]> git.ipfire.org Git - people/ms/linux.git/blob - kernel/resource.c
Merge tag 'drm-intel-next-2015-09-11' of git://anongit.freedesktop.org/drm-intel...
[people/ms/linux.git] / kernel / resource.c
1 /*
2 * linux/kernel/resource.c
3 *
4 * Copyright (C) 1999 Linus Torvalds
5 * Copyright (C) 1999 Martin Mares <mj@ucw.cz>
6 *
7 * Arbitrary resource management.
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/export.h>
13 #include <linux/errno.h>
14 #include <linux/ioport.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/device.h>
23 #include <linux/pfn.h>
24 #include <linux/mm.h>
25 #include <linux/resource_ext.h>
26 #include <asm/io.h>
27
28
29 struct resource ioport_resource = {
30 .name = "PCI IO",
31 .start = 0,
32 .end = IO_SPACE_LIMIT,
33 .flags = IORESOURCE_IO,
34 };
35 EXPORT_SYMBOL(ioport_resource);
36
37 struct resource iomem_resource = {
38 .name = "PCI mem",
39 .start = 0,
40 .end = -1,
41 .flags = IORESOURCE_MEM,
42 };
43 EXPORT_SYMBOL(iomem_resource);
44
45 /* constraints to be met while allocating resources */
46 struct resource_constraint {
47 resource_size_t min, max, align;
48 resource_size_t (*alignf)(void *, const struct resource *,
49 resource_size_t, resource_size_t);
50 void *alignf_data;
51 };
52
53 static DEFINE_RWLOCK(resource_lock);
54
55 /*
56 * For memory hotplug, there is no way to free resource entries allocated
57 * by boot mem after the system is up. So for reusing the resource entry
58 * we need to remember the resource.
59 */
60 static struct resource *bootmem_resource_free;
61 static DEFINE_SPINLOCK(bootmem_resource_lock);
62
63 static struct resource *next_resource(struct resource *p, bool sibling_only)
64 {
65 /* Caller wants to traverse through siblings only */
66 if (sibling_only)
67 return p->sibling;
68
69 if (p->child)
70 return p->child;
71 while (!p->sibling && p->parent)
72 p = p->parent;
73 return p->sibling;
74 }
75
76 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
77 {
78 struct resource *p = v;
79 (*pos)++;
80 return (void *)next_resource(p, false);
81 }
82
83 #ifdef CONFIG_PROC_FS
84
85 enum { MAX_IORES_LEVEL = 5 };
86
87 static void *r_start(struct seq_file *m, loff_t *pos)
88 __acquires(resource_lock)
89 {
90 struct resource *p = m->private;
91 loff_t l = 0;
92 read_lock(&resource_lock);
93 for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
94 ;
95 return p;
96 }
97
98 static void r_stop(struct seq_file *m, void *v)
99 __releases(resource_lock)
100 {
101 read_unlock(&resource_lock);
102 }
103
104 static int r_show(struct seq_file *m, void *v)
105 {
106 struct resource *root = m->private;
107 struct resource *r = v, *p;
108 int width = root->end < 0x10000 ? 4 : 8;
109 int depth;
110
111 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
112 if (p->parent == root)
113 break;
114 seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
115 depth * 2, "",
116 width, (unsigned long long) r->start,
117 width, (unsigned long long) r->end,
118 r->name ? r->name : "<BAD>");
119 return 0;
120 }
121
122 static const struct seq_operations resource_op = {
123 .start = r_start,
124 .next = r_next,
125 .stop = r_stop,
126 .show = r_show,
127 };
128
129 static int ioports_open(struct inode *inode, struct file *file)
130 {
131 int res = seq_open(file, &resource_op);
132 if (!res) {
133 struct seq_file *m = file->private_data;
134 m->private = &ioport_resource;
135 }
136 return res;
137 }
138
139 static int iomem_open(struct inode *inode, struct file *file)
140 {
141 int res = seq_open(file, &resource_op);
142 if (!res) {
143 struct seq_file *m = file->private_data;
144 m->private = &iomem_resource;
145 }
146 return res;
147 }
148
149 static const struct file_operations proc_ioports_operations = {
150 .open = ioports_open,
151 .read = seq_read,
152 .llseek = seq_lseek,
153 .release = seq_release,
154 };
155
156 static const struct file_operations proc_iomem_operations = {
157 .open = iomem_open,
158 .read = seq_read,
159 .llseek = seq_lseek,
160 .release = seq_release,
161 };
162
163 static int __init ioresources_init(void)
164 {
165 proc_create("ioports", 0, NULL, &proc_ioports_operations);
166 proc_create("iomem", 0, NULL, &proc_iomem_operations);
167 return 0;
168 }
169 __initcall(ioresources_init);
170
171 #endif /* CONFIG_PROC_FS */
172
173 static void free_resource(struct resource *res)
174 {
175 if (!res)
176 return;
177
178 if (!PageSlab(virt_to_head_page(res))) {
179 spin_lock(&bootmem_resource_lock);
180 res->sibling = bootmem_resource_free;
181 bootmem_resource_free = res;
182 spin_unlock(&bootmem_resource_lock);
183 } else {
184 kfree(res);
185 }
186 }
187
188 static struct resource *alloc_resource(gfp_t flags)
189 {
190 struct resource *res = NULL;
191
192 spin_lock(&bootmem_resource_lock);
193 if (bootmem_resource_free) {
194 res = bootmem_resource_free;
195 bootmem_resource_free = res->sibling;
196 }
197 spin_unlock(&bootmem_resource_lock);
198
199 if (res)
200 memset(res, 0, sizeof(struct resource));
201 else
202 res = kzalloc(sizeof(struct resource), flags);
203
204 return res;
205 }
206
207 /* Return the conflict entry if you can't request it */
208 static struct resource * __request_resource(struct resource *root, struct resource *new)
209 {
210 resource_size_t start = new->start;
211 resource_size_t end = new->end;
212 struct resource *tmp, **p;
213
214 if (end < start)
215 return root;
216 if (start < root->start)
217 return root;
218 if (end > root->end)
219 return root;
220 p = &root->child;
221 for (;;) {
222 tmp = *p;
223 if (!tmp || tmp->start > end) {
224 new->sibling = tmp;
225 *p = new;
226 new->parent = root;
227 return NULL;
228 }
229 p = &tmp->sibling;
230 if (tmp->end < start)
231 continue;
232 return tmp;
233 }
234 }
235
236 static int __release_resource(struct resource *old)
237 {
238 struct resource *tmp, **p;
239
240 p = &old->parent->child;
241 for (;;) {
242 tmp = *p;
243 if (!tmp)
244 break;
245 if (tmp == old) {
246 *p = tmp->sibling;
247 old->parent = NULL;
248 return 0;
249 }
250 p = &tmp->sibling;
251 }
252 return -EINVAL;
253 }
254
255 static void __release_child_resources(struct resource *r)
256 {
257 struct resource *tmp, *p;
258 resource_size_t size;
259
260 p = r->child;
261 r->child = NULL;
262 while (p) {
263 tmp = p;
264 p = p->sibling;
265
266 tmp->parent = NULL;
267 tmp->sibling = NULL;
268 __release_child_resources(tmp);
269
270 printk(KERN_DEBUG "release child resource %pR\n", tmp);
271 /* need to restore size, and keep flags */
272 size = resource_size(tmp);
273 tmp->start = 0;
274 tmp->end = size - 1;
275 }
276 }
277
278 void release_child_resources(struct resource *r)
279 {
280 write_lock(&resource_lock);
281 __release_child_resources(r);
282 write_unlock(&resource_lock);
283 }
284
285 /**
286 * request_resource_conflict - request and reserve an I/O or memory resource
287 * @root: root resource descriptor
288 * @new: resource descriptor desired by caller
289 *
290 * Returns 0 for success, conflict resource on error.
291 */
292 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
293 {
294 struct resource *conflict;
295
296 write_lock(&resource_lock);
297 conflict = __request_resource(root, new);
298 write_unlock(&resource_lock);
299 return conflict;
300 }
301
302 /**
303 * request_resource - request and reserve an I/O or memory resource
304 * @root: root resource descriptor
305 * @new: resource descriptor desired by caller
306 *
307 * Returns 0 for success, negative error code on error.
308 */
309 int request_resource(struct resource *root, struct resource *new)
310 {
311 struct resource *conflict;
312
313 conflict = request_resource_conflict(root, new);
314 return conflict ? -EBUSY : 0;
315 }
316
317 EXPORT_SYMBOL(request_resource);
318
319 /**
320 * release_resource - release a previously reserved resource
321 * @old: resource pointer
322 */
323 int release_resource(struct resource *old)
324 {
325 int retval;
326
327 write_lock(&resource_lock);
328 retval = __release_resource(old);
329 write_unlock(&resource_lock);
330 return retval;
331 }
332
333 EXPORT_SYMBOL(release_resource);
334
335 /*
336 * Finds the lowest iomem reosurce exists with-in [res->start.res->end)
337 * the caller must specify res->start, res->end, res->flags and "name".
338 * If found, returns 0, res is overwritten, if not found, returns -1.
339 * This walks through whole tree and not just first level children
340 * until and unless first_level_children_only is true.
341 */
342 static int find_next_iomem_res(struct resource *res, char *name,
343 bool first_level_children_only)
344 {
345 resource_size_t start, end;
346 struct resource *p;
347 bool sibling_only = false;
348
349 BUG_ON(!res);
350
351 start = res->start;
352 end = res->end;
353 BUG_ON(start >= end);
354
355 if (first_level_children_only)
356 sibling_only = true;
357
358 read_lock(&resource_lock);
359
360 for (p = iomem_resource.child; p; p = next_resource(p, sibling_only)) {
361 if (p->flags != res->flags)
362 continue;
363 if (name && strcmp(p->name, name))
364 continue;
365 if (p->start > end) {
366 p = NULL;
367 break;
368 }
369 if ((p->end >= start) && (p->start < end))
370 break;
371 }
372
373 read_unlock(&resource_lock);
374 if (!p)
375 return -1;
376 /* copy data */
377 if (res->start < p->start)
378 res->start = p->start;
379 if (res->end > p->end)
380 res->end = p->end;
381 return 0;
382 }
383
384 /*
385 * Walks through iomem resources and calls func() with matching resource
386 * ranges. This walks through whole tree and not just first level children.
387 * All the memory ranges which overlap start,end and also match flags and
388 * name are valid candidates.
389 *
390 * @name: name of resource
391 * @flags: resource flags
392 * @start: start addr
393 * @end: end addr
394 */
395 int walk_iomem_res(char *name, unsigned long flags, u64 start, u64 end,
396 void *arg, int (*func)(u64, u64, void *))
397 {
398 struct resource res;
399 u64 orig_end;
400 int ret = -1;
401
402 res.start = start;
403 res.end = end;
404 res.flags = flags;
405 orig_end = res.end;
406 while ((res.start < res.end) &&
407 (!find_next_iomem_res(&res, name, false))) {
408 ret = (*func)(res.start, res.end, arg);
409 if (ret)
410 break;
411 res.start = res.end + 1;
412 res.end = orig_end;
413 }
414 return ret;
415 }
416
417 /*
418 * This function calls callback against all memory range of "System RAM"
419 * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY.
420 * Now, this function is only for "System RAM". This function deals with
421 * full ranges and not pfn. If resources are not pfn aligned, dealing
422 * with pfn can truncate ranges.
423 */
424 int walk_system_ram_res(u64 start, u64 end, void *arg,
425 int (*func)(u64, u64, void *))
426 {
427 struct resource res;
428 u64 orig_end;
429 int ret = -1;
430
431 res.start = start;
432 res.end = end;
433 res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
434 orig_end = res.end;
435 while ((res.start < res.end) &&
436 (!find_next_iomem_res(&res, "System RAM", true))) {
437 ret = (*func)(res.start, res.end, arg);
438 if (ret)
439 break;
440 res.start = res.end + 1;
441 res.end = orig_end;
442 }
443 return ret;
444 }
445
446 #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY)
447
448 /*
449 * This function calls callback against all memory range of "System RAM"
450 * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY.
451 * Now, this function is only for "System RAM".
452 */
453 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
454 void *arg, int (*func)(unsigned long, unsigned long, void *))
455 {
456 struct resource res;
457 unsigned long pfn, end_pfn;
458 u64 orig_end;
459 int ret = -1;
460
461 res.start = (u64) start_pfn << PAGE_SHIFT;
462 res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
463 res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
464 orig_end = res.end;
465 while ((res.start < res.end) &&
466 (find_next_iomem_res(&res, "System RAM", true) >= 0)) {
467 pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT;
468 end_pfn = (res.end + 1) >> PAGE_SHIFT;
469 if (end_pfn > pfn)
470 ret = (*func)(pfn, end_pfn - pfn, arg);
471 if (ret)
472 break;
473 res.start = res.end + 1;
474 res.end = orig_end;
475 }
476 return ret;
477 }
478
479 #endif
480
481 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
482 {
483 return 1;
484 }
485 /*
486 * This generic page_is_ram() returns true if specified address is
487 * registered as "System RAM" in iomem_resource list.
488 */
489 int __weak page_is_ram(unsigned long pfn)
490 {
491 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
492 }
493 EXPORT_SYMBOL_GPL(page_is_ram);
494
495 /**
496 * region_intersects() - determine intersection of region with known resources
497 * @start: region start address
498 * @size: size of region
499 * @name: name of resource (in iomem_resource)
500 *
501 * Check if the specified region partially overlaps or fully eclipses a
502 * resource identified by @name. Return REGION_DISJOINT if the region
503 * does not overlap @name, return REGION_MIXED if the region overlaps
504 * @type and another resource, and return REGION_INTERSECTS if the
505 * region overlaps @type and no other defined resource. Note, that
506 * REGION_INTERSECTS is also returned in the case when the specified
507 * region overlaps RAM and undefined memory holes.
508 *
509 * region_intersect() is used by memory remapping functions to ensure
510 * the user is not remapping RAM and is a vast speed up over walking
511 * through the resource table page by page.
512 */
513 int region_intersects(resource_size_t start, size_t size, const char *name)
514 {
515 unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
516 resource_size_t end = start + size - 1;
517 int type = 0; int other = 0;
518 struct resource *p;
519
520 read_lock(&resource_lock);
521 for (p = iomem_resource.child; p ; p = p->sibling) {
522 bool is_type = strcmp(p->name, name) == 0 && p->flags == flags;
523
524 if (start >= p->start && start <= p->end)
525 is_type ? type++ : other++;
526 if (end >= p->start && end <= p->end)
527 is_type ? type++ : other++;
528 if (p->start >= start && p->end <= end)
529 is_type ? type++ : other++;
530 }
531 read_unlock(&resource_lock);
532
533 if (other == 0)
534 return type ? REGION_INTERSECTS : REGION_DISJOINT;
535
536 if (type)
537 return REGION_MIXED;
538
539 return REGION_DISJOINT;
540 }
541
542 void __weak arch_remove_reservations(struct resource *avail)
543 {
544 }
545
546 static resource_size_t simple_align_resource(void *data,
547 const struct resource *avail,
548 resource_size_t size,
549 resource_size_t align)
550 {
551 return avail->start;
552 }
553
554 static void resource_clip(struct resource *res, resource_size_t min,
555 resource_size_t max)
556 {
557 if (res->start < min)
558 res->start = min;
559 if (res->end > max)
560 res->end = max;
561 }
562
563 /*
564 * Find empty slot in the resource tree with the given range and
565 * alignment constraints
566 */
567 static int __find_resource(struct resource *root, struct resource *old,
568 struct resource *new,
569 resource_size_t size,
570 struct resource_constraint *constraint)
571 {
572 struct resource *this = root->child;
573 struct resource tmp = *new, avail, alloc;
574
575 tmp.start = root->start;
576 /*
577 * Skip past an allocated resource that starts at 0, since the assignment
578 * of this->start - 1 to tmp->end below would cause an underflow.
579 */
580 if (this && this->start == root->start) {
581 tmp.start = (this == old) ? old->start : this->end + 1;
582 this = this->sibling;
583 }
584 for(;;) {
585 if (this)
586 tmp.end = (this == old) ? this->end : this->start - 1;
587 else
588 tmp.end = root->end;
589
590 if (tmp.end < tmp.start)
591 goto next;
592
593 resource_clip(&tmp, constraint->min, constraint->max);
594 arch_remove_reservations(&tmp);
595
596 /* Check for overflow after ALIGN() */
597 avail.start = ALIGN(tmp.start, constraint->align);
598 avail.end = tmp.end;
599 avail.flags = new->flags & ~IORESOURCE_UNSET;
600 if (avail.start >= tmp.start) {
601 alloc.flags = avail.flags;
602 alloc.start = constraint->alignf(constraint->alignf_data, &avail,
603 size, constraint->align);
604 alloc.end = alloc.start + size - 1;
605 if (resource_contains(&avail, &alloc)) {
606 new->start = alloc.start;
607 new->end = alloc.end;
608 return 0;
609 }
610 }
611
612 next: if (!this || this->end == root->end)
613 break;
614
615 if (this != old)
616 tmp.start = this->end + 1;
617 this = this->sibling;
618 }
619 return -EBUSY;
620 }
621
622 /*
623 * Find empty slot in the resource tree given range and alignment.
624 */
625 static int find_resource(struct resource *root, struct resource *new,
626 resource_size_t size,
627 struct resource_constraint *constraint)
628 {
629 return __find_resource(root, NULL, new, size, constraint);
630 }
631
632 /**
633 * reallocate_resource - allocate a slot in the resource tree given range & alignment.
634 * The resource will be relocated if the new size cannot be reallocated in the
635 * current location.
636 *
637 * @root: root resource descriptor
638 * @old: resource descriptor desired by caller
639 * @newsize: new size of the resource descriptor
640 * @constraint: the size and alignment constraints to be met.
641 */
642 static int reallocate_resource(struct resource *root, struct resource *old,
643 resource_size_t newsize,
644 struct resource_constraint *constraint)
645 {
646 int err=0;
647 struct resource new = *old;
648 struct resource *conflict;
649
650 write_lock(&resource_lock);
651
652 if ((err = __find_resource(root, old, &new, newsize, constraint)))
653 goto out;
654
655 if (resource_contains(&new, old)) {
656 old->start = new.start;
657 old->end = new.end;
658 goto out;
659 }
660
661 if (old->child) {
662 err = -EBUSY;
663 goto out;
664 }
665
666 if (resource_contains(old, &new)) {
667 old->start = new.start;
668 old->end = new.end;
669 } else {
670 __release_resource(old);
671 *old = new;
672 conflict = __request_resource(root, old);
673 BUG_ON(conflict);
674 }
675 out:
676 write_unlock(&resource_lock);
677 return err;
678 }
679
680
681 /**
682 * allocate_resource - allocate empty slot in the resource tree given range & alignment.
683 * The resource will be reallocated with a new size if it was already allocated
684 * @root: root resource descriptor
685 * @new: resource descriptor desired by caller
686 * @size: requested resource region size
687 * @min: minimum boundary to allocate
688 * @max: maximum boundary to allocate
689 * @align: alignment requested, in bytes
690 * @alignf: alignment function, optional, called if not NULL
691 * @alignf_data: arbitrary data to pass to the @alignf function
692 */
693 int allocate_resource(struct resource *root, struct resource *new,
694 resource_size_t size, resource_size_t min,
695 resource_size_t max, resource_size_t align,
696 resource_size_t (*alignf)(void *,
697 const struct resource *,
698 resource_size_t,
699 resource_size_t),
700 void *alignf_data)
701 {
702 int err;
703 struct resource_constraint constraint;
704
705 if (!alignf)
706 alignf = simple_align_resource;
707
708 constraint.min = min;
709 constraint.max = max;
710 constraint.align = align;
711 constraint.alignf = alignf;
712 constraint.alignf_data = alignf_data;
713
714 if ( new->parent ) {
715 /* resource is already allocated, try reallocating with
716 the new constraints */
717 return reallocate_resource(root, new, size, &constraint);
718 }
719
720 write_lock(&resource_lock);
721 err = find_resource(root, new, size, &constraint);
722 if (err >= 0 && __request_resource(root, new))
723 err = -EBUSY;
724 write_unlock(&resource_lock);
725 return err;
726 }
727
728 EXPORT_SYMBOL(allocate_resource);
729
730 /**
731 * lookup_resource - find an existing resource by a resource start address
732 * @root: root resource descriptor
733 * @start: resource start address
734 *
735 * Returns a pointer to the resource if found, NULL otherwise
736 */
737 struct resource *lookup_resource(struct resource *root, resource_size_t start)
738 {
739 struct resource *res;
740
741 read_lock(&resource_lock);
742 for (res = root->child; res; res = res->sibling) {
743 if (res->start == start)
744 break;
745 }
746 read_unlock(&resource_lock);
747
748 return res;
749 }
750
751 /*
752 * Insert a resource into the resource tree. If successful, return NULL,
753 * otherwise return the conflicting resource (compare to __request_resource())
754 */
755 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
756 {
757 struct resource *first, *next;
758
759 for (;; parent = first) {
760 first = __request_resource(parent, new);
761 if (!first)
762 return first;
763
764 if (first == parent)
765 return first;
766 if (WARN_ON(first == new)) /* duplicated insertion */
767 return first;
768
769 if ((first->start > new->start) || (first->end < new->end))
770 break;
771 if ((first->start == new->start) && (first->end == new->end))
772 break;
773 }
774
775 for (next = first; ; next = next->sibling) {
776 /* Partial overlap? Bad, and unfixable */
777 if (next->start < new->start || next->end > new->end)
778 return next;
779 if (!next->sibling)
780 break;
781 if (next->sibling->start > new->end)
782 break;
783 }
784
785 new->parent = parent;
786 new->sibling = next->sibling;
787 new->child = first;
788
789 next->sibling = NULL;
790 for (next = first; next; next = next->sibling)
791 next->parent = new;
792
793 if (parent->child == first) {
794 parent->child = new;
795 } else {
796 next = parent->child;
797 while (next->sibling != first)
798 next = next->sibling;
799 next->sibling = new;
800 }
801 return NULL;
802 }
803
804 /**
805 * insert_resource_conflict - Inserts resource in the resource tree
806 * @parent: parent of the new resource
807 * @new: new resource to insert
808 *
809 * Returns 0 on success, conflict resource if the resource can't be inserted.
810 *
811 * This function is equivalent to request_resource_conflict when no conflict
812 * happens. If a conflict happens, and the conflicting resources
813 * entirely fit within the range of the new resource, then the new
814 * resource is inserted and the conflicting resources become children of
815 * the new resource.
816 */
817 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
818 {
819 struct resource *conflict;
820
821 write_lock(&resource_lock);
822 conflict = __insert_resource(parent, new);
823 write_unlock(&resource_lock);
824 return conflict;
825 }
826
827 /**
828 * insert_resource - Inserts a resource in the resource tree
829 * @parent: parent of the new resource
830 * @new: new resource to insert
831 *
832 * Returns 0 on success, -EBUSY if the resource can't be inserted.
833 */
834 int insert_resource(struct resource *parent, struct resource *new)
835 {
836 struct resource *conflict;
837
838 conflict = insert_resource_conflict(parent, new);
839 return conflict ? -EBUSY : 0;
840 }
841
842 /**
843 * insert_resource_expand_to_fit - Insert a resource into the resource tree
844 * @root: root resource descriptor
845 * @new: new resource to insert
846 *
847 * Insert a resource into the resource tree, possibly expanding it in order
848 * to make it encompass any conflicting resources.
849 */
850 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
851 {
852 if (new->parent)
853 return;
854
855 write_lock(&resource_lock);
856 for (;;) {
857 struct resource *conflict;
858
859 conflict = __insert_resource(root, new);
860 if (!conflict)
861 break;
862 if (conflict == root)
863 break;
864
865 /* Ok, expand resource to cover the conflict, then try again .. */
866 if (conflict->start < new->start)
867 new->start = conflict->start;
868 if (conflict->end > new->end)
869 new->end = conflict->end;
870
871 printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
872 }
873 write_unlock(&resource_lock);
874 }
875
876 static int __adjust_resource(struct resource *res, resource_size_t start,
877 resource_size_t size)
878 {
879 struct resource *tmp, *parent = res->parent;
880 resource_size_t end = start + size - 1;
881 int result = -EBUSY;
882
883 if (!parent)
884 goto skip;
885
886 if ((start < parent->start) || (end > parent->end))
887 goto out;
888
889 if (res->sibling && (res->sibling->start <= end))
890 goto out;
891
892 tmp = parent->child;
893 if (tmp != res) {
894 while (tmp->sibling != res)
895 tmp = tmp->sibling;
896 if (start <= tmp->end)
897 goto out;
898 }
899
900 skip:
901 for (tmp = res->child; tmp; tmp = tmp->sibling)
902 if ((tmp->start < start) || (tmp->end > end))
903 goto out;
904
905 res->start = start;
906 res->end = end;
907 result = 0;
908
909 out:
910 return result;
911 }
912
913 /**
914 * adjust_resource - modify a resource's start and size
915 * @res: resource to modify
916 * @start: new start value
917 * @size: new size
918 *
919 * Given an existing resource, change its start and size to match the
920 * arguments. Returns 0 on success, -EBUSY if it can't fit.
921 * Existing children of the resource are assumed to be immutable.
922 */
923 int adjust_resource(struct resource *res, resource_size_t start,
924 resource_size_t size)
925 {
926 int result;
927
928 write_lock(&resource_lock);
929 result = __adjust_resource(res, start, size);
930 write_unlock(&resource_lock);
931 return result;
932 }
933 EXPORT_SYMBOL(adjust_resource);
934
935 static void __init __reserve_region_with_split(struct resource *root,
936 resource_size_t start, resource_size_t end,
937 const char *name)
938 {
939 struct resource *parent = root;
940 struct resource *conflict;
941 struct resource *res = alloc_resource(GFP_ATOMIC);
942 struct resource *next_res = NULL;
943
944 if (!res)
945 return;
946
947 res->name = name;
948 res->start = start;
949 res->end = end;
950 res->flags = IORESOURCE_BUSY;
951
952 while (1) {
953
954 conflict = __request_resource(parent, res);
955 if (!conflict) {
956 if (!next_res)
957 break;
958 res = next_res;
959 next_res = NULL;
960 continue;
961 }
962
963 /* conflict covered whole area */
964 if (conflict->start <= res->start &&
965 conflict->end >= res->end) {
966 free_resource(res);
967 WARN_ON(next_res);
968 break;
969 }
970
971 /* failed, split and try again */
972 if (conflict->start > res->start) {
973 end = res->end;
974 res->end = conflict->start - 1;
975 if (conflict->end < end) {
976 next_res = alloc_resource(GFP_ATOMIC);
977 if (!next_res) {
978 free_resource(res);
979 break;
980 }
981 next_res->name = name;
982 next_res->start = conflict->end + 1;
983 next_res->end = end;
984 next_res->flags = IORESOURCE_BUSY;
985 }
986 } else {
987 res->start = conflict->end + 1;
988 }
989 }
990
991 }
992
993 void __init reserve_region_with_split(struct resource *root,
994 resource_size_t start, resource_size_t end,
995 const char *name)
996 {
997 int abort = 0;
998
999 write_lock(&resource_lock);
1000 if (root->start > start || root->end < end) {
1001 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1002 (unsigned long long)start, (unsigned long long)end,
1003 root);
1004 if (start > root->end || end < root->start)
1005 abort = 1;
1006 else {
1007 if (end > root->end)
1008 end = root->end;
1009 if (start < root->start)
1010 start = root->start;
1011 pr_err("fixing request to [0x%llx-0x%llx]\n",
1012 (unsigned long long)start,
1013 (unsigned long long)end);
1014 }
1015 dump_stack();
1016 }
1017 if (!abort)
1018 __reserve_region_with_split(root, start, end, name);
1019 write_unlock(&resource_lock);
1020 }
1021
1022 /**
1023 * resource_alignment - calculate resource's alignment
1024 * @res: resource pointer
1025 *
1026 * Returns alignment on success, 0 (invalid alignment) on failure.
1027 */
1028 resource_size_t resource_alignment(struct resource *res)
1029 {
1030 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1031 case IORESOURCE_SIZEALIGN:
1032 return resource_size(res);
1033 case IORESOURCE_STARTALIGN:
1034 return res->start;
1035 default:
1036 return 0;
1037 }
1038 }
1039
1040 /*
1041 * This is compatibility stuff for IO resources.
1042 *
1043 * Note how this, unlike the above, knows about
1044 * the IO flag meanings (busy etc).
1045 *
1046 * request_region creates a new busy region.
1047 *
1048 * release_region releases a matching busy region.
1049 */
1050
1051 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1052
1053 /**
1054 * __request_region - create a new busy resource region
1055 * @parent: parent resource descriptor
1056 * @start: resource start address
1057 * @n: resource region size
1058 * @name: reserving caller's ID string
1059 * @flags: IO resource flags
1060 */
1061 struct resource * __request_region(struct resource *parent,
1062 resource_size_t start, resource_size_t n,
1063 const char *name, int flags)
1064 {
1065 DECLARE_WAITQUEUE(wait, current);
1066 struct resource *res = alloc_resource(GFP_KERNEL);
1067
1068 if (!res)
1069 return NULL;
1070
1071 res->name = name;
1072 res->start = start;
1073 res->end = start + n - 1;
1074 res->flags = resource_type(parent);
1075 res->flags |= IORESOURCE_BUSY | flags;
1076
1077 write_lock(&resource_lock);
1078
1079 for (;;) {
1080 struct resource *conflict;
1081
1082 conflict = __request_resource(parent, res);
1083 if (!conflict)
1084 break;
1085 if (conflict != parent) {
1086 parent = conflict;
1087 if (!(conflict->flags & IORESOURCE_BUSY))
1088 continue;
1089 }
1090 if (conflict->flags & flags & IORESOURCE_MUXED) {
1091 add_wait_queue(&muxed_resource_wait, &wait);
1092 write_unlock(&resource_lock);
1093 set_current_state(TASK_UNINTERRUPTIBLE);
1094 schedule();
1095 remove_wait_queue(&muxed_resource_wait, &wait);
1096 write_lock(&resource_lock);
1097 continue;
1098 }
1099 /* Uhhuh, that didn't work out.. */
1100 free_resource(res);
1101 res = NULL;
1102 break;
1103 }
1104 write_unlock(&resource_lock);
1105 return res;
1106 }
1107 EXPORT_SYMBOL(__request_region);
1108
1109 /**
1110 * __release_region - release a previously reserved resource region
1111 * @parent: parent resource descriptor
1112 * @start: resource start address
1113 * @n: resource region size
1114 *
1115 * The described resource region must match a currently busy region.
1116 */
1117 void __release_region(struct resource *parent, resource_size_t start,
1118 resource_size_t n)
1119 {
1120 struct resource **p;
1121 resource_size_t end;
1122
1123 p = &parent->child;
1124 end = start + n - 1;
1125
1126 write_lock(&resource_lock);
1127
1128 for (;;) {
1129 struct resource *res = *p;
1130
1131 if (!res)
1132 break;
1133 if (res->start <= start && res->end >= end) {
1134 if (!(res->flags & IORESOURCE_BUSY)) {
1135 p = &res->child;
1136 continue;
1137 }
1138 if (res->start != start || res->end != end)
1139 break;
1140 *p = res->sibling;
1141 write_unlock(&resource_lock);
1142 if (res->flags & IORESOURCE_MUXED)
1143 wake_up(&muxed_resource_wait);
1144 free_resource(res);
1145 return;
1146 }
1147 p = &res->sibling;
1148 }
1149
1150 write_unlock(&resource_lock);
1151
1152 printk(KERN_WARNING "Trying to free nonexistent resource "
1153 "<%016llx-%016llx>\n", (unsigned long long)start,
1154 (unsigned long long)end);
1155 }
1156 EXPORT_SYMBOL(__release_region);
1157
1158 #ifdef CONFIG_MEMORY_HOTREMOVE
1159 /**
1160 * release_mem_region_adjustable - release a previously reserved memory region
1161 * @parent: parent resource descriptor
1162 * @start: resource start address
1163 * @size: resource region size
1164 *
1165 * This interface is intended for memory hot-delete. The requested region
1166 * is released from a currently busy memory resource. The requested region
1167 * must either match exactly or fit into a single busy resource entry. In
1168 * the latter case, the remaining resource is adjusted accordingly.
1169 * Existing children of the busy memory resource must be immutable in the
1170 * request.
1171 *
1172 * Note:
1173 * - Additional release conditions, such as overlapping region, can be
1174 * supported after they are confirmed as valid cases.
1175 * - When a busy memory resource gets split into two entries, the code
1176 * assumes that all children remain in the lower address entry for
1177 * simplicity. Enhance this logic when necessary.
1178 */
1179 int release_mem_region_adjustable(struct resource *parent,
1180 resource_size_t start, resource_size_t size)
1181 {
1182 struct resource **p;
1183 struct resource *res;
1184 struct resource *new_res;
1185 resource_size_t end;
1186 int ret = -EINVAL;
1187
1188 end = start + size - 1;
1189 if ((start < parent->start) || (end > parent->end))
1190 return ret;
1191
1192 /* The alloc_resource() result gets checked later */
1193 new_res = alloc_resource(GFP_KERNEL);
1194
1195 p = &parent->child;
1196 write_lock(&resource_lock);
1197
1198 while ((res = *p)) {
1199 if (res->start >= end)
1200 break;
1201
1202 /* look for the next resource if it does not fit into */
1203 if (res->start > start || res->end < end) {
1204 p = &res->sibling;
1205 continue;
1206 }
1207
1208 if (!(res->flags & IORESOURCE_MEM))
1209 break;
1210
1211 if (!(res->flags & IORESOURCE_BUSY)) {
1212 p = &res->child;
1213 continue;
1214 }
1215
1216 /* found the target resource; let's adjust accordingly */
1217 if (res->start == start && res->end == end) {
1218 /* free the whole entry */
1219 *p = res->sibling;
1220 free_resource(res);
1221 ret = 0;
1222 } else if (res->start == start && res->end != end) {
1223 /* adjust the start */
1224 ret = __adjust_resource(res, end + 1,
1225 res->end - end);
1226 } else if (res->start != start && res->end == end) {
1227 /* adjust the end */
1228 ret = __adjust_resource(res, res->start,
1229 start - res->start);
1230 } else {
1231 /* split into two entries */
1232 if (!new_res) {
1233 ret = -ENOMEM;
1234 break;
1235 }
1236 new_res->name = res->name;
1237 new_res->start = end + 1;
1238 new_res->end = res->end;
1239 new_res->flags = res->flags;
1240 new_res->parent = res->parent;
1241 new_res->sibling = res->sibling;
1242 new_res->child = NULL;
1243
1244 ret = __adjust_resource(res, res->start,
1245 start - res->start);
1246 if (ret)
1247 break;
1248 res->sibling = new_res;
1249 new_res = NULL;
1250 }
1251
1252 break;
1253 }
1254
1255 write_unlock(&resource_lock);
1256 free_resource(new_res);
1257 return ret;
1258 }
1259 #endif /* CONFIG_MEMORY_HOTREMOVE */
1260
1261 /*
1262 * Managed region resource
1263 */
1264 static void devm_resource_release(struct device *dev, void *ptr)
1265 {
1266 struct resource **r = ptr;
1267
1268 release_resource(*r);
1269 }
1270
1271 /**
1272 * devm_request_resource() - request and reserve an I/O or memory resource
1273 * @dev: device for which to request the resource
1274 * @root: root of the resource tree from which to request the resource
1275 * @new: descriptor of the resource to request
1276 *
1277 * This is a device-managed version of request_resource(). There is usually
1278 * no need to release resources requested by this function explicitly since
1279 * that will be taken care of when the device is unbound from its driver.
1280 * If for some reason the resource needs to be released explicitly, because
1281 * of ordering issues for example, drivers must call devm_release_resource()
1282 * rather than the regular release_resource().
1283 *
1284 * When a conflict is detected between any existing resources and the newly
1285 * requested resource, an error message will be printed.
1286 *
1287 * Returns 0 on success or a negative error code on failure.
1288 */
1289 int devm_request_resource(struct device *dev, struct resource *root,
1290 struct resource *new)
1291 {
1292 struct resource *conflict, **ptr;
1293
1294 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1295 if (!ptr)
1296 return -ENOMEM;
1297
1298 *ptr = new;
1299
1300 conflict = request_resource_conflict(root, new);
1301 if (conflict) {
1302 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1303 new, conflict->name, conflict);
1304 devres_free(ptr);
1305 return -EBUSY;
1306 }
1307
1308 devres_add(dev, ptr);
1309 return 0;
1310 }
1311 EXPORT_SYMBOL(devm_request_resource);
1312
1313 static int devm_resource_match(struct device *dev, void *res, void *data)
1314 {
1315 struct resource **ptr = res;
1316
1317 return *ptr == data;
1318 }
1319
1320 /**
1321 * devm_release_resource() - release a previously requested resource
1322 * @dev: device for which to release the resource
1323 * @new: descriptor of the resource to release
1324 *
1325 * Releases a resource previously requested using devm_request_resource().
1326 */
1327 void devm_release_resource(struct device *dev, struct resource *new)
1328 {
1329 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1330 new));
1331 }
1332 EXPORT_SYMBOL(devm_release_resource);
1333
1334 struct region_devres {
1335 struct resource *parent;
1336 resource_size_t start;
1337 resource_size_t n;
1338 };
1339
1340 static void devm_region_release(struct device *dev, void *res)
1341 {
1342 struct region_devres *this = res;
1343
1344 __release_region(this->parent, this->start, this->n);
1345 }
1346
1347 static int devm_region_match(struct device *dev, void *res, void *match_data)
1348 {
1349 struct region_devres *this = res, *match = match_data;
1350
1351 return this->parent == match->parent &&
1352 this->start == match->start && this->n == match->n;
1353 }
1354
1355 struct resource * __devm_request_region(struct device *dev,
1356 struct resource *parent, resource_size_t start,
1357 resource_size_t n, const char *name)
1358 {
1359 struct region_devres *dr = NULL;
1360 struct resource *res;
1361
1362 dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1363 GFP_KERNEL);
1364 if (!dr)
1365 return NULL;
1366
1367 dr->parent = parent;
1368 dr->start = start;
1369 dr->n = n;
1370
1371 res = __request_region(parent, start, n, name, 0);
1372 if (res)
1373 devres_add(dev, dr);
1374 else
1375 devres_free(dr);
1376
1377 return res;
1378 }
1379 EXPORT_SYMBOL(__devm_request_region);
1380
1381 void __devm_release_region(struct device *dev, struct resource *parent,
1382 resource_size_t start, resource_size_t n)
1383 {
1384 struct region_devres match_data = { parent, start, n };
1385
1386 __release_region(parent, start, n);
1387 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1388 &match_data));
1389 }
1390 EXPORT_SYMBOL(__devm_release_region);
1391
1392 /*
1393 * Called from init/main.c to reserve IO ports.
1394 */
1395 #define MAXRESERVE 4
1396 static int __init reserve_setup(char *str)
1397 {
1398 static int reserved;
1399 static struct resource reserve[MAXRESERVE];
1400
1401 for (;;) {
1402 unsigned int io_start, io_num;
1403 int x = reserved;
1404
1405 if (get_option (&str, &io_start) != 2)
1406 break;
1407 if (get_option (&str, &io_num) == 0)
1408 break;
1409 if (x < MAXRESERVE) {
1410 struct resource *res = reserve + x;
1411 res->name = "reserved";
1412 res->start = io_start;
1413 res->end = io_start + io_num - 1;
1414 res->flags = IORESOURCE_BUSY;
1415 res->child = NULL;
1416 if (request_resource(res->start >= 0x10000 ? &iomem_resource : &ioport_resource, res) == 0)
1417 reserved = x+1;
1418 }
1419 }
1420 return 1;
1421 }
1422
1423 __setup("reserve=", reserve_setup);
1424
1425 /*
1426 * Check if the requested addr and size spans more than any slot in the
1427 * iomem resource tree.
1428 */
1429 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1430 {
1431 struct resource *p = &iomem_resource;
1432 int err = 0;
1433 loff_t l;
1434
1435 read_lock(&resource_lock);
1436 for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1437 /*
1438 * We can probably skip the resources without
1439 * IORESOURCE_IO attribute?
1440 */
1441 if (p->start >= addr + size)
1442 continue;
1443 if (p->end < addr)
1444 continue;
1445 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1446 PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1447 continue;
1448 /*
1449 * if a resource is "BUSY", it's not a hardware resource
1450 * but a driver mapping of such a resource; we don't want
1451 * to warn for those; some drivers legitimately map only
1452 * partial hardware resources. (example: vesafb)
1453 */
1454 if (p->flags & IORESOURCE_BUSY)
1455 continue;
1456
1457 printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1458 (unsigned long long)addr,
1459 (unsigned long long)(addr + size - 1),
1460 p->name, p);
1461 err = -1;
1462 break;
1463 }
1464 read_unlock(&resource_lock);
1465
1466 return err;
1467 }
1468
1469 #ifdef CONFIG_STRICT_DEVMEM
1470 static int strict_iomem_checks = 1;
1471 #else
1472 static int strict_iomem_checks;
1473 #endif
1474
1475 /*
1476 * check if an address is reserved in the iomem resource tree
1477 * returns 1 if reserved, 0 if not reserved.
1478 */
1479 int iomem_is_exclusive(u64 addr)
1480 {
1481 struct resource *p = &iomem_resource;
1482 int err = 0;
1483 loff_t l;
1484 int size = PAGE_SIZE;
1485
1486 if (!strict_iomem_checks)
1487 return 0;
1488
1489 addr = addr & PAGE_MASK;
1490
1491 read_lock(&resource_lock);
1492 for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1493 /*
1494 * We can probably skip the resources without
1495 * IORESOURCE_IO attribute?
1496 */
1497 if (p->start >= addr + size)
1498 break;
1499 if (p->end < addr)
1500 continue;
1501 if (p->flags & IORESOURCE_BUSY &&
1502 p->flags & IORESOURCE_EXCLUSIVE) {
1503 err = 1;
1504 break;
1505 }
1506 }
1507 read_unlock(&resource_lock);
1508
1509 return err;
1510 }
1511
1512 struct resource_entry *resource_list_create_entry(struct resource *res,
1513 size_t extra_size)
1514 {
1515 struct resource_entry *entry;
1516
1517 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1518 if (entry) {
1519 INIT_LIST_HEAD(&entry->node);
1520 entry->res = res ? res : &entry->__res;
1521 }
1522
1523 return entry;
1524 }
1525 EXPORT_SYMBOL(resource_list_create_entry);
1526
1527 void resource_list_free(struct list_head *head)
1528 {
1529 struct resource_entry *entry, *tmp;
1530
1531 list_for_each_entry_safe(entry, tmp, head, node)
1532 resource_list_destroy_entry(entry);
1533 }
1534 EXPORT_SYMBOL(resource_list_free);
1535
1536 static int __init strict_iomem(char *str)
1537 {
1538 if (strstr(str, "relaxed"))
1539 strict_iomem_checks = 0;
1540 if (strstr(str, "strict"))
1541 strict_iomem_checks = 1;
1542 return 1;
1543 }
1544
1545 __setup("iomem=", strict_iomem);