(rcu_segcblist_is_offloaded(&rdp->cblist))) {
2700 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2701 } else {
2702 __call_rcu_core(rdp, head, flags);
2703 local_irq_restore(flags);
2704 }
2705 }
2706
2707 /**
2708 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2709 * @head: structure to be used for queueing the RCU updates.
2710 * @func: actual callback function to be invoked after the grace period
2711 *
2712 * The callback function will be invoked some time after a full grace
2713 * period elapses, in other words after all pre-existing RCU read-side
2714 * critical sections have completed. However, the callback function
2715 * might well execute concurrently with RCU read-side critical sections
2716 * that started after call_rcu() was invoked. RCU read-side critical
2717 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2718 * may be nested. In addition, regions of code across which interrupts,
2719 * preemption, or softirqs have been disabled also serve as RCU read-side
2720 * critical sections. This includes hardware interrupt handlers, softirq
2721 * handlers, and NMI handlers.
2722 *
2723 * Note that all CPUs must agree that the grace period extended beyond
2724 * all pre-existing RCU read-side critical section. On systems with more
2725 * than one CPU, this means that when "func()" is invoked, each CPU is
2726 * guaranteed to have executed a full memory barrier since the end of its
2727 * last RCU read-side critical section whose beginning preceded the call
2728 * to call_rcu(). It also means that each CPU executing an RCU read-side
2729 * critical section that continues beyond the start of "func()" must have
2730 * executed a memory barrier after the call_rcu() but before the beginning
2731 * of that RCU read-side critical section. Note that these guarantees
2732 * include CPUs that are offline, idle, or executing in user mode, as
2733 * well as CPUs that are executing in the kernel.
2734 *
2735 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2736 * resulting RCU callback function "func()", then both CPU A and CPU B are
2737 * guaranteed to execute a full memory barrier during the time interval
2738 * between the call to call_rcu() and the invocation of "func()" -- even
2739 * if CPU A and CPU B are the same CPU (but again only if the system has
2740 * more than one CPU).
2741 */
2742 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2743 {
2744 __call_rcu(head, func);
2745 }
2746 EXPORT_SYMBOL_GPL(call_rcu);
2747
2748
2749 /* Maximum number of jiffies to wait before draining a batch. */
2750 #define KFREE_DRAIN_JIFFIES (HZ / 50)
2751 #define KFREE_N_BATCHES 2
2752
2753 /*
2754 * This macro defines how many entries the "records" array
2755 * will contain. It is based on the fact that the size of
2756 * kfree_rcu_bulk_data structure becomes exactly one page.
2757 */
2758 #define KFREE_BULK_MAX_ENTR ((PAGE_SIZE / sizeof(void *)) - 3)
2759
2760 /**
2761 * struct kfree_rcu_bulk_data - single block to store kfree_rcu() pointers
2762 * @nr_records: Number of active pointers in the array
2763 * @records: Array of the kfree_rcu() pointers
2764 * @next: Next bulk object in the block chain
2765 * @head_free_debug: For debug, when CONFIG_DEBUG_OBJECTS_RCU_HEAD is set
2766 */
2767 struct kfree_rcu_bulk_data {
2768 unsigned long nr_records;
2769 void *records[KFREE_BULK_MAX_ENTR];
2770 struct kfree_rcu_bulk_data *next;
2771 struct rcu_head *head_free_debug;
2772 };
2773
2774 /**
2775 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
2776 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
2777 * @head_free: List of kfree_rcu() objects waiting for a grace period
2778 * @bhead_free: Bulk-List of kfree_rcu() objects waiting for a grace period
2779 * @krcp: Pointer to @kfree_rcu_cpu structure
2780 */
2781
2782 struct kfree_rcu_cpu_work {
2783 struct rcu_work rcu_work;
2784 struct rcu_head *head_free;
2785 struct kfree_rcu_bulk_data *bhead_free;
2786 struct kfree_rcu_cpu *krcp;
2787 };
2788
2789 /**
2790 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
2791 * @head: List of kfree_rcu() objects not yet waiting for a grace period
2792 * @bhead: Bulk-List of kfree_rcu() objects not yet waiting for a grace period
2793 * @bcached: Keeps at most one object for later reuse when build chain blocks
2794 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
2795 * @lock: Synchronize access to this structure
2796 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
2797 * @monitor_todo: Tracks whether a @monitor_work delayed work is pending
2798 * @initialized: The @lock and @rcu_work fields have been initialized
2799 *
2800 * This is a per-CPU structure. The reason that it is not included in
2801 * the rcu_data structure is to permit this code to be extracted from
2802 * the RCU files. Such extraction could allow further optimization of
2803 * the interactions with the slab allocators.
2804 */
2805 struct kfree_rcu_cpu {
2806 struct rcu_head *head;
2807 struct kfree_rcu_bulk_data *bhead;
2808 struct kfree_rcu_bulk_data *bcached;
2809 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
2810 spinlock_t lock;
2811 struct delayed_work monitor_work;
2812 bool monitor_todo;
2813 bool initialized;
2814 };
2815
2816 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc);
2817
2818 static __always_inline void
2819 debug_rcu_head_unqueue_bulk(struct rcu_head *head)
2820 {
2821 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
2822 for (; head; head = head->next)
2823 debug_rcu_head_unqueue(head);
2824 #endif
2825 }
2826
2827 /*
2828 * This function is invoked in workqueue context after a grace period.
2829 * It frees all the objects queued on ->bhead_free or ->head_free.
2830 */
2831 static void kfree_rcu_work(struct work_struct *work)
2832 {
2833 unsigned long flags;
2834 struct rcu_head *head, *next;
2835 struct kfree_rcu_bulk_data *bhead, *bnext;
2836 struct kfree_rcu_cpu *krcp;
2837 struct kfree_rcu_cpu_work *krwp;
2838
2839 krwp = container_of(to_rcu_work(work),
2840 struct kfree_rcu_cpu_work, rcu_work);
2841 krcp = krwp->krcp;
2842 spin_lock_irqsave(&krcp->lock, flags);
2843 head = krwp->head_free;
2844 krwp->head_free = NULL;
2845 bhead = krwp->bhead_free;
2846 krwp->bhead_free = NULL;
2847 spin_unlock_irqrestore(&krcp->lock, flags);
2848
2849 /* "bhead" is now private, so traverse locklessly. */
2850 for (; bhead; bhead = bnext) {
2851 bnext = bhead->next;
2852
2853 debug_rcu_head_unqueue_bulk(bhead->head_free_debug);
2854
2855 rcu_lock_acquire(&rcu_callback_map);
2856 trace_rcu_invoke_kfree_bulk_callback(rcu_state.name,
2857 bhead->nr_records, bhead->records);
2858
2859 kfree_bulk(bhead->nr_records, bhead->records);
2860 rcu_lock_release(&rcu_callback_map);
2861
2862 if (cmpxchg(&krcp->bcached, NULL, bhead))
2863 free_page((unsigned long) bhead);
2864
2865 cond_resched_tasks_rcu_qs();
2866 }
2867
2868 /*
2869 * Emergency case only. It can happen under low memory
2870 * condition when an allocation gets failed, so the "bulk"
2871 * path can not be temporary maintained.
2872 */
2873 for (; head; head = next) {
2874 unsigned long offset = (unsigned long)head->func;
2875
2876 next = head->next;
2877 debug_rcu_head_unqueue(head);
2878 rcu_lock_acquire(&rcu_callback_map);
2879 trace_rcu_invoke_kfree_callback(rcu_state.name, head, offset);
2880
2881 if (!WARN_ON_ONCE(!__is_kfree_rcu_offset(offset)))
2882 kfree((void *)head - offset);
2883
2884 rcu_lock_release(&rcu_callback_map);
2885 cond_resched_tasks_rcu_qs();
2886 }
2887 }
2888
2889 /*
2890 * Schedule the kfree batch RCU work to run in workqueue context after a GP.
2891 *
2892 * This function is invoked by kfree_rcu_monitor() when the KFREE_DRAIN_JIFFIES
2893 * timeout has been reached.
2894 */
2895 static inline bool queue_kfree_rcu_work(struct kfree_rcu_cpu *krcp)
2896 {
2897 struct kfree_rcu_cpu_work *krwp;
2898 bool queued = false;
2899 int i;
2900
2901 lockdep_assert_held(&krcp->lock);
2902
2903 for (i = 0; i < KFREE_N_BATCHES; i++) {
2904 krwp = &(krcp->krw_arr[i]);
2905
2906 /*
2907 * Try to detach bhead or head and attach it over any
2908 * available corresponding free channel. It can be that
2909 * a previous RCU batch is in progress, it means that
2910 * immediately to queue another one is not possible so
2911 * return false to tell caller to retry.
2912 */
2913 if ((krcp->bhead && !krwp->bhead_free) ||
2914 (krcp->head && !krwp->head_free)) {
2915 /* Channel 1. */
2916 if (!krwp->bhead_free) {
2917 krwp->bhead_free = krcp->bhead;
2918 krcp->bhead = NULL;
2919 }
2920
2921 /* Channel 2. */
2922 if (!krwp->head_free) {
2923 krwp->head_free = krcp->head;
2924 krcp->head = NULL;
2925 }
2926
2927 /*
2928 * One work is per one batch, so there are two "free channels",
2929 * "bhead_free" and "head_free" the batch can handle. It can be
2930 * that the work is in the pending state when two channels have
2931 * been detached following each other, one by one.
2932 */
2933 queue_rcu_work(system_wq, &krwp->rcu_work);
2934 queued = true;
2935 }
2936 }
2937
2938 return queued;
2939 }
2940
2941 static inline void kfree_rcu_drain_unlock(struct kfree_rcu_cpu *krcp,
2942 unsigned long flags)
2943 {
2944 // Attempt to start a new batch.
2945 krcp->monitor_todo = false;
2946 if (queue_kfree_rcu_work(krcp)) {
2947 // Success! Our job is done here.
2948 spin_unlock_irqrestore(&krcp->lock, flags);
2949 return;
2950 }
2951
2952 // Previous RCU batch still in progress, try again later.
2953 krcp->monitor_todo = true;
2954 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
2955 spin_unlock_irqrestore(&krcp->lock, flags);
2956 }
2957
2958 /*
2959 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
2960 * It invokes kfree_rcu_drain_unlock() to attempt to start another batch.
2961 */
2962 static void kfree_rcu_monitor(struct work_struct *work)
2963 {
2964 unsigned long flags;
2965 struct kfree_rcu_cpu *krcp = container_of(work, struct kfree_rcu_cpu,
2966 monitor_work.work);
2967
2968 spin_lock_irqsave(&krcp->lock, flags);
2969 if (krcp->monitor_todo)
2970 kfree_rcu_drain_unlock(krcp, flags);
2971 else
2972 spin_unlock_irqrestore(&krcp->lock, flags);
2973 }
2974
2975 static inline bool
2976 kfree_call_rcu_add_ptr_to_bulk(struct kfree_rcu_cpu *krcp,
2977 struct rcu_head *head, rcu_callback_t func)
2978 {
2979 struct kfree_rcu_bulk_data *bnode;
2980
2981 if (unlikely(!krcp->initialized))
2982 return false;
2983
2984 lockdep_assert_held(&krcp->lock);
2985
2986 /* Check if a new block is required. */
2987 if (!krcp->bhead ||
2988 krcp->bhead->nr_records == KFREE_BULK_MAX_ENTR) {
2989 bnode = xchg(&krcp->bcached, NULL);
2990 if (!bnode) {
2991 WARN_ON_ONCE(sizeof(struct kfree_rcu_bulk_data) > PAGE_SIZE);
2992
2993 bnode = (struct kfree_rcu_bulk_data *)
2994 __get_free_page(GFP_NOWAIT | __GFP_NOWARN);
2995 }
2996
2997 /* Switch to emergency path. */
2998 if (unlikely(!bnode))
2999 return false;
3000
3001 /* Initialize the new block. */
3002 bnode->nr_records = 0;
3003 bnode->next = krcp->bhead;
3004 bnode->head_free_debug = NULL;
3005
3006 /* Attach it to the head. */
3007 krcp->bhead = bnode;
3008 }
3009
3010 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3011 head->func = func;
3012 head->next = krcp->bhead->head_free_debug;
3013 krcp->bhead->head_free_debug = head;
3014 #endif
3015
3016 /* Finally insert. */
3017 krcp->bhead->records[krcp->bhead->nr_records++] =
3018 (void *) head - (unsigned long) func;
3019
3020 return true;
3021 }
3022
3023 /*
3024 * Queue a request for lazy invocation of kfree_bulk()/kfree() after a grace
3025 * period. Please note there are two paths are maintained, one is the main one
3026 * that uses kfree_bulk() interface and second one is emergency one, that is
3027 * used only when the main path can not be maintained temporary, due to memory
3028 * pressure.
3029 *
3030 * Each kfree_call_rcu() request is added to a batch. The batch will be drained
3031 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3032 * be free'd in workqueue context. This allows us to: batch requests together to
3033 * reduce the number of grace periods during heavy kfree_rcu() load.
3034 */
3035 void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3036 {
3037 unsigned long flags;
3038 struct kfree_rcu_cpu *krcp;
3039
3040 local_irq_save(flags); // For safely calling this_cpu_ptr().
3041 krcp = this_cpu_ptr(&krc);
3042 if (krcp->initialized)
3043 spin_lock(&krcp->lock);
3044
3045 // Queue the object but don't yet schedule the batch.
3046 if (debug_rcu_head_queue(head)) {
3047 // Probable double kfree_rcu(), just leak.
3048 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3049 __func__, head);
3050 goto unlock_return;
3051 }
3052
3053 /*
3054 * Under high memory pressure GFP_NOWAIT can fail,
3055 * in that case the emergency path is maintained.
3056 */
3057 if (unlikely(!kfree_call_rcu_add_ptr_to_bulk(krcp, head, func))) {
3058 head->func = func;
3059 head->next = krcp->head;
3060 krcp->head = head;
3061 }
3062
3063 // Set timer to drain after KFREE_DRAIN_JIFFIES.
3064 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3065 !krcp->monitor_todo) {
3066 krcp->monitor_todo = true;
3067 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3068 }
3069
3070 unlock_return:
3071 if (krcp->initialized)
3072 spin_unlock(&krcp->lock);
3073 local_irq_restore(flags);
3074 }
3075 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3076
3077 void __init kfree_rcu_scheduler_running(void)
3078 {
3079 int cpu;
3080 unsigned long flags;
3081
3082 for_each_online_cpu(cpu) {
3083 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3084
3085 spin_lock_irqsave(&krcp->lock, flags);
3086 if (!krcp->head || krcp->monitor_todo) {
3087 spin_unlock_irqrestore(&krcp->lock, flags);
3088 continue;
3089 }
3090 krcp->monitor_todo = true;
3091 schedule_delayed_work_on(cpu, &krcp->monitor_work,
3092 KFREE_DRAIN_JIFFIES);
3093 spin_unlock_irqrestore(&krcp->lock, flags);
3094 }
3095 }
3096
3097 /*
3098 * During early boot, any blocking grace-period wait automatically
3099 * implies a grace period. Later on, this is never the case for PREEMPTION.
3100 *
3101 * Howevr, because a context switch is a grace period for !PREEMPTION, any
3102 * blocking grace-period wait automatically implies a grace period if
3103 * there is only one CPU online at any point time during execution of
3104 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to
3105 * occasionally incorrectly indicate that there are multiple CPUs online
3106 * when there was in fact only one the whole time, as this just adds some
3107 * overhead: RCU still operates correctly.
3108 */
3109 static int rcu_blocking_is_gp(void)
3110 {
3111 int ret;
3112
3113 if (IS_ENABLED(CONFIG_PREEMPTION))
3114 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
3115 might_sleep(); /* Check for RCU read-side critical section. */
3116 preempt_disable();
3117 ret = num_online_cpus() <= 1;
3118 preempt_enable();
3119 return ret;
3120 }
3121
3122 /**
3123 * synchronize_rcu - wait until a grace period has elapsed.
3124 *
3125 * Control will return to the caller some time after a full grace
3126 * period has elapsed, in other words after all currently executing RCU
3127 * read-side critical sections have completed. Note, however, that
3128 * upon return from synchronize_rcu(), the caller might well be executing
3129 * concurrently with new RCU read-side critical sections that began while
3130 * synchronize_rcu() was waiting. RCU read-side critical sections are
3131 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
3132 * In addition, regions of code across which interrupts, preemption, or
3133 * softirqs have been disabled also serve as RCU read-side critical
3134 * sections. This includes hardware interrupt handlers, softirq handlers,
3135 * and NMI handlers.
3136 *
3137 * Note that this guarantee implies further memory-ordering guarantees.
3138 * On systems with more than one CPU, when synchronize_rcu() returns,
3139 * each CPU is guaranteed to have executed a full memory barrier since
3140 * the end of its last RCU read-side critical section whose beginning
3141 * preceded the call to synchronize_rcu(). In addition, each CPU having
3142 * an RCU read-side critical section that extends beyond the return from
3143 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3144 * after the beginning of synchronize_rcu() and before the beginning of
3145 * that RCU read-side critical section. Note that these guarantees include
3146 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3147 * that are executing in the kernel.
3148 *
3149 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3150 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3151 * to have executed a full memory barrier during the execution of
3152 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3153 * again only if the system has more than one CPU).
3154 */
3155 void synchronize_rcu(void)
3156 {
3157 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3158 lock_is_held(&rcu_lock_map) ||
3159 lock_is_held(&rcu_sched_lock_map),
3160 "Illegal synchronize_rcu() in RCU read-side critical section");
3161 if (rcu_blocking_is_gp())
3162 return;
3163 if (rcu_gp_is_expedited())
3164 synchronize_rcu_expedited();
3165 else
3166 wait_rcu_gp(call_rcu);
3167 }
3168 EXPORT_SYMBOL_GPL(synchronize_rcu);
3169
3170 /**
3171 * get_state_synchronize_rcu - Snapshot current RCU state
3172 *
3173 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3174 * to determine whether or not a full grace period has elapsed in the
3175 * meantime.
3176 */
3177 unsigned long get_state_synchronize_rcu(void)
3178 {
3179 /*
3180 * Any prior manipulation of RCU-protected data must happen
3181 * before the load from ->gp_seq.
3182 */
3183 smp_mb(); /* ^^^ */
3184 return rcu_seq_snap(&rcu_state.gp_seq);
3185 }
3186 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3187
3188 /**
3189 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3190 *
3191 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3192 *
3193 * If a full RCU grace period has elapsed since the earlier call to
3194 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3195 * synchronize_rcu() to wait for a full grace period.
3196 *
3197 * Yes, this function does not take counter wrap into account. But
3198 * counter wrap is harmless. If the counter wraps, we have waited for
3199 * more than 2 billion grace periods (and way more on a 64-bit system!),
3200 * so waiting for one additional grace period should be just fine.
3201 */
3202 void cond_synchronize_rcu(unsigned long oldstate)
3203 {
3204 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
3205 synchronize_rcu();
3206 else
3207 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3208 }
3209 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3210
3211 /*
3212 * Check to see if there is any immediate RCU-related work to be done by
3213 * the current CPU, returning 1 if so and zero otherwise. The checks are
3214 * in order of increasing expense: checks that can be carried out against
3215 * CPU-local state are performed first. However, we must check for CPU
3216 * stalls first, else we might not get a chance.
3217 */
3218 static int rcu_pending(int user)
3219 {
3220 bool gp_in_progress;
3221 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3222 struct rcu_node *rnp = rdp->mynode;
3223
3224 /* Check for CPU stalls, if enabled. */
3225 check_cpu_stall(rdp);
3226
3227 /* Does this CPU need a deferred NOCB wakeup? */
3228 if (rcu_nocb_need_deferred_wakeup(rdp))
3229 return 1;
3230
3231 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */
3232 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3233 return 0;
3234
3235 /* Is the RCU core waiting for a quiescent state from this CPU? */
3236 gp_in_progress = rcu_gp_in_progress();
3237 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3238 return 1;
3239
3240 /* Does this CPU have callbacks ready to invoke? */
3241 if (rcu_segcblist_ready_cbs(&rdp->cblist))
3242 return 1;
3243
3244 /* Has RCU gone idle with this CPU needing another grace period? */
3245 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3246 (!IS_ENABLED(CONFIG_RCU_NOCB_CPU) ||
3247 !rcu_segcblist_is_offloaded(&rdp->cblist)) &&
3248 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3249 return 1;
3250
3251 /* Have RCU grace period completed or started? */
3252 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3253 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3254 return 1;
3255
3256 /* nothing to do */
3257 return 0;
3258 }
3259
3260 /*
3261 * Helper function for rcu_barrier() tracing. If tracing is disabled,
3262 * the compiler is expected to optimize this away.
3263 */
3264 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3265 {
3266 trace_rcu_barrier(rcu_state.name, s, cpu,
3267 atomic_read(&rcu_state.barrier_cpu_count), done);
3268 }
3269
3270 /*
3271 * RCU callback function for rcu_barrier(). If we are last, wake
3272 * up the task executing rcu_barrier().
3273 *
3274 * Note that the value of rcu_state.barrier_sequence must be captured
3275 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last,
3276 * other CPUs might count the value down to zero before this CPU gets
3277 * around to invoking rcu_barrier_trace(), which might result in bogus
3278 * data from the next instance of rcu_barrier().
3279 */
3280 static void rcu_barrier_callback(struct rcu_head *rhp)
3281 {
3282 unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3283
3284 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3285 rcu_barrier_trace(TPS("LastCB"), -1, s);
3286 complete(&rcu_state.barrier_completion);
3287 } else {
3288 rcu_barrier_trace(TPS("CB"), -1, s);
3289 }
3290 }
3291
3292 /*
3293 * Called with preemption disabled, and from cross-cpu IRQ context.
3294 */
3295 static void rcu_barrier_func(void *cpu_in)
3296 {
3297 uintptr_t cpu = (uintptr_t)cpu_in;
3298 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3299
3300 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3301 rdp->barrier_head.func = rcu_barrier_callback;
3302 debug_rcu_head_queue(&rdp->barrier_head);
3303 rcu_nocb_lock(rdp);
3304 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
3305 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3306 atomic_inc(&rcu_state.barrier_cpu_count);
3307 } else {
3308 debug_rcu_head_unqueue(&rdp->barrier_head);
3309 rcu_barrier_trace(TPS("IRQNQ"), -1,
3310 rcu_state.barrier_sequence);
3311 }
3312 rcu_nocb_unlock(rdp);
3313 }
3314
3315 /**
3316 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3317 *
3318 * Note that this primitive does not necessarily wait for an RCU grace period
3319 * to complete. For example, if there are no RCU callbacks queued anywhere
3320 * in the system, then rcu_barrier() is within its rights to return
3321 * immediately, without waiting for anything, much less an RCU grace period.
3322 */
3323 void rcu_barrier(void)
3324 {
3325 uintptr_t cpu;
3326 struct rcu_data *rdp;
3327 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3328
3329 rcu_barrier_trace(TPS("Begin"), -1, s);
3330
3331 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3332 mutex_lock(&rcu_state.barrier_mutex);
3333
3334 /* Did someone else do our work for us? */
3335 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3336 rcu_barrier_trace(TPS("EarlyExit"), -1,
3337 rcu_state.barrier_sequence);
3338 smp_mb(); /* caller's subsequent code after above check. */
3339 mutex_unlock(&rcu_state.barrier_mutex);
3340 return;
3341 }
3342
3343 /* Mark the start of the barrier operation. */
3344 rcu_seq_start(&rcu_state.barrier_sequence);
3345 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
3346
3347 /*
3348 * Initialize the count to two rather than to zero in order
3349 * to avoid a too-soon return to zero in case of an immediate
3350 * invocation of the just-enqueued callback (or preemption of
3351 * this task). Exclude CPU-hotplug operations to ensure that no
3352 * offline non-offloaded CPU has callbacks queued.
3353 */
3354 init_completion(&rcu_state.barrier_completion);
3355 atomic_set(&rcu_state.barrier_cpu_count, 2);
3356 get_online_cpus();
3357
3358 /*
3359 * Force each CPU with callbacks to register a new callback.
3360 * When that callback is invoked, we will know that all of the
3361 * corresponding CPU's preceding callbacks have been invoked.
3362 */
3363 for_each_possible_cpu(cpu) {
3364 rdp = per_cpu_ptr(&rcu_data, cpu);
3365 if (cpu_is_offline(cpu) &&
3366 !rcu_segcblist_is_offloaded(&rdp->cblist))
3367 continue;
3368 if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) {
3369 rcu_barrier_trace(TPS("OnlineQ"), cpu,
3370 rcu_state.barrier_sequence);
3371 smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1);
3372 } else if (rcu_segcblist_n_cbs(&rdp->cblist) &&
3373 cpu_is_offline(cpu)) {
3374 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu,
3375 rcu_state.barrier_sequence);
3376 local_irq_disable();
3377 rcu_barrier_func((void *)cpu);
3378 local_irq_enable();
3379 } else if (cpu_is_offline(cpu)) {
3380 rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu,
3381 rcu_state.barrier_sequence);
3382 } else {
3383 rcu_barrier_trace(TPS("OnlineNQ"), cpu,
3384 rcu_state.barrier_sequence);
3385 }
3386 }
3387 put_online_cpus();
3388
3389 /*
3390 * Now that we have an rcu_barrier_callback() callback on each
3391 * CPU, and thus each counted, remove the initial count.
3392 */
3393 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
3394 complete(&rcu_state.barrier_completion);
3395
3396 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3397 wait_for_completion(&rcu_state.barrier_completion);
3398
3399 /* Mark the end of the barrier operation. */
3400 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
3401 rcu_seq_end(&rcu_state.barrier_sequence);
3402
3403 /* Other rcu_barrier() invocations can now safely proceed. */
3404 mutex_unlock(&rcu_state.barrier_mutex);
3405 }
3406 EXPORT_SYMBOL_GPL(rcu_barrier);
3407
3408 /*
3409 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3410 * first CPU in a given leaf rcu_node structure coming online. The caller
3411 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3412 * disabled.
3413 */
3414 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3415 {
3416 long mask;
3417 long oldmask;
3418 struct rcu_node *rnp = rnp_leaf;
3419
3420 raw_lockdep_assert_held_rcu_node(rnp_leaf);
3421 WARN_ON_ONCE(rnp->wait_blkd_tasks);
3422 for (;;) {
3423 mask = rnp->grpmask;
3424 rnp = rnp->parent;
3425 if (rnp == NULL)
3426 return;
3427 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3428 oldmask = rnp->qsmaskinit;
3429 rnp->qsmaskinit |= mask;
3430 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3431 if (oldmask)
3432 return;
3433 }
3434 }
3435
3436 /*
3437 * Do boot-time initialization of a CPU's per-CPU RCU data.
3438 */
3439 static void __init
3440 rcu_boot_init_percpu_data(int cpu)
3441 {
3442 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3443
3444 /* Set up local state, ensuring consistent view of global state. */
3445 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3446 WARN_ON_ONCE(rdp->dynticks_nesting != 1);
3447 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
3448 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
3449 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3450 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
3451 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
3452 rdp->cpu = cpu;
3453 rcu_boot_init_nocb_percpu_data(rdp);
3454 }
3455
3456 /*
3457 * Invoked early in the CPU-online process, when pretty much all services
3458 * are available. The incoming CPU is not present.
3459 *
3460 * Initializes a CPU's per-CPU RCU data. Note that only one online or
3461 * offline event can be happening at a given time. Note also that we can
3462 * accept some slop in the rsp->gp_seq access due to the fact that this
3463 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
3464 * And any offloaded callbacks are being numbered elsewhere.
3465 */
3466 int rcutree_prepare_cpu(unsigned int cpu)
3467 {
3468 unsigned long flags;
3469 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3470 struct rcu_node *rnp = rcu_get_root();
3471
3472 /* Set up local state, ensuring consistent view of global state. */
3473 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3474 rdp->qlen_last_fqs_check = 0;
3475 rdp->n_force_qs_snap = rcu_state.n_force_qs;
3476 rdp->blimit = blimit;
3477 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3478 !rcu_segcblist_is_offloaded(&rdp->cblist))
3479 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
3480 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */
3481 rcu_dynticks_eqs_online();
3482 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
3483
3484 /*
3485 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3486 * propagation up the rcu_node tree will happen at the beginning
3487 * of the next grace period.
3488 */
3489 rnp = rdp->mynode;
3490 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
3491 rdp->beenonline = true; /* We have now been online. */
3492 rdp->gp_seq = READ_ONCE(rnp->gp_seq);
3493 rdp->gp_seq_needed = rdp->gp_seq;
3494 rdp->cpu_no_qs.b.norm = true;
3495 rdp->core_needs_qs = false;
3496 rdp->rcu_iw_pending = false;
3497 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
3498 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
3499 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3500 rcu_prepare_kthreads(cpu);
3501 rcu_spawn_cpu_nocb_kthread(cpu);
3502
3503 return 0;
3504 }
3505
3506 /*
3507 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3508 */
3509 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3510 {
3511 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3512
3513 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3514 }
3515
3516 /*
3517 * Near the end of the CPU-online process. Pretty much all services
3518 * enabled, and the CPU is now very much alive.
3519 */
3520 int rcutree_online_cpu(unsigned int cpu)
3521 {
3522 unsigned long flags;
3523 struct rcu_data *rdp;
3524 struct rcu_node *rnp;
3525
3526 rdp = per_cpu_ptr(&rcu_data, cpu);
3527 rnp = rdp->mynode;
3528 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3529 rnp->ffmask |= rdp->grpmask;
3530 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3531 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3532 return 0; /* Too early in boot for scheduler work. */
3533 sync_sched_exp_online_cleanup(cpu);
3534 rcutree_affinity_setting(cpu, -1);
3535
3536 // Stop-machine done, so allow nohz_full to disable tick.
3537 tick_dep_clear(TICK_DEP_BIT_RCU);
3538 return 0;
3539 }
3540
3541 /*
3542 * Near the beginning of the process. The CPU is still very much alive
3543 * with pretty much all services enabled.
3544 */
3545 int rcutree_offline_cpu(unsigned int cpu)
3546 {
3547 unsigned long flags;
3548 struct rcu_data *rdp;
3549 struct rcu_node *rnp;
3550
3551 rdp = per_cpu_ptr(&rcu_data, cpu);
3552 rnp = rdp->mynode;
3553 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3554 rnp->ffmask &= ~rdp->grpmask;
3555 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3556
3557 rcutree_affinity_setting(cpu, cpu);
3558
3559 // nohz_full CPUs need the tick for stop-machine to work quickly
3560 tick_dep_set(TICK_DEP_BIT_RCU);
3561 return 0;
3562 }
3563
3564 static DEFINE_PER_CPU(int, rcu_cpu_started);
3565
3566 /*
3567 * Mark the specified CPU as being online so that subsequent grace periods
3568 * (both expedited and normal) will wait on it. Note that this means that
3569 * incoming CPUs are not allowed to use RCU read-side critical sections
3570 * until this function is called. Failing to observe this restriction
3571 * will result in lockdep splats.
3572 *
3573 * Note that this function is special in that it is invoked directly
3574 * from the incoming CPU rather than from the cpuhp_step mechanism.
3575 * This is because this function must be invoked at a precise location.
3576 */
3577 void rcu_cpu_starting(unsigned int cpu)
3578 {
3579 unsigned long flags;
3580 unsigned long mask;
3581 int nbits;
3582 unsigned long oldmask;
3583 struct rcu_data *rdp;
3584 struct rcu_node *rnp;
3585
3586 if (per_cpu(rcu_cpu_started, cpu))
3587 return;
3588
3589 per_cpu(rcu_cpu_started, cpu) = 1;
3590
3591 rdp = per_cpu_ptr(&rcu_data, cpu);
3592 rnp = rdp->mynode;
3593 mask = rdp->grpmask;
3594 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3595 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
3596 oldmask = rnp->expmaskinitnext;
3597 rnp->expmaskinitnext |= mask;
3598 oldmask ^= rnp->expmaskinitnext;
3599 nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3600 /* Allow lockless access for expedited grace periods. */
3601 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
3602 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
3603 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3604 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3605 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
3606 rcu_disable_urgency_upon_qs(rdp);
3607 /* Report QS -after- changing ->qsmaskinitnext! */
3608 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3609 } else {
3610 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3611 }
3612 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3613 }
3614
3615 #ifdef CONFIG_HOTPLUG_CPU
3616 /*
3617 * The outgoing function has no further need of RCU, so remove it from
3618 * the rcu_node tree's ->qsmaskinitnext bit masks.
3619 *
3620 * Note that this function is special in that it is invoked directly
3621 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3622 * This is because this function must be invoked at a precise location.
3623 */
3624 void rcu_report_dead(unsigned int cpu)
3625 {
3626 unsigned long flags;
3627 unsigned long mask;
3628 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3629 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3630
3631 /* QS for any half-done expedited grace period. */
3632 preempt_disable();
3633 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
3634 preempt_enable();
3635 rcu_preempt_deferred_qs(current);
3636
3637 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3638 mask = rdp->grpmask;
3639 raw_spin_lock(&rcu_state.ofl_lock);
3640 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3641 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3642 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3643 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3644 /* Report quiescent state -before- changing ->qsmaskinitnext! */
3645 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3646 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3647 }
3648 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
3649 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3650 raw_spin_unlock(&rcu_state.ofl_lock);
3651
3652 per_cpu(rcu_cpu_started, cpu) = 0;
3653 }
3654
3655 /*
3656 * The outgoing CPU has just passed through the dying-idle state, and we
3657 * are being invoked from the CPU that was IPIed to continue the offline
3658 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
3659 */
3660 void rcutree_migrate_callbacks(int cpu)
3661 {
3662 unsigned long flags;
3663 struct rcu_data *my_rdp;
3664 struct rcu_node *my_rnp;
3665 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3666 bool needwake;
3667
3668 if (rcu_segcblist_is_offloaded(&rdp->cblist) ||
3669 rcu_segcblist_empty(&rdp->cblist))
3670 return; /* No callbacks to migrate. */
3671
3672 local_irq_save(flags);
3673 my_rdp = this_cpu_ptr(&rcu_data);
3674 my_rnp = my_rdp->mynode;
3675 rcu_nocb_lock(my_rdp); /* irqs already disabled. */
3676 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
3677 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
3678 /* Leverage recent GPs and set GP for new callbacks. */
3679 needwake = rcu_advance_cbs(my_rnp, rdp) ||
3680 rcu_advance_cbs(my_rnp, my_rdp);
3681 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3682 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
3683 rcu_segcblist_disable(&rdp->cblist);
3684 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3685 !rcu_segcblist_n_cbs(&my_rdp->cblist));
3686 if (rcu_segcblist_is_offloaded(&my_rdp->cblist)) {
3687 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
3688 __call_rcu_nocb_wake(my_rdp, true, flags);
3689 } else {
3690 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
3691 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
3692 }
3693 if (needwake)
3694 rcu_gp_kthread_wake();
3695 lockdep_assert_irqs_enabled();
3696 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3697 !rcu_segcblist_empty(&rdp->cblist),
3698 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3699 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3700 rcu_segcblist_first_cb(&rdp->cblist));
3701 }
3702 #endif
3703
3704 /*
3705 * On non-huge systems, use expedited RCU grace periods to make suspend
3706 * and hibernation run faster.
3707 */
3708 static int rcu_pm_notify(struct notifier_block *self,
3709 unsigned long action, void *hcpu)
3710 {
3711 switch (action) {
3712 case PM_HIBERNATION_PREPARE:
3713 case PM_SUSPEND_PREPARE:
3714 rcu_expedite_gp();
3715 break;
3716 case PM_POST_HIBERNATION:
3717 case PM_POST_SUSPEND:
3718 rcu_unexpedite_gp();
3719 break;
3720 default:
3721 break;
3722 }
3723 return NOTIFY_OK;
3724 }
3725
3726 /*
3727 * Spawn the kthreads that handle RCU's grace periods.
3728 */
3729 static int __init rcu_spawn_gp_kthread(void)
3730 {
3731 unsigned long flags;
3732 int kthread_prio_in = kthread_prio;
3733 struct rcu_node *rnp;
3734 struct sched_param sp;
3735 struct task_struct *t;
3736
3737 /* Force priority into range. */
3738 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3739 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3740 kthread_prio = 2;
3741 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3742 kthread_prio = 1;
3743 else if (kthread_prio < 0)
3744 kthread_prio = 0;
3745 else if (kthread_prio > 99)
3746 kthread_prio = 99;
3747
3748 if (kthread_prio != kthread_prio_in)
3749 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3750 kthread_prio, kthread_prio_in);
3751
3752 rcu_scheduler_fully_active = 1;
3753 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
3754 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
3755 return 0;
3756 if (kthread_prio) {
3757 sp.sched_priority = kthread_prio;
3758 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3759 }
3760 rnp = rcu_get_root();
3761 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3762 WRITE_ONCE(rcu_state.gp_activity, jiffies);
3763 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
3764 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
3765 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */
3766 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3767 wake_up_process(t);
3768 rcu_spawn_nocb_kthreads();
3769 rcu_spawn_boost_kthreads();
3770 return 0;
3771 }
3772 early_initcall(rcu_spawn_gp_kthread);
3773
3774 /*
3775 * This function is invoked towards the end of the scheduler's
3776 * initialization process. Before this is called, the idle task might
3777 * contain synchronous grace-period primitives (during which time, this idle
3778 * task is booting the system, and such primitives are no-ops). After this
3779 * function is called, any synchronous grace-period primitives are run as
3780 * expedited, with the requesting task driving the grace period forward.
3781 * A later core_initcall() rcu_set_runtime_mode() will switch to full
3782 * runtime RCU functionality.
3783 */
3784 void rcu_scheduler_starting(void)
3785 {
3786 WARN_ON(num_online_cpus() != 1);
3787 WARN_ON(nr_context_switches() > 0);
3788 rcu_test_sync_prims();
3789 rcu_scheduler_active = RCU_SCHEDULER_INIT;
3790 rcu_test_sync_prims();
3791 }
3792
3793 /*
3794 * Helper function for rcu_init() that initializes the rcu_state structure.
3795 */
3796 static void __init rcu_init_one(void)
3797 {
3798 static const char * const buf[] = RCU_NODE_NAME_INIT;
3799 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3800 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3801 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3802
3803 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
3804 int cpustride = 1;
3805 int i;
3806 int j;
3807 struct rcu_node *rnp;
3808
3809 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3810
3811 /* Silence gcc 4.8 false positive about array index out of range. */
3812 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3813 panic("rcu_init_one: rcu_num_lvls out of range");
3814
3815 /* Initialize the level-tracking arrays. */
3816
3817 for (i = 1; i < rcu_num_lvls; i++)
3818 rcu_state.level[i] =
3819 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
3820 rcu_init_levelspread(levelspread, num_rcu_lvl);
3821
3822 /* Initialize the elements themselves, starting from the leaves. */
3823
3824 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3825 cpustride *= levelspread[i];
3826 rnp = rcu_state.level[i];
3827 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
3828 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3829 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
3830 &rcu_node_class[i], buf[i]);
3831 raw_spin_lock_init(&rnp->fqslock);
3832 lockdep_set_class_and_name(&rnp->fqslock,
3833 &rcu_fqs_class[i], fqs[i]);
3834 rnp->gp_seq = rcu_state.gp_seq;
3835 rnp->gp_seq_needed = rcu_state.gp_seq;
3836 rnp->completedqs = rcu_state.gp_seq;
3837 rnp->qsmask = 0;
3838 rnp->qsmaskinit = 0;
3839 rnp->grplo = j * cpustride;
3840 rnp->grphi = (j + 1) * cpustride - 1;
3841 if (rnp->grphi >= nr_cpu_ids)
3842 rnp->grphi = nr_cpu_ids - 1;
3843 if (i == 0) {
3844 rnp->grpnum = 0;
3845 rnp->grpmask = 0;
3846 rnp->parent = NULL;
3847 } else {
3848 rnp->grpnum = j % levelspread[i - 1];
3849 rnp->grpmask = BIT(rnp->grpnum);
3850 rnp->parent = rcu_state.level[i - 1] +
3851 j / levelspread[i - 1];
3852 }
3853 rnp->level = i;
3854 INIT_LIST_HEAD(&rnp->blkd_tasks);
3855 rcu_init_one_nocb(rnp);
3856 init_waitqueue_head(&rnp->exp_wq[0]);
3857 init_waitqueue_head(&rnp->exp_wq[1]);
3858 init_waitqueue_head(&rnp->exp_wq[2]);
3859 init_waitqueue_head(&rnp->exp_wq[3]);
3860 spin_lock_init(&rnp->exp_lock);
3861 }
3862 }
3863
3864 init_swait_queue_head(&rcu_state.gp_wq);
3865 init_swait_queue_head(&rcu_state.expedited_wq);
3866 rnp = rcu_first_leaf_node();
3867 for_each_possible_cpu(i) {
3868 while (i > rnp->grphi)
3869 rnp++;
3870 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
3871 rcu_boot_init_percpu_data(i);
3872 }
3873 }
3874
3875 /*
3876 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3877 * replace the definitions in tree.h because those are needed to size
3878 * the ->node array in the rcu_state structure.
3879 */
3880 static void __init rcu_init_geometry(void)
3881 {
3882 ulong d;
3883 int i;
3884 int rcu_capacity[RCU_NUM_LVLS];
3885
3886 /*
3887 * Initialize any unspecified boot parameters.
3888 * The default values of jiffies_till_first_fqs and
3889 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3890 * value, which is a function of HZ, then adding one for each
3891 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3892 */
3893 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3894 if (jiffies_till_first_fqs == ULONG_MAX)
3895 jiffies_till_first_fqs = d;
3896 if (jiffies_till_next_fqs == ULONG_MAX)
3897 jiffies_till_next_fqs = d;
3898 adjust_jiffies_till_sched_qs();
3899
3900 /* If the compile-time values are accurate, just leave. */
3901 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
3902 nr_cpu_ids == NR_CPUS)
3903 return;
3904 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
3905 rcu_fanout_leaf, nr_cpu_ids);
3906
3907 /*
3908 * The boot-time rcu_fanout_leaf parameter must be at least two
3909 * and cannot exceed the number of bits in the rcu_node masks.
3910 * Complain and fall back to the compile-time values if this
3911 * limit is exceeded.
3912 */
3913 if (rcu_fanout_leaf < 2 ||
3914 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
3915 rcu_fanout_leaf = RCU_FANOUT_LEAF;
3916 WARN_ON(1);
3917 return;
3918 }
3919
3920 /*
3921 * Compute number of nodes that can be handled an rcu_node tree
3922 * with the given number of levels.
3923 */
3924 rcu_capacity[0] = rcu_fanout_leaf;
3925 for (i = 1; i < RCU_NUM_LVLS; i++)
3926 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
3927
3928 /*
3929 * The tree must be able to accommodate the configured number of CPUs.
3930 * If this limit is exceeded, fall back to the compile-time values.
3931 */
3932 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
3933 rcu_fanout_leaf = RCU_FANOUT_LEAF;
3934 WARN_ON(1);
3935 return;
3936 }
3937
3938 /* Calculate the number of levels in the tree. */
3939 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
3940 }
3941 rcu_num_lvls = i + 1;
3942
3943 /* Calculate the number of rcu_nodes at each level of the tree. */
3944 for (i = 0; i < rcu_num_lvls; i++) {
3945 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
3946 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
3947 }
3948
3949 /* Calculate the total number of rcu_node structures. */
3950 rcu_num_nodes = 0;
3951 for (i = 0; i < rcu_num_lvls; i++)
3952 rcu_num_nodes += num_rcu_lvl[i];
3953 }
3954
3955 /*
3956 * Dump out the structure of the rcu_node combining tree associated
3957 * with the rcu_state structure.
3958 */
3959 static void __init rcu_dump_rcu_node_tree(void)
3960 {
3961 int level = 0;
3962 struct rcu_node *rnp;
3963
3964 pr_info("rcu_node tree layout dump\n");
3965 pr_info(" ");
3966 rcu_for_each_node_breadth_first(rnp) {
3967 if (rnp->level != level) {
3968 pr_cont("\n");
3969 pr_info(" ");
3970 level = rnp->level;
3971 }
3972 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
3973 }
3974 pr_cont("\n");
3975 }
3976
3977 struct workqueue_struct *rcu_gp_wq;
3978 struct workqueue_struct *rcu_par_gp_wq;
3979
3980 static void __init kfree_rcu_batch_init(void)
3981 {
3982 int cpu;
3983 int i;
3984
3985 for_each_possible_cpu(cpu) {
3986 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3987
3988 spin_lock_init(&krcp->lock);
3989 for (i = 0; i < KFREE_N_BATCHES; i++) {
3990 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
3991 krcp->krw_arr[i].krcp = krcp;
3992 }
3993
3994 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
3995 krcp->initialized = true;
3996 }
3997 }
3998
3999 void __init rcu_init(void)
4000 {
4001 int cpu;
4002
4003 rcu_early_boot_tests();
4004
4005 kfree_rcu_batch_init();
4006 rcu_bootup_announce();
4007 rcu_init_geometry();
4008 rcu_init_one();
4009 if (dump_tree)
4010 rcu_dump_rcu_node_tree();
4011 if (use_softirq)
4012 open_softirq(RCU_SOFTIRQ, rcu_core_si);
4013
4014 /*
4015 * We don't need protection against CPU-hotplug here because
4016 * this is called early in boot, before either interrupts
4017 * or the scheduler are operational.
4018 */
4019 pm_notifier(rcu_pm_notify, 0);
4020 for_each_online_cpu(cpu) {
4021 rcutree_prepare_cpu(cpu);
4022 rcu_cpu_starting(cpu);
4023 rcutree_online_cpu(cpu);
4024 }
4025
4026 /* Create workqueue for expedited GPs and for Tree SRCU. */
4027 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4028 WARN_ON(!rcu_gp_wq);
4029 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4030 WARN_ON(!rcu_par_gp_wq);
4031 srcu_init();
4032
4033 /* Fill in default value for rcutree.qovld boot parameter. */
4034 /* -After- the rcu_node ->lock fields are initialized! */
4035 if (qovld < 0)
4036 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4037 else
4038 qovld_calc = qovld;
4039 }
4040
4041 #include "tree_stall.h"
4042 #include "tree_exp.h"
4043 #include "tree_plugin.h"