]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - kernel/sched/core.c
Merge branch 'for-mingo-rcu' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck...
[thirdparty/kernel/linux.git] / kernel / sched / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12
13 #include "sched.h"
14
15 #include <linux/nospec.h>
16
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19
20 #include <asm/switch_to.h>
21 #include <asm/tlb.h>
22
23 #include "../workqueue_internal.h"
24 #include "../../fs/io-wq.h"
25 #include "../smpboot.h"
26
27 #include "pelt.h"
28 #include "smp.h"
29
30 /*
31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
32 * associated with them) to allow external modules to probe them.
33 */
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
44
45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46
47 #ifdef CONFIG_SCHED_DEBUG
48 /*
49 * Debugging: various feature bits
50 *
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
54 */
55 #define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug unsigned int sysctl_sched_features =
58 #include "features.h"
59 0;
60 #undef SCHED_FEAT
61 #endif
62
63 /*
64 * Number of tasks to iterate in a single balance run.
65 * Limited because this is done with IRQs disabled.
66 */
67 const_debug unsigned int sysctl_sched_nr_migrate = 32;
68
69 /*
70 * period over which we measure -rt task CPU usage in us.
71 * default: 1s
72 */
73 unsigned int sysctl_sched_rt_period = 1000000;
74
75 __read_mostly int scheduler_running;
76
77 /*
78 * part of the period that we allow rt tasks to run in us.
79 * default: 0.95s
80 */
81 int sysctl_sched_rt_runtime = 950000;
82
83
84 /*
85 * Serialization rules:
86 *
87 * Lock order:
88 *
89 * p->pi_lock
90 * rq->lock
91 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
92 *
93 * rq1->lock
94 * rq2->lock where: rq1 < rq2
95 *
96 * Regular state:
97 *
98 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
99 * local CPU's rq->lock, it optionally removes the task from the runqueue and
100 * always looks at the local rq data structures to find the most eligible task
101 * to run next.
102 *
103 * Task enqueue is also under rq->lock, possibly taken from another CPU.
104 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
105 * the local CPU to avoid bouncing the runqueue state around [ see
106 * ttwu_queue_wakelist() ]
107 *
108 * Task wakeup, specifically wakeups that involve migration, are horribly
109 * complicated to avoid having to take two rq->locks.
110 *
111 * Special state:
112 *
113 * System-calls and anything external will use task_rq_lock() which acquires
114 * both p->pi_lock and rq->lock. As a consequence the state they change is
115 * stable while holding either lock:
116 *
117 * - sched_setaffinity()/
118 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
119 * - set_user_nice(): p->se.load, p->*prio
120 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
121 * p->se.load, p->rt_priority,
122 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
123 * - sched_setnuma(): p->numa_preferred_nid
124 * - sched_move_task()/
125 * cpu_cgroup_fork(): p->sched_task_group
126 * - uclamp_update_active() p->uclamp*
127 *
128 * p->state <- TASK_*:
129 *
130 * is changed locklessly using set_current_state(), __set_current_state() or
131 * set_special_state(), see their respective comments, or by
132 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
133 * concurrent self.
134 *
135 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
136 *
137 * is set by activate_task() and cleared by deactivate_task(), under
138 * rq->lock. Non-zero indicates the task is runnable, the special
139 * ON_RQ_MIGRATING state is used for migration without holding both
140 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
141 *
142 * p->on_cpu <- { 0, 1 }:
143 *
144 * is set by prepare_task() and cleared by finish_task() such that it will be
145 * set before p is scheduled-in and cleared after p is scheduled-out, both
146 * under rq->lock. Non-zero indicates the task is running on its CPU.
147 *
148 * [ The astute reader will observe that it is possible for two tasks on one
149 * CPU to have ->on_cpu = 1 at the same time. ]
150 *
151 * task_cpu(p): is changed by set_task_cpu(), the rules are:
152 *
153 * - Don't call set_task_cpu() on a blocked task:
154 *
155 * We don't care what CPU we're not running on, this simplifies hotplug,
156 * the CPU assignment of blocked tasks isn't required to be valid.
157 *
158 * - for try_to_wake_up(), called under p->pi_lock:
159 *
160 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
161 *
162 * - for migration called under rq->lock:
163 * [ see task_on_rq_migrating() in task_rq_lock() ]
164 *
165 * o move_queued_task()
166 * o detach_task()
167 *
168 * - for migration called under double_rq_lock():
169 *
170 * o __migrate_swap_task()
171 * o push_rt_task() / pull_rt_task()
172 * o push_dl_task() / pull_dl_task()
173 * o dl_task_offline_migration()
174 *
175 */
176
177 /*
178 * __task_rq_lock - lock the rq @p resides on.
179 */
180 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
181 __acquires(rq->lock)
182 {
183 struct rq *rq;
184
185 lockdep_assert_held(&p->pi_lock);
186
187 for (;;) {
188 rq = task_rq(p);
189 raw_spin_lock(&rq->lock);
190 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
191 rq_pin_lock(rq, rf);
192 return rq;
193 }
194 raw_spin_unlock(&rq->lock);
195
196 while (unlikely(task_on_rq_migrating(p)))
197 cpu_relax();
198 }
199 }
200
201 /*
202 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
203 */
204 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
205 __acquires(p->pi_lock)
206 __acquires(rq->lock)
207 {
208 struct rq *rq;
209
210 for (;;) {
211 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
212 rq = task_rq(p);
213 raw_spin_lock(&rq->lock);
214 /*
215 * move_queued_task() task_rq_lock()
216 *
217 * ACQUIRE (rq->lock)
218 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
219 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
220 * [S] ->cpu = new_cpu [L] task_rq()
221 * [L] ->on_rq
222 * RELEASE (rq->lock)
223 *
224 * If we observe the old CPU in task_rq_lock(), the acquire of
225 * the old rq->lock will fully serialize against the stores.
226 *
227 * If we observe the new CPU in task_rq_lock(), the address
228 * dependency headed by '[L] rq = task_rq()' and the acquire
229 * will pair with the WMB to ensure we then also see migrating.
230 */
231 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
232 rq_pin_lock(rq, rf);
233 return rq;
234 }
235 raw_spin_unlock(&rq->lock);
236 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
237
238 while (unlikely(task_on_rq_migrating(p)))
239 cpu_relax();
240 }
241 }
242
243 /*
244 * RQ-clock updating methods:
245 */
246
247 static void update_rq_clock_task(struct rq *rq, s64 delta)
248 {
249 /*
250 * In theory, the compile should just see 0 here, and optimize out the call
251 * to sched_rt_avg_update. But I don't trust it...
252 */
253 s64 __maybe_unused steal = 0, irq_delta = 0;
254
255 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
256 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
257
258 /*
259 * Since irq_time is only updated on {soft,}irq_exit, we might run into
260 * this case when a previous update_rq_clock() happened inside a
261 * {soft,}irq region.
262 *
263 * When this happens, we stop ->clock_task and only update the
264 * prev_irq_time stamp to account for the part that fit, so that a next
265 * update will consume the rest. This ensures ->clock_task is
266 * monotonic.
267 *
268 * It does however cause some slight miss-attribution of {soft,}irq
269 * time, a more accurate solution would be to update the irq_time using
270 * the current rq->clock timestamp, except that would require using
271 * atomic ops.
272 */
273 if (irq_delta > delta)
274 irq_delta = delta;
275
276 rq->prev_irq_time += irq_delta;
277 delta -= irq_delta;
278 #endif
279 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
280 if (static_key_false((&paravirt_steal_rq_enabled))) {
281 steal = paravirt_steal_clock(cpu_of(rq));
282 steal -= rq->prev_steal_time_rq;
283
284 if (unlikely(steal > delta))
285 steal = delta;
286
287 rq->prev_steal_time_rq += steal;
288 delta -= steal;
289 }
290 #endif
291
292 rq->clock_task += delta;
293
294 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
295 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
296 update_irq_load_avg(rq, irq_delta + steal);
297 #endif
298 update_rq_clock_pelt(rq, delta);
299 }
300
301 void update_rq_clock(struct rq *rq)
302 {
303 s64 delta;
304
305 lockdep_assert_held(&rq->lock);
306
307 if (rq->clock_update_flags & RQCF_ACT_SKIP)
308 return;
309
310 #ifdef CONFIG_SCHED_DEBUG
311 if (sched_feat(WARN_DOUBLE_CLOCK))
312 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
313 rq->clock_update_flags |= RQCF_UPDATED;
314 #endif
315
316 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
317 if (delta < 0)
318 return;
319 rq->clock += delta;
320 update_rq_clock_task(rq, delta);
321 }
322
323 #ifdef CONFIG_SCHED_HRTICK
324 /*
325 * Use HR-timers to deliver accurate preemption points.
326 */
327
328 static void hrtick_clear(struct rq *rq)
329 {
330 if (hrtimer_active(&rq->hrtick_timer))
331 hrtimer_cancel(&rq->hrtick_timer);
332 }
333
334 /*
335 * High-resolution timer tick.
336 * Runs from hardirq context with interrupts disabled.
337 */
338 static enum hrtimer_restart hrtick(struct hrtimer *timer)
339 {
340 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
341 struct rq_flags rf;
342
343 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
344
345 rq_lock(rq, &rf);
346 update_rq_clock(rq);
347 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
348 rq_unlock(rq, &rf);
349
350 return HRTIMER_NORESTART;
351 }
352
353 #ifdef CONFIG_SMP
354
355 static void __hrtick_restart(struct rq *rq)
356 {
357 struct hrtimer *timer = &rq->hrtick_timer;
358
359 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
360 }
361
362 /*
363 * called from hardirq (IPI) context
364 */
365 static void __hrtick_start(void *arg)
366 {
367 struct rq *rq = arg;
368 struct rq_flags rf;
369
370 rq_lock(rq, &rf);
371 __hrtick_restart(rq);
372 rq_unlock(rq, &rf);
373 }
374
375 /*
376 * Called to set the hrtick timer state.
377 *
378 * called with rq->lock held and irqs disabled
379 */
380 void hrtick_start(struct rq *rq, u64 delay)
381 {
382 struct hrtimer *timer = &rq->hrtick_timer;
383 ktime_t time;
384 s64 delta;
385
386 /*
387 * Don't schedule slices shorter than 10000ns, that just
388 * doesn't make sense and can cause timer DoS.
389 */
390 delta = max_t(s64, delay, 10000LL);
391 time = ktime_add_ns(timer->base->get_time(), delta);
392
393 hrtimer_set_expires(timer, time);
394
395 if (rq == this_rq())
396 __hrtick_restart(rq);
397 else
398 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
399 }
400
401 #else
402 /*
403 * Called to set the hrtick timer state.
404 *
405 * called with rq->lock held and irqs disabled
406 */
407 void hrtick_start(struct rq *rq, u64 delay)
408 {
409 /*
410 * Don't schedule slices shorter than 10000ns, that just
411 * doesn't make sense. Rely on vruntime for fairness.
412 */
413 delay = max_t(u64, delay, 10000LL);
414 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
415 HRTIMER_MODE_REL_PINNED_HARD);
416 }
417
418 #endif /* CONFIG_SMP */
419
420 static void hrtick_rq_init(struct rq *rq)
421 {
422 #ifdef CONFIG_SMP
423 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
424 #endif
425 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
426 rq->hrtick_timer.function = hrtick;
427 }
428 #else /* CONFIG_SCHED_HRTICK */
429 static inline void hrtick_clear(struct rq *rq)
430 {
431 }
432
433 static inline void hrtick_rq_init(struct rq *rq)
434 {
435 }
436 #endif /* CONFIG_SCHED_HRTICK */
437
438 /*
439 * cmpxchg based fetch_or, macro so it works for different integer types
440 */
441 #define fetch_or(ptr, mask) \
442 ({ \
443 typeof(ptr) _ptr = (ptr); \
444 typeof(mask) _mask = (mask); \
445 typeof(*_ptr) _old, _val = *_ptr; \
446 \
447 for (;;) { \
448 _old = cmpxchg(_ptr, _val, _val | _mask); \
449 if (_old == _val) \
450 break; \
451 _val = _old; \
452 } \
453 _old; \
454 })
455
456 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
457 /*
458 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
459 * this avoids any races wrt polling state changes and thereby avoids
460 * spurious IPIs.
461 */
462 static bool set_nr_and_not_polling(struct task_struct *p)
463 {
464 struct thread_info *ti = task_thread_info(p);
465 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
466 }
467
468 /*
469 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
470 *
471 * If this returns true, then the idle task promises to call
472 * sched_ttwu_pending() and reschedule soon.
473 */
474 static bool set_nr_if_polling(struct task_struct *p)
475 {
476 struct thread_info *ti = task_thread_info(p);
477 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
478
479 for (;;) {
480 if (!(val & _TIF_POLLING_NRFLAG))
481 return false;
482 if (val & _TIF_NEED_RESCHED)
483 return true;
484 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
485 if (old == val)
486 break;
487 val = old;
488 }
489 return true;
490 }
491
492 #else
493 static bool set_nr_and_not_polling(struct task_struct *p)
494 {
495 set_tsk_need_resched(p);
496 return true;
497 }
498
499 #ifdef CONFIG_SMP
500 static bool set_nr_if_polling(struct task_struct *p)
501 {
502 return false;
503 }
504 #endif
505 #endif
506
507 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
508 {
509 struct wake_q_node *node = &task->wake_q;
510
511 /*
512 * Atomically grab the task, if ->wake_q is !nil already it means
513 * it's already queued (either by us or someone else) and will get the
514 * wakeup due to that.
515 *
516 * In order to ensure that a pending wakeup will observe our pending
517 * state, even in the failed case, an explicit smp_mb() must be used.
518 */
519 smp_mb__before_atomic();
520 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
521 return false;
522
523 /*
524 * The head is context local, there can be no concurrency.
525 */
526 *head->lastp = node;
527 head->lastp = &node->next;
528 return true;
529 }
530
531 /**
532 * wake_q_add() - queue a wakeup for 'later' waking.
533 * @head: the wake_q_head to add @task to
534 * @task: the task to queue for 'later' wakeup
535 *
536 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
537 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
538 * instantly.
539 *
540 * This function must be used as-if it were wake_up_process(); IOW the task
541 * must be ready to be woken at this location.
542 */
543 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
544 {
545 if (__wake_q_add(head, task))
546 get_task_struct(task);
547 }
548
549 /**
550 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
551 * @head: the wake_q_head to add @task to
552 * @task: the task to queue for 'later' wakeup
553 *
554 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
555 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
556 * instantly.
557 *
558 * This function must be used as-if it were wake_up_process(); IOW the task
559 * must be ready to be woken at this location.
560 *
561 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
562 * that already hold reference to @task can call the 'safe' version and trust
563 * wake_q to do the right thing depending whether or not the @task is already
564 * queued for wakeup.
565 */
566 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
567 {
568 if (!__wake_q_add(head, task))
569 put_task_struct(task);
570 }
571
572 void wake_up_q(struct wake_q_head *head)
573 {
574 struct wake_q_node *node = head->first;
575
576 while (node != WAKE_Q_TAIL) {
577 struct task_struct *task;
578
579 task = container_of(node, struct task_struct, wake_q);
580 BUG_ON(!task);
581 /* Task can safely be re-inserted now: */
582 node = node->next;
583 task->wake_q.next = NULL;
584
585 /*
586 * wake_up_process() executes a full barrier, which pairs with
587 * the queueing in wake_q_add() so as not to miss wakeups.
588 */
589 wake_up_process(task);
590 put_task_struct(task);
591 }
592 }
593
594 /*
595 * resched_curr - mark rq's current task 'to be rescheduled now'.
596 *
597 * On UP this means the setting of the need_resched flag, on SMP it
598 * might also involve a cross-CPU call to trigger the scheduler on
599 * the target CPU.
600 */
601 void resched_curr(struct rq *rq)
602 {
603 struct task_struct *curr = rq->curr;
604 int cpu;
605
606 lockdep_assert_held(&rq->lock);
607
608 if (test_tsk_need_resched(curr))
609 return;
610
611 cpu = cpu_of(rq);
612
613 if (cpu == smp_processor_id()) {
614 set_tsk_need_resched(curr);
615 set_preempt_need_resched();
616 return;
617 }
618
619 if (set_nr_and_not_polling(curr))
620 smp_send_reschedule(cpu);
621 else
622 trace_sched_wake_idle_without_ipi(cpu);
623 }
624
625 void resched_cpu(int cpu)
626 {
627 struct rq *rq = cpu_rq(cpu);
628 unsigned long flags;
629
630 raw_spin_lock_irqsave(&rq->lock, flags);
631 if (cpu_online(cpu) || cpu == smp_processor_id())
632 resched_curr(rq);
633 raw_spin_unlock_irqrestore(&rq->lock, flags);
634 }
635
636 #ifdef CONFIG_SMP
637 #ifdef CONFIG_NO_HZ_COMMON
638 /*
639 * In the semi idle case, use the nearest busy CPU for migrating timers
640 * from an idle CPU. This is good for power-savings.
641 *
642 * We don't do similar optimization for completely idle system, as
643 * selecting an idle CPU will add more delays to the timers than intended
644 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
645 */
646 int get_nohz_timer_target(void)
647 {
648 int i, cpu = smp_processor_id(), default_cpu = -1;
649 struct sched_domain *sd;
650
651 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
652 if (!idle_cpu(cpu))
653 return cpu;
654 default_cpu = cpu;
655 }
656
657 rcu_read_lock();
658 for_each_domain(cpu, sd) {
659 for_each_cpu_and(i, sched_domain_span(sd),
660 housekeeping_cpumask(HK_FLAG_TIMER)) {
661 if (cpu == i)
662 continue;
663
664 if (!idle_cpu(i)) {
665 cpu = i;
666 goto unlock;
667 }
668 }
669 }
670
671 if (default_cpu == -1)
672 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
673 cpu = default_cpu;
674 unlock:
675 rcu_read_unlock();
676 return cpu;
677 }
678
679 /*
680 * When add_timer_on() enqueues a timer into the timer wheel of an
681 * idle CPU then this timer might expire before the next timer event
682 * which is scheduled to wake up that CPU. In case of a completely
683 * idle system the next event might even be infinite time into the
684 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
685 * leaves the inner idle loop so the newly added timer is taken into
686 * account when the CPU goes back to idle and evaluates the timer
687 * wheel for the next timer event.
688 */
689 static void wake_up_idle_cpu(int cpu)
690 {
691 struct rq *rq = cpu_rq(cpu);
692
693 if (cpu == smp_processor_id())
694 return;
695
696 if (set_nr_and_not_polling(rq->idle))
697 smp_send_reschedule(cpu);
698 else
699 trace_sched_wake_idle_without_ipi(cpu);
700 }
701
702 static bool wake_up_full_nohz_cpu(int cpu)
703 {
704 /*
705 * We just need the target to call irq_exit() and re-evaluate
706 * the next tick. The nohz full kick at least implies that.
707 * If needed we can still optimize that later with an
708 * empty IRQ.
709 */
710 if (cpu_is_offline(cpu))
711 return true; /* Don't try to wake offline CPUs. */
712 if (tick_nohz_full_cpu(cpu)) {
713 if (cpu != smp_processor_id() ||
714 tick_nohz_tick_stopped())
715 tick_nohz_full_kick_cpu(cpu);
716 return true;
717 }
718
719 return false;
720 }
721
722 /*
723 * Wake up the specified CPU. If the CPU is going offline, it is the
724 * caller's responsibility to deal with the lost wakeup, for example,
725 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
726 */
727 void wake_up_nohz_cpu(int cpu)
728 {
729 if (!wake_up_full_nohz_cpu(cpu))
730 wake_up_idle_cpu(cpu);
731 }
732
733 static void nohz_csd_func(void *info)
734 {
735 struct rq *rq = info;
736 int cpu = cpu_of(rq);
737 unsigned int flags;
738
739 /*
740 * Release the rq::nohz_csd.
741 */
742 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
743 WARN_ON(!(flags & NOHZ_KICK_MASK));
744
745 rq->idle_balance = idle_cpu(cpu);
746 if (rq->idle_balance && !need_resched()) {
747 rq->nohz_idle_balance = flags;
748 raise_softirq_irqoff(SCHED_SOFTIRQ);
749 }
750 }
751
752 #endif /* CONFIG_NO_HZ_COMMON */
753
754 #ifdef CONFIG_NO_HZ_FULL
755 bool sched_can_stop_tick(struct rq *rq)
756 {
757 int fifo_nr_running;
758
759 /* Deadline tasks, even if single, need the tick */
760 if (rq->dl.dl_nr_running)
761 return false;
762
763 /*
764 * If there are more than one RR tasks, we need the tick to affect the
765 * actual RR behaviour.
766 */
767 if (rq->rt.rr_nr_running) {
768 if (rq->rt.rr_nr_running == 1)
769 return true;
770 else
771 return false;
772 }
773
774 /*
775 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
776 * forced preemption between FIFO tasks.
777 */
778 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
779 if (fifo_nr_running)
780 return true;
781
782 /*
783 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
784 * if there's more than one we need the tick for involuntary
785 * preemption.
786 */
787 if (rq->nr_running > 1)
788 return false;
789
790 return true;
791 }
792 #endif /* CONFIG_NO_HZ_FULL */
793 #endif /* CONFIG_SMP */
794
795 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
796 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
797 /*
798 * Iterate task_group tree rooted at *from, calling @down when first entering a
799 * node and @up when leaving it for the final time.
800 *
801 * Caller must hold rcu_lock or sufficient equivalent.
802 */
803 int walk_tg_tree_from(struct task_group *from,
804 tg_visitor down, tg_visitor up, void *data)
805 {
806 struct task_group *parent, *child;
807 int ret;
808
809 parent = from;
810
811 down:
812 ret = (*down)(parent, data);
813 if (ret)
814 goto out;
815 list_for_each_entry_rcu(child, &parent->children, siblings) {
816 parent = child;
817 goto down;
818
819 up:
820 continue;
821 }
822 ret = (*up)(parent, data);
823 if (ret || parent == from)
824 goto out;
825
826 child = parent;
827 parent = parent->parent;
828 if (parent)
829 goto up;
830 out:
831 return ret;
832 }
833
834 int tg_nop(struct task_group *tg, void *data)
835 {
836 return 0;
837 }
838 #endif
839
840 static void set_load_weight(struct task_struct *p, bool update_load)
841 {
842 int prio = p->static_prio - MAX_RT_PRIO;
843 struct load_weight *load = &p->se.load;
844
845 /*
846 * SCHED_IDLE tasks get minimal weight:
847 */
848 if (task_has_idle_policy(p)) {
849 load->weight = scale_load(WEIGHT_IDLEPRIO);
850 load->inv_weight = WMULT_IDLEPRIO;
851 return;
852 }
853
854 /*
855 * SCHED_OTHER tasks have to update their load when changing their
856 * weight
857 */
858 if (update_load && p->sched_class == &fair_sched_class) {
859 reweight_task(p, prio);
860 } else {
861 load->weight = scale_load(sched_prio_to_weight[prio]);
862 load->inv_weight = sched_prio_to_wmult[prio];
863 }
864 }
865
866 #ifdef CONFIG_UCLAMP_TASK
867 /*
868 * Serializes updates of utilization clamp values
869 *
870 * The (slow-path) user-space triggers utilization clamp value updates which
871 * can require updates on (fast-path) scheduler's data structures used to
872 * support enqueue/dequeue operations.
873 * While the per-CPU rq lock protects fast-path update operations, user-space
874 * requests are serialized using a mutex to reduce the risk of conflicting
875 * updates or API abuses.
876 */
877 static DEFINE_MUTEX(uclamp_mutex);
878
879 /* Max allowed minimum utilization */
880 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
881
882 /* Max allowed maximum utilization */
883 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
884
885 /*
886 * By default RT tasks run at the maximum performance point/capacity of the
887 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
888 * SCHED_CAPACITY_SCALE.
889 *
890 * This knob allows admins to change the default behavior when uclamp is being
891 * used. In battery powered devices, particularly, running at the maximum
892 * capacity and frequency will increase energy consumption and shorten the
893 * battery life.
894 *
895 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
896 *
897 * This knob will not override the system default sched_util_clamp_min defined
898 * above.
899 */
900 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
901
902 /* All clamps are required to be less or equal than these values */
903 static struct uclamp_se uclamp_default[UCLAMP_CNT];
904
905 /*
906 * This static key is used to reduce the uclamp overhead in the fast path. It
907 * primarily disables the call to uclamp_rq_{inc, dec}() in
908 * enqueue/dequeue_task().
909 *
910 * This allows users to continue to enable uclamp in their kernel config with
911 * minimum uclamp overhead in the fast path.
912 *
913 * As soon as userspace modifies any of the uclamp knobs, the static key is
914 * enabled, since we have an actual users that make use of uclamp
915 * functionality.
916 *
917 * The knobs that would enable this static key are:
918 *
919 * * A task modifying its uclamp value with sched_setattr().
920 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
921 * * An admin modifying the cgroup cpu.uclamp.{min, max}
922 */
923 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
924
925 /* Integer rounded range for each bucket */
926 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
927
928 #define for_each_clamp_id(clamp_id) \
929 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
930
931 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
932 {
933 return clamp_value / UCLAMP_BUCKET_DELTA;
934 }
935
936 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
937 {
938 if (clamp_id == UCLAMP_MIN)
939 return 0;
940 return SCHED_CAPACITY_SCALE;
941 }
942
943 static inline void uclamp_se_set(struct uclamp_se *uc_se,
944 unsigned int value, bool user_defined)
945 {
946 uc_se->value = value;
947 uc_se->bucket_id = uclamp_bucket_id(value);
948 uc_se->user_defined = user_defined;
949 }
950
951 static inline unsigned int
952 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
953 unsigned int clamp_value)
954 {
955 /*
956 * Avoid blocked utilization pushing up the frequency when we go
957 * idle (which drops the max-clamp) by retaining the last known
958 * max-clamp.
959 */
960 if (clamp_id == UCLAMP_MAX) {
961 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
962 return clamp_value;
963 }
964
965 return uclamp_none(UCLAMP_MIN);
966 }
967
968 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
969 unsigned int clamp_value)
970 {
971 /* Reset max-clamp retention only on idle exit */
972 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
973 return;
974
975 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
976 }
977
978 static inline
979 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
980 unsigned int clamp_value)
981 {
982 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
983 int bucket_id = UCLAMP_BUCKETS - 1;
984
985 /*
986 * Since both min and max clamps are max aggregated, find the
987 * top most bucket with tasks in.
988 */
989 for ( ; bucket_id >= 0; bucket_id--) {
990 if (!bucket[bucket_id].tasks)
991 continue;
992 return bucket[bucket_id].value;
993 }
994
995 /* No tasks -- default clamp values */
996 return uclamp_idle_value(rq, clamp_id, clamp_value);
997 }
998
999 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1000 {
1001 unsigned int default_util_min;
1002 struct uclamp_se *uc_se;
1003
1004 lockdep_assert_held(&p->pi_lock);
1005
1006 uc_se = &p->uclamp_req[UCLAMP_MIN];
1007
1008 /* Only sync if user didn't override the default */
1009 if (uc_se->user_defined)
1010 return;
1011
1012 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1013 uclamp_se_set(uc_se, default_util_min, false);
1014 }
1015
1016 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1017 {
1018 struct rq_flags rf;
1019 struct rq *rq;
1020
1021 if (!rt_task(p))
1022 return;
1023
1024 /* Protect updates to p->uclamp_* */
1025 rq = task_rq_lock(p, &rf);
1026 __uclamp_update_util_min_rt_default(p);
1027 task_rq_unlock(rq, p, &rf);
1028 }
1029
1030 static void uclamp_sync_util_min_rt_default(void)
1031 {
1032 struct task_struct *g, *p;
1033
1034 /*
1035 * copy_process() sysctl_uclamp
1036 * uclamp_min_rt = X;
1037 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1038 * // link thread smp_mb__after_spinlock()
1039 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1040 * sched_post_fork() for_each_process_thread()
1041 * __uclamp_sync_rt() __uclamp_sync_rt()
1042 *
1043 * Ensures that either sched_post_fork() will observe the new
1044 * uclamp_min_rt or for_each_process_thread() will observe the new
1045 * task.
1046 */
1047 read_lock(&tasklist_lock);
1048 smp_mb__after_spinlock();
1049 read_unlock(&tasklist_lock);
1050
1051 rcu_read_lock();
1052 for_each_process_thread(g, p)
1053 uclamp_update_util_min_rt_default(p);
1054 rcu_read_unlock();
1055 }
1056
1057 static inline struct uclamp_se
1058 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1059 {
1060 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1061 #ifdef CONFIG_UCLAMP_TASK_GROUP
1062 struct uclamp_se uc_max;
1063
1064 /*
1065 * Tasks in autogroups or root task group will be
1066 * restricted by system defaults.
1067 */
1068 if (task_group_is_autogroup(task_group(p)))
1069 return uc_req;
1070 if (task_group(p) == &root_task_group)
1071 return uc_req;
1072
1073 uc_max = task_group(p)->uclamp[clamp_id];
1074 if (uc_req.value > uc_max.value || !uc_req.user_defined)
1075 return uc_max;
1076 #endif
1077
1078 return uc_req;
1079 }
1080
1081 /*
1082 * The effective clamp bucket index of a task depends on, by increasing
1083 * priority:
1084 * - the task specific clamp value, when explicitly requested from userspace
1085 * - the task group effective clamp value, for tasks not either in the root
1086 * group or in an autogroup
1087 * - the system default clamp value, defined by the sysadmin
1088 */
1089 static inline struct uclamp_se
1090 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1091 {
1092 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1093 struct uclamp_se uc_max = uclamp_default[clamp_id];
1094
1095 /* System default restrictions always apply */
1096 if (unlikely(uc_req.value > uc_max.value))
1097 return uc_max;
1098
1099 return uc_req;
1100 }
1101
1102 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1103 {
1104 struct uclamp_se uc_eff;
1105
1106 /* Task currently refcounted: use back-annotated (effective) value */
1107 if (p->uclamp[clamp_id].active)
1108 return (unsigned long)p->uclamp[clamp_id].value;
1109
1110 uc_eff = uclamp_eff_get(p, clamp_id);
1111
1112 return (unsigned long)uc_eff.value;
1113 }
1114
1115 /*
1116 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1117 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1118 * updates the rq's clamp value if required.
1119 *
1120 * Tasks can have a task-specific value requested from user-space, track
1121 * within each bucket the maximum value for tasks refcounted in it.
1122 * This "local max aggregation" allows to track the exact "requested" value
1123 * for each bucket when all its RUNNABLE tasks require the same clamp.
1124 */
1125 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1126 enum uclamp_id clamp_id)
1127 {
1128 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1129 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1130 struct uclamp_bucket *bucket;
1131
1132 lockdep_assert_held(&rq->lock);
1133
1134 /* Update task effective clamp */
1135 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1136
1137 bucket = &uc_rq->bucket[uc_se->bucket_id];
1138 bucket->tasks++;
1139 uc_se->active = true;
1140
1141 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1142
1143 /*
1144 * Local max aggregation: rq buckets always track the max
1145 * "requested" clamp value of its RUNNABLE tasks.
1146 */
1147 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1148 bucket->value = uc_se->value;
1149
1150 if (uc_se->value > READ_ONCE(uc_rq->value))
1151 WRITE_ONCE(uc_rq->value, uc_se->value);
1152 }
1153
1154 /*
1155 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1156 * is released. If this is the last task reference counting the rq's max
1157 * active clamp value, then the rq's clamp value is updated.
1158 *
1159 * Both refcounted tasks and rq's cached clamp values are expected to be
1160 * always valid. If it's detected they are not, as defensive programming,
1161 * enforce the expected state and warn.
1162 */
1163 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1164 enum uclamp_id clamp_id)
1165 {
1166 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1167 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1168 struct uclamp_bucket *bucket;
1169 unsigned int bkt_clamp;
1170 unsigned int rq_clamp;
1171
1172 lockdep_assert_held(&rq->lock);
1173
1174 /*
1175 * If sched_uclamp_used was enabled after task @p was enqueued,
1176 * we could end up with unbalanced call to uclamp_rq_dec_id().
1177 *
1178 * In this case the uc_se->active flag should be false since no uclamp
1179 * accounting was performed at enqueue time and we can just return
1180 * here.
1181 *
1182 * Need to be careful of the following enqueue/dequeue ordering
1183 * problem too
1184 *
1185 * enqueue(taskA)
1186 * // sched_uclamp_used gets enabled
1187 * enqueue(taskB)
1188 * dequeue(taskA)
1189 * // Must not decrement bucket->tasks here
1190 * dequeue(taskB)
1191 *
1192 * where we could end up with stale data in uc_se and
1193 * bucket[uc_se->bucket_id].
1194 *
1195 * The following check here eliminates the possibility of such race.
1196 */
1197 if (unlikely(!uc_se->active))
1198 return;
1199
1200 bucket = &uc_rq->bucket[uc_se->bucket_id];
1201
1202 SCHED_WARN_ON(!bucket->tasks);
1203 if (likely(bucket->tasks))
1204 bucket->tasks--;
1205
1206 uc_se->active = false;
1207
1208 /*
1209 * Keep "local max aggregation" simple and accept to (possibly)
1210 * overboost some RUNNABLE tasks in the same bucket.
1211 * The rq clamp bucket value is reset to its base value whenever
1212 * there are no more RUNNABLE tasks refcounting it.
1213 */
1214 if (likely(bucket->tasks))
1215 return;
1216
1217 rq_clamp = READ_ONCE(uc_rq->value);
1218 /*
1219 * Defensive programming: this should never happen. If it happens,
1220 * e.g. due to future modification, warn and fixup the expected value.
1221 */
1222 SCHED_WARN_ON(bucket->value > rq_clamp);
1223 if (bucket->value >= rq_clamp) {
1224 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1225 WRITE_ONCE(uc_rq->value, bkt_clamp);
1226 }
1227 }
1228
1229 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1230 {
1231 enum uclamp_id clamp_id;
1232
1233 /*
1234 * Avoid any overhead until uclamp is actually used by the userspace.
1235 *
1236 * The condition is constructed such that a NOP is generated when
1237 * sched_uclamp_used is disabled.
1238 */
1239 if (!static_branch_unlikely(&sched_uclamp_used))
1240 return;
1241
1242 if (unlikely(!p->sched_class->uclamp_enabled))
1243 return;
1244
1245 for_each_clamp_id(clamp_id)
1246 uclamp_rq_inc_id(rq, p, clamp_id);
1247
1248 /* Reset clamp idle holding when there is one RUNNABLE task */
1249 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1250 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1251 }
1252
1253 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1254 {
1255 enum uclamp_id clamp_id;
1256
1257 /*
1258 * Avoid any overhead until uclamp is actually used by the userspace.
1259 *
1260 * The condition is constructed such that a NOP is generated when
1261 * sched_uclamp_used is disabled.
1262 */
1263 if (!static_branch_unlikely(&sched_uclamp_used))
1264 return;
1265
1266 if (unlikely(!p->sched_class->uclamp_enabled))
1267 return;
1268
1269 for_each_clamp_id(clamp_id)
1270 uclamp_rq_dec_id(rq, p, clamp_id);
1271 }
1272
1273 static inline void
1274 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1275 {
1276 struct rq_flags rf;
1277 struct rq *rq;
1278
1279 /*
1280 * Lock the task and the rq where the task is (or was) queued.
1281 *
1282 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1283 * price to pay to safely serialize util_{min,max} updates with
1284 * enqueues, dequeues and migration operations.
1285 * This is the same locking schema used by __set_cpus_allowed_ptr().
1286 */
1287 rq = task_rq_lock(p, &rf);
1288
1289 /*
1290 * Setting the clamp bucket is serialized by task_rq_lock().
1291 * If the task is not yet RUNNABLE and its task_struct is not
1292 * affecting a valid clamp bucket, the next time it's enqueued,
1293 * it will already see the updated clamp bucket value.
1294 */
1295 if (p->uclamp[clamp_id].active) {
1296 uclamp_rq_dec_id(rq, p, clamp_id);
1297 uclamp_rq_inc_id(rq, p, clamp_id);
1298 }
1299
1300 task_rq_unlock(rq, p, &rf);
1301 }
1302
1303 #ifdef CONFIG_UCLAMP_TASK_GROUP
1304 static inline void
1305 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1306 unsigned int clamps)
1307 {
1308 enum uclamp_id clamp_id;
1309 struct css_task_iter it;
1310 struct task_struct *p;
1311
1312 css_task_iter_start(css, 0, &it);
1313 while ((p = css_task_iter_next(&it))) {
1314 for_each_clamp_id(clamp_id) {
1315 if ((0x1 << clamp_id) & clamps)
1316 uclamp_update_active(p, clamp_id);
1317 }
1318 }
1319 css_task_iter_end(&it);
1320 }
1321
1322 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1323 static void uclamp_update_root_tg(void)
1324 {
1325 struct task_group *tg = &root_task_group;
1326
1327 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1328 sysctl_sched_uclamp_util_min, false);
1329 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1330 sysctl_sched_uclamp_util_max, false);
1331
1332 rcu_read_lock();
1333 cpu_util_update_eff(&root_task_group.css);
1334 rcu_read_unlock();
1335 }
1336 #else
1337 static void uclamp_update_root_tg(void) { }
1338 #endif
1339
1340 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1341 void *buffer, size_t *lenp, loff_t *ppos)
1342 {
1343 bool update_root_tg = false;
1344 int old_min, old_max, old_min_rt;
1345 int result;
1346
1347 mutex_lock(&uclamp_mutex);
1348 old_min = sysctl_sched_uclamp_util_min;
1349 old_max = sysctl_sched_uclamp_util_max;
1350 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1351
1352 result = proc_dointvec(table, write, buffer, lenp, ppos);
1353 if (result)
1354 goto undo;
1355 if (!write)
1356 goto done;
1357
1358 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1359 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1360 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1361
1362 result = -EINVAL;
1363 goto undo;
1364 }
1365
1366 if (old_min != sysctl_sched_uclamp_util_min) {
1367 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1368 sysctl_sched_uclamp_util_min, false);
1369 update_root_tg = true;
1370 }
1371 if (old_max != sysctl_sched_uclamp_util_max) {
1372 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1373 sysctl_sched_uclamp_util_max, false);
1374 update_root_tg = true;
1375 }
1376
1377 if (update_root_tg) {
1378 static_branch_enable(&sched_uclamp_used);
1379 uclamp_update_root_tg();
1380 }
1381
1382 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1383 static_branch_enable(&sched_uclamp_used);
1384 uclamp_sync_util_min_rt_default();
1385 }
1386
1387 /*
1388 * We update all RUNNABLE tasks only when task groups are in use.
1389 * Otherwise, keep it simple and do just a lazy update at each next
1390 * task enqueue time.
1391 */
1392
1393 goto done;
1394
1395 undo:
1396 sysctl_sched_uclamp_util_min = old_min;
1397 sysctl_sched_uclamp_util_max = old_max;
1398 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1399 done:
1400 mutex_unlock(&uclamp_mutex);
1401
1402 return result;
1403 }
1404
1405 static int uclamp_validate(struct task_struct *p,
1406 const struct sched_attr *attr)
1407 {
1408 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1409 int util_max = p->uclamp_req[UCLAMP_MAX].value;
1410
1411 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1412 util_min = attr->sched_util_min;
1413
1414 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1415 return -EINVAL;
1416 }
1417
1418 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1419 util_max = attr->sched_util_max;
1420
1421 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1422 return -EINVAL;
1423 }
1424
1425 if (util_min != -1 && util_max != -1 && util_min > util_max)
1426 return -EINVAL;
1427
1428 /*
1429 * We have valid uclamp attributes; make sure uclamp is enabled.
1430 *
1431 * We need to do that here, because enabling static branches is a
1432 * blocking operation which obviously cannot be done while holding
1433 * scheduler locks.
1434 */
1435 static_branch_enable(&sched_uclamp_used);
1436
1437 return 0;
1438 }
1439
1440 static bool uclamp_reset(const struct sched_attr *attr,
1441 enum uclamp_id clamp_id,
1442 struct uclamp_se *uc_se)
1443 {
1444 /* Reset on sched class change for a non user-defined clamp value. */
1445 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1446 !uc_se->user_defined)
1447 return true;
1448
1449 /* Reset on sched_util_{min,max} == -1. */
1450 if (clamp_id == UCLAMP_MIN &&
1451 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1452 attr->sched_util_min == -1) {
1453 return true;
1454 }
1455
1456 if (clamp_id == UCLAMP_MAX &&
1457 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1458 attr->sched_util_max == -1) {
1459 return true;
1460 }
1461
1462 return false;
1463 }
1464
1465 static void __setscheduler_uclamp(struct task_struct *p,
1466 const struct sched_attr *attr)
1467 {
1468 enum uclamp_id clamp_id;
1469
1470 for_each_clamp_id(clamp_id) {
1471 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1472 unsigned int value;
1473
1474 if (!uclamp_reset(attr, clamp_id, uc_se))
1475 continue;
1476
1477 /*
1478 * RT by default have a 100% boost value that could be modified
1479 * at runtime.
1480 */
1481 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1482 value = sysctl_sched_uclamp_util_min_rt_default;
1483 else
1484 value = uclamp_none(clamp_id);
1485
1486 uclamp_se_set(uc_se, value, false);
1487
1488 }
1489
1490 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1491 return;
1492
1493 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1494 attr->sched_util_min != -1) {
1495 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1496 attr->sched_util_min, true);
1497 }
1498
1499 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1500 attr->sched_util_max != -1) {
1501 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1502 attr->sched_util_max, true);
1503 }
1504 }
1505
1506 static void uclamp_fork(struct task_struct *p)
1507 {
1508 enum uclamp_id clamp_id;
1509
1510 /*
1511 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1512 * as the task is still at its early fork stages.
1513 */
1514 for_each_clamp_id(clamp_id)
1515 p->uclamp[clamp_id].active = false;
1516
1517 if (likely(!p->sched_reset_on_fork))
1518 return;
1519
1520 for_each_clamp_id(clamp_id) {
1521 uclamp_se_set(&p->uclamp_req[clamp_id],
1522 uclamp_none(clamp_id), false);
1523 }
1524 }
1525
1526 static void uclamp_post_fork(struct task_struct *p)
1527 {
1528 uclamp_update_util_min_rt_default(p);
1529 }
1530
1531 static void __init init_uclamp_rq(struct rq *rq)
1532 {
1533 enum uclamp_id clamp_id;
1534 struct uclamp_rq *uc_rq = rq->uclamp;
1535
1536 for_each_clamp_id(clamp_id) {
1537 uc_rq[clamp_id] = (struct uclamp_rq) {
1538 .value = uclamp_none(clamp_id)
1539 };
1540 }
1541
1542 rq->uclamp_flags = 0;
1543 }
1544
1545 static void __init init_uclamp(void)
1546 {
1547 struct uclamp_se uc_max = {};
1548 enum uclamp_id clamp_id;
1549 int cpu;
1550
1551 for_each_possible_cpu(cpu)
1552 init_uclamp_rq(cpu_rq(cpu));
1553
1554 for_each_clamp_id(clamp_id) {
1555 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1556 uclamp_none(clamp_id), false);
1557 }
1558
1559 /* System defaults allow max clamp values for both indexes */
1560 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1561 for_each_clamp_id(clamp_id) {
1562 uclamp_default[clamp_id] = uc_max;
1563 #ifdef CONFIG_UCLAMP_TASK_GROUP
1564 root_task_group.uclamp_req[clamp_id] = uc_max;
1565 root_task_group.uclamp[clamp_id] = uc_max;
1566 #endif
1567 }
1568 }
1569
1570 #else /* CONFIG_UCLAMP_TASK */
1571 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1572 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1573 static inline int uclamp_validate(struct task_struct *p,
1574 const struct sched_attr *attr)
1575 {
1576 return -EOPNOTSUPP;
1577 }
1578 static void __setscheduler_uclamp(struct task_struct *p,
1579 const struct sched_attr *attr) { }
1580 static inline void uclamp_fork(struct task_struct *p) { }
1581 static inline void uclamp_post_fork(struct task_struct *p) { }
1582 static inline void init_uclamp(void) { }
1583 #endif /* CONFIG_UCLAMP_TASK */
1584
1585 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1586 {
1587 if (!(flags & ENQUEUE_NOCLOCK))
1588 update_rq_clock(rq);
1589
1590 if (!(flags & ENQUEUE_RESTORE)) {
1591 sched_info_queued(rq, p);
1592 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1593 }
1594
1595 uclamp_rq_inc(rq, p);
1596 p->sched_class->enqueue_task(rq, p, flags);
1597 }
1598
1599 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1600 {
1601 if (!(flags & DEQUEUE_NOCLOCK))
1602 update_rq_clock(rq);
1603
1604 if (!(flags & DEQUEUE_SAVE)) {
1605 sched_info_dequeued(rq, p);
1606 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1607 }
1608
1609 uclamp_rq_dec(rq, p);
1610 p->sched_class->dequeue_task(rq, p, flags);
1611 }
1612
1613 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1614 {
1615 enqueue_task(rq, p, flags);
1616
1617 p->on_rq = TASK_ON_RQ_QUEUED;
1618 }
1619
1620 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1621 {
1622 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1623
1624 dequeue_task(rq, p, flags);
1625 }
1626
1627 /*
1628 * __normal_prio - return the priority that is based on the static prio
1629 */
1630 static inline int __normal_prio(struct task_struct *p)
1631 {
1632 return p->static_prio;
1633 }
1634
1635 /*
1636 * Calculate the expected normal priority: i.e. priority
1637 * without taking RT-inheritance into account. Might be
1638 * boosted by interactivity modifiers. Changes upon fork,
1639 * setprio syscalls, and whenever the interactivity
1640 * estimator recalculates.
1641 */
1642 static inline int normal_prio(struct task_struct *p)
1643 {
1644 int prio;
1645
1646 if (task_has_dl_policy(p))
1647 prio = MAX_DL_PRIO-1;
1648 else if (task_has_rt_policy(p))
1649 prio = MAX_RT_PRIO-1 - p->rt_priority;
1650 else
1651 prio = __normal_prio(p);
1652 return prio;
1653 }
1654
1655 /*
1656 * Calculate the current priority, i.e. the priority
1657 * taken into account by the scheduler. This value might
1658 * be boosted by RT tasks, or might be boosted by
1659 * interactivity modifiers. Will be RT if the task got
1660 * RT-boosted. If not then it returns p->normal_prio.
1661 */
1662 static int effective_prio(struct task_struct *p)
1663 {
1664 p->normal_prio = normal_prio(p);
1665 /*
1666 * If we are RT tasks or we were boosted to RT priority,
1667 * keep the priority unchanged. Otherwise, update priority
1668 * to the normal priority:
1669 */
1670 if (!rt_prio(p->prio))
1671 return p->normal_prio;
1672 return p->prio;
1673 }
1674
1675 /**
1676 * task_curr - is this task currently executing on a CPU?
1677 * @p: the task in question.
1678 *
1679 * Return: 1 if the task is currently executing. 0 otherwise.
1680 */
1681 inline int task_curr(const struct task_struct *p)
1682 {
1683 return cpu_curr(task_cpu(p)) == p;
1684 }
1685
1686 /*
1687 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1688 * use the balance_callback list if you want balancing.
1689 *
1690 * this means any call to check_class_changed() must be followed by a call to
1691 * balance_callback().
1692 */
1693 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1694 const struct sched_class *prev_class,
1695 int oldprio)
1696 {
1697 if (prev_class != p->sched_class) {
1698 if (prev_class->switched_from)
1699 prev_class->switched_from(rq, p);
1700
1701 p->sched_class->switched_to(rq, p);
1702 } else if (oldprio != p->prio || dl_task(p))
1703 p->sched_class->prio_changed(rq, p, oldprio);
1704 }
1705
1706 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1707 {
1708 if (p->sched_class == rq->curr->sched_class)
1709 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1710 else if (p->sched_class > rq->curr->sched_class)
1711 resched_curr(rq);
1712
1713 /*
1714 * A queue event has occurred, and we're going to schedule. In
1715 * this case, we can save a useless back to back clock update.
1716 */
1717 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1718 rq_clock_skip_update(rq);
1719 }
1720
1721 #ifdef CONFIG_SMP
1722
1723 static void
1724 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
1725
1726 static int __set_cpus_allowed_ptr(struct task_struct *p,
1727 const struct cpumask *new_mask,
1728 u32 flags);
1729
1730 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
1731 {
1732 if (likely(!p->migration_disabled))
1733 return;
1734
1735 if (p->cpus_ptr != &p->cpus_mask)
1736 return;
1737
1738 /*
1739 * Violates locking rules! see comment in __do_set_cpus_allowed().
1740 */
1741 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
1742 }
1743
1744 void migrate_disable(void)
1745 {
1746 struct task_struct *p = current;
1747
1748 if (p->migration_disabled) {
1749 p->migration_disabled++;
1750 return;
1751 }
1752
1753 preempt_disable();
1754 this_rq()->nr_pinned++;
1755 p->migration_disabled = 1;
1756 preempt_enable();
1757 }
1758 EXPORT_SYMBOL_GPL(migrate_disable);
1759
1760 void migrate_enable(void)
1761 {
1762 struct task_struct *p = current;
1763
1764 if (p->migration_disabled > 1) {
1765 p->migration_disabled--;
1766 return;
1767 }
1768
1769 /*
1770 * Ensure stop_task runs either before or after this, and that
1771 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
1772 */
1773 preempt_disable();
1774 if (p->cpus_ptr != &p->cpus_mask)
1775 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
1776 /*
1777 * Mustn't clear migration_disabled() until cpus_ptr points back at the
1778 * regular cpus_mask, otherwise things that race (eg.
1779 * select_fallback_rq) get confused.
1780 */
1781 barrier();
1782 p->migration_disabled = 0;
1783 this_rq()->nr_pinned--;
1784 preempt_enable();
1785 }
1786 EXPORT_SYMBOL_GPL(migrate_enable);
1787
1788 static inline bool rq_has_pinned_tasks(struct rq *rq)
1789 {
1790 return rq->nr_pinned;
1791 }
1792
1793 /*
1794 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1795 * __set_cpus_allowed_ptr() and select_fallback_rq().
1796 */
1797 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1798 {
1799 /* When not in the task's cpumask, no point in looking further. */
1800 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1801 return false;
1802
1803 /* migrate_disabled() must be allowed to finish. */
1804 if (is_migration_disabled(p))
1805 return cpu_online(cpu);
1806
1807 /* Non kernel threads are not allowed during either online or offline. */
1808 if (!(p->flags & PF_KTHREAD))
1809 return cpu_active(cpu);
1810
1811 /* KTHREAD_IS_PER_CPU is always allowed. */
1812 if (kthread_is_per_cpu(p))
1813 return cpu_online(cpu);
1814
1815 /* Regular kernel threads don't get to stay during offline. */
1816 if (cpu_rq(cpu)->balance_push)
1817 return false;
1818
1819 /* But are allowed during online. */
1820 return cpu_online(cpu);
1821 }
1822
1823 /*
1824 * This is how migration works:
1825 *
1826 * 1) we invoke migration_cpu_stop() on the target CPU using
1827 * stop_one_cpu().
1828 * 2) stopper starts to run (implicitly forcing the migrated thread
1829 * off the CPU)
1830 * 3) it checks whether the migrated task is still in the wrong runqueue.
1831 * 4) if it's in the wrong runqueue then the migration thread removes
1832 * it and puts it into the right queue.
1833 * 5) stopper completes and stop_one_cpu() returns and the migration
1834 * is done.
1835 */
1836
1837 /*
1838 * move_queued_task - move a queued task to new rq.
1839 *
1840 * Returns (locked) new rq. Old rq's lock is released.
1841 */
1842 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1843 struct task_struct *p, int new_cpu)
1844 {
1845 lockdep_assert_held(&rq->lock);
1846
1847 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
1848 set_task_cpu(p, new_cpu);
1849 rq_unlock(rq, rf);
1850
1851 rq = cpu_rq(new_cpu);
1852
1853 rq_lock(rq, rf);
1854 BUG_ON(task_cpu(p) != new_cpu);
1855 activate_task(rq, p, 0);
1856 check_preempt_curr(rq, p, 0);
1857
1858 return rq;
1859 }
1860
1861 struct migration_arg {
1862 struct task_struct *task;
1863 int dest_cpu;
1864 struct set_affinity_pending *pending;
1865 };
1866
1867 struct set_affinity_pending {
1868 refcount_t refs;
1869 struct completion done;
1870 struct cpu_stop_work stop_work;
1871 struct migration_arg arg;
1872 };
1873
1874 /*
1875 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1876 * this because either it can't run here any more (set_cpus_allowed()
1877 * away from this CPU, or CPU going down), or because we're
1878 * attempting to rebalance this task on exec (sched_exec).
1879 *
1880 * So we race with normal scheduler movements, but that's OK, as long
1881 * as the task is no longer on this CPU.
1882 */
1883 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1884 struct task_struct *p, int dest_cpu)
1885 {
1886 /* Affinity changed (again). */
1887 if (!is_cpu_allowed(p, dest_cpu))
1888 return rq;
1889
1890 update_rq_clock(rq);
1891 rq = move_queued_task(rq, rf, p, dest_cpu);
1892
1893 return rq;
1894 }
1895
1896 /*
1897 * migration_cpu_stop - this will be executed by a highprio stopper thread
1898 * and performs thread migration by bumping thread off CPU then
1899 * 'pushing' onto another runqueue.
1900 */
1901 static int migration_cpu_stop(void *data)
1902 {
1903 struct set_affinity_pending *pending;
1904 struct migration_arg *arg = data;
1905 struct task_struct *p = arg->task;
1906 int dest_cpu = arg->dest_cpu;
1907 struct rq *rq = this_rq();
1908 bool complete = false;
1909 struct rq_flags rf;
1910
1911 /*
1912 * The original target CPU might have gone down and we might
1913 * be on another CPU but it doesn't matter.
1914 */
1915 local_irq_save(rf.flags);
1916 /*
1917 * We need to explicitly wake pending tasks before running
1918 * __migrate_task() such that we will not miss enforcing cpus_ptr
1919 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1920 */
1921 flush_smp_call_function_from_idle();
1922
1923 raw_spin_lock(&p->pi_lock);
1924 rq_lock(rq, &rf);
1925
1926 pending = p->migration_pending;
1927 /*
1928 * If task_rq(p) != rq, it cannot be migrated here, because we're
1929 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1930 * we're holding p->pi_lock.
1931 */
1932 if (task_rq(p) == rq) {
1933 if (is_migration_disabled(p))
1934 goto out;
1935
1936 if (pending) {
1937 p->migration_pending = NULL;
1938 complete = true;
1939 }
1940
1941 /* migrate_enable() -- we must not race against SCA */
1942 if (dest_cpu < 0) {
1943 /*
1944 * When this was migrate_enable() but we no longer
1945 * have a @pending, a concurrent SCA 'fixed' things
1946 * and we should be valid again. Nothing to do.
1947 */
1948 if (!pending) {
1949 WARN_ON_ONCE(!cpumask_test_cpu(task_cpu(p), &p->cpus_mask));
1950 goto out;
1951 }
1952
1953 dest_cpu = cpumask_any_distribute(&p->cpus_mask);
1954 }
1955
1956 if (task_on_rq_queued(p))
1957 rq = __migrate_task(rq, &rf, p, dest_cpu);
1958 else
1959 p->wake_cpu = dest_cpu;
1960
1961 } else if (dest_cpu < 0 || pending) {
1962 /*
1963 * This happens when we get migrated between migrate_enable()'s
1964 * preempt_enable() and scheduling the stopper task. At that
1965 * point we're a regular task again and not current anymore.
1966 *
1967 * A !PREEMPT kernel has a giant hole here, which makes it far
1968 * more likely.
1969 */
1970
1971 /*
1972 * The task moved before the stopper got to run. We're holding
1973 * ->pi_lock, so the allowed mask is stable - if it got
1974 * somewhere allowed, we're done.
1975 */
1976 if (pending && cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
1977 p->migration_pending = NULL;
1978 complete = true;
1979 goto out;
1980 }
1981
1982 /*
1983 * When this was migrate_enable() but we no longer have an
1984 * @pending, a concurrent SCA 'fixed' things and we should be
1985 * valid again. Nothing to do.
1986 */
1987 if (!pending) {
1988 WARN_ON_ONCE(!cpumask_test_cpu(task_cpu(p), &p->cpus_mask));
1989 goto out;
1990 }
1991
1992 /*
1993 * When migrate_enable() hits a rq mis-match we can't reliably
1994 * determine is_migration_disabled() and so have to chase after
1995 * it.
1996 */
1997 task_rq_unlock(rq, p, &rf);
1998 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
1999 &pending->arg, &pending->stop_work);
2000 return 0;
2001 }
2002 out:
2003 task_rq_unlock(rq, p, &rf);
2004
2005 if (complete)
2006 complete_all(&pending->done);
2007
2008 /* For pending->{arg,stop_work} */
2009 pending = arg->pending;
2010 if (pending && refcount_dec_and_test(&pending->refs))
2011 wake_up_var(&pending->refs);
2012
2013 return 0;
2014 }
2015
2016 int push_cpu_stop(void *arg)
2017 {
2018 struct rq *lowest_rq = NULL, *rq = this_rq();
2019 struct task_struct *p = arg;
2020
2021 raw_spin_lock_irq(&p->pi_lock);
2022 raw_spin_lock(&rq->lock);
2023
2024 if (task_rq(p) != rq)
2025 goto out_unlock;
2026
2027 if (is_migration_disabled(p)) {
2028 p->migration_flags |= MDF_PUSH;
2029 goto out_unlock;
2030 }
2031
2032 p->migration_flags &= ~MDF_PUSH;
2033
2034 if (p->sched_class->find_lock_rq)
2035 lowest_rq = p->sched_class->find_lock_rq(p, rq);
2036
2037 if (!lowest_rq)
2038 goto out_unlock;
2039
2040 // XXX validate p is still the highest prio task
2041 if (task_rq(p) == rq) {
2042 deactivate_task(rq, p, 0);
2043 set_task_cpu(p, lowest_rq->cpu);
2044 activate_task(lowest_rq, p, 0);
2045 resched_curr(lowest_rq);
2046 }
2047
2048 double_unlock_balance(rq, lowest_rq);
2049
2050 out_unlock:
2051 rq->push_busy = false;
2052 raw_spin_unlock(&rq->lock);
2053 raw_spin_unlock_irq(&p->pi_lock);
2054
2055 put_task_struct(p);
2056 return 0;
2057 }
2058
2059 /*
2060 * sched_class::set_cpus_allowed must do the below, but is not required to
2061 * actually call this function.
2062 */
2063 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2064 {
2065 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2066 p->cpus_ptr = new_mask;
2067 return;
2068 }
2069
2070 cpumask_copy(&p->cpus_mask, new_mask);
2071 p->nr_cpus_allowed = cpumask_weight(new_mask);
2072 }
2073
2074 static void
2075 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2076 {
2077 struct rq *rq = task_rq(p);
2078 bool queued, running;
2079
2080 /*
2081 * This here violates the locking rules for affinity, since we're only
2082 * supposed to change these variables while holding both rq->lock and
2083 * p->pi_lock.
2084 *
2085 * HOWEVER, it magically works, because ttwu() is the only code that
2086 * accesses these variables under p->pi_lock and only does so after
2087 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2088 * before finish_task().
2089 *
2090 * XXX do further audits, this smells like something putrid.
2091 */
2092 if (flags & SCA_MIGRATE_DISABLE)
2093 SCHED_WARN_ON(!p->on_cpu);
2094 else
2095 lockdep_assert_held(&p->pi_lock);
2096
2097 queued = task_on_rq_queued(p);
2098 running = task_current(rq, p);
2099
2100 if (queued) {
2101 /*
2102 * Because __kthread_bind() calls this on blocked tasks without
2103 * holding rq->lock.
2104 */
2105 lockdep_assert_held(&rq->lock);
2106 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2107 }
2108 if (running)
2109 put_prev_task(rq, p);
2110
2111 p->sched_class->set_cpus_allowed(p, new_mask, flags);
2112
2113 if (queued)
2114 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2115 if (running)
2116 set_next_task(rq, p);
2117 }
2118
2119 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2120 {
2121 __do_set_cpus_allowed(p, new_mask, 0);
2122 }
2123
2124 /*
2125 * This function is wildly self concurrent; here be dragons.
2126 *
2127 *
2128 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2129 * designated task is enqueued on an allowed CPU. If that task is currently
2130 * running, we have to kick it out using the CPU stopper.
2131 *
2132 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2133 * Consider:
2134 *
2135 * Initial conditions: P0->cpus_mask = [0, 1]
2136 *
2137 * P0@CPU0 P1
2138 *
2139 * migrate_disable();
2140 * <preempted>
2141 * set_cpus_allowed_ptr(P0, [1]);
2142 *
2143 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2144 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2145 * This means we need the following scheme:
2146 *
2147 * P0@CPU0 P1
2148 *
2149 * migrate_disable();
2150 * <preempted>
2151 * set_cpus_allowed_ptr(P0, [1]);
2152 * <blocks>
2153 * <resumes>
2154 * migrate_enable();
2155 * __set_cpus_allowed_ptr();
2156 * <wakes local stopper>
2157 * `--> <woken on migration completion>
2158 *
2159 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2160 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2161 * task p are serialized by p->pi_lock, which we can leverage: the one that
2162 * should come into effect at the end of the Migrate-Disable region is the last
2163 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2164 * but we still need to properly signal those waiting tasks at the appropriate
2165 * moment.
2166 *
2167 * This is implemented using struct set_affinity_pending. The first
2168 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2169 * setup an instance of that struct and install it on the targeted task_struct.
2170 * Any and all further callers will reuse that instance. Those then wait for
2171 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2172 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2173 *
2174 *
2175 * (1) In the cases covered above. There is one more where the completion is
2176 * signaled within affine_move_task() itself: when a subsequent affinity request
2177 * cancels the need for an active migration. Consider:
2178 *
2179 * Initial conditions: P0->cpus_mask = [0, 1]
2180 *
2181 * P0@CPU0 P1 P2
2182 *
2183 * migrate_disable();
2184 * <preempted>
2185 * set_cpus_allowed_ptr(P0, [1]);
2186 * <blocks>
2187 * set_cpus_allowed_ptr(P0, [0, 1]);
2188 * <signal completion>
2189 * <awakes>
2190 *
2191 * Note that the above is safe vs a concurrent migrate_enable(), as any
2192 * pending affinity completion is preceded by an uninstallation of
2193 * p->migration_pending done with p->pi_lock held.
2194 */
2195 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2196 int dest_cpu, unsigned int flags)
2197 {
2198 struct set_affinity_pending my_pending = { }, *pending = NULL;
2199 struct migration_arg arg = {
2200 .task = p,
2201 .dest_cpu = dest_cpu,
2202 };
2203 bool complete = false;
2204
2205 /* Can the task run on the task's current CPU? If so, we're done */
2206 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2207 struct task_struct *push_task = NULL;
2208
2209 if ((flags & SCA_MIGRATE_ENABLE) &&
2210 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2211 rq->push_busy = true;
2212 push_task = get_task_struct(p);
2213 }
2214
2215 pending = p->migration_pending;
2216 if (pending) {
2217 refcount_inc(&pending->refs);
2218 p->migration_pending = NULL;
2219 complete = true;
2220 }
2221 task_rq_unlock(rq, p, rf);
2222
2223 if (push_task) {
2224 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2225 p, &rq->push_work);
2226 }
2227
2228 if (complete)
2229 goto do_complete;
2230
2231 return 0;
2232 }
2233
2234 if (!(flags & SCA_MIGRATE_ENABLE)) {
2235 /* serialized by p->pi_lock */
2236 if (!p->migration_pending) {
2237 /* Install the request */
2238 refcount_set(&my_pending.refs, 1);
2239 init_completion(&my_pending.done);
2240 p->migration_pending = &my_pending;
2241 } else {
2242 pending = p->migration_pending;
2243 refcount_inc(&pending->refs);
2244 }
2245 }
2246 pending = p->migration_pending;
2247 /*
2248 * - !MIGRATE_ENABLE:
2249 * we'll have installed a pending if there wasn't one already.
2250 *
2251 * - MIGRATE_ENABLE:
2252 * we're here because the current CPU isn't matching anymore,
2253 * the only way that can happen is because of a concurrent
2254 * set_cpus_allowed_ptr() call, which should then still be
2255 * pending completion.
2256 *
2257 * Either way, we really should have a @pending here.
2258 */
2259 if (WARN_ON_ONCE(!pending)) {
2260 task_rq_unlock(rq, p, rf);
2261 return -EINVAL;
2262 }
2263
2264 if (flags & SCA_MIGRATE_ENABLE) {
2265
2266 refcount_inc(&pending->refs); /* pending->{arg,stop_work} */
2267 p->migration_flags &= ~MDF_PUSH;
2268 task_rq_unlock(rq, p, rf);
2269
2270 pending->arg = (struct migration_arg) {
2271 .task = p,
2272 .dest_cpu = -1,
2273 .pending = pending,
2274 };
2275
2276 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2277 &pending->arg, &pending->stop_work);
2278
2279 return 0;
2280 }
2281
2282 if (task_running(rq, p) || p->state == TASK_WAKING) {
2283 /*
2284 * Lessen races (and headaches) by delegating
2285 * is_migration_disabled(p) checks to the stopper, which will
2286 * run on the same CPU as said p.
2287 */
2288 task_rq_unlock(rq, p, rf);
2289 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
2290
2291 } else {
2292
2293 if (!is_migration_disabled(p)) {
2294 if (task_on_rq_queued(p))
2295 rq = move_queued_task(rq, rf, p, dest_cpu);
2296
2297 p->migration_pending = NULL;
2298 complete = true;
2299 }
2300 task_rq_unlock(rq, p, rf);
2301
2302 do_complete:
2303 if (complete)
2304 complete_all(&pending->done);
2305 }
2306
2307 wait_for_completion(&pending->done);
2308
2309 if (refcount_dec_and_test(&pending->refs))
2310 wake_up_var(&pending->refs);
2311
2312 /*
2313 * Block the original owner of &pending until all subsequent callers
2314 * have seen the completion and decremented the refcount
2315 */
2316 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2317
2318 return 0;
2319 }
2320
2321 /*
2322 * Change a given task's CPU affinity. Migrate the thread to a
2323 * proper CPU and schedule it away if the CPU it's executing on
2324 * is removed from the allowed bitmask.
2325 *
2326 * NOTE: the caller must have a valid reference to the task, the
2327 * task must not exit() & deallocate itself prematurely. The
2328 * call is not atomic; no spinlocks may be held.
2329 */
2330 static int __set_cpus_allowed_ptr(struct task_struct *p,
2331 const struct cpumask *new_mask,
2332 u32 flags)
2333 {
2334 const struct cpumask *cpu_valid_mask = cpu_active_mask;
2335 unsigned int dest_cpu;
2336 struct rq_flags rf;
2337 struct rq *rq;
2338 int ret = 0;
2339
2340 rq = task_rq_lock(p, &rf);
2341 update_rq_clock(rq);
2342
2343 if (p->flags & PF_KTHREAD || is_migration_disabled(p)) {
2344 /*
2345 * Kernel threads are allowed on online && !active CPUs,
2346 * however, during cpu-hot-unplug, even these might get pushed
2347 * away if not KTHREAD_IS_PER_CPU.
2348 *
2349 * Specifically, migration_disabled() tasks must not fail the
2350 * cpumask_any_and_distribute() pick below, esp. so on
2351 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2352 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2353 */
2354 cpu_valid_mask = cpu_online_mask;
2355 }
2356
2357 /*
2358 * Must re-check here, to close a race against __kthread_bind(),
2359 * sched_setaffinity() is not guaranteed to observe the flag.
2360 */
2361 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2362 ret = -EINVAL;
2363 goto out;
2364 }
2365
2366 if (!(flags & SCA_MIGRATE_ENABLE)) {
2367 if (cpumask_equal(&p->cpus_mask, new_mask))
2368 goto out;
2369
2370 if (WARN_ON_ONCE(p == current &&
2371 is_migration_disabled(p) &&
2372 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2373 ret = -EBUSY;
2374 goto out;
2375 }
2376 }
2377
2378 /*
2379 * Picking a ~random cpu helps in cases where we are changing affinity
2380 * for groups of tasks (ie. cpuset), so that load balancing is not
2381 * immediately required to distribute the tasks within their new mask.
2382 */
2383 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2384 if (dest_cpu >= nr_cpu_ids) {
2385 ret = -EINVAL;
2386 goto out;
2387 }
2388
2389 __do_set_cpus_allowed(p, new_mask, flags);
2390
2391 return affine_move_task(rq, p, &rf, dest_cpu, flags);
2392
2393 out:
2394 task_rq_unlock(rq, p, &rf);
2395
2396 return ret;
2397 }
2398
2399 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2400 {
2401 return __set_cpus_allowed_ptr(p, new_mask, 0);
2402 }
2403 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2404
2405 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2406 {
2407 #ifdef CONFIG_SCHED_DEBUG
2408 /*
2409 * We should never call set_task_cpu() on a blocked task,
2410 * ttwu() will sort out the placement.
2411 */
2412 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2413 !p->on_rq);
2414
2415 /*
2416 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2417 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2418 * time relying on p->on_rq.
2419 */
2420 WARN_ON_ONCE(p->state == TASK_RUNNING &&
2421 p->sched_class == &fair_sched_class &&
2422 (p->on_rq && !task_on_rq_migrating(p)));
2423
2424 #ifdef CONFIG_LOCKDEP
2425 /*
2426 * The caller should hold either p->pi_lock or rq->lock, when changing
2427 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2428 *
2429 * sched_move_task() holds both and thus holding either pins the cgroup,
2430 * see task_group().
2431 *
2432 * Furthermore, all task_rq users should acquire both locks, see
2433 * task_rq_lock().
2434 */
2435 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2436 lockdep_is_held(&task_rq(p)->lock)));
2437 #endif
2438 /*
2439 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2440 */
2441 WARN_ON_ONCE(!cpu_online(new_cpu));
2442
2443 WARN_ON_ONCE(is_migration_disabled(p));
2444 #endif
2445
2446 trace_sched_migrate_task(p, new_cpu);
2447
2448 if (task_cpu(p) != new_cpu) {
2449 if (p->sched_class->migrate_task_rq)
2450 p->sched_class->migrate_task_rq(p, new_cpu);
2451 p->se.nr_migrations++;
2452 rseq_migrate(p);
2453 perf_event_task_migrate(p);
2454 }
2455
2456 __set_task_cpu(p, new_cpu);
2457 }
2458
2459 #ifdef CONFIG_NUMA_BALANCING
2460 static void __migrate_swap_task(struct task_struct *p, int cpu)
2461 {
2462 if (task_on_rq_queued(p)) {
2463 struct rq *src_rq, *dst_rq;
2464 struct rq_flags srf, drf;
2465
2466 src_rq = task_rq(p);
2467 dst_rq = cpu_rq(cpu);
2468
2469 rq_pin_lock(src_rq, &srf);
2470 rq_pin_lock(dst_rq, &drf);
2471
2472 deactivate_task(src_rq, p, 0);
2473 set_task_cpu(p, cpu);
2474 activate_task(dst_rq, p, 0);
2475 check_preempt_curr(dst_rq, p, 0);
2476
2477 rq_unpin_lock(dst_rq, &drf);
2478 rq_unpin_lock(src_rq, &srf);
2479
2480 } else {
2481 /*
2482 * Task isn't running anymore; make it appear like we migrated
2483 * it before it went to sleep. This means on wakeup we make the
2484 * previous CPU our target instead of where it really is.
2485 */
2486 p->wake_cpu = cpu;
2487 }
2488 }
2489
2490 struct migration_swap_arg {
2491 struct task_struct *src_task, *dst_task;
2492 int src_cpu, dst_cpu;
2493 };
2494
2495 static int migrate_swap_stop(void *data)
2496 {
2497 struct migration_swap_arg *arg = data;
2498 struct rq *src_rq, *dst_rq;
2499 int ret = -EAGAIN;
2500
2501 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2502 return -EAGAIN;
2503
2504 src_rq = cpu_rq(arg->src_cpu);
2505 dst_rq = cpu_rq(arg->dst_cpu);
2506
2507 double_raw_lock(&arg->src_task->pi_lock,
2508 &arg->dst_task->pi_lock);
2509 double_rq_lock(src_rq, dst_rq);
2510
2511 if (task_cpu(arg->dst_task) != arg->dst_cpu)
2512 goto unlock;
2513
2514 if (task_cpu(arg->src_task) != arg->src_cpu)
2515 goto unlock;
2516
2517 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2518 goto unlock;
2519
2520 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2521 goto unlock;
2522
2523 __migrate_swap_task(arg->src_task, arg->dst_cpu);
2524 __migrate_swap_task(arg->dst_task, arg->src_cpu);
2525
2526 ret = 0;
2527
2528 unlock:
2529 double_rq_unlock(src_rq, dst_rq);
2530 raw_spin_unlock(&arg->dst_task->pi_lock);
2531 raw_spin_unlock(&arg->src_task->pi_lock);
2532
2533 return ret;
2534 }
2535
2536 /*
2537 * Cross migrate two tasks
2538 */
2539 int migrate_swap(struct task_struct *cur, struct task_struct *p,
2540 int target_cpu, int curr_cpu)
2541 {
2542 struct migration_swap_arg arg;
2543 int ret = -EINVAL;
2544
2545 arg = (struct migration_swap_arg){
2546 .src_task = cur,
2547 .src_cpu = curr_cpu,
2548 .dst_task = p,
2549 .dst_cpu = target_cpu,
2550 };
2551
2552 if (arg.src_cpu == arg.dst_cpu)
2553 goto out;
2554
2555 /*
2556 * These three tests are all lockless; this is OK since all of them
2557 * will be re-checked with proper locks held further down the line.
2558 */
2559 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2560 goto out;
2561
2562 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2563 goto out;
2564
2565 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2566 goto out;
2567
2568 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2569 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2570
2571 out:
2572 return ret;
2573 }
2574 #endif /* CONFIG_NUMA_BALANCING */
2575
2576 /*
2577 * wait_task_inactive - wait for a thread to unschedule.
2578 *
2579 * If @match_state is nonzero, it's the @p->state value just checked and
2580 * not expected to change. If it changes, i.e. @p might have woken up,
2581 * then return zero. When we succeed in waiting for @p to be off its CPU,
2582 * we return a positive number (its total switch count). If a second call
2583 * a short while later returns the same number, the caller can be sure that
2584 * @p has remained unscheduled the whole time.
2585 *
2586 * The caller must ensure that the task *will* unschedule sometime soon,
2587 * else this function might spin for a *long* time. This function can't
2588 * be called with interrupts off, or it may introduce deadlock with
2589 * smp_call_function() if an IPI is sent by the same process we are
2590 * waiting to become inactive.
2591 */
2592 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2593 {
2594 int running, queued;
2595 struct rq_flags rf;
2596 unsigned long ncsw;
2597 struct rq *rq;
2598
2599 for (;;) {
2600 /*
2601 * We do the initial early heuristics without holding
2602 * any task-queue locks at all. We'll only try to get
2603 * the runqueue lock when things look like they will
2604 * work out!
2605 */
2606 rq = task_rq(p);
2607
2608 /*
2609 * If the task is actively running on another CPU
2610 * still, just relax and busy-wait without holding
2611 * any locks.
2612 *
2613 * NOTE! Since we don't hold any locks, it's not
2614 * even sure that "rq" stays as the right runqueue!
2615 * But we don't care, since "task_running()" will
2616 * return false if the runqueue has changed and p
2617 * is actually now running somewhere else!
2618 */
2619 while (task_running(rq, p)) {
2620 if (match_state && unlikely(p->state != match_state))
2621 return 0;
2622 cpu_relax();
2623 }
2624
2625 /*
2626 * Ok, time to look more closely! We need the rq
2627 * lock now, to be *sure*. If we're wrong, we'll
2628 * just go back and repeat.
2629 */
2630 rq = task_rq_lock(p, &rf);
2631 trace_sched_wait_task(p);
2632 running = task_running(rq, p);
2633 queued = task_on_rq_queued(p);
2634 ncsw = 0;
2635 if (!match_state || p->state == match_state)
2636 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2637 task_rq_unlock(rq, p, &rf);
2638
2639 /*
2640 * If it changed from the expected state, bail out now.
2641 */
2642 if (unlikely(!ncsw))
2643 break;
2644
2645 /*
2646 * Was it really running after all now that we
2647 * checked with the proper locks actually held?
2648 *
2649 * Oops. Go back and try again..
2650 */
2651 if (unlikely(running)) {
2652 cpu_relax();
2653 continue;
2654 }
2655
2656 /*
2657 * It's not enough that it's not actively running,
2658 * it must be off the runqueue _entirely_, and not
2659 * preempted!
2660 *
2661 * So if it was still runnable (but just not actively
2662 * running right now), it's preempted, and we should
2663 * yield - it could be a while.
2664 */
2665 if (unlikely(queued)) {
2666 ktime_t to = NSEC_PER_SEC / HZ;
2667
2668 set_current_state(TASK_UNINTERRUPTIBLE);
2669 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2670 continue;
2671 }
2672
2673 /*
2674 * Ahh, all good. It wasn't running, and it wasn't
2675 * runnable, which means that it will never become
2676 * running in the future either. We're all done!
2677 */
2678 break;
2679 }
2680
2681 return ncsw;
2682 }
2683
2684 /***
2685 * kick_process - kick a running thread to enter/exit the kernel
2686 * @p: the to-be-kicked thread
2687 *
2688 * Cause a process which is running on another CPU to enter
2689 * kernel-mode, without any delay. (to get signals handled.)
2690 *
2691 * NOTE: this function doesn't have to take the runqueue lock,
2692 * because all it wants to ensure is that the remote task enters
2693 * the kernel. If the IPI races and the task has been migrated
2694 * to another CPU then no harm is done and the purpose has been
2695 * achieved as well.
2696 */
2697 void kick_process(struct task_struct *p)
2698 {
2699 int cpu;
2700
2701 preempt_disable();
2702 cpu = task_cpu(p);
2703 if ((cpu != smp_processor_id()) && task_curr(p))
2704 smp_send_reschedule(cpu);
2705 preempt_enable();
2706 }
2707 EXPORT_SYMBOL_GPL(kick_process);
2708
2709 /*
2710 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2711 *
2712 * A few notes on cpu_active vs cpu_online:
2713 *
2714 * - cpu_active must be a subset of cpu_online
2715 *
2716 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2717 * see __set_cpus_allowed_ptr(). At this point the newly online
2718 * CPU isn't yet part of the sched domains, and balancing will not
2719 * see it.
2720 *
2721 * - on CPU-down we clear cpu_active() to mask the sched domains and
2722 * avoid the load balancer to place new tasks on the to be removed
2723 * CPU. Existing tasks will remain running there and will be taken
2724 * off.
2725 *
2726 * This means that fallback selection must not select !active CPUs.
2727 * And can assume that any active CPU must be online. Conversely
2728 * select_task_rq() below may allow selection of !active CPUs in order
2729 * to satisfy the above rules.
2730 */
2731 static int select_fallback_rq(int cpu, struct task_struct *p)
2732 {
2733 int nid = cpu_to_node(cpu);
2734 const struct cpumask *nodemask = NULL;
2735 enum { cpuset, possible, fail } state = cpuset;
2736 int dest_cpu;
2737
2738 /*
2739 * If the node that the CPU is on has been offlined, cpu_to_node()
2740 * will return -1. There is no CPU on the node, and we should
2741 * select the CPU on the other node.
2742 */
2743 if (nid != -1) {
2744 nodemask = cpumask_of_node(nid);
2745
2746 /* Look for allowed, online CPU in same node. */
2747 for_each_cpu(dest_cpu, nodemask) {
2748 if (!cpu_active(dest_cpu))
2749 continue;
2750 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2751 return dest_cpu;
2752 }
2753 }
2754
2755 for (;;) {
2756 /* Any allowed, online CPU? */
2757 for_each_cpu(dest_cpu, p->cpus_ptr) {
2758 if (!is_cpu_allowed(p, dest_cpu))
2759 continue;
2760
2761 goto out;
2762 }
2763
2764 /* No more Mr. Nice Guy. */
2765 switch (state) {
2766 case cpuset:
2767 if (IS_ENABLED(CONFIG_CPUSETS)) {
2768 cpuset_cpus_allowed_fallback(p);
2769 state = possible;
2770 break;
2771 }
2772 fallthrough;
2773 case possible:
2774 /*
2775 * XXX When called from select_task_rq() we only
2776 * hold p->pi_lock and again violate locking order.
2777 *
2778 * More yuck to audit.
2779 */
2780 do_set_cpus_allowed(p, cpu_possible_mask);
2781 state = fail;
2782 break;
2783
2784 case fail:
2785 BUG();
2786 break;
2787 }
2788 }
2789
2790 out:
2791 if (state != cpuset) {
2792 /*
2793 * Don't tell them about moving exiting tasks or
2794 * kernel threads (both mm NULL), since they never
2795 * leave kernel.
2796 */
2797 if (p->mm && printk_ratelimit()) {
2798 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2799 task_pid_nr(p), p->comm, cpu);
2800 }
2801 }
2802
2803 return dest_cpu;
2804 }
2805
2806 /*
2807 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2808 */
2809 static inline
2810 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
2811 {
2812 lockdep_assert_held(&p->pi_lock);
2813
2814 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
2815 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
2816 else
2817 cpu = cpumask_any(p->cpus_ptr);
2818
2819 /*
2820 * In order not to call set_task_cpu() on a blocking task we need
2821 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2822 * CPU.
2823 *
2824 * Since this is common to all placement strategies, this lives here.
2825 *
2826 * [ this allows ->select_task() to simply return task_cpu(p) and
2827 * not worry about this generic constraint ]
2828 */
2829 if (unlikely(!is_cpu_allowed(p, cpu)))
2830 cpu = select_fallback_rq(task_cpu(p), p);
2831
2832 return cpu;
2833 }
2834
2835 void sched_set_stop_task(int cpu, struct task_struct *stop)
2836 {
2837 static struct lock_class_key stop_pi_lock;
2838 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2839 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2840
2841 if (stop) {
2842 /*
2843 * Make it appear like a SCHED_FIFO task, its something
2844 * userspace knows about and won't get confused about.
2845 *
2846 * Also, it will make PI more or less work without too
2847 * much confusion -- but then, stop work should not
2848 * rely on PI working anyway.
2849 */
2850 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2851
2852 stop->sched_class = &stop_sched_class;
2853
2854 /*
2855 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
2856 * adjust the effective priority of a task. As a result,
2857 * rt_mutex_setprio() can trigger (RT) balancing operations,
2858 * which can then trigger wakeups of the stop thread to push
2859 * around the current task.
2860 *
2861 * The stop task itself will never be part of the PI-chain, it
2862 * never blocks, therefore that ->pi_lock recursion is safe.
2863 * Tell lockdep about this by placing the stop->pi_lock in its
2864 * own class.
2865 */
2866 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
2867 }
2868
2869 cpu_rq(cpu)->stop = stop;
2870
2871 if (old_stop) {
2872 /*
2873 * Reset it back to a normal scheduling class so that
2874 * it can die in pieces.
2875 */
2876 old_stop->sched_class = &rt_sched_class;
2877 }
2878 }
2879
2880 #else /* CONFIG_SMP */
2881
2882 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2883 const struct cpumask *new_mask,
2884 u32 flags)
2885 {
2886 return set_cpus_allowed_ptr(p, new_mask);
2887 }
2888
2889 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
2890
2891 static inline bool rq_has_pinned_tasks(struct rq *rq)
2892 {
2893 return false;
2894 }
2895
2896 #endif /* !CONFIG_SMP */
2897
2898 static void
2899 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2900 {
2901 struct rq *rq;
2902
2903 if (!schedstat_enabled())
2904 return;
2905
2906 rq = this_rq();
2907
2908 #ifdef CONFIG_SMP
2909 if (cpu == rq->cpu) {
2910 __schedstat_inc(rq->ttwu_local);
2911 __schedstat_inc(p->se.statistics.nr_wakeups_local);
2912 } else {
2913 struct sched_domain *sd;
2914
2915 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2916 rcu_read_lock();
2917 for_each_domain(rq->cpu, sd) {
2918 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2919 __schedstat_inc(sd->ttwu_wake_remote);
2920 break;
2921 }
2922 }
2923 rcu_read_unlock();
2924 }
2925
2926 if (wake_flags & WF_MIGRATED)
2927 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2928 #endif /* CONFIG_SMP */
2929
2930 __schedstat_inc(rq->ttwu_count);
2931 __schedstat_inc(p->se.statistics.nr_wakeups);
2932
2933 if (wake_flags & WF_SYNC)
2934 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2935 }
2936
2937 /*
2938 * Mark the task runnable and perform wakeup-preemption.
2939 */
2940 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2941 struct rq_flags *rf)
2942 {
2943 check_preempt_curr(rq, p, wake_flags);
2944 p->state = TASK_RUNNING;
2945 trace_sched_wakeup(p);
2946
2947 #ifdef CONFIG_SMP
2948 if (p->sched_class->task_woken) {
2949 /*
2950 * Our task @p is fully woken up and running; so it's safe to
2951 * drop the rq->lock, hereafter rq is only used for statistics.
2952 */
2953 rq_unpin_lock(rq, rf);
2954 p->sched_class->task_woken(rq, p);
2955 rq_repin_lock(rq, rf);
2956 }
2957
2958 if (rq->idle_stamp) {
2959 u64 delta = rq_clock(rq) - rq->idle_stamp;
2960 u64 max = 2*rq->max_idle_balance_cost;
2961
2962 update_avg(&rq->avg_idle, delta);
2963
2964 if (rq->avg_idle > max)
2965 rq->avg_idle = max;
2966
2967 rq->idle_stamp = 0;
2968 }
2969 #endif
2970 }
2971
2972 static void
2973 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2974 struct rq_flags *rf)
2975 {
2976 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2977
2978 lockdep_assert_held(&rq->lock);
2979
2980 if (p->sched_contributes_to_load)
2981 rq->nr_uninterruptible--;
2982
2983 #ifdef CONFIG_SMP
2984 if (wake_flags & WF_MIGRATED)
2985 en_flags |= ENQUEUE_MIGRATED;
2986 else
2987 #endif
2988 if (p->in_iowait) {
2989 delayacct_blkio_end(p);
2990 atomic_dec(&task_rq(p)->nr_iowait);
2991 }
2992
2993 activate_task(rq, p, en_flags);
2994 ttwu_do_wakeup(rq, p, wake_flags, rf);
2995 }
2996
2997 /*
2998 * Consider @p being inside a wait loop:
2999 *
3000 * for (;;) {
3001 * set_current_state(TASK_UNINTERRUPTIBLE);
3002 *
3003 * if (CONDITION)
3004 * break;
3005 *
3006 * schedule();
3007 * }
3008 * __set_current_state(TASK_RUNNING);
3009 *
3010 * between set_current_state() and schedule(). In this case @p is still
3011 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3012 * an atomic manner.
3013 *
3014 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3015 * then schedule() must still happen and p->state can be changed to
3016 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3017 * need to do a full wakeup with enqueue.
3018 *
3019 * Returns: %true when the wakeup is done,
3020 * %false otherwise.
3021 */
3022 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3023 {
3024 struct rq_flags rf;
3025 struct rq *rq;
3026 int ret = 0;
3027
3028 rq = __task_rq_lock(p, &rf);
3029 if (task_on_rq_queued(p)) {
3030 /* check_preempt_curr() may use rq clock */
3031 update_rq_clock(rq);
3032 ttwu_do_wakeup(rq, p, wake_flags, &rf);
3033 ret = 1;
3034 }
3035 __task_rq_unlock(rq, &rf);
3036
3037 return ret;
3038 }
3039
3040 #ifdef CONFIG_SMP
3041 void sched_ttwu_pending(void *arg)
3042 {
3043 struct llist_node *llist = arg;
3044 struct rq *rq = this_rq();
3045 struct task_struct *p, *t;
3046 struct rq_flags rf;
3047
3048 if (!llist)
3049 return;
3050
3051 /*
3052 * rq::ttwu_pending racy indication of out-standing wakeups.
3053 * Races such that false-negatives are possible, since they
3054 * are shorter lived that false-positives would be.
3055 */
3056 WRITE_ONCE(rq->ttwu_pending, 0);
3057
3058 rq_lock_irqsave(rq, &rf);
3059 update_rq_clock(rq);
3060
3061 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3062 if (WARN_ON_ONCE(p->on_cpu))
3063 smp_cond_load_acquire(&p->on_cpu, !VAL);
3064
3065 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3066 set_task_cpu(p, cpu_of(rq));
3067
3068 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3069 }
3070
3071 rq_unlock_irqrestore(rq, &rf);
3072 }
3073
3074 void send_call_function_single_ipi(int cpu)
3075 {
3076 struct rq *rq = cpu_rq(cpu);
3077
3078 if (!set_nr_if_polling(rq->idle))
3079 arch_send_call_function_single_ipi(cpu);
3080 else
3081 trace_sched_wake_idle_without_ipi(cpu);
3082 }
3083
3084 /*
3085 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3086 * necessary. The wakee CPU on receipt of the IPI will queue the task
3087 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3088 * of the wakeup instead of the waker.
3089 */
3090 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3091 {
3092 struct rq *rq = cpu_rq(cpu);
3093
3094 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3095
3096 WRITE_ONCE(rq->ttwu_pending, 1);
3097 __smp_call_single_queue(cpu, &p->wake_entry.llist);
3098 }
3099
3100 void wake_up_if_idle(int cpu)
3101 {
3102 struct rq *rq = cpu_rq(cpu);
3103 struct rq_flags rf;
3104
3105 rcu_read_lock();
3106
3107 if (!is_idle_task(rcu_dereference(rq->curr)))
3108 goto out;
3109
3110 if (set_nr_if_polling(rq->idle)) {
3111 trace_sched_wake_idle_without_ipi(cpu);
3112 } else {
3113 rq_lock_irqsave(rq, &rf);
3114 if (is_idle_task(rq->curr))
3115 smp_send_reschedule(cpu);
3116 /* Else CPU is not idle, do nothing here: */
3117 rq_unlock_irqrestore(rq, &rf);
3118 }
3119
3120 out:
3121 rcu_read_unlock();
3122 }
3123
3124 bool cpus_share_cache(int this_cpu, int that_cpu)
3125 {
3126 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3127 }
3128
3129 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3130 {
3131 /*
3132 * Do not complicate things with the async wake_list while the CPU is
3133 * in hotplug state.
3134 */
3135 if (!cpu_active(cpu))
3136 return false;
3137
3138 /*
3139 * If the CPU does not share cache, then queue the task on the
3140 * remote rqs wakelist to avoid accessing remote data.
3141 */
3142 if (!cpus_share_cache(smp_processor_id(), cpu))
3143 return true;
3144
3145 /*
3146 * If the task is descheduling and the only running task on the
3147 * CPU then use the wakelist to offload the task activation to
3148 * the soon-to-be-idle CPU as the current CPU is likely busy.
3149 * nr_running is checked to avoid unnecessary task stacking.
3150 */
3151 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
3152 return true;
3153
3154 return false;
3155 }
3156
3157 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3158 {
3159 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
3160 if (WARN_ON_ONCE(cpu == smp_processor_id()))
3161 return false;
3162
3163 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3164 __ttwu_queue_wakelist(p, cpu, wake_flags);
3165 return true;
3166 }
3167
3168 return false;
3169 }
3170
3171 #else /* !CONFIG_SMP */
3172
3173 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3174 {
3175 return false;
3176 }
3177
3178 #endif /* CONFIG_SMP */
3179
3180 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3181 {
3182 struct rq *rq = cpu_rq(cpu);
3183 struct rq_flags rf;
3184
3185 if (ttwu_queue_wakelist(p, cpu, wake_flags))
3186 return;
3187
3188 rq_lock(rq, &rf);
3189 update_rq_clock(rq);
3190 ttwu_do_activate(rq, p, wake_flags, &rf);
3191 rq_unlock(rq, &rf);
3192 }
3193
3194 /*
3195 * Notes on Program-Order guarantees on SMP systems.
3196 *
3197 * MIGRATION
3198 *
3199 * The basic program-order guarantee on SMP systems is that when a task [t]
3200 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3201 * execution on its new CPU [c1].
3202 *
3203 * For migration (of runnable tasks) this is provided by the following means:
3204 *
3205 * A) UNLOCK of the rq(c0)->lock scheduling out task t
3206 * B) migration for t is required to synchronize *both* rq(c0)->lock and
3207 * rq(c1)->lock (if not at the same time, then in that order).
3208 * C) LOCK of the rq(c1)->lock scheduling in task
3209 *
3210 * Release/acquire chaining guarantees that B happens after A and C after B.
3211 * Note: the CPU doing B need not be c0 or c1
3212 *
3213 * Example:
3214 *
3215 * CPU0 CPU1 CPU2
3216 *
3217 * LOCK rq(0)->lock
3218 * sched-out X
3219 * sched-in Y
3220 * UNLOCK rq(0)->lock
3221 *
3222 * LOCK rq(0)->lock // orders against CPU0
3223 * dequeue X
3224 * UNLOCK rq(0)->lock
3225 *
3226 * LOCK rq(1)->lock
3227 * enqueue X
3228 * UNLOCK rq(1)->lock
3229 *
3230 * LOCK rq(1)->lock // orders against CPU2
3231 * sched-out Z
3232 * sched-in X
3233 * UNLOCK rq(1)->lock
3234 *
3235 *
3236 * BLOCKING -- aka. SLEEP + WAKEUP
3237 *
3238 * For blocking we (obviously) need to provide the same guarantee as for
3239 * migration. However the means are completely different as there is no lock
3240 * chain to provide order. Instead we do:
3241 *
3242 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
3243 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3244 *
3245 * Example:
3246 *
3247 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
3248 *
3249 * LOCK rq(0)->lock LOCK X->pi_lock
3250 * dequeue X
3251 * sched-out X
3252 * smp_store_release(X->on_cpu, 0);
3253 *
3254 * smp_cond_load_acquire(&X->on_cpu, !VAL);
3255 * X->state = WAKING
3256 * set_task_cpu(X,2)
3257 *
3258 * LOCK rq(2)->lock
3259 * enqueue X
3260 * X->state = RUNNING
3261 * UNLOCK rq(2)->lock
3262 *
3263 * LOCK rq(2)->lock // orders against CPU1
3264 * sched-out Z
3265 * sched-in X
3266 * UNLOCK rq(2)->lock
3267 *
3268 * UNLOCK X->pi_lock
3269 * UNLOCK rq(0)->lock
3270 *
3271 *
3272 * However, for wakeups there is a second guarantee we must provide, namely we
3273 * must ensure that CONDITION=1 done by the caller can not be reordered with
3274 * accesses to the task state; see try_to_wake_up() and set_current_state().
3275 */
3276
3277 /**
3278 * try_to_wake_up - wake up a thread
3279 * @p: the thread to be awakened
3280 * @state: the mask of task states that can be woken
3281 * @wake_flags: wake modifier flags (WF_*)
3282 *
3283 * Conceptually does:
3284 *
3285 * If (@state & @p->state) @p->state = TASK_RUNNING.
3286 *
3287 * If the task was not queued/runnable, also place it back on a runqueue.
3288 *
3289 * This function is atomic against schedule() which would dequeue the task.
3290 *
3291 * It issues a full memory barrier before accessing @p->state, see the comment
3292 * with set_current_state().
3293 *
3294 * Uses p->pi_lock to serialize against concurrent wake-ups.
3295 *
3296 * Relies on p->pi_lock stabilizing:
3297 * - p->sched_class
3298 * - p->cpus_ptr
3299 * - p->sched_task_group
3300 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3301 *
3302 * Tries really hard to only take one task_rq(p)->lock for performance.
3303 * Takes rq->lock in:
3304 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
3305 * - ttwu_queue() -- new rq, for enqueue of the task;
3306 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3307 *
3308 * As a consequence we race really badly with just about everything. See the
3309 * many memory barriers and their comments for details.
3310 *
3311 * Return: %true if @p->state changes (an actual wakeup was done),
3312 * %false otherwise.
3313 */
3314 static int
3315 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
3316 {
3317 unsigned long flags;
3318 int cpu, success = 0;
3319
3320 preempt_disable();
3321 if (p == current) {
3322 /*
3323 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3324 * == smp_processor_id()'. Together this means we can special
3325 * case the whole 'p->on_rq && ttwu_runnable()' case below
3326 * without taking any locks.
3327 *
3328 * In particular:
3329 * - we rely on Program-Order guarantees for all the ordering,
3330 * - we're serialized against set_special_state() by virtue of
3331 * it disabling IRQs (this allows not taking ->pi_lock).
3332 */
3333 if (!(p->state & state))
3334 goto out;
3335
3336 success = 1;
3337 trace_sched_waking(p);
3338 p->state = TASK_RUNNING;
3339 trace_sched_wakeup(p);
3340 goto out;
3341 }
3342
3343 /*
3344 * If we are going to wake up a thread waiting for CONDITION we
3345 * need to ensure that CONDITION=1 done by the caller can not be
3346 * reordered with p->state check below. This pairs with smp_store_mb()
3347 * in set_current_state() that the waiting thread does.
3348 */
3349 raw_spin_lock_irqsave(&p->pi_lock, flags);
3350 smp_mb__after_spinlock();
3351 if (!(p->state & state))
3352 goto unlock;
3353
3354 trace_sched_waking(p);
3355
3356 /* We're going to change ->state: */
3357 success = 1;
3358
3359 /*
3360 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3361 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3362 * in smp_cond_load_acquire() below.
3363 *
3364 * sched_ttwu_pending() try_to_wake_up()
3365 * STORE p->on_rq = 1 LOAD p->state
3366 * UNLOCK rq->lock
3367 *
3368 * __schedule() (switch to task 'p')
3369 * LOCK rq->lock smp_rmb();
3370 * smp_mb__after_spinlock();
3371 * UNLOCK rq->lock
3372 *
3373 * [task p]
3374 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
3375 *
3376 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3377 * __schedule(). See the comment for smp_mb__after_spinlock().
3378 *
3379 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
3380 */
3381 smp_rmb();
3382 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
3383 goto unlock;
3384
3385 #ifdef CONFIG_SMP
3386 /*
3387 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3388 * possible to, falsely, observe p->on_cpu == 0.
3389 *
3390 * One must be running (->on_cpu == 1) in order to remove oneself
3391 * from the runqueue.
3392 *
3393 * __schedule() (switch to task 'p') try_to_wake_up()
3394 * STORE p->on_cpu = 1 LOAD p->on_rq
3395 * UNLOCK rq->lock
3396 *
3397 * __schedule() (put 'p' to sleep)
3398 * LOCK rq->lock smp_rmb();
3399 * smp_mb__after_spinlock();
3400 * STORE p->on_rq = 0 LOAD p->on_cpu
3401 *
3402 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3403 * __schedule(). See the comment for smp_mb__after_spinlock().
3404 *
3405 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3406 * schedule()'s deactivate_task() has 'happened' and p will no longer
3407 * care about it's own p->state. See the comment in __schedule().
3408 */
3409 smp_acquire__after_ctrl_dep();
3410
3411 /*
3412 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3413 * == 0), which means we need to do an enqueue, change p->state to
3414 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3415 * enqueue, such as ttwu_queue_wakelist().
3416 */
3417 p->state = TASK_WAKING;
3418
3419 /*
3420 * If the owning (remote) CPU is still in the middle of schedule() with
3421 * this task as prev, considering queueing p on the remote CPUs wake_list
3422 * which potentially sends an IPI instead of spinning on p->on_cpu to
3423 * let the waker make forward progress. This is safe because IRQs are
3424 * disabled and the IPI will deliver after on_cpu is cleared.
3425 *
3426 * Ensure we load task_cpu(p) after p->on_cpu:
3427 *
3428 * set_task_cpu(p, cpu);
3429 * STORE p->cpu = @cpu
3430 * __schedule() (switch to task 'p')
3431 * LOCK rq->lock
3432 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
3433 * STORE p->on_cpu = 1 LOAD p->cpu
3434 *
3435 * to ensure we observe the correct CPU on which the task is currently
3436 * scheduling.
3437 */
3438 if (smp_load_acquire(&p->on_cpu) &&
3439 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
3440 goto unlock;
3441
3442 /*
3443 * If the owning (remote) CPU is still in the middle of schedule() with
3444 * this task as prev, wait until it's done referencing the task.
3445 *
3446 * Pairs with the smp_store_release() in finish_task().
3447 *
3448 * This ensures that tasks getting woken will be fully ordered against
3449 * their previous state and preserve Program Order.
3450 */
3451 smp_cond_load_acquire(&p->on_cpu, !VAL);
3452
3453 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
3454 if (task_cpu(p) != cpu) {
3455 if (p->in_iowait) {
3456 delayacct_blkio_end(p);
3457 atomic_dec(&task_rq(p)->nr_iowait);
3458 }
3459
3460 wake_flags |= WF_MIGRATED;
3461 psi_ttwu_dequeue(p);
3462 set_task_cpu(p, cpu);
3463 }
3464 #else
3465 cpu = task_cpu(p);
3466 #endif /* CONFIG_SMP */
3467
3468 ttwu_queue(p, cpu, wake_flags);
3469 unlock:
3470 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3471 out:
3472 if (success)
3473 ttwu_stat(p, task_cpu(p), wake_flags);
3474 preempt_enable();
3475
3476 return success;
3477 }
3478
3479 /**
3480 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
3481 * @p: Process for which the function is to be invoked, can be @current.
3482 * @func: Function to invoke.
3483 * @arg: Argument to function.
3484 *
3485 * If the specified task can be quickly locked into a definite state
3486 * (either sleeping or on a given runqueue), arrange to keep it in that
3487 * state while invoking @func(@arg). This function can use ->on_rq and
3488 * task_curr() to work out what the state is, if required. Given that
3489 * @func can be invoked with a runqueue lock held, it had better be quite
3490 * lightweight.
3491 *
3492 * Returns:
3493 * @false if the task slipped out from under the locks.
3494 * @true if the task was locked onto a runqueue or is sleeping.
3495 * However, @func can override this by returning @false.
3496 */
3497 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3498 {
3499 struct rq_flags rf;
3500 bool ret = false;
3501 struct rq *rq;
3502
3503 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3504 if (p->on_rq) {
3505 rq = __task_rq_lock(p, &rf);
3506 if (task_rq(p) == rq)
3507 ret = func(p, arg);
3508 rq_unlock(rq, &rf);
3509 } else {
3510 switch (p->state) {
3511 case TASK_RUNNING:
3512 case TASK_WAKING:
3513 break;
3514 default:
3515 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3516 if (!p->on_rq)
3517 ret = func(p, arg);
3518 }
3519 }
3520 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
3521 return ret;
3522 }
3523
3524 /**
3525 * wake_up_process - Wake up a specific process
3526 * @p: The process to be woken up.
3527 *
3528 * Attempt to wake up the nominated process and move it to the set of runnable
3529 * processes.
3530 *
3531 * Return: 1 if the process was woken up, 0 if it was already running.
3532 *
3533 * This function executes a full memory barrier before accessing the task state.
3534 */
3535 int wake_up_process(struct task_struct *p)
3536 {
3537 return try_to_wake_up(p, TASK_NORMAL, 0);
3538 }
3539 EXPORT_SYMBOL(wake_up_process);
3540
3541 int wake_up_state(struct task_struct *p, unsigned int state)
3542 {
3543 return try_to_wake_up(p, state, 0);
3544 }
3545
3546 /*
3547 * Perform scheduler related setup for a newly forked process p.
3548 * p is forked by current.
3549 *
3550 * __sched_fork() is basic setup used by init_idle() too:
3551 */
3552 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3553 {
3554 p->on_rq = 0;
3555
3556 p->se.on_rq = 0;
3557 p->se.exec_start = 0;
3558 p->se.sum_exec_runtime = 0;
3559 p->se.prev_sum_exec_runtime = 0;
3560 p->se.nr_migrations = 0;
3561 p->se.vruntime = 0;
3562 INIT_LIST_HEAD(&p->se.group_node);
3563
3564 #ifdef CONFIG_FAIR_GROUP_SCHED
3565 p->se.cfs_rq = NULL;
3566 #endif
3567
3568 #ifdef CONFIG_SCHEDSTATS
3569 /* Even if schedstat is disabled, there should not be garbage */
3570 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3571 #endif
3572
3573 RB_CLEAR_NODE(&p->dl.rb_node);
3574 init_dl_task_timer(&p->dl);
3575 init_dl_inactive_task_timer(&p->dl);
3576 __dl_clear_params(p);
3577
3578 INIT_LIST_HEAD(&p->rt.run_list);
3579 p->rt.timeout = 0;
3580 p->rt.time_slice = sched_rr_timeslice;
3581 p->rt.on_rq = 0;
3582 p->rt.on_list = 0;
3583
3584 #ifdef CONFIG_PREEMPT_NOTIFIERS
3585 INIT_HLIST_HEAD(&p->preempt_notifiers);
3586 #endif
3587
3588 #ifdef CONFIG_COMPACTION
3589 p->capture_control = NULL;
3590 #endif
3591 init_numa_balancing(clone_flags, p);
3592 #ifdef CONFIG_SMP
3593 p->wake_entry.u_flags = CSD_TYPE_TTWU;
3594 p->migration_pending = NULL;
3595 #endif
3596 }
3597
3598 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3599
3600 #ifdef CONFIG_NUMA_BALANCING
3601
3602 void set_numabalancing_state(bool enabled)
3603 {
3604 if (enabled)
3605 static_branch_enable(&sched_numa_balancing);
3606 else
3607 static_branch_disable(&sched_numa_balancing);
3608 }
3609
3610 #ifdef CONFIG_PROC_SYSCTL
3611 int sysctl_numa_balancing(struct ctl_table *table, int write,
3612 void *buffer, size_t *lenp, loff_t *ppos)
3613 {
3614 struct ctl_table t;
3615 int err;
3616 int state = static_branch_likely(&sched_numa_balancing);
3617
3618 if (write && !capable(CAP_SYS_ADMIN))
3619 return -EPERM;
3620
3621 t = *table;
3622 t.data = &state;
3623 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3624 if (err < 0)
3625 return err;
3626 if (write)
3627 set_numabalancing_state(state);
3628 return err;
3629 }
3630 #endif
3631 #endif
3632
3633 #ifdef CONFIG_SCHEDSTATS
3634
3635 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
3636 static bool __initdata __sched_schedstats = false;
3637
3638 static void set_schedstats(bool enabled)
3639 {
3640 if (enabled)
3641 static_branch_enable(&sched_schedstats);
3642 else
3643 static_branch_disable(&sched_schedstats);
3644 }
3645
3646 void force_schedstat_enabled(void)
3647 {
3648 if (!schedstat_enabled()) {
3649 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3650 static_branch_enable(&sched_schedstats);
3651 }
3652 }
3653
3654 static int __init setup_schedstats(char *str)
3655 {
3656 int ret = 0;
3657 if (!str)
3658 goto out;
3659
3660 /*
3661 * This code is called before jump labels have been set up, so we can't
3662 * change the static branch directly just yet. Instead set a temporary
3663 * variable so init_schedstats() can do it later.
3664 */
3665 if (!strcmp(str, "enable")) {
3666 __sched_schedstats = true;
3667 ret = 1;
3668 } else if (!strcmp(str, "disable")) {
3669 __sched_schedstats = false;
3670 ret = 1;
3671 }
3672 out:
3673 if (!ret)
3674 pr_warn("Unable to parse schedstats=\n");
3675
3676 return ret;
3677 }
3678 __setup("schedstats=", setup_schedstats);
3679
3680 static void __init init_schedstats(void)
3681 {
3682 set_schedstats(__sched_schedstats);
3683 }
3684
3685 #ifdef CONFIG_PROC_SYSCTL
3686 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3687 size_t *lenp, loff_t *ppos)
3688 {
3689 struct ctl_table t;
3690 int err;
3691 int state = static_branch_likely(&sched_schedstats);
3692
3693 if (write && !capable(CAP_SYS_ADMIN))
3694 return -EPERM;
3695
3696 t = *table;
3697 t.data = &state;
3698 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3699 if (err < 0)
3700 return err;
3701 if (write)
3702 set_schedstats(state);
3703 return err;
3704 }
3705 #endif /* CONFIG_PROC_SYSCTL */
3706 #else /* !CONFIG_SCHEDSTATS */
3707 static inline void init_schedstats(void) {}
3708 #endif /* CONFIG_SCHEDSTATS */
3709
3710 /*
3711 * fork()/clone()-time setup:
3712 */
3713 int sched_fork(unsigned long clone_flags, struct task_struct *p)
3714 {
3715 unsigned long flags;
3716
3717 __sched_fork(clone_flags, p);
3718 /*
3719 * We mark the process as NEW here. This guarantees that
3720 * nobody will actually run it, and a signal or other external
3721 * event cannot wake it up and insert it on the runqueue either.
3722 */
3723 p->state = TASK_NEW;
3724
3725 /*
3726 * Make sure we do not leak PI boosting priority to the child.
3727 */
3728 p->prio = current->normal_prio;
3729
3730 uclamp_fork(p);
3731
3732 /*
3733 * Revert to default priority/policy on fork if requested.
3734 */
3735 if (unlikely(p->sched_reset_on_fork)) {
3736 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3737 p->policy = SCHED_NORMAL;
3738 p->static_prio = NICE_TO_PRIO(0);
3739 p->rt_priority = 0;
3740 } else if (PRIO_TO_NICE(p->static_prio) < 0)
3741 p->static_prio = NICE_TO_PRIO(0);
3742
3743 p->prio = p->normal_prio = __normal_prio(p);
3744 set_load_weight(p, false);
3745
3746 /*
3747 * We don't need the reset flag anymore after the fork. It has
3748 * fulfilled its duty:
3749 */
3750 p->sched_reset_on_fork = 0;
3751 }
3752
3753 if (dl_prio(p->prio))
3754 return -EAGAIN;
3755 else if (rt_prio(p->prio))
3756 p->sched_class = &rt_sched_class;
3757 else
3758 p->sched_class = &fair_sched_class;
3759
3760 init_entity_runnable_average(&p->se);
3761
3762 /*
3763 * The child is not yet in the pid-hash so no cgroup attach races,
3764 * and the cgroup is pinned to this child due to cgroup_fork()
3765 * is ran before sched_fork().
3766 *
3767 * Silence PROVE_RCU.
3768 */
3769 raw_spin_lock_irqsave(&p->pi_lock, flags);
3770 rseq_migrate(p);
3771 /*
3772 * We're setting the CPU for the first time, we don't migrate,
3773 * so use __set_task_cpu().
3774 */
3775 __set_task_cpu(p, smp_processor_id());
3776 if (p->sched_class->task_fork)
3777 p->sched_class->task_fork(p);
3778 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3779
3780 #ifdef CONFIG_SCHED_INFO
3781 if (likely(sched_info_on()))
3782 memset(&p->sched_info, 0, sizeof(p->sched_info));
3783 #endif
3784 #if defined(CONFIG_SMP)
3785 p->on_cpu = 0;
3786 #endif
3787 init_task_preempt_count(p);
3788 #ifdef CONFIG_SMP
3789 plist_node_init(&p->pushable_tasks, MAX_PRIO);
3790 RB_CLEAR_NODE(&p->pushable_dl_tasks);
3791 #endif
3792 return 0;
3793 }
3794
3795 void sched_post_fork(struct task_struct *p)
3796 {
3797 uclamp_post_fork(p);
3798 }
3799
3800 unsigned long to_ratio(u64 period, u64 runtime)
3801 {
3802 if (runtime == RUNTIME_INF)
3803 return BW_UNIT;
3804
3805 /*
3806 * Doing this here saves a lot of checks in all
3807 * the calling paths, and returning zero seems
3808 * safe for them anyway.
3809 */
3810 if (period == 0)
3811 return 0;
3812
3813 return div64_u64(runtime << BW_SHIFT, period);
3814 }
3815
3816 /*
3817 * wake_up_new_task - wake up a newly created task for the first time.
3818 *
3819 * This function will do some initial scheduler statistics housekeeping
3820 * that must be done for every newly created context, then puts the task
3821 * on the runqueue and wakes it.
3822 */
3823 void wake_up_new_task(struct task_struct *p)
3824 {
3825 struct rq_flags rf;
3826 struct rq *rq;
3827
3828 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3829 p->state = TASK_RUNNING;
3830 #ifdef CONFIG_SMP
3831 /*
3832 * Fork balancing, do it here and not earlier because:
3833 * - cpus_ptr can change in the fork path
3834 * - any previously selected CPU might disappear through hotplug
3835 *
3836 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3837 * as we're not fully set-up yet.
3838 */
3839 p->recent_used_cpu = task_cpu(p);
3840 rseq_migrate(p);
3841 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
3842 #endif
3843 rq = __task_rq_lock(p, &rf);
3844 update_rq_clock(rq);
3845 post_init_entity_util_avg(p);
3846
3847 activate_task(rq, p, ENQUEUE_NOCLOCK);
3848 trace_sched_wakeup_new(p);
3849 check_preempt_curr(rq, p, WF_FORK);
3850 #ifdef CONFIG_SMP
3851 if (p->sched_class->task_woken) {
3852 /*
3853 * Nothing relies on rq->lock after this, so it's fine to
3854 * drop it.
3855 */
3856 rq_unpin_lock(rq, &rf);
3857 p->sched_class->task_woken(rq, p);
3858 rq_repin_lock(rq, &rf);
3859 }
3860 #endif
3861 task_rq_unlock(rq, p, &rf);
3862 }
3863
3864 #ifdef CONFIG_PREEMPT_NOTIFIERS
3865
3866 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3867
3868 void preempt_notifier_inc(void)
3869 {
3870 static_branch_inc(&preempt_notifier_key);
3871 }
3872 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3873
3874 void preempt_notifier_dec(void)
3875 {
3876 static_branch_dec(&preempt_notifier_key);
3877 }
3878 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3879
3880 /**
3881 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3882 * @notifier: notifier struct to register
3883 */
3884 void preempt_notifier_register(struct preempt_notifier *notifier)
3885 {
3886 if (!static_branch_unlikely(&preempt_notifier_key))
3887 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3888
3889 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3890 }
3891 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3892
3893 /**
3894 * preempt_notifier_unregister - no longer interested in preemption notifications
3895 * @notifier: notifier struct to unregister
3896 *
3897 * This is *not* safe to call from within a preemption notifier.
3898 */
3899 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3900 {
3901 hlist_del(&notifier->link);
3902 }
3903 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3904
3905 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3906 {
3907 struct preempt_notifier *notifier;
3908
3909 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3910 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3911 }
3912
3913 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3914 {
3915 if (static_branch_unlikely(&preempt_notifier_key))
3916 __fire_sched_in_preempt_notifiers(curr);
3917 }
3918
3919 static void
3920 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3921 struct task_struct *next)
3922 {
3923 struct preempt_notifier *notifier;
3924
3925 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3926 notifier->ops->sched_out(notifier, next);
3927 }
3928
3929 static __always_inline void
3930 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3931 struct task_struct *next)
3932 {
3933 if (static_branch_unlikely(&preempt_notifier_key))
3934 __fire_sched_out_preempt_notifiers(curr, next);
3935 }
3936
3937 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3938
3939 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3940 {
3941 }
3942
3943 static inline void
3944 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3945 struct task_struct *next)
3946 {
3947 }
3948
3949 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3950
3951 static inline void prepare_task(struct task_struct *next)
3952 {
3953 #ifdef CONFIG_SMP
3954 /*
3955 * Claim the task as running, we do this before switching to it
3956 * such that any running task will have this set.
3957 *
3958 * See the ttwu() WF_ON_CPU case and its ordering comment.
3959 */
3960 WRITE_ONCE(next->on_cpu, 1);
3961 #endif
3962 }
3963
3964 static inline void finish_task(struct task_struct *prev)
3965 {
3966 #ifdef CONFIG_SMP
3967 /*
3968 * This must be the very last reference to @prev from this CPU. After
3969 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3970 * must ensure this doesn't happen until the switch is completely
3971 * finished.
3972 *
3973 * In particular, the load of prev->state in finish_task_switch() must
3974 * happen before this.
3975 *
3976 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3977 */
3978 smp_store_release(&prev->on_cpu, 0);
3979 #endif
3980 }
3981
3982 #ifdef CONFIG_SMP
3983
3984 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
3985 {
3986 void (*func)(struct rq *rq);
3987 struct callback_head *next;
3988
3989 lockdep_assert_held(&rq->lock);
3990
3991 while (head) {
3992 func = (void (*)(struct rq *))head->func;
3993 next = head->next;
3994 head->next = NULL;
3995 head = next;
3996
3997 func(rq);
3998 }
3999 }
4000
4001 static void balance_push(struct rq *rq);
4002
4003 struct callback_head balance_push_callback = {
4004 .next = NULL,
4005 .func = (void (*)(struct callback_head *))balance_push,
4006 };
4007
4008 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4009 {
4010 struct callback_head *head = rq->balance_callback;
4011
4012 lockdep_assert_held(&rq->lock);
4013 if (head)
4014 rq->balance_callback = NULL;
4015
4016 return head;
4017 }
4018
4019 static void __balance_callbacks(struct rq *rq)
4020 {
4021 do_balance_callbacks(rq, splice_balance_callbacks(rq));
4022 }
4023
4024 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4025 {
4026 unsigned long flags;
4027
4028 if (unlikely(head)) {
4029 raw_spin_lock_irqsave(&rq->lock, flags);
4030 do_balance_callbacks(rq, head);
4031 raw_spin_unlock_irqrestore(&rq->lock, flags);
4032 }
4033 }
4034
4035 #else
4036
4037 static inline void __balance_callbacks(struct rq *rq)
4038 {
4039 }
4040
4041 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4042 {
4043 return NULL;
4044 }
4045
4046 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4047 {
4048 }
4049
4050 #endif
4051
4052 static inline void
4053 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4054 {
4055 /*
4056 * Since the runqueue lock will be released by the next
4057 * task (which is an invalid locking op but in the case
4058 * of the scheduler it's an obvious special-case), so we
4059 * do an early lockdep release here:
4060 */
4061 rq_unpin_lock(rq, rf);
4062 spin_release(&rq->lock.dep_map, _THIS_IP_);
4063 #ifdef CONFIG_DEBUG_SPINLOCK
4064 /* this is a valid case when another task releases the spinlock */
4065 rq->lock.owner = next;
4066 #endif
4067 }
4068
4069 static inline void finish_lock_switch(struct rq *rq)
4070 {
4071 /*
4072 * If we are tracking spinlock dependencies then we have to
4073 * fix up the runqueue lock - which gets 'carried over' from
4074 * prev into current:
4075 */
4076 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
4077 __balance_callbacks(rq);
4078 raw_spin_unlock_irq(&rq->lock);
4079 }
4080
4081 /*
4082 * NOP if the arch has not defined these:
4083 */
4084
4085 #ifndef prepare_arch_switch
4086 # define prepare_arch_switch(next) do { } while (0)
4087 #endif
4088
4089 #ifndef finish_arch_post_lock_switch
4090 # define finish_arch_post_lock_switch() do { } while (0)
4091 #endif
4092
4093 static inline void kmap_local_sched_out(void)
4094 {
4095 #ifdef CONFIG_KMAP_LOCAL
4096 if (unlikely(current->kmap_ctrl.idx))
4097 __kmap_local_sched_out();
4098 #endif
4099 }
4100
4101 static inline void kmap_local_sched_in(void)
4102 {
4103 #ifdef CONFIG_KMAP_LOCAL
4104 if (unlikely(current->kmap_ctrl.idx))
4105 __kmap_local_sched_in();
4106 #endif
4107 }
4108
4109 /**
4110 * prepare_task_switch - prepare to switch tasks
4111 * @rq: the runqueue preparing to switch
4112 * @prev: the current task that is being switched out
4113 * @next: the task we are going to switch to.
4114 *
4115 * This is called with the rq lock held and interrupts off. It must
4116 * be paired with a subsequent finish_task_switch after the context
4117 * switch.
4118 *
4119 * prepare_task_switch sets up locking and calls architecture specific
4120 * hooks.
4121 */
4122 static inline void
4123 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4124 struct task_struct *next)
4125 {
4126 kcov_prepare_switch(prev);
4127 sched_info_switch(rq, prev, next);
4128 perf_event_task_sched_out(prev, next);
4129 rseq_preempt(prev);
4130 fire_sched_out_preempt_notifiers(prev, next);
4131 kmap_local_sched_out();
4132 prepare_task(next);
4133 prepare_arch_switch(next);
4134 }
4135
4136 /**
4137 * finish_task_switch - clean up after a task-switch
4138 * @prev: the thread we just switched away from.
4139 *
4140 * finish_task_switch must be called after the context switch, paired
4141 * with a prepare_task_switch call before the context switch.
4142 * finish_task_switch will reconcile locking set up by prepare_task_switch,
4143 * and do any other architecture-specific cleanup actions.
4144 *
4145 * Note that we may have delayed dropping an mm in context_switch(). If
4146 * so, we finish that here outside of the runqueue lock. (Doing it
4147 * with the lock held can cause deadlocks; see schedule() for
4148 * details.)
4149 *
4150 * The context switch have flipped the stack from under us and restored the
4151 * local variables which were saved when this task called schedule() in the
4152 * past. prev == current is still correct but we need to recalculate this_rq
4153 * because prev may have moved to another CPU.
4154 */
4155 static struct rq *finish_task_switch(struct task_struct *prev)
4156 __releases(rq->lock)
4157 {
4158 struct rq *rq = this_rq();
4159 struct mm_struct *mm = rq->prev_mm;
4160 long prev_state;
4161
4162 /*
4163 * The previous task will have left us with a preempt_count of 2
4164 * because it left us after:
4165 *
4166 * schedule()
4167 * preempt_disable(); // 1
4168 * __schedule()
4169 * raw_spin_lock_irq(&rq->lock) // 2
4170 *
4171 * Also, see FORK_PREEMPT_COUNT.
4172 */
4173 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4174 "corrupted preempt_count: %s/%d/0x%x\n",
4175 current->comm, current->pid, preempt_count()))
4176 preempt_count_set(FORK_PREEMPT_COUNT);
4177
4178 rq->prev_mm = NULL;
4179
4180 /*
4181 * A task struct has one reference for the use as "current".
4182 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
4183 * schedule one last time. The schedule call will never return, and
4184 * the scheduled task must drop that reference.
4185 *
4186 * We must observe prev->state before clearing prev->on_cpu (in
4187 * finish_task), otherwise a concurrent wakeup can get prev
4188 * running on another CPU and we could rave with its RUNNING -> DEAD
4189 * transition, resulting in a double drop.
4190 */
4191 prev_state = prev->state;
4192 vtime_task_switch(prev);
4193 perf_event_task_sched_in(prev, current);
4194 finish_task(prev);
4195 finish_lock_switch(rq);
4196 finish_arch_post_lock_switch();
4197 kcov_finish_switch(current);
4198 /*
4199 * kmap_local_sched_out() is invoked with rq::lock held and
4200 * interrupts disabled. There is no requirement for that, but the
4201 * sched out code does not have an interrupt enabled section.
4202 * Restoring the maps on sched in does not require interrupts being
4203 * disabled either.
4204 */
4205 kmap_local_sched_in();
4206
4207 fire_sched_in_preempt_notifiers(current);
4208 /*
4209 * When switching through a kernel thread, the loop in
4210 * membarrier_{private,global}_expedited() may have observed that
4211 * kernel thread and not issued an IPI. It is therefore possible to
4212 * schedule between user->kernel->user threads without passing though
4213 * switch_mm(). Membarrier requires a barrier after storing to
4214 * rq->curr, before returning to userspace, so provide them here:
4215 *
4216 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4217 * provided by mmdrop(),
4218 * - a sync_core for SYNC_CORE.
4219 */
4220 if (mm) {
4221 membarrier_mm_sync_core_before_usermode(mm);
4222 mmdrop(mm);
4223 }
4224 if (unlikely(prev_state == TASK_DEAD)) {
4225 if (prev->sched_class->task_dead)
4226 prev->sched_class->task_dead(prev);
4227
4228 /*
4229 * Remove function-return probe instances associated with this
4230 * task and put them back on the free list.
4231 */
4232 kprobe_flush_task(prev);
4233
4234 /* Task is done with its stack. */
4235 put_task_stack(prev);
4236
4237 put_task_struct_rcu_user(prev);
4238 }
4239
4240 tick_nohz_task_switch();
4241 return rq;
4242 }
4243
4244 /**
4245 * schedule_tail - first thing a freshly forked thread must call.
4246 * @prev: the thread we just switched away from.
4247 */
4248 asmlinkage __visible void schedule_tail(struct task_struct *prev)
4249 __releases(rq->lock)
4250 {
4251 struct rq *rq;
4252
4253 /*
4254 * New tasks start with FORK_PREEMPT_COUNT, see there and
4255 * finish_task_switch() for details.
4256 *
4257 * finish_task_switch() will drop rq->lock() and lower preempt_count
4258 * and the preempt_enable() will end up enabling preemption (on
4259 * PREEMPT_COUNT kernels).
4260 */
4261
4262 rq = finish_task_switch(prev);
4263 preempt_enable();
4264
4265 if (current->set_child_tid)
4266 put_user(task_pid_vnr(current), current->set_child_tid);
4267
4268 calculate_sigpending();
4269 }
4270
4271 /*
4272 * context_switch - switch to the new MM and the new thread's register state.
4273 */
4274 static __always_inline struct rq *
4275 context_switch(struct rq *rq, struct task_struct *prev,
4276 struct task_struct *next, struct rq_flags *rf)
4277 {
4278 prepare_task_switch(rq, prev, next);
4279
4280 /*
4281 * For paravirt, this is coupled with an exit in switch_to to
4282 * combine the page table reload and the switch backend into
4283 * one hypercall.
4284 */
4285 arch_start_context_switch(prev);
4286
4287 /*
4288 * kernel -> kernel lazy + transfer active
4289 * user -> kernel lazy + mmgrab() active
4290 *
4291 * kernel -> user switch + mmdrop() active
4292 * user -> user switch
4293 */
4294 if (!next->mm) { // to kernel
4295 enter_lazy_tlb(prev->active_mm, next);
4296
4297 next->active_mm = prev->active_mm;
4298 if (prev->mm) // from user
4299 mmgrab(prev->active_mm);
4300 else
4301 prev->active_mm = NULL;
4302 } else { // to user
4303 membarrier_switch_mm(rq, prev->active_mm, next->mm);
4304 /*
4305 * sys_membarrier() requires an smp_mb() between setting
4306 * rq->curr / membarrier_switch_mm() and returning to userspace.
4307 *
4308 * The below provides this either through switch_mm(), or in
4309 * case 'prev->active_mm == next->mm' through
4310 * finish_task_switch()'s mmdrop().
4311 */
4312 switch_mm_irqs_off(prev->active_mm, next->mm, next);
4313
4314 if (!prev->mm) { // from kernel
4315 /* will mmdrop() in finish_task_switch(). */
4316 rq->prev_mm = prev->active_mm;
4317 prev->active_mm = NULL;
4318 }
4319 }
4320
4321 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4322
4323 prepare_lock_switch(rq, next, rf);
4324
4325 /* Here we just switch the register state and the stack. */
4326 switch_to(prev, next, prev);
4327 barrier();
4328
4329 return finish_task_switch(prev);
4330 }
4331
4332 /*
4333 * nr_running and nr_context_switches:
4334 *
4335 * externally visible scheduler statistics: current number of runnable
4336 * threads, total number of context switches performed since bootup.
4337 */
4338 unsigned long nr_running(void)
4339 {
4340 unsigned long i, sum = 0;
4341
4342 for_each_online_cpu(i)
4343 sum += cpu_rq(i)->nr_running;
4344
4345 return sum;
4346 }
4347
4348 /*
4349 * Check if only the current task is running on the CPU.
4350 *
4351 * Caution: this function does not check that the caller has disabled
4352 * preemption, thus the result might have a time-of-check-to-time-of-use
4353 * race. The caller is responsible to use it correctly, for example:
4354 *
4355 * - from a non-preemptible section (of course)
4356 *
4357 * - from a thread that is bound to a single CPU
4358 *
4359 * - in a loop with very short iterations (e.g. a polling loop)
4360 */
4361 bool single_task_running(void)
4362 {
4363 return raw_rq()->nr_running == 1;
4364 }
4365 EXPORT_SYMBOL(single_task_running);
4366
4367 unsigned long long nr_context_switches(void)
4368 {
4369 int i;
4370 unsigned long long sum = 0;
4371
4372 for_each_possible_cpu(i)
4373 sum += cpu_rq(i)->nr_switches;
4374
4375 return sum;
4376 }
4377
4378 /*
4379 * Consumers of these two interfaces, like for example the cpuidle menu
4380 * governor, are using nonsensical data. Preferring shallow idle state selection
4381 * for a CPU that has IO-wait which might not even end up running the task when
4382 * it does become runnable.
4383 */
4384
4385 unsigned long nr_iowait_cpu(int cpu)
4386 {
4387 return atomic_read(&cpu_rq(cpu)->nr_iowait);
4388 }
4389
4390 /*
4391 * IO-wait accounting, and how it's mostly bollocks (on SMP).
4392 *
4393 * The idea behind IO-wait account is to account the idle time that we could
4394 * have spend running if it were not for IO. That is, if we were to improve the
4395 * storage performance, we'd have a proportional reduction in IO-wait time.
4396 *
4397 * This all works nicely on UP, where, when a task blocks on IO, we account
4398 * idle time as IO-wait, because if the storage were faster, it could've been
4399 * running and we'd not be idle.
4400 *
4401 * This has been extended to SMP, by doing the same for each CPU. This however
4402 * is broken.
4403 *
4404 * Imagine for instance the case where two tasks block on one CPU, only the one
4405 * CPU will have IO-wait accounted, while the other has regular idle. Even
4406 * though, if the storage were faster, both could've ran at the same time,
4407 * utilising both CPUs.
4408 *
4409 * This means, that when looking globally, the current IO-wait accounting on
4410 * SMP is a lower bound, by reason of under accounting.
4411 *
4412 * Worse, since the numbers are provided per CPU, they are sometimes
4413 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4414 * associated with any one particular CPU, it can wake to another CPU than it
4415 * blocked on. This means the per CPU IO-wait number is meaningless.
4416 *
4417 * Task CPU affinities can make all that even more 'interesting'.
4418 */
4419
4420 unsigned long nr_iowait(void)
4421 {
4422 unsigned long i, sum = 0;
4423
4424 for_each_possible_cpu(i)
4425 sum += nr_iowait_cpu(i);
4426
4427 return sum;
4428 }
4429
4430 #ifdef CONFIG_SMP
4431
4432 /*
4433 * sched_exec - execve() is a valuable balancing opportunity, because at
4434 * this point the task has the smallest effective memory and cache footprint.
4435 */
4436 void sched_exec(void)
4437 {
4438 struct task_struct *p = current;
4439 unsigned long flags;
4440 int dest_cpu;
4441
4442 raw_spin_lock_irqsave(&p->pi_lock, flags);
4443 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
4444 if (dest_cpu == smp_processor_id())
4445 goto unlock;
4446
4447 if (likely(cpu_active(dest_cpu))) {
4448 struct migration_arg arg = { p, dest_cpu };
4449
4450 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4451 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
4452 return;
4453 }
4454 unlock:
4455 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4456 }
4457
4458 #endif
4459
4460 DEFINE_PER_CPU(struct kernel_stat, kstat);
4461 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
4462
4463 EXPORT_PER_CPU_SYMBOL(kstat);
4464 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
4465
4466 /*
4467 * The function fair_sched_class.update_curr accesses the struct curr
4468 * and its field curr->exec_start; when called from task_sched_runtime(),
4469 * we observe a high rate of cache misses in practice.
4470 * Prefetching this data results in improved performance.
4471 */
4472 static inline void prefetch_curr_exec_start(struct task_struct *p)
4473 {
4474 #ifdef CONFIG_FAIR_GROUP_SCHED
4475 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4476 #else
4477 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4478 #endif
4479 prefetch(curr);
4480 prefetch(&curr->exec_start);
4481 }
4482
4483 /*
4484 * Return accounted runtime for the task.
4485 * In case the task is currently running, return the runtime plus current's
4486 * pending runtime that have not been accounted yet.
4487 */
4488 unsigned long long task_sched_runtime(struct task_struct *p)
4489 {
4490 struct rq_flags rf;
4491 struct rq *rq;
4492 u64 ns;
4493
4494 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4495 /*
4496 * 64-bit doesn't need locks to atomically read a 64-bit value.
4497 * So we have a optimization chance when the task's delta_exec is 0.
4498 * Reading ->on_cpu is racy, but this is ok.
4499 *
4500 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4501 * If we race with it entering CPU, unaccounted time is 0. This is
4502 * indistinguishable from the read occurring a few cycles earlier.
4503 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4504 * been accounted, so we're correct here as well.
4505 */
4506 if (!p->on_cpu || !task_on_rq_queued(p))
4507 return p->se.sum_exec_runtime;
4508 #endif
4509
4510 rq = task_rq_lock(p, &rf);
4511 /*
4512 * Must be ->curr _and_ ->on_rq. If dequeued, we would
4513 * project cycles that may never be accounted to this
4514 * thread, breaking clock_gettime().
4515 */
4516 if (task_current(rq, p) && task_on_rq_queued(p)) {
4517 prefetch_curr_exec_start(p);
4518 update_rq_clock(rq);
4519 p->sched_class->update_curr(rq);
4520 }
4521 ns = p->se.sum_exec_runtime;
4522 task_rq_unlock(rq, p, &rf);
4523
4524 return ns;
4525 }
4526
4527 /*
4528 * This function gets called by the timer code, with HZ frequency.
4529 * We call it with interrupts disabled.
4530 */
4531 void scheduler_tick(void)
4532 {
4533 int cpu = smp_processor_id();
4534 struct rq *rq = cpu_rq(cpu);
4535 struct task_struct *curr = rq->curr;
4536 struct rq_flags rf;
4537 unsigned long thermal_pressure;
4538
4539 arch_scale_freq_tick();
4540 sched_clock_tick();
4541
4542 rq_lock(rq, &rf);
4543
4544 update_rq_clock(rq);
4545 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
4546 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
4547 curr->sched_class->task_tick(rq, curr, 0);
4548 calc_global_load_tick(rq);
4549 psi_task_tick(rq);
4550
4551 rq_unlock(rq, &rf);
4552
4553 perf_event_task_tick();
4554
4555 #ifdef CONFIG_SMP
4556 rq->idle_balance = idle_cpu(cpu);
4557 trigger_load_balance(rq);
4558 #endif
4559 }
4560
4561 #ifdef CONFIG_NO_HZ_FULL
4562
4563 struct tick_work {
4564 int cpu;
4565 atomic_t state;
4566 struct delayed_work work;
4567 };
4568 /* Values for ->state, see diagram below. */
4569 #define TICK_SCHED_REMOTE_OFFLINE 0
4570 #define TICK_SCHED_REMOTE_OFFLINING 1
4571 #define TICK_SCHED_REMOTE_RUNNING 2
4572
4573 /*
4574 * State diagram for ->state:
4575 *
4576 *
4577 * TICK_SCHED_REMOTE_OFFLINE
4578 * | ^
4579 * | |
4580 * | | sched_tick_remote()
4581 * | |
4582 * | |
4583 * +--TICK_SCHED_REMOTE_OFFLINING
4584 * | ^
4585 * | |
4586 * sched_tick_start() | | sched_tick_stop()
4587 * | |
4588 * V |
4589 * TICK_SCHED_REMOTE_RUNNING
4590 *
4591 *
4592 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4593 * and sched_tick_start() are happy to leave the state in RUNNING.
4594 */
4595
4596 static struct tick_work __percpu *tick_work_cpu;
4597
4598 static void sched_tick_remote(struct work_struct *work)
4599 {
4600 struct delayed_work *dwork = to_delayed_work(work);
4601 struct tick_work *twork = container_of(dwork, struct tick_work, work);
4602 int cpu = twork->cpu;
4603 struct rq *rq = cpu_rq(cpu);
4604 struct task_struct *curr;
4605 struct rq_flags rf;
4606 u64 delta;
4607 int os;
4608
4609 /*
4610 * Handle the tick only if it appears the remote CPU is running in full
4611 * dynticks mode. The check is racy by nature, but missing a tick or
4612 * having one too much is no big deal because the scheduler tick updates
4613 * statistics and checks timeslices in a time-independent way, regardless
4614 * of when exactly it is running.
4615 */
4616 if (!tick_nohz_tick_stopped_cpu(cpu))
4617 goto out_requeue;
4618
4619 rq_lock_irq(rq, &rf);
4620 curr = rq->curr;
4621 if (cpu_is_offline(cpu))
4622 goto out_unlock;
4623
4624 update_rq_clock(rq);
4625
4626 if (!is_idle_task(curr)) {
4627 /*
4628 * Make sure the next tick runs within a reasonable
4629 * amount of time.
4630 */
4631 delta = rq_clock_task(rq) - curr->se.exec_start;
4632 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4633 }
4634 curr->sched_class->task_tick(rq, curr, 0);
4635
4636 calc_load_nohz_remote(rq);
4637 out_unlock:
4638 rq_unlock_irq(rq, &rf);
4639 out_requeue:
4640
4641 /*
4642 * Run the remote tick once per second (1Hz). This arbitrary
4643 * frequency is large enough to avoid overload but short enough
4644 * to keep scheduler internal stats reasonably up to date. But
4645 * first update state to reflect hotplug activity if required.
4646 */
4647 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4648 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4649 if (os == TICK_SCHED_REMOTE_RUNNING)
4650 queue_delayed_work(system_unbound_wq, dwork, HZ);
4651 }
4652
4653 static void sched_tick_start(int cpu)
4654 {
4655 int os;
4656 struct tick_work *twork;
4657
4658 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4659 return;
4660
4661 WARN_ON_ONCE(!tick_work_cpu);
4662
4663 twork = per_cpu_ptr(tick_work_cpu, cpu);
4664 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4665 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4666 if (os == TICK_SCHED_REMOTE_OFFLINE) {
4667 twork->cpu = cpu;
4668 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4669 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4670 }
4671 }
4672
4673 #ifdef CONFIG_HOTPLUG_CPU
4674 static void sched_tick_stop(int cpu)
4675 {
4676 struct tick_work *twork;
4677 int os;
4678
4679 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4680 return;
4681
4682 WARN_ON_ONCE(!tick_work_cpu);
4683
4684 twork = per_cpu_ptr(tick_work_cpu, cpu);
4685 /* There cannot be competing actions, but don't rely on stop-machine. */
4686 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4687 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4688 /* Don't cancel, as this would mess up the state machine. */
4689 }
4690 #endif /* CONFIG_HOTPLUG_CPU */
4691
4692 int __init sched_tick_offload_init(void)
4693 {
4694 tick_work_cpu = alloc_percpu(struct tick_work);
4695 BUG_ON(!tick_work_cpu);
4696 return 0;
4697 }
4698
4699 #else /* !CONFIG_NO_HZ_FULL */
4700 static inline void sched_tick_start(int cpu) { }
4701 static inline void sched_tick_stop(int cpu) { }
4702 #endif
4703
4704 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
4705 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4706 /*
4707 * If the value passed in is equal to the current preempt count
4708 * then we just disabled preemption. Start timing the latency.
4709 */
4710 static inline void preempt_latency_start(int val)
4711 {
4712 if (preempt_count() == val) {
4713 unsigned long ip = get_lock_parent_ip();
4714 #ifdef CONFIG_DEBUG_PREEMPT
4715 current->preempt_disable_ip = ip;
4716 #endif
4717 trace_preempt_off(CALLER_ADDR0, ip);
4718 }
4719 }
4720
4721 void preempt_count_add(int val)
4722 {
4723 #ifdef CONFIG_DEBUG_PREEMPT
4724 /*
4725 * Underflow?
4726 */
4727 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4728 return;
4729 #endif
4730 __preempt_count_add(val);
4731 #ifdef CONFIG_DEBUG_PREEMPT
4732 /*
4733 * Spinlock count overflowing soon?
4734 */
4735 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4736 PREEMPT_MASK - 10);
4737 #endif
4738 preempt_latency_start(val);
4739 }
4740 EXPORT_SYMBOL(preempt_count_add);
4741 NOKPROBE_SYMBOL(preempt_count_add);
4742
4743 /*
4744 * If the value passed in equals to the current preempt count
4745 * then we just enabled preemption. Stop timing the latency.
4746 */
4747 static inline void preempt_latency_stop(int val)
4748 {
4749 if (preempt_count() == val)
4750 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4751 }
4752
4753 void preempt_count_sub(int val)
4754 {
4755 #ifdef CONFIG_DEBUG_PREEMPT
4756 /*
4757 * Underflow?
4758 */
4759 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4760 return;
4761 /*
4762 * Is the spinlock portion underflowing?
4763 */
4764 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4765 !(preempt_count() & PREEMPT_MASK)))
4766 return;
4767 #endif
4768
4769 preempt_latency_stop(val);
4770 __preempt_count_sub(val);
4771 }
4772 EXPORT_SYMBOL(preempt_count_sub);
4773 NOKPROBE_SYMBOL(preempt_count_sub);
4774
4775 #else
4776 static inline void preempt_latency_start(int val) { }
4777 static inline void preempt_latency_stop(int val) { }
4778 #endif
4779
4780 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4781 {
4782 #ifdef CONFIG_DEBUG_PREEMPT
4783 return p->preempt_disable_ip;
4784 #else
4785 return 0;
4786 #endif
4787 }
4788
4789 /*
4790 * Print scheduling while atomic bug:
4791 */
4792 static noinline void __schedule_bug(struct task_struct *prev)
4793 {
4794 /* Save this before calling printk(), since that will clobber it */
4795 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4796
4797 if (oops_in_progress)
4798 return;
4799
4800 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4801 prev->comm, prev->pid, preempt_count());
4802
4803 debug_show_held_locks(prev);
4804 print_modules();
4805 if (irqs_disabled())
4806 print_irqtrace_events(prev);
4807 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4808 && in_atomic_preempt_off()) {
4809 pr_err("Preemption disabled at:");
4810 print_ip_sym(KERN_ERR, preempt_disable_ip);
4811 }
4812 if (panic_on_warn)
4813 panic("scheduling while atomic\n");
4814
4815 dump_stack();
4816 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4817 }
4818
4819 /*
4820 * Various schedule()-time debugging checks and statistics:
4821 */
4822 static inline void schedule_debug(struct task_struct *prev, bool preempt)
4823 {
4824 #ifdef CONFIG_SCHED_STACK_END_CHECK
4825 if (task_stack_end_corrupted(prev))
4826 panic("corrupted stack end detected inside scheduler\n");
4827
4828 if (task_scs_end_corrupted(prev))
4829 panic("corrupted shadow stack detected inside scheduler\n");
4830 #endif
4831
4832 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4833 if (!preempt && prev->state && prev->non_block_count) {
4834 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4835 prev->comm, prev->pid, prev->non_block_count);
4836 dump_stack();
4837 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4838 }
4839 #endif
4840
4841 if (unlikely(in_atomic_preempt_off())) {
4842 __schedule_bug(prev);
4843 preempt_count_set(PREEMPT_DISABLED);
4844 }
4845 rcu_sleep_check();
4846 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
4847
4848 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4849
4850 schedstat_inc(this_rq()->sched_count);
4851 }
4852
4853 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4854 struct rq_flags *rf)
4855 {
4856 #ifdef CONFIG_SMP
4857 const struct sched_class *class;
4858 /*
4859 * We must do the balancing pass before put_prev_task(), such
4860 * that when we release the rq->lock the task is in the same
4861 * state as before we took rq->lock.
4862 *
4863 * We can terminate the balance pass as soon as we know there is
4864 * a runnable task of @class priority or higher.
4865 */
4866 for_class_range(class, prev->sched_class, &idle_sched_class) {
4867 if (class->balance(rq, prev, rf))
4868 break;
4869 }
4870 #endif
4871
4872 put_prev_task(rq, prev);
4873 }
4874
4875 /*
4876 * Pick up the highest-prio task:
4877 */
4878 static inline struct task_struct *
4879 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4880 {
4881 const struct sched_class *class;
4882 struct task_struct *p;
4883
4884 /*
4885 * Optimization: we know that if all tasks are in the fair class we can
4886 * call that function directly, but only if the @prev task wasn't of a
4887 * higher scheduling class, because otherwise those lose the
4888 * opportunity to pull in more work from other CPUs.
4889 */
4890 if (likely(prev->sched_class <= &fair_sched_class &&
4891 rq->nr_running == rq->cfs.h_nr_running)) {
4892
4893 p = pick_next_task_fair(rq, prev, rf);
4894 if (unlikely(p == RETRY_TASK))
4895 goto restart;
4896
4897 /* Assumes fair_sched_class->next == idle_sched_class */
4898 if (!p) {
4899 put_prev_task(rq, prev);
4900 p = pick_next_task_idle(rq);
4901 }
4902
4903 return p;
4904 }
4905
4906 restart:
4907 put_prev_task_balance(rq, prev, rf);
4908
4909 for_each_class(class) {
4910 p = class->pick_next_task(rq);
4911 if (p)
4912 return p;
4913 }
4914
4915 /* The idle class should always have a runnable task: */
4916 BUG();
4917 }
4918
4919 /*
4920 * __schedule() is the main scheduler function.
4921 *
4922 * The main means of driving the scheduler and thus entering this function are:
4923 *
4924 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4925 *
4926 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4927 * paths. For example, see arch/x86/entry_64.S.
4928 *
4929 * To drive preemption between tasks, the scheduler sets the flag in timer
4930 * interrupt handler scheduler_tick().
4931 *
4932 * 3. Wakeups don't really cause entry into schedule(). They add a
4933 * task to the run-queue and that's it.
4934 *
4935 * Now, if the new task added to the run-queue preempts the current
4936 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4937 * called on the nearest possible occasion:
4938 *
4939 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4940 *
4941 * - in syscall or exception context, at the next outmost
4942 * preempt_enable(). (this might be as soon as the wake_up()'s
4943 * spin_unlock()!)
4944 *
4945 * - in IRQ context, return from interrupt-handler to
4946 * preemptible context
4947 *
4948 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4949 * then at the next:
4950 *
4951 * - cond_resched() call
4952 * - explicit schedule() call
4953 * - return from syscall or exception to user-space
4954 * - return from interrupt-handler to user-space
4955 *
4956 * WARNING: must be called with preemption disabled!
4957 */
4958 static void __sched notrace __schedule(bool preempt)
4959 {
4960 struct task_struct *prev, *next;
4961 unsigned long *switch_count;
4962 unsigned long prev_state;
4963 struct rq_flags rf;
4964 struct rq *rq;
4965 int cpu;
4966
4967 cpu = smp_processor_id();
4968 rq = cpu_rq(cpu);
4969 prev = rq->curr;
4970
4971 schedule_debug(prev, preempt);
4972
4973 if (sched_feat(HRTICK))
4974 hrtick_clear(rq);
4975
4976 local_irq_disable();
4977 rcu_note_context_switch(preempt);
4978
4979 /*
4980 * Make sure that signal_pending_state()->signal_pending() below
4981 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4982 * done by the caller to avoid the race with signal_wake_up():
4983 *
4984 * __set_current_state(@state) signal_wake_up()
4985 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
4986 * wake_up_state(p, state)
4987 * LOCK rq->lock LOCK p->pi_state
4988 * smp_mb__after_spinlock() smp_mb__after_spinlock()
4989 * if (signal_pending_state()) if (p->state & @state)
4990 *
4991 * Also, the membarrier system call requires a full memory barrier
4992 * after coming from user-space, before storing to rq->curr.
4993 */
4994 rq_lock(rq, &rf);
4995 smp_mb__after_spinlock();
4996
4997 /* Promote REQ to ACT */
4998 rq->clock_update_flags <<= 1;
4999 update_rq_clock(rq);
5000
5001 switch_count = &prev->nivcsw;
5002
5003 /*
5004 * We must load prev->state once (task_struct::state is volatile), such
5005 * that:
5006 *
5007 * - we form a control dependency vs deactivate_task() below.
5008 * - ptrace_{,un}freeze_traced() can change ->state underneath us.
5009 */
5010 prev_state = prev->state;
5011 if (!preempt && prev_state) {
5012 if (signal_pending_state(prev_state, prev)) {
5013 prev->state = TASK_RUNNING;
5014 } else {
5015 prev->sched_contributes_to_load =
5016 (prev_state & TASK_UNINTERRUPTIBLE) &&
5017 !(prev_state & TASK_NOLOAD) &&
5018 !(prev->flags & PF_FROZEN);
5019
5020 if (prev->sched_contributes_to_load)
5021 rq->nr_uninterruptible++;
5022
5023 /*
5024 * __schedule() ttwu()
5025 * prev_state = prev->state; if (p->on_rq && ...)
5026 * if (prev_state) goto out;
5027 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
5028 * p->state = TASK_WAKING
5029 *
5030 * Where __schedule() and ttwu() have matching control dependencies.
5031 *
5032 * After this, schedule() must not care about p->state any more.
5033 */
5034 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
5035
5036 if (prev->in_iowait) {
5037 atomic_inc(&rq->nr_iowait);
5038 delayacct_blkio_start();
5039 }
5040 }
5041 switch_count = &prev->nvcsw;
5042 }
5043
5044 next = pick_next_task(rq, prev, &rf);
5045 clear_tsk_need_resched(prev);
5046 clear_preempt_need_resched();
5047
5048 if (likely(prev != next)) {
5049 rq->nr_switches++;
5050 /*
5051 * RCU users of rcu_dereference(rq->curr) may not see
5052 * changes to task_struct made by pick_next_task().
5053 */
5054 RCU_INIT_POINTER(rq->curr, next);
5055 /*
5056 * The membarrier system call requires each architecture
5057 * to have a full memory barrier after updating
5058 * rq->curr, before returning to user-space.
5059 *
5060 * Here are the schemes providing that barrier on the
5061 * various architectures:
5062 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
5063 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
5064 * - finish_lock_switch() for weakly-ordered
5065 * architectures where spin_unlock is a full barrier,
5066 * - switch_to() for arm64 (weakly-ordered, spin_unlock
5067 * is a RELEASE barrier),
5068 */
5069 ++*switch_count;
5070
5071 migrate_disable_switch(rq, prev);
5072 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
5073
5074 trace_sched_switch(preempt, prev, next);
5075
5076 /* Also unlocks the rq: */
5077 rq = context_switch(rq, prev, next, &rf);
5078 } else {
5079 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5080
5081 rq_unpin_lock(rq, &rf);
5082 __balance_callbacks(rq);
5083 raw_spin_unlock_irq(&rq->lock);
5084 }
5085 }
5086
5087 void __noreturn do_task_dead(void)
5088 {
5089 /* Causes final put_task_struct in finish_task_switch(): */
5090 set_special_state(TASK_DEAD);
5091
5092 /* Tell freezer to ignore us: */
5093 current->flags |= PF_NOFREEZE;
5094
5095 __schedule(false);
5096 BUG();
5097
5098 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
5099 for (;;)
5100 cpu_relax();
5101 }
5102
5103 static inline void sched_submit_work(struct task_struct *tsk)
5104 {
5105 unsigned int task_flags;
5106
5107 if (!tsk->state)
5108 return;
5109
5110 task_flags = tsk->flags;
5111 /*
5112 * If a worker went to sleep, notify and ask workqueue whether
5113 * it wants to wake up a task to maintain concurrency.
5114 * As this function is called inside the schedule() context,
5115 * we disable preemption to avoid it calling schedule() again
5116 * in the possible wakeup of a kworker and because wq_worker_sleeping()
5117 * requires it.
5118 */
5119 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5120 preempt_disable();
5121 if (task_flags & PF_WQ_WORKER)
5122 wq_worker_sleeping(tsk);
5123 else
5124 io_wq_worker_sleeping(tsk);
5125 preempt_enable_no_resched();
5126 }
5127
5128 if (tsk_is_pi_blocked(tsk))
5129 return;
5130
5131 /*
5132 * If we are going to sleep and we have plugged IO queued,
5133 * make sure to submit it to avoid deadlocks.
5134 */
5135 if (blk_needs_flush_plug(tsk))
5136 blk_schedule_flush_plug(tsk);
5137 }
5138
5139 static void sched_update_worker(struct task_struct *tsk)
5140 {
5141 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5142 if (tsk->flags & PF_WQ_WORKER)
5143 wq_worker_running(tsk);
5144 else
5145 io_wq_worker_running(tsk);
5146 }
5147 }
5148
5149 asmlinkage __visible void __sched schedule(void)
5150 {
5151 struct task_struct *tsk = current;
5152
5153 sched_submit_work(tsk);
5154 do {
5155 preempt_disable();
5156 __schedule(false);
5157 sched_preempt_enable_no_resched();
5158 } while (need_resched());
5159 sched_update_worker(tsk);
5160 }
5161 EXPORT_SYMBOL(schedule);
5162
5163 /*
5164 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
5165 * state (have scheduled out non-voluntarily) by making sure that all
5166 * tasks have either left the run queue or have gone into user space.
5167 * As idle tasks do not do either, they must not ever be preempted
5168 * (schedule out non-voluntarily).
5169 *
5170 * schedule_idle() is similar to schedule_preempt_disable() except that it
5171 * never enables preemption because it does not call sched_submit_work().
5172 */
5173 void __sched schedule_idle(void)
5174 {
5175 /*
5176 * As this skips calling sched_submit_work(), which the idle task does
5177 * regardless because that function is a nop when the task is in a
5178 * TASK_RUNNING state, make sure this isn't used someplace that the
5179 * current task can be in any other state. Note, idle is always in the
5180 * TASK_RUNNING state.
5181 */
5182 WARN_ON_ONCE(current->state);
5183 do {
5184 __schedule(false);
5185 } while (need_resched());
5186 }
5187
5188 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
5189 asmlinkage __visible void __sched schedule_user(void)
5190 {
5191 /*
5192 * If we come here after a random call to set_need_resched(),
5193 * or we have been woken up remotely but the IPI has not yet arrived,
5194 * we haven't yet exited the RCU idle mode. Do it here manually until
5195 * we find a better solution.
5196 *
5197 * NB: There are buggy callers of this function. Ideally we
5198 * should warn if prev_state != CONTEXT_USER, but that will trigger
5199 * too frequently to make sense yet.
5200 */
5201 enum ctx_state prev_state = exception_enter();
5202 schedule();
5203 exception_exit(prev_state);
5204 }
5205 #endif
5206
5207 /**
5208 * schedule_preempt_disabled - called with preemption disabled
5209 *
5210 * Returns with preemption disabled. Note: preempt_count must be 1
5211 */
5212 void __sched schedule_preempt_disabled(void)
5213 {
5214 sched_preempt_enable_no_resched();
5215 schedule();
5216 preempt_disable();
5217 }
5218
5219 static void __sched notrace preempt_schedule_common(void)
5220 {
5221 do {
5222 /*
5223 * Because the function tracer can trace preempt_count_sub()
5224 * and it also uses preempt_enable/disable_notrace(), if
5225 * NEED_RESCHED is set, the preempt_enable_notrace() called
5226 * by the function tracer will call this function again and
5227 * cause infinite recursion.
5228 *
5229 * Preemption must be disabled here before the function
5230 * tracer can trace. Break up preempt_disable() into two
5231 * calls. One to disable preemption without fear of being
5232 * traced. The other to still record the preemption latency,
5233 * which can also be traced by the function tracer.
5234 */
5235 preempt_disable_notrace();
5236 preempt_latency_start(1);
5237 __schedule(true);
5238 preempt_latency_stop(1);
5239 preempt_enable_no_resched_notrace();
5240
5241 /*
5242 * Check again in case we missed a preemption opportunity
5243 * between schedule and now.
5244 */
5245 } while (need_resched());
5246 }
5247
5248 #ifdef CONFIG_PREEMPTION
5249 /*
5250 * This is the entry point to schedule() from in-kernel preemption
5251 * off of preempt_enable.
5252 */
5253 asmlinkage __visible void __sched notrace preempt_schedule(void)
5254 {
5255 /*
5256 * If there is a non-zero preempt_count or interrupts are disabled,
5257 * we do not want to preempt the current task. Just return..
5258 */
5259 if (likely(!preemptible()))
5260 return;
5261
5262 preempt_schedule_common();
5263 }
5264 NOKPROBE_SYMBOL(preempt_schedule);
5265 EXPORT_SYMBOL(preempt_schedule);
5266
5267 /**
5268 * preempt_schedule_notrace - preempt_schedule called by tracing
5269 *
5270 * The tracing infrastructure uses preempt_enable_notrace to prevent
5271 * recursion and tracing preempt enabling caused by the tracing
5272 * infrastructure itself. But as tracing can happen in areas coming
5273 * from userspace or just about to enter userspace, a preempt enable
5274 * can occur before user_exit() is called. This will cause the scheduler
5275 * to be called when the system is still in usermode.
5276 *
5277 * To prevent this, the preempt_enable_notrace will use this function
5278 * instead of preempt_schedule() to exit user context if needed before
5279 * calling the scheduler.
5280 */
5281 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
5282 {
5283 enum ctx_state prev_ctx;
5284
5285 if (likely(!preemptible()))
5286 return;
5287
5288 do {
5289 /*
5290 * Because the function tracer can trace preempt_count_sub()
5291 * and it also uses preempt_enable/disable_notrace(), if
5292 * NEED_RESCHED is set, the preempt_enable_notrace() called
5293 * by the function tracer will call this function again and
5294 * cause infinite recursion.
5295 *
5296 * Preemption must be disabled here before the function
5297 * tracer can trace. Break up preempt_disable() into two
5298 * calls. One to disable preemption without fear of being
5299 * traced. The other to still record the preemption latency,
5300 * which can also be traced by the function tracer.
5301 */
5302 preempt_disable_notrace();
5303 preempt_latency_start(1);
5304 /*
5305 * Needs preempt disabled in case user_exit() is traced
5306 * and the tracer calls preempt_enable_notrace() causing
5307 * an infinite recursion.
5308 */
5309 prev_ctx = exception_enter();
5310 __schedule(true);
5311 exception_exit(prev_ctx);
5312
5313 preempt_latency_stop(1);
5314 preempt_enable_no_resched_notrace();
5315 } while (need_resched());
5316 }
5317 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
5318
5319 #endif /* CONFIG_PREEMPTION */
5320
5321 /*
5322 * This is the entry point to schedule() from kernel preemption
5323 * off of irq context.
5324 * Note, that this is called and return with irqs disabled. This will
5325 * protect us against recursive calling from irq.
5326 */
5327 asmlinkage __visible void __sched preempt_schedule_irq(void)
5328 {
5329 enum ctx_state prev_state;
5330
5331 /* Catch callers which need to be fixed */
5332 BUG_ON(preempt_count() || !irqs_disabled());
5333
5334 prev_state = exception_enter();
5335
5336 do {
5337 preempt_disable();
5338 local_irq_enable();
5339 __schedule(true);
5340 local_irq_disable();
5341 sched_preempt_enable_no_resched();
5342 } while (need_resched());
5343
5344 exception_exit(prev_state);
5345 }
5346
5347 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
5348 void *key)
5349 {
5350 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
5351 return try_to_wake_up(curr->private, mode, wake_flags);
5352 }
5353 EXPORT_SYMBOL(default_wake_function);
5354
5355 #ifdef CONFIG_RT_MUTEXES
5356
5357 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
5358 {
5359 if (pi_task)
5360 prio = min(prio, pi_task->prio);
5361
5362 return prio;
5363 }
5364
5365 static inline int rt_effective_prio(struct task_struct *p, int prio)
5366 {
5367 struct task_struct *pi_task = rt_mutex_get_top_task(p);
5368
5369 return __rt_effective_prio(pi_task, prio);
5370 }
5371
5372 /*
5373 * rt_mutex_setprio - set the current priority of a task
5374 * @p: task to boost
5375 * @pi_task: donor task
5376 *
5377 * This function changes the 'effective' priority of a task. It does
5378 * not touch ->normal_prio like __setscheduler().
5379 *
5380 * Used by the rt_mutex code to implement priority inheritance
5381 * logic. Call site only calls if the priority of the task changed.
5382 */
5383 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
5384 {
5385 int prio, oldprio, queued, running, queue_flag =
5386 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5387 const struct sched_class *prev_class;
5388 struct rq_flags rf;
5389 struct rq *rq;
5390
5391 /* XXX used to be waiter->prio, not waiter->task->prio */
5392 prio = __rt_effective_prio(pi_task, p->normal_prio);
5393
5394 /*
5395 * If nothing changed; bail early.
5396 */
5397 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
5398 return;
5399
5400 rq = __task_rq_lock(p, &rf);
5401 update_rq_clock(rq);
5402 /*
5403 * Set under pi_lock && rq->lock, such that the value can be used under
5404 * either lock.
5405 *
5406 * Note that there is loads of tricky to make this pointer cache work
5407 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
5408 * ensure a task is de-boosted (pi_task is set to NULL) before the
5409 * task is allowed to run again (and can exit). This ensures the pointer
5410 * points to a blocked task -- which guarantees the task is present.
5411 */
5412 p->pi_top_task = pi_task;
5413
5414 /*
5415 * For FIFO/RR we only need to set prio, if that matches we're done.
5416 */
5417 if (prio == p->prio && !dl_prio(prio))
5418 goto out_unlock;
5419
5420 /*
5421 * Idle task boosting is a nono in general. There is one
5422 * exception, when PREEMPT_RT and NOHZ is active:
5423 *
5424 * The idle task calls get_next_timer_interrupt() and holds
5425 * the timer wheel base->lock on the CPU and another CPU wants
5426 * to access the timer (probably to cancel it). We can safely
5427 * ignore the boosting request, as the idle CPU runs this code
5428 * with interrupts disabled and will complete the lock
5429 * protected section without being interrupted. So there is no
5430 * real need to boost.
5431 */
5432 if (unlikely(p == rq->idle)) {
5433 WARN_ON(p != rq->curr);
5434 WARN_ON(p->pi_blocked_on);
5435 goto out_unlock;
5436 }
5437
5438 trace_sched_pi_setprio(p, pi_task);
5439 oldprio = p->prio;
5440
5441 if (oldprio == prio)
5442 queue_flag &= ~DEQUEUE_MOVE;
5443
5444 prev_class = p->sched_class;
5445 queued = task_on_rq_queued(p);
5446 running = task_current(rq, p);
5447 if (queued)
5448 dequeue_task(rq, p, queue_flag);
5449 if (running)
5450 put_prev_task(rq, p);
5451
5452 /*
5453 * Boosting condition are:
5454 * 1. -rt task is running and holds mutex A
5455 * --> -dl task blocks on mutex A
5456 *
5457 * 2. -dl task is running and holds mutex A
5458 * --> -dl task blocks on mutex A and could preempt the
5459 * running task
5460 */
5461 if (dl_prio(prio)) {
5462 if (!dl_prio(p->normal_prio) ||
5463 (pi_task && dl_prio(pi_task->prio) &&
5464 dl_entity_preempt(&pi_task->dl, &p->dl))) {
5465 p->dl.pi_se = pi_task->dl.pi_se;
5466 queue_flag |= ENQUEUE_REPLENISH;
5467 } else {
5468 p->dl.pi_se = &p->dl;
5469 }
5470 p->sched_class = &dl_sched_class;
5471 } else if (rt_prio(prio)) {
5472 if (dl_prio(oldprio))
5473 p->dl.pi_se = &p->dl;
5474 if (oldprio < prio)
5475 queue_flag |= ENQUEUE_HEAD;
5476 p->sched_class = &rt_sched_class;
5477 } else {
5478 if (dl_prio(oldprio))
5479 p->dl.pi_se = &p->dl;
5480 if (rt_prio(oldprio))
5481 p->rt.timeout = 0;
5482 p->sched_class = &fair_sched_class;
5483 }
5484
5485 p->prio = prio;
5486
5487 if (queued)
5488 enqueue_task(rq, p, queue_flag);
5489 if (running)
5490 set_next_task(rq, p);
5491
5492 check_class_changed(rq, p, prev_class, oldprio);
5493 out_unlock:
5494 /* Avoid rq from going away on us: */
5495 preempt_disable();
5496
5497 rq_unpin_lock(rq, &rf);
5498 __balance_callbacks(rq);
5499 raw_spin_unlock(&rq->lock);
5500
5501 preempt_enable();
5502 }
5503 #else
5504 static inline int rt_effective_prio(struct task_struct *p, int prio)
5505 {
5506 return prio;
5507 }
5508 #endif
5509
5510 void set_user_nice(struct task_struct *p, long nice)
5511 {
5512 bool queued, running;
5513 int old_prio;
5514 struct rq_flags rf;
5515 struct rq *rq;
5516
5517 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
5518 return;
5519 /*
5520 * We have to be careful, if called from sys_setpriority(),
5521 * the task might be in the middle of scheduling on another CPU.
5522 */
5523 rq = task_rq_lock(p, &rf);
5524 update_rq_clock(rq);
5525
5526 /*
5527 * The RT priorities are set via sched_setscheduler(), but we still
5528 * allow the 'normal' nice value to be set - but as expected
5529 * it won't have any effect on scheduling until the task is
5530 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
5531 */
5532 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
5533 p->static_prio = NICE_TO_PRIO(nice);
5534 goto out_unlock;
5535 }
5536 queued = task_on_rq_queued(p);
5537 running = task_current(rq, p);
5538 if (queued)
5539 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
5540 if (running)
5541 put_prev_task(rq, p);
5542
5543 p->static_prio = NICE_TO_PRIO(nice);
5544 set_load_weight(p, true);
5545 old_prio = p->prio;
5546 p->prio = effective_prio(p);
5547
5548 if (queued)
5549 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5550 if (running)
5551 set_next_task(rq, p);
5552
5553 /*
5554 * If the task increased its priority or is running and
5555 * lowered its priority, then reschedule its CPU:
5556 */
5557 p->sched_class->prio_changed(rq, p, old_prio);
5558
5559 out_unlock:
5560 task_rq_unlock(rq, p, &rf);
5561 }
5562 EXPORT_SYMBOL(set_user_nice);
5563
5564 /*
5565 * can_nice - check if a task can reduce its nice value
5566 * @p: task
5567 * @nice: nice value
5568 */
5569 int can_nice(const struct task_struct *p, const int nice)
5570 {
5571 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
5572 int nice_rlim = nice_to_rlimit(nice);
5573
5574 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5575 capable(CAP_SYS_NICE));
5576 }
5577
5578 #ifdef __ARCH_WANT_SYS_NICE
5579
5580 /*
5581 * sys_nice - change the priority of the current process.
5582 * @increment: priority increment
5583 *
5584 * sys_setpriority is a more generic, but much slower function that
5585 * does similar things.
5586 */
5587 SYSCALL_DEFINE1(nice, int, increment)
5588 {
5589 long nice, retval;
5590
5591 /*
5592 * Setpriority might change our priority at the same moment.
5593 * We don't have to worry. Conceptually one call occurs first
5594 * and we have a single winner.
5595 */
5596 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
5597 nice = task_nice(current) + increment;
5598
5599 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
5600 if (increment < 0 && !can_nice(current, nice))
5601 return -EPERM;
5602
5603 retval = security_task_setnice(current, nice);
5604 if (retval)
5605 return retval;
5606
5607 set_user_nice(current, nice);
5608 return 0;
5609 }
5610
5611 #endif
5612
5613 /**
5614 * task_prio - return the priority value of a given task.
5615 * @p: the task in question.
5616 *
5617 * Return: The priority value as seen by users in /proc.
5618 * RT tasks are offset by -200. Normal tasks are centered
5619 * around 0, value goes from -16 to +15.
5620 */
5621 int task_prio(const struct task_struct *p)
5622 {
5623 return p->prio - MAX_RT_PRIO;
5624 }
5625
5626 /**
5627 * idle_cpu - is a given CPU idle currently?
5628 * @cpu: the processor in question.
5629 *
5630 * Return: 1 if the CPU is currently idle. 0 otherwise.
5631 */
5632 int idle_cpu(int cpu)
5633 {
5634 struct rq *rq = cpu_rq(cpu);
5635
5636 if (rq->curr != rq->idle)
5637 return 0;
5638
5639 if (rq->nr_running)
5640 return 0;
5641
5642 #ifdef CONFIG_SMP
5643 if (rq->ttwu_pending)
5644 return 0;
5645 #endif
5646
5647 return 1;
5648 }
5649
5650 /**
5651 * available_idle_cpu - is a given CPU idle for enqueuing work.
5652 * @cpu: the CPU in question.
5653 *
5654 * Return: 1 if the CPU is currently idle. 0 otherwise.
5655 */
5656 int available_idle_cpu(int cpu)
5657 {
5658 if (!idle_cpu(cpu))
5659 return 0;
5660
5661 if (vcpu_is_preempted(cpu))
5662 return 0;
5663
5664 return 1;
5665 }
5666
5667 /**
5668 * idle_task - return the idle task for a given CPU.
5669 * @cpu: the processor in question.
5670 *
5671 * Return: The idle task for the CPU @cpu.
5672 */
5673 struct task_struct *idle_task(int cpu)
5674 {
5675 return cpu_rq(cpu)->idle;
5676 }
5677
5678 /**
5679 * find_process_by_pid - find a process with a matching PID value.
5680 * @pid: the pid in question.
5681 *
5682 * The task of @pid, if found. %NULL otherwise.
5683 */
5684 static struct task_struct *find_process_by_pid(pid_t pid)
5685 {
5686 return pid ? find_task_by_vpid(pid) : current;
5687 }
5688
5689 /*
5690 * sched_setparam() passes in -1 for its policy, to let the functions
5691 * it calls know not to change it.
5692 */
5693 #define SETPARAM_POLICY -1
5694
5695 static void __setscheduler_params(struct task_struct *p,
5696 const struct sched_attr *attr)
5697 {
5698 int policy = attr->sched_policy;
5699
5700 if (policy == SETPARAM_POLICY)
5701 policy = p->policy;
5702
5703 p->policy = policy;
5704
5705 if (dl_policy(policy))
5706 __setparam_dl(p, attr);
5707 else if (fair_policy(policy))
5708 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5709
5710 /*
5711 * __sched_setscheduler() ensures attr->sched_priority == 0 when
5712 * !rt_policy. Always setting this ensures that things like
5713 * getparam()/getattr() don't report silly values for !rt tasks.
5714 */
5715 p->rt_priority = attr->sched_priority;
5716 p->normal_prio = normal_prio(p);
5717 set_load_weight(p, true);
5718 }
5719
5720 /* Actually do priority change: must hold pi & rq lock. */
5721 static void __setscheduler(struct rq *rq, struct task_struct *p,
5722 const struct sched_attr *attr, bool keep_boost)
5723 {
5724 /*
5725 * If params can't change scheduling class changes aren't allowed
5726 * either.
5727 */
5728 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
5729 return;
5730
5731 __setscheduler_params(p, attr);
5732
5733 /*
5734 * Keep a potential priority boosting if called from
5735 * sched_setscheduler().
5736 */
5737 p->prio = normal_prio(p);
5738 if (keep_boost)
5739 p->prio = rt_effective_prio(p, p->prio);
5740
5741 if (dl_prio(p->prio))
5742 p->sched_class = &dl_sched_class;
5743 else if (rt_prio(p->prio))
5744 p->sched_class = &rt_sched_class;
5745 else
5746 p->sched_class = &fair_sched_class;
5747 }
5748
5749 /*
5750 * Check the target process has a UID that matches the current process's:
5751 */
5752 static bool check_same_owner(struct task_struct *p)
5753 {
5754 const struct cred *cred = current_cred(), *pcred;
5755 bool match;
5756
5757 rcu_read_lock();
5758 pcred = __task_cred(p);
5759 match = (uid_eq(cred->euid, pcred->euid) ||
5760 uid_eq(cred->euid, pcred->uid));
5761 rcu_read_unlock();
5762 return match;
5763 }
5764
5765 static int __sched_setscheduler(struct task_struct *p,
5766 const struct sched_attr *attr,
5767 bool user, bool pi)
5768 {
5769 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
5770 MAX_RT_PRIO - 1 - attr->sched_priority;
5771 int retval, oldprio, oldpolicy = -1, queued, running;
5772 int new_effective_prio, policy = attr->sched_policy;
5773 const struct sched_class *prev_class;
5774 struct callback_head *head;
5775 struct rq_flags rf;
5776 int reset_on_fork;
5777 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5778 struct rq *rq;
5779
5780 /* The pi code expects interrupts enabled */
5781 BUG_ON(pi && in_interrupt());
5782 recheck:
5783 /* Double check policy once rq lock held: */
5784 if (policy < 0) {
5785 reset_on_fork = p->sched_reset_on_fork;
5786 policy = oldpolicy = p->policy;
5787 } else {
5788 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
5789
5790 if (!valid_policy(policy))
5791 return -EINVAL;
5792 }
5793
5794 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
5795 return -EINVAL;
5796
5797 /*
5798 * Valid priorities for SCHED_FIFO and SCHED_RR are
5799 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5800 * SCHED_BATCH and SCHED_IDLE is 0.
5801 */
5802 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
5803 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
5804 return -EINVAL;
5805 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
5806 (rt_policy(policy) != (attr->sched_priority != 0)))
5807 return -EINVAL;
5808
5809 /*
5810 * Allow unprivileged RT tasks to decrease priority:
5811 */
5812 if (user && !capable(CAP_SYS_NICE)) {
5813 if (fair_policy(policy)) {
5814 if (attr->sched_nice < task_nice(p) &&
5815 !can_nice(p, attr->sched_nice))
5816 return -EPERM;
5817 }
5818
5819 if (rt_policy(policy)) {
5820 unsigned long rlim_rtprio =
5821 task_rlimit(p, RLIMIT_RTPRIO);
5822
5823 /* Can't set/change the rt policy: */
5824 if (policy != p->policy && !rlim_rtprio)
5825 return -EPERM;
5826
5827 /* Can't increase priority: */
5828 if (attr->sched_priority > p->rt_priority &&
5829 attr->sched_priority > rlim_rtprio)
5830 return -EPERM;
5831 }
5832
5833 /*
5834 * Can't set/change SCHED_DEADLINE policy at all for now
5835 * (safest behavior); in the future we would like to allow
5836 * unprivileged DL tasks to increase their relative deadline
5837 * or reduce their runtime (both ways reducing utilization)
5838 */
5839 if (dl_policy(policy))
5840 return -EPERM;
5841
5842 /*
5843 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5844 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5845 */
5846 if (task_has_idle_policy(p) && !idle_policy(policy)) {
5847 if (!can_nice(p, task_nice(p)))
5848 return -EPERM;
5849 }
5850
5851 /* Can't change other user's priorities: */
5852 if (!check_same_owner(p))
5853 return -EPERM;
5854
5855 /* Normal users shall not reset the sched_reset_on_fork flag: */
5856 if (p->sched_reset_on_fork && !reset_on_fork)
5857 return -EPERM;
5858 }
5859
5860 if (user) {
5861 if (attr->sched_flags & SCHED_FLAG_SUGOV)
5862 return -EINVAL;
5863
5864 retval = security_task_setscheduler(p);
5865 if (retval)
5866 return retval;
5867 }
5868
5869 /* Update task specific "requested" clamps */
5870 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
5871 retval = uclamp_validate(p, attr);
5872 if (retval)
5873 return retval;
5874 }
5875
5876 if (pi)
5877 cpuset_read_lock();
5878
5879 /*
5880 * Make sure no PI-waiters arrive (or leave) while we are
5881 * changing the priority of the task:
5882 *
5883 * To be able to change p->policy safely, the appropriate
5884 * runqueue lock must be held.
5885 */
5886 rq = task_rq_lock(p, &rf);
5887 update_rq_clock(rq);
5888
5889 /*
5890 * Changing the policy of the stop threads its a very bad idea:
5891 */
5892 if (p == rq->stop) {
5893 retval = -EINVAL;
5894 goto unlock;
5895 }
5896
5897 /*
5898 * If not changing anything there's no need to proceed further,
5899 * but store a possible modification of reset_on_fork.
5900 */
5901 if (unlikely(policy == p->policy)) {
5902 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
5903 goto change;
5904 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
5905 goto change;
5906 if (dl_policy(policy) && dl_param_changed(p, attr))
5907 goto change;
5908 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5909 goto change;
5910
5911 p->sched_reset_on_fork = reset_on_fork;
5912 retval = 0;
5913 goto unlock;
5914 }
5915 change:
5916
5917 if (user) {
5918 #ifdef CONFIG_RT_GROUP_SCHED
5919 /*
5920 * Do not allow realtime tasks into groups that have no runtime
5921 * assigned.
5922 */
5923 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5924 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5925 !task_group_is_autogroup(task_group(p))) {
5926 retval = -EPERM;
5927 goto unlock;
5928 }
5929 #endif
5930 #ifdef CONFIG_SMP
5931 if (dl_bandwidth_enabled() && dl_policy(policy) &&
5932 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
5933 cpumask_t *span = rq->rd->span;
5934
5935 /*
5936 * Don't allow tasks with an affinity mask smaller than
5937 * the entire root_domain to become SCHED_DEADLINE. We
5938 * will also fail if there's no bandwidth available.
5939 */
5940 if (!cpumask_subset(span, p->cpus_ptr) ||
5941 rq->rd->dl_bw.bw == 0) {
5942 retval = -EPERM;
5943 goto unlock;
5944 }
5945 }
5946 #endif
5947 }
5948
5949 /* Re-check policy now with rq lock held: */
5950 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5951 policy = oldpolicy = -1;
5952 task_rq_unlock(rq, p, &rf);
5953 if (pi)
5954 cpuset_read_unlock();
5955 goto recheck;
5956 }
5957
5958 /*
5959 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5960 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5961 * is available.
5962 */
5963 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5964 retval = -EBUSY;
5965 goto unlock;
5966 }
5967
5968 p->sched_reset_on_fork = reset_on_fork;
5969 oldprio = p->prio;
5970
5971 if (pi) {
5972 /*
5973 * Take priority boosted tasks into account. If the new
5974 * effective priority is unchanged, we just store the new
5975 * normal parameters and do not touch the scheduler class and
5976 * the runqueue. This will be done when the task deboost
5977 * itself.
5978 */
5979 new_effective_prio = rt_effective_prio(p, newprio);
5980 if (new_effective_prio == oldprio)
5981 queue_flags &= ~DEQUEUE_MOVE;
5982 }
5983
5984 queued = task_on_rq_queued(p);
5985 running = task_current(rq, p);
5986 if (queued)
5987 dequeue_task(rq, p, queue_flags);
5988 if (running)
5989 put_prev_task(rq, p);
5990
5991 prev_class = p->sched_class;
5992
5993 __setscheduler(rq, p, attr, pi);
5994 __setscheduler_uclamp(p, attr);
5995
5996 if (queued) {
5997 /*
5998 * We enqueue to tail when the priority of a task is
5999 * increased (user space view).
6000 */
6001 if (oldprio < p->prio)
6002 queue_flags |= ENQUEUE_HEAD;
6003
6004 enqueue_task(rq, p, queue_flags);
6005 }
6006 if (running)
6007 set_next_task(rq, p);
6008
6009 check_class_changed(rq, p, prev_class, oldprio);
6010
6011 /* Avoid rq from going away on us: */
6012 preempt_disable();
6013 head = splice_balance_callbacks(rq);
6014 task_rq_unlock(rq, p, &rf);
6015
6016 if (pi) {
6017 cpuset_read_unlock();
6018 rt_mutex_adjust_pi(p);
6019 }
6020
6021 /* Run balance callbacks after we've adjusted the PI chain: */
6022 balance_callbacks(rq, head);
6023 preempt_enable();
6024
6025 return 0;
6026
6027 unlock:
6028 task_rq_unlock(rq, p, &rf);
6029 if (pi)
6030 cpuset_read_unlock();
6031 return retval;
6032 }
6033
6034 static int _sched_setscheduler(struct task_struct *p, int policy,
6035 const struct sched_param *param, bool check)
6036 {
6037 struct sched_attr attr = {
6038 .sched_policy = policy,
6039 .sched_priority = param->sched_priority,
6040 .sched_nice = PRIO_TO_NICE(p->static_prio),
6041 };
6042
6043 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
6044 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
6045 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6046 policy &= ~SCHED_RESET_ON_FORK;
6047 attr.sched_policy = policy;
6048 }
6049
6050 return __sched_setscheduler(p, &attr, check, true);
6051 }
6052 /**
6053 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6054 * @p: the task in question.
6055 * @policy: new policy.
6056 * @param: structure containing the new RT priority.
6057 *
6058 * Use sched_set_fifo(), read its comment.
6059 *
6060 * Return: 0 on success. An error code otherwise.
6061 *
6062 * NOTE that the task may be already dead.
6063 */
6064 int sched_setscheduler(struct task_struct *p, int policy,
6065 const struct sched_param *param)
6066 {
6067 return _sched_setscheduler(p, policy, param, true);
6068 }
6069
6070 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
6071 {
6072 return __sched_setscheduler(p, attr, true, true);
6073 }
6074
6075 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
6076 {
6077 return __sched_setscheduler(p, attr, false, true);
6078 }
6079
6080 /**
6081 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6082 * @p: the task in question.
6083 * @policy: new policy.
6084 * @param: structure containing the new RT priority.
6085 *
6086 * Just like sched_setscheduler, only don't bother checking if the
6087 * current context has permission. For example, this is needed in
6088 * stop_machine(): we create temporary high priority worker threads,
6089 * but our caller might not have that capability.
6090 *
6091 * Return: 0 on success. An error code otherwise.
6092 */
6093 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6094 const struct sched_param *param)
6095 {
6096 return _sched_setscheduler(p, policy, param, false);
6097 }
6098
6099 /*
6100 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
6101 * incapable of resource management, which is the one thing an OS really should
6102 * be doing.
6103 *
6104 * This is of course the reason it is limited to privileged users only.
6105 *
6106 * Worse still; it is fundamentally impossible to compose static priority
6107 * workloads. You cannot take two correctly working static prio workloads
6108 * and smash them together and still expect them to work.
6109 *
6110 * For this reason 'all' FIFO tasks the kernel creates are basically at:
6111 *
6112 * MAX_RT_PRIO / 2
6113 *
6114 * The administrator _MUST_ configure the system, the kernel simply doesn't
6115 * know enough information to make a sensible choice.
6116 */
6117 void sched_set_fifo(struct task_struct *p)
6118 {
6119 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
6120 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
6121 }
6122 EXPORT_SYMBOL_GPL(sched_set_fifo);
6123
6124 /*
6125 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
6126 */
6127 void sched_set_fifo_low(struct task_struct *p)
6128 {
6129 struct sched_param sp = { .sched_priority = 1 };
6130 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
6131 }
6132 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
6133
6134 void sched_set_normal(struct task_struct *p, int nice)
6135 {
6136 struct sched_attr attr = {
6137 .sched_policy = SCHED_NORMAL,
6138 .sched_nice = nice,
6139 };
6140 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
6141 }
6142 EXPORT_SYMBOL_GPL(sched_set_normal);
6143
6144 static int
6145 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6146 {
6147 struct sched_param lparam;
6148 struct task_struct *p;
6149 int retval;
6150
6151 if (!param || pid < 0)
6152 return -EINVAL;
6153 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6154 return -EFAULT;
6155
6156 rcu_read_lock();
6157 retval = -ESRCH;
6158 p = find_process_by_pid(pid);
6159 if (likely(p))
6160 get_task_struct(p);
6161 rcu_read_unlock();
6162
6163 if (likely(p)) {
6164 retval = sched_setscheduler(p, policy, &lparam);
6165 put_task_struct(p);
6166 }
6167
6168 return retval;
6169 }
6170
6171 /*
6172 * Mimics kernel/events/core.c perf_copy_attr().
6173 */
6174 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
6175 {
6176 u32 size;
6177 int ret;
6178
6179 /* Zero the full structure, so that a short copy will be nice: */
6180 memset(attr, 0, sizeof(*attr));
6181
6182 ret = get_user(size, &uattr->size);
6183 if (ret)
6184 return ret;
6185
6186 /* ABI compatibility quirk: */
6187 if (!size)
6188 size = SCHED_ATTR_SIZE_VER0;
6189 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
6190 goto err_size;
6191
6192 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
6193 if (ret) {
6194 if (ret == -E2BIG)
6195 goto err_size;
6196 return ret;
6197 }
6198
6199 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
6200 size < SCHED_ATTR_SIZE_VER1)
6201 return -EINVAL;
6202
6203 /*
6204 * XXX: Do we want to be lenient like existing syscalls; or do we want
6205 * to be strict and return an error on out-of-bounds values?
6206 */
6207 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
6208
6209 return 0;
6210
6211 err_size:
6212 put_user(sizeof(*attr), &uattr->size);
6213 return -E2BIG;
6214 }
6215
6216 /**
6217 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6218 * @pid: the pid in question.
6219 * @policy: new policy.
6220 * @param: structure containing the new RT priority.
6221 *
6222 * Return: 0 on success. An error code otherwise.
6223 */
6224 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
6225 {
6226 if (policy < 0)
6227 return -EINVAL;
6228
6229 return do_sched_setscheduler(pid, policy, param);
6230 }
6231
6232 /**
6233 * sys_sched_setparam - set/change the RT priority of a thread
6234 * @pid: the pid in question.
6235 * @param: structure containing the new RT priority.
6236 *
6237 * Return: 0 on success. An error code otherwise.
6238 */
6239 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6240 {
6241 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
6242 }
6243
6244 /**
6245 * sys_sched_setattr - same as above, but with extended sched_attr
6246 * @pid: the pid in question.
6247 * @uattr: structure containing the extended parameters.
6248 * @flags: for future extension.
6249 */
6250 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
6251 unsigned int, flags)
6252 {
6253 struct sched_attr attr;
6254 struct task_struct *p;
6255 int retval;
6256
6257 if (!uattr || pid < 0 || flags)
6258 return -EINVAL;
6259
6260 retval = sched_copy_attr(uattr, &attr);
6261 if (retval)
6262 return retval;
6263
6264 if ((int)attr.sched_policy < 0)
6265 return -EINVAL;
6266 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
6267 attr.sched_policy = SETPARAM_POLICY;
6268
6269 rcu_read_lock();
6270 retval = -ESRCH;
6271 p = find_process_by_pid(pid);
6272 if (likely(p))
6273 get_task_struct(p);
6274 rcu_read_unlock();
6275
6276 if (likely(p)) {
6277 retval = sched_setattr(p, &attr);
6278 put_task_struct(p);
6279 }
6280
6281 return retval;
6282 }
6283
6284 /**
6285 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6286 * @pid: the pid in question.
6287 *
6288 * Return: On success, the policy of the thread. Otherwise, a negative error
6289 * code.
6290 */
6291 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6292 {
6293 struct task_struct *p;
6294 int retval;
6295
6296 if (pid < 0)
6297 return -EINVAL;
6298
6299 retval = -ESRCH;
6300 rcu_read_lock();
6301 p = find_process_by_pid(pid);
6302 if (p) {
6303 retval = security_task_getscheduler(p);
6304 if (!retval)
6305 retval = p->policy
6306 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6307 }
6308 rcu_read_unlock();
6309 return retval;
6310 }
6311
6312 /**
6313 * sys_sched_getparam - get the RT priority of a thread
6314 * @pid: the pid in question.
6315 * @param: structure containing the RT priority.
6316 *
6317 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
6318 * code.
6319 */
6320 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6321 {
6322 struct sched_param lp = { .sched_priority = 0 };
6323 struct task_struct *p;
6324 int retval;
6325
6326 if (!param || pid < 0)
6327 return -EINVAL;
6328
6329 rcu_read_lock();
6330 p = find_process_by_pid(pid);
6331 retval = -ESRCH;
6332 if (!p)
6333 goto out_unlock;
6334
6335 retval = security_task_getscheduler(p);
6336 if (retval)
6337 goto out_unlock;
6338
6339 if (task_has_rt_policy(p))
6340 lp.sched_priority = p->rt_priority;
6341 rcu_read_unlock();
6342
6343 /*
6344 * This one might sleep, we cannot do it with a spinlock held ...
6345 */
6346 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6347
6348 return retval;
6349
6350 out_unlock:
6351 rcu_read_unlock();
6352 return retval;
6353 }
6354
6355 /*
6356 * Copy the kernel size attribute structure (which might be larger
6357 * than what user-space knows about) to user-space.
6358 *
6359 * Note that all cases are valid: user-space buffer can be larger or
6360 * smaller than the kernel-space buffer. The usual case is that both
6361 * have the same size.
6362 */
6363 static int
6364 sched_attr_copy_to_user(struct sched_attr __user *uattr,
6365 struct sched_attr *kattr,
6366 unsigned int usize)
6367 {
6368 unsigned int ksize = sizeof(*kattr);
6369
6370 if (!access_ok(uattr, usize))
6371 return -EFAULT;
6372
6373 /*
6374 * sched_getattr() ABI forwards and backwards compatibility:
6375 *
6376 * If usize == ksize then we just copy everything to user-space and all is good.
6377 *
6378 * If usize < ksize then we only copy as much as user-space has space for,
6379 * this keeps ABI compatibility as well. We skip the rest.
6380 *
6381 * If usize > ksize then user-space is using a newer version of the ABI,
6382 * which part the kernel doesn't know about. Just ignore it - tooling can
6383 * detect the kernel's knowledge of attributes from the attr->size value
6384 * which is set to ksize in this case.
6385 */
6386 kattr->size = min(usize, ksize);
6387
6388 if (copy_to_user(uattr, kattr, kattr->size))
6389 return -EFAULT;
6390
6391 return 0;
6392 }
6393
6394 /**
6395 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
6396 * @pid: the pid in question.
6397 * @uattr: structure containing the extended parameters.
6398 * @usize: sizeof(attr) for fwd/bwd comp.
6399 * @flags: for future extension.
6400 */
6401 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
6402 unsigned int, usize, unsigned int, flags)
6403 {
6404 struct sched_attr kattr = { };
6405 struct task_struct *p;
6406 int retval;
6407
6408 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
6409 usize < SCHED_ATTR_SIZE_VER0 || flags)
6410 return -EINVAL;
6411
6412 rcu_read_lock();
6413 p = find_process_by_pid(pid);
6414 retval = -ESRCH;
6415 if (!p)
6416 goto out_unlock;
6417
6418 retval = security_task_getscheduler(p);
6419 if (retval)
6420 goto out_unlock;
6421
6422 kattr.sched_policy = p->policy;
6423 if (p->sched_reset_on_fork)
6424 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6425 if (task_has_dl_policy(p))
6426 __getparam_dl(p, &kattr);
6427 else if (task_has_rt_policy(p))
6428 kattr.sched_priority = p->rt_priority;
6429 else
6430 kattr.sched_nice = task_nice(p);
6431
6432 #ifdef CONFIG_UCLAMP_TASK
6433 /*
6434 * This could race with another potential updater, but this is fine
6435 * because it'll correctly read the old or the new value. We don't need
6436 * to guarantee who wins the race as long as it doesn't return garbage.
6437 */
6438 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
6439 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
6440 #endif
6441
6442 rcu_read_unlock();
6443
6444 return sched_attr_copy_to_user(uattr, &kattr, usize);
6445
6446 out_unlock:
6447 rcu_read_unlock();
6448 return retval;
6449 }
6450
6451 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6452 {
6453 cpumask_var_t cpus_allowed, new_mask;
6454 struct task_struct *p;
6455 int retval;
6456
6457 rcu_read_lock();
6458
6459 p = find_process_by_pid(pid);
6460 if (!p) {
6461 rcu_read_unlock();
6462 return -ESRCH;
6463 }
6464
6465 /* Prevent p going away */
6466 get_task_struct(p);
6467 rcu_read_unlock();
6468
6469 if (p->flags & PF_NO_SETAFFINITY) {
6470 retval = -EINVAL;
6471 goto out_put_task;
6472 }
6473 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6474 retval = -ENOMEM;
6475 goto out_put_task;
6476 }
6477 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6478 retval = -ENOMEM;
6479 goto out_free_cpus_allowed;
6480 }
6481 retval = -EPERM;
6482 if (!check_same_owner(p)) {
6483 rcu_read_lock();
6484 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
6485 rcu_read_unlock();
6486 goto out_free_new_mask;
6487 }
6488 rcu_read_unlock();
6489 }
6490
6491 retval = security_task_setscheduler(p);
6492 if (retval)
6493 goto out_free_new_mask;
6494
6495
6496 cpuset_cpus_allowed(p, cpus_allowed);
6497 cpumask_and(new_mask, in_mask, cpus_allowed);
6498
6499 /*
6500 * Since bandwidth control happens on root_domain basis,
6501 * if admission test is enabled, we only admit -deadline
6502 * tasks allowed to run on all the CPUs in the task's
6503 * root_domain.
6504 */
6505 #ifdef CONFIG_SMP
6506 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
6507 rcu_read_lock();
6508 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
6509 retval = -EBUSY;
6510 rcu_read_unlock();
6511 goto out_free_new_mask;
6512 }
6513 rcu_read_unlock();
6514 }
6515 #endif
6516 again:
6517 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
6518
6519 if (!retval) {
6520 cpuset_cpus_allowed(p, cpus_allowed);
6521 if (!cpumask_subset(new_mask, cpus_allowed)) {
6522 /*
6523 * We must have raced with a concurrent cpuset
6524 * update. Just reset the cpus_allowed to the
6525 * cpuset's cpus_allowed
6526 */
6527 cpumask_copy(new_mask, cpus_allowed);
6528 goto again;
6529 }
6530 }
6531 out_free_new_mask:
6532 free_cpumask_var(new_mask);
6533 out_free_cpus_allowed:
6534 free_cpumask_var(cpus_allowed);
6535 out_put_task:
6536 put_task_struct(p);
6537 return retval;
6538 }
6539
6540 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6541 struct cpumask *new_mask)
6542 {
6543 if (len < cpumask_size())
6544 cpumask_clear(new_mask);
6545 else if (len > cpumask_size())
6546 len = cpumask_size();
6547
6548 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6549 }
6550
6551 /**
6552 * sys_sched_setaffinity - set the CPU affinity of a process
6553 * @pid: pid of the process
6554 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6555 * @user_mask_ptr: user-space pointer to the new CPU mask
6556 *
6557 * Return: 0 on success. An error code otherwise.
6558 */
6559 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6560 unsigned long __user *, user_mask_ptr)
6561 {
6562 cpumask_var_t new_mask;
6563 int retval;
6564
6565 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6566 return -ENOMEM;
6567
6568 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6569 if (retval == 0)
6570 retval = sched_setaffinity(pid, new_mask);
6571 free_cpumask_var(new_mask);
6572 return retval;
6573 }
6574
6575 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6576 {
6577 struct task_struct *p;
6578 unsigned long flags;
6579 int retval;
6580
6581 rcu_read_lock();
6582
6583 retval = -ESRCH;
6584 p = find_process_by_pid(pid);
6585 if (!p)
6586 goto out_unlock;
6587
6588 retval = security_task_getscheduler(p);
6589 if (retval)
6590 goto out_unlock;
6591
6592 raw_spin_lock_irqsave(&p->pi_lock, flags);
6593 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
6594 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6595
6596 out_unlock:
6597 rcu_read_unlock();
6598
6599 return retval;
6600 }
6601
6602 /**
6603 * sys_sched_getaffinity - get the CPU affinity of a process
6604 * @pid: pid of the process
6605 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6606 * @user_mask_ptr: user-space pointer to hold the current CPU mask
6607 *
6608 * Return: size of CPU mask copied to user_mask_ptr on success. An
6609 * error code otherwise.
6610 */
6611 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6612 unsigned long __user *, user_mask_ptr)
6613 {
6614 int ret;
6615 cpumask_var_t mask;
6616
6617 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6618 return -EINVAL;
6619 if (len & (sizeof(unsigned long)-1))
6620 return -EINVAL;
6621
6622 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6623 return -ENOMEM;
6624
6625 ret = sched_getaffinity(pid, mask);
6626 if (ret == 0) {
6627 unsigned int retlen = min(len, cpumask_size());
6628
6629 if (copy_to_user(user_mask_ptr, mask, retlen))
6630 ret = -EFAULT;
6631 else
6632 ret = retlen;
6633 }
6634 free_cpumask_var(mask);
6635
6636 return ret;
6637 }
6638
6639 static void do_sched_yield(void)
6640 {
6641 struct rq_flags rf;
6642 struct rq *rq;
6643
6644 rq = this_rq_lock_irq(&rf);
6645
6646 schedstat_inc(rq->yld_count);
6647 current->sched_class->yield_task(rq);
6648
6649 preempt_disable();
6650 rq_unlock_irq(rq, &rf);
6651 sched_preempt_enable_no_resched();
6652
6653 schedule();
6654 }
6655
6656 /**
6657 * sys_sched_yield - yield the current processor to other threads.
6658 *
6659 * This function yields the current CPU to other tasks. If there are no
6660 * other threads running on this CPU then this function will return.
6661 *
6662 * Return: 0.
6663 */
6664 SYSCALL_DEFINE0(sched_yield)
6665 {
6666 do_sched_yield();
6667 return 0;
6668 }
6669
6670 #ifndef CONFIG_PREEMPTION
6671 int __sched _cond_resched(void)
6672 {
6673 if (should_resched(0)) {
6674 preempt_schedule_common();
6675 return 1;
6676 }
6677 rcu_all_qs();
6678 return 0;
6679 }
6680 EXPORT_SYMBOL(_cond_resched);
6681 #endif
6682
6683 /*
6684 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6685 * call schedule, and on return reacquire the lock.
6686 *
6687 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
6688 * operations here to prevent schedule() from being called twice (once via
6689 * spin_unlock(), once by hand).
6690 */
6691 int __cond_resched_lock(spinlock_t *lock)
6692 {
6693 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6694 int ret = 0;
6695
6696 lockdep_assert_held(lock);
6697
6698 if (spin_needbreak(lock) || resched) {
6699 spin_unlock(lock);
6700 if (resched)
6701 preempt_schedule_common();
6702 else
6703 cpu_relax();
6704 ret = 1;
6705 spin_lock(lock);
6706 }
6707 return ret;
6708 }
6709 EXPORT_SYMBOL(__cond_resched_lock);
6710
6711 /**
6712 * yield - yield the current processor to other threads.
6713 *
6714 * Do not ever use this function, there's a 99% chance you're doing it wrong.
6715 *
6716 * The scheduler is at all times free to pick the calling task as the most
6717 * eligible task to run, if removing the yield() call from your code breaks
6718 * it, it's already broken.
6719 *
6720 * Typical broken usage is:
6721 *
6722 * while (!event)
6723 * yield();
6724 *
6725 * where one assumes that yield() will let 'the other' process run that will
6726 * make event true. If the current task is a SCHED_FIFO task that will never
6727 * happen. Never use yield() as a progress guarantee!!
6728 *
6729 * If you want to use yield() to wait for something, use wait_event().
6730 * If you want to use yield() to be 'nice' for others, use cond_resched().
6731 * If you still want to use yield(), do not!
6732 */
6733 void __sched yield(void)
6734 {
6735 set_current_state(TASK_RUNNING);
6736 do_sched_yield();
6737 }
6738 EXPORT_SYMBOL(yield);
6739
6740 /**
6741 * yield_to - yield the current processor to another thread in
6742 * your thread group, or accelerate that thread toward the
6743 * processor it's on.
6744 * @p: target task
6745 * @preempt: whether task preemption is allowed or not
6746 *
6747 * It's the caller's job to ensure that the target task struct
6748 * can't go away on us before we can do any checks.
6749 *
6750 * Return:
6751 * true (>0) if we indeed boosted the target task.
6752 * false (0) if we failed to boost the target.
6753 * -ESRCH if there's no task to yield to.
6754 */
6755 int __sched yield_to(struct task_struct *p, bool preempt)
6756 {
6757 struct task_struct *curr = current;
6758 struct rq *rq, *p_rq;
6759 unsigned long flags;
6760 int yielded = 0;
6761
6762 local_irq_save(flags);
6763 rq = this_rq();
6764
6765 again:
6766 p_rq = task_rq(p);
6767 /*
6768 * If we're the only runnable task on the rq and target rq also
6769 * has only one task, there's absolutely no point in yielding.
6770 */
6771 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
6772 yielded = -ESRCH;
6773 goto out_irq;
6774 }
6775
6776 double_rq_lock(rq, p_rq);
6777 if (task_rq(p) != p_rq) {
6778 double_rq_unlock(rq, p_rq);
6779 goto again;
6780 }
6781
6782 if (!curr->sched_class->yield_to_task)
6783 goto out_unlock;
6784
6785 if (curr->sched_class != p->sched_class)
6786 goto out_unlock;
6787
6788 if (task_running(p_rq, p) || p->state)
6789 goto out_unlock;
6790
6791 yielded = curr->sched_class->yield_to_task(rq, p);
6792 if (yielded) {
6793 schedstat_inc(rq->yld_count);
6794 /*
6795 * Make p's CPU reschedule; pick_next_entity takes care of
6796 * fairness.
6797 */
6798 if (preempt && rq != p_rq)
6799 resched_curr(p_rq);
6800 }
6801
6802 out_unlock:
6803 double_rq_unlock(rq, p_rq);
6804 out_irq:
6805 local_irq_restore(flags);
6806
6807 if (yielded > 0)
6808 schedule();
6809
6810 return yielded;
6811 }
6812 EXPORT_SYMBOL_GPL(yield_to);
6813
6814 int io_schedule_prepare(void)
6815 {
6816 int old_iowait = current->in_iowait;
6817
6818 current->in_iowait = 1;
6819 blk_schedule_flush_plug(current);
6820
6821 return old_iowait;
6822 }
6823
6824 void io_schedule_finish(int token)
6825 {
6826 current->in_iowait = token;
6827 }
6828
6829 /*
6830 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6831 * that process accounting knows that this is a task in IO wait state.
6832 */
6833 long __sched io_schedule_timeout(long timeout)
6834 {
6835 int token;
6836 long ret;
6837
6838 token = io_schedule_prepare();
6839 ret = schedule_timeout(timeout);
6840 io_schedule_finish(token);
6841
6842 return ret;
6843 }
6844 EXPORT_SYMBOL(io_schedule_timeout);
6845
6846 void __sched io_schedule(void)
6847 {
6848 int token;
6849
6850 token = io_schedule_prepare();
6851 schedule();
6852 io_schedule_finish(token);
6853 }
6854 EXPORT_SYMBOL(io_schedule);
6855
6856 /**
6857 * sys_sched_get_priority_max - return maximum RT priority.
6858 * @policy: scheduling class.
6859 *
6860 * Return: On success, this syscall returns the maximum
6861 * rt_priority that can be used by a given scheduling class.
6862 * On failure, a negative error code is returned.
6863 */
6864 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6865 {
6866 int ret = -EINVAL;
6867
6868 switch (policy) {
6869 case SCHED_FIFO:
6870 case SCHED_RR:
6871 ret = MAX_USER_RT_PRIO-1;
6872 break;
6873 case SCHED_DEADLINE:
6874 case SCHED_NORMAL:
6875 case SCHED_BATCH:
6876 case SCHED_IDLE:
6877 ret = 0;
6878 break;
6879 }
6880 return ret;
6881 }
6882
6883 /**
6884 * sys_sched_get_priority_min - return minimum RT priority.
6885 * @policy: scheduling class.
6886 *
6887 * Return: On success, this syscall returns the minimum
6888 * rt_priority that can be used by a given scheduling class.
6889 * On failure, a negative error code is returned.
6890 */
6891 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6892 {
6893 int ret = -EINVAL;
6894
6895 switch (policy) {
6896 case SCHED_FIFO:
6897 case SCHED_RR:
6898 ret = 1;
6899 break;
6900 case SCHED_DEADLINE:
6901 case SCHED_NORMAL:
6902 case SCHED_BATCH:
6903 case SCHED_IDLE:
6904 ret = 0;
6905 }
6906 return ret;
6907 }
6908
6909 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
6910 {
6911 struct task_struct *p;
6912 unsigned int time_slice;
6913 struct rq_flags rf;
6914 struct rq *rq;
6915 int retval;
6916
6917 if (pid < 0)
6918 return -EINVAL;
6919
6920 retval = -ESRCH;
6921 rcu_read_lock();
6922 p = find_process_by_pid(pid);
6923 if (!p)
6924 goto out_unlock;
6925
6926 retval = security_task_getscheduler(p);
6927 if (retval)
6928 goto out_unlock;
6929
6930 rq = task_rq_lock(p, &rf);
6931 time_slice = 0;
6932 if (p->sched_class->get_rr_interval)
6933 time_slice = p->sched_class->get_rr_interval(rq, p);
6934 task_rq_unlock(rq, p, &rf);
6935
6936 rcu_read_unlock();
6937 jiffies_to_timespec64(time_slice, t);
6938 return 0;
6939
6940 out_unlock:
6941 rcu_read_unlock();
6942 return retval;
6943 }
6944
6945 /**
6946 * sys_sched_rr_get_interval - return the default timeslice of a process.
6947 * @pid: pid of the process.
6948 * @interval: userspace pointer to the timeslice value.
6949 *
6950 * this syscall writes the default timeslice value of a given process
6951 * into the user-space timespec buffer. A value of '0' means infinity.
6952 *
6953 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
6954 * an error code.
6955 */
6956 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6957 struct __kernel_timespec __user *, interval)
6958 {
6959 struct timespec64 t;
6960 int retval = sched_rr_get_interval(pid, &t);
6961
6962 if (retval == 0)
6963 retval = put_timespec64(&t, interval);
6964
6965 return retval;
6966 }
6967
6968 #ifdef CONFIG_COMPAT_32BIT_TIME
6969 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
6970 struct old_timespec32 __user *, interval)
6971 {
6972 struct timespec64 t;
6973 int retval = sched_rr_get_interval(pid, &t);
6974
6975 if (retval == 0)
6976 retval = put_old_timespec32(&t, interval);
6977 return retval;
6978 }
6979 #endif
6980
6981 void sched_show_task(struct task_struct *p)
6982 {
6983 unsigned long free = 0;
6984 int ppid;
6985
6986 if (!try_get_task_stack(p))
6987 return;
6988
6989 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
6990
6991 if (p->state == TASK_RUNNING)
6992 pr_cont(" running task ");
6993 #ifdef CONFIG_DEBUG_STACK_USAGE
6994 free = stack_not_used(p);
6995 #endif
6996 ppid = 0;
6997 rcu_read_lock();
6998 if (pid_alive(p))
6999 ppid = task_pid_nr(rcu_dereference(p->real_parent));
7000 rcu_read_unlock();
7001 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
7002 free, task_pid_nr(p), ppid,
7003 (unsigned long)task_thread_info(p)->flags);
7004
7005 print_worker_info(KERN_INFO, p);
7006 print_stop_info(KERN_INFO, p);
7007 show_stack(p, NULL, KERN_INFO);
7008 put_task_stack(p);
7009 }
7010 EXPORT_SYMBOL_GPL(sched_show_task);
7011
7012 static inline bool
7013 state_filter_match(unsigned long state_filter, struct task_struct *p)
7014 {
7015 /* no filter, everything matches */
7016 if (!state_filter)
7017 return true;
7018
7019 /* filter, but doesn't match */
7020 if (!(p->state & state_filter))
7021 return false;
7022
7023 /*
7024 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7025 * TASK_KILLABLE).
7026 */
7027 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
7028 return false;
7029
7030 return true;
7031 }
7032
7033
7034 void show_state_filter(unsigned long state_filter)
7035 {
7036 struct task_struct *g, *p;
7037
7038 rcu_read_lock();
7039 for_each_process_thread(g, p) {
7040 /*
7041 * reset the NMI-timeout, listing all files on a slow
7042 * console might take a lot of time:
7043 * Also, reset softlockup watchdogs on all CPUs, because
7044 * another CPU might be blocked waiting for us to process
7045 * an IPI.
7046 */
7047 touch_nmi_watchdog();
7048 touch_all_softlockup_watchdogs();
7049 if (state_filter_match(state_filter, p))
7050 sched_show_task(p);
7051 }
7052
7053 #ifdef CONFIG_SCHED_DEBUG
7054 if (!state_filter)
7055 sysrq_sched_debug_show();
7056 #endif
7057 rcu_read_unlock();
7058 /*
7059 * Only show locks if all tasks are dumped:
7060 */
7061 if (!state_filter)
7062 debug_show_all_locks();
7063 }
7064
7065 /**
7066 * init_idle - set up an idle thread for a given CPU
7067 * @idle: task in question
7068 * @cpu: CPU the idle task belongs to
7069 *
7070 * NOTE: this function does not set the idle thread's NEED_RESCHED
7071 * flag, to make booting more robust.
7072 */
7073 void init_idle(struct task_struct *idle, int cpu)
7074 {
7075 struct rq *rq = cpu_rq(cpu);
7076 unsigned long flags;
7077
7078 __sched_fork(0, idle);
7079
7080 raw_spin_lock_irqsave(&idle->pi_lock, flags);
7081 raw_spin_lock(&rq->lock);
7082
7083 idle->state = TASK_RUNNING;
7084 idle->se.exec_start = sched_clock();
7085 idle->flags |= PF_IDLE;
7086
7087 scs_task_reset(idle);
7088 kasan_unpoison_task_stack(idle);
7089
7090 #ifdef CONFIG_SMP
7091 /*
7092 * It's possible that init_idle() gets called multiple times on a task,
7093 * in that case do_set_cpus_allowed() will not do the right thing.
7094 *
7095 * And since this is boot we can forgo the serialization.
7096 */
7097 set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
7098 #endif
7099 /*
7100 * We're having a chicken and egg problem, even though we are
7101 * holding rq->lock, the CPU isn't yet set to this CPU so the
7102 * lockdep check in task_group() will fail.
7103 *
7104 * Similar case to sched_fork(). / Alternatively we could
7105 * use task_rq_lock() here and obtain the other rq->lock.
7106 *
7107 * Silence PROVE_RCU
7108 */
7109 rcu_read_lock();
7110 __set_task_cpu(idle, cpu);
7111 rcu_read_unlock();
7112
7113 rq->idle = idle;
7114 rcu_assign_pointer(rq->curr, idle);
7115 idle->on_rq = TASK_ON_RQ_QUEUED;
7116 #ifdef CONFIG_SMP
7117 idle->on_cpu = 1;
7118 #endif
7119 raw_spin_unlock(&rq->lock);
7120 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7121
7122 /* Set the preempt count _outside_ the spinlocks! */
7123 init_idle_preempt_count(idle, cpu);
7124
7125 /*
7126 * The idle tasks have their own, simple scheduling class:
7127 */
7128 idle->sched_class = &idle_sched_class;
7129 ftrace_graph_init_idle_task(idle, cpu);
7130 vtime_init_idle(idle, cpu);
7131 #ifdef CONFIG_SMP
7132 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7133 #endif
7134 }
7135
7136 #ifdef CONFIG_SMP
7137
7138 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7139 const struct cpumask *trial)
7140 {
7141 int ret = 1;
7142
7143 if (!cpumask_weight(cur))
7144 return ret;
7145
7146 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7147
7148 return ret;
7149 }
7150
7151 int task_can_attach(struct task_struct *p,
7152 const struct cpumask *cs_cpus_allowed)
7153 {
7154 int ret = 0;
7155
7156 /*
7157 * Kthreads which disallow setaffinity shouldn't be moved
7158 * to a new cpuset; we don't want to change their CPU
7159 * affinity and isolating such threads by their set of
7160 * allowed nodes is unnecessary. Thus, cpusets are not
7161 * applicable for such threads. This prevents checking for
7162 * success of set_cpus_allowed_ptr() on all attached tasks
7163 * before cpus_mask may be changed.
7164 */
7165 if (p->flags & PF_NO_SETAFFINITY) {
7166 ret = -EINVAL;
7167 goto out;
7168 }
7169
7170 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
7171 cs_cpus_allowed))
7172 ret = dl_task_can_attach(p, cs_cpus_allowed);
7173
7174 out:
7175 return ret;
7176 }
7177
7178 bool sched_smp_initialized __read_mostly;
7179
7180 #ifdef CONFIG_NUMA_BALANCING
7181 /* Migrate current task p to target_cpu */
7182 int migrate_task_to(struct task_struct *p, int target_cpu)
7183 {
7184 struct migration_arg arg = { p, target_cpu };
7185 int curr_cpu = task_cpu(p);
7186
7187 if (curr_cpu == target_cpu)
7188 return 0;
7189
7190 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7191 return -EINVAL;
7192
7193 /* TODO: This is not properly updating schedstats */
7194
7195 trace_sched_move_numa(p, curr_cpu, target_cpu);
7196 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7197 }
7198
7199 /*
7200 * Requeue a task on a given node and accurately track the number of NUMA
7201 * tasks on the runqueues
7202 */
7203 void sched_setnuma(struct task_struct *p, int nid)
7204 {
7205 bool queued, running;
7206 struct rq_flags rf;
7207 struct rq *rq;
7208
7209 rq = task_rq_lock(p, &rf);
7210 queued = task_on_rq_queued(p);
7211 running = task_current(rq, p);
7212
7213 if (queued)
7214 dequeue_task(rq, p, DEQUEUE_SAVE);
7215 if (running)
7216 put_prev_task(rq, p);
7217
7218 p->numa_preferred_nid = nid;
7219
7220 if (queued)
7221 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7222 if (running)
7223 set_next_task(rq, p);
7224 task_rq_unlock(rq, p, &rf);
7225 }
7226 #endif /* CONFIG_NUMA_BALANCING */
7227
7228 #ifdef CONFIG_HOTPLUG_CPU
7229 /*
7230 * Ensure that the idle task is using init_mm right before its CPU goes
7231 * offline.
7232 */
7233 void idle_task_exit(void)
7234 {
7235 struct mm_struct *mm = current->active_mm;
7236
7237 BUG_ON(cpu_online(smp_processor_id()));
7238 BUG_ON(current != this_rq()->idle);
7239
7240 if (mm != &init_mm) {
7241 switch_mm(mm, &init_mm, current);
7242 finish_arch_post_lock_switch();
7243 }
7244
7245 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
7246 }
7247
7248 static int __balance_push_cpu_stop(void *arg)
7249 {
7250 struct task_struct *p = arg;
7251 struct rq *rq = this_rq();
7252 struct rq_flags rf;
7253 int cpu;
7254
7255 raw_spin_lock_irq(&p->pi_lock);
7256 rq_lock(rq, &rf);
7257
7258 update_rq_clock(rq);
7259
7260 if (task_rq(p) == rq && task_on_rq_queued(p)) {
7261 cpu = select_fallback_rq(rq->cpu, p);
7262 rq = __migrate_task(rq, &rf, p, cpu);
7263 }
7264
7265 rq_unlock(rq, &rf);
7266 raw_spin_unlock_irq(&p->pi_lock);
7267
7268 put_task_struct(p);
7269
7270 return 0;
7271 }
7272
7273 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
7274
7275 /*
7276 * Ensure we only run per-cpu kthreads once the CPU goes !active.
7277 */
7278 static void balance_push(struct rq *rq)
7279 {
7280 struct task_struct *push_task = rq->curr;
7281
7282 lockdep_assert_held(&rq->lock);
7283 SCHED_WARN_ON(rq->cpu != smp_processor_id());
7284 /*
7285 * Ensure the thing is persistent until balance_push_set(.on = false);
7286 */
7287 rq->balance_callback = &balance_push_callback;
7288
7289 /*
7290 * Both the cpu-hotplug and stop task are in this case and are
7291 * required to complete the hotplug process.
7292 *
7293 * XXX: the idle task does not match kthread_is_per_cpu() due to
7294 * histerical raisins.
7295 */
7296 if (rq->idle == push_task ||
7297 ((push_task->flags & PF_KTHREAD) && kthread_is_per_cpu(push_task)) ||
7298 is_migration_disabled(push_task)) {
7299
7300 /*
7301 * If this is the idle task on the outgoing CPU try to wake
7302 * up the hotplug control thread which might wait for the
7303 * last task to vanish. The rcuwait_active() check is
7304 * accurate here because the waiter is pinned on this CPU
7305 * and can't obviously be running in parallel.
7306 *
7307 * On RT kernels this also has to check whether there are
7308 * pinned and scheduled out tasks on the runqueue. They
7309 * need to leave the migrate disabled section first.
7310 */
7311 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
7312 rcuwait_active(&rq->hotplug_wait)) {
7313 raw_spin_unlock(&rq->lock);
7314 rcuwait_wake_up(&rq->hotplug_wait);
7315 raw_spin_lock(&rq->lock);
7316 }
7317 return;
7318 }
7319
7320 get_task_struct(push_task);
7321 /*
7322 * Temporarily drop rq->lock such that we can wake-up the stop task.
7323 * Both preemption and IRQs are still disabled.
7324 */
7325 raw_spin_unlock(&rq->lock);
7326 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
7327 this_cpu_ptr(&push_work));
7328 /*
7329 * At this point need_resched() is true and we'll take the loop in
7330 * schedule(). The next pick is obviously going to be the stop task
7331 * which kthread_is_per_cpu() and will push this task away.
7332 */
7333 raw_spin_lock(&rq->lock);
7334 }
7335
7336 static void balance_push_set(int cpu, bool on)
7337 {
7338 struct rq *rq = cpu_rq(cpu);
7339 struct rq_flags rf;
7340
7341 rq_lock_irqsave(rq, &rf);
7342 rq->balance_push = on;
7343 if (on) {
7344 WARN_ON_ONCE(rq->balance_callback);
7345 rq->balance_callback = &balance_push_callback;
7346 } else if (rq->balance_callback == &balance_push_callback) {
7347 rq->balance_callback = NULL;
7348 }
7349 rq_unlock_irqrestore(rq, &rf);
7350 }
7351
7352 /*
7353 * Invoked from a CPUs hotplug control thread after the CPU has been marked
7354 * inactive. All tasks which are not per CPU kernel threads are either
7355 * pushed off this CPU now via balance_push() or placed on a different CPU
7356 * during wakeup. Wait until the CPU is quiescent.
7357 */
7358 static void balance_hotplug_wait(void)
7359 {
7360 struct rq *rq = this_rq();
7361
7362 rcuwait_wait_event(&rq->hotplug_wait,
7363 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
7364 TASK_UNINTERRUPTIBLE);
7365 }
7366
7367 #else
7368
7369 static inline void balance_push(struct rq *rq)
7370 {
7371 }
7372
7373 static inline void balance_push_set(int cpu, bool on)
7374 {
7375 }
7376
7377 static inline void balance_hotplug_wait(void)
7378 {
7379 }
7380
7381 #endif /* CONFIG_HOTPLUG_CPU */
7382
7383 void set_rq_online(struct rq *rq)
7384 {
7385 if (!rq->online) {
7386 const struct sched_class *class;
7387
7388 cpumask_set_cpu(rq->cpu, rq->rd->online);
7389 rq->online = 1;
7390
7391 for_each_class(class) {
7392 if (class->rq_online)
7393 class->rq_online(rq);
7394 }
7395 }
7396 }
7397
7398 void set_rq_offline(struct rq *rq)
7399 {
7400 if (rq->online) {
7401 const struct sched_class *class;
7402
7403 for_each_class(class) {
7404 if (class->rq_offline)
7405 class->rq_offline(rq);
7406 }
7407
7408 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7409 rq->online = 0;
7410 }
7411 }
7412
7413 /*
7414 * used to mark begin/end of suspend/resume:
7415 */
7416 static int num_cpus_frozen;
7417
7418 /*
7419 * Update cpusets according to cpu_active mask. If cpusets are
7420 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7421 * around partition_sched_domains().
7422 *
7423 * If we come here as part of a suspend/resume, don't touch cpusets because we
7424 * want to restore it back to its original state upon resume anyway.
7425 */
7426 static void cpuset_cpu_active(void)
7427 {
7428 if (cpuhp_tasks_frozen) {
7429 /*
7430 * num_cpus_frozen tracks how many CPUs are involved in suspend
7431 * resume sequence. As long as this is not the last online
7432 * operation in the resume sequence, just build a single sched
7433 * domain, ignoring cpusets.
7434 */
7435 partition_sched_domains(1, NULL, NULL);
7436 if (--num_cpus_frozen)
7437 return;
7438 /*
7439 * This is the last CPU online operation. So fall through and
7440 * restore the original sched domains by considering the
7441 * cpuset configurations.
7442 */
7443 cpuset_force_rebuild();
7444 }
7445 cpuset_update_active_cpus();
7446 }
7447
7448 static int cpuset_cpu_inactive(unsigned int cpu)
7449 {
7450 if (!cpuhp_tasks_frozen) {
7451 if (dl_cpu_busy(cpu))
7452 return -EBUSY;
7453 cpuset_update_active_cpus();
7454 } else {
7455 num_cpus_frozen++;
7456 partition_sched_domains(1, NULL, NULL);
7457 }
7458 return 0;
7459 }
7460
7461 int sched_cpu_activate(unsigned int cpu)
7462 {
7463 struct rq *rq = cpu_rq(cpu);
7464 struct rq_flags rf;
7465
7466 /*
7467 * Make sure that when the hotplug state machine does a roll-back
7468 * we clear balance_push. Ideally that would happen earlier...
7469 */
7470 balance_push_set(cpu, false);
7471
7472 #ifdef CONFIG_SCHED_SMT
7473 /*
7474 * When going up, increment the number of cores with SMT present.
7475 */
7476 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7477 static_branch_inc_cpuslocked(&sched_smt_present);
7478 #endif
7479 set_cpu_active(cpu, true);
7480
7481 if (sched_smp_initialized) {
7482 sched_domains_numa_masks_set(cpu);
7483 cpuset_cpu_active();
7484 }
7485
7486 /*
7487 * Put the rq online, if not already. This happens:
7488 *
7489 * 1) In the early boot process, because we build the real domains
7490 * after all CPUs have been brought up.
7491 *
7492 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7493 * domains.
7494 */
7495 rq_lock_irqsave(rq, &rf);
7496 if (rq->rd) {
7497 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7498 set_rq_online(rq);
7499 }
7500 rq_unlock_irqrestore(rq, &rf);
7501
7502 return 0;
7503 }
7504
7505 int sched_cpu_deactivate(unsigned int cpu)
7506 {
7507 struct rq *rq = cpu_rq(cpu);
7508 struct rq_flags rf;
7509 int ret;
7510
7511 set_cpu_active(cpu, false);
7512
7513 /*
7514 * From this point forward, this CPU will refuse to run any task that
7515 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
7516 * push those tasks away until this gets cleared, see
7517 * sched_cpu_dying().
7518 */
7519 balance_push_set(cpu, true);
7520
7521 /*
7522 * We've cleared cpu_active_mask / set balance_push, wait for all
7523 * preempt-disabled and RCU users of this state to go away such that
7524 * all new such users will observe it.
7525 *
7526 * Specifically, we rely on ttwu to no longer target this CPU, see
7527 * ttwu_queue_cond() and is_cpu_allowed().
7528 *
7529 * Do sync before park smpboot threads to take care the rcu boost case.
7530 */
7531 synchronize_rcu();
7532
7533 rq_lock_irqsave(rq, &rf);
7534 if (rq->rd) {
7535 update_rq_clock(rq);
7536 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7537 set_rq_offline(rq);
7538 }
7539 rq_unlock_irqrestore(rq, &rf);
7540
7541 #ifdef CONFIG_SCHED_SMT
7542 /*
7543 * When going down, decrement the number of cores with SMT present.
7544 */
7545 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7546 static_branch_dec_cpuslocked(&sched_smt_present);
7547 #endif
7548
7549 if (!sched_smp_initialized)
7550 return 0;
7551
7552 ret = cpuset_cpu_inactive(cpu);
7553 if (ret) {
7554 balance_push_set(cpu, false);
7555 set_cpu_active(cpu, true);
7556 return ret;
7557 }
7558 sched_domains_numa_masks_clear(cpu);
7559 return 0;
7560 }
7561
7562 static void sched_rq_cpu_starting(unsigned int cpu)
7563 {
7564 struct rq *rq = cpu_rq(cpu);
7565
7566 rq->calc_load_update = calc_load_update;
7567 update_max_interval();
7568 }
7569
7570 int sched_cpu_starting(unsigned int cpu)
7571 {
7572 sched_rq_cpu_starting(cpu);
7573 sched_tick_start(cpu);
7574 return 0;
7575 }
7576
7577 #ifdef CONFIG_HOTPLUG_CPU
7578
7579 /*
7580 * Invoked immediately before the stopper thread is invoked to bring the
7581 * CPU down completely. At this point all per CPU kthreads except the
7582 * hotplug thread (current) and the stopper thread (inactive) have been
7583 * either parked or have been unbound from the outgoing CPU. Ensure that
7584 * any of those which might be on the way out are gone.
7585 *
7586 * If after this point a bound task is being woken on this CPU then the
7587 * responsible hotplug callback has failed to do it's job.
7588 * sched_cpu_dying() will catch it with the appropriate fireworks.
7589 */
7590 int sched_cpu_wait_empty(unsigned int cpu)
7591 {
7592 balance_hotplug_wait();
7593 return 0;
7594 }
7595
7596 /*
7597 * Since this CPU is going 'away' for a while, fold any nr_active delta we
7598 * might have. Called from the CPU stopper task after ensuring that the
7599 * stopper is the last running task on the CPU, so nr_active count is
7600 * stable. We need to take the teardown thread which is calling this into
7601 * account, so we hand in adjust = 1 to the load calculation.
7602 *
7603 * Also see the comment "Global load-average calculations".
7604 */
7605 static void calc_load_migrate(struct rq *rq)
7606 {
7607 long delta = calc_load_fold_active(rq, 1);
7608
7609 if (delta)
7610 atomic_long_add(delta, &calc_load_tasks);
7611 }
7612
7613 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
7614 {
7615 struct task_struct *g, *p;
7616 int cpu = cpu_of(rq);
7617
7618 lockdep_assert_held(&rq->lock);
7619
7620 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
7621 for_each_process_thread(g, p) {
7622 if (task_cpu(p) != cpu)
7623 continue;
7624
7625 if (!task_on_rq_queued(p))
7626 continue;
7627
7628 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
7629 }
7630 }
7631
7632 int sched_cpu_dying(unsigned int cpu)
7633 {
7634 struct rq *rq = cpu_rq(cpu);
7635 struct rq_flags rf;
7636
7637 /* Handle pending wakeups and then migrate everything off */
7638 sched_tick_stop(cpu);
7639
7640 rq_lock_irqsave(rq, &rf);
7641 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
7642 WARN(true, "Dying CPU not properly vacated!");
7643 dump_rq_tasks(rq, KERN_WARNING);
7644 }
7645 rq_unlock_irqrestore(rq, &rf);
7646
7647 /*
7648 * Now that the CPU is offline, make sure we're welcome
7649 * to new tasks once we come back up.
7650 */
7651 balance_push_set(cpu, false);
7652
7653 calc_load_migrate(rq);
7654 update_max_interval();
7655 nohz_balance_exit_idle(rq);
7656 hrtick_clear(rq);
7657 return 0;
7658 }
7659 #endif
7660
7661 void __init sched_init_smp(void)
7662 {
7663 sched_init_numa();
7664
7665 /*
7666 * There's no userspace yet to cause hotplug operations; hence all the
7667 * CPU masks are stable and all blatant races in the below code cannot
7668 * happen.
7669 */
7670 mutex_lock(&sched_domains_mutex);
7671 sched_init_domains(cpu_active_mask);
7672 mutex_unlock(&sched_domains_mutex);
7673
7674 /* Move init over to a non-isolated CPU */
7675 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
7676 BUG();
7677 sched_init_granularity();
7678
7679 init_sched_rt_class();
7680 init_sched_dl_class();
7681
7682 sched_smp_initialized = true;
7683 }
7684
7685 static int __init migration_init(void)
7686 {
7687 sched_cpu_starting(smp_processor_id());
7688 return 0;
7689 }
7690 early_initcall(migration_init);
7691
7692 #else
7693 void __init sched_init_smp(void)
7694 {
7695 sched_init_granularity();
7696 }
7697 #endif /* CONFIG_SMP */
7698
7699 int in_sched_functions(unsigned long addr)
7700 {
7701 return in_lock_functions(addr) ||
7702 (addr >= (unsigned long)__sched_text_start
7703 && addr < (unsigned long)__sched_text_end);
7704 }
7705
7706 #ifdef CONFIG_CGROUP_SCHED
7707 /*
7708 * Default task group.
7709 * Every task in system belongs to this group at bootup.
7710 */
7711 struct task_group root_task_group;
7712 LIST_HEAD(task_groups);
7713
7714 /* Cacheline aligned slab cache for task_group */
7715 static struct kmem_cache *task_group_cache __read_mostly;
7716 #endif
7717
7718 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7719 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7720
7721 void __init sched_init(void)
7722 {
7723 unsigned long ptr = 0;
7724 int i;
7725
7726 /* Make sure the linker didn't screw up */
7727 BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
7728 &fair_sched_class + 1 != &rt_sched_class ||
7729 &rt_sched_class + 1 != &dl_sched_class);
7730 #ifdef CONFIG_SMP
7731 BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
7732 #endif
7733
7734 wait_bit_init();
7735
7736 #ifdef CONFIG_FAIR_GROUP_SCHED
7737 ptr += 2 * nr_cpu_ids * sizeof(void **);
7738 #endif
7739 #ifdef CONFIG_RT_GROUP_SCHED
7740 ptr += 2 * nr_cpu_ids * sizeof(void **);
7741 #endif
7742 if (ptr) {
7743 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
7744
7745 #ifdef CONFIG_FAIR_GROUP_SCHED
7746 root_task_group.se = (struct sched_entity **)ptr;
7747 ptr += nr_cpu_ids * sizeof(void **);
7748
7749 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7750 ptr += nr_cpu_ids * sizeof(void **);
7751
7752 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7753 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7754 #endif /* CONFIG_FAIR_GROUP_SCHED */
7755 #ifdef CONFIG_RT_GROUP_SCHED
7756 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7757 ptr += nr_cpu_ids * sizeof(void **);
7758
7759 root_task_group.rt_rq = (struct rt_rq **)ptr;
7760 ptr += nr_cpu_ids * sizeof(void **);
7761
7762 #endif /* CONFIG_RT_GROUP_SCHED */
7763 }
7764 #ifdef CONFIG_CPUMASK_OFFSTACK
7765 for_each_possible_cpu(i) {
7766 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7767 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7768 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7769 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7770 }
7771 #endif /* CONFIG_CPUMASK_OFFSTACK */
7772
7773 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
7774 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
7775
7776 #ifdef CONFIG_SMP
7777 init_defrootdomain();
7778 #endif
7779
7780 #ifdef CONFIG_RT_GROUP_SCHED
7781 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7782 global_rt_period(), global_rt_runtime());
7783 #endif /* CONFIG_RT_GROUP_SCHED */
7784
7785 #ifdef CONFIG_CGROUP_SCHED
7786 task_group_cache = KMEM_CACHE(task_group, 0);
7787
7788 list_add(&root_task_group.list, &task_groups);
7789 INIT_LIST_HEAD(&root_task_group.children);
7790 INIT_LIST_HEAD(&root_task_group.siblings);
7791 autogroup_init(&init_task);
7792 #endif /* CONFIG_CGROUP_SCHED */
7793
7794 for_each_possible_cpu(i) {
7795 struct rq *rq;
7796
7797 rq = cpu_rq(i);
7798 raw_spin_lock_init(&rq->lock);
7799 rq->nr_running = 0;
7800 rq->calc_load_active = 0;
7801 rq->calc_load_update = jiffies + LOAD_FREQ;
7802 init_cfs_rq(&rq->cfs);
7803 init_rt_rq(&rq->rt);
7804 init_dl_rq(&rq->dl);
7805 #ifdef CONFIG_FAIR_GROUP_SCHED
7806 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7807 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7808 /*
7809 * How much CPU bandwidth does root_task_group get?
7810 *
7811 * In case of task-groups formed thr' the cgroup filesystem, it
7812 * gets 100% of the CPU resources in the system. This overall
7813 * system CPU resource is divided among the tasks of
7814 * root_task_group and its child task-groups in a fair manner,
7815 * based on each entity's (task or task-group's) weight
7816 * (se->load.weight).
7817 *
7818 * In other words, if root_task_group has 10 tasks of weight
7819 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7820 * then A0's share of the CPU resource is:
7821 *
7822 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7823 *
7824 * We achieve this by letting root_task_group's tasks sit
7825 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7826 */
7827 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7828 #endif /* CONFIG_FAIR_GROUP_SCHED */
7829
7830 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7831 #ifdef CONFIG_RT_GROUP_SCHED
7832 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7833 #endif
7834 #ifdef CONFIG_SMP
7835 rq->sd = NULL;
7836 rq->rd = NULL;
7837 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7838 rq->balance_callback = NULL;
7839 rq->active_balance = 0;
7840 rq->next_balance = jiffies;
7841 rq->push_cpu = 0;
7842 rq->cpu = i;
7843 rq->online = 0;
7844 rq->idle_stamp = 0;
7845 rq->avg_idle = 2*sysctl_sched_migration_cost;
7846 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7847
7848 INIT_LIST_HEAD(&rq->cfs_tasks);
7849
7850 rq_attach_root(rq, &def_root_domain);
7851 #ifdef CONFIG_NO_HZ_COMMON
7852 rq->last_blocked_load_update_tick = jiffies;
7853 atomic_set(&rq->nohz_flags, 0);
7854
7855 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
7856 #endif
7857 #ifdef CONFIG_HOTPLUG_CPU
7858 rcuwait_init(&rq->hotplug_wait);
7859 #endif
7860 #endif /* CONFIG_SMP */
7861 hrtick_rq_init(rq);
7862 atomic_set(&rq->nr_iowait, 0);
7863 }
7864
7865 set_load_weight(&init_task, false);
7866
7867 /*
7868 * The boot idle thread does lazy MMU switching as well:
7869 */
7870 mmgrab(&init_mm);
7871 enter_lazy_tlb(&init_mm, current);
7872
7873 /*
7874 * Make us the idle thread. Technically, schedule() should not be
7875 * called from this thread, however somewhere below it might be,
7876 * but because we are the idle thread, we just pick up running again
7877 * when this runqueue becomes "idle".
7878 */
7879 init_idle(current, smp_processor_id());
7880
7881 calc_load_update = jiffies + LOAD_FREQ;
7882
7883 #ifdef CONFIG_SMP
7884 idle_thread_set_boot_cpu();
7885 #endif
7886 init_sched_fair_class();
7887
7888 init_schedstats();
7889
7890 psi_init();
7891
7892 init_uclamp();
7893
7894 scheduler_running = 1;
7895 }
7896
7897 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7898 static inline int preempt_count_equals(int preempt_offset)
7899 {
7900 int nested = preempt_count() + rcu_preempt_depth();
7901
7902 return (nested == preempt_offset);
7903 }
7904
7905 void __might_sleep(const char *file, int line, int preempt_offset)
7906 {
7907 /*
7908 * Blocking primitives will set (and therefore destroy) current->state,
7909 * since we will exit with TASK_RUNNING make sure we enter with it,
7910 * otherwise we will destroy state.
7911 */
7912 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7913 "do not call blocking ops when !TASK_RUNNING; "
7914 "state=%lx set at [<%p>] %pS\n",
7915 current->state,
7916 (void *)current->task_state_change,
7917 (void *)current->task_state_change);
7918
7919 ___might_sleep(file, line, preempt_offset);
7920 }
7921 EXPORT_SYMBOL(__might_sleep);
7922
7923 void ___might_sleep(const char *file, int line, int preempt_offset)
7924 {
7925 /* Ratelimiting timestamp: */
7926 static unsigned long prev_jiffy;
7927
7928 unsigned long preempt_disable_ip;
7929
7930 /* WARN_ON_ONCE() by default, no rate limit required: */
7931 rcu_sleep_check();
7932
7933 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7934 !is_idle_task(current) && !current->non_block_count) ||
7935 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
7936 oops_in_progress)
7937 return;
7938
7939 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7940 return;
7941 prev_jiffy = jiffies;
7942
7943 /* Save this before calling printk(), since that will clobber it: */
7944 preempt_disable_ip = get_preempt_disable_ip(current);
7945
7946 printk(KERN_ERR
7947 "BUG: sleeping function called from invalid context at %s:%d\n",
7948 file, line);
7949 printk(KERN_ERR
7950 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
7951 in_atomic(), irqs_disabled(), current->non_block_count,
7952 current->pid, current->comm);
7953
7954 if (task_stack_end_corrupted(current))
7955 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7956
7957 debug_show_held_locks(current);
7958 if (irqs_disabled())
7959 print_irqtrace_events(current);
7960 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7961 && !preempt_count_equals(preempt_offset)) {
7962 pr_err("Preemption disabled at:");
7963 print_ip_sym(KERN_ERR, preempt_disable_ip);
7964 }
7965 dump_stack();
7966 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7967 }
7968 EXPORT_SYMBOL(___might_sleep);
7969
7970 void __cant_sleep(const char *file, int line, int preempt_offset)
7971 {
7972 static unsigned long prev_jiffy;
7973
7974 if (irqs_disabled())
7975 return;
7976
7977 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
7978 return;
7979
7980 if (preempt_count() > preempt_offset)
7981 return;
7982
7983 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7984 return;
7985 prev_jiffy = jiffies;
7986
7987 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
7988 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7989 in_atomic(), irqs_disabled(),
7990 current->pid, current->comm);
7991
7992 debug_show_held_locks(current);
7993 dump_stack();
7994 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7995 }
7996 EXPORT_SYMBOL_GPL(__cant_sleep);
7997
7998 #ifdef CONFIG_SMP
7999 void __cant_migrate(const char *file, int line)
8000 {
8001 static unsigned long prev_jiffy;
8002
8003 if (irqs_disabled())
8004 return;
8005
8006 if (is_migration_disabled(current))
8007 return;
8008
8009 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8010 return;
8011
8012 if (preempt_count() > 0)
8013 return;
8014
8015 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8016 return;
8017 prev_jiffy = jiffies;
8018
8019 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8020 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8021 in_atomic(), irqs_disabled(), is_migration_disabled(current),
8022 current->pid, current->comm);
8023
8024 debug_show_held_locks(current);
8025 dump_stack();
8026 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8027 }
8028 EXPORT_SYMBOL_GPL(__cant_migrate);
8029 #endif
8030 #endif
8031
8032 #ifdef CONFIG_MAGIC_SYSRQ
8033 void normalize_rt_tasks(void)
8034 {
8035 struct task_struct *g, *p;
8036 struct sched_attr attr = {
8037 .sched_policy = SCHED_NORMAL,
8038 };
8039
8040 read_lock(&tasklist_lock);
8041 for_each_process_thread(g, p) {
8042 /*
8043 * Only normalize user tasks:
8044 */
8045 if (p->flags & PF_KTHREAD)
8046 continue;
8047
8048 p->se.exec_start = 0;
8049 schedstat_set(p->se.statistics.wait_start, 0);
8050 schedstat_set(p->se.statistics.sleep_start, 0);
8051 schedstat_set(p->se.statistics.block_start, 0);
8052
8053 if (!dl_task(p) && !rt_task(p)) {
8054 /*
8055 * Renice negative nice level userspace
8056 * tasks back to 0:
8057 */
8058 if (task_nice(p) < 0)
8059 set_user_nice(p, 0);
8060 continue;
8061 }
8062
8063 __sched_setscheduler(p, &attr, false, false);
8064 }
8065 read_unlock(&tasklist_lock);
8066 }
8067
8068 #endif /* CONFIG_MAGIC_SYSRQ */
8069
8070 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8071 /*
8072 * These functions are only useful for the IA64 MCA handling, or kdb.
8073 *
8074 * They can only be called when the whole system has been
8075 * stopped - every CPU needs to be quiescent, and no scheduling
8076 * activity can take place. Using them for anything else would
8077 * be a serious bug, and as a result, they aren't even visible
8078 * under any other configuration.
8079 */
8080
8081 /**
8082 * curr_task - return the current task for a given CPU.
8083 * @cpu: the processor in question.
8084 *
8085 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8086 *
8087 * Return: The current task for @cpu.
8088 */
8089 struct task_struct *curr_task(int cpu)
8090 {
8091 return cpu_curr(cpu);
8092 }
8093
8094 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8095
8096 #ifdef CONFIG_IA64
8097 /**
8098 * ia64_set_curr_task - set the current task for a given CPU.
8099 * @cpu: the processor in question.
8100 * @p: the task pointer to set.
8101 *
8102 * Description: This function must only be used when non-maskable interrupts
8103 * are serviced on a separate stack. It allows the architecture to switch the
8104 * notion of the current task on a CPU in a non-blocking manner. This function
8105 * must be called with all CPU's synchronized, and interrupts disabled, the
8106 * and caller must save the original value of the current task (see
8107 * curr_task() above) and restore that value before reenabling interrupts and
8108 * re-starting the system.
8109 *
8110 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8111 */
8112 void ia64_set_curr_task(int cpu, struct task_struct *p)
8113 {
8114 cpu_curr(cpu) = p;
8115 }
8116
8117 #endif
8118
8119 #ifdef CONFIG_CGROUP_SCHED
8120 /* task_group_lock serializes the addition/removal of task groups */
8121 static DEFINE_SPINLOCK(task_group_lock);
8122
8123 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8124 struct task_group *parent)
8125 {
8126 #ifdef CONFIG_UCLAMP_TASK_GROUP
8127 enum uclamp_id clamp_id;
8128
8129 for_each_clamp_id(clamp_id) {
8130 uclamp_se_set(&tg->uclamp_req[clamp_id],
8131 uclamp_none(clamp_id), false);
8132 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8133 }
8134 #endif
8135 }
8136
8137 static void sched_free_group(struct task_group *tg)
8138 {
8139 free_fair_sched_group(tg);
8140 free_rt_sched_group(tg);
8141 autogroup_free(tg);
8142 kmem_cache_free(task_group_cache, tg);
8143 }
8144
8145 /* allocate runqueue etc for a new task group */
8146 struct task_group *sched_create_group(struct task_group *parent)
8147 {
8148 struct task_group *tg;
8149
8150 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8151 if (!tg)
8152 return ERR_PTR(-ENOMEM);
8153
8154 if (!alloc_fair_sched_group(tg, parent))
8155 goto err;
8156
8157 if (!alloc_rt_sched_group(tg, parent))
8158 goto err;
8159
8160 alloc_uclamp_sched_group(tg, parent);
8161
8162 return tg;
8163
8164 err:
8165 sched_free_group(tg);
8166 return ERR_PTR(-ENOMEM);
8167 }
8168
8169 void sched_online_group(struct task_group *tg, struct task_group *parent)
8170 {
8171 unsigned long flags;
8172
8173 spin_lock_irqsave(&task_group_lock, flags);
8174 list_add_rcu(&tg->list, &task_groups);
8175
8176 /* Root should already exist: */
8177 WARN_ON(!parent);
8178
8179 tg->parent = parent;
8180 INIT_LIST_HEAD(&tg->children);
8181 list_add_rcu(&tg->siblings, &parent->children);
8182 spin_unlock_irqrestore(&task_group_lock, flags);
8183
8184 online_fair_sched_group(tg);
8185 }
8186
8187 /* rcu callback to free various structures associated with a task group */
8188 static void sched_free_group_rcu(struct rcu_head *rhp)
8189 {
8190 /* Now it should be safe to free those cfs_rqs: */
8191 sched_free_group(container_of(rhp, struct task_group, rcu));
8192 }
8193
8194 void sched_destroy_group(struct task_group *tg)
8195 {
8196 /* Wait for possible concurrent references to cfs_rqs complete: */
8197 call_rcu(&tg->rcu, sched_free_group_rcu);
8198 }
8199
8200 void sched_offline_group(struct task_group *tg)
8201 {
8202 unsigned long flags;
8203
8204 /* End participation in shares distribution: */
8205 unregister_fair_sched_group(tg);
8206
8207 spin_lock_irqsave(&task_group_lock, flags);
8208 list_del_rcu(&tg->list);
8209 list_del_rcu(&tg->siblings);
8210 spin_unlock_irqrestore(&task_group_lock, flags);
8211 }
8212
8213 static void sched_change_group(struct task_struct *tsk, int type)
8214 {
8215 struct task_group *tg;
8216
8217 /*
8218 * All callers are synchronized by task_rq_lock(); we do not use RCU
8219 * which is pointless here. Thus, we pass "true" to task_css_check()
8220 * to prevent lockdep warnings.
8221 */
8222 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8223 struct task_group, css);
8224 tg = autogroup_task_group(tsk, tg);
8225 tsk->sched_task_group = tg;
8226
8227 #ifdef CONFIG_FAIR_GROUP_SCHED
8228 if (tsk->sched_class->task_change_group)
8229 tsk->sched_class->task_change_group(tsk, type);
8230 else
8231 #endif
8232 set_task_rq(tsk, task_cpu(tsk));
8233 }
8234
8235 /*
8236 * Change task's runqueue when it moves between groups.
8237 *
8238 * The caller of this function should have put the task in its new group by
8239 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8240 * its new group.
8241 */
8242 void sched_move_task(struct task_struct *tsk)
8243 {
8244 int queued, running, queue_flags =
8245 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
8246 struct rq_flags rf;
8247 struct rq *rq;
8248
8249 rq = task_rq_lock(tsk, &rf);
8250 update_rq_clock(rq);
8251
8252 running = task_current(rq, tsk);
8253 queued = task_on_rq_queued(tsk);
8254
8255 if (queued)
8256 dequeue_task(rq, tsk, queue_flags);
8257 if (running)
8258 put_prev_task(rq, tsk);
8259
8260 sched_change_group(tsk, TASK_MOVE_GROUP);
8261
8262 if (queued)
8263 enqueue_task(rq, tsk, queue_flags);
8264 if (running) {
8265 set_next_task(rq, tsk);
8266 /*
8267 * After changing group, the running task may have joined a
8268 * throttled one but it's still the running task. Trigger a
8269 * resched to make sure that task can still run.
8270 */
8271 resched_curr(rq);
8272 }
8273
8274 task_rq_unlock(rq, tsk, &rf);
8275 }
8276
8277 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8278 {
8279 return css ? container_of(css, struct task_group, css) : NULL;
8280 }
8281
8282 static struct cgroup_subsys_state *
8283 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8284 {
8285 struct task_group *parent = css_tg(parent_css);
8286 struct task_group *tg;
8287
8288 if (!parent) {
8289 /* This is early initialization for the top cgroup */
8290 return &root_task_group.css;
8291 }
8292
8293 tg = sched_create_group(parent);
8294 if (IS_ERR(tg))
8295 return ERR_PTR(-ENOMEM);
8296
8297 return &tg->css;
8298 }
8299
8300 /* Expose task group only after completing cgroup initialization */
8301 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8302 {
8303 struct task_group *tg = css_tg(css);
8304 struct task_group *parent = css_tg(css->parent);
8305
8306 if (parent)
8307 sched_online_group(tg, parent);
8308
8309 #ifdef CONFIG_UCLAMP_TASK_GROUP
8310 /* Propagate the effective uclamp value for the new group */
8311 cpu_util_update_eff(css);
8312 #endif
8313
8314 return 0;
8315 }
8316
8317 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8318 {
8319 struct task_group *tg = css_tg(css);
8320
8321 sched_offline_group(tg);
8322 }
8323
8324 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8325 {
8326 struct task_group *tg = css_tg(css);
8327
8328 /*
8329 * Relies on the RCU grace period between css_released() and this.
8330 */
8331 sched_free_group(tg);
8332 }
8333
8334 /*
8335 * This is called before wake_up_new_task(), therefore we really only
8336 * have to set its group bits, all the other stuff does not apply.
8337 */
8338 static void cpu_cgroup_fork(struct task_struct *task)
8339 {
8340 struct rq_flags rf;
8341 struct rq *rq;
8342
8343 rq = task_rq_lock(task, &rf);
8344
8345 update_rq_clock(rq);
8346 sched_change_group(task, TASK_SET_GROUP);
8347
8348 task_rq_unlock(rq, task, &rf);
8349 }
8350
8351 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8352 {
8353 struct task_struct *task;
8354 struct cgroup_subsys_state *css;
8355 int ret = 0;
8356
8357 cgroup_taskset_for_each(task, css, tset) {
8358 #ifdef CONFIG_RT_GROUP_SCHED
8359 if (!sched_rt_can_attach(css_tg(css), task))
8360 return -EINVAL;
8361 #endif
8362 /*
8363 * Serialize against wake_up_new_task() such that if it's
8364 * running, we're sure to observe its full state.
8365 */
8366 raw_spin_lock_irq(&task->pi_lock);
8367 /*
8368 * Avoid calling sched_move_task() before wake_up_new_task()
8369 * has happened. This would lead to problems with PELT, due to
8370 * move wanting to detach+attach while we're not attached yet.
8371 */
8372 if (task->state == TASK_NEW)
8373 ret = -EINVAL;
8374 raw_spin_unlock_irq(&task->pi_lock);
8375
8376 if (ret)
8377 break;
8378 }
8379 return ret;
8380 }
8381
8382 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8383 {
8384 struct task_struct *task;
8385 struct cgroup_subsys_state *css;
8386
8387 cgroup_taskset_for_each(task, css, tset)
8388 sched_move_task(task);
8389 }
8390
8391 #ifdef CONFIG_UCLAMP_TASK_GROUP
8392 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
8393 {
8394 struct cgroup_subsys_state *top_css = css;
8395 struct uclamp_se *uc_parent = NULL;
8396 struct uclamp_se *uc_se = NULL;
8397 unsigned int eff[UCLAMP_CNT];
8398 enum uclamp_id clamp_id;
8399 unsigned int clamps;
8400
8401 css_for_each_descendant_pre(css, top_css) {
8402 uc_parent = css_tg(css)->parent
8403 ? css_tg(css)->parent->uclamp : NULL;
8404
8405 for_each_clamp_id(clamp_id) {
8406 /* Assume effective clamps matches requested clamps */
8407 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
8408 /* Cap effective clamps with parent's effective clamps */
8409 if (uc_parent &&
8410 eff[clamp_id] > uc_parent[clamp_id].value) {
8411 eff[clamp_id] = uc_parent[clamp_id].value;
8412 }
8413 }
8414 /* Ensure protection is always capped by limit */
8415 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
8416
8417 /* Propagate most restrictive effective clamps */
8418 clamps = 0x0;
8419 uc_se = css_tg(css)->uclamp;
8420 for_each_clamp_id(clamp_id) {
8421 if (eff[clamp_id] == uc_se[clamp_id].value)
8422 continue;
8423 uc_se[clamp_id].value = eff[clamp_id];
8424 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
8425 clamps |= (0x1 << clamp_id);
8426 }
8427 if (!clamps) {
8428 css = css_rightmost_descendant(css);
8429 continue;
8430 }
8431
8432 /* Immediately update descendants RUNNABLE tasks */
8433 uclamp_update_active_tasks(css, clamps);
8434 }
8435 }
8436
8437 /*
8438 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
8439 * C expression. Since there is no way to convert a macro argument (N) into a
8440 * character constant, use two levels of macros.
8441 */
8442 #define _POW10(exp) ((unsigned int)1e##exp)
8443 #define POW10(exp) _POW10(exp)
8444
8445 struct uclamp_request {
8446 #define UCLAMP_PERCENT_SHIFT 2
8447 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
8448 s64 percent;
8449 u64 util;
8450 int ret;
8451 };
8452
8453 static inline struct uclamp_request
8454 capacity_from_percent(char *buf)
8455 {
8456 struct uclamp_request req = {
8457 .percent = UCLAMP_PERCENT_SCALE,
8458 .util = SCHED_CAPACITY_SCALE,
8459 .ret = 0,
8460 };
8461
8462 buf = strim(buf);
8463 if (strcmp(buf, "max")) {
8464 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
8465 &req.percent);
8466 if (req.ret)
8467 return req;
8468 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
8469 req.ret = -ERANGE;
8470 return req;
8471 }
8472
8473 req.util = req.percent << SCHED_CAPACITY_SHIFT;
8474 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
8475 }
8476
8477 return req;
8478 }
8479
8480 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
8481 size_t nbytes, loff_t off,
8482 enum uclamp_id clamp_id)
8483 {
8484 struct uclamp_request req;
8485 struct task_group *tg;
8486
8487 req = capacity_from_percent(buf);
8488 if (req.ret)
8489 return req.ret;
8490
8491 static_branch_enable(&sched_uclamp_used);
8492
8493 mutex_lock(&uclamp_mutex);
8494 rcu_read_lock();
8495
8496 tg = css_tg(of_css(of));
8497 if (tg->uclamp_req[clamp_id].value != req.util)
8498 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
8499
8500 /*
8501 * Because of not recoverable conversion rounding we keep track of the
8502 * exact requested value
8503 */
8504 tg->uclamp_pct[clamp_id] = req.percent;
8505
8506 /* Update effective clamps to track the most restrictive value */
8507 cpu_util_update_eff(of_css(of));
8508
8509 rcu_read_unlock();
8510 mutex_unlock(&uclamp_mutex);
8511
8512 return nbytes;
8513 }
8514
8515 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
8516 char *buf, size_t nbytes,
8517 loff_t off)
8518 {
8519 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
8520 }
8521
8522 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
8523 char *buf, size_t nbytes,
8524 loff_t off)
8525 {
8526 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
8527 }
8528
8529 static inline void cpu_uclamp_print(struct seq_file *sf,
8530 enum uclamp_id clamp_id)
8531 {
8532 struct task_group *tg;
8533 u64 util_clamp;
8534 u64 percent;
8535 u32 rem;
8536
8537 rcu_read_lock();
8538 tg = css_tg(seq_css(sf));
8539 util_clamp = tg->uclamp_req[clamp_id].value;
8540 rcu_read_unlock();
8541
8542 if (util_clamp == SCHED_CAPACITY_SCALE) {
8543 seq_puts(sf, "max\n");
8544 return;
8545 }
8546
8547 percent = tg->uclamp_pct[clamp_id];
8548 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
8549 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
8550 }
8551
8552 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
8553 {
8554 cpu_uclamp_print(sf, UCLAMP_MIN);
8555 return 0;
8556 }
8557
8558 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
8559 {
8560 cpu_uclamp_print(sf, UCLAMP_MAX);
8561 return 0;
8562 }
8563 #endif /* CONFIG_UCLAMP_TASK_GROUP */
8564
8565 #ifdef CONFIG_FAIR_GROUP_SCHED
8566 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8567 struct cftype *cftype, u64 shareval)
8568 {
8569 if (shareval > scale_load_down(ULONG_MAX))
8570 shareval = MAX_SHARES;
8571 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8572 }
8573
8574 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8575 struct cftype *cft)
8576 {
8577 struct task_group *tg = css_tg(css);
8578
8579 return (u64) scale_load_down(tg->shares);
8580 }
8581
8582 #ifdef CONFIG_CFS_BANDWIDTH
8583 static DEFINE_MUTEX(cfs_constraints_mutex);
8584
8585 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8586 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8587 /* More than 203 days if BW_SHIFT equals 20. */
8588 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
8589
8590 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8591
8592 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8593 {
8594 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8595 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8596
8597 if (tg == &root_task_group)
8598 return -EINVAL;
8599
8600 /*
8601 * Ensure we have at some amount of bandwidth every period. This is
8602 * to prevent reaching a state of large arrears when throttled via
8603 * entity_tick() resulting in prolonged exit starvation.
8604 */
8605 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8606 return -EINVAL;
8607
8608 /*
8609 * Likewise, bound things on the otherside by preventing insane quota
8610 * periods. This also allows us to normalize in computing quota
8611 * feasibility.
8612 */
8613 if (period > max_cfs_quota_period)
8614 return -EINVAL;
8615
8616 /*
8617 * Bound quota to defend quota against overflow during bandwidth shift.
8618 */
8619 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
8620 return -EINVAL;
8621
8622 /*
8623 * Prevent race between setting of cfs_rq->runtime_enabled and
8624 * unthrottle_offline_cfs_rqs().
8625 */
8626 get_online_cpus();
8627 mutex_lock(&cfs_constraints_mutex);
8628 ret = __cfs_schedulable(tg, period, quota);
8629 if (ret)
8630 goto out_unlock;
8631
8632 runtime_enabled = quota != RUNTIME_INF;
8633 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8634 /*
8635 * If we need to toggle cfs_bandwidth_used, off->on must occur
8636 * before making related changes, and on->off must occur afterwards
8637 */
8638 if (runtime_enabled && !runtime_was_enabled)
8639 cfs_bandwidth_usage_inc();
8640 raw_spin_lock_irq(&cfs_b->lock);
8641 cfs_b->period = ns_to_ktime(period);
8642 cfs_b->quota = quota;
8643
8644 __refill_cfs_bandwidth_runtime(cfs_b);
8645
8646 /* Restart the period timer (if active) to handle new period expiry: */
8647 if (runtime_enabled)
8648 start_cfs_bandwidth(cfs_b);
8649
8650 raw_spin_unlock_irq(&cfs_b->lock);
8651
8652 for_each_online_cpu(i) {
8653 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8654 struct rq *rq = cfs_rq->rq;
8655 struct rq_flags rf;
8656
8657 rq_lock_irq(rq, &rf);
8658 cfs_rq->runtime_enabled = runtime_enabled;
8659 cfs_rq->runtime_remaining = 0;
8660
8661 if (cfs_rq->throttled)
8662 unthrottle_cfs_rq(cfs_rq);
8663 rq_unlock_irq(rq, &rf);
8664 }
8665 if (runtime_was_enabled && !runtime_enabled)
8666 cfs_bandwidth_usage_dec();
8667 out_unlock:
8668 mutex_unlock(&cfs_constraints_mutex);
8669 put_online_cpus();
8670
8671 return ret;
8672 }
8673
8674 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8675 {
8676 u64 quota, period;
8677
8678 period = ktime_to_ns(tg->cfs_bandwidth.period);
8679 if (cfs_quota_us < 0)
8680 quota = RUNTIME_INF;
8681 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
8682 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8683 else
8684 return -EINVAL;
8685
8686 return tg_set_cfs_bandwidth(tg, period, quota);
8687 }
8688
8689 static long tg_get_cfs_quota(struct task_group *tg)
8690 {
8691 u64 quota_us;
8692
8693 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8694 return -1;
8695
8696 quota_us = tg->cfs_bandwidth.quota;
8697 do_div(quota_us, NSEC_PER_USEC);
8698
8699 return quota_us;
8700 }
8701
8702 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8703 {
8704 u64 quota, period;
8705
8706 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
8707 return -EINVAL;
8708
8709 period = (u64)cfs_period_us * NSEC_PER_USEC;
8710 quota = tg->cfs_bandwidth.quota;
8711
8712 return tg_set_cfs_bandwidth(tg, period, quota);
8713 }
8714
8715 static long tg_get_cfs_period(struct task_group *tg)
8716 {
8717 u64 cfs_period_us;
8718
8719 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8720 do_div(cfs_period_us, NSEC_PER_USEC);
8721
8722 return cfs_period_us;
8723 }
8724
8725 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8726 struct cftype *cft)
8727 {
8728 return tg_get_cfs_quota(css_tg(css));
8729 }
8730
8731 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8732 struct cftype *cftype, s64 cfs_quota_us)
8733 {
8734 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8735 }
8736
8737 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8738 struct cftype *cft)
8739 {
8740 return tg_get_cfs_period(css_tg(css));
8741 }
8742
8743 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8744 struct cftype *cftype, u64 cfs_period_us)
8745 {
8746 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8747 }
8748
8749 struct cfs_schedulable_data {
8750 struct task_group *tg;
8751 u64 period, quota;
8752 };
8753
8754 /*
8755 * normalize group quota/period to be quota/max_period
8756 * note: units are usecs
8757 */
8758 static u64 normalize_cfs_quota(struct task_group *tg,
8759 struct cfs_schedulable_data *d)
8760 {
8761 u64 quota, period;
8762
8763 if (tg == d->tg) {
8764 period = d->period;
8765 quota = d->quota;
8766 } else {
8767 period = tg_get_cfs_period(tg);
8768 quota = tg_get_cfs_quota(tg);
8769 }
8770
8771 /* note: these should typically be equivalent */
8772 if (quota == RUNTIME_INF || quota == -1)
8773 return RUNTIME_INF;
8774
8775 return to_ratio(period, quota);
8776 }
8777
8778 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8779 {
8780 struct cfs_schedulable_data *d = data;
8781 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8782 s64 quota = 0, parent_quota = -1;
8783
8784 if (!tg->parent) {
8785 quota = RUNTIME_INF;
8786 } else {
8787 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8788
8789 quota = normalize_cfs_quota(tg, d);
8790 parent_quota = parent_b->hierarchical_quota;
8791
8792 /*
8793 * Ensure max(child_quota) <= parent_quota. On cgroup2,
8794 * always take the min. On cgroup1, only inherit when no
8795 * limit is set:
8796 */
8797 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
8798 quota = min(quota, parent_quota);
8799 } else {
8800 if (quota == RUNTIME_INF)
8801 quota = parent_quota;
8802 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8803 return -EINVAL;
8804 }
8805 }
8806 cfs_b->hierarchical_quota = quota;
8807
8808 return 0;
8809 }
8810
8811 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8812 {
8813 int ret;
8814 struct cfs_schedulable_data data = {
8815 .tg = tg,
8816 .period = period,
8817 .quota = quota,
8818 };
8819
8820 if (quota != RUNTIME_INF) {
8821 do_div(data.period, NSEC_PER_USEC);
8822 do_div(data.quota, NSEC_PER_USEC);
8823 }
8824
8825 rcu_read_lock();
8826 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8827 rcu_read_unlock();
8828
8829 return ret;
8830 }
8831
8832 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
8833 {
8834 struct task_group *tg = css_tg(seq_css(sf));
8835 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8836
8837 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8838 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8839 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8840
8841 if (schedstat_enabled() && tg != &root_task_group) {
8842 u64 ws = 0;
8843 int i;
8844
8845 for_each_possible_cpu(i)
8846 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
8847
8848 seq_printf(sf, "wait_sum %llu\n", ws);
8849 }
8850
8851 return 0;
8852 }
8853 #endif /* CONFIG_CFS_BANDWIDTH */
8854 #endif /* CONFIG_FAIR_GROUP_SCHED */
8855
8856 #ifdef CONFIG_RT_GROUP_SCHED
8857 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8858 struct cftype *cft, s64 val)
8859 {
8860 return sched_group_set_rt_runtime(css_tg(css), val);
8861 }
8862
8863 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8864 struct cftype *cft)
8865 {
8866 return sched_group_rt_runtime(css_tg(css));
8867 }
8868
8869 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8870 struct cftype *cftype, u64 rt_period_us)
8871 {
8872 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8873 }
8874
8875 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8876 struct cftype *cft)
8877 {
8878 return sched_group_rt_period(css_tg(css));
8879 }
8880 #endif /* CONFIG_RT_GROUP_SCHED */
8881
8882 static struct cftype cpu_legacy_files[] = {
8883 #ifdef CONFIG_FAIR_GROUP_SCHED
8884 {
8885 .name = "shares",
8886 .read_u64 = cpu_shares_read_u64,
8887 .write_u64 = cpu_shares_write_u64,
8888 },
8889 #endif
8890 #ifdef CONFIG_CFS_BANDWIDTH
8891 {
8892 .name = "cfs_quota_us",
8893 .read_s64 = cpu_cfs_quota_read_s64,
8894 .write_s64 = cpu_cfs_quota_write_s64,
8895 },
8896 {
8897 .name = "cfs_period_us",
8898 .read_u64 = cpu_cfs_period_read_u64,
8899 .write_u64 = cpu_cfs_period_write_u64,
8900 },
8901 {
8902 .name = "stat",
8903 .seq_show = cpu_cfs_stat_show,
8904 },
8905 #endif
8906 #ifdef CONFIG_RT_GROUP_SCHED
8907 {
8908 .name = "rt_runtime_us",
8909 .read_s64 = cpu_rt_runtime_read,
8910 .write_s64 = cpu_rt_runtime_write,
8911 },
8912 {
8913 .name = "rt_period_us",
8914 .read_u64 = cpu_rt_period_read_uint,
8915 .write_u64 = cpu_rt_period_write_uint,
8916 },
8917 #endif
8918 #ifdef CONFIG_UCLAMP_TASK_GROUP
8919 {
8920 .name = "uclamp.min",
8921 .flags = CFTYPE_NOT_ON_ROOT,
8922 .seq_show = cpu_uclamp_min_show,
8923 .write = cpu_uclamp_min_write,
8924 },
8925 {
8926 .name = "uclamp.max",
8927 .flags = CFTYPE_NOT_ON_ROOT,
8928 .seq_show = cpu_uclamp_max_show,
8929 .write = cpu_uclamp_max_write,
8930 },
8931 #endif
8932 { } /* Terminate */
8933 };
8934
8935 static int cpu_extra_stat_show(struct seq_file *sf,
8936 struct cgroup_subsys_state *css)
8937 {
8938 #ifdef CONFIG_CFS_BANDWIDTH
8939 {
8940 struct task_group *tg = css_tg(css);
8941 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8942 u64 throttled_usec;
8943
8944 throttled_usec = cfs_b->throttled_time;
8945 do_div(throttled_usec, NSEC_PER_USEC);
8946
8947 seq_printf(sf, "nr_periods %d\n"
8948 "nr_throttled %d\n"
8949 "throttled_usec %llu\n",
8950 cfs_b->nr_periods, cfs_b->nr_throttled,
8951 throttled_usec);
8952 }
8953 #endif
8954 return 0;
8955 }
8956
8957 #ifdef CONFIG_FAIR_GROUP_SCHED
8958 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
8959 struct cftype *cft)
8960 {
8961 struct task_group *tg = css_tg(css);
8962 u64 weight = scale_load_down(tg->shares);
8963
8964 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
8965 }
8966
8967 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
8968 struct cftype *cft, u64 weight)
8969 {
8970 /*
8971 * cgroup weight knobs should use the common MIN, DFL and MAX
8972 * values which are 1, 100 and 10000 respectively. While it loses
8973 * a bit of range on both ends, it maps pretty well onto the shares
8974 * value used by scheduler and the round-trip conversions preserve
8975 * the original value over the entire range.
8976 */
8977 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
8978 return -ERANGE;
8979
8980 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
8981
8982 return sched_group_set_shares(css_tg(css), scale_load(weight));
8983 }
8984
8985 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
8986 struct cftype *cft)
8987 {
8988 unsigned long weight = scale_load_down(css_tg(css)->shares);
8989 int last_delta = INT_MAX;
8990 int prio, delta;
8991
8992 /* find the closest nice value to the current weight */
8993 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
8994 delta = abs(sched_prio_to_weight[prio] - weight);
8995 if (delta >= last_delta)
8996 break;
8997 last_delta = delta;
8998 }
8999
9000 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
9001 }
9002
9003 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
9004 struct cftype *cft, s64 nice)
9005 {
9006 unsigned long weight;
9007 int idx;
9008
9009 if (nice < MIN_NICE || nice > MAX_NICE)
9010 return -ERANGE;
9011
9012 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
9013 idx = array_index_nospec(idx, 40);
9014 weight = sched_prio_to_weight[idx];
9015
9016 return sched_group_set_shares(css_tg(css), scale_load(weight));
9017 }
9018 #endif
9019
9020 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
9021 long period, long quota)
9022 {
9023 if (quota < 0)
9024 seq_puts(sf, "max");
9025 else
9026 seq_printf(sf, "%ld", quota);
9027
9028 seq_printf(sf, " %ld\n", period);
9029 }
9030
9031 /* caller should put the current value in *@periodp before calling */
9032 static int __maybe_unused cpu_period_quota_parse(char *buf,
9033 u64 *periodp, u64 *quotap)
9034 {
9035 char tok[21]; /* U64_MAX */
9036
9037 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
9038 return -EINVAL;
9039
9040 *periodp *= NSEC_PER_USEC;
9041
9042 if (sscanf(tok, "%llu", quotap))
9043 *quotap *= NSEC_PER_USEC;
9044 else if (!strcmp(tok, "max"))
9045 *quotap = RUNTIME_INF;
9046 else
9047 return -EINVAL;
9048
9049 return 0;
9050 }
9051
9052 #ifdef CONFIG_CFS_BANDWIDTH
9053 static int cpu_max_show(struct seq_file *sf, void *v)
9054 {
9055 struct task_group *tg = css_tg(seq_css(sf));
9056
9057 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
9058 return 0;
9059 }
9060
9061 static ssize_t cpu_max_write(struct kernfs_open_file *of,
9062 char *buf, size_t nbytes, loff_t off)
9063 {
9064 struct task_group *tg = css_tg(of_css(of));
9065 u64 period = tg_get_cfs_period(tg);
9066 u64 quota;
9067 int ret;
9068
9069 ret = cpu_period_quota_parse(buf, &period, &quota);
9070 if (!ret)
9071 ret = tg_set_cfs_bandwidth(tg, period, quota);
9072 return ret ?: nbytes;
9073 }
9074 #endif
9075
9076 static struct cftype cpu_files[] = {
9077 #ifdef CONFIG_FAIR_GROUP_SCHED
9078 {
9079 .name = "weight",
9080 .flags = CFTYPE_NOT_ON_ROOT,
9081 .read_u64 = cpu_weight_read_u64,
9082 .write_u64 = cpu_weight_write_u64,
9083 },
9084 {
9085 .name = "weight.nice",
9086 .flags = CFTYPE_NOT_ON_ROOT,
9087 .read_s64 = cpu_weight_nice_read_s64,
9088 .write_s64 = cpu_weight_nice_write_s64,
9089 },
9090 #endif
9091 #ifdef CONFIG_CFS_BANDWIDTH
9092 {
9093 .name = "max",
9094 .flags = CFTYPE_NOT_ON_ROOT,
9095 .seq_show = cpu_max_show,
9096 .write = cpu_max_write,
9097 },
9098 #endif
9099 #ifdef CONFIG_UCLAMP_TASK_GROUP
9100 {
9101 .name = "uclamp.min",
9102 .flags = CFTYPE_NOT_ON_ROOT,
9103 .seq_show = cpu_uclamp_min_show,
9104 .write = cpu_uclamp_min_write,
9105 },
9106 {
9107 .name = "uclamp.max",
9108 .flags = CFTYPE_NOT_ON_ROOT,
9109 .seq_show = cpu_uclamp_max_show,
9110 .write = cpu_uclamp_max_write,
9111 },
9112 #endif
9113 { } /* terminate */
9114 };
9115
9116 struct cgroup_subsys cpu_cgrp_subsys = {
9117 .css_alloc = cpu_cgroup_css_alloc,
9118 .css_online = cpu_cgroup_css_online,
9119 .css_released = cpu_cgroup_css_released,
9120 .css_free = cpu_cgroup_css_free,
9121 .css_extra_stat_show = cpu_extra_stat_show,
9122 .fork = cpu_cgroup_fork,
9123 .can_attach = cpu_cgroup_can_attach,
9124 .attach = cpu_cgroup_attach,
9125 .legacy_cftypes = cpu_legacy_files,
9126 .dfl_cftypes = cpu_files,
9127 .early_init = true,
9128 .threaded = true,
9129 };
9130
9131 #endif /* CONFIG_CGROUP_SCHED */
9132
9133 void dump_cpu_task(int cpu)
9134 {
9135 pr_info("Task dump for CPU %d:\n", cpu);
9136 sched_show_task(cpu_curr(cpu));
9137 }
9138
9139 /*
9140 * Nice levels are multiplicative, with a gentle 10% change for every
9141 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
9142 * nice 1, it will get ~10% less CPU time than another CPU-bound task
9143 * that remained on nice 0.
9144 *
9145 * The "10% effect" is relative and cumulative: from _any_ nice level,
9146 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
9147 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
9148 * If a task goes up by ~10% and another task goes down by ~10% then
9149 * the relative distance between them is ~25%.)
9150 */
9151 const int sched_prio_to_weight[40] = {
9152 /* -20 */ 88761, 71755, 56483, 46273, 36291,
9153 /* -15 */ 29154, 23254, 18705, 14949, 11916,
9154 /* -10 */ 9548, 7620, 6100, 4904, 3906,
9155 /* -5 */ 3121, 2501, 1991, 1586, 1277,
9156 /* 0 */ 1024, 820, 655, 526, 423,
9157 /* 5 */ 335, 272, 215, 172, 137,
9158 /* 10 */ 110, 87, 70, 56, 45,
9159 /* 15 */ 36, 29, 23, 18, 15,
9160 };
9161
9162 /*
9163 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
9164 *
9165 * In cases where the weight does not change often, we can use the
9166 * precalculated inverse to speed up arithmetics by turning divisions
9167 * into multiplications:
9168 */
9169 const u32 sched_prio_to_wmult[40] = {
9170 /* -20 */ 48388, 59856, 76040, 92818, 118348,
9171 /* -15 */ 147320, 184698, 229616, 287308, 360437,
9172 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
9173 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
9174 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
9175 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
9176 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
9177 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
9178 };
9179
9180 void call_trace_sched_update_nr_running(struct rq *rq, int count)
9181 {
9182 trace_sched_update_nr_running_tp(rq, count);
9183 }