]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/sched/core.c
Merge tag 'noinstr-lds-2020-05-19' into core/rcu
[thirdparty/linux.git] / kernel / sched / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #include "sched.h"
10
11 #include <linux/nospec.h>
12
13 #include <linux/kcov.h>
14
15 #include <asm/switch_to.h>
16 #include <asm/tlb.h>
17
18 #include "../workqueue_internal.h"
19 #include "../../fs/io-wq.h"
20 #include "../smpboot.h"
21
22 #include "pelt.h"
23
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/sched.h>
26
27 /*
28 * Export tracepoints that act as a bare tracehook (ie: have no trace event
29 * associated with them) to allow external modules to probe them.
30 */
31 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
32 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
37
38 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
39
40 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
41 /*
42 * Debugging: various feature bits
43 *
44 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
45 * sysctl_sched_features, defined in sched.h, to allow constants propagation
46 * at compile time and compiler optimization based on features default.
47 */
48 #define SCHED_FEAT(name, enabled) \
49 (1UL << __SCHED_FEAT_##name) * enabled |
50 const_debug unsigned int sysctl_sched_features =
51 #include "features.h"
52 0;
53 #undef SCHED_FEAT
54 #endif
55
56 /*
57 * Number of tasks to iterate in a single balance run.
58 * Limited because this is done with IRQs disabled.
59 */
60 const_debug unsigned int sysctl_sched_nr_migrate = 32;
61
62 /*
63 * period over which we measure -rt task CPU usage in us.
64 * default: 1s
65 */
66 unsigned int sysctl_sched_rt_period = 1000000;
67
68 __read_mostly int scheduler_running;
69
70 /*
71 * part of the period that we allow rt tasks to run in us.
72 * default: 0.95s
73 */
74 int sysctl_sched_rt_runtime = 950000;
75
76 /*
77 * __task_rq_lock - lock the rq @p resides on.
78 */
79 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
80 __acquires(rq->lock)
81 {
82 struct rq *rq;
83
84 lockdep_assert_held(&p->pi_lock);
85
86 for (;;) {
87 rq = task_rq(p);
88 raw_spin_lock(&rq->lock);
89 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
90 rq_pin_lock(rq, rf);
91 return rq;
92 }
93 raw_spin_unlock(&rq->lock);
94
95 while (unlikely(task_on_rq_migrating(p)))
96 cpu_relax();
97 }
98 }
99
100 /*
101 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
102 */
103 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
104 __acquires(p->pi_lock)
105 __acquires(rq->lock)
106 {
107 struct rq *rq;
108
109 for (;;) {
110 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
111 rq = task_rq(p);
112 raw_spin_lock(&rq->lock);
113 /*
114 * move_queued_task() task_rq_lock()
115 *
116 * ACQUIRE (rq->lock)
117 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
118 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
119 * [S] ->cpu = new_cpu [L] task_rq()
120 * [L] ->on_rq
121 * RELEASE (rq->lock)
122 *
123 * If we observe the old CPU in task_rq_lock(), the acquire of
124 * the old rq->lock will fully serialize against the stores.
125 *
126 * If we observe the new CPU in task_rq_lock(), the address
127 * dependency headed by '[L] rq = task_rq()' and the acquire
128 * will pair with the WMB to ensure we then also see migrating.
129 */
130 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
131 rq_pin_lock(rq, rf);
132 return rq;
133 }
134 raw_spin_unlock(&rq->lock);
135 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
136
137 while (unlikely(task_on_rq_migrating(p)))
138 cpu_relax();
139 }
140 }
141
142 /*
143 * RQ-clock updating methods:
144 */
145
146 static void update_rq_clock_task(struct rq *rq, s64 delta)
147 {
148 /*
149 * In theory, the compile should just see 0 here, and optimize out the call
150 * to sched_rt_avg_update. But I don't trust it...
151 */
152 s64 __maybe_unused steal = 0, irq_delta = 0;
153
154 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
155 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
156
157 /*
158 * Since irq_time is only updated on {soft,}irq_exit, we might run into
159 * this case when a previous update_rq_clock() happened inside a
160 * {soft,}irq region.
161 *
162 * When this happens, we stop ->clock_task and only update the
163 * prev_irq_time stamp to account for the part that fit, so that a next
164 * update will consume the rest. This ensures ->clock_task is
165 * monotonic.
166 *
167 * It does however cause some slight miss-attribution of {soft,}irq
168 * time, a more accurate solution would be to update the irq_time using
169 * the current rq->clock timestamp, except that would require using
170 * atomic ops.
171 */
172 if (irq_delta > delta)
173 irq_delta = delta;
174
175 rq->prev_irq_time += irq_delta;
176 delta -= irq_delta;
177 #endif
178 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
179 if (static_key_false((&paravirt_steal_rq_enabled))) {
180 steal = paravirt_steal_clock(cpu_of(rq));
181 steal -= rq->prev_steal_time_rq;
182
183 if (unlikely(steal > delta))
184 steal = delta;
185
186 rq->prev_steal_time_rq += steal;
187 delta -= steal;
188 }
189 #endif
190
191 rq->clock_task += delta;
192
193 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
194 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
195 update_irq_load_avg(rq, irq_delta + steal);
196 #endif
197 update_rq_clock_pelt(rq, delta);
198 }
199
200 void update_rq_clock(struct rq *rq)
201 {
202 s64 delta;
203
204 lockdep_assert_held(&rq->lock);
205
206 if (rq->clock_update_flags & RQCF_ACT_SKIP)
207 return;
208
209 #ifdef CONFIG_SCHED_DEBUG
210 if (sched_feat(WARN_DOUBLE_CLOCK))
211 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
212 rq->clock_update_flags |= RQCF_UPDATED;
213 #endif
214
215 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
216 if (delta < 0)
217 return;
218 rq->clock += delta;
219 update_rq_clock_task(rq, delta);
220 }
221
222
223 #ifdef CONFIG_SCHED_HRTICK
224 /*
225 * Use HR-timers to deliver accurate preemption points.
226 */
227
228 static void hrtick_clear(struct rq *rq)
229 {
230 if (hrtimer_active(&rq->hrtick_timer))
231 hrtimer_cancel(&rq->hrtick_timer);
232 }
233
234 /*
235 * High-resolution timer tick.
236 * Runs from hardirq context with interrupts disabled.
237 */
238 static enum hrtimer_restart hrtick(struct hrtimer *timer)
239 {
240 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
241 struct rq_flags rf;
242
243 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
244
245 rq_lock(rq, &rf);
246 update_rq_clock(rq);
247 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
248 rq_unlock(rq, &rf);
249
250 return HRTIMER_NORESTART;
251 }
252
253 #ifdef CONFIG_SMP
254
255 static void __hrtick_restart(struct rq *rq)
256 {
257 struct hrtimer *timer = &rq->hrtick_timer;
258
259 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
260 }
261
262 /*
263 * called from hardirq (IPI) context
264 */
265 static void __hrtick_start(void *arg)
266 {
267 struct rq *rq = arg;
268 struct rq_flags rf;
269
270 rq_lock(rq, &rf);
271 __hrtick_restart(rq);
272 rq_unlock(rq, &rf);
273 }
274
275 /*
276 * Called to set the hrtick timer state.
277 *
278 * called with rq->lock held and irqs disabled
279 */
280 void hrtick_start(struct rq *rq, u64 delay)
281 {
282 struct hrtimer *timer = &rq->hrtick_timer;
283 ktime_t time;
284 s64 delta;
285
286 /*
287 * Don't schedule slices shorter than 10000ns, that just
288 * doesn't make sense and can cause timer DoS.
289 */
290 delta = max_t(s64, delay, 10000LL);
291 time = ktime_add_ns(timer->base->get_time(), delta);
292
293 hrtimer_set_expires(timer, time);
294
295 if (rq == this_rq())
296 __hrtick_restart(rq);
297 else
298 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
299 }
300
301 #else
302 /*
303 * Called to set the hrtick timer state.
304 *
305 * called with rq->lock held and irqs disabled
306 */
307 void hrtick_start(struct rq *rq, u64 delay)
308 {
309 /*
310 * Don't schedule slices shorter than 10000ns, that just
311 * doesn't make sense. Rely on vruntime for fairness.
312 */
313 delay = max_t(u64, delay, 10000LL);
314 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
315 HRTIMER_MODE_REL_PINNED_HARD);
316 }
317 #endif /* CONFIG_SMP */
318
319 static void hrtick_rq_init(struct rq *rq)
320 {
321 #ifdef CONFIG_SMP
322 rq->hrtick_csd.flags = 0;
323 rq->hrtick_csd.func = __hrtick_start;
324 rq->hrtick_csd.info = rq;
325 #endif
326
327 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
328 rq->hrtick_timer.function = hrtick;
329 }
330 #else /* CONFIG_SCHED_HRTICK */
331 static inline void hrtick_clear(struct rq *rq)
332 {
333 }
334
335 static inline void hrtick_rq_init(struct rq *rq)
336 {
337 }
338 #endif /* CONFIG_SCHED_HRTICK */
339
340 /*
341 * cmpxchg based fetch_or, macro so it works for different integer types
342 */
343 #define fetch_or(ptr, mask) \
344 ({ \
345 typeof(ptr) _ptr = (ptr); \
346 typeof(mask) _mask = (mask); \
347 typeof(*_ptr) _old, _val = *_ptr; \
348 \
349 for (;;) { \
350 _old = cmpxchg(_ptr, _val, _val | _mask); \
351 if (_old == _val) \
352 break; \
353 _val = _old; \
354 } \
355 _old; \
356 })
357
358 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
359 /*
360 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
361 * this avoids any races wrt polling state changes and thereby avoids
362 * spurious IPIs.
363 */
364 static bool set_nr_and_not_polling(struct task_struct *p)
365 {
366 struct thread_info *ti = task_thread_info(p);
367 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
368 }
369
370 /*
371 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
372 *
373 * If this returns true, then the idle task promises to call
374 * sched_ttwu_pending() and reschedule soon.
375 */
376 static bool set_nr_if_polling(struct task_struct *p)
377 {
378 struct thread_info *ti = task_thread_info(p);
379 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
380
381 for (;;) {
382 if (!(val & _TIF_POLLING_NRFLAG))
383 return false;
384 if (val & _TIF_NEED_RESCHED)
385 return true;
386 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
387 if (old == val)
388 break;
389 val = old;
390 }
391 return true;
392 }
393
394 #else
395 static bool set_nr_and_not_polling(struct task_struct *p)
396 {
397 set_tsk_need_resched(p);
398 return true;
399 }
400
401 #ifdef CONFIG_SMP
402 static bool set_nr_if_polling(struct task_struct *p)
403 {
404 return false;
405 }
406 #endif
407 #endif
408
409 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
410 {
411 struct wake_q_node *node = &task->wake_q;
412
413 /*
414 * Atomically grab the task, if ->wake_q is !nil already it means
415 * its already queued (either by us or someone else) and will get the
416 * wakeup due to that.
417 *
418 * In order to ensure that a pending wakeup will observe our pending
419 * state, even in the failed case, an explicit smp_mb() must be used.
420 */
421 smp_mb__before_atomic();
422 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
423 return false;
424
425 /*
426 * The head is context local, there can be no concurrency.
427 */
428 *head->lastp = node;
429 head->lastp = &node->next;
430 return true;
431 }
432
433 /**
434 * wake_q_add() - queue a wakeup for 'later' waking.
435 * @head: the wake_q_head to add @task to
436 * @task: the task to queue for 'later' wakeup
437 *
438 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
439 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
440 * instantly.
441 *
442 * This function must be used as-if it were wake_up_process(); IOW the task
443 * must be ready to be woken at this location.
444 */
445 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
446 {
447 if (__wake_q_add(head, task))
448 get_task_struct(task);
449 }
450
451 /**
452 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
453 * @head: the wake_q_head to add @task to
454 * @task: the task to queue for 'later' wakeup
455 *
456 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
457 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
458 * instantly.
459 *
460 * This function must be used as-if it were wake_up_process(); IOW the task
461 * must be ready to be woken at this location.
462 *
463 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
464 * that already hold reference to @task can call the 'safe' version and trust
465 * wake_q to do the right thing depending whether or not the @task is already
466 * queued for wakeup.
467 */
468 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
469 {
470 if (!__wake_q_add(head, task))
471 put_task_struct(task);
472 }
473
474 void wake_up_q(struct wake_q_head *head)
475 {
476 struct wake_q_node *node = head->first;
477
478 while (node != WAKE_Q_TAIL) {
479 struct task_struct *task;
480
481 task = container_of(node, struct task_struct, wake_q);
482 BUG_ON(!task);
483 /* Task can safely be re-inserted now: */
484 node = node->next;
485 task->wake_q.next = NULL;
486
487 /*
488 * wake_up_process() executes a full barrier, which pairs with
489 * the queueing in wake_q_add() so as not to miss wakeups.
490 */
491 wake_up_process(task);
492 put_task_struct(task);
493 }
494 }
495
496 /*
497 * resched_curr - mark rq's current task 'to be rescheduled now'.
498 *
499 * On UP this means the setting of the need_resched flag, on SMP it
500 * might also involve a cross-CPU call to trigger the scheduler on
501 * the target CPU.
502 */
503 void resched_curr(struct rq *rq)
504 {
505 struct task_struct *curr = rq->curr;
506 int cpu;
507
508 lockdep_assert_held(&rq->lock);
509
510 if (test_tsk_need_resched(curr))
511 return;
512
513 cpu = cpu_of(rq);
514
515 if (cpu == smp_processor_id()) {
516 set_tsk_need_resched(curr);
517 set_preempt_need_resched();
518 return;
519 }
520
521 if (set_nr_and_not_polling(curr))
522 smp_send_reschedule(cpu);
523 else
524 trace_sched_wake_idle_without_ipi(cpu);
525 }
526
527 void resched_cpu(int cpu)
528 {
529 struct rq *rq = cpu_rq(cpu);
530 unsigned long flags;
531
532 raw_spin_lock_irqsave(&rq->lock, flags);
533 if (cpu_online(cpu) || cpu == smp_processor_id())
534 resched_curr(rq);
535 raw_spin_unlock_irqrestore(&rq->lock, flags);
536 }
537
538 #ifdef CONFIG_SMP
539 #ifdef CONFIG_NO_HZ_COMMON
540 /*
541 * In the semi idle case, use the nearest busy CPU for migrating timers
542 * from an idle CPU. This is good for power-savings.
543 *
544 * We don't do similar optimization for completely idle system, as
545 * selecting an idle CPU will add more delays to the timers than intended
546 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
547 */
548 int get_nohz_timer_target(void)
549 {
550 int i, cpu = smp_processor_id(), default_cpu = -1;
551 struct sched_domain *sd;
552
553 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
554 if (!idle_cpu(cpu))
555 return cpu;
556 default_cpu = cpu;
557 }
558
559 rcu_read_lock();
560 for_each_domain(cpu, sd) {
561 for_each_cpu_and(i, sched_domain_span(sd),
562 housekeeping_cpumask(HK_FLAG_TIMER)) {
563 if (cpu == i)
564 continue;
565
566 if (!idle_cpu(i)) {
567 cpu = i;
568 goto unlock;
569 }
570 }
571 }
572
573 if (default_cpu == -1)
574 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
575 cpu = default_cpu;
576 unlock:
577 rcu_read_unlock();
578 return cpu;
579 }
580
581 /*
582 * When add_timer_on() enqueues a timer into the timer wheel of an
583 * idle CPU then this timer might expire before the next timer event
584 * which is scheduled to wake up that CPU. In case of a completely
585 * idle system the next event might even be infinite time into the
586 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
587 * leaves the inner idle loop so the newly added timer is taken into
588 * account when the CPU goes back to idle and evaluates the timer
589 * wheel for the next timer event.
590 */
591 static void wake_up_idle_cpu(int cpu)
592 {
593 struct rq *rq = cpu_rq(cpu);
594
595 if (cpu == smp_processor_id())
596 return;
597
598 if (set_nr_and_not_polling(rq->idle))
599 smp_send_reschedule(cpu);
600 else
601 trace_sched_wake_idle_without_ipi(cpu);
602 }
603
604 static bool wake_up_full_nohz_cpu(int cpu)
605 {
606 /*
607 * We just need the target to call irq_exit() and re-evaluate
608 * the next tick. The nohz full kick at least implies that.
609 * If needed we can still optimize that later with an
610 * empty IRQ.
611 */
612 if (cpu_is_offline(cpu))
613 return true; /* Don't try to wake offline CPUs. */
614 if (tick_nohz_full_cpu(cpu)) {
615 if (cpu != smp_processor_id() ||
616 tick_nohz_tick_stopped())
617 tick_nohz_full_kick_cpu(cpu);
618 return true;
619 }
620
621 return false;
622 }
623
624 /*
625 * Wake up the specified CPU. If the CPU is going offline, it is the
626 * caller's responsibility to deal with the lost wakeup, for example,
627 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
628 */
629 void wake_up_nohz_cpu(int cpu)
630 {
631 if (!wake_up_full_nohz_cpu(cpu))
632 wake_up_idle_cpu(cpu);
633 }
634
635 static inline bool got_nohz_idle_kick(void)
636 {
637 int cpu = smp_processor_id();
638
639 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
640 return false;
641
642 if (idle_cpu(cpu) && !need_resched())
643 return true;
644
645 /*
646 * We can't run Idle Load Balance on this CPU for this time so we
647 * cancel it and clear NOHZ_BALANCE_KICK
648 */
649 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
650 return false;
651 }
652
653 #else /* CONFIG_NO_HZ_COMMON */
654
655 static inline bool got_nohz_idle_kick(void)
656 {
657 return false;
658 }
659
660 #endif /* CONFIG_NO_HZ_COMMON */
661
662 #ifdef CONFIG_NO_HZ_FULL
663 bool sched_can_stop_tick(struct rq *rq)
664 {
665 int fifo_nr_running;
666
667 /* Deadline tasks, even if single, need the tick */
668 if (rq->dl.dl_nr_running)
669 return false;
670
671 /*
672 * If there are more than one RR tasks, we need the tick to effect the
673 * actual RR behaviour.
674 */
675 if (rq->rt.rr_nr_running) {
676 if (rq->rt.rr_nr_running == 1)
677 return true;
678 else
679 return false;
680 }
681
682 /*
683 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
684 * forced preemption between FIFO tasks.
685 */
686 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
687 if (fifo_nr_running)
688 return true;
689
690 /*
691 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
692 * if there's more than one we need the tick for involuntary
693 * preemption.
694 */
695 if (rq->nr_running > 1)
696 return false;
697
698 return true;
699 }
700 #endif /* CONFIG_NO_HZ_FULL */
701 #endif /* CONFIG_SMP */
702
703 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
704 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
705 /*
706 * Iterate task_group tree rooted at *from, calling @down when first entering a
707 * node and @up when leaving it for the final time.
708 *
709 * Caller must hold rcu_lock or sufficient equivalent.
710 */
711 int walk_tg_tree_from(struct task_group *from,
712 tg_visitor down, tg_visitor up, void *data)
713 {
714 struct task_group *parent, *child;
715 int ret;
716
717 parent = from;
718
719 down:
720 ret = (*down)(parent, data);
721 if (ret)
722 goto out;
723 list_for_each_entry_rcu(child, &parent->children, siblings) {
724 parent = child;
725 goto down;
726
727 up:
728 continue;
729 }
730 ret = (*up)(parent, data);
731 if (ret || parent == from)
732 goto out;
733
734 child = parent;
735 parent = parent->parent;
736 if (parent)
737 goto up;
738 out:
739 return ret;
740 }
741
742 int tg_nop(struct task_group *tg, void *data)
743 {
744 return 0;
745 }
746 #endif
747
748 static void set_load_weight(struct task_struct *p, bool update_load)
749 {
750 int prio = p->static_prio - MAX_RT_PRIO;
751 struct load_weight *load = &p->se.load;
752
753 /*
754 * SCHED_IDLE tasks get minimal weight:
755 */
756 if (task_has_idle_policy(p)) {
757 load->weight = scale_load(WEIGHT_IDLEPRIO);
758 load->inv_weight = WMULT_IDLEPRIO;
759 return;
760 }
761
762 /*
763 * SCHED_OTHER tasks have to update their load when changing their
764 * weight
765 */
766 if (update_load && p->sched_class == &fair_sched_class) {
767 reweight_task(p, prio);
768 } else {
769 load->weight = scale_load(sched_prio_to_weight[prio]);
770 load->inv_weight = sched_prio_to_wmult[prio];
771 }
772 }
773
774 #ifdef CONFIG_UCLAMP_TASK
775 /*
776 * Serializes updates of utilization clamp values
777 *
778 * The (slow-path) user-space triggers utilization clamp value updates which
779 * can require updates on (fast-path) scheduler's data structures used to
780 * support enqueue/dequeue operations.
781 * While the per-CPU rq lock protects fast-path update operations, user-space
782 * requests are serialized using a mutex to reduce the risk of conflicting
783 * updates or API abuses.
784 */
785 static DEFINE_MUTEX(uclamp_mutex);
786
787 /* Max allowed minimum utilization */
788 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
789
790 /* Max allowed maximum utilization */
791 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
792
793 /* All clamps are required to be less or equal than these values */
794 static struct uclamp_se uclamp_default[UCLAMP_CNT];
795
796 /* Integer rounded range for each bucket */
797 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
798
799 #define for_each_clamp_id(clamp_id) \
800 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
801
802 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
803 {
804 return clamp_value / UCLAMP_BUCKET_DELTA;
805 }
806
807 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
808 {
809 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
810 }
811
812 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
813 {
814 if (clamp_id == UCLAMP_MIN)
815 return 0;
816 return SCHED_CAPACITY_SCALE;
817 }
818
819 static inline void uclamp_se_set(struct uclamp_se *uc_se,
820 unsigned int value, bool user_defined)
821 {
822 uc_se->value = value;
823 uc_se->bucket_id = uclamp_bucket_id(value);
824 uc_se->user_defined = user_defined;
825 }
826
827 static inline unsigned int
828 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
829 unsigned int clamp_value)
830 {
831 /*
832 * Avoid blocked utilization pushing up the frequency when we go
833 * idle (which drops the max-clamp) by retaining the last known
834 * max-clamp.
835 */
836 if (clamp_id == UCLAMP_MAX) {
837 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
838 return clamp_value;
839 }
840
841 return uclamp_none(UCLAMP_MIN);
842 }
843
844 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
845 unsigned int clamp_value)
846 {
847 /* Reset max-clamp retention only on idle exit */
848 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
849 return;
850
851 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
852 }
853
854 static inline
855 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
856 unsigned int clamp_value)
857 {
858 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
859 int bucket_id = UCLAMP_BUCKETS - 1;
860
861 /*
862 * Since both min and max clamps are max aggregated, find the
863 * top most bucket with tasks in.
864 */
865 for ( ; bucket_id >= 0; bucket_id--) {
866 if (!bucket[bucket_id].tasks)
867 continue;
868 return bucket[bucket_id].value;
869 }
870
871 /* No tasks -- default clamp values */
872 return uclamp_idle_value(rq, clamp_id, clamp_value);
873 }
874
875 static inline struct uclamp_se
876 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
877 {
878 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
879 #ifdef CONFIG_UCLAMP_TASK_GROUP
880 struct uclamp_se uc_max;
881
882 /*
883 * Tasks in autogroups or root task group will be
884 * restricted by system defaults.
885 */
886 if (task_group_is_autogroup(task_group(p)))
887 return uc_req;
888 if (task_group(p) == &root_task_group)
889 return uc_req;
890
891 uc_max = task_group(p)->uclamp[clamp_id];
892 if (uc_req.value > uc_max.value || !uc_req.user_defined)
893 return uc_max;
894 #endif
895
896 return uc_req;
897 }
898
899 /*
900 * The effective clamp bucket index of a task depends on, by increasing
901 * priority:
902 * - the task specific clamp value, when explicitly requested from userspace
903 * - the task group effective clamp value, for tasks not either in the root
904 * group or in an autogroup
905 * - the system default clamp value, defined by the sysadmin
906 */
907 static inline struct uclamp_se
908 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
909 {
910 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
911 struct uclamp_se uc_max = uclamp_default[clamp_id];
912
913 /* System default restrictions always apply */
914 if (unlikely(uc_req.value > uc_max.value))
915 return uc_max;
916
917 return uc_req;
918 }
919
920 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
921 {
922 struct uclamp_se uc_eff;
923
924 /* Task currently refcounted: use back-annotated (effective) value */
925 if (p->uclamp[clamp_id].active)
926 return (unsigned long)p->uclamp[clamp_id].value;
927
928 uc_eff = uclamp_eff_get(p, clamp_id);
929
930 return (unsigned long)uc_eff.value;
931 }
932
933 /*
934 * When a task is enqueued on a rq, the clamp bucket currently defined by the
935 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
936 * updates the rq's clamp value if required.
937 *
938 * Tasks can have a task-specific value requested from user-space, track
939 * within each bucket the maximum value for tasks refcounted in it.
940 * This "local max aggregation" allows to track the exact "requested" value
941 * for each bucket when all its RUNNABLE tasks require the same clamp.
942 */
943 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
944 enum uclamp_id clamp_id)
945 {
946 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
947 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
948 struct uclamp_bucket *bucket;
949
950 lockdep_assert_held(&rq->lock);
951
952 /* Update task effective clamp */
953 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
954
955 bucket = &uc_rq->bucket[uc_se->bucket_id];
956 bucket->tasks++;
957 uc_se->active = true;
958
959 uclamp_idle_reset(rq, clamp_id, uc_se->value);
960
961 /*
962 * Local max aggregation: rq buckets always track the max
963 * "requested" clamp value of its RUNNABLE tasks.
964 */
965 if (bucket->tasks == 1 || uc_se->value > bucket->value)
966 bucket->value = uc_se->value;
967
968 if (uc_se->value > READ_ONCE(uc_rq->value))
969 WRITE_ONCE(uc_rq->value, uc_se->value);
970 }
971
972 /*
973 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
974 * is released. If this is the last task reference counting the rq's max
975 * active clamp value, then the rq's clamp value is updated.
976 *
977 * Both refcounted tasks and rq's cached clamp values are expected to be
978 * always valid. If it's detected they are not, as defensive programming,
979 * enforce the expected state and warn.
980 */
981 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
982 enum uclamp_id clamp_id)
983 {
984 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
985 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
986 struct uclamp_bucket *bucket;
987 unsigned int bkt_clamp;
988 unsigned int rq_clamp;
989
990 lockdep_assert_held(&rq->lock);
991
992 bucket = &uc_rq->bucket[uc_se->bucket_id];
993 SCHED_WARN_ON(!bucket->tasks);
994 if (likely(bucket->tasks))
995 bucket->tasks--;
996 uc_se->active = false;
997
998 /*
999 * Keep "local max aggregation" simple and accept to (possibly)
1000 * overboost some RUNNABLE tasks in the same bucket.
1001 * The rq clamp bucket value is reset to its base value whenever
1002 * there are no more RUNNABLE tasks refcounting it.
1003 */
1004 if (likely(bucket->tasks))
1005 return;
1006
1007 rq_clamp = READ_ONCE(uc_rq->value);
1008 /*
1009 * Defensive programming: this should never happen. If it happens,
1010 * e.g. due to future modification, warn and fixup the expected value.
1011 */
1012 SCHED_WARN_ON(bucket->value > rq_clamp);
1013 if (bucket->value >= rq_clamp) {
1014 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1015 WRITE_ONCE(uc_rq->value, bkt_clamp);
1016 }
1017 }
1018
1019 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1020 {
1021 enum uclamp_id clamp_id;
1022
1023 if (unlikely(!p->sched_class->uclamp_enabled))
1024 return;
1025
1026 for_each_clamp_id(clamp_id)
1027 uclamp_rq_inc_id(rq, p, clamp_id);
1028
1029 /* Reset clamp idle holding when there is one RUNNABLE task */
1030 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1031 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1032 }
1033
1034 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1035 {
1036 enum uclamp_id clamp_id;
1037
1038 if (unlikely(!p->sched_class->uclamp_enabled))
1039 return;
1040
1041 for_each_clamp_id(clamp_id)
1042 uclamp_rq_dec_id(rq, p, clamp_id);
1043 }
1044
1045 static inline void
1046 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1047 {
1048 struct rq_flags rf;
1049 struct rq *rq;
1050
1051 /*
1052 * Lock the task and the rq where the task is (or was) queued.
1053 *
1054 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1055 * price to pay to safely serialize util_{min,max} updates with
1056 * enqueues, dequeues and migration operations.
1057 * This is the same locking schema used by __set_cpus_allowed_ptr().
1058 */
1059 rq = task_rq_lock(p, &rf);
1060
1061 /*
1062 * Setting the clamp bucket is serialized by task_rq_lock().
1063 * If the task is not yet RUNNABLE and its task_struct is not
1064 * affecting a valid clamp bucket, the next time it's enqueued,
1065 * it will already see the updated clamp bucket value.
1066 */
1067 if (p->uclamp[clamp_id].active) {
1068 uclamp_rq_dec_id(rq, p, clamp_id);
1069 uclamp_rq_inc_id(rq, p, clamp_id);
1070 }
1071
1072 task_rq_unlock(rq, p, &rf);
1073 }
1074
1075 #ifdef CONFIG_UCLAMP_TASK_GROUP
1076 static inline void
1077 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1078 unsigned int clamps)
1079 {
1080 enum uclamp_id clamp_id;
1081 struct css_task_iter it;
1082 struct task_struct *p;
1083
1084 css_task_iter_start(css, 0, &it);
1085 while ((p = css_task_iter_next(&it))) {
1086 for_each_clamp_id(clamp_id) {
1087 if ((0x1 << clamp_id) & clamps)
1088 uclamp_update_active(p, clamp_id);
1089 }
1090 }
1091 css_task_iter_end(&it);
1092 }
1093
1094 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1095 static void uclamp_update_root_tg(void)
1096 {
1097 struct task_group *tg = &root_task_group;
1098
1099 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1100 sysctl_sched_uclamp_util_min, false);
1101 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1102 sysctl_sched_uclamp_util_max, false);
1103
1104 rcu_read_lock();
1105 cpu_util_update_eff(&root_task_group.css);
1106 rcu_read_unlock();
1107 }
1108 #else
1109 static void uclamp_update_root_tg(void) { }
1110 #endif
1111
1112 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1113 void __user *buffer, size_t *lenp,
1114 loff_t *ppos)
1115 {
1116 bool update_root_tg = false;
1117 int old_min, old_max;
1118 int result;
1119
1120 mutex_lock(&uclamp_mutex);
1121 old_min = sysctl_sched_uclamp_util_min;
1122 old_max = sysctl_sched_uclamp_util_max;
1123
1124 result = proc_dointvec(table, write, buffer, lenp, ppos);
1125 if (result)
1126 goto undo;
1127 if (!write)
1128 goto done;
1129
1130 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1131 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1132 result = -EINVAL;
1133 goto undo;
1134 }
1135
1136 if (old_min != sysctl_sched_uclamp_util_min) {
1137 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1138 sysctl_sched_uclamp_util_min, false);
1139 update_root_tg = true;
1140 }
1141 if (old_max != sysctl_sched_uclamp_util_max) {
1142 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1143 sysctl_sched_uclamp_util_max, false);
1144 update_root_tg = true;
1145 }
1146
1147 if (update_root_tg)
1148 uclamp_update_root_tg();
1149
1150 /*
1151 * We update all RUNNABLE tasks only when task groups are in use.
1152 * Otherwise, keep it simple and do just a lazy update at each next
1153 * task enqueue time.
1154 */
1155
1156 goto done;
1157
1158 undo:
1159 sysctl_sched_uclamp_util_min = old_min;
1160 sysctl_sched_uclamp_util_max = old_max;
1161 done:
1162 mutex_unlock(&uclamp_mutex);
1163
1164 return result;
1165 }
1166
1167 static int uclamp_validate(struct task_struct *p,
1168 const struct sched_attr *attr)
1169 {
1170 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1171 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1172
1173 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1174 lower_bound = attr->sched_util_min;
1175 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1176 upper_bound = attr->sched_util_max;
1177
1178 if (lower_bound > upper_bound)
1179 return -EINVAL;
1180 if (upper_bound > SCHED_CAPACITY_SCALE)
1181 return -EINVAL;
1182
1183 return 0;
1184 }
1185
1186 static void __setscheduler_uclamp(struct task_struct *p,
1187 const struct sched_attr *attr)
1188 {
1189 enum uclamp_id clamp_id;
1190
1191 /*
1192 * On scheduling class change, reset to default clamps for tasks
1193 * without a task-specific value.
1194 */
1195 for_each_clamp_id(clamp_id) {
1196 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1197 unsigned int clamp_value = uclamp_none(clamp_id);
1198
1199 /* Keep using defined clamps across class changes */
1200 if (uc_se->user_defined)
1201 continue;
1202
1203 /* By default, RT tasks always get 100% boost */
1204 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1205 clamp_value = uclamp_none(UCLAMP_MAX);
1206
1207 uclamp_se_set(uc_se, clamp_value, false);
1208 }
1209
1210 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1211 return;
1212
1213 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1214 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1215 attr->sched_util_min, true);
1216 }
1217
1218 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1219 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1220 attr->sched_util_max, true);
1221 }
1222 }
1223
1224 static void uclamp_fork(struct task_struct *p)
1225 {
1226 enum uclamp_id clamp_id;
1227
1228 for_each_clamp_id(clamp_id)
1229 p->uclamp[clamp_id].active = false;
1230
1231 if (likely(!p->sched_reset_on_fork))
1232 return;
1233
1234 for_each_clamp_id(clamp_id) {
1235 uclamp_se_set(&p->uclamp_req[clamp_id],
1236 uclamp_none(clamp_id), false);
1237 }
1238 }
1239
1240 static void __init init_uclamp(void)
1241 {
1242 struct uclamp_se uc_max = {};
1243 enum uclamp_id clamp_id;
1244 int cpu;
1245
1246 mutex_init(&uclamp_mutex);
1247
1248 for_each_possible_cpu(cpu) {
1249 memset(&cpu_rq(cpu)->uclamp, 0,
1250 sizeof(struct uclamp_rq)*UCLAMP_CNT);
1251 cpu_rq(cpu)->uclamp_flags = 0;
1252 }
1253
1254 for_each_clamp_id(clamp_id) {
1255 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1256 uclamp_none(clamp_id), false);
1257 }
1258
1259 /* System defaults allow max clamp values for both indexes */
1260 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1261 for_each_clamp_id(clamp_id) {
1262 uclamp_default[clamp_id] = uc_max;
1263 #ifdef CONFIG_UCLAMP_TASK_GROUP
1264 root_task_group.uclamp_req[clamp_id] = uc_max;
1265 root_task_group.uclamp[clamp_id] = uc_max;
1266 #endif
1267 }
1268 }
1269
1270 #else /* CONFIG_UCLAMP_TASK */
1271 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1272 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1273 static inline int uclamp_validate(struct task_struct *p,
1274 const struct sched_attr *attr)
1275 {
1276 return -EOPNOTSUPP;
1277 }
1278 static void __setscheduler_uclamp(struct task_struct *p,
1279 const struct sched_attr *attr) { }
1280 static inline void uclamp_fork(struct task_struct *p) { }
1281 static inline void init_uclamp(void) { }
1282 #endif /* CONFIG_UCLAMP_TASK */
1283
1284 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1285 {
1286 if (!(flags & ENQUEUE_NOCLOCK))
1287 update_rq_clock(rq);
1288
1289 if (!(flags & ENQUEUE_RESTORE)) {
1290 sched_info_queued(rq, p);
1291 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1292 }
1293
1294 uclamp_rq_inc(rq, p);
1295 p->sched_class->enqueue_task(rq, p, flags);
1296 }
1297
1298 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1299 {
1300 if (!(flags & DEQUEUE_NOCLOCK))
1301 update_rq_clock(rq);
1302
1303 if (!(flags & DEQUEUE_SAVE)) {
1304 sched_info_dequeued(rq, p);
1305 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1306 }
1307
1308 uclamp_rq_dec(rq, p);
1309 p->sched_class->dequeue_task(rq, p, flags);
1310 }
1311
1312 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1313 {
1314 if (task_contributes_to_load(p))
1315 rq->nr_uninterruptible--;
1316
1317 enqueue_task(rq, p, flags);
1318
1319 p->on_rq = TASK_ON_RQ_QUEUED;
1320 }
1321
1322 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1323 {
1324 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1325
1326 if (task_contributes_to_load(p))
1327 rq->nr_uninterruptible++;
1328
1329 dequeue_task(rq, p, flags);
1330 }
1331
1332 /*
1333 * __normal_prio - return the priority that is based on the static prio
1334 */
1335 static inline int __normal_prio(struct task_struct *p)
1336 {
1337 return p->static_prio;
1338 }
1339
1340 /*
1341 * Calculate the expected normal priority: i.e. priority
1342 * without taking RT-inheritance into account. Might be
1343 * boosted by interactivity modifiers. Changes upon fork,
1344 * setprio syscalls, and whenever the interactivity
1345 * estimator recalculates.
1346 */
1347 static inline int normal_prio(struct task_struct *p)
1348 {
1349 int prio;
1350
1351 if (task_has_dl_policy(p))
1352 prio = MAX_DL_PRIO-1;
1353 else if (task_has_rt_policy(p))
1354 prio = MAX_RT_PRIO-1 - p->rt_priority;
1355 else
1356 prio = __normal_prio(p);
1357 return prio;
1358 }
1359
1360 /*
1361 * Calculate the current priority, i.e. the priority
1362 * taken into account by the scheduler. This value might
1363 * be boosted by RT tasks, or might be boosted by
1364 * interactivity modifiers. Will be RT if the task got
1365 * RT-boosted. If not then it returns p->normal_prio.
1366 */
1367 static int effective_prio(struct task_struct *p)
1368 {
1369 p->normal_prio = normal_prio(p);
1370 /*
1371 * If we are RT tasks or we were boosted to RT priority,
1372 * keep the priority unchanged. Otherwise, update priority
1373 * to the normal priority:
1374 */
1375 if (!rt_prio(p->prio))
1376 return p->normal_prio;
1377 return p->prio;
1378 }
1379
1380 /**
1381 * task_curr - is this task currently executing on a CPU?
1382 * @p: the task in question.
1383 *
1384 * Return: 1 if the task is currently executing. 0 otherwise.
1385 */
1386 inline int task_curr(const struct task_struct *p)
1387 {
1388 return cpu_curr(task_cpu(p)) == p;
1389 }
1390
1391 /*
1392 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1393 * use the balance_callback list if you want balancing.
1394 *
1395 * this means any call to check_class_changed() must be followed by a call to
1396 * balance_callback().
1397 */
1398 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1399 const struct sched_class *prev_class,
1400 int oldprio)
1401 {
1402 if (prev_class != p->sched_class) {
1403 if (prev_class->switched_from)
1404 prev_class->switched_from(rq, p);
1405
1406 p->sched_class->switched_to(rq, p);
1407 } else if (oldprio != p->prio || dl_task(p))
1408 p->sched_class->prio_changed(rq, p, oldprio);
1409 }
1410
1411 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1412 {
1413 const struct sched_class *class;
1414
1415 if (p->sched_class == rq->curr->sched_class) {
1416 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1417 } else {
1418 for_each_class(class) {
1419 if (class == rq->curr->sched_class)
1420 break;
1421 if (class == p->sched_class) {
1422 resched_curr(rq);
1423 break;
1424 }
1425 }
1426 }
1427
1428 /*
1429 * A queue event has occurred, and we're going to schedule. In
1430 * this case, we can save a useless back to back clock update.
1431 */
1432 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1433 rq_clock_skip_update(rq);
1434 }
1435
1436 #ifdef CONFIG_SMP
1437
1438 /*
1439 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1440 * __set_cpus_allowed_ptr() and select_fallback_rq().
1441 */
1442 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1443 {
1444 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1445 return false;
1446
1447 if (is_per_cpu_kthread(p))
1448 return cpu_online(cpu);
1449
1450 return cpu_active(cpu);
1451 }
1452
1453 /*
1454 * This is how migration works:
1455 *
1456 * 1) we invoke migration_cpu_stop() on the target CPU using
1457 * stop_one_cpu().
1458 * 2) stopper starts to run (implicitly forcing the migrated thread
1459 * off the CPU)
1460 * 3) it checks whether the migrated task is still in the wrong runqueue.
1461 * 4) if it's in the wrong runqueue then the migration thread removes
1462 * it and puts it into the right queue.
1463 * 5) stopper completes and stop_one_cpu() returns and the migration
1464 * is done.
1465 */
1466
1467 /*
1468 * move_queued_task - move a queued task to new rq.
1469 *
1470 * Returns (locked) new rq. Old rq's lock is released.
1471 */
1472 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1473 struct task_struct *p, int new_cpu)
1474 {
1475 lockdep_assert_held(&rq->lock);
1476
1477 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1478 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1479 set_task_cpu(p, new_cpu);
1480 rq_unlock(rq, rf);
1481
1482 rq = cpu_rq(new_cpu);
1483
1484 rq_lock(rq, rf);
1485 BUG_ON(task_cpu(p) != new_cpu);
1486 enqueue_task(rq, p, 0);
1487 p->on_rq = TASK_ON_RQ_QUEUED;
1488 check_preempt_curr(rq, p, 0);
1489
1490 return rq;
1491 }
1492
1493 struct migration_arg {
1494 struct task_struct *task;
1495 int dest_cpu;
1496 };
1497
1498 /*
1499 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1500 * this because either it can't run here any more (set_cpus_allowed()
1501 * away from this CPU, or CPU going down), or because we're
1502 * attempting to rebalance this task on exec (sched_exec).
1503 *
1504 * So we race with normal scheduler movements, but that's OK, as long
1505 * as the task is no longer on this CPU.
1506 */
1507 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1508 struct task_struct *p, int dest_cpu)
1509 {
1510 /* Affinity changed (again). */
1511 if (!is_cpu_allowed(p, dest_cpu))
1512 return rq;
1513
1514 update_rq_clock(rq);
1515 rq = move_queued_task(rq, rf, p, dest_cpu);
1516
1517 return rq;
1518 }
1519
1520 /*
1521 * migration_cpu_stop - this will be executed by a highprio stopper thread
1522 * and performs thread migration by bumping thread off CPU then
1523 * 'pushing' onto another runqueue.
1524 */
1525 static int migration_cpu_stop(void *data)
1526 {
1527 struct migration_arg *arg = data;
1528 struct task_struct *p = arg->task;
1529 struct rq *rq = this_rq();
1530 struct rq_flags rf;
1531
1532 /*
1533 * The original target CPU might have gone down and we might
1534 * be on another CPU but it doesn't matter.
1535 */
1536 local_irq_disable();
1537 /*
1538 * We need to explicitly wake pending tasks before running
1539 * __migrate_task() such that we will not miss enforcing cpus_ptr
1540 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1541 */
1542 sched_ttwu_pending();
1543
1544 raw_spin_lock(&p->pi_lock);
1545 rq_lock(rq, &rf);
1546 /*
1547 * If task_rq(p) != rq, it cannot be migrated here, because we're
1548 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1549 * we're holding p->pi_lock.
1550 */
1551 if (task_rq(p) == rq) {
1552 if (task_on_rq_queued(p))
1553 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1554 else
1555 p->wake_cpu = arg->dest_cpu;
1556 }
1557 rq_unlock(rq, &rf);
1558 raw_spin_unlock(&p->pi_lock);
1559
1560 local_irq_enable();
1561 return 0;
1562 }
1563
1564 /*
1565 * sched_class::set_cpus_allowed must do the below, but is not required to
1566 * actually call this function.
1567 */
1568 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1569 {
1570 cpumask_copy(&p->cpus_mask, new_mask);
1571 p->nr_cpus_allowed = cpumask_weight(new_mask);
1572 }
1573
1574 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1575 {
1576 struct rq *rq = task_rq(p);
1577 bool queued, running;
1578
1579 lockdep_assert_held(&p->pi_lock);
1580
1581 queued = task_on_rq_queued(p);
1582 running = task_current(rq, p);
1583
1584 if (queued) {
1585 /*
1586 * Because __kthread_bind() calls this on blocked tasks without
1587 * holding rq->lock.
1588 */
1589 lockdep_assert_held(&rq->lock);
1590 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1591 }
1592 if (running)
1593 put_prev_task(rq, p);
1594
1595 p->sched_class->set_cpus_allowed(p, new_mask);
1596
1597 if (queued)
1598 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1599 if (running)
1600 set_next_task(rq, p);
1601 }
1602
1603 /*
1604 * Change a given task's CPU affinity. Migrate the thread to a
1605 * proper CPU and schedule it away if the CPU it's executing on
1606 * is removed from the allowed bitmask.
1607 *
1608 * NOTE: the caller must have a valid reference to the task, the
1609 * task must not exit() & deallocate itself prematurely. The
1610 * call is not atomic; no spinlocks may be held.
1611 */
1612 static int __set_cpus_allowed_ptr(struct task_struct *p,
1613 const struct cpumask *new_mask, bool check)
1614 {
1615 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1616 unsigned int dest_cpu;
1617 struct rq_flags rf;
1618 struct rq *rq;
1619 int ret = 0;
1620
1621 rq = task_rq_lock(p, &rf);
1622 update_rq_clock(rq);
1623
1624 if (p->flags & PF_KTHREAD) {
1625 /*
1626 * Kernel threads are allowed on online && !active CPUs
1627 */
1628 cpu_valid_mask = cpu_online_mask;
1629 }
1630
1631 /*
1632 * Must re-check here, to close a race against __kthread_bind(),
1633 * sched_setaffinity() is not guaranteed to observe the flag.
1634 */
1635 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1636 ret = -EINVAL;
1637 goto out;
1638 }
1639
1640 if (cpumask_equal(p->cpus_ptr, new_mask))
1641 goto out;
1642
1643 /*
1644 * Picking a ~random cpu helps in cases where we are changing affinity
1645 * for groups of tasks (ie. cpuset), so that load balancing is not
1646 * immediately required to distribute the tasks within their new mask.
1647 */
1648 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
1649 if (dest_cpu >= nr_cpu_ids) {
1650 ret = -EINVAL;
1651 goto out;
1652 }
1653
1654 do_set_cpus_allowed(p, new_mask);
1655
1656 if (p->flags & PF_KTHREAD) {
1657 /*
1658 * For kernel threads that do indeed end up on online &&
1659 * !active we want to ensure they are strict per-CPU threads.
1660 */
1661 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1662 !cpumask_intersects(new_mask, cpu_active_mask) &&
1663 p->nr_cpus_allowed != 1);
1664 }
1665
1666 /* Can the task run on the task's current CPU? If so, we're done */
1667 if (cpumask_test_cpu(task_cpu(p), new_mask))
1668 goto out;
1669
1670 if (task_running(rq, p) || p->state == TASK_WAKING) {
1671 struct migration_arg arg = { p, dest_cpu };
1672 /* Need help from migration thread: drop lock and wait. */
1673 task_rq_unlock(rq, p, &rf);
1674 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1675 return 0;
1676 } else if (task_on_rq_queued(p)) {
1677 /*
1678 * OK, since we're going to drop the lock immediately
1679 * afterwards anyway.
1680 */
1681 rq = move_queued_task(rq, &rf, p, dest_cpu);
1682 }
1683 out:
1684 task_rq_unlock(rq, p, &rf);
1685
1686 return ret;
1687 }
1688
1689 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1690 {
1691 return __set_cpus_allowed_ptr(p, new_mask, false);
1692 }
1693 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1694
1695 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1696 {
1697 #ifdef CONFIG_SCHED_DEBUG
1698 /*
1699 * We should never call set_task_cpu() on a blocked task,
1700 * ttwu() will sort out the placement.
1701 */
1702 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1703 !p->on_rq);
1704
1705 /*
1706 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1707 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1708 * time relying on p->on_rq.
1709 */
1710 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1711 p->sched_class == &fair_sched_class &&
1712 (p->on_rq && !task_on_rq_migrating(p)));
1713
1714 #ifdef CONFIG_LOCKDEP
1715 /*
1716 * The caller should hold either p->pi_lock or rq->lock, when changing
1717 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1718 *
1719 * sched_move_task() holds both and thus holding either pins the cgroup,
1720 * see task_group().
1721 *
1722 * Furthermore, all task_rq users should acquire both locks, see
1723 * task_rq_lock().
1724 */
1725 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1726 lockdep_is_held(&task_rq(p)->lock)));
1727 #endif
1728 /*
1729 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1730 */
1731 WARN_ON_ONCE(!cpu_online(new_cpu));
1732 #endif
1733
1734 trace_sched_migrate_task(p, new_cpu);
1735
1736 if (task_cpu(p) != new_cpu) {
1737 if (p->sched_class->migrate_task_rq)
1738 p->sched_class->migrate_task_rq(p, new_cpu);
1739 p->se.nr_migrations++;
1740 rseq_migrate(p);
1741 perf_event_task_migrate(p);
1742 }
1743
1744 __set_task_cpu(p, new_cpu);
1745 }
1746
1747 #ifdef CONFIG_NUMA_BALANCING
1748 static void __migrate_swap_task(struct task_struct *p, int cpu)
1749 {
1750 if (task_on_rq_queued(p)) {
1751 struct rq *src_rq, *dst_rq;
1752 struct rq_flags srf, drf;
1753
1754 src_rq = task_rq(p);
1755 dst_rq = cpu_rq(cpu);
1756
1757 rq_pin_lock(src_rq, &srf);
1758 rq_pin_lock(dst_rq, &drf);
1759
1760 deactivate_task(src_rq, p, 0);
1761 set_task_cpu(p, cpu);
1762 activate_task(dst_rq, p, 0);
1763 check_preempt_curr(dst_rq, p, 0);
1764
1765 rq_unpin_lock(dst_rq, &drf);
1766 rq_unpin_lock(src_rq, &srf);
1767
1768 } else {
1769 /*
1770 * Task isn't running anymore; make it appear like we migrated
1771 * it before it went to sleep. This means on wakeup we make the
1772 * previous CPU our target instead of where it really is.
1773 */
1774 p->wake_cpu = cpu;
1775 }
1776 }
1777
1778 struct migration_swap_arg {
1779 struct task_struct *src_task, *dst_task;
1780 int src_cpu, dst_cpu;
1781 };
1782
1783 static int migrate_swap_stop(void *data)
1784 {
1785 struct migration_swap_arg *arg = data;
1786 struct rq *src_rq, *dst_rq;
1787 int ret = -EAGAIN;
1788
1789 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1790 return -EAGAIN;
1791
1792 src_rq = cpu_rq(arg->src_cpu);
1793 dst_rq = cpu_rq(arg->dst_cpu);
1794
1795 double_raw_lock(&arg->src_task->pi_lock,
1796 &arg->dst_task->pi_lock);
1797 double_rq_lock(src_rq, dst_rq);
1798
1799 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1800 goto unlock;
1801
1802 if (task_cpu(arg->src_task) != arg->src_cpu)
1803 goto unlock;
1804
1805 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1806 goto unlock;
1807
1808 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1809 goto unlock;
1810
1811 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1812 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1813
1814 ret = 0;
1815
1816 unlock:
1817 double_rq_unlock(src_rq, dst_rq);
1818 raw_spin_unlock(&arg->dst_task->pi_lock);
1819 raw_spin_unlock(&arg->src_task->pi_lock);
1820
1821 return ret;
1822 }
1823
1824 /*
1825 * Cross migrate two tasks
1826 */
1827 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1828 int target_cpu, int curr_cpu)
1829 {
1830 struct migration_swap_arg arg;
1831 int ret = -EINVAL;
1832
1833 arg = (struct migration_swap_arg){
1834 .src_task = cur,
1835 .src_cpu = curr_cpu,
1836 .dst_task = p,
1837 .dst_cpu = target_cpu,
1838 };
1839
1840 if (arg.src_cpu == arg.dst_cpu)
1841 goto out;
1842
1843 /*
1844 * These three tests are all lockless; this is OK since all of them
1845 * will be re-checked with proper locks held further down the line.
1846 */
1847 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1848 goto out;
1849
1850 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1851 goto out;
1852
1853 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1854 goto out;
1855
1856 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1857 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1858
1859 out:
1860 return ret;
1861 }
1862 #endif /* CONFIG_NUMA_BALANCING */
1863
1864 /*
1865 * wait_task_inactive - wait for a thread to unschedule.
1866 *
1867 * If @match_state is nonzero, it's the @p->state value just checked and
1868 * not expected to change. If it changes, i.e. @p might have woken up,
1869 * then return zero. When we succeed in waiting for @p to be off its CPU,
1870 * we return a positive number (its total switch count). If a second call
1871 * a short while later returns the same number, the caller can be sure that
1872 * @p has remained unscheduled the whole time.
1873 *
1874 * The caller must ensure that the task *will* unschedule sometime soon,
1875 * else this function might spin for a *long* time. This function can't
1876 * be called with interrupts off, or it may introduce deadlock with
1877 * smp_call_function() if an IPI is sent by the same process we are
1878 * waiting to become inactive.
1879 */
1880 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1881 {
1882 int running, queued;
1883 struct rq_flags rf;
1884 unsigned long ncsw;
1885 struct rq *rq;
1886
1887 for (;;) {
1888 /*
1889 * We do the initial early heuristics without holding
1890 * any task-queue locks at all. We'll only try to get
1891 * the runqueue lock when things look like they will
1892 * work out!
1893 */
1894 rq = task_rq(p);
1895
1896 /*
1897 * If the task is actively running on another CPU
1898 * still, just relax and busy-wait without holding
1899 * any locks.
1900 *
1901 * NOTE! Since we don't hold any locks, it's not
1902 * even sure that "rq" stays as the right runqueue!
1903 * But we don't care, since "task_running()" will
1904 * return false if the runqueue has changed and p
1905 * is actually now running somewhere else!
1906 */
1907 while (task_running(rq, p)) {
1908 if (match_state && unlikely(p->state != match_state))
1909 return 0;
1910 cpu_relax();
1911 }
1912
1913 /*
1914 * Ok, time to look more closely! We need the rq
1915 * lock now, to be *sure*. If we're wrong, we'll
1916 * just go back and repeat.
1917 */
1918 rq = task_rq_lock(p, &rf);
1919 trace_sched_wait_task(p);
1920 running = task_running(rq, p);
1921 queued = task_on_rq_queued(p);
1922 ncsw = 0;
1923 if (!match_state || p->state == match_state)
1924 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1925 task_rq_unlock(rq, p, &rf);
1926
1927 /*
1928 * If it changed from the expected state, bail out now.
1929 */
1930 if (unlikely(!ncsw))
1931 break;
1932
1933 /*
1934 * Was it really running after all now that we
1935 * checked with the proper locks actually held?
1936 *
1937 * Oops. Go back and try again..
1938 */
1939 if (unlikely(running)) {
1940 cpu_relax();
1941 continue;
1942 }
1943
1944 /*
1945 * It's not enough that it's not actively running,
1946 * it must be off the runqueue _entirely_, and not
1947 * preempted!
1948 *
1949 * So if it was still runnable (but just not actively
1950 * running right now), it's preempted, and we should
1951 * yield - it could be a while.
1952 */
1953 if (unlikely(queued)) {
1954 ktime_t to = NSEC_PER_SEC / HZ;
1955
1956 set_current_state(TASK_UNINTERRUPTIBLE);
1957 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1958 continue;
1959 }
1960
1961 /*
1962 * Ahh, all good. It wasn't running, and it wasn't
1963 * runnable, which means that it will never become
1964 * running in the future either. We're all done!
1965 */
1966 break;
1967 }
1968
1969 return ncsw;
1970 }
1971
1972 /***
1973 * kick_process - kick a running thread to enter/exit the kernel
1974 * @p: the to-be-kicked thread
1975 *
1976 * Cause a process which is running on another CPU to enter
1977 * kernel-mode, without any delay. (to get signals handled.)
1978 *
1979 * NOTE: this function doesn't have to take the runqueue lock,
1980 * because all it wants to ensure is that the remote task enters
1981 * the kernel. If the IPI races and the task has been migrated
1982 * to another CPU then no harm is done and the purpose has been
1983 * achieved as well.
1984 */
1985 void kick_process(struct task_struct *p)
1986 {
1987 int cpu;
1988
1989 preempt_disable();
1990 cpu = task_cpu(p);
1991 if ((cpu != smp_processor_id()) && task_curr(p))
1992 smp_send_reschedule(cpu);
1993 preempt_enable();
1994 }
1995 EXPORT_SYMBOL_GPL(kick_process);
1996
1997 /*
1998 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
1999 *
2000 * A few notes on cpu_active vs cpu_online:
2001 *
2002 * - cpu_active must be a subset of cpu_online
2003 *
2004 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2005 * see __set_cpus_allowed_ptr(). At this point the newly online
2006 * CPU isn't yet part of the sched domains, and balancing will not
2007 * see it.
2008 *
2009 * - on CPU-down we clear cpu_active() to mask the sched domains and
2010 * avoid the load balancer to place new tasks on the to be removed
2011 * CPU. Existing tasks will remain running there and will be taken
2012 * off.
2013 *
2014 * This means that fallback selection must not select !active CPUs.
2015 * And can assume that any active CPU must be online. Conversely
2016 * select_task_rq() below may allow selection of !active CPUs in order
2017 * to satisfy the above rules.
2018 */
2019 static int select_fallback_rq(int cpu, struct task_struct *p)
2020 {
2021 int nid = cpu_to_node(cpu);
2022 const struct cpumask *nodemask = NULL;
2023 enum { cpuset, possible, fail } state = cpuset;
2024 int dest_cpu;
2025
2026 /*
2027 * If the node that the CPU is on has been offlined, cpu_to_node()
2028 * will return -1. There is no CPU on the node, and we should
2029 * select the CPU on the other node.
2030 */
2031 if (nid != -1) {
2032 nodemask = cpumask_of_node(nid);
2033
2034 /* Look for allowed, online CPU in same node. */
2035 for_each_cpu(dest_cpu, nodemask) {
2036 if (!cpu_active(dest_cpu))
2037 continue;
2038 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2039 return dest_cpu;
2040 }
2041 }
2042
2043 for (;;) {
2044 /* Any allowed, online CPU? */
2045 for_each_cpu(dest_cpu, p->cpus_ptr) {
2046 if (!is_cpu_allowed(p, dest_cpu))
2047 continue;
2048
2049 goto out;
2050 }
2051
2052 /* No more Mr. Nice Guy. */
2053 switch (state) {
2054 case cpuset:
2055 if (IS_ENABLED(CONFIG_CPUSETS)) {
2056 cpuset_cpus_allowed_fallback(p);
2057 state = possible;
2058 break;
2059 }
2060 /* Fall-through */
2061 case possible:
2062 do_set_cpus_allowed(p, cpu_possible_mask);
2063 state = fail;
2064 break;
2065
2066 case fail:
2067 BUG();
2068 break;
2069 }
2070 }
2071
2072 out:
2073 if (state != cpuset) {
2074 /*
2075 * Don't tell them about moving exiting tasks or
2076 * kernel threads (both mm NULL), since they never
2077 * leave kernel.
2078 */
2079 if (p->mm && printk_ratelimit()) {
2080 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2081 task_pid_nr(p), p->comm, cpu);
2082 }
2083 }
2084
2085 return dest_cpu;
2086 }
2087
2088 /*
2089 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2090 */
2091 static inline
2092 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2093 {
2094 lockdep_assert_held(&p->pi_lock);
2095
2096 if (p->nr_cpus_allowed > 1)
2097 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2098 else
2099 cpu = cpumask_any(p->cpus_ptr);
2100
2101 /*
2102 * In order not to call set_task_cpu() on a blocking task we need
2103 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2104 * CPU.
2105 *
2106 * Since this is common to all placement strategies, this lives here.
2107 *
2108 * [ this allows ->select_task() to simply return task_cpu(p) and
2109 * not worry about this generic constraint ]
2110 */
2111 if (unlikely(!is_cpu_allowed(p, cpu)))
2112 cpu = select_fallback_rq(task_cpu(p), p);
2113
2114 return cpu;
2115 }
2116
2117 void sched_set_stop_task(int cpu, struct task_struct *stop)
2118 {
2119 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2120 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2121
2122 if (stop) {
2123 /*
2124 * Make it appear like a SCHED_FIFO task, its something
2125 * userspace knows about and won't get confused about.
2126 *
2127 * Also, it will make PI more or less work without too
2128 * much confusion -- but then, stop work should not
2129 * rely on PI working anyway.
2130 */
2131 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2132
2133 stop->sched_class = &stop_sched_class;
2134 }
2135
2136 cpu_rq(cpu)->stop = stop;
2137
2138 if (old_stop) {
2139 /*
2140 * Reset it back to a normal scheduling class so that
2141 * it can die in pieces.
2142 */
2143 old_stop->sched_class = &rt_sched_class;
2144 }
2145 }
2146
2147 #else
2148
2149 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2150 const struct cpumask *new_mask, bool check)
2151 {
2152 return set_cpus_allowed_ptr(p, new_mask);
2153 }
2154
2155 #endif /* CONFIG_SMP */
2156
2157 static void
2158 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2159 {
2160 struct rq *rq;
2161
2162 if (!schedstat_enabled())
2163 return;
2164
2165 rq = this_rq();
2166
2167 #ifdef CONFIG_SMP
2168 if (cpu == rq->cpu) {
2169 __schedstat_inc(rq->ttwu_local);
2170 __schedstat_inc(p->se.statistics.nr_wakeups_local);
2171 } else {
2172 struct sched_domain *sd;
2173
2174 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2175 rcu_read_lock();
2176 for_each_domain(rq->cpu, sd) {
2177 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2178 __schedstat_inc(sd->ttwu_wake_remote);
2179 break;
2180 }
2181 }
2182 rcu_read_unlock();
2183 }
2184
2185 if (wake_flags & WF_MIGRATED)
2186 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2187 #endif /* CONFIG_SMP */
2188
2189 __schedstat_inc(rq->ttwu_count);
2190 __schedstat_inc(p->se.statistics.nr_wakeups);
2191
2192 if (wake_flags & WF_SYNC)
2193 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2194 }
2195
2196 /*
2197 * Mark the task runnable and perform wakeup-preemption.
2198 */
2199 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2200 struct rq_flags *rf)
2201 {
2202 check_preempt_curr(rq, p, wake_flags);
2203 p->state = TASK_RUNNING;
2204 trace_sched_wakeup(p);
2205
2206 #ifdef CONFIG_SMP
2207 if (p->sched_class->task_woken) {
2208 /*
2209 * Our task @p is fully woken up and running; so its safe to
2210 * drop the rq->lock, hereafter rq is only used for statistics.
2211 */
2212 rq_unpin_lock(rq, rf);
2213 p->sched_class->task_woken(rq, p);
2214 rq_repin_lock(rq, rf);
2215 }
2216
2217 if (rq->idle_stamp) {
2218 u64 delta = rq_clock(rq) - rq->idle_stamp;
2219 u64 max = 2*rq->max_idle_balance_cost;
2220
2221 update_avg(&rq->avg_idle, delta);
2222
2223 if (rq->avg_idle > max)
2224 rq->avg_idle = max;
2225
2226 rq->idle_stamp = 0;
2227 }
2228 #endif
2229 }
2230
2231 static void
2232 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2233 struct rq_flags *rf)
2234 {
2235 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2236
2237 lockdep_assert_held(&rq->lock);
2238
2239 #ifdef CONFIG_SMP
2240 if (p->sched_contributes_to_load)
2241 rq->nr_uninterruptible--;
2242
2243 if (wake_flags & WF_MIGRATED)
2244 en_flags |= ENQUEUE_MIGRATED;
2245 #endif
2246
2247 activate_task(rq, p, en_flags);
2248 ttwu_do_wakeup(rq, p, wake_flags, rf);
2249 }
2250
2251 /*
2252 * Called in case the task @p isn't fully descheduled from its runqueue,
2253 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2254 * since all we need to do is flip p->state to TASK_RUNNING, since
2255 * the task is still ->on_rq.
2256 */
2257 static int ttwu_remote(struct task_struct *p, int wake_flags)
2258 {
2259 struct rq_flags rf;
2260 struct rq *rq;
2261 int ret = 0;
2262
2263 rq = __task_rq_lock(p, &rf);
2264 if (task_on_rq_queued(p)) {
2265 /* check_preempt_curr() may use rq clock */
2266 update_rq_clock(rq);
2267 ttwu_do_wakeup(rq, p, wake_flags, &rf);
2268 ret = 1;
2269 }
2270 __task_rq_unlock(rq, &rf);
2271
2272 return ret;
2273 }
2274
2275 #ifdef CONFIG_SMP
2276 void sched_ttwu_pending(void)
2277 {
2278 struct rq *rq = this_rq();
2279 struct llist_node *llist = llist_del_all(&rq->wake_list);
2280 struct task_struct *p, *t;
2281 struct rq_flags rf;
2282
2283 if (!llist)
2284 return;
2285
2286 rq_lock_irqsave(rq, &rf);
2287 update_rq_clock(rq);
2288
2289 llist_for_each_entry_safe(p, t, llist, wake_entry)
2290 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2291
2292 rq_unlock_irqrestore(rq, &rf);
2293 }
2294
2295 void scheduler_ipi(void)
2296 {
2297 /*
2298 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2299 * TIF_NEED_RESCHED remotely (for the first time) will also send
2300 * this IPI.
2301 */
2302 preempt_fold_need_resched();
2303
2304 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2305 return;
2306
2307 /*
2308 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2309 * traditionally all their work was done from the interrupt return
2310 * path. Now that we actually do some work, we need to make sure
2311 * we do call them.
2312 *
2313 * Some archs already do call them, luckily irq_enter/exit nest
2314 * properly.
2315 *
2316 * Arguably we should visit all archs and update all handlers,
2317 * however a fair share of IPIs are still resched only so this would
2318 * somewhat pessimize the simple resched case.
2319 */
2320 irq_enter();
2321 sched_ttwu_pending();
2322
2323 /*
2324 * Check if someone kicked us for doing the nohz idle load balance.
2325 */
2326 if (unlikely(got_nohz_idle_kick())) {
2327 this_rq()->idle_balance = 1;
2328 raise_softirq_irqoff(SCHED_SOFTIRQ);
2329 }
2330 irq_exit();
2331 }
2332
2333 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
2334 {
2335 struct rq *rq = cpu_rq(cpu);
2336
2337 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2338
2339 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2340 if (!set_nr_if_polling(rq->idle))
2341 smp_send_reschedule(cpu);
2342 else
2343 trace_sched_wake_idle_without_ipi(cpu);
2344 }
2345 }
2346
2347 void wake_up_if_idle(int cpu)
2348 {
2349 struct rq *rq = cpu_rq(cpu);
2350 struct rq_flags rf;
2351
2352 rcu_read_lock();
2353
2354 if (!is_idle_task(rcu_dereference(rq->curr)))
2355 goto out;
2356
2357 if (set_nr_if_polling(rq->idle)) {
2358 trace_sched_wake_idle_without_ipi(cpu);
2359 } else {
2360 rq_lock_irqsave(rq, &rf);
2361 if (is_idle_task(rq->curr))
2362 smp_send_reschedule(cpu);
2363 /* Else CPU is not idle, do nothing here: */
2364 rq_unlock_irqrestore(rq, &rf);
2365 }
2366
2367 out:
2368 rcu_read_unlock();
2369 }
2370
2371 bool cpus_share_cache(int this_cpu, int that_cpu)
2372 {
2373 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2374 }
2375 #endif /* CONFIG_SMP */
2376
2377 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2378 {
2379 struct rq *rq = cpu_rq(cpu);
2380 struct rq_flags rf;
2381
2382 #if defined(CONFIG_SMP)
2383 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
2384 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2385 ttwu_queue_remote(p, cpu, wake_flags);
2386 return;
2387 }
2388 #endif
2389
2390 rq_lock(rq, &rf);
2391 update_rq_clock(rq);
2392 ttwu_do_activate(rq, p, wake_flags, &rf);
2393 rq_unlock(rq, &rf);
2394 }
2395
2396 /*
2397 * Notes on Program-Order guarantees on SMP systems.
2398 *
2399 * MIGRATION
2400 *
2401 * The basic program-order guarantee on SMP systems is that when a task [t]
2402 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2403 * execution on its new CPU [c1].
2404 *
2405 * For migration (of runnable tasks) this is provided by the following means:
2406 *
2407 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2408 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2409 * rq(c1)->lock (if not at the same time, then in that order).
2410 * C) LOCK of the rq(c1)->lock scheduling in task
2411 *
2412 * Release/acquire chaining guarantees that B happens after A and C after B.
2413 * Note: the CPU doing B need not be c0 or c1
2414 *
2415 * Example:
2416 *
2417 * CPU0 CPU1 CPU2
2418 *
2419 * LOCK rq(0)->lock
2420 * sched-out X
2421 * sched-in Y
2422 * UNLOCK rq(0)->lock
2423 *
2424 * LOCK rq(0)->lock // orders against CPU0
2425 * dequeue X
2426 * UNLOCK rq(0)->lock
2427 *
2428 * LOCK rq(1)->lock
2429 * enqueue X
2430 * UNLOCK rq(1)->lock
2431 *
2432 * LOCK rq(1)->lock // orders against CPU2
2433 * sched-out Z
2434 * sched-in X
2435 * UNLOCK rq(1)->lock
2436 *
2437 *
2438 * BLOCKING -- aka. SLEEP + WAKEUP
2439 *
2440 * For blocking we (obviously) need to provide the same guarantee as for
2441 * migration. However the means are completely different as there is no lock
2442 * chain to provide order. Instead we do:
2443 *
2444 * 1) smp_store_release(X->on_cpu, 0)
2445 * 2) smp_cond_load_acquire(!X->on_cpu)
2446 *
2447 * Example:
2448 *
2449 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2450 *
2451 * LOCK rq(0)->lock LOCK X->pi_lock
2452 * dequeue X
2453 * sched-out X
2454 * smp_store_release(X->on_cpu, 0);
2455 *
2456 * smp_cond_load_acquire(&X->on_cpu, !VAL);
2457 * X->state = WAKING
2458 * set_task_cpu(X,2)
2459 *
2460 * LOCK rq(2)->lock
2461 * enqueue X
2462 * X->state = RUNNING
2463 * UNLOCK rq(2)->lock
2464 *
2465 * LOCK rq(2)->lock // orders against CPU1
2466 * sched-out Z
2467 * sched-in X
2468 * UNLOCK rq(2)->lock
2469 *
2470 * UNLOCK X->pi_lock
2471 * UNLOCK rq(0)->lock
2472 *
2473 *
2474 * However, for wakeups there is a second guarantee we must provide, namely we
2475 * must ensure that CONDITION=1 done by the caller can not be reordered with
2476 * accesses to the task state; see try_to_wake_up() and set_current_state().
2477 */
2478
2479 /**
2480 * try_to_wake_up - wake up a thread
2481 * @p: the thread to be awakened
2482 * @state: the mask of task states that can be woken
2483 * @wake_flags: wake modifier flags (WF_*)
2484 *
2485 * If (@state & @p->state) @p->state = TASK_RUNNING.
2486 *
2487 * If the task was not queued/runnable, also place it back on a runqueue.
2488 *
2489 * Atomic against schedule() which would dequeue a task, also see
2490 * set_current_state().
2491 *
2492 * This function executes a full memory barrier before accessing the task
2493 * state; see set_current_state().
2494 *
2495 * Return: %true if @p->state changes (an actual wakeup was done),
2496 * %false otherwise.
2497 */
2498 static int
2499 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2500 {
2501 unsigned long flags;
2502 int cpu, success = 0;
2503
2504 preempt_disable();
2505 if (p == current) {
2506 /*
2507 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2508 * == smp_processor_id()'. Together this means we can special
2509 * case the whole 'p->on_rq && ttwu_remote()' case below
2510 * without taking any locks.
2511 *
2512 * In particular:
2513 * - we rely on Program-Order guarantees for all the ordering,
2514 * - we're serialized against set_special_state() by virtue of
2515 * it disabling IRQs (this allows not taking ->pi_lock).
2516 */
2517 if (!(p->state & state))
2518 goto out;
2519
2520 success = 1;
2521 cpu = task_cpu(p);
2522 trace_sched_waking(p);
2523 p->state = TASK_RUNNING;
2524 trace_sched_wakeup(p);
2525 goto out;
2526 }
2527
2528 /*
2529 * If we are going to wake up a thread waiting for CONDITION we
2530 * need to ensure that CONDITION=1 done by the caller can not be
2531 * reordered with p->state check below. This pairs with mb() in
2532 * set_current_state() the waiting thread does.
2533 */
2534 raw_spin_lock_irqsave(&p->pi_lock, flags);
2535 smp_mb__after_spinlock();
2536 if (!(p->state & state))
2537 goto unlock;
2538
2539 trace_sched_waking(p);
2540
2541 /* We're going to change ->state: */
2542 success = 1;
2543 cpu = task_cpu(p);
2544
2545 /*
2546 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2547 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2548 * in smp_cond_load_acquire() below.
2549 *
2550 * sched_ttwu_pending() try_to_wake_up()
2551 * STORE p->on_rq = 1 LOAD p->state
2552 * UNLOCK rq->lock
2553 *
2554 * __schedule() (switch to task 'p')
2555 * LOCK rq->lock smp_rmb();
2556 * smp_mb__after_spinlock();
2557 * UNLOCK rq->lock
2558 *
2559 * [task p]
2560 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
2561 *
2562 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2563 * __schedule(). See the comment for smp_mb__after_spinlock().
2564 *
2565 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
2566 */
2567 smp_rmb();
2568 if (p->on_rq && ttwu_remote(p, wake_flags))
2569 goto unlock;
2570
2571 #ifdef CONFIG_SMP
2572 /*
2573 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2574 * possible to, falsely, observe p->on_cpu == 0.
2575 *
2576 * One must be running (->on_cpu == 1) in order to remove oneself
2577 * from the runqueue.
2578 *
2579 * __schedule() (switch to task 'p') try_to_wake_up()
2580 * STORE p->on_cpu = 1 LOAD p->on_rq
2581 * UNLOCK rq->lock
2582 *
2583 * __schedule() (put 'p' to sleep)
2584 * LOCK rq->lock smp_rmb();
2585 * smp_mb__after_spinlock();
2586 * STORE p->on_rq = 0 LOAD p->on_cpu
2587 *
2588 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2589 * __schedule(). See the comment for smp_mb__after_spinlock().
2590 */
2591 smp_rmb();
2592
2593 /*
2594 * If the owning (remote) CPU is still in the middle of schedule() with
2595 * this task as prev, wait until its done referencing the task.
2596 *
2597 * Pairs with the smp_store_release() in finish_task().
2598 *
2599 * This ensures that tasks getting woken will be fully ordered against
2600 * their previous state and preserve Program Order.
2601 */
2602 smp_cond_load_acquire(&p->on_cpu, !VAL);
2603
2604 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2605 p->state = TASK_WAKING;
2606
2607 if (p->in_iowait) {
2608 delayacct_blkio_end(p);
2609 atomic_dec(&task_rq(p)->nr_iowait);
2610 }
2611
2612 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2613 if (task_cpu(p) != cpu) {
2614 wake_flags |= WF_MIGRATED;
2615 psi_ttwu_dequeue(p);
2616 set_task_cpu(p, cpu);
2617 }
2618
2619 #else /* CONFIG_SMP */
2620
2621 if (p->in_iowait) {
2622 delayacct_blkio_end(p);
2623 atomic_dec(&task_rq(p)->nr_iowait);
2624 }
2625
2626 #endif /* CONFIG_SMP */
2627
2628 ttwu_queue(p, cpu, wake_flags);
2629 unlock:
2630 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2631 out:
2632 if (success)
2633 ttwu_stat(p, cpu, wake_flags);
2634 preempt_enable();
2635
2636 return success;
2637 }
2638
2639 /**
2640 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
2641 * @p: Process for which the function is to be invoked.
2642 * @func: Function to invoke.
2643 * @arg: Argument to function.
2644 *
2645 * If the specified task can be quickly locked into a definite state
2646 * (either sleeping or on a given runqueue), arrange to keep it in that
2647 * state while invoking @func(@arg). This function can use ->on_rq and
2648 * task_curr() to work out what the state is, if required. Given that
2649 * @func can be invoked with a runqueue lock held, it had better be quite
2650 * lightweight.
2651 *
2652 * Returns:
2653 * @false if the task slipped out from under the locks.
2654 * @true if the task was locked onto a runqueue or is sleeping.
2655 * However, @func can override this by returning @false.
2656 */
2657 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
2658 {
2659 bool ret = false;
2660 struct rq_flags rf;
2661 struct rq *rq;
2662
2663 lockdep_assert_irqs_enabled();
2664 raw_spin_lock_irq(&p->pi_lock);
2665 if (p->on_rq) {
2666 rq = __task_rq_lock(p, &rf);
2667 if (task_rq(p) == rq)
2668 ret = func(p, arg);
2669 rq_unlock(rq, &rf);
2670 } else {
2671 switch (p->state) {
2672 case TASK_RUNNING:
2673 case TASK_WAKING:
2674 break;
2675 default:
2676 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
2677 if (!p->on_rq)
2678 ret = func(p, arg);
2679 }
2680 }
2681 raw_spin_unlock_irq(&p->pi_lock);
2682 return ret;
2683 }
2684
2685 /**
2686 * wake_up_process - Wake up a specific process
2687 * @p: The process to be woken up.
2688 *
2689 * Attempt to wake up the nominated process and move it to the set of runnable
2690 * processes.
2691 *
2692 * Return: 1 if the process was woken up, 0 if it was already running.
2693 *
2694 * This function executes a full memory barrier before accessing the task state.
2695 */
2696 int wake_up_process(struct task_struct *p)
2697 {
2698 return try_to_wake_up(p, TASK_NORMAL, 0);
2699 }
2700 EXPORT_SYMBOL(wake_up_process);
2701
2702 int wake_up_state(struct task_struct *p, unsigned int state)
2703 {
2704 return try_to_wake_up(p, state, 0);
2705 }
2706
2707 /*
2708 * Perform scheduler related setup for a newly forked process p.
2709 * p is forked by current.
2710 *
2711 * __sched_fork() is basic setup used by init_idle() too:
2712 */
2713 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2714 {
2715 p->on_rq = 0;
2716
2717 p->se.on_rq = 0;
2718 p->se.exec_start = 0;
2719 p->se.sum_exec_runtime = 0;
2720 p->se.prev_sum_exec_runtime = 0;
2721 p->se.nr_migrations = 0;
2722 p->se.vruntime = 0;
2723 INIT_LIST_HEAD(&p->se.group_node);
2724
2725 #ifdef CONFIG_FAIR_GROUP_SCHED
2726 p->se.cfs_rq = NULL;
2727 #endif
2728
2729 #ifdef CONFIG_SCHEDSTATS
2730 /* Even if schedstat is disabled, there should not be garbage */
2731 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2732 #endif
2733
2734 RB_CLEAR_NODE(&p->dl.rb_node);
2735 init_dl_task_timer(&p->dl);
2736 init_dl_inactive_task_timer(&p->dl);
2737 __dl_clear_params(p);
2738
2739 INIT_LIST_HEAD(&p->rt.run_list);
2740 p->rt.timeout = 0;
2741 p->rt.time_slice = sched_rr_timeslice;
2742 p->rt.on_rq = 0;
2743 p->rt.on_list = 0;
2744
2745 #ifdef CONFIG_PREEMPT_NOTIFIERS
2746 INIT_HLIST_HEAD(&p->preempt_notifiers);
2747 #endif
2748
2749 #ifdef CONFIG_COMPACTION
2750 p->capture_control = NULL;
2751 #endif
2752 init_numa_balancing(clone_flags, p);
2753 }
2754
2755 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2756
2757 #ifdef CONFIG_NUMA_BALANCING
2758
2759 void set_numabalancing_state(bool enabled)
2760 {
2761 if (enabled)
2762 static_branch_enable(&sched_numa_balancing);
2763 else
2764 static_branch_disable(&sched_numa_balancing);
2765 }
2766
2767 #ifdef CONFIG_PROC_SYSCTL
2768 int sysctl_numa_balancing(struct ctl_table *table, int write,
2769 void __user *buffer, size_t *lenp, loff_t *ppos)
2770 {
2771 struct ctl_table t;
2772 int err;
2773 int state = static_branch_likely(&sched_numa_balancing);
2774
2775 if (write && !capable(CAP_SYS_ADMIN))
2776 return -EPERM;
2777
2778 t = *table;
2779 t.data = &state;
2780 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2781 if (err < 0)
2782 return err;
2783 if (write)
2784 set_numabalancing_state(state);
2785 return err;
2786 }
2787 #endif
2788 #endif
2789
2790 #ifdef CONFIG_SCHEDSTATS
2791
2792 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2793 static bool __initdata __sched_schedstats = false;
2794
2795 static void set_schedstats(bool enabled)
2796 {
2797 if (enabled)
2798 static_branch_enable(&sched_schedstats);
2799 else
2800 static_branch_disable(&sched_schedstats);
2801 }
2802
2803 void force_schedstat_enabled(void)
2804 {
2805 if (!schedstat_enabled()) {
2806 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2807 static_branch_enable(&sched_schedstats);
2808 }
2809 }
2810
2811 static int __init setup_schedstats(char *str)
2812 {
2813 int ret = 0;
2814 if (!str)
2815 goto out;
2816
2817 /*
2818 * This code is called before jump labels have been set up, so we can't
2819 * change the static branch directly just yet. Instead set a temporary
2820 * variable so init_schedstats() can do it later.
2821 */
2822 if (!strcmp(str, "enable")) {
2823 __sched_schedstats = true;
2824 ret = 1;
2825 } else if (!strcmp(str, "disable")) {
2826 __sched_schedstats = false;
2827 ret = 1;
2828 }
2829 out:
2830 if (!ret)
2831 pr_warn("Unable to parse schedstats=\n");
2832
2833 return ret;
2834 }
2835 __setup("schedstats=", setup_schedstats);
2836
2837 static void __init init_schedstats(void)
2838 {
2839 set_schedstats(__sched_schedstats);
2840 }
2841
2842 #ifdef CONFIG_PROC_SYSCTL
2843 int sysctl_schedstats(struct ctl_table *table, int write,
2844 void __user *buffer, size_t *lenp, loff_t *ppos)
2845 {
2846 struct ctl_table t;
2847 int err;
2848 int state = static_branch_likely(&sched_schedstats);
2849
2850 if (write && !capable(CAP_SYS_ADMIN))
2851 return -EPERM;
2852
2853 t = *table;
2854 t.data = &state;
2855 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2856 if (err < 0)
2857 return err;
2858 if (write)
2859 set_schedstats(state);
2860 return err;
2861 }
2862 #endif /* CONFIG_PROC_SYSCTL */
2863 #else /* !CONFIG_SCHEDSTATS */
2864 static inline void init_schedstats(void) {}
2865 #endif /* CONFIG_SCHEDSTATS */
2866
2867 /*
2868 * fork()/clone()-time setup:
2869 */
2870 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2871 {
2872 unsigned long flags;
2873
2874 __sched_fork(clone_flags, p);
2875 /*
2876 * We mark the process as NEW here. This guarantees that
2877 * nobody will actually run it, and a signal or other external
2878 * event cannot wake it up and insert it on the runqueue either.
2879 */
2880 p->state = TASK_NEW;
2881
2882 /*
2883 * Make sure we do not leak PI boosting priority to the child.
2884 */
2885 p->prio = current->normal_prio;
2886
2887 uclamp_fork(p);
2888
2889 /*
2890 * Revert to default priority/policy on fork if requested.
2891 */
2892 if (unlikely(p->sched_reset_on_fork)) {
2893 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2894 p->policy = SCHED_NORMAL;
2895 p->static_prio = NICE_TO_PRIO(0);
2896 p->rt_priority = 0;
2897 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2898 p->static_prio = NICE_TO_PRIO(0);
2899
2900 p->prio = p->normal_prio = __normal_prio(p);
2901 set_load_weight(p, false);
2902
2903 /*
2904 * We don't need the reset flag anymore after the fork. It has
2905 * fulfilled its duty:
2906 */
2907 p->sched_reset_on_fork = 0;
2908 }
2909
2910 if (dl_prio(p->prio))
2911 return -EAGAIN;
2912 else if (rt_prio(p->prio))
2913 p->sched_class = &rt_sched_class;
2914 else
2915 p->sched_class = &fair_sched_class;
2916
2917 init_entity_runnable_average(&p->se);
2918
2919 /*
2920 * The child is not yet in the pid-hash so no cgroup attach races,
2921 * and the cgroup is pinned to this child due to cgroup_fork()
2922 * is ran before sched_fork().
2923 *
2924 * Silence PROVE_RCU.
2925 */
2926 raw_spin_lock_irqsave(&p->pi_lock, flags);
2927 /*
2928 * We're setting the CPU for the first time, we don't migrate,
2929 * so use __set_task_cpu().
2930 */
2931 __set_task_cpu(p, smp_processor_id());
2932 if (p->sched_class->task_fork)
2933 p->sched_class->task_fork(p);
2934 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2935
2936 #ifdef CONFIG_SCHED_INFO
2937 if (likely(sched_info_on()))
2938 memset(&p->sched_info, 0, sizeof(p->sched_info));
2939 #endif
2940 #if defined(CONFIG_SMP)
2941 p->on_cpu = 0;
2942 #endif
2943 init_task_preempt_count(p);
2944 #ifdef CONFIG_SMP
2945 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2946 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2947 #endif
2948 return 0;
2949 }
2950
2951 unsigned long to_ratio(u64 period, u64 runtime)
2952 {
2953 if (runtime == RUNTIME_INF)
2954 return BW_UNIT;
2955
2956 /*
2957 * Doing this here saves a lot of checks in all
2958 * the calling paths, and returning zero seems
2959 * safe for them anyway.
2960 */
2961 if (period == 0)
2962 return 0;
2963
2964 return div64_u64(runtime << BW_SHIFT, period);
2965 }
2966
2967 /*
2968 * wake_up_new_task - wake up a newly created task for the first time.
2969 *
2970 * This function will do some initial scheduler statistics housekeeping
2971 * that must be done for every newly created context, then puts the task
2972 * on the runqueue and wakes it.
2973 */
2974 void wake_up_new_task(struct task_struct *p)
2975 {
2976 struct rq_flags rf;
2977 struct rq *rq;
2978
2979 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2980 p->state = TASK_RUNNING;
2981 #ifdef CONFIG_SMP
2982 /*
2983 * Fork balancing, do it here and not earlier because:
2984 * - cpus_ptr can change in the fork path
2985 * - any previously selected CPU might disappear through hotplug
2986 *
2987 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2988 * as we're not fully set-up yet.
2989 */
2990 p->recent_used_cpu = task_cpu(p);
2991 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2992 #endif
2993 rq = __task_rq_lock(p, &rf);
2994 update_rq_clock(rq);
2995 post_init_entity_util_avg(p);
2996
2997 activate_task(rq, p, ENQUEUE_NOCLOCK);
2998 trace_sched_wakeup_new(p);
2999 check_preempt_curr(rq, p, WF_FORK);
3000 #ifdef CONFIG_SMP
3001 if (p->sched_class->task_woken) {
3002 /*
3003 * Nothing relies on rq->lock after this, so its fine to
3004 * drop it.
3005 */
3006 rq_unpin_lock(rq, &rf);
3007 p->sched_class->task_woken(rq, p);
3008 rq_repin_lock(rq, &rf);
3009 }
3010 #endif
3011 task_rq_unlock(rq, p, &rf);
3012 }
3013
3014 #ifdef CONFIG_PREEMPT_NOTIFIERS
3015
3016 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3017
3018 void preempt_notifier_inc(void)
3019 {
3020 static_branch_inc(&preempt_notifier_key);
3021 }
3022 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3023
3024 void preempt_notifier_dec(void)
3025 {
3026 static_branch_dec(&preempt_notifier_key);
3027 }
3028 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3029
3030 /**
3031 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3032 * @notifier: notifier struct to register
3033 */
3034 void preempt_notifier_register(struct preempt_notifier *notifier)
3035 {
3036 if (!static_branch_unlikely(&preempt_notifier_key))
3037 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3038
3039 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3040 }
3041 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3042
3043 /**
3044 * preempt_notifier_unregister - no longer interested in preemption notifications
3045 * @notifier: notifier struct to unregister
3046 *
3047 * This is *not* safe to call from within a preemption notifier.
3048 */
3049 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3050 {
3051 hlist_del(&notifier->link);
3052 }
3053 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3054
3055 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3056 {
3057 struct preempt_notifier *notifier;
3058
3059 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3060 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3061 }
3062
3063 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3064 {
3065 if (static_branch_unlikely(&preempt_notifier_key))
3066 __fire_sched_in_preempt_notifiers(curr);
3067 }
3068
3069 static void
3070 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3071 struct task_struct *next)
3072 {
3073 struct preempt_notifier *notifier;
3074
3075 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3076 notifier->ops->sched_out(notifier, next);
3077 }
3078
3079 static __always_inline void
3080 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3081 struct task_struct *next)
3082 {
3083 if (static_branch_unlikely(&preempt_notifier_key))
3084 __fire_sched_out_preempt_notifiers(curr, next);
3085 }
3086
3087 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3088
3089 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3090 {
3091 }
3092
3093 static inline void
3094 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3095 struct task_struct *next)
3096 {
3097 }
3098
3099 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3100
3101 static inline void prepare_task(struct task_struct *next)
3102 {
3103 #ifdef CONFIG_SMP
3104 /*
3105 * Claim the task as running, we do this before switching to it
3106 * such that any running task will have this set.
3107 */
3108 next->on_cpu = 1;
3109 #endif
3110 }
3111
3112 static inline void finish_task(struct task_struct *prev)
3113 {
3114 #ifdef CONFIG_SMP
3115 /*
3116 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3117 * We must ensure this doesn't happen until the switch is completely
3118 * finished.
3119 *
3120 * In particular, the load of prev->state in finish_task_switch() must
3121 * happen before this.
3122 *
3123 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3124 */
3125 smp_store_release(&prev->on_cpu, 0);
3126 #endif
3127 }
3128
3129 static inline void
3130 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3131 {
3132 /*
3133 * Since the runqueue lock will be released by the next
3134 * task (which is an invalid locking op but in the case
3135 * of the scheduler it's an obvious special-case), so we
3136 * do an early lockdep release here:
3137 */
3138 rq_unpin_lock(rq, rf);
3139 spin_release(&rq->lock.dep_map, _THIS_IP_);
3140 #ifdef CONFIG_DEBUG_SPINLOCK
3141 /* this is a valid case when another task releases the spinlock */
3142 rq->lock.owner = next;
3143 #endif
3144 }
3145
3146 static inline void finish_lock_switch(struct rq *rq)
3147 {
3148 /*
3149 * If we are tracking spinlock dependencies then we have to
3150 * fix up the runqueue lock - which gets 'carried over' from
3151 * prev into current:
3152 */
3153 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3154 raw_spin_unlock_irq(&rq->lock);
3155 }
3156
3157 /*
3158 * NOP if the arch has not defined these:
3159 */
3160
3161 #ifndef prepare_arch_switch
3162 # define prepare_arch_switch(next) do { } while (0)
3163 #endif
3164
3165 #ifndef finish_arch_post_lock_switch
3166 # define finish_arch_post_lock_switch() do { } while (0)
3167 #endif
3168
3169 /**
3170 * prepare_task_switch - prepare to switch tasks
3171 * @rq: the runqueue preparing to switch
3172 * @prev: the current task that is being switched out
3173 * @next: the task we are going to switch to.
3174 *
3175 * This is called with the rq lock held and interrupts off. It must
3176 * be paired with a subsequent finish_task_switch after the context
3177 * switch.
3178 *
3179 * prepare_task_switch sets up locking and calls architecture specific
3180 * hooks.
3181 */
3182 static inline void
3183 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3184 struct task_struct *next)
3185 {
3186 kcov_prepare_switch(prev);
3187 sched_info_switch(rq, prev, next);
3188 perf_event_task_sched_out(prev, next);
3189 rseq_preempt(prev);
3190 fire_sched_out_preempt_notifiers(prev, next);
3191 prepare_task(next);
3192 prepare_arch_switch(next);
3193 }
3194
3195 /**
3196 * finish_task_switch - clean up after a task-switch
3197 * @prev: the thread we just switched away from.
3198 *
3199 * finish_task_switch must be called after the context switch, paired
3200 * with a prepare_task_switch call before the context switch.
3201 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3202 * and do any other architecture-specific cleanup actions.
3203 *
3204 * Note that we may have delayed dropping an mm in context_switch(). If
3205 * so, we finish that here outside of the runqueue lock. (Doing it
3206 * with the lock held can cause deadlocks; see schedule() for
3207 * details.)
3208 *
3209 * The context switch have flipped the stack from under us and restored the
3210 * local variables which were saved when this task called schedule() in the
3211 * past. prev == current is still correct but we need to recalculate this_rq
3212 * because prev may have moved to another CPU.
3213 */
3214 static struct rq *finish_task_switch(struct task_struct *prev)
3215 __releases(rq->lock)
3216 {
3217 struct rq *rq = this_rq();
3218 struct mm_struct *mm = rq->prev_mm;
3219 long prev_state;
3220
3221 /*
3222 * The previous task will have left us with a preempt_count of 2
3223 * because it left us after:
3224 *
3225 * schedule()
3226 * preempt_disable(); // 1
3227 * __schedule()
3228 * raw_spin_lock_irq(&rq->lock) // 2
3229 *
3230 * Also, see FORK_PREEMPT_COUNT.
3231 */
3232 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3233 "corrupted preempt_count: %s/%d/0x%x\n",
3234 current->comm, current->pid, preempt_count()))
3235 preempt_count_set(FORK_PREEMPT_COUNT);
3236
3237 rq->prev_mm = NULL;
3238
3239 /*
3240 * A task struct has one reference for the use as "current".
3241 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3242 * schedule one last time. The schedule call will never return, and
3243 * the scheduled task must drop that reference.
3244 *
3245 * We must observe prev->state before clearing prev->on_cpu (in
3246 * finish_task), otherwise a concurrent wakeup can get prev
3247 * running on another CPU and we could rave with its RUNNING -> DEAD
3248 * transition, resulting in a double drop.
3249 */
3250 prev_state = prev->state;
3251 vtime_task_switch(prev);
3252 perf_event_task_sched_in(prev, current);
3253 finish_task(prev);
3254 finish_lock_switch(rq);
3255 finish_arch_post_lock_switch();
3256 kcov_finish_switch(current);
3257
3258 fire_sched_in_preempt_notifiers(current);
3259 /*
3260 * When switching through a kernel thread, the loop in
3261 * membarrier_{private,global}_expedited() may have observed that
3262 * kernel thread and not issued an IPI. It is therefore possible to
3263 * schedule between user->kernel->user threads without passing though
3264 * switch_mm(). Membarrier requires a barrier after storing to
3265 * rq->curr, before returning to userspace, so provide them here:
3266 *
3267 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3268 * provided by mmdrop(),
3269 * - a sync_core for SYNC_CORE.
3270 */
3271 if (mm) {
3272 membarrier_mm_sync_core_before_usermode(mm);
3273 mmdrop(mm);
3274 }
3275 if (unlikely(prev_state == TASK_DEAD)) {
3276 if (prev->sched_class->task_dead)
3277 prev->sched_class->task_dead(prev);
3278
3279 /*
3280 * Remove function-return probe instances associated with this
3281 * task and put them back on the free list.
3282 */
3283 kprobe_flush_task(prev);
3284
3285 /* Task is done with its stack. */
3286 put_task_stack(prev);
3287
3288 put_task_struct_rcu_user(prev);
3289 }
3290
3291 tick_nohz_task_switch();
3292 return rq;
3293 }
3294
3295 #ifdef CONFIG_SMP
3296
3297 /* rq->lock is NOT held, but preemption is disabled */
3298 static void __balance_callback(struct rq *rq)
3299 {
3300 struct callback_head *head, *next;
3301 void (*func)(struct rq *rq);
3302 unsigned long flags;
3303
3304 raw_spin_lock_irqsave(&rq->lock, flags);
3305 head = rq->balance_callback;
3306 rq->balance_callback = NULL;
3307 while (head) {
3308 func = (void (*)(struct rq *))head->func;
3309 next = head->next;
3310 head->next = NULL;
3311 head = next;
3312
3313 func(rq);
3314 }
3315 raw_spin_unlock_irqrestore(&rq->lock, flags);
3316 }
3317
3318 static inline void balance_callback(struct rq *rq)
3319 {
3320 if (unlikely(rq->balance_callback))
3321 __balance_callback(rq);
3322 }
3323
3324 #else
3325
3326 static inline void balance_callback(struct rq *rq)
3327 {
3328 }
3329
3330 #endif
3331
3332 /**
3333 * schedule_tail - first thing a freshly forked thread must call.
3334 * @prev: the thread we just switched away from.
3335 */
3336 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3337 __releases(rq->lock)
3338 {
3339 struct rq *rq;
3340
3341 /*
3342 * New tasks start with FORK_PREEMPT_COUNT, see there and
3343 * finish_task_switch() for details.
3344 *
3345 * finish_task_switch() will drop rq->lock() and lower preempt_count
3346 * and the preempt_enable() will end up enabling preemption (on
3347 * PREEMPT_COUNT kernels).
3348 */
3349
3350 rq = finish_task_switch(prev);
3351 balance_callback(rq);
3352 preempt_enable();
3353
3354 if (current->set_child_tid)
3355 put_user(task_pid_vnr(current), current->set_child_tid);
3356
3357 calculate_sigpending();
3358 }
3359
3360 /*
3361 * context_switch - switch to the new MM and the new thread's register state.
3362 */
3363 static __always_inline struct rq *
3364 context_switch(struct rq *rq, struct task_struct *prev,
3365 struct task_struct *next, struct rq_flags *rf)
3366 {
3367 prepare_task_switch(rq, prev, next);
3368
3369 /*
3370 * For paravirt, this is coupled with an exit in switch_to to
3371 * combine the page table reload and the switch backend into
3372 * one hypercall.
3373 */
3374 arch_start_context_switch(prev);
3375
3376 /*
3377 * kernel -> kernel lazy + transfer active
3378 * user -> kernel lazy + mmgrab() active
3379 *
3380 * kernel -> user switch + mmdrop() active
3381 * user -> user switch
3382 */
3383 if (!next->mm) { // to kernel
3384 enter_lazy_tlb(prev->active_mm, next);
3385
3386 next->active_mm = prev->active_mm;
3387 if (prev->mm) // from user
3388 mmgrab(prev->active_mm);
3389 else
3390 prev->active_mm = NULL;
3391 } else { // to user
3392 membarrier_switch_mm(rq, prev->active_mm, next->mm);
3393 /*
3394 * sys_membarrier() requires an smp_mb() between setting
3395 * rq->curr / membarrier_switch_mm() and returning to userspace.
3396 *
3397 * The below provides this either through switch_mm(), or in
3398 * case 'prev->active_mm == next->mm' through
3399 * finish_task_switch()'s mmdrop().
3400 */
3401 switch_mm_irqs_off(prev->active_mm, next->mm, next);
3402
3403 if (!prev->mm) { // from kernel
3404 /* will mmdrop() in finish_task_switch(). */
3405 rq->prev_mm = prev->active_mm;
3406 prev->active_mm = NULL;
3407 }
3408 }
3409
3410 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3411
3412 prepare_lock_switch(rq, next, rf);
3413
3414 /* Here we just switch the register state and the stack. */
3415 switch_to(prev, next, prev);
3416 barrier();
3417
3418 return finish_task_switch(prev);
3419 }
3420
3421 /*
3422 * nr_running and nr_context_switches:
3423 *
3424 * externally visible scheduler statistics: current number of runnable
3425 * threads, total number of context switches performed since bootup.
3426 */
3427 unsigned long nr_running(void)
3428 {
3429 unsigned long i, sum = 0;
3430
3431 for_each_online_cpu(i)
3432 sum += cpu_rq(i)->nr_running;
3433
3434 return sum;
3435 }
3436
3437 /*
3438 * Check if only the current task is running on the CPU.
3439 *
3440 * Caution: this function does not check that the caller has disabled
3441 * preemption, thus the result might have a time-of-check-to-time-of-use
3442 * race. The caller is responsible to use it correctly, for example:
3443 *
3444 * - from a non-preemptible section (of course)
3445 *
3446 * - from a thread that is bound to a single CPU
3447 *
3448 * - in a loop with very short iterations (e.g. a polling loop)
3449 */
3450 bool single_task_running(void)
3451 {
3452 return raw_rq()->nr_running == 1;
3453 }
3454 EXPORT_SYMBOL(single_task_running);
3455
3456 unsigned long long nr_context_switches(void)
3457 {
3458 int i;
3459 unsigned long long sum = 0;
3460
3461 for_each_possible_cpu(i)
3462 sum += cpu_rq(i)->nr_switches;
3463
3464 return sum;
3465 }
3466
3467 /*
3468 * Consumers of these two interfaces, like for example the cpuidle menu
3469 * governor, are using nonsensical data. Preferring shallow idle state selection
3470 * for a CPU that has IO-wait which might not even end up running the task when
3471 * it does become runnable.
3472 */
3473
3474 unsigned long nr_iowait_cpu(int cpu)
3475 {
3476 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3477 }
3478
3479 /*
3480 * IO-wait accounting, and how its mostly bollocks (on SMP).
3481 *
3482 * The idea behind IO-wait account is to account the idle time that we could
3483 * have spend running if it were not for IO. That is, if we were to improve the
3484 * storage performance, we'd have a proportional reduction in IO-wait time.
3485 *
3486 * This all works nicely on UP, where, when a task blocks on IO, we account
3487 * idle time as IO-wait, because if the storage were faster, it could've been
3488 * running and we'd not be idle.
3489 *
3490 * This has been extended to SMP, by doing the same for each CPU. This however
3491 * is broken.
3492 *
3493 * Imagine for instance the case where two tasks block on one CPU, only the one
3494 * CPU will have IO-wait accounted, while the other has regular idle. Even
3495 * though, if the storage were faster, both could've ran at the same time,
3496 * utilising both CPUs.
3497 *
3498 * This means, that when looking globally, the current IO-wait accounting on
3499 * SMP is a lower bound, by reason of under accounting.
3500 *
3501 * Worse, since the numbers are provided per CPU, they are sometimes
3502 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3503 * associated with any one particular CPU, it can wake to another CPU than it
3504 * blocked on. This means the per CPU IO-wait number is meaningless.
3505 *
3506 * Task CPU affinities can make all that even more 'interesting'.
3507 */
3508
3509 unsigned long nr_iowait(void)
3510 {
3511 unsigned long i, sum = 0;
3512
3513 for_each_possible_cpu(i)
3514 sum += nr_iowait_cpu(i);
3515
3516 return sum;
3517 }
3518
3519 #ifdef CONFIG_SMP
3520
3521 /*
3522 * sched_exec - execve() is a valuable balancing opportunity, because at
3523 * this point the task has the smallest effective memory and cache footprint.
3524 */
3525 void sched_exec(void)
3526 {
3527 struct task_struct *p = current;
3528 unsigned long flags;
3529 int dest_cpu;
3530
3531 raw_spin_lock_irqsave(&p->pi_lock, flags);
3532 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3533 if (dest_cpu == smp_processor_id())
3534 goto unlock;
3535
3536 if (likely(cpu_active(dest_cpu))) {
3537 struct migration_arg arg = { p, dest_cpu };
3538
3539 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3540 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3541 return;
3542 }
3543 unlock:
3544 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3545 }
3546
3547 #endif
3548
3549 DEFINE_PER_CPU(struct kernel_stat, kstat);
3550 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3551
3552 EXPORT_PER_CPU_SYMBOL(kstat);
3553 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3554
3555 /*
3556 * The function fair_sched_class.update_curr accesses the struct curr
3557 * and its field curr->exec_start; when called from task_sched_runtime(),
3558 * we observe a high rate of cache misses in practice.
3559 * Prefetching this data results in improved performance.
3560 */
3561 static inline void prefetch_curr_exec_start(struct task_struct *p)
3562 {
3563 #ifdef CONFIG_FAIR_GROUP_SCHED
3564 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3565 #else
3566 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3567 #endif
3568 prefetch(curr);
3569 prefetch(&curr->exec_start);
3570 }
3571
3572 /*
3573 * Return accounted runtime for the task.
3574 * In case the task is currently running, return the runtime plus current's
3575 * pending runtime that have not been accounted yet.
3576 */
3577 unsigned long long task_sched_runtime(struct task_struct *p)
3578 {
3579 struct rq_flags rf;
3580 struct rq *rq;
3581 u64 ns;
3582
3583 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3584 /*
3585 * 64-bit doesn't need locks to atomically read a 64-bit value.
3586 * So we have a optimization chance when the task's delta_exec is 0.
3587 * Reading ->on_cpu is racy, but this is ok.
3588 *
3589 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3590 * If we race with it entering CPU, unaccounted time is 0. This is
3591 * indistinguishable from the read occurring a few cycles earlier.
3592 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3593 * been accounted, so we're correct here as well.
3594 */
3595 if (!p->on_cpu || !task_on_rq_queued(p))
3596 return p->se.sum_exec_runtime;
3597 #endif
3598
3599 rq = task_rq_lock(p, &rf);
3600 /*
3601 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3602 * project cycles that may never be accounted to this
3603 * thread, breaking clock_gettime().
3604 */
3605 if (task_current(rq, p) && task_on_rq_queued(p)) {
3606 prefetch_curr_exec_start(p);
3607 update_rq_clock(rq);
3608 p->sched_class->update_curr(rq);
3609 }
3610 ns = p->se.sum_exec_runtime;
3611 task_rq_unlock(rq, p, &rf);
3612
3613 return ns;
3614 }
3615
3616 DEFINE_PER_CPU(unsigned long, thermal_pressure);
3617
3618 void arch_set_thermal_pressure(struct cpumask *cpus,
3619 unsigned long th_pressure)
3620 {
3621 int cpu;
3622
3623 for_each_cpu(cpu, cpus)
3624 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
3625 }
3626
3627 /*
3628 * This function gets called by the timer code, with HZ frequency.
3629 * We call it with interrupts disabled.
3630 */
3631 void scheduler_tick(void)
3632 {
3633 int cpu = smp_processor_id();
3634 struct rq *rq = cpu_rq(cpu);
3635 struct task_struct *curr = rq->curr;
3636 struct rq_flags rf;
3637 unsigned long thermal_pressure;
3638
3639 arch_scale_freq_tick();
3640 sched_clock_tick();
3641
3642 rq_lock(rq, &rf);
3643
3644 update_rq_clock(rq);
3645 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
3646 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
3647 curr->sched_class->task_tick(rq, curr, 0);
3648 calc_global_load_tick(rq);
3649 psi_task_tick(rq);
3650
3651 rq_unlock(rq, &rf);
3652
3653 perf_event_task_tick();
3654
3655 #ifdef CONFIG_SMP
3656 rq->idle_balance = idle_cpu(cpu);
3657 trigger_load_balance(rq);
3658 #endif
3659 }
3660
3661 #ifdef CONFIG_NO_HZ_FULL
3662
3663 struct tick_work {
3664 int cpu;
3665 atomic_t state;
3666 struct delayed_work work;
3667 };
3668 /* Values for ->state, see diagram below. */
3669 #define TICK_SCHED_REMOTE_OFFLINE 0
3670 #define TICK_SCHED_REMOTE_OFFLINING 1
3671 #define TICK_SCHED_REMOTE_RUNNING 2
3672
3673 /*
3674 * State diagram for ->state:
3675 *
3676 *
3677 * TICK_SCHED_REMOTE_OFFLINE
3678 * | ^
3679 * | |
3680 * | | sched_tick_remote()
3681 * | |
3682 * | |
3683 * +--TICK_SCHED_REMOTE_OFFLINING
3684 * | ^
3685 * | |
3686 * sched_tick_start() | | sched_tick_stop()
3687 * | |
3688 * V |
3689 * TICK_SCHED_REMOTE_RUNNING
3690 *
3691 *
3692 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3693 * and sched_tick_start() are happy to leave the state in RUNNING.
3694 */
3695
3696 static struct tick_work __percpu *tick_work_cpu;
3697
3698 static void sched_tick_remote(struct work_struct *work)
3699 {
3700 struct delayed_work *dwork = to_delayed_work(work);
3701 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3702 int cpu = twork->cpu;
3703 struct rq *rq = cpu_rq(cpu);
3704 struct task_struct *curr;
3705 struct rq_flags rf;
3706 u64 delta;
3707 int os;
3708
3709 /*
3710 * Handle the tick only if it appears the remote CPU is running in full
3711 * dynticks mode. The check is racy by nature, but missing a tick or
3712 * having one too much is no big deal because the scheduler tick updates
3713 * statistics and checks timeslices in a time-independent way, regardless
3714 * of when exactly it is running.
3715 */
3716 if (!tick_nohz_tick_stopped_cpu(cpu))
3717 goto out_requeue;
3718
3719 rq_lock_irq(rq, &rf);
3720 curr = rq->curr;
3721 if (cpu_is_offline(cpu))
3722 goto out_unlock;
3723
3724 update_rq_clock(rq);
3725
3726 if (!is_idle_task(curr)) {
3727 /*
3728 * Make sure the next tick runs within a reasonable
3729 * amount of time.
3730 */
3731 delta = rq_clock_task(rq) - curr->se.exec_start;
3732 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3733 }
3734 curr->sched_class->task_tick(rq, curr, 0);
3735
3736 calc_load_nohz_remote(rq);
3737 out_unlock:
3738 rq_unlock_irq(rq, &rf);
3739 out_requeue:
3740
3741 /*
3742 * Run the remote tick once per second (1Hz). This arbitrary
3743 * frequency is large enough to avoid overload but short enough
3744 * to keep scheduler internal stats reasonably up to date. But
3745 * first update state to reflect hotplug activity if required.
3746 */
3747 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3748 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3749 if (os == TICK_SCHED_REMOTE_RUNNING)
3750 queue_delayed_work(system_unbound_wq, dwork, HZ);
3751 }
3752
3753 static void sched_tick_start(int cpu)
3754 {
3755 int os;
3756 struct tick_work *twork;
3757
3758 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3759 return;
3760
3761 WARN_ON_ONCE(!tick_work_cpu);
3762
3763 twork = per_cpu_ptr(tick_work_cpu, cpu);
3764 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3765 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3766 if (os == TICK_SCHED_REMOTE_OFFLINE) {
3767 twork->cpu = cpu;
3768 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3769 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3770 }
3771 }
3772
3773 #ifdef CONFIG_HOTPLUG_CPU
3774 static void sched_tick_stop(int cpu)
3775 {
3776 struct tick_work *twork;
3777 int os;
3778
3779 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3780 return;
3781
3782 WARN_ON_ONCE(!tick_work_cpu);
3783
3784 twork = per_cpu_ptr(tick_work_cpu, cpu);
3785 /* There cannot be competing actions, but don't rely on stop-machine. */
3786 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3787 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3788 /* Don't cancel, as this would mess up the state machine. */
3789 }
3790 #endif /* CONFIG_HOTPLUG_CPU */
3791
3792 int __init sched_tick_offload_init(void)
3793 {
3794 tick_work_cpu = alloc_percpu(struct tick_work);
3795 BUG_ON(!tick_work_cpu);
3796 return 0;
3797 }
3798
3799 #else /* !CONFIG_NO_HZ_FULL */
3800 static inline void sched_tick_start(int cpu) { }
3801 static inline void sched_tick_stop(int cpu) { }
3802 #endif
3803
3804 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
3805 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3806 /*
3807 * If the value passed in is equal to the current preempt count
3808 * then we just disabled preemption. Start timing the latency.
3809 */
3810 static inline void preempt_latency_start(int val)
3811 {
3812 if (preempt_count() == val) {
3813 unsigned long ip = get_lock_parent_ip();
3814 #ifdef CONFIG_DEBUG_PREEMPT
3815 current->preempt_disable_ip = ip;
3816 #endif
3817 trace_preempt_off(CALLER_ADDR0, ip);
3818 }
3819 }
3820
3821 void preempt_count_add(int val)
3822 {
3823 #ifdef CONFIG_DEBUG_PREEMPT
3824 /*
3825 * Underflow?
3826 */
3827 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3828 return;
3829 #endif
3830 __preempt_count_add(val);
3831 #ifdef CONFIG_DEBUG_PREEMPT
3832 /*
3833 * Spinlock count overflowing soon?
3834 */
3835 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3836 PREEMPT_MASK - 10);
3837 #endif
3838 preempt_latency_start(val);
3839 }
3840 EXPORT_SYMBOL(preempt_count_add);
3841 NOKPROBE_SYMBOL(preempt_count_add);
3842
3843 /*
3844 * If the value passed in equals to the current preempt count
3845 * then we just enabled preemption. Stop timing the latency.
3846 */
3847 static inline void preempt_latency_stop(int val)
3848 {
3849 if (preempt_count() == val)
3850 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3851 }
3852
3853 void preempt_count_sub(int val)
3854 {
3855 #ifdef CONFIG_DEBUG_PREEMPT
3856 /*
3857 * Underflow?
3858 */
3859 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3860 return;
3861 /*
3862 * Is the spinlock portion underflowing?
3863 */
3864 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3865 !(preempt_count() & PREEMPT_MASK)))
3866 return;
3867 #endif
3868
3869 preempt_latency_stop(val);
3870 __preempt_count_sub(val);
3871 }
3872 EXPORT_SYMBOL(preempt_count_sub);
3873 NOKPROBE_SYMBOL(preempt_count_sub);
3874
3875 #else
3876 static inline void preempt_latency_start(int val) { }
3877 static inline void preempt_latency_stop(int val) { }
3878 #endif
3879
3880 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3881 {
3882 #ifdef CONFIG_DEBUG_PREEMPT
3883 return p->preempt_disable_ip;
3884 #else
3885 return 0;
3886 #endif
3887 }
3888
3889 /*
3890 * Print scheduling while atomic bug:
3891 */
3892 static noinline void __schedule_bug(struct task_struct *prev)
3893 {
3894 /* Save this before calling printk(), since that will clobber it */
3895 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3896
3897 if (oops_in_progress)
3898 return;
3899
3900 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3901 prev->comm, prev->pid, preempt_count());
3902
3903 debug_show_held_locks(prev);
3904 print_modules();
3905 if (irqs_disabled())
3906 print_irqtrace_events(prev);
3907 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3908 && in_atomic_preempt_off()) {
3909 pr_err("Preemption disabled at:");
3910 print_ip_sym(preempt_disable_ip);
3911 pr_cont("\n");
3912 }
3913 if (panic_on_warn)
3914 panic("scheduling while atomic\n");
3915
3916 dump_stack();
3917 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3918 }
3919
3920 /*
3921 * Various schedule()-time debugging checks and statistics:
3922 */
3923 static inline void schedule_debug(struct task_struct *prev, bool preempt)
3924 {
3925 #ifdef CONFIG_SCHED_STACK_END_CHECK
3926 if (task_stack_end_corrupted(prev))
3927 panic("corrupted stack end detected inside scheduler\n");
3928 #endif
3929
3930 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3931 if (!preempt && prev->state && prev->non_block_count) {
3932 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3933 prev->comm, prev->pid, prev->non_block_count);
3934 dump_stack();
3935 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3936 }
3937 #endif
3938
3939 if (unlikely(in_atomic_preempt_off())) {
3940 __schedule_bug(prev);
3941 preempt_count_set(PREEMPT_DISABLED);
3942 }
3943 rcu_sleep_check();
3944
3945 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3946
3947 schedstat_inc(this_rq()->sched_count);
3948 }
3949
3950 /*
3951 * Pick up the highest-prio task:
3952 */
3953 static inline struct task_struct *
3954 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3955 {
3956 const struct sched_class *class;
3957 struct task_struct *p;
3958
3959 /*
3960 * Optimization: we know that if all tasks are in the fair class we can
3961 * call that function directly, but only if the @prev task wasn't of a
3962 * higher scheduling class, because otherwise those loose the
3963 * opportunity to pull in more work from other CPUs.
3964 */
3965 if (likely((prev->sched_class == &idle_sched_class ||
3966 prev->sched_class == &fair_sched_class) &&
3967 rq->nr_running == rq->cfs.h_nr_running)) {
3968
3969 p = pick_next_task_fair(rq, prev, rf);
3970 if (unlikely(p == RETRY_TASK))
3971 goto restart;
3972
3973 /* Assumes fair_sched_class->next == idle_sched_class */
3974 if (!p) {
3975 put_prev_task(rq, prev);
3976 p = pick_next_task_idle(rq);
3977 }
3978
3979 return p;
3980 }
3981
3982 restart:
3983 #ifdef CONFIG_SMP
3984 /*
3985 * We must do the balancing pass before put_next_task(), such
3986 * that when we release the rq->lock the task is in the same
3987 * state as before we took rq->lock.
3988 *
3989 * We can terminate the balance pass as soon as we know there is
3990 * a runnable task of @class priority or higher.
3991 */
3992 for_class_range(class, prev->sched_class, &idle_sched_class) {
3993 if (class->balance(rq, prev, rf))
3994 break;
3995 }
3996 #endif
3997
3998 put_prev_task(rq, prev);
3999
4000 for_each_class(class) {
4001 p = class->pick_next_task(rq);
4002 if (p)
4003 return p;
4004 }
4005
4006 /* The idle class should always have a runnable task: */
4007 BUG();
4008 }
4009
4010 /*
4011 * __schedule() is the main scheduler function.
4012 *
4013 * The main means of driving the scheduler and thus entering this function are:
4014 *
4015 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4016 *
4017 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4018 * paths. For example, see arch/x86/entry_64.S.
4019 *
4020 * To drive preemption between tasks, the scheduler sets the flag in timer
4021 * interrupt handler scheduler_tick().
4022 *
4023 * 3. Wakeups don't really cause entry into schedule(). They add a
4024 * task to the run-queue and that's it.
4025 *
4026 * Now, if the new task added to the run-queue preempts the current
4027 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4028 * called on the nearest possible occasion:
4029 *
4030 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4031 *
4032 * - in syscall or exception context, at the next outmost
4033 * preempt_enable(). (this might be as soon as the wake_up()'s
4034 * spin_unlock()!)
4035 *
4036 * - in IRQ context, return from interrupt-handler to
4037 * preemptible context
4038 *
4039 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4040 * then at the next:
4041 *
4042 * - cond_resched() call
4043 * - explicit schedule() call
4044 * - return from syscall or exception to user-space
4045 * - return from interrupt-handler to user-space
4046 *
4047 * WARNING: must be called with preemption disabled!
4048 */
4049 static void __sched notrace __schedule(bool preempt)
4050 {
4051 struct task_struct *prev, *next;
4052 unsigned long *switch_count;
4053 struct rq_flags rf;
4054 struct rq *rq;
4055 int cpu;
4056
4057 cpu = smp_processor_id();
4058 rq = cpu_rq(cpu);
4059 prev = rq->curr;
4060
4061 schedule_debug(prev, preempt);
4062
4063 if (sched_feat(HRTICK))
4064 hrtick_clear(rq);
4065
4066 local_irq_disable();
4067 rcu_note_context_switch(preempt);
4068
4069 /*
4070 * Make sure that signal_pending_state()->signal_pending() below
4071 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4072 * done by the caller to avoid the race with signal_wake_up().
4073 *
4074 * The membarrier system call requires a full memory barrier
4075 * after coming from user-space, before storing to rq->curr.
4076 */
4077 rq_lock(rq, &rf);
4078 smp_mb__after_spinlock();
4079
4080 /* Promote REQ to ACT */
4081 rq->clock_update_flags <<= 1;
4082 update_rq_clock(rq);
4083
4084 switch_count = &prev->nivcsw;
4085 if (!preempt && prev->state) {
4086 if (signal_pending_state(prev->state, prev)) {
4087 prev->state = TASK_RUNNING;
4088 } else {
4089 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4090
4091 if (prev->in_iowait) {
4092 atomic_inc(&rq->nr_iowait);
4093 delayacct_blkio_start();
4094 }
4095 }
4096 switch_count = &prev->nvcsw;
4097 }
4098
4099 next = pick_next_task(rq, prev, &rf);
4100 clear_tsk_need_resched(prev);
4101 clear_preempt_need_resched();
4102
4103 if (likely(prev != next)) {
4104 rq->nr_switches++;
4105 /*
4106 * RCU users of rcu_dereference(rq->curr) may not see
4107 * changes to task_struct made by pick_next_task().
4108 */
4109 RCU_INIT_POINTER(rq->curr, next);
4110 /*
4111 * The membarrier system call requires each architecture
4112 * to have a full memory barrier after updating
4113 * rq->curr, before returning to user-space.
4114 *
4115 * Here are the schemes providing that barrier on the
4116 * various architectures:
4117 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4118 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4119 * - finish_lock_switch() for weakly-ordered
4120 * architectures where spin_unlock is a full barrier,
4121 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4122 * is a RELEASE barrier),
4123 */
4124 ++*switch_count;
4125
4126 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4127
4128 trace_sched_switch(preempt, prev, next);
4129
4130 /* Also unlocks the rq: */
4131 rq = context_switch(rq, prev, next, &rf);
4132 } else {
4133 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4134 rq_unlock_irq(rq, &rf);
4135 }
4136
4137 balance_callback(rq);
4138 }
4139
4140 void __noreturn do_task_dead(void)
4141 {
4142 /* Causes final put_task_struct in finish_task_switch(): */
4143 set_special_state(TASK_DEAD);
4144
4145 /* Tell freezer to ignore us: */
4146 current->flags |= PF_NOFREEZE;
4147
4148 __schedule(false);
4149 BUG();
4150
4151 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4152 for (;;)
4153 cpu_relax();
4154 }
4155
4156 static inline void sched_submit_work(struct task_struct *tsk)
4157 {
4158 if (!tsk->state)
4159 return;
4160
4161 /*
4162 * If a worker went to sleep, notify and ask workqueue whether
4163 * it wants to wake up a task to maintain concurrency.
4164 * As this function is called inside the schedule() context,
4165 * we disable preemption to avoid it calling schedule() again
4166 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4167 * requires it.
4168 */
4169 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4170 preempt_disable();
4171 if (tsk->flags & PF_WQ_WORKER)
4172 wq_worker_sleeping(tsk);
4173 else
4174 io_wq_worker_sleeping(tsk);
4175 preempt_enable_no_resched();
4176 }
4177
4178 if (tsk_is_pi_blocked(tsk))
4179 return;
4180
4181 /*
4182 * If we are going to sleep and we have plugged IO queued,
4183 * make sure to submit it to avoid deadlocks.
4184 */
4185 if (blk_needs_flush_plug(tsk))
4186 blk_schedule_flush_plug(tsk);
4187 }
4188
4189 static void sched_update_worker(struct task_struct *tsk)
4190 {
4191 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4192 if (tsk->flags & PF_WQ_WORKER)
4193 wq_worker_running(tsk);
4194 else
4195 io_wq_worker_running(tsk);
4196 }
4197 }
4198
4199 asmlinkage __visible void __sched schedule(void)
4200 {
4201 struct task_struct *tsk = current;
4202
4203 sched_submit_work(tsk);
4204 do {
4205 preempt_disable();
4206 __schedule(false);
4207 sched_preempt_enable_no_resched();
4208 } while (need_resched());
4209 sched_update_worker(tsk);
4210 }
4211 EXPORT_SYMBOL(schedule);
4212
4213 /*
4214 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4215 * state (have scheduled out non-voluntarily) by making sure that all
4216 * tasks have either left the run queue or have gone into user space.
4217 * As idle tasks do not do either, they must not ever be preempted
4218 * (schedule out non-voluntarily).
4219 *
4220 * schedule_idle() is similar to schedule_preempt_disable() except that it
4221 * never enables preemption because it does not call sched_submit_work().
4222 */
4223 void __sched schedule_idle(void)
4224 {
4225 /*
4226 * As this skips calling sched_submit_work(), which the idle task does
4227 * regardless because that function is a nop when the task is in a
4228 * TASK_RUNNING state, make sure this isn't used someplace that the
4229 * current task can be in any other state. Note, idle is always in the
4230 * TASK_RUNNING state.
4231 */
4232 WARN_ON_ONCE(current->state);
4233 do {
4234 __schedule(false);
4235 } while (need_resched());
4236 }
4237
4238 #ifdef CONFIG_CONTEXT_TRACKING
4239 asmlinkage __visible void __sched schedule_user(void)
4240 {
4241 /*
4242 * If we come here after a random call to set_need_resched(),
4243 * or we have been woken up remotely but the IPI has not yet arrived,
4244 * we haven't yet exited the RCU idle mode. Do it here manually until
4245 * we find a better solution.
4246 *
4247 * NB: There are buggy callers of this function. Ideally we
4248 * should warn if prev_state != CONTEXT_USER, but that will trigger
4249 * too frequently to make sense yet.
4250 */
4251 enum ctx_state prev_state = exception_enter();
4252 schedule();
4253 exception_exit(prev_state);
4254 }
4255 #endif
4256
4257 /**
4258 * schedule_preempt_disabled - called with preemption disabled
4259 *
4260 * Returns with preemption disabled. Note: preempt_count must be 1
4261 */
4262 void __sched schedule_preempt_disabled(void)
4263 {
4264 sched_preempt_enable_no_resched();
4265 schedule();
4266 preempt_disable();
4267 }
4268
4269 static void __sched notrace preempt_schedule_common(void)
4270 {
4271 do {
4272 /*
4273 * Because the function tracer can trace preempt_count_sub()
4274 * and it also uses preempt_enable/disable_notrace(), if
4275 * NEED_RESCHED is set, the preempt_enable_notrace() called
4276 * by the function tracer will call this function again and
4277 * cause infinite recursion.
4278 *
4279 * Preemption must be disabled here before the function
4280 * tracer can trace. Break up preempt_disable() into two
4281 * calls. One to disable preemption without fear of being
4282 * traced. The other to still record the preemption latency,
4283 * which can also be traced by the function tracer.
4284 */
4285 preempt_disable_notrace();
4286 preempt_latency_start(1);
4287 __schedule(true);
4288 preempt_latency_stop(1);
4289 preempt_enable_no_resched_notrace();
4290
4291 /*
4292 * Check again in case we missed a preemption opportunity
4293 * between schedule and now.
4294 */
4295 } while (need_resched());
4296 }
4297
4298 #ifdef CONFIG_PREEMPTION
4299 /*
4300 * This is the entry point to schedule() from in-kernel preemption
4301 * off of preempt_enable.
4302 */
4303 asmlinkage __visible void __sched notrace preempt_schedule(void)
4304 {
4305 /*
4306 * If there is a non-zero preempt_count or interrupts are disabled,
4307 * we do not want to preempt the current task. Just return..
4308 */
4309 if (likely(!preemptible()))
4310 return;
4311
4312 preempt_schedule_common();
4313 }
4314 NOKPROBE_SYMBOL(preempt_schedule);
4315 EXPORT_SYMBOL(preempt_schedule);
4316
4317 /**
4318 * preempt_schedule_notrace - preempt_schedule called by tracing
4319 *
4320 * The tracing infrastructure uses preempt_enable_notrace to prevent
4321 * recursion and tracing preempt enabling caused by the tracing
4322 * infrastructure itself. But as tracing can happen in areas coming
4323 * from userspace or just about to enter userspace, a preempt enable
4324 * can occur before user_exit() is called. This will cause the scheduler
4325 * to be called when the system is still in usermode.
4326 *
4327 * To prevent this, the preempt_enable_notrace will use this function
4328 * instead of preempt_schedule() to exit user context if needed before
4329 * calling the scheduler.
4330 */
4331 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4332 {
4333 enum ctx_state prev_ctx;
4334
4335 if (likely(!preemptible()))
4336 return;
4337
4338 do {
4339 /*
4340 * Because the function tracer can trace preempt_count_sub()
4341 * and it also uses preempt_enable/disable_notrace(), if
4342 * NEED_RESCHED is set, the preempt_enable_notrace() called
4343 * by the function tracer will call this function again and
4344 * cause infinite recursion.
4345 *
4346 * Preemption must be disabled here before the function
4347 * tracer can trace. Break up preempt_disable() into two
4348 * calls. One to disable preemption without fear of being
4349 * traced. The other to still record the preemption latency,
4350 * which can also be traced by the function tracer.
4351 */
4352 preempt_disable_notrace();
4353 preempt_latency_start(1);
4354 /*
4355 * Needs preempt disabled in case user_exit() is traced
4356 * and the tracer calls preempt_enable_notrace() causing
4357 * an infinite recursion.
4358 */
4359 prev_ctx = exception_enter();
4360 __schedule(true);
4361 exception_exit(prev_ctx);
4362
4363 preempt_latency_stop(1);
4364 preempt_enable_no_resched_notrace();
4365 } while (need_resched());
4366 }
4367 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4368
4369 #endif /* CONFIG_PREEMPTION */
4370
4371 /*
4372 * This is the entry point to schedule() from kernel preemption
4373 * off of irq context.
4374 * Note, that this is called and return with irqs disabled. This will
4375 * protect us against recursive calling from irq.
4376 */
4377 asmlinkage __visible void __sched preempt_schedule_irq(void)
4378 {
4379 enum ctx_state prev_state;
4380
4381 /* Catch callers which need to be fixed */
4382 BUG_ON(preempt_count() || !irqs_disabled());
4383
4384 prev_state = exception_enter();
4385
4386 do {
4387 preempt_disable();
4388 local_irq_enable();
4389 __schedule(true);
4390 local_irq_disable();
4391 sched_preempt_enable_no_resched();
4392 } while (need_resched());
4393
4394 exception_exit(prev_state);
4395 }
4396
4397 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4398 void *key)
4399 {
4400 return try_to_wake_up(curr->private, mode, wake_flags);
4401 }
4402 EXPORT_SYMBOL(default_wake_function);
4403
4404 #ifdef CONFIG_RT_MUTEXES
4405
4406 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4407 {
4408 if (pi_task)
4409 prio = min(prio, pi_task->prio);
4410
4411 return prio;
4412 }
4413
4414 static inline int rt_effective_prio(struct task_struct *p, int prio)
4415 {
4416 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4417
4418 return __rt_effective_prio(pi_task, prio);
4419 }
4420
4421 /*
4422 * rt_mutex_setprio - set the current priority of a task
4423 * @p: task to boost
4424 * @pi_task: donor task
4425 *
4426 * This function changes the 'effective' priority of a task. It does
4427 * not touch ->normal_prio like __setscheduler().
4428 *
4429 * Used by the rt_mutex code to implement priority inheritance
4430 * logic. Call site only calls if the priority of the task changed.
4431 */
4432 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4433 {
4434 int prio, oldprio, queued, running, queue_flag =
4435 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4436 const struct sched_class *prev_class;
4437 struct rq_flags rf;
4438 struct rq *rq;
4439
4440 /* XXX used to be waiter->prio, not waiter->task->prio */
4441 prio = __rt_effective_prio(pi_task, p->normal_prio);
4442
4443 /*
4444 * If nothing changed; bail early.
4445 */
4446 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4447 return;
4448
4449 rq = __task_rq_lock(p, &rf);
4450 update_rq_clock(rq);
4451 /*
4452 * Set under pi_lock && rq->lock, such that the value can be used under
4453 * either lock.
4454 *
4455 * Note that there is loads of tricky to make this pointer cache work
4456 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4457 * ensure a task is de-boosted (pi_task is set to NULL) before the
4458 * task is allowed to run again (and can exit). This ensures the pointer
4459 * points to a blocked task -- which guaratees the task is present.
4460 */
4461 p->pi_top_task = pi_task;
4462
4463 /*
4464 * For FIFO/RR we only need to set prio, if that matches we're done.
4465 */
4466 if (prio == p->prio && !dl_prio(prio))
4467 goto out_unlock;
4468
4469 /*
4470 * Idle task boosting is a nono in general. There is one
4471 * exception, when PREEMPT_RT and NOHZ is active:
4472 *
4473 * The idle task calls get_next_timer_interrupt() and holds
4474 * the timer wheel base->lock on the CPU and another CPU wants
4475 * to access the timer (probably to cancel it). We can safely
4476 * ignore the boosting request, as the idle CPU runs this code
4477 * with interrupts disabled and will complete the lock
4478 * protected section without being interrupted. So there is no
4479 * real need to boost.
4480 */
4481 if (unlikely(p == rq->idle)) {
4482 WARN_ON(p != rq->curr);
4483 WARN_ON(p->pi_blocked_on);
4484 goto out_unlock;
4485 }
4486
4487 trace_sched_pi_setprio(p, pi_task);
4488 oldprio = p->prio;
4489
4490 if (oldprio == prio)
4491 queue_flag &= ~DEQUEUE_MOVE;
4492
4493 prev_class = p->sched_class;
4494 queued = task_on_rq_queued(p);
4495 running = task_current(rq, p);
4496 if (queued)
4497 dequeue_task(rq, p, queue_flag);
4498 if (running)
4499 put_prev_task(rq, p);
4500
4501 /*
4502 * Boosting condition are:
4503 * 1. -rt task is running and holds mutex A
4504 * --> -dl task blocks on mutex A
4505 *
4506 * 2. -dl task is running and holds mutex A
4507 * --> -dl task blocks on mutex A and could preempt the
4508 * running task
4509 */
4510 if (dl_prio(prio)) {
4511 if (!dl_prio(p->normal_prio) ||
4512 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
4513 p->dl.dl_boosted = 1;
4514 queue_flag |= ENQUEUE_REPLENISH;
4515 } else
4516 p->dl.dl_boosted = 0;
4517 p->sched_class = &dl_sched_class;
4518 } else if (rt_prio(prio)) {
4519 if (dl_prio(oldprio))
4520 p->dl.dl_boosted = 0;
4521 if (oldprio < prio)
4522 queue_flag |= ENQUEUE_HEAD;
4523 p->sched_class = &rt_sched_class;
4524 } else {
4525 if (dl_prio(oldprio))
4526 p->dl.dl_boosted = 0;
4527 if (rt_prio(oldprio))
4528 p->rt.timeout = 0;
4529 p->sched_class = &fair_sched_class;
4530 }
4531
4532 p->prio = prio;
4533
4534 if (queued)
4535 enqueue_task(rq, p, queue_flag);
4536 if (running)
4537 set_next_task(rq, p);
4538
4539 check_class_changed(rq, p, prev_class, oldprio);
4540 out_unlock:
4541 /* Avoid rq from going away on us: */
4542 preempt_disable();
4543 __task_rq_unlock(rq, &rf);
4544
4545 balance_callback(rq);
4546 preempt_enable();
4547 }
4548 #else
4549 static inline int rt_effective_prio(struct task_struct *p, int prio)
4550 {
4551 return prio;
4552 }
4553 #endif
4554
4555 void set_user_nice(struct task_struct *p, long nice)
4556 {
4557 bool queued, running;
4558 int old_prio;
4559 struct rq_flags rf;
4560 struct rq *rq;
4561
4562 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4563 return;
4564 /*
4565 * We have to be careful, if called from sys_setpriority(),
4566 * the task might be in the middle of scheduling on another CPU.
4567 */
4568 rq = task_rq_lock(p, &rf);
4569 update_rq_clock(rq);
4570
4571 /*
4572 * The RT priorities are set via sched_setscheduler(), but we still
4573 * allow the 'normal' nice value to be set - but as expected
4574 * it wont have any effect on scheduling until the task is
4575 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4576 */
4577 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4578 p->static_prio = NICE_TO_PRIO(nice);
4579 goto out_unlock;
4580 }
4581 queued = task_on_rq_queued(p);
4582 running = task_current(rq, p);
4583 if (queued)
4584 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4585 if (running)
4586 put_prev_task(rq, p);
4587
4588 p->static_prio = NICE_TO_PRIO(nice);
4589 set_load_weight(p, true);
4590 old_prio = p->prio;
4591 p->prio = effective_prio(p);
4592
4593 if (queued)
4594 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4595 if (running)
4596 set_next_task(rq, p);
4597
4598 /*
4599 * If the task increased its priority or is running and
4600 * lowered its priority, then reschedule its CPU:
4601 */
4602 p->sched_class->prio_changed(rq, p, old_prio);
4603
4604 out_unlock:
4605 task_rq_unlock(rq, p, &rf);
4606 }
4607 EXPORT_SYMBOL(set_user_nice);
4608
4609 /*
4610 * can_nice - check if a task can reduce its nice value
4611 * @p: task
4612 * @nice: nice value
4613 */
4614 int can_nice(const struct task_struct *p, const int nice)
4615 {
4616 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
4617 int nice_rlim = nice_to_rlimit(nice);
4618
4619 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4620 capable(CAP_SYS_NICE));
4621 }
4622
4623 #ifdef __ARCH_WANT_SYS_NICE
4624
4625 /*
4626 * sys_nice - change the priority of the current process.
4627 * @increment: priority increment
4628 *
4629 * sys_setpriority is a more generic, but much slower function that
4630 * does similar things.
4631 */
4632 SYSCALL_DEFINE1(nice, int, increment)
4633 {
4634 long nice, retval;
4635
4636 /*
4637 * Setpriority might change our priority at the same moment.
4638 * We don't have to worry. Conceptually one call occurs first
4639 * and we have a single winner.
4640 */
4641 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4642 nice = task_nice(current) + increment;
4643
4644 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4645 if (increment < 0 && !can_nice(current, nice))
4646 return -EPERM;
4647
4648 retval = security_task_setnice(current, nice);
4649 if (retval)
4650 return retval;
4651
4652 set_user_nice(current, nice);
4653 return 0;
4654 }
4655
4656 #endif
4657
4658 /**
4659 * task_prio - return the priority value of a given task.
4660 * @p: the task in question.
4661 *
4662 * Return: The priority value as seen by users in /proc.
4663 * RT tasks are offset by -200. Normal tasks are centered
4664 * around 0, value goes from -16 to +15.
4665 */
4666 int task_prio(const struct task_struct *p)
4667 {
4668 return p->prio - MAX_RT_PRIO;
4669 }
4670
4671 /**
4672 * idle_cpu - is a given CPU idle currently?
4673 * @cpu: the processor in question.
4674 *
4675 * Return: 1 if the CPU is currently idle. 0 otherwise.
4676 */
4677 int idle_cpu(int cpu)
4678 {
4679 struct rq *rq = cpu_rq(cpu);
4680
4681 if (rq->curr != rq->idle)
4682 return 0;
4683
4684 if (rq->nr_running)
4685 return 0;
4686
4687 #ifdef CONFIG_SMP
4688 if (!llist_empty(&rq->wake_list))
4689 return 0;
4690 #endif
4691
4692 return 1;
4693 }
4694
4695 /**
4696 * available_idle_cpu - is a given CPU idle for enqueuing work.
4697 * @cpu: the CPU in question.
4698 *
4699 * Return: 1 if the CPU is currently idle. 0 otherwise.
4700 */
4701 int available_idle_cpu(int cpu)
4702 {
4703 if (!idle_cpu(cpu))
4704 return 0;
4705
4706 if (vcpu_is_preempted(cpu))
4707 return 0;
4708
4709 return 1;
4710 }
4711
4712 /**
4713 * idle_task - return the idle task for a given CPU.
4714 * @cpu: the processor in question.
4715 *
4716 * Return: The idle task for the CPU @cpu.
4717 */
4718 struct task_struct *idle_task(int cpu)
4719 {
4720 return cpu_rq(cpu)->idle;
4721 }
4722
4723 /**
4724 * find_process_by_pid - find a process with a matching PID value.
4725 * @pid: the pid in question.
4726 *
4727 * The task of @pid, if found. %NULL otherwise.
4728 */
4729 static struct task_struct *find_process_by_pid(pid_t pid)
4730 {
4731 return pid ? find_task_by_vpid(pid) : current;
4732 }
4733
4734 /*
4735 * sched_setparam() passes in -1 for its policy, to let the functions
4736 * it calls know not to change it.
4737 */
4738 #define SETPARAM_POLICY -1
4739
4740 static void __setscheduler_params(struct task_struct *p,
4741 const struct sched_attr *attr)
4742 {
4743 int policy = attr->sched_policy;
4744
4745 if (policy == SETPARAM_POLICY)
4746 policy = p->policy;
4747
4748 p->policy = policy;
4749
4750 if (dl_policy(policy))
4751 __setparam_dl(p, attr);
4752 else if (fair_policy(policy))
4753 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4754
4755 /*
4756 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4757 * !rt_policy. Always setting this ensures that things like
4758 * getparam()/getattr() don't report silly values for !rt tasks.
4759 */
4760 p->rt_priority = attr->sched_priority;
4761 p->normal_prio = normal_prio(p);
4762 set_load_weight(p, true);
4763 }
4764
4765 /* Actually do priority change: must hold pi & rq lock. */
4766 static void __setscheduler(struct rq *rq, struct task_struct *p,
4767 const struct sched_attr *attr, bool keep_boost)
4768 {
4769 /*
4770 * If params can't change scheduling class changes aren't allowed
4771 * either.
4772 */
4773 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4774 return;
4775
4776 __setscheduler_params(p, attr);
4777
4778 /*
4779 * Keep a potential priority boosting if called from
4780 * sched_setscheduler().
4781 */
4782 p->prio = normal_prio(p);
4783 if (keep_boost)
4784 p->prio = rt_effective_prio(p, p->prio);
4785
4786 if (dl_prio(p->prio))
4787 p->sched_class = &dl_sched_class;
4788 else if (rt_prio(p->prio))
4789 p->sched_class = &rt_sched_class;
4790 else
4791 p->sched_class = &fair_sched_class;
4792 }
4793
4794 /*
4795 * Check the target process has a UID that matches the current process's:
4796 */
4797 static bool check_same_owner(struct task_struct *p)
4798 {
4799 const struct cred *cred = current_cred(), *pcred;
4800 bool match;
4801
4802 rcu_read_lock();
4803 pcred = __task_cred(p);
4804 match = (uid_eq(cred->euid, pcred->euid) ||
4805 uid_eq(cred->euid, pcred->uid));
4806 rcu_read_unlock();
4807 return match;
4808 }
4809
4810 static int __sched_setscheduler(struct task_struct *p,
4811 const struct sched_attr *attr,
4812 bool user, bool pi)
4813 {
4814 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4815 MAX_RT_PRIO - 1 - attr->sched_priority;
4816 int retval, oldprio, oldpolicy = -1, queued, running;
4817 int new_effective_prio, policy = attr->sched_policy;
4818 const struct sched_class *prev_class;
4819 struct rq_flags rf;
4820 int reset_on_fork;
4821 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4822 struct rq *rq;
4823
4824 /* The pi code expects interrupts enabled */
4825 BUG_ON(pi && in_interrupt());
4826 recheck:
4827 /* Double check policy once rq lock held: */
4828 if (policy < 0) {
4829 reset_on_fork = p->sched_reset_on_fork;
4830 policy = oldpolicy = p->policy;
4831 } else {
4832 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4833
4834 if (!valid_policy(policy))
4835 return -EINVAL;
4836 }
4837
4838 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4839 return -EINVAL;
4840
4841 /*
4842 * Valid priorities for SCHED_FIFO and SCHED_RR are
4843 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4844 * SCHED_BATCH and SCHED_IDLE is 0.
4845 */
4846 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4847 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4848 return -EINVAL;
4849 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4850 (rt_policy(policy) != (attr->sched_priority != 0)))
4851 return -EINVAL;
4852
4853 /*
4854 * Allow unprivileged RT tasks to decrease priority:
4855 */
4856 if (user && !capable(CAP_SYS_NICE)) {
4857 if (fair_policy(policy)) {
4858 if (attr->sched_nice < task_nice(p) &&
4859 !can_nice(p, attr->sched_nice))
4860 return -EPERM;
4861 }
4862
4863 if (rt_policy(policy)) {
4864 unsigned long rlim_rtprio =
4865 task_rlimit(p, RLIMIT_RTPRIO);
4866
4867 /* Can't set/change the rt policy: */
4868 if (policy != p->policy && !rlim_rtprio)
4869 return -EPERM;
4870
4871 /* Can't increase priority: */
4872 if (attr->sched_priority > p->rt_priority &&
4873 attr->sched_priority > rlim_rtprio)
4874 return -EPERM;
4875 }
4876
4877 /*
4878 * Can't set/change SCHED_DEADLINE policy at all for now
4879 * (safest behavior); in the future we would like to allow
4880 * unprivileged DL tasks to increase their relative deadline
4881 * or reduce their runtime (both ways reducing utilization)
4882 */
4883 if (dl_policy(policy))
4884 return -EPERM;
4885
4886 /*
4887 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4888 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4889 */
4890 if (task_has_idle_policy(p) && !idle_policy(policy)) {
4891 if (!can_nice(p, task_nice(p)))
4892 return -EPERM;
4893 }
4894
4895 /* Can't change other user's priorities: */
4896 if (!check_same_owner(p))
4897 return -EPERM;
4898
4899 /* Normal users shall not reset the sched_reset_on_fork flag: */
4900 if (p->sched_reset_on_fork && !reset_on_fork)
4901 return -EPERM;
4902 }
4903
4904 if (user) {
4905 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4906 return -EINVAL;
4907
4908 retval = security_task_setscheduler(p);
4909 if (retval)
4910 return retval;
4911 }
4912
4913 /* Update task specific "requested" clamps */
4914 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4915 retval = uclamp_validate(p, attr);
4916 if (retval)
4917 return retval;
4918 }
4919
4920 if (pi)
4921 cpuset_read_lock();
4922
4923 /*
4924 * Make sure no PI-waiters arrive (or leave) while we are
4925 * changing the priority of the task:
4926 *
4927 * To be able to change p->policy safely, the appropriate
4928 * runqueue lock must be held.
4929 */
4930 rq = task_rq_lock(p, &rf);
4931 update_rq_clock(rq);
4932
4933 /*
4934 * Changing the policy of the stop threads its a very bad idea:
4935 */
4936 if (p == rq->stop) {
4937 retval = -EINVAL;
4938 goto unlock;
4939 }
4940
4941 /*
4942 * If not changing anything there's no need to proceed further,
4943 * but store a possible modification of reset_on_fork.
4944 */
4945 if (unlikely(policy == p->policy)) {
4946 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4947 goto change;
4948 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4949 goto change;
4950 if (dl_policy(policy) && dl_param_changed(p, attr))
4951 goto change;
4952 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4953 goto change;
4954
4955 p->sched_reset_on_fork = reset_on_fork;
4956 retval = 0;
4957 goto unlock;
4958 }
4959 change:
4960
4961 if (user) {
4962 #ifdef CONFIG_RT_GROUP_SCHED
4963 /*
4964 * Do not allow realtime tasks into groups that have no runtime
4965 * assigned.
4966 */
4967 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4968 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4969 !task_group_is_autogroup(task_group(p))) {
4970 retval = -EPERM;
4971 goto unlock;
4972 }
4973 #endif
4974 #ifdef CONFIG_SMP
4975 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4976 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4977 cpumask_t *span = rq->rd->span;
4978
4979 /*
4980 * Don't allow tasks with an affinity mask smaller than
4981 * the entire root_domain to become SCHED_DEADLINE. We
4982 * will also fail if there's no bandwidth available.
4983 */
4984 if (!cpumask_subset(span, p->cpus_ptr) ||
4985 rq->rd->dl_bw.bw == 0) {
4986 retval = -EPERM;
4987 goto unlock;
4988 }
4989 }
4990 #endif
4991 }
4992
4993 /* Re-check policy now with rq lock held: */
4994 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4995 policy = oldpolicy = -1;
4996 task_rq_unlock(rq, p, &rf);
4997 if (pi)
4998 cpuset_read_unlock();
4999 goto recheck;
5000 }
5001
5002 /*
5003 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5004 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5005 * is available.
5006 */
5007 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5008 retval = -EBUSY;
5009 goto unlock;
5010 }
5011
5012 p->sched_reset_on_fork = reset_on_fork;
5013 oldprio = p->prio;
5014
5015 if (pi) {
5016 /*
5017 * Take priority boosted tasks into account. If the new
5018 * effective priority is unchanged, we just store the new
5019 * normal parameters and do not touch the scheduler class and
5020 * the runqueue. This will be done when the task deboost
5021 * itself.
5022 */
5023 new_effective_prio = rt_effective_prio(p, newprio);
5024 if (new_effective_prio == oldprio)
5025 queue_flags &= ~DEQUEUE_MOVE;
5026 }
5027
5028 queued = task_on_rq_queued(p);
5029 running = task_current(rq, p);
5030 if (queued)
5031 dequeue_task(rq, p, queue_flags);
5032 if (running)
5033 put_prev_task(rq, p);
5034
5035 prev_class = p->sched_class;
5036
5037 __setscheduler(rq, p, attr, pi);
5038 __setscheduler_uclamp(p, attr);
5039
5040 if (queued) {
5041 /*
5042 * We enqueue to tail when the priority of a task is
5043 * increased (user space view).
5044 */
5045 if (oldprio < p->prio)
5046 queue_flags |= ENQUEUE_HEAD;
5047
5048 enqueue_task(rq, p, queue_flags);
5049 }
5050 if (running)
5051 set_next_task(rq, p);
5052
5053 check_class_changed(rq, p, prev_class, oldprio);
5054
5055 /* Avoid rq from going away on us: */
5056 preempt_disable();
5057 task_rq_unlock(rq, p, &rf);
5058
5059 if (pi) {
5060 cpuset_read_unlock();
5061 rt_mutex_adjust_pi(p);
5062 }
5063
5064 /* Run balance callbacks after we've adjusted the PI chain: */
5065 balance_callback(rq);
5066 preempt_enable();
5067
5068 return 0;
5069
5070 unlock:
5071 task_rq_unlock(rq, p, &rf);
5072 if (pi)
5073 cpuset_read_unlock();
5074 return retval;
5075 }
5076
5077 static int _sched_setscheduler(struct task_struct *p, int policy,
5078 const struct sched_param *param, bool check)
5079 {
5080 struct sched_attr attr = {
5081 .sched_policy = policy,
5082 .sched_priority = param->sched_priority,
5083 .sched_nice = PRIO_TO_NICE(p->static_prio),
5084 };
5085
5086 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5087 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5088 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5089 policy &= ~SCHED_RESET_ON_FORK;
5090 attr.sched_policy = policy;
5091 }
5092
5093 return __sched_setscheduler(p, &attr, check, true);
5094 }
5095 /**
5096 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5097 * @p: the task in question.
5098 * @policy: new policy.
5099 * @param: structure containing the new RT priority.
5100 *
5101 * Return: 0 on success. An error code otherwise.
5102 *
5103 * NOTE that the task may be already dead.
5104 */
5105 int sched_setscheduler(struct task_struct *p, int policy,
5106 const struct sched_param *param)
5107 {
5108 return _sched_setscheduler(p, policy, param, true);
5109 }
5110 EXPORT_SYMBOL_GPL(sched_setscheduler);
5111
5112 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5113 {
5114 return __sched_setscheduler(p, attr, true, true);
5115 }
5116 EXPORT_SYMBOL_GPL(sched_setattr);
5117
5118 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5119 {
5120 return __sched_setscheduler(p, attr, false, true);
5121 }
5122
5123 /**
5124 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5125 * @p: the task in question.
5126 * @policy: new policy.
5127 * @param: structure containing the new RT priority.
5128 *
5129 * Just like sched_setscheduler, only don't bother checking if the
5130 * current context has permission. For example, this is needed in
5131 * stop_machine(): we create temporary high priority worker threads,
5132 * but our caller might not have that capability.
5133 *
5134 * Return: 0 on success. An error code otherwise.
5135 */
5136 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5137 const struct sched_param *param)
5138 {
5139 return _sched_setscheduler(p, policy, param, false);
5140 }
5141 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5142
5143 static int
5144 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5145 {
5146 struct sched_param lparam;
5147 struct task_struct *p;
5148 int retval;
5149
5150 if (!param || pid < 0)
5151 return -EINVAL;
5152 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5153 return -EFAULT;
5154
5155 rcu_read_lock();
5156 retval = -ESRCH;
5157 p = find_process_by_pid(pid);
5158 if (likely(p))
5159 get_task_struct(p);
5160 rcu_read_unlock();
5161
5162 if (likely(p)) {
5163 retval = sched_setscheduler(p, policy, &lparam);
5164 put_task_struct(p);
5165 }
5166
5167 return retval;
5168 }
5169
5170 /*
5171 * Mimics kernel/events/core.c perf_copy_attr().
5172 */
5173 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5174 {
5175 u32 size;
5176 int ret;
5177
5178 /* Zero the full structure, so that a short copy will be nice: */
5179 memset(attr, 0, sizeof(*attr));
5180
5181 ret = get_user(size, &uattr->size);
5182 if (ret)
5183 return ret;
5184
5185 /* ABI compatibility quirk: */
5186 if (!size)
5187 size = SCHED_ATTR_SIZE_VER0;
5188 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5189 goto err_size;
5190
5191 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5192 if (ret) {
5193 if (ret == -E2BIG)
5194 goto err_size;
5195 return ret;
5196 }
5197
5198 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5199 size < SCHED_ATTR_SIZE_VER1)
5200 return -EINVAL;
5201
5202 /*
5203 * XXX: Do we want to be lenient like existing syscalls; or do we want
5204 * to be strict and return an error on out-of-bounds values?
5205 */
5206 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5207
5208 return 0;
5209
5210 err_size:
5211 put_user(sizeof(*attr), &uattr->size);
5212 return -E2BIG;
5213 }
5214
5215 /**
5216 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5217 * @pid: the pid in question.
5218 * @policy: new policy.
5219 * @param: structure containing the new RT priority.
5220 *
5221 * Return: 0 on success. An error code otherwise.
5222 */
5223 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5224 {
5225 if (policy < 0)
5226 return -EINVAL;
5227
5228 return do_sched_setscheduler(pid, policy, param);
5229 }
5230
5231 /**
5232 * sys_sched_setparam - set/change the RT priority of a thread
5233 * @pid: the pid in question.
5234 * @param: structure containing the new RT priority.
5235 *
5236 * Return: 0 on success. An error code otherwise.
5237 */
5238 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5239 {
5240 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5241 }
5242
5243 /**
5244 * sys_sched_setattr - same as above, but with extended sched_attr
5245 * @pid: the pid in question.
5246 * @uattr: structure containing the extended parameters.
5247 * @flags: for future extension.
5248 */
5249 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5250 unsigned int, flags)
5251 {
5252 struct sched_attr attr;
5253 struct task_struct *p;
5254 int retval;
5255
5256 if (!uattr || pid < 0 || flags)
5257 return -EINVAL;
5258
5259 retval = sched_copy_attr(uattr, &attr);
5260 if (retval)
5261 return retval;
5262
5263 if ((int)attr.sched_policy < 0)
5264 return -EINVAL;
5265 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5266 attr.sched_policy = SETPARAM_POLICY;
5267
5268 rcu_read_lock();
5269 retval = -ESRCH;
5270 p = find_process_by_pid(pid);
5271 if (likely(p))
5272 get_task_struct(p);
5273 rcu_read_unlock();
5274
5275 if (likely(p)) {
5276 retval = sched_setattr(p, &attr);
5277 put_task_struct(p);
5278 }
5279
5280 return retval;
5281 }
5282
5283 /**
5284 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5285 * @pid: the pid in question.
5286 *
5287 * Return: On success, the policy of the thread. Otherwise, a negative error
5288 * code.
5289 */
5290 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5291 {
5292 struct task_struct *p;
5293 int retval;
5294
5295 if (pid < 0)
5296 return -EINVAL;
5297
5298 retval = -ESRCH;
5299 rcu_read_lock();
5300 p = find_process_by_pid(pid);
5301 if (p) {
5302 retval = security_task_getscheduler(p);
5303 if (!retval)
5304 retval = p->policy
5305 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5306 }
5307 rcu_read_unlock();
5308 return retval;
5309 }
5310
5311 /**
5312 * sys_sched_getparam - get the RT priority of a thread
5313 * @pid: the pid in question.
5314 * @param: structure containing the RT priority.
5315 *
5316 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5317 * code.
5318 */
5319 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5320 {
5321 struct sched_param lp = { .sched_priority = 0 };
5322 struct task_struct *p;
5323 int retval;
5324
5325 if (!param || pid < 0)
5326 return -EINVAL;
5327
5328 rcu_read_lock();
5329 p = find_process_by_pid(pid);
5330 retval = -ESRCH;
5331 if (!p)
5332 goto out_unlock;
5333
5334 retval = security_task_getscheduler(p);
5335 if (retval)
5336 goto out_unlock;
5337
5338 if (task_has_rt_policy(p))
5339 lp.sched_priority = p->rt_priority;
5340 rcu_read_unlock();
5341
5342 /*
5343 * This one might sleep, we cannot do it with a spinlock held ...
5344 */
5345 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5346
5347 return retval;
5348
5349 out_unlock:
5350 rcu_read_unlock();
5351 return retval;
5352 }
5353
5354 /*
5355 * Copy the kernel size attribute structure (which might be larger
5356 * than what user-space knows about) to user-space.
5357 *
5358 * Note that all cases are valid: user-space buffer can be larger or
5359 * smaller than the kernel-space buffer. The usual case is that both
5360 * have the same size.
5361 */
5362 static int
5363 sched_attr_copy_to_user(struct sched_attr __user *uattr,
5364 struct sched_attr *kattr,
5365 unsigned int usize)
5366 {
5367 unsigned int ksize = sizeof(*kattr);
5368
5369 if (!access_ok(uattr, usize))
5370 return -EFAULT;
5371
5372 /*
5373 * sched_getattr() ABI forwards and backwards compatibility:
5374 *
5375 * If usize == ksize then we just copy everything to user-space and all is good.
5376 *
5377 * If usize < ksize then we only copy as much as user-space has space for,
5378 * this keeps ABI compatibility as well. We skip the rest.
5379 *
5380 * If usize > ksize then user-space is using a newer version of the ABI,
5381 * which part the kernel doesn't know about. Just ignore it - tooling can
5382 * detect the kernel's knowledge of attributes from the attr->size value
5383 * which is set to ksize in this case.
5384 */
5385 kattr->size = min(usize, ksize);
5386
5387 if (copy_to_user(uattr, kattr, kattr->size))
5388 return -EFAULT;
5389
5390 return 0;
5391 }
5392
5393 /**
5394 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5395 * @pid: the pid in question.
5396 * @uattr: structure containing the extended parameters.
5397 * @usize: sizeof(attr) for fwd/bwd comp.
5398 * @flags: for future extension.
5399 */
5400 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5401 unsigned int, usize, unsigned int, flags)
5402 {
5403 struct sched_attr kattr = { };
5404 struct task_struct *p;
5405 int retval;
5406
5407 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5408 usize < SCHED_ATTR_SIZE_VER0 || flags)
5409 return -EINVAL;
5410
5411 rcu_read_lock();
5412 p = find_process_by_pid(pid);
5413 retval = -ESRCH;
5414 if (!p)
5415 goto out_unlock;
5416
5417 retval = security_task_getscheduler(p);
5418 if (retval)
5419 goto out_unlock;
5420
5421 kattr.sched_policy = p->policy;
5422 if (p->sched_reset_on_fork)
5423 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5424 if (task_has_dl_policy(p))
5425 __getparam_dl(p, &kattr);
5426 else if (task_has_rt_policy(p))
5427 kattr.sched_priority = p->rt_priority;
5428 else
5429 kattr.sched_nice = task_nice(p);
5430
5431 #ifdef CONFIG_UCLAMP_TASK
5432 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5433 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5434 #endif
5435
5436 rcu_read_unlock();
5437
5438 return sched_attr_copy_to_user(uattr, &kattr, usize);
5439
5440 out_unlock:
5441 rcu_read_unlock();
5442 return retval;
5443 }
5444
5445 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5446 {
5447 cpumask_var_t cpus_allowed, new_mask;
5448 struct task_struct *p;
5449 int retval;
5450
5451 rcu_read_lock();
5452
5453 p = find_process_by_pid(pid);
5454 if (!p) {
5455 rcu_read_unlock();
5456 return -ESRCH;
5457 }
5458
5459 /* Prevent p going away */
5460 get_task_struct(p);
5461 rcu_read_unlock();
5462
5463 if (p->flags & PF_NO_SETAFFINITY) {
5464 retval = -EINVAL;
5465 goto out_put_task;
5466 }
5467 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5468 retval = -ENOMEM;
5469 goto out_put_task;
5470 }
5471 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5472 retval = -ENOMEM;
5473 goto out_free_cpus_allowed;
5474 }
5475 retval = -EPERM;
5476 if (!check_same_owner(p)) {
5477 rcu_read_lock();
5478 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5479 rcu_read_unlock();
5480 goto out_free_new_mask;
5481 }
5482 rcu_read_unlock();
5483 }
5484
5485 retval = security_task_setscheduler(p);
5486 if (retval)
5487 goto out_free_new_mask;
5488
5489
5490 cpuset_cpus_allowed(p, cpus_allowed);
5491 cpumask_and(new_mask, in_mask, cpus_allowed);
5492
5493 /*
5494 * Since bandwidth control happens on root_domain basis,
5495 * if admission test is enabled, we only admit -deadline
5496 * tasks allowed to run on all the CPUs in the task's
5497 * root_domain.
5498 */
5499 #ifdef CONFIG_SMP
5500 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5501 rcu_read_lock();
5502 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5503 retval = -EBUSY;
5504 rcu_read_unlock();
5505 goto out_free_new_mask;
5506 }
5507 rcu_read_unlock();
5508 }
5509 #endif
5510 again:
5511 retval = __set_cpus_allowed_ptr(p, new_mask, true);
5512
5513 if (!retval) {
5514 cpuset_cpus_allowed(p, cpus_allowed);
5515 if (!cpumask_subset(new_mask, cpus_allowed)) {
5516 /*
5517 * We must have raced with a concurrent cpuset
5518 * update. Just reset the cpus_allowed to the
5519 * cpuset's cpus_allowed
5520 */
5521 cpumask_copy(new_mask, cpus_allowed);
5522 goto again;
5523 }
5524 }
5525 out_free_new_mask:
5526 free_cpumask_var(new_mask);
5527 out_free_cpus_allowed:
5528 free_cpumask_var(cpus_allowed);
5529 out_put_task:
5530 put_task_struct(p);
5531 return retval;
5532 }
5533
5534 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5535 struct cpumask *new_mask)
5536 {
5537 if (len < cpumask_size())
5538 cpumask_clear(new_mask);
5539 else if (len > cpumask_size())
5540 len = cpumask_size();
5541
5542 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5543 }
5544
5545 /**
5546 * sys_sched_setaffinity - set the CPU affinity of a process
5547 * @pid: pid of the process
5548 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5549 * @user_mask_ptr: user-space pointer to the new CPU mask
5550 *
5551 * Return: 0 on success. An error code otherwise.
5552 */
5553 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5554 unsigned long __user *, user_mask_ptr)
5555 {
5556 cpumask_var_t new_mask;
5557 int retval;
5558
5559 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5560 return -ENOMEM;
5561
5562 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5563 if (retval == 0)
5564 retval = sched_setaffinity(pid, new_mask);
5565 free_cpumask_var(new_mask);
5566 return retval;
5567 }
5568
5569 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5570 {
5571 struct task_struct *p;
5572 unsigned long flags;
5573 int retval;
5574
5575 rcu_read_lock();
5576
5577 retval = -ESRCH;
5578 p = find_process_by_pid(pid);
5579 if (!p)
5580 goto out_unlock;
5581
5582 retval = security_task_getscheduler(p);
5583 if (retval)
5584 goto out_unlock;
5585
5586 raw_spin_lock_irqsave(&p->pi_lock, flags);
5587 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5588 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5589
5590 out_unlock:
5591 rcu_read_unlock();
5592
5593 return retval;
5594 }
5595
5596 /**
5597 * sys_sched_getaffinity - get the CPU affinity of a process
5598 * @pid: pid of the process
5599 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5600 * @user_mask_ptr: user-space pointer to hold the current CPU mask
5601 *
5602 * Return: size of CPU mask copied to user_mask_ptr on success. An
5603 * error code otherwise.
5604 */
5605 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5606 unsigned long __user *, user_mask_ptr)
5607 {
5608 int ret;
5609 cpumask_var_t mask;
5610
5611 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5612 return -EINVAL;
5613 if (len & (sizeof(unsigned long)-1))
5614 return -EINVAL;
5615
5616 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5617 return -ENOMEM;
5618
5619 ret = sched_getaffinity(pid, mask);
5620 if (ret == 0) {
5621 unsigned int retlen = min(len, cpumask_size());
5622
5623 if (copy_to_user(user_mask_ptr, mask, retlen))
5624 ret = -EFAULT;
5625 else
5626 ret = retlen;
5627 }
5628 free_cpumask_var(mask);
5629
5630 return ret;
5631 }
5632
5633 /**
5634 * sys_sched_yield - yield the current processor to other threads.
5635 *
5636 * This function yields the current CPU to other tasks. If there are no
5637 * other threads running on this CPU then this function will return.
5638 *
5639 * Return: 0.
5640 */
5641 static void do_sched_yield(void)
5642 {
5643 struct rq_flags rf;
5644 struct rq *rq;
5645
5646 rq = this_rq_lock_irq(&rf);
5647
5648 schedstat_inc(rq->yld_count);
5649 current->sched_class->yield_task(rq);
5650
5651 /*
5652 * Since we are going to call schedule() anyway, there's
5653 * no need to preempt or enable interrupts:
5654 */
5655 preempt_disable();
5656 rq_unlock(rq, &rf);
5657 sched_preempt_enable_no_resched();
5658
5659 schedule();
5660 }
5661
5662 SYSCALL_DEFINE0(sched_yield)
5663 {
5664 do_sched_yield();
5665 return 0;
5666 }
5667
5668 #ifndef CONFIG_PREEMPTION
5669 int __sched _cond_resched(void)
5670 {
5671 if (should_resched(0)) {
5672 preempt_schedule_common();
5673 return 1;
5674 }
5675 rcu_all_qs();
5676 return 0;
5677 }
5678 EXPORT_SYMBOL(_cond_resched);
5679 #endif
5680
5681 /*
5682 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5683 * call schedule, and on return reacquire the lock.
5684 *
5685 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
5686 * operations here to prevent schedule() from being called twice (once via
5687 * spin_unlock(), once by hand).
5688 */
5689 int __cond_resched_lock(spinlock_t *lock)
5690 {
5691 int resched = should_resched(PREEMPT_LOCK_OFFSET);
5692 int ret = 0;
5693
5694 lockdep_assert_held(lock);
5695
5696 if (spin_needbreak(lock) || resched) {
5697 spin_unlock(lock);
5698 if (resched)
5699 preempt_schedule_common();
5700 else
5701 cpu_relax();
5702 ret = 1;
5703 spin_lock(lock);
5704 }
5705 return ret;
5706 }
5707 EXPORT_SYMBOL(__cond_resched_lock);
5708
5709 /**
5710 * yield - yield the current processor to other threads.
5711 *
5712 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5713 *
5714 * The scheduler is at all times free to pick the calling task as the most
5715 * eligible task to run, if removing the yield() call from your code breaks
5716 * it, its already broken.
5717 *
5718 * Typical broken usage is:
5719 *
5720 * while (!event)
5721 * yield();
5722 *
5723 * where one assumes that yield() will let 'the other' process run that will
5724 * make event true. If the current task is a SCHED_FIFO task that will never
5725 * happen. Never use yield() as a progress guarantee!!
5726 *
5727 * If you want to use yield() to wait for something, use wait_event().
5728 * If you want to use yield() to be 'nice' for others, use cond_resched().
5729 * If you still want to use yield(), do not!
5730 */
5731 void __sched yield(void)
5732 {
5733 set_current_state(TASK_RUNNING);
5734 do_sched_yield();
5735 }
5736 EXPORT_SYMBOL(yield);
5737
5738 /**
5739 * yield_to - yield the current processor to another thread in
5740 * your thread group, or accelerate that thread toward the
5741 * processor it's on.
5742 * @p: target task
5743 * @preempt: whether task preemption is allowed or not
5744 *
5745 * It's the caller's job to ensure that the target task struct
5746 * can't go away on us before we can do any checks.
5747 *
5748 * Return:
5749 * true (>0) if we indeed boosted the target task.
5750 * false (0) if we failed to boost the target.
5751 * -ESRCH if there's no task to yield to.
5752 */
5753 int __sched yield_to(struct task_struct *p, bool preempt)
5754 {
5755 struct task_struct *curr = current;
5756 struct rq *rq, *p_rq;
5757 unsigned long flags;
5758 int yielded = 0;
5759
5760 local_irq_save(flags);
5761 rq = this_rq();
5762
5763 again:
5764 p_rq = task_rq(p);
5765 /*
5766 * If we're the only runnable task on the rq and target rq also
5767 * has only one task, there's absolutely no point in yielding.
5768 */
5769 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5770 yielded = -ESRCH;
5771 goto out_irq;
5772 }
5773
5774 double_rq_lock(rq, p_rq);
5775 if (task_rq(p) != p_rq) {
5776 double_rq_unlock(rq, p_rq);
5777 goto again;
5778 }
5779
5780 if (!curr->sched_class->yield_to_task)
5781 goto out_unlock;
5782
5783 if (curr->sched_class != p->sched_class)
5784 goto out_unlock;
5785
5786 if (task_running(p_rq, p) || p->state)
5787 goto out_unlock;
5788
5789 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5790 if (yielded) {
5791 schedstat_inc(rq->yld_count);
5792 /*
5793 * Make p's CPU reschedule; pick_next_entity takes care of
5794 * fairness.
5795 */
5796 if (preempt && rq != p_rq)
5797 resched_curr(p_rq);
5798 }
5799
5800 out_unlock:
5801 double_rq_unlock(rq, p_rq);
5802 out_irq:
5803 local_irq_restore(flags);
5804
5805 if (yielded > 0)
5806 schedule();
5807
5808 return yielded;
5809 }
5810 EXPORT_SYMBOL_GPL(yield_to);
5811
5812 int io_schedule_prepare(void)
5813 {
5814 int old_iowait = current->in_iowait;
5815
5816 current->in_iowait = 1;
5817 blk_schedule_flush_plug(current);
5818
5819 return old_iowait;
5820 }
5821
5822 void io_schedule_finish(int token)
5823 {
5824 current->in_iowait = token;
5825 }
5826
5827 /*
5828 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5829 * that process accounting knows that this is a task in IO wait state.
5830 */
5831 long __sched io_schedule_timeout(long timeout)
5832 {
5833 int token;
5834 long ret;
5835
5836 token = io_schedule_prepare();
5837 ret = schedule_timeout(timeout);
5838 io_schedule_finish(token);
5839
5840 return ret;
5841 }
5842 EXPORT_SYMBOL(io_schedule_timeout);
5843
5844 void __sched io_schedule(void)
5845 {
5846 int token;
5847
5848 token = io_schedule_prepare();
5849 schedule();
5850 io_schedule_finish(token);
5851 }
5852 EXPORT_SYMBOL(io_schedule);
5853
5854 /**
5855 * sys_sched_get_priority_max - return maximum RT priority.
5856 * @policy: scheduling class.
5857 *
5858 * Return: On success, this syscall returns the maximum
5859 * rt_priority that can be used by a given scheduling class.
5860 * On failure, a negative error code is returned.
5861 */
5862 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5863 {
5864 int ret = -EINVAL;
5865
5866 switch (policy) {
5867 case SCHED_FIFO:
5868 case SCHED_RR:
5869 ret = MAX_USER_RT_PRIO-1;
5870 break;
5871 case SCHED_DEADLINE:
5872 case SCHED_NORMAL:
5873 case SCHED_BATCH:
5874 case SCHED_IDLE:
5875 ret = 0;
5876 break;
5877 }
5878 return ret;
5879 }
5880
5881 /**
5882 * sys_sched_get_priority_min - return minimum RT priority.
5883 * @policy: scheduling class.
5884 *
5885 * Return: On success, this syscall returns the minimum
5886 * rt_priority that can be used by a given scheduling class.
5887 * On failure, a negative error code is returned.
5888 */
5889 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5890 {
5891 int ret = -EINVAL;
5892
5893 switch (policy) {
5894 case SCHED_FIFO:
5895 case SCHED_RR:
5896 ret = 1;
5897 break;
5898 case SCHED_DEADLINE:
5899 case SCHED_NORMAL:
5900 case SCHED_BATCH:
5901 case SCHED_IDLE:
5902 ret = 0;
5903 }
5904 return ret;
5905 }
5906
5907 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5908 {
5909 struct task_struct *p;
5910 unsigned int time_slice;
5911 struct rq_flags rf;
5912 struct rq *rq;
5913 int retval;
5914
5915 if (pid < 0)
5916 return -EINVAL;
5917
5918 retval = -ESRCH;
5919 rcu_read_lock();
5920 p = find_process_by_pid(pid);
5921 if (!p)
5922 goto out_unlock;
5923
5924 retval = security_task_getscheduler(p);
5925 if (retval)
5926 goto out_unlock;
5927
5928 rq = task_rq_lock(p, &rf);
5929 time_slice = 0;
5930 if (p->sched_class->get_rr_interval)
5931 time_slice = p->sched_class->get_rr_interval(rq, p);
5932 task_rq_unlock(rq, p, &rf);
5933
5934 rcu_read_unlock();
5935 jiffies_to_timespec64(time_slice, t);
5936 return 0;
5937
5938 out_unlock:
5939 rcu_read_unlock();
5940 return retval;
5941 }
5942
5943 /**
5944 * sys_sched_rr_get_interval - return the default timeslice of a process.
5945 * @pid: pid of the process.
5946 * @interval: userspace pointer to the timeslice value.
5947 *
5948 * this syscall writes the default timeslice value of a given process
5949 * into the user-space timespec buffer. A value of '0' means infinity.
5950 *
5951 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5952 * an error code.
5953 */
5954 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5955 struct __kernel_timespec __user *, interval)
5956 {
5957 struct timespec64 t;
5958 int retval = sched_rr_get_interval(pid, &t);
5959
5960 if (retval == 0)
5961 retval = put_timespec64(&t, interval);
5962
5963 return retval;
5964 }
5965
5966 #ifdef CONFIG_COMPAT_32BIT_TIME
5967 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5968 struct old_timespec32 __user *, interval)
5969 {
5970 struct timespec64 t;
5971 int retval = sched_rr_get_interval(pid, &t);
5972
5973 if (retval == 0)
5974 retval = put_old_timespec32(&t, interval);
5975 return retval;
5976 }
5977 #endif
5978
5979 void sched_show_task(struct task_struct *p)
5980 {
5981 unsigned long free = 0;
5982 int ppid;
5983
5984 if (!try_get_task_stack(p))
5985 return;
5986
5987 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5988
5989 if (p->state == TASK_RUNNING)
5990 printk(KERN_CONT " running task ");
5991 #ifdef CONFIG_DEBUG_STACK_USAGE
5992 free = stack_not_used(p);
5993 #endif
5994 ppid = 0;
5995 rcu_read_lock();
5996 if (pid_alive(p))
5997 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5998 rcu_read_unlock();
5999 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6000 task_pid_nr(p), ppid,
6001 (unsigned long)task_thread_info(p)->flags);
6002
6003 print_worker_info(KERN_INFO, p);
6004 show_stack(p, NULL);
6005 put_task_stack(p);
6006 }
6007 EXPORT_SYMBOL_GPL(sched_show_task);
6008
6009 static inline bool
6010 state_filter_match(unsigned long state_filter, struct task_struct *p)
6011 {
6012 /* no filter, everything matches */
6013 if (!state_filter)
6014 return true;
6015
6016 /* filter, but doesn't match */
6017 if (!(p->state & state_filter))
6018 return false;
6019
6020 /*
6021 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6022 * TASK_KILLABLE).
6023 */
6024 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6025 return false;
6026
6027 return true;
6028 }
6029
6030
6031 void show_state_filter(unsigned long state_filter)
6032 {
6033 struct task_struct *g, *p;
6034
6035 #if BITS_PER_LONG == 32
6036 printk(KERN_INFO
6037 " task PC stack pid father\n");
6038 #else
6039 printk(KERN_INFO
6040 " task PC stack pid father\n");
6041 #endif
6042 rcu_read_lock();
6043 for_each_process_thread(g, p) {
6044 /*
6045 * reset the NMI-timeout, listing all files on a slow
6046 * console might take a lot of time:
6047 * Also, reset softlockup watchdogs on all CPUs, because
6048 * another CPU might be blocked waiting for us to process
6049 * an IPI.
6050 */
6051 touch_nmi_watchdog();
6052 touch_all_softlockup_watchdogs();
6053 if (state_filter_match(state_filter, p))
6054 sched_show_task(p);
6055 }
6056
6057 #ifdef CONFIG_SCHED_DEBUG
6058 if (!state_filter)
6059 sysrq_sched_debug_show();
6060 #endif
6061 rcu_read_unlock();
6062 /*
6063 * Only show locks if all tasks are dumped:
6064 */
6065 if (!state_filter)
6066 debug_show_all_locks();
6067 }
6068
6069 /**
6070 * init_idle - set up an idle thread for a given CPU
6071 * @idle: task in question
6072 * @cpu: CPU the idle task belongs to
6073 *
6074 * NOTE: this function does not set the idle thread's NEED_RESCHED
6075 * flag, to make booting more robust.
6076 */
6077 void init_idle(struct task_struct *idle, int cpu)
6078 {
6079 struct rq *rq = cpu_rq(cpu);
6080 unsigned long flags;
6081
6082 __sched_fork(0, idle);
6083
6084 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6085 raw_spin_lock(&rq->lock);
6086
6087 idle->state = TASK_RUNNING;
6088 idle->se.exec_start = sched_clock();
6089 idle->flags |= PF_IDLE;
6090
6091 kasan_unpoison_task_stack(idle);
6092
6093 #ifdef CONFIG_SMP
6094 /*
6095 * Its possible that init_idle() gets called multiple times on a task,
6096 * in that case do_set_cpus_allowed() will not do the right thing.
6097 *
6098 * And since this is boot we can forgo the serialization.
6099 */
6100 set_cpus_allowed_common(idle, cpumask_of(cpu));
6101 #endif
6102 /*
6103 * We're having a chicken and egg problem, even though we are
6104 * holding rq->lock, the CPU isn't yet set to this CPU so the
6105 * lockdep check in task_group() will fail.
6106 *
6107 * Similar case to sched_fork(). / Alternatively we could
6108 * use task_rq_lock() here and obtain the other rq->lock.
6109 *
6110 * Silence PROVE_RCU
6111 */
6112 rcu_read_lock();
6113 __set_task_cpu(idle, cpu);
6114 rcu_read_unlock();
6115
6116 rq->idle = idle;
6117 rcu_assign_pointer(rq->curr, idle);
6118 idle->on_rq = TASK_ON_RQ_QUEUED;
6119 #ifdef CONFIG_SMP
6120 idle->on_cpu = 1;
6121 #endif
6122 raw_spin_unlock(&rq->lock);
6123 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6124
6125 /* Set the preempt count _outside_ the spinlocks! */
6126 init_idle_preempt_count(idle, cpu);
6127
6128 /*
6129 * The idle tasks have their own, simple scheduling class:
6130 */
6131 idle->sched_class = &idle_sched_class;
6132 ftrace_graph_init_idle_task(idle, cpu);
6133 vtime_init_idle(idle, cpu);
6134 #ifdef CONFIG_SMP
6135 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6136 #endif
6137 }
6138
6139 #ifdef CONFIG_SMP
6140
6141 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6142 const struct cpumask *trial)
6143 {
6144 int ret = 1;
6145
6146 if (!cpumask_weight(cur))
6147 return ret;
6148
6149 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6150
6151 return ret;
6152 }
6153
6154 int task_can_attach(struct task_struct *p,
6155 const struct cpumask *cs_cpus_allowed)
6156 {
6157 int ret = 0;
6158
6159 /*
6160 * Kthreads which disallow setaffinity shouldn't be moved
6161 * to a new cpuset; we don't want to change their CPU
6162 * affinity and isolating such threads by their set of
6163 * allowed nodes is unnecessary. Thus, cpusets are not
6164 * applicable for such threads. This prevents checking for
6165 * success of set_cpus_allowed_ptr() on all attached tasks
6166 * before cpus_mask may be changed.
6167 */
6168 if (p->flags & PF_NO_SETAFFINITY) {
6169 ret = -EINVAL;
6170 goto out;
6171 }
6172
6173 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6174 cs_cpus_allowed))
6175 ret = dl_task_can_attach(p, cs_cpus_allowed);
6176
6177 out:
6178 return ret;
6179 }
6180
6181 bool sched_smp_initialized __read_mostly;
6182
6183 #ifdef CONFIG_NUMA_BALANCING
6184 /* Migrate current task p to target_cpu */
6185 int migrate_task_to(struct task_struct *p, int target_cpu)
6186 {
6187 struct migration_arg arg = { p, target_cpu };
6188 int curr_cpu = task_cpu(p);
6189
6190 if (curr_cpu == target_cpu)
6191 return 0;
6192
6193 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6194 return -EINVAL;
6195
6196 /* TODO: This is not properly updating schedstats */
6197
6198 trace_sched_move_numa(p, curr_cpu, target_cpu);
6199 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6200 }
6201
6202 /*
6203 * Requeue a task on a given node and accurately track the number of NUMA
6204 * tasks on the runqueues
6205 */
6206 void sched_setnuma(struct task_struct *p, int nid)
6207 {
6208 bool queued, running;
6209 struct rq_flags rf;
6210 struct rq *rq;
6211
6212 rq = task_rq_lock(p, &rf);
6213 queued = task_on_rq_queued(p);
6214 running = task_current(rq, p);
6215
6216 if (queued)
6217 dequeue_task(rq, p, DEQUEUE_SAVE);
6218 if (running)
6219 put_prev_task(rq, p);
6220
6221 p->numa_preferred_nid = nid;
6222
6223 if (queued)
6224 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6225 if (running)
6226 set_next_task(rq, p);
6227 task_rq_unlock(rq, p, &rf);
6228 }
6229 #endif /* CONFIG_NUMA_BALANCING */
6230
6231 #ifdef CONFIG_HOTPLUG_CPU
6232 /*
6233 * Ensure that the idle task is using init_mm right before its CPU goes
6234 * offline.
6235 */
6236 void idle_task_exit(void)
6237 {
6238 struct mm_struct *mm = current->active_mm;
6239
6240 BUG_ON(cpu_online(smp_processor_id()));
6241
6242 if (mm != &init_mm) {
6243 switch_mm(mm, &init_mm, current);
6244 current->active_mm = &init_mm;
6245 finish_arch_post_lock_switch();
6246 }
6247 mmdrop(mm);
6248 }
6249
6250 /*
6251 * Since this CPU is going 'away' for a while, fold any nr_active delta
6252 * we might have. Assumes we're called after migrate_tasks() so that the
6253 * nr_active count is stable. We need to take the teardown thread which
6254 * is calling this into account, so we hand in adjust = 1 to the load
6255 * calculation.
6256 *
6257 * Also see the comment "Global load-average calculations".
6258 */
6259 static void calc_load_migrate(struct rq *rq)
6260 {
6261 long delta = calc_load_fold_active(rq, 1);
6262 if (delta)
6263 atomic_long_add(delta, &calc_load_tasks);
6264 }
6265
6266 static struct task_struct *__pick_migrate_task(struct rq *rq)
6267 {
6268 const struct sched_class *class;
6269 struct task_struct *next;
6270
6271 for_each_class(class) {
6272 next = class->pick_next_task(rq);
6273 if (next) {
6274 next->sched_class->put_prev_task(rq, next);
6275 return next;
6276 }
6277 }
6278
6279 /* The idle class should always have a runnable task */
6280 BUG();
6281 }
6282
6283 /*
6284 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6285 * try_to_wake_up()->select_task_rq().
6286 *
6287 * Called with rq->lock held even though we'er in stop_machine() and
6288 * there's no concurrency possible, we hold the required locks anyway
6289 * because of lock validation efforts.
6290 */
6291 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6292 {
6293 struct rq *rq = dead_rq;
6294 struct task_struct *next, *stop = rq->stop;
6295 struct rq_flags orf = *rf;
6296 int dest_cpu;
6297
6298 /*
6299 * Fudge the rq selection such that the below task selection loop
6300 * doesn't get stuck on the currently eligible stop task.
6301 *
6302 * We're currently inside stop_machine() and the rq is either stuck
6303 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6304 * either way we should never end up calling schedule() until we're
6305 * done here.
6306 */
6307 rq->stop = NULL;
6308
6309 /*
6310 * put_prev_task() and pick_next_task() sched
6311 * class method both need to have an up-to-date
6312 * value of rq->clock[_task]
6313 */
6314 update_rq_clock(rq);
6315
6316 for (;;) {
6317 /*
6318 * There's this thread running, bail when that's the only
6319 * remaining thread:
6320 */
6321 if (rq->nr_running == 1)
6322 break;
6323
6324 next = __pick_migrate_task(rq);
6325
6326 /*
6327 * Rules for changing task_struct::cpus_mask are holding
6328 * both pi_lock and rq->lock, such that holding either
6329 * stabilizes the mask.
6330 *
6331 * Drop rq->lock is not quite as disastrous as it usually is
6332 * because !cpu_active at this point, which means load-balance
6333 * will not interfere. Also, stop-machine.
6334 */
6335 rq_unlock(rq, rf);
6336 raw_spin_lock(&next->pi_lock);
6337 rq_relock(rq, rf);
6338
6339 /*
6340 * Since we're inside stop-machine, _nothing_ should have
6341 * changed the task, WARN if weird stuff happened, because in
6342 * that case the above rq->lock drop is a fail too.
6343 */
6344 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6345 raw_spin_unlock(&next->pi_lock);
6346 continue;
6347 }
6348
6349 /* Find suitable destination for @next, with force if needed. */
6350 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6351 rq = __migrate_task(rq, rf, next, dest_cpu);
6352 if (rq != dead_rq) {
6353 rq_unlock(rq, rf);
6354 rq = dead_rq;
6355 *rf = orf;
6356 rq_relock(rq, rf);
6357 }
6358 raw_spin_unlock(&next->pi_lock);
6359 }
6360
6361 rq->stop = stop;
6362 }
6363 #endif /* CONFIG_HOTPLUG_CPU */
6364
6365 void set_rq_online(struct rq *rq)
6366 {
6367 if (!rq->online) {
6368 const struct sched_class *class;
6369
6370 cpumask_set_cpu(rq->cpu, rq->rd->online);
6371 rq->online = 1;
6372
6373 for_each_class(class) {
6374 if (class->rq_online)
6375 class->rq_online(rq);
6376 }
6377 }
6378 }
6379
6380 void set_rq_offline(struct rq *rq)
6381 {
6382 if (rq->online) {
6383 const struct sched_class *class;
6384
6385 for_each_class(class) {
6386 if (class->rq_offline)
6387 class->rq_offline(rq);
6388 }
6389
6390 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6391 rq->online = 0;
6392 }
6393 }
6394
6395 /*
6396 * used to mark begin/end of suspend/resume:
6397 */
6398 static int num_cpus_frozen;
6399
6400 /*
6401 * Update cpusets according to cpu_active mask. If cpusets are
6402 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6403 * around partition_sched_domains().
6404 *
6405 * If we come here as part of a suspend/resume, don't touch cpusets because we
6406 * want to restore it back to its original state upon resume anyway.
6407 */
6408 static void cpuset_cpu_active(void)
6409 {
6410 if (cpuhp_tasks_frozen) {
6411 /*
6412 * num_cpus_frozen tracks how many CPUs are involved in suspend
6413 * resume sequence. As long as this is not the last online
6414 * operation in the resume sequence, just build a single sched
6415 * domain, ignoring cpusets.
6416 */
6417 partition_sched_domains(1, NULL, NULL);
6418 if (--num_cpus_frozen)
6419 return;
6420 /*
6421 * This is the last CPU online operation. So fall through and
6422 * restore the original sched domains by considering the
6423 * cpuset configurations.
6424 */
6425 cpuset_force_rebuild();
6426 }
6427 cpuset_update_active_cpus();
6428 }
6429
6430 static int cpuset_cpu_inactive(unsigned int cpu)
6431 {
6432 if (!cpuhp_tasks_frozen) {
6433 if (dl_cpu_busy(cpu))
6434 return -EBUSY;
6435 cpuset_update_active_cpus();
6436 } else {
6437 num_cpus_frozen++;
6438 partition_sched_domains(1, NULL, NULL);
6439 }
6440 return 0;
6441 }
6442
6443 int sched_cpu_activate(unsigned int cpu)
6444 {
6445 struct rq *rq = cpu_rq(cpu);
6446 struct rq_flags rf;
6447
6448 #ifdef CONFIG_SCHED_SMT
6449 /*
6450 * When going up, increment the number of cores with SMT present.
6451 */
6452 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6453 static_branch_inc_cpuslocked(&sched_smt_present);
6454 #endif
6455 set_cpu_active(cpu, true);
6456
6457 if (sched_smp_initialized) {
6458 sched_domains_numa_masks_set(cpu);
6459 cpuset_cpu_active();
6460 }
6461
6462 /*
6463 * Put the rq online, if not already. This happens:
6464 *
6465 * 1) In the early boot process, because we build the real domains
6466 * after all CPUs have been brought up.
6467 *
6468 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6469 * domains.
6470 */
6471 rq_lock_irqsave(rq, &rf);
6472 if (rq->rd) {
6473 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6474 set_rq_online(rq);
6475 }
6476 rq_unlock_irqrestore(rq, &rf);
6477
6478 return 0;
6479 }
6480
6481 int sched_cpu_deactivate(unsigned int cpu)
6482 {
6483 int ret;
6484
6485 set_cpu_active(cpu, false);
6486 /*
6487 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6488 * users of this state to go away such that all new such users will
6489 * observe it.
6490 *
6491 * Do sync before park smpboot threads to take care the rcu boost case.
6492 */
6493 synchronize_rcu();
6494
6495 #ifdef CONFIG_SCHED_SMT
6496 /*
6497 * When going down, decrement the number of cores with SMT present.
6498 */
6499 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6500 static_branch_dec_cpuslocked(&sched_smt_present);
6501 #endif
6502
6503 if (!sched_smp_initialized)
6504 return 0;
6505
6506 ret = cpuset_cpu_inactive(cpu);
6507 if (ret) {
6508 set_cpu_active(cpu, true);
6509 return ret;
6510 }
6511 sched_domains_numa_masks_clear(cpu);
6512 return 0;
6513 }
6514
6515 static void sched_rq_cpu_starting(unsigned int cpu)
6516 {
6517 struct rq *rq = cpu_rq(cpu);
6518
6519 rq->calc_load_update = calc_load_update;
6520 update_max_interval();
6521 }
6522
6523 int sched_cpu_starting(unsigned int cpu)
6524 {
6525 sched_rq_cpu_starting(cpu);
6526 sched_tick_start(cpu);
6527 return 0;
6528 }
6529
6530 #ifdef CONFIG_HOTPLUG_CPU
6531 int sched_cpu_dying(unsigned int cpu)
6532 {
6533 struct rq *rq = cpu_rq(cpu);
6534 struct rq_flags rf;
6535
6536 /* Handle pending wakeups and then migrate everything off */
6537 sched_ttwu_pending();
6538 sched_tick_stop(cpu);
6539
6540 rq_lock_irqsave(rq, &rf);
6541 if (rq->rd) {
6542 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6543 set_rq_offline(rq);
6544 }
6545 migrate_tasks(rq, &rf);
6546 BUG_ON(rq->nr_running != 1);
6547 rq_unlock_irqrestore(rq, &rf);
6548
6549 calc_load_migrate(rq);
6550 update_max_interval();
6551 nohz_balance_exit_idle(rq);
6552 hrtick_clear(rq);
6553 return 0;
6554 }
6555 #endif
6556
6557 void __init sched_init_smp(void)
6558 {
6559 sched_init_numa();
6560
6561 /*
6562 * There's no userspace yet to cause hotplug operations; hence all the
6563 * CPU masks are stable and all blatant races in the below code cannot
6564 * happen.
6565 */
6566 mutex_lock(&sched_domains_mutex);
6567 sched_init_domains(cpu_active_mask);
6568 mutex_unlock(&sched_domains_mutex);
6569
6570 /* Move init over to a non-isolated CPU */
6571 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6572 BUG();
6573 sched_init_granularity();
6574
6575 init_sched_rt_class();
6576 init_sched_dl_class();
6577
6578 sched_smp_initialized = true;
6579 }
6580
6581 static int __init migration_init(void)
6582 {
6583 sched_cpu_starting(smp_processor_id());
6584 return 0;
6585 }
6586 early_initcall(migration_init);
6587
6588 #else
6589 void __init sched_init_smp(void)
6590 {
6591 sched_init_granularity();
6592 }
6593 #endif /* CONFIG_SMP */
6594
6595 int in_sched_functions(unsigned long addr)
6596 {
6597 return in_lock_functions(addr) ||
6598 (addr >= (unsigned long)__sched_text_start
6599 && addr < (unsigned long)__sched_text_end);
6600 }
6601
6602 #ifdef CONFIG_CGROUP_SCHED
6603 /*
6604 * Default task group.
6605 * Every task in system belongs to this group at bootup.
6606 */
6607 struct task_group root_task_group;
6608 LIST_HEAD(task_groups);
6609
6610 /* Cacheline aligned slab cache for task_group */
6611 static struct kmem_cache *task_group_cache __read_mostly;
6612 #endif
6613
6614 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6615 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6616
6617 void __init sched_init(void)
6618 {
6619 unsigned long ptr = 0;
6620 int i;
6621
6622 wait_bit_init();
6623
6624 #ifdef CONFIG_FAIR_GROUP_SCHED
6625 ptr += 2 * nr_cpu_ids * sizeof(void **);
6626 #endif
6627 #ifdef CONFIG_RT_GROUP_SCHED
6628 ptr += 2 * nr_cpu_ids * sizeof(void **);
6629 #endif
6630 if (ptr) {
6631 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
6632
6633 #ifdef CONFIG_FAIR_GROUP_SCHED
6634 root_task_group.se = (struct sched_entity **)ptr;
6635 ptr += nr_cpu_ids * sizeof(void **);
6636
6637 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6638 ptr += nr_cpu_ids * sizeof(void **);
6639
6640 #endif /* CONFIG_FAIR_GROUP_SCHED */
6641 #ifdef CONFIG_RT_GROUP_SCHED
6642 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6643 ptr += nr_cpu_ids * sizeof(void **);
6644
6645 root_task_group.rt_rq = (struct rt_rq **)ptr;
6646 ptr += nr_cpu_ids * sizeof(void **);
6647
6648 #endif /* CONFIG_RT_GROUP_SCHED */
6649 }
6650 #ifdef CONFIG_CPUMASK_OFFSTACK
6651 for_each_possible_cpu(i) {
6652 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6653 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6654 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6655 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6656 }
6657 #endif /* CONFIG_CPUMASK_OFFSTACK */
6658
6659 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6660 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6661
6662 #ifdef CONFIG_SMP
6663 init_defrootdomain();
6664 #endif
6665
6666 #ifdef CONFIG_RT_GROUP_SCHED
6667 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6668 global_rt_period(), global_rt_runtime());
6669 #endif /* CONFIG_RT_GROUP_SCHED */
6670
6671 #ifdef CONFIG_CGROUP_SCHED
6672 task_group_cache = KMEM_CACHE(task_group, 0);
6673
6674 list_add(&root_task_group.list, &task_groups);
6675 INIT_LIST_HEAD(&root_task_group.children);
6676 INIT_LIST_HEAD(&root_task_group.siblings);
6677 autogroup_init(&init_task);
6678 #endif /* CONFIG_CGROUP_SCHED */
6679
6680 for_each_possible_cpu(i) {
6681 struct rq *rq;
6682
6683 rq = cpu_rq(i);
6684 raw_spin_lock_init(&rq->lock);
6685 rq->nr_running = 0;
6686 rq->calc_load_active = 0;
6687 rq->calc_load_update = jiffies + LOAD_FREQ;
6688 init_cfs_rq(&rq->cfs);
6689 init_rt_rq(&rq->rt);
6690 init_dl_rq(&rq->dl);
6691 #ifdef CONFIG_FAIR_GROUP_SCHED
6692 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6693 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6694 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6695 /*
6696 * How much CPU bandwidth does root_task_group get?
6697 *
6698 * In case of task-groups formed thr' the cgroup filesystem, it
6699 * gets 100% of the CPU resources in the system. This overall
6700 * system CPU resource is divided among the tasks of
6701 * root_task_group and its child task-groups in a fair manner,
6702 * based on each entity's (task or task-group's) weight
6703 * (se->load.weight).
6704 *
6705 * In other words, if root_task_group has 10 tasks of weight
6706 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6707 * then A0's share of the CPU resource is:
6708 *
6709 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6710 *
6711 * We achieve this by letting root_task_group's tasks sit
6712 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6713 */
6714 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6715 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6716 #endif /* CONFIG_FAIR_GROUP_SCHED */
6717
6718 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6719 #ifdef CONFIG_RT_GROUP_SCHED
6720 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6721 #endif
6722 #ifdef CONFIG_SMP
6723 rq->sd = NULL;
6724 rq->rd = NULL;
6725 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6726 rq->balance_callback = NULL;
6727 rq->active_balance = 0;
6728 rq->next_balance = jiffies;
6729 rq->push_cpu = 0;
6730 rq->cpu = i;
6731 rq->online = 0;
6732 rq->idle_stamp = 0;
6733 rq->avg_idle = 2*sysctl_sched_migration_cost;
6734 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6735
6736 INIT_LIST_HEAD(&rq->cfs_tasks);
6737
6738 rq_attach_root(rq, &def_root_domain);
6739 #ifdef CONFIG_NO_HZ_COMMON
6740 rq->last_blocked_load_update_tick = jiffies;
6741 atomic_set(&rq->nohz_flags, 0);
6742 #endif
6743 #endif /* CONFIG_SMP */
6744 hrtick_rq_init(rq);
6745 atomic_set(&rq->nr_iowait, 0);
6746 }
6747
6748 set_load_weight(&init_task, false);
6749
6750 /*
6751 * The boot idle thread does lazy MMU switching as well:
6752 */
6753 mmgrab(&init_mm);
6754 enter_lazy_tlb(&init_mm, current);
6755
6756 /*
6757 * Make us the idle thread. Technically, schedule() should not be
6758 * called from this thread, however somewhere below it might be,
6759 * but because we are the idle thread, we just pick up running again
6760 * when this runqueue becomes "idle".
6761 */
6762 init_idle(current, smp_processor_id());
6763
6764 calc_load_update = jiffies + LOAD_FREQ;
6765
6766 #ifdef CONFIG_SMP
6767 idle_thread_set_boot_cpu();
6768 #endif
6769 init_sched_fair_class();
6770
6771 init_schedstats();
6772
6773 psi_init();
6774
6775 init_uclamp();
6776
6777 scheduler_running = 1;
6778 }
6779
6780 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6781 static inline int preempt_count_equals(int preempt_offset)
6782 {
6783 int nested = preempt_count() + rcu_preempt_depth();
6784
6785 return (nested == preempt_offset);
6786 }
6787
6788 void __might_sleep(const char *file, int line, int preempt_offset)
6789 {
6790 /*
6791 * Blocking primitives will set (and therefore destroy) current->state,
6792 * since we will exit with TASK_RUNNING make sure we enter with it,
6793 * otherwise we will destroy state.
6794 */
6795 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6796 "do not call blocking ops when !TASK_RUNNING; "
6797 "state=%lx set at [<%p>] %pS\n",
6798 current->state,
6799 (void *)current->task_state_change,
6800 (void *)current->task_state_change);
6801
6802 ___might_sleep(file, line, preempt_offset);
6803 }
6804 EXPORT_SYMBOL(__might_sleep);
6805
6806 void ___might_sleep(const char *file, int line, int preempt_offset)
6807 {
6808 /* Ratelimiting timestamp: */
6809 static unsigned long prev_jiffy;
6810
6811 unsigned long preempt_disable_ip;
6812
6813 /* WARN_ON_ONCE() by default, no rate limit required: */
6814 rcu_sleep_check();
6815
6816 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6817 !is_idle_task(current) && !current->non_block_count) ||
6818 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6819 oops_in_progress)
6820 return;
6821
6822 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6823 return;
6824 prev_jiffy = jiffies;
6825
6826 /* Save this before calling printk(), since that will clobber it: */
6827 preempt_disable_ip = get_preempt_disable_ip(current);
6828
6829 printk(KERN_ERR
6830 "BUG: sleeping function called from invalid context at %s:%d\n",
6831 file, line);
6832 printk(KERN_ERR
6833 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6834 in_atomic(), irqs_disabled(), current->non_block_count,
6835 current->pid, current->comm);
6836
6837 if (task_stack_end_corrupted(current))
6838 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6839
6840 debug_show_held_locks(current);
6841 if (irqs_disabled())
6842 print_irqtrace_events(current);
6843 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6844 && !preempt_count_equals(preempt_offset)) {
6845 pr_err("Preemption disabled at:");
6846 print_ip_sym(preempt_disable_ip);
6847 pr_cont("\n");
6848 }
6849 dump_stack();
6850 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6851 }
6852 EXPORT_SYMBOL(___might_sleep);
6853
6854 void __cant_sleep(const char *file, int line, int preempt_offset)
6855 {
6856 static unsigned long prev_jiffy;
6857
6858 if (irqs_disabled())
6859 return;
6860
6861 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6862 return;
6863
6864 if (preempt_count() > preempt_offset)
6865 return;
6866
6867 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6868 return;
6869 prev_jiffy = jiffies;
6870
6871 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6872 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6873 in_atomic(), irqs_disabled(),
6874 current->pid, current->comm);
6875
6876 debug_show_held_locks(current);
6877 dump_stack();
6878 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6879 }
6880 EXPORT_SYMBOL_GPL(__cant_sleep);
6881 #endif
6882
6883 #ifdef CONFIG_MAGIC_SYSRQ
6884 void normalize_rt_tasks(void)
6885 {
6886 struct task_struct *g, *p;
6887 struct sched_attr attr = {
6888 .sched_policy = SCHED_NORMAL,
6889 };
6890
6891 read_lock(&tasklist_lock);
6892 for_each_process_thread(g, p) {
6893 /*
6894 * Only normalize user tasks:
6895 */
6896 if (p->flags & PF_KTHREAD)
6897 continue;
6898
6899 p->se.exec_start = 0;
6900 schedstat_set(p->se.statistics.wait_start, 0);
6901 schedstat_set(p->se.statistics.sleep_start, 0);
6902 schedstat_set(p->se.statistics.block_start, 0);
6903
6904 if (!dl_task(p) && !rt_task(p)) {
6905 /*
6906 * Renice negative nice level userspace
6907 * tasks back to 0:
6908 */
6909 if (task_nice(p) < 0)
6910 set_user_nice(p, 0);
6911 continue;
6912 }
6913
6914 __sched_setscheduler(p, &attr, false, false);
6915 }
6916 read_unlock(&tasklist_lock);
6917 }
6918
6919 #endif /* CONFIG_MAGIC_SYSRQ */
6920
6921 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6922 /*
6923 * These functions are only useful for the IA64 MCA handling, or kdb.
6924 *
6925 * They can only be called when the whole system has been
6926 * stopped - every CPU needs to be quiescent, and no scheduling
6927 * activity can take place. Using them for anything else would
6928 * be a serious bug, and as a result, they aren't even visible
6929 * under any other configuration.
6930 */
6931
6932 /**
6933 * curr_task - return the current task for a given CPU.
6934 * @cpu: the processor in question.
6935 *
6936 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6937 *
6938 * Return: The current task for @cpu.
6939 */
6940 struct task_struct *curr_task(int cpu)
6941 {
6942 return cpu_curr(cpu);
6943 }
6944
6945 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6946
6947 #ifdef CONFIG_IA64
6948 /**
6949 * ia64_set_curr_task - set the current task for a given CPU.
6950 * @cpu: the processor in question.
6951 * @p: the task pointer to set.
6952 *
6953 * Description: This function must only be used when non-maskable interrupts
6954 * are serviced on a separate stack. It allows the architecture to switch the
6955 * notion of the current task on a CPU in a non-blocking manner. This function
6956 * must be called with all CPU's synchronized, and interrupts disabled, the
6957 * and caller must save the original value of the current task (see
6958 * curr_task() above) and restore that value before reenabling interrupts and
6959 * re-starting the system.
6960 *
6961 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6962 */
6963 void ia64_set_curr_task(int cpu, struct task_struct *p)
6964 {
6965 cpu_curr(cpu) = p;
6966 }
6967
6968 #endif
6969
6970 #ifdef CONFIG_CGROUP_SCHED
6971 /* task_group_lock serializes the addition/removal of task groups */
6972 static DEFINE_SPINLOCK(task_group_lock);
6973
6974 static inline void alloc_uclamp_sched_group(struct task_group *tg,
6975 struct task_group *parent)
6976 {
6977 #ifdef CONFIG_UCLAMP_TASK_GROUP
6978 enum uclamp_id clamp_id;
6979
6980 for_each_clamp_id(clamp_id) {
6981 uclamp_se_set(&tg->uclamp_req[clamp_id],
6982 uclamp_none(clamp_id), false);
6983 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
6984 }
6985 #endif
6986 }
6987
6988 static void sched_free_group(struct task_group *tg)
6989 {
6990 free_fair_sched_group(tg);
6991 free_rt_sched_group(tg);
6992 autogroup_free(tg);
6993 kmem_cache_free(task_group_cache, tg);
6994 }
6995
6996 /* allocate runqueue etc for a new task group */
6997 struct task_group *sched_create_group(struct task_group *parent)
6998 {
6999 struct task_group *tg;
7000
7001 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7002 if (!tg)
7003 return ERR_PTR(-ENOMEM);
7004
7005 if (!alloc_fair_sched_group(tg, parent))
7006 goto err;
7007
7008 if (!alloc_rt_sched_group(tg, parent))
7009 goto err;
7010
7011 alloc_uclamp_sched_group(tg, parent);
7012
7013 return tg;
7014
7015 err:
7016 sched_free_group(tg);
7017 return ERR_PTR(-ENOMEM);
7018 }
7019
7020 void sched_online_group(struct task_group *tg, struct task_group *parent)
7021 {
7022 unsigned long flags;
7023
7024 spin_lock_irqsave(&task_group_lock, flags);
7025 list_add_rcu(&tg->list, &task_groups);
7026
7027 /* Root should already exist: */
7028 WARN_ON(!parent);
7029
7030 tg->parent = parent;
7031 INIT_LIST_HEAD(&tg->children);
7032 list_add_rcu(&tg->siblings, &parent->children);
7033 spin_unlock_irqrestore(&task_group_lock, flags);
7034
7035 online_fair_sched_group(tg);
7036 }
7037
7038 /* rcu callback to free various structures associated with a task group */
7039 static void sched_free_group_rcu(struct rcu_head *rhp)
7040 {
7041 /* Now it should be safe to free those cfs_rqs: */
7042 sched_free_group(container_of(rhp, struct task_group, rcu));
7043 }
7044
7045 void sched_destroy_group(struct task_group *tg)
7046 {
7047 /* Wait for possible concurrent references to cfs_rqs complete: */
7048 call_rcu(&tg->rcu, sched_free_group_rcu);
7049 }
7050
7051 void sched_offline_group(struct task_group *tg)
7052 {
7053 unsigned long flags;
7054
7055 /* End participation in shares distribution: */
7056 unregister_fair_sched_group(tg);
7057
7058 spin_lock_irqsave(&task_group_lock, flags);
7059 list_del_rcu(&tg->list);
7060 list_del_rcu(&tg->siblings);
7061 spin_unlock_irqrestore(&task_group_lock, flags);
7062 }
7063
7064 static void sched_change_group(struct task_struct *tsk, int type)
7065 {
7066 struct task_group *tg;
7067
7068 /*
7069 * All callers are synchronized by task_rq_lock(); we do not use RCU
7070 * which is pointless here. Thus, we pass "true" to task_css_check()
7071 * to prevent lockdep warnings.
7072 */
7073 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7074 struct task_group, css);
7075 tg = autogroup_task_group(tsk, tg);
7076 tsk->sched_task_group = tg;
7077
7078 #ifdef CONFIG_FAIR_GROUP_SCHED
7079 if (tsk->sched_class->task_change_group)
7080 tsk->sched_class->task_change_group(tsk, type);
7081 else
7082 #endif
7083 set_task_rq(tsk, task_cpu(tsk));
7084 }
7085
7086 /*
7087 * Change task's runqueue when it moves between groups.
7088 *
7089 * The caller of this function should have put the task in its new group by
7090 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7091 * its new group.
7092 */
7093 void sched_move_task(struct task_struct *tsk)
7094 {
7095 int queued, running, queue_flags =
7096 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7097 struct rq_flags rf;
7098 struct rq *rq;
7099
7100 rq = task_rq_lock(tsk, &rf);
7101 update_rq_clock(rq);
7102
7103 running = task_current(rq, tsk);
7104 queued = task_on_rq_queued(tsk);
7105
7106 if (queued)
7107 dequeue_task(rq, tsk, queue_flags);
7108 if (running)
7109 put_prev_task(rq, tsk);
7110
7111 sched_change_group(tsk, TASK_MOVE_GROUP);
7112
7113 if (queued)
7114 enqueue_task(rq, tsk, queue_flags);
7115 if (running) {
7116 set_next_task(rq, tsk);
7117 /*
7118 * After changing group, the running task may have joined a
7119 * throttled one but it's still the running task. Trigger a
7120 * resched to make sure that task can still run.
7121 */
7122 resched_curr(rq);
7123 }
7124
7125 task_rq_unlock(rq, tsk, &rf);
7126 }
7127
7128 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7129 {
7130 return css ? container_of(css, struct task_group, css) : NULL;
7131 }
7132
7133 static struct cgroup_subsys_state *
7134 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7135 {
7136 struct task_group *parent = css_tg(parent_css);
7137 struct task_group *tg;
7138
7139 if (!parent) {
7140 /* This is early initialization for the top cgroup */
7141 return &root_task_group.css;
7142 }
7143
7144 tg = sched_create_group(parent);
7145 if (IS_ERR(tg))
7146 return ERR_PTR(-ENOMEM);
7147
7148 return &tg->css;
7149 }
7150
7151 /* Expose task group only after completing cgroup initialization */
7152 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7153 {
7154 struct task_group *tg = css_tg(css);
7155 struct task_group *parent = css_tg(css->parent);
7156
7157 if (parent)
7158 sched_online_group(tg, parent);
7159
7160 #ifdef CONFIG_UCLAMP_TASK_GROUP
7161 /* Propagate the effective uclamp value for the new group */
7162 cpu_util_update_eff(css);
7163 #endif
7164
7165 return 0;
7166 }
7167
7168 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7169 {
7170 struct task_group *tg = css_tg(css);
7171
7172 sched_offline_group(tg);
7173 }
7174
7175 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7176 {
7177 struct task_group *tg = css_tg(css);
7178
7179 /*
7180 * Relies on the RCU grace period between css_released() and this.
7181 */
7182 sched_free_group(tg);
7183 }
7184
7185 /*
7186 * This is called before wake_up_new_task(), therefore we really only
7187 * have to set its group bits, all the other stuff does not apply.
7188 */
7189 static void cpu_cgroup_fork(struct task_struct *task)
7190 {
7191 struct rq_flags rf;
7192 struct rq *rq;
7193
7194 rq = task_rq_lock(task, &rf);
7195
7196 update_rq_clock(rq);
7197 sched_change_group(task, TASK_SET_GROUP);
7198
7199 task_rq_unlock(rq, task, &rf);
7200 }
7201
7202 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7203 {
7204 struct task_struct *task;
7205 struct cgroup_subsys_state *css;
7206 int ret = 0;
7207
7208 cgroup_taskset_for_each(task, css, tset) {
7209 #ifdef CONFIG_RT_GROUP_SCHED
7210 if (!sched_rt_can_attach(css_tg(css), task))
7211 return -EINVAL;
7212 #endif
7213 /*
7214 * Serialize against wake_up_new_task() such that if its
7215 * running, we're sure to observe its full state.
7216 */
7217 raw_spin_lock_irq(&task->pi_lock);
7218 /*
7219 * Avoid calling sched_move_task() before wake_up_new_task()
7220 * has happened. This would lead to problems with PELT, due to
7221 * move wanting to detach+attach while we're not attached yet.
7222 */
7223 if (task->state == TASK_NEW)
7224 ret = -EINVAL;
7225 raw_spin_unlock_irq(&task->pi_lock);
7226
7227 if (ret)
7228 break;
7229 }
7230 return ret;
7231 }
7232
7233 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7234 {
7235 struct task_struct *task;
7236 struct cgroup_subsys_state *css;
7237
7238 cgroup_taskset_for_each(task, css, tset)
7239 sched_move_task(task);
7240 }
7241
7242 #ifdef CONFIG_UCLAMP_TASK_GROUP
7243 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7244 {
7245 struct cgroup_subsys_state *top_css = css;
7246 struct uclamp_se *uc_parent = NULL;
7247 struct uclamp_se *uc_se = NULL;
7248 unsigned int eff[UCLAMP_CNT];
7249 enum uclamp_id clamp_id;
7250 unsigned int clamps;
7251
7252 css_for_each_descendant_pre(css, top_css) {
7253 uc_parent = css_tg(css)->parent
7254 ? css_tg(css)->parent->uclamp : NULL;
7255
7256 for_each_clamp_id(clamp_id) {
7257 /* Assume effective clamps matches requested clamps */
7258 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7259 /* Cap effective clamps with parent's effective clamps */
7260 if (uc_parent &&
7261 eff[clamp_id] > uc_parent[clamp_id].value) {
7262 eff[clamp_id] = uc_parent[clamp_id].value;
7263 }
7264 }
7265 /* Ensure protection is always capped by limit */
7266 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7267
7268 /* Propagate most restrictive effective clamps */
7269 clamps = 0x0;
7270 uc_se = css_tg(css)->uclamp;
7271 for_each_clamp_id(clamp_id) {
7272 if (eff[clamp_id] == uc_se[clamp_id].value)
7273 continue;
7274 uc_se[clamp_id].value = eff[clamp_id];
7275 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7276 clamps |= (0x1 << clamp_id);
7277 }
7278 if (!clamps) {
7279 css = css_rightmost_descendant(css);
7280 continue;
7281 }
7282
7283 /* Immediately update descendants RUNNABLE tasks */
7284 uclamp_update_active_tasks(css, clamps);
7285 }
7286 }
7287
7288 /*
7289 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7290 * C expression. Since there is no way to convert a macro argument (N) into a
7291 * character constant, use two levels of macros.
7292 */
7293 #define _POW10(exp) ((unsigned int)1e##exp)
7294 #define POW10(exp) _POW10(exp)
7295
7296 struct uclamp_request {
7297 #define UCLAMP_PERCENT_SHIFT 2
7298 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
7299 s64 percent;
7300 u64 util;
7301 int ret;
7302 };
7303
7304 static inline struct uclamp_request
7305 capacity_from_percent(char *buf)
7306 {
7307 struct uclamp_request req = {
7308 .percent = UCLAMP_PERCENT_SCALE,
7309 .util = SCHED_CAPACITY_SCALE,
7310 .ret = 0,
7311 };
7312
7313 buf = strim(buf);
7314 if (strcmp(buf, "max")) {
7315 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7316 &req.percent);
7317 if (req.ret)
7318 return req;
7319 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7320 req.ret = -ERANGE;
7321 return req;
7322 }
7323
7324 req.util = req.percent << SCHED_CAPACITY_SHIFT;
7325 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7326 }
7327
7328 return req;
7329 }
7330
7331 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7332 size_t nbytes, loff_t off,
7333 enum uclamp_id clamp_id)
7334 {
7335 struct uclamp_request req;
7336 struct task_group *tg;
7337
7338 req = capacity_from_percent(buf);
7339 if (req.ret)
7340 return req.ret;
7341
7342 mutex_lock(&uclamp_mutex);
7343 rcu_read_lock();
7344
7345 tg = css_tg(of_css(of));
7346 if (tg->uclamp_req[clamp_id].value != req.util)
7347 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7348
7349 /*
7350 * Because of not recoverable conversion rounding we keep track of the
7351 * exact requested value
7352 */
7353 tg->uclamp_pct[clamp_id] = req.percent;
7354
7355 /* Update effective clamps to track the most restrictive value */
7356 cpu_util_update_eff(of_css(of));
7357
7358 rcu_read_unlock();
7359 mutex_unlock(&uclamp_mutex);
7360
7361 return nbytes;
7362 }
7363
7364 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7365 char *buf, size_t nbytes,
7366 loff_t off)
7367 {
7368 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7369 }
7370
7371 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7372 char *buf, size_t nbytes,
7373 loff_t off)
7374 {
7375 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7376 }
7377
7378 static inline void cpu_uclamp_print(struct seq_file *sf,
7379 enum uclamp_id clamp_id)
7380 {
7381 struct task_group *tg;
7382 u64 util_clamp;
7383 u64 percent;
7384 u32 rem;
7385
7386 rcu_read_lock();
7387 tg = css_tg(seq_css(sf));
7388 util_clamp = tg->uclamp_req[clamp_id].value;
7389 rcu_read_unlock();
7390
7391 if (util_clamp == SCHED_CAPACITY_SCALE) {
7392 seq_puts(sf, "max\n");
7393 return;
7394 }
7395
7396 percent = tg->uclamp_pct[clamp_id];
7397 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7398 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7399 }
7400
7401 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7402 {
7403 cpu_uclamp_print(sf, UCLAMP_MIN);
7404 return 0;
7405 }
7406
7407 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7408 {
7409 cpu_uclamp_print(sf, UCLAMP_MAX);
7410 return 0;
7411 }
7412 #endif /* CONFIG_UCLAMP_TASK_GROUP */
7413
7414 #ifdef CONFIG_FAIR_GROUP_SCHED
7415 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7416 struct cftype *cftype, u64 shareval)
7417 {
7418 if (shareval > scale_load_down(ULONG_MAX))
7419 shareval = MAX_SHARES;
7420 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7421 }
7422
7423 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7424 struct cftype *cft)
7425 {
7426 struct task_group *tg = css_tg(css);
7427
7428 return (u64) scale_load_down(tg->shares);
7429 }
7430
7431 #ifdef CONFIG_CFS_BANDWIDTH
7432 static DEFINE_MUTEX(cfs_constraints_mutex);
7433
7434 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7435 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7436
7437 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7438
7439 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7440 {
7441 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7442 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7443
7444 if (tg == &root_task_group)
7445 return -EINVAL;
7446
7447 /*
7448 * Ensure we have at some amount of bandwidth every period. This is
7449 * to prevent reaching a state of large arrears when throttled via
7450 * entity_tick() resulting in prolonged exit starvation.
7451 */
7452 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7453 return -EINVAL;
7454
7455 /*
7456 * Likewise, bound things on the otherside by preventing insane quota
7457 * periods. This also allows us to normalize in computing quota
7458 * feasibility.
7459 */
7460 if (period > max_cfs_quota_period)
7461 return -EINVAL;
7462
7463 /*
7464 * Prevent race between setting of cfs_rq->runtime_enabled and
7465 * unthrottle_offline_cfs_rqs().
7466 */
7467 get_online_cpus();
7468 mutex_lock(&cfs_constraints_mutex);
7469 ret = __cfs_schedulable(tg, period, quota);
7470 if (ret)
7471 goto out_unlock;
7472
7473 runtime_enabled = quota != RUNTIME_INF;
7474 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7475 /*
7476 * If we need to toggle cfs_bandwidth_used, off->on must occur
7477 * before making related changes, and on->off must occur afterwards
7478 */
7479 if (runtime_enabled && !runtime_was_enabled)
7480 cfs_bandwidth_usage_inc();
7481 raw_spin_lock_irq(&cfs_b->lock);
7482 cfs_b->period = ns_to_ktime(period);
7483 cfs_b->quota = quota;
7484
7485 __refill_cfs_bandwidth_runtime(cfs_b);
7486
7487 /* Restart the period timer (if active) to handle new period expiry: */
7488 if (runtime_enabled)
7489 start_cfs_bandwidth(cfs_b);
7490
7491 raw_spin_unlock_irq(&cfs_b->lock);
7492
7493 for_each_online_cpu(i) {
7494 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7495 struct rq *rq = cfs_rq->rq;
7496 struct rq_flags rf;
7497
7498 rq_lock_irq(rq, &rf);
7499 cfs_rq->runtime_enabled = runtime_enabled;
7500 cfs_rq->runtime_remaining = 0;
7501
7502 if (cfs_rq->throttled)
7503 unthrottle_cfs_rq(cfs_rq);
7504 rq_unlock_irq(rq, &rf);
7505 }
7506 if (runtime_was_enabled && !runtime_enabled)
7507 cfs_bandwidth_usage_dec();
7508 out_unlock:
7509 mutex_unlock(&cfs_constraints_mutex);
7510 put_online_cpus();
7511
7512 return ret;
7513 }
7514
7515 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7516 {
7517 u64 quota, period;
7518
7519 period = ktime_to_ns(tg->cfs_bandwidth.period);
7520 if (cfs_quota_us < 0)
7521 quota = RUNTIME_INF;
7522 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7523 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7524 else
7525 return -EINVAL;
7526
7527 return tg_set_cfs_bandwidth(tg, period, quota);
7528 }
7529
7530 static long tg_get_cfs_quota(struct task_group *tg)
7531 {
7532 u64 quota_us;
7533
7534 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7535 return -1;
7536
7537 quota_us = tg->cfs_bandwidth.quota;
7538 do_div(quota_us, NSEC_PER_USEC);
7539
7540 return quota_us;
7541 }
7542
7543 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7544 {
7545 u64 quota, period;
7546
7547 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7548 return -EINVAL;
7549
7550 period = (u64)cfs_period_us * NSEC_PER_USEC;
7551 quota = tg->cfs_bandwidth.quota;
7552
7553 return tg_set_cfs_bandwidth(tg, period, quota);
7554 }
7555
7556 static long tg_get_cfs_period(struct task_group *tg)
7557 {
7558 u64 cfs_period_us;
7559
7560 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7561 do_div(cfs_period_us, NSEC_PER_USEC);
7562
7563 return cfs_period_us;
7564 }
7565
7566 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7567 struct cftype *cft)
7568 {
7569 return tg_get_cfs_quota(css_tg(css));
7570 }
7571
7572 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7573 struct cftype *cftype, s64 cfs_quota_us)
7574 {
7575 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7576 }
7577
7578 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7579 struct cftype *cft)
7580 {
7581 return tg_get_cfs_period(css_tg(css));
7582 }
7583
7584 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7585 struct cftype *cftype, u64 cfs_period_us)
7586 {
7587 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7588 }
7589
7590 struct cfs_schedulable_data {
7591 struct task_group *tg;
7592 u64 period, quota;
7593 };
7594
7595 /*
7596 * normalize group quota/period to be quota/max_period
7597 * note: units are usecs
7598 */
7599 static u64 normalize_cfs_quota(struct task_group *tg,
7600 struct cfs_schedulable_data *d)
7601 {
7602 u64 quota, period;
7603
7604 if (tg == d->tg) {
7605 period = d->period;
7606 quota = d->quota;
7607 } else {
7608 period = tg_get_cfs_period(tg);
7609 quota = tg_get_cfs_quota(tg);
7610 }
7611
7612 /* note: these should typically be equivalent */
7613 if (quota == RUNTIME_INF || quota == -1)
7614 return RUNTIME_INF;
7615
7616 return to_ratio(period, quota);
7617 }
7618
7619 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7620 {
7621 struct cfs_schedulable_data *d = data;
7622 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7623 s64 quota = 0, parent_quota = -1;
7624
7625 if (!tg->parent) {
7626 quota = RUNTIME_INF;
7627 } else {
7628 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7629
7630 quota = normalize_cfs_quota(tg, d);
7631 parent_quota = parent_b->hierarchical_quota;
7632
7633 /*
7634 * Ensure max(child_quota) <= parent_quota. On cgroup2,
7635 * always take the min. On cgroup1, only inherit when no
7636 * limit is set:
7637 */
7638 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7639 quota = min(quota, parent_quota);
7640 } else {
7641 if (quota == RUNTIME_INF)
7642 quota = parent_quota;
7643 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7644 return -EINVAL;
7645 }
7646 }
7647 cfs_b->hierarchical_quota = quota;
7648
7649 return 0;
7650 }
7651
7652 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7653 {
7654 int ret;
7655 struct cfs_schedulable_data data = {
7656 .tg = tg,
7657 .period = period,
7658 .quota = quota,
7659 };
7660
7661 if (quota != RUNTIME_INF) {
7662 do_div(data.period, NSEC_PER_USEC);
7663 do_div(data.quota, NSEC_PER_USEC);
7664 }
7665
7666 rcu_read_lock();
7667 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7668 rcu_read_unlock();
7669
7670 return ret;
7671 }
7672
7673 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7674 {
7675 struct task_group *tg = css_tg(seq_css(sf));
7676 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7677
7678 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7679 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7680 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7681
7682 if (schedstat_enabled() && tg != &root_task_group) {
7683 u64 ws = 0;
7684 int i;
7685
7686 for_each_possible_cpu(i)
7687 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7688
7689 seq_printf(sf, "wait_sum %llu\n", ws);
7690 }
7691
7692 return 0;
7693 }
7694 #endif /* CONFIG_CFS_BANDWIDTH */
7695 #endif /* CONFIG_FAIR_GROUP_SCHED */
7696
7697 #ifdef CONFIG_RT_GROUP_SCHED
7698 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7699 struct cftype *cft, s64 val)
7700 {
7701 return sched_group_set_rt_runtime(css_tg(css), val);
7702 }
7703
7704 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7705 struct cftype *cft)
7706 {
7707 return sched_group_rt_runtime(css_tg(css));
7708 }
7709
7710 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7711 struct cftype *cftype, u64 rt_period_us)
7712 {
7713 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7714 }
7715
7716 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7717 struct cftype *cft)
7718 {
7719 return sched_group_rt_period(css_tg(css));
7720 }
7721 #endif /* CONFIG_RT_GROUP_SCHED */
7722
7723 static struct cftype cpu_legacy_files[] = {
7724 #ifdef CONFIG_FAIR_GROUP_SCHED
7725 {
7726 .name = "shares",
7727 .read_u64 = cpu_shares_read_u64,
7728 .write_u64 = cpu_shares_write_u64,
7729 },
7730 #endif
7731 #ifdef CONFIG_CFS_BANDWIDTH
7732 {
7733 .name = "cfs_quota_us",
7734 .read_s64 = cpu_cfs_quota_read_s64,
7735 .write_s64 = cpu_cfs_quota_write_s64,
7736 },
7737 {
7738 .name = "cfs_period_us",
7739 .read_u64 = cpu_cfs_period_read_u64,
7740 .write_u64 = cpu_cfs_period_write_u64,
7741 },
7742 {
7743 .name = "stat",
7744 .seq_show = cpu_cfs_stat_show,
7745 },
7746 #endif
7747 #ifdef CONFIG_RT_GROUP_SCHED
7748 {
7749 .name = "rt_runtime_us",
7750 .read_s64 = cpu_rt_runtime_read,
7751 .write_s64 = cpu_rt_runtime_write,
7752 },
7753 {
7754 .name = "rt_period_us",
7755 .read_u64 = cpu_rt_period_read_uint,
7756 .write_u64 = cpu_rt_period_write_uint,
7757 },
7758 #endif
7759 #ifdef CONFIG_UCLAMP_TASK_GROUP
7760 {
7761 .name = "uclamp.min",
7762 .flags = CFTYPE_NOT_ON_ROOT,
7763 .seq_show = cpu_uclamp_min_show,
7764 .write = cpu_uclamp_min_write,
7765 },
7766 {
7767 .name = "uclamp.max",
7768 .flags = CFTYPE_NOT_ON_ROOT,
7769 .seq_show = cpu_uclamp_max_show,
7770 .write = cpu_uclamp_max_write,
7771 },
7772 #endif
7773 { } /* Terminate */
7774 };
7775
7776 static int cpu_extra_stat_show(struct seq_file *sf,
7777 struct cgroup_subsys_state *css)
7778 {
7779 #ifdef CONFIG_CFS_BANDWIDTH
7780 {
7781 struct task_group *tg = css_tg(css);
7782 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7783 u64 throttled_usec;
7784
7785 throttled_usec = cfs_b->throttled_time;
7786 do_div(throttled_usec, NSEC_PER_USEC);
7787
7788 seq_printf(sf, "nr_periods %d\n"
7789 "nr_throttled %d\n"
7790 "throttled_usec %llu\n",
7791 cfs_b->nr_periods, cfs_b->nr_throttled,
7792 throttled_usec);
7793 }
7794 #endif
7795 return 0;
7796 }
7797
7798 #ifdef CONFIG_FAIR_GROUP_SCHED
7799 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7800 struct cftype *cft)
7801 {
7802 struct task_group *tg = css_tg(css);
7803 u64 weight = scale_load_down(tg->shares);
7804
7805 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7806 }
7807
7808 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7809 struct cftype *cft, u64 weight)
7810 {
7811 /*
7812 * cgroup weight knobs should use the common MIN, DFL and MAX
7813 * values which are 1, 100 and 10000 respectively. While it loses
7814 * a bit of range on both ends, it maps pretty well onto the shares
7815 * value used by scheduler and the round-trip conversions preserve
7816 * the original value over the entire range.
7817 */
7818 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7819 return -ERANGE;
7820
7821 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7822
7823 return sched_group_set_shares(css_tg(css), scale_load(weight));
7824 }
7825
7826 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7827 struct cftype *cft)
7828 {
7829 unsigned long weight = scale_load_down(css_tg(css)->shares);
7830 int last_delta = INT_MAX;
7831 int prio, delta;
7832
7833 /* find the closest nice value to the current weight */
7834 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7835 delta = abs(sched_prio_to_weight[prio] - weight);
7836 if (delta >= last_delta)
7837 break;
7838 last_delta = delta;
7839 }
7840
7841 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7842 }
7843
7844 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7845 struct cftype *cft, s64 nice)
7846 {
7847 unsigned long weight;
7848 int idx;
7849
7850 if (nice < MIN_NICE || nice > MAX_NICE)
7851 return -ERANGE;
7852
7853 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7854 idx = array_index_nospec(idx, 40);
7855 weight = sched_prio_to_weight[idx];
7856
7857 return sched_group_set_shares(css_tg(css), scale_load(weight));
7858 }
7859 #endif
7860
7861 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7862 long period, long quota)
7863 {
7864 if (quota < 0)
7865 seq_puts(sf, "max");
7866 else
7867 seq_printf(sf, "%ld", quota);
7868
7869 seq_printf(sf, " %ld\n", period);
7870 }
7871
7872 /* caller should put the current value in *@periodp before calling */
7873 static int __maybe_unused cpu_period_quota_parse(char *buf,
7874 u64 *periodp, u64 *quotap)
7875 {
7876 char tok[21]; /* U64_MAX */
7877
7878 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7879 return -EINVAL;
7880
7881 *periodp *= NSEC_PER_USEC;
7882
7883 if (sscanf(tok, "%llu", quotap))
7884 *quotap *= NSEC_PER_USEC;
7885 else if (!strcmp(tok, "max"))
7886 *quotap = RUNTIME_INF;
7887 else
7888 return -EINVAL;
7889
7890 return 0;
7891 }
7892
7893 #ifdef CONFIG_CFS_BANDWIDTH
7894 static int cpu_max_show(struct seq_file *sf, void *v)
7895 {
7896 struct task_group *tg = css_tg(seq_css(sf));
7897
7898 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7899 return 0;
7900 }
7901
7902 static ssize_t cpu_max_write(struct kernfs_open_file *of,
7903 char *buf, size_t nbytes, loff_t off)
7904 {
7905 struct task_group *tg = css_tg(of_css(of));
7906 u64 period = tg_get_cfs_period(tg);
7907 u64 quota;
7908 int ret;
7909
7910 ret = cpu_period_quota_parse(buf, &period, &quota);
7911 if (!ret)
7912 ret = tg_set_cfs_bandwidth(tg, period, quota);
7913 return ret ?: nbytes;
7914 }
7915 #endif
7916
7917 static struct cftype cpu_files[] = {
7918 #ifdef CONFIG_FAIR_GROUP_SCHED
7919 {
7920 .name = "weight",
7921 .flags = CFTYPE_NOT_ON_ROOT,
7922 .read_u64 = cpu_weight_read_u64,
7923 .write_u64 = cpu_weight_write_u64,
7924 },
7925 {
7926 .name = "weight.nice",
7927 .flags = CFTYPE_NOT_ON_ROOT,
7928 .read_s64 = cpu_weight_nice_read_s64,
7929 .write_s64 = cpu_weight_nice_write_s64,
7930 },
7931 #endif
7932 #ifdef CONFIG_CFS_BANDWIDTH
7933 {
7934 .name = "max",
7935 .flags = CFTYPE_NOT_ON_ROOT,
7936 .seq_show = cpu_max_show,
7937 .write = cpu_max_write,
7938 },
7939 #endif
7940 #ifdef CONFIG_UCLAMP_TASK_GROUP
7941 {
7942 .name = "uclamp.min",
7943 .flags = CFTYPE_NOT_ON_ROOT,
7944 .seq_show = cpu_uclamp_min_show,
7945 .write = cpu_uclamp_min_write,
7946 },
7947 {
7948 .name = "uclamp.max",
7949 .flags = CFTYPE_NOT_ON_ROOT,
7950 .seq_show = cpu_uclamp_max_show,
7951 .write = cpu_uclamp_max_write,
7952 },
7953 #endif
7954 { } /* terminate */
7955 };
7956
7957 struct cgroup_subsys cpu_cgrp_subsys = {
7958 .css_alloc = cpu_cgroup_css_alloc,
7959 .css_online = cpu_cgroup_css_online,
7960 .css_released = cpu_cgroup_css_released,
7961 .css_free = cpu_cgroup_css_free,
7962 .css_extra_stat_show = cpu_extra_stat_show,
7963 .fork = cpu_cgroup_fork,
7964 .can_attach = cpu_cgroup_can_attach,
7965 .attach = cpu_cgroup_attach,
7966 .legacy_cftypes = cpu_legacy_files,
7967 .dfl_cftypes = cpu_files,
7968 .early_init = true,
7969 .threaded = true,
7970 };
7971
7972 #endif /* CONFIG_CGROUP_SCHED */
7973
7974 void dump_cpu_task(int cpu)
7975 {
7976 pr_info("Task dump for CPU %d:\n", cpu);
7977 sched_show_task(cpu_curr(cpu));
7978 }
7979
7980 /*
7981 * Nice levels are multiplicative, with a gentle 10% change for every
7982 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7983 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7984 * that remained on nice 0.
7985 *
7986 * The "10% effect" is relative and cumulative: from _any_ nice level,
7987 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7988 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7989 * If a task goes up by ~10% and another task goes down by ~10% then
7990 * the relative distance between them is ~25%.)
7991 */
7992 const int sched_prio_to_weight[40] = {
7993 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7994 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7995 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7996 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7997 /* 0 */ 1024, 820, 655, 526, 423,
7998 /* 5 */ 335, 272, 215, 172, 137,
7999 /* 10 */ 110, 87, 70, 56, 45,
8000 /* 15 */ 36, 29, 23, 18, 15,
8001 };
8002
8003 /*
8004 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8005 *
8006 * In cases where the weight does not change often, we can use the
8007 * precalculated inverse to speed up arithmetics by turning divisions
8008 * into multiplications:
8009 */
8010 const u32 sched_prio_to_wmult[40] = {
8011 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8012 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8013 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8014 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8015 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8016 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8017 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8018 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8019 };
8020
8021 #undef CREATE_TRACE_POINTS