]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/sched/core.c
sched: Fix smp_call_function_single_async() usage for ILB
[thirdparty/linux.git] / kernel / sched / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #include "sched.h"
10
11 #include <linux/nospec.h>
12
13 #include <linux/kcov.h>
14
15 #include <asm/switch_to.h>
16 #include <asm/tlb.h>
17
18 #include "../workqueue_internal.h"
19 #include "../../fs/io-wq.h"
20 #include "../smpboot.h"
21
22 #include "pelt.h"
23
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/sched.h>
26
27 /*
28 * Export tracepoints that act as a bare tracehook (ie: have no trace event
29 * associated with them) to allow external modules to probe them.
30 */
31 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
32 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
37
38 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
39
40 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
41 /*
42 * Debugging: various feature bits
43 *
44 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
45 * sysctl_sched_features, defined in sched.h, to allow constants propagation
46 * at compile time and compiler optimization based on features default.
47 */
48 #define SCHED_FEAT(name, enabled) \
49 (1UL << __SCHED_FEAT_##name) * enabled |
50 const_debug unsigned int sysctl_sched_features =
51 #include "features.h"
52 0;
53 #undef SCHED_FEAT
54 #endif
55
56 /*
57 * Number of tasks to iterate in a single balance run.
58 * Limited because this is done with IRQs disabled.
59 */
60 const_debug unsigned int sysctl_sched_nr_migrate = 32;
61
62 /*
63 * period over which we measure -rt task CPU usage in us.
64 * default: 1s
65 */
66 unsigned int sysctl_sched_rt_period = 1000000;
67
68 __read_mostly int scheduler_running;
69
70 /*
71 * part of the period that we allow rt tasks to run in us.
72 * default: 0.95s
73 */
74 int sysctl_sched_rt_runtime = 950000;
75
76 /*
77 * __task_rq_lock - lock the rq @p resides on.
78 */
79 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
80 __acquires(rq->lock)
81 {
82 struct rq *rq;
83
84 lockdep_assert_held(&p->pi_lock);
85
86 for (;;) {
87 rq = task_rq(p);
88 raw_spin_lock(&rq->lock);
89 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
90 rq_pin_lock(rq, rf);
91 return rq;
92 }
93 raw_spin_unlock(&rq->lock);
94
95 while (unlikely(task_on_rq_migrating(p)))
96 cpu_relax();
97 }
98 }
99
100 /*
101 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
102 */
103 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
104 __acquires(p->pi_lock)
105 __acquires(rq->lock)
106 {
107 struct rq *rq;
108
109 for (;;) {
110 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
111 rq = task_rq(p);
112 raw_spin_lock(&rq->lock);
113 /*
114 * move_queued_task() task_rq_lock()
115 *
116 * ACQUIRE (rq->lock)
117 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
118 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
119 * [S] ->cpu = new_cpu [L] task_rq()
120 * [L] ->on_rq
121 * RELEASE (rq->lock)
122 *
123 * If we observe the old CPU in task_rq_lock(), the acquire of
124 * the old rq->lock will fully serialize against the stores.
125 *
126 * If we observe the new CPU in task_rq_lock(), the address
127 * dependency headed by '[L] rq = task_rq()' and the acquire
128 * will pair with the WMB to ensure we then also see migrating.
129 */
130 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
131 rq_pin_lock(rq, rf);
132 return rq;
133 }
134 raw_spin_unlock(&rq->lock);
135 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
136
137 while (unlikely(task_on_rq_migrating(p)))
138 cpu_relax();
139 }
140 }
141
142 /*
143 * RQ-clock updating methods:
144 */
145
146 static void update_rq_clock_task(struct rq *rq, s64 delta)
147 {
148 /*
149 * In theory, the compile should just see 0 here, and optimize out the call
150 * to sched_rt_avg_update. But I don't trust it...
151 */
152 s64 __maybe_unused steal = 0, irq_delta = 0;
153
154 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
155 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
156
157 /*
158 * Since irq_time is only updated on {soft,}irq_exit, we might run into
159 * this case when a previous update_rq_clock() happened inside a
160 * {soft,}irq region.
161 *
162 * When this happens, we stop ->clock_task and only update the
163 * prev_irq_time stamp to account for the part that fit, so that a next
164 * update will consume the rest. This ensures ->clock_task is
165 * monotonic.
166 *
167 * It does however cause some slight miss-attribution of {soft,}irq
168 * time, a more accurate solution would be to update the irq_time using
169 * the current rq->clock timestamp, except that would require using
170 * atomic ops.
171 */
172 if (irq_delta > delta)
173 irq_delta = delta;
174
175 rq->prev_irq_time += irq_delta;
176 delta -= irq_delta;
177 #endif
178 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
179 if (static_key_false((&paravirt_steal_rq_enabled))) {
180 steal = paravirt_steal_clock(cpu_of(rq));
181 steal -= rq->prev_steal_time_rq;
182
183 if (unlikely(steal > delta))
184 steal = delta;
185
186 rq->prev_steal_time_rq += steal;
187 delta -= steal;
188 }
189 #endif
190
191 rq->clock_task += delta;
192
193 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
194 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
195 update_irq_load_avg(rq, irq_delta + steal);
196 #endif
197 update_rq_clock_pelt(rq, delta);
198 }
199
200 void update_rq_clock(struct rq *rq)
201 {
202 s64 delta;
203
204 lockdep_assert_held(&rq->lock);
205
206 if (rq->clock_update_flags & RQCF_ACT_SKIP)
207 return;
208
209 #ifdef CONFIG_SCHED_DEBUG
210 if (sched_feat(WARN_DOUBLE_CLOCK))
211 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
212 rq->clock_update_flags |= RQCF_UPDATED;
213 #endif
214
215 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
216 if (delta < 0)
217 return;
218 rq->clock += delta;
219 update_rq_clock_task(rq, delta);
220 }
221
222 static inline void
223 rq_csd_init(struct rq *rq, call_single_data_t *csd, smp_call_func_t func)
224 {
225 csd->flags = 0;
226 csd->func = func;
227 csd->info = rq;
228 }
229
230 #ifdef CONFIG_SCHED_HRTICK
231 /*
232 * Use HR-timers to deliver accurate preemption points.
233 */
234
235 static void hrtick_clear(struct rq *rq)
236 {
237 if (hrtimer_active(&rq->hrtick_timer))
238 hrtimer_cancel(&rq->hrtick_timer);
239 }
240
241 /*
242 * High-resolution timer tick.
243 * Runs from hardirq context with interrupts disabled.
244 */
245 static enum hrtimer_restart hrtick(struct hrtimer *timer)
246 {
247 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
248 struct rq_flags rf;
249
250 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
251
252 rq_lock(rq, &rf);
253 update_rq_clock(rq);
254 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
255 rq_unlock(rq, &rf);
256
257 return HRTIMER_NORESTART;
258 }
259
260 #ifdef CONFIG_SMP
261
262 static void __hrtick_restart(struct rq *rq)
263 {
264 struct hrtimer *timer = &rq->hrtick_timer;
265
266 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
267 }
268
269 /*
270 * called from hardirq (IPI) context
271 */
272 static void __hrtick_start(void *arg)
273 {
274 struct rq *rq = arg;
275 struct rq_flags rf;
276
277 rq_lock(rq, &rf);
278 __hrtick_restart(rq);
279 rq_unlock(rq, &rf);
280 }
281
282 /*
283 * Called to set the hrtick timer state.
284 *
285 * called with rq->lock held and irqs disabled
286 */
287 void hrtick_start(struct rq *rq, u64 delay)
288 {
289 struct hrtimer *timer = &rq->hrtick_timer;
290 ktime_t time;
291 s64 delta;
292
293 /*
294 * Don't schedule slices shorter than 10000ns, that just
295 * doesn't make sense and can cause timer DoS.
296 */
297 delta = max_t(s64, delay, 10000LL);
298 time = ktime_add_ns(timer->base->get_time(), delta);
299
300 hrtimer_set_expires(timer, time);
301
302 if (rq == this_rq())
303 __hrtick_restart(rq);
304 else
305 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
306 }
307
308 #else
309 /*
310 * Called to set the hrtick timer state.
311 *
312 * called with rq->lock held and irqs disabled
313 */
314 void hrtick_start(struct rq *rq, u64 delay)
315 {
316 /*
317 * Don't schedule slices shorter than 10000ns, that just
318 * doesn't make sense. Rely on vruntime for fairness.
319 */
320 delay = max_t(u64, delay, 10000LL);
321 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
322 HRTIMER_MODE_REL_PINNED_HARD);
323 }
324
325 #endif /* CONFIG_SMP */
326
327 static void hrtick_rq_init(struct rq *rq)
328 {
329 #ifdef CONFIG_SMP
330 rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start);
331 #endif
332 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
333 rq->hrtick_timer.function = hrtick;
334 }
335 #else /* CONFIG_SCHED_HRTICK */
336 static inline void hrtick_clear(struct rq *rq)
337 {
338 }
339
340 static inline void hrtick_rq_init(struct rq *rq)
341 {
342 }
343 #endif /* CONFIG_SCHED_HRTICK */
344
345 /*
346 * cmpxchg based fetch_or, macro so it works for different integer types
347 */
348 #define fetch_or(ptr, mask) \
349 ({ \
350 typeof(ptr) _ptr = (ptr); \
351 typeof(mask) _mask = (mask); \
352 typeof(*_ptr) _old, _val = *_ptr; \
353 \
354 for (;;) { \
355 _old = cmpxchg(_ptr, _val, _val | _mask); \
356 if (_old == _val) \
357 break; \
358 _val = _old; \
359 } \
360 _old; \
361 })
362
363 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
364 /*
365 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
366 * this avoids any races wrt polling state changes and thereby avoids
367 * spurious IPIs.
368 */
369 static bool set_nr_and_not_polling(struct task_struct *p)
370 {
371 struct thread_info *ti = task_thread_info(p);
372 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
373 }
374
375 /*
376 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
377 *
378 * If this returns true, then the idle task promises to call
379 * sched_ttwu_pending() and reschedule soon.
380 */
381 static bool set_nr_if_polling(struct task_struct *p)
382 {
383 struct thread_info *ti = task_thread_info(p);
384 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
385
386 for (;;) {
387 if (!(val & _TIF_POLLING_NRFLAG))
388 return false;
389 if (val & _TIF_NEED_RESCHED)
390 return true;
391 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
392 if (old == val)
393 break;
394 val = old;
395 }
396 return true;
397 }
398
399 #else
400 static bool set_nr_and_not_polling(struct task_struct *p)
401 {
402 set_tsk_need_resched(p);
403 return true;
404 }
405
406 #ifdef CONFIG_SMP
407 static bool set_nr_if_polling(struct task_struct *p)
408 {
409 return false;
410 }
411 #endif
412 #endif
413
414 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
415 {
416 struct wake_q_node *node = &task->wake_q;
417
418 /*
419 * Atomically grab the task, if ->wake_q is !nil already it means
420 * its already queued (either by us or someone else) and will get the
421 * wakeup due to that.
422 *
423 * In order to ensure that a pending wakeup will observe our pending
424 * state, even in the failed case, an explicit smp_mb() must be used.
425 */
426 smp_mb__before_atomic();
427 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
428 return false;
429
430 /*
431 * The head is context local, there can be no concurrency.
432 */
433 *head->lastp = node;
434 head->lastp = &node->next;
435 return true;
436 }
437
438 /**
439 * wake_q_add() - queue a wakeup for 'later' waking.
440 * @head: the wake_q_head to add @task to
441 * @task: the task to queue for 'later' wakeup
442 *
443 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
444 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
445 * instantly.
446 *
447 * This function must be used as-if it were wake_up_process(); IOW the task
448 * must be ready to be woken at this location.
449 */
450 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
451 {
452 if (__wake_q_add(head, task))
453 get_task_struct(task);
454 }
455
456 /**
457 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
458 * @head: the wake_q_head to add @task to
459 * @task: the task to queue for 'later' wakeup
460 *
461 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
462 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
463 * instantly.
464 *
465 * This function must be used as-if it were wake_up_process(); IOW the task
466 * must be ready to be woken at this location.
467 *
468 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
469 * that already hold reference to @task can call the 'safe' version and trust
470 * wake_q to do the right thing depending whether or not the @task is already
471 * queued for wakeup.
472 */
473 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
474 {
475 if (!__wake_q_add(head, task))
476 put_task_struct(task);
477 }
478
479 void wake_up_q(struct wake_q_head *head)
480 {
481 struct wake_q_node *node = head->first;
482
483 while (node != WAKE_Q_TAIL) {
484 struct task_struct *task;
485
486 task = container_of(node, struct task_struct, wake_q);
487 BUG_ON(!task);
488 /* Task can safely be re-inserted now: */
489 node = node->next;
490 task->wake_q.next = NULL;
491
492 /*
493 * wake_up_process() executes a full barrier, which pairs with
494 * the queueing in wake_q_add() so as not to miss wakeups.
495 */
496 wake_up_process(task);
497 put_task_struct(task);
498 }
499 }
500
501 /*
502 * resched_curr - mark rq's current task 'to be rescheduled now'.
503 *
504 * On UP this means the setting of the need_resched flag, on SMP it
505 * might also involve a cross-CPU call to trigger the scheduler on
506 * the target CPU.
507 */
508 void resched_curr(struct rq *rq)
509 {
510 struct task_struct *curr = rq->curr;
511 int cpu;
512
513 lockdep_assert_held(&rq->lock);
514
515 if (test_tsk_need_resched(curr))
516 return;
517
518 cpu = cpu_of(rq);
519
520 if (cpu == smp_processor_id()) {
521 set_tsk_need_resched(curr);
522 set_preempt_need_resched();
523 return;
524 }
525
526 if (set_nr_and_not_polling(curr))
527 smp_send_reschedule(cpu);
528 else
529 trace_sched_wake_idle_without_ipi(cpu);
530 }
531
532 void resched_cpu(int cpu)
533 {
534 struct rq *rq = cpu_rq(cpu);
535 unsigned long flags;
536
537 raw_spin_lock_irqsave(&rq->lock, flags);
538 if (cpu_online(cpu) || cpu == smp_processor_id())
539 resched_curr(rq);
540 raw_spin_unlock_irqrestore(&rq->lock, flags);
541 }
542
543 #ifdef CONFIG_SMP
544 #ifdef CONFIG_NO_HZ_COMMON
545 /*
546 * In the semi idle case, use the nearest busy CPU for migrating timers
547 * from an idle CPU. This is good for power-savings.
548 *
549 * We don't do similar optimization for completely idle system, as
550 * selecting an idle CPU will add more delays to the timers than intended
551 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
552 */
553 int get_nohz_timer_target(void)
554 {
555 int i, cpu = smp_processor_id(), default_cpu = -1;
556 struct sched_domain *sd;
557
558 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
559 if (!idle_cpu(cpu))
560 return cpu;
561 default_cpu = cpu;
562 }
563
564 rcu_read_lock();
565 for_each_domain(cpu, sd) {
566 for_each_cpu_and(i, sched_domain_span(sd),
567 housekeeping_cpumask(HK_FLAG_TIMER)) {
568 if (cpu == i)
569 continue;
570
571 if (!idle_cpu(i)) {
572 cpu = i;
573 goto unlock;
574 }
575 }
576 }
577
578 if (default_cpu == -1)
579 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
580 cpu = default_cpu;
581 unlock:
582 rcu_read_unlock();
583 return cpu;
584 }
585
586 /*
587 * When add_timer_on() enqueues a timer into the timer wheel of an
588 * idle CPU then this timer might expire before the next timer event
589 * which is scheduled to wake up that CPU. In case of a completely
590 * idle system the next event might even be infinite time into the
591 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
592 * leaves the inner idle loop so the newly added timer is taken into
593 * account when the CPU goes back to idle and evaluates the timer
594 * wheel for the next timer event.
595 */
596 static void wake_up_idle_cpu(int cpu)
597 {
598 struct rq *rq = cpu_rq(cpu);
599
600 if (cpu == smp_processor_id())
601 return;
602
603 if (set_nr_and_not_polling(rq->idle))
604 smp_send_reschedule(cpu);
605 else
606 trace_sched_wake_idle_without_ipi(cpu);
607 }
608
609 static bool wake_up_full_nohz_cpu(int cpu)
610 {
611 /*
612 * We just need the target to call irq_exit() and re-evaluate
613 * the next tick. The nohz full kick at least implies that.
614 * If needed we can still optimize that later with an
615 * empty IRQ.
616 */
617 if (cpu_is_offline(cpu))
618 return true; /* Don't try to wake offline CPUs. */
619 if (tick_nohz_full_cpu(cpu)) {
620 if (cpu != smp_processor_id() ||
621 tick_nohz_tick_stopped())
622 tick_nohz_full_kick_cpu(cpu);
623 return true;
624 }
625
626 return false;
627 }
628
629 /*
630 * Wake up the specified CPU. If the CPU is going offline, it is the
631 * caller's responsibility to deal with the lost wakeup, for example,
632 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
633 */
634 void wake_up_nohz_cpu(int cpu)
635 {
636 if (!wake_up_full_nohz_cpu(cpu))
637 wake_up_idle_cpu(cpu);
638 }
639
640 static void nohz_csd_func(void *info)
641 {
642 struct rq *rq = info;
643 int cpu = cpu_of(rq);
644 unsigned int flags;
645
646 /*
647 * Release the rq::nohz_csd.
648 */
649 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
650 WARN_ON(!(flags & NOHZ_KICK_MASK));
651
652 rq->idle_balance = idle_cpu(cpu);
653 if (rq->idle_balance && !need_resched()) {
654 rq->nohz_idle_balance = flags;
655 raise_softirq_irqoff(SCHED_SOFTIRQ);
656 }
657 }
658
659 #endif /* CONFIG_NO_HZ_COMMON */
660
661 #ifdef CONFIG_NO_HZ_FULL
662 bool sched_can_stop_tick(struct rq *rq)
663 {
664 int fifo_nr_running;
665
666 /* Deadline tasks, even if single, need the tick */
667 if (rq->dl.dl_nr_running)
668 return false;
669
670 /*
671 * If there are more than one RR tasks, we need the tick to effect the
672 * actual RR behaviour.
673 */
674 if (rq->rt.rr_nr_running) {
675 if (rq->rt.rr_nr_running == 1)
676 return true;
677 else
678 return false;
679 }
680
681 /*
682 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
683 * forced preemption between FIFO tasks.
684 */
685 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
686 if (fifo_nr_running)
687 return true;
688
689 /*
690 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
691 * if there's more than one we need the tick for involuntary
692 * preemption.
693 */
694 if (rq->nr_running > 1)
695 return false;
696
697 return true;
698 }
699 #endif /* CONFIG_NO_HZ_FULL */
700 #endif /* CONFIG_SMP */
701
702 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
704 /*
705 * Iterate task_group tree rooted at *from, calling @down when first entering a
706 * node and @up when leaving it for the final time.
707 *
708 * Caller must hold rcu_lock or sufficient equivalent.
709 */
710 int walk_tg_tree_from(struct task_group *from,
711 tg_visitor down, tg_visitor up, void *data)
712 {
713 struct task_group *parent, *child;
714 int ret;
715
716 parent = from;
717
718 down:
719 ret = (*down)(parent, data);
720 if (ret)
721 goto out;
722 list_for_each_entry_rcu(child, &parent->children, siblings) {
723 parent = child;
724 goto down;
725
726 up:
727 continue;
728 }
729 ret = (*up)(parent, data);
730 if (ret || parent == from)
731 goto out;
732
733 child = parent;
734 parent = parent->parent;
735 if (parent)
736 goto up;
737 out:
738 return ret;
739 }
740
741 int tg_nop(struct task_group *tg, void *data)
742 {
743 return 0;
744 }
745 #endif
746
747 static void set_load_weight(struct task_struct *p, bool update_load)
748 {
749 int prio = p->static_prio - MAX_RT_PRIO;
750 struct load_weight *load = &p->se.load;
751
752 /*
753 * SCHED_IDLE tasks get minimal weight:
754 */
755 if (task_has_idle_policy(p)) {
756 load->weight = scale_load(WEIGHT_IDLEPRIO);
757 load->inv_weight = WMULT_IDLEPRIO;
758 return;
759 }
760
761 /*
762 * SCHED_OTHER tasks have to update their load when changing their
763 * weight
764 */
765 if (update_load && p->sched_class == &fair_sched_class) {
766 reweight_task(p, prio);
767 } else {
768 load->weight = scale_load(sched_prio_to_weight[prio]);
769 load->inv_weight = sched_prio_to_wmult[prio];
770 }
771 }
772
773 #ifdef CONFIG_UCLAMP_TASK
774 /*
775 * Serializes updates of utilization clamp values
776 *
777 * The (slow-path) user-space triggers utilization clamp value updates which
778 * can require updates on (fast-path) scheduler's data structures used to
779 * support enqueue/dequeue operations.
780 * While the per-CPU rq lock protects fast-path update operations, user-space
781 * requests are serialized using a mutex to reduce the risk of conflicting
782 * updates or API abuses.
783 */
784 static DEFINE_MUTEX(uclamp_mutex);
785
786 /* Max allowed minimum utilization */
787 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
788
789 /* Max allowed maximum utilization */
790 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
791
792 /* All clamps are required to be less or equal than these values */
793 static struct uclamp_se uclamp_default[UCLAMP_CNT];
794
795 /* Integer rounded range for each bucket */
796 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
797
798 #define for_each_clamp_id(clamp_id) \
799 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
800
801 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
802 {
803 return clamp_value / UCLAMP_BUCKET_DELTA;
804 }
805
806 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
807 {
808 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
809 }
810
811 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
812 {
813 if (clamp_id == UCLAMP_MIN)
814 return 0;
815 return SCHED_CAPACITY_SCALE;
816 }
817
818 static inline void uclamp_se_set(struct uclamp_se *uc_se,
819 unsigned int value, bool user_defined)
820 {
821 uc_se->value = value;
822 uc_se->bucket_id = uclamp_bucket_id(value);
823 uc_se->user_defined = user_defined;
824 }
825
826 static inline unsigned int
827 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
828 unsigned int clamp_value)
829 {
830 /*
831 * Avoid blocked utilization pushing up the frequency when we go
832 * idle (which drops the max-clamp) by retaining the last known
833 * max-clamp.
834 */
835 if (clamp_id == UCLAMP_MAX) {
836 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
837 return clamp_value;
838 }
839
840 return uclamp_none(UCLAMP_MIN);
841 }
842
843 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
844 unsigned int clamp_value)
845 {
846 /* Reset max-clamp retention only on idle exit */
847 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
848 return;
849
850 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
851 }
852
853 static inline
854 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
855 unsigned int clamp_value)
856 {
857 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
858 int bucket_id = UCLAMP_BUCKETS - 1;
859
860 /*
861 * Since both min and max clamps are max aggregated, find the
862 * top most bucket with tasks in.
863 */
864 for ( ; bucket_id >= 0; bucket_id--) {
865 if (!bucket[bucket_id].tasks)
866 continue;
867 return bucket[bucket_id].value;
868 }
869
870 /* No tasks -- default clamp values */
871 return uclamp_idle_value(rq, clamp_id, clamp_value);
872 }
873
874 static inline struct uclamp_se
875 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
876 {
877 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
878 #ifdef CONFIG_UCLAMP_TASK_GROUP
879 struct uclamp_se uc_max;
880
881 /*
882 * Tasks in autogroups or root task group will be
883 * restricted by system defaults.
884 */
885 if (task_group_is_autogroup(task_group(p)))
886 return uc_req;
887 if (task_group(p) == &root_task_group)
888 return uc_req;
889
890 uc_max = task_group(p)->uclamp[clamp_id];
891 if (uc_req.value > uc_max.value || !uc_req.user_defined)
892 return uc_max;
893 #endif
894
895 return uc_req;
896 }
897
898 /*
899 * The effective clamp bucket index of a task depends on, by increasing
900 * priority:
901 * - the task specific clamp value, when explicitly requested from userspace
902 * - the task group effective clamp value, for tasks not either in the root
903 * group or in an autogroup
904 * - the system default clamp value, defined by the sysadmin
905 */
906 static inline struct uclamp_se
907 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
908 {
909 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
910 struct uclamp_se uc_max = uclamp_default[clamp_id];
911
912 /* System default restrictions always apply */
913 if (unlikely(uc_req.value > uc_max.value))
914 return uc_max;
915
916 return uc_req;
917 }
918
919 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
920 {
921 struct uclamp_se uc_eff;
922
923 /* Task currently refcounted: use back-annotated (effective) value */
924 if (p->uclamp[clamp_id].active)
925 return (unsigned long)p->uclamp[clamp_id].value;
926
927 uc_eff = uclamp_eff_get(p, clamp_id);
928
929 return (unsigned long)uc_eff.value;
930 }
931
932 /*
933 * When a task is enqueued on a rq, the clamp bucket currently defined by the
934 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
935 * updates the rq's clamp value if required.
936 *
937 * Tasks can have a task-specific value requested from user-space, track
938 * within each bucket the maximum value for tasks refcounted in it.
939 * This "local max aggregation" allows to track the exact "requested" value
940 * for each bucket when all its RUNNABLE tasks require the same clamp.
941 */
942 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
943 enum uclamp_id clamp_id)
944 {
945 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
946 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
947 struct uclamp_bucket *bucket;
948
949 lockdep_assert_held(&rq->lock);
950
951 /* Update task effective clamp */
952 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
953
954 bucket = &uc_rq->bucket[uc_se->bucket_id];
955 bucket->tasks++;
956 uc_se->active = true;
957
958 uclamp_idle_reset(rq, clamp_id, uc_se->value);
959
960 /*
961 * Local max aggregation: rq buckets always track the max
962 * "requested" clamp value of its RUNNABLE tasks.
963 */
964 if (bucket->tasks == 1 || uc_se->value > bucket->value)
965 bucket->value = uc_se->value;
966
967 if (uc_se->value > READ_ONCE(uc_rq->value))
968 WRITE_ONCE(uc_rq->value, uc_se->value);
969 }
970
971 /*
972 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
973 * is released. If this is the last task reference counting the rq's max
974 * active clamp value, then the rq's clamp value is updated.
975 *
976 * Both refcounted tasks and rq's cached clamp values are expected to be
977 * always valid. If it's detected they are not, as defensive programming,
978 * enforce the expected state and warn.
979 */
980 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
981 enum uclamp_id clamp_id)
982 {
983 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
984 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
985 struct uclamp_bucket *bucket;
986 unsigned int bkt_clamp;
987 unsigned int rq_clamp;
988
989 lockdep_assert_held(&rq->lock);
990
991 bucket = &uc_rq->bucket[uc_se->bucket_id];
992 SCHED_WARN_ON(!bucket->tasks);
993 if (likely(bucket->tasks))
994 bucket->tasks--;
995 uc_se->active = false;
996
997 /*
998 * Keep "local max aggregation" simple and accept to (possibly)
999 * overboost some RUNNABLE tasks in the same bucket.
1000 * The rq clamp bucket value is reset to its base value whenever
1001 * there are no more RUNNABLE tasks refcounting it.
1002 */
1003 if (likely(bucket->tasks))
1004 return;
1005
1006 rq_clamp = READ_ONCE(uc_rq->value);
1007 /*
1008 * Defensive programming: this should never happen. If it happens,
1009 * e.g. due to future modification, warn and fixup the expected value.
1010 */
1011 SCHED_WARN_ON(bucket->value > rq_clamp);
1012 if (bucket->value >= rq_clamp) {
1013 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1014 WRITE_ONCE(uc_rq->value, bkt_clamp);
1015 }
1016 }
1017
1018 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1019 {
1020 enum uclamp_id clamp_id;
1021
1022 if (unlikely(!p->sched_class->uclamp_enabled))
1023 return;
1024
1025 for_each_clamp_id(clamp_id)
1026 uclamp_rq_inc_id(rq, p, clamp_id);
1027
1028 /* Reset clamp idle holding when there is one RUNNABLE task */
1029 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1030 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1031 }
1032
1033 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1034 {
1035 enum uclamp_id clamp_id;
1036
1037 if (unlikely(!p->sched_class->uclamp_enabled))
1038 return;
1039
1040 for_each_clamp_id(clamp_id)
1041 uclamp_rq_dec_id(rq, p, clamp_id);
1042 }
1043
1044 static inline void
1045 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1046 {
1047 struct rq_flags rf;
1048 struct rq *rq;
1049
1050 /*
1051 * Lock the task and the rq where the task is (or was) queued.
1052 *
1053 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1054 * price to pay to safely serialize util_{min,max} updates with
1055 * enqueues, dequeues and migration operations.
1056 * This is the same locking schema used by __set_cpus_allowed_ptr().
1057 */
1058 rq = task_rq_lock(p, &rf);
1059
1060 /*
1061 * Setting the clamp bucket is serialized by task_rq_lock().
1062 * If the task is not yet RUNNABLE and its task_struct is not
1063 * affecting a valid clamp bucket, the next time it's enqueued,
1064 * it will already see the updated clamp bucket value.
1065 */
1066 if (p->uclamp[clamp_id].active) {
1067 uclamp_rq_dec_id(rq, p, clamp_id);
1068 uclamp_rq_inc_id(rq, p, clamp_id);
1069 }
1070
1071 task_rq_unlock(rq, p, &rf);
1072 }
1073
1074 #ifdef CONFIG_UCLAMP_TASK_GROUP
1075 static inline void
1076 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1077 unsigned int clamps)
1078 {
1079 enum uclamp_id clamp_id;
1080 struct css_task_iter it;
1081 struct task_struct *p;
1082
1083 css_task_iter_start(css, 0, &it);
1084 while ((p = css_task_iter_next(&it))) {
1085 for_each_clamp_id(clamp_id) {
1086 if ((0x1 << clamp_id) & clamps)
1087 uclamp_update_active(p, clamp_id);
1088 }
1089 }
1090 css_task_iter_end(&it);
1091 }
1092
1093 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1094 static void uclamp_update_root_tg(void)
1095 {
1096 struct task_group *tg = &root_task_group;
1097
1098 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1099 sysctl_sched_uclamp_util_min, false);
1100 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1101 sysctl_sched_uclamp_util_max, false);
1102
1103 rcu_read_lock();
1104 cpu_util_update_eff(&root_task_group.css);
1105 rcu_read_unlock();
1106 }
1107 #else
1108 static void uclamp_update_root_tg(void) { }
1109 #endif
1110
1111 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1112 void __user *buffer, size_t *lenp,
1113 loff_t *ppos)
1114 {
1115 bool update_root_tg = false;
1116 int old_min, old_max;
1117 int result;
1118
1119 mutex_lock(&uclamp_mutex);
1120 old_min = sysctl_sched_uclamp_util_min;
1121 old_max = sysctl_sched_uclamp_util_max;
1122
1123 result = proc_dointvec(table, write, buffer, lenp, ppos);
1124 if (result)
1125 goto undo;
1126 if (!write)
1127 goto done;
1128
1129 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1130 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1131 result = -EINVAL;
1132 goto undo;
1133 }
1134
1135 if (old_min != sysctl_sched_uclamp_util_min) {
1136 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1137 sysctl_sched_uclamp_util_min, false);
1138 update_root_tg = true;
1139 }
1140 if (old_max != sysctl_sched_uclamp_util_max) {
1141 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1142 sysctl_sched_uclamp_util_max, false);
1143 update_root_tg = true;
1144 }
1145
1146 if (update_root_tg)
1147 uclamp_update_root_tg();
1148
1149 /*
1150 * We update all RUNNABLE tasks only when task groups are in use.
1151 * Otherwise, keep it simple and do just a lazy update at each next
1152 * task enqueue time.
1153 */
1154
1155 goto done;
1156
1157 undo:
1158 sysctl_sched_uclamp_util_min = old_min;
1159 sysctl_sched_uclamp_util_max = old_max;
1160 done:
1161 mutex_unlock(&uclamp_mutex);
1162
1163 return result;
1164 }
1165
1166 static int uclamp_validate(struct task_struct *p,
1167 const struct sched_attr *attr)
1168 {
1169 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1170 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1171
1172 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1173 lower_bound = attr->sched_util_min;
1174 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1175 upper_bound = attr->sched_util_max;
1176
1177 if (lower_bound > upper_bound)
1178 return -EINVAL;
1179 if (upper_bound > SCHED_CAPACITY_SCALE)
1180 return -EINVAL;
1181
1182 return 0;
1183 }
1184
1185 static void __setscheduler_uclamp(struct task_struct *p,
1186 const struct sched_attr *attr)
1187 {
1188 enum uclamp_id clamp_id;
1189
1190 /*
1191 * On scheduling class change, reset to default clamps for tasks
1192 * without a task-specific value.
1193 */
1194 for_each_clamp_id(clamp_id) {
1195 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1196 unsigned int clamp_value = uclamp_none(clamp_id);
1197
1198 /* Keep using defined clamps across class changes */
1199 if (uc_se->user_defined)
1200 continue;
1201
1202 /* By default, RT tasks always get 100% boost */
1203 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1204 clamp_value = uclamp_none(UCLAMP_MAX);
1205
1206 uclamp_se_set(uc_se, clamp_value, false);
1207 }
1208
1209 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1210 return;
1211
1212 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1213 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1214 attr->sched_util_min, true);
1215 }
1216
1217 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1218 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1219 attr->sched_util_max, true);
1220 }
1221 }
1222
1223 static void uclamp_fork(struct task_struct *p)
1224 {
1225 enum uclamp_id clamp_id;
1226
1227 for_each_clamp_id(clamp_id)
1228 p->uclamp[clamp_id].active = false;
1229
1230 if (likely(!p->sched_reset_on_fork))
1231 return;
1232
1233 for_each_clamp_id(clamp_id) {
1234 uclamp_se_set(&p->uclamp_req[clamp_id],
1235 uclamp_none(clamp_id), false);
1236 }
1237 }
1238
1239 static void __init init_uclamp(void)
1240 {
1241 struct uclamp_se uc_max = {};
1242 enum uclamp_id clamp_id;
1243 int cpu;
1244
1245 mutex_init(&uclamp_mutex);
1246
1247 for_each_possible_cpu(cpu) {
1248 memset(&cpu_rq(cpu)->uclamp, 0,
1249 sizeof(struct uclamp_rq)*UCLAMP_CNT);
1250 cpu_rq(cpu)->uclamp_flags = 0;
1251 }
1252
1253 for_each_clamp_id(clamp_id) {
1254 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1255 uclamp_none(clamp_id), false);
1256 }
1257
1258 /* System defaults allow max clamp values for both indexes */
1259 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1260 for_each_clamp_id(clamp_id) {
1261 uclamp_default[clamp_id] = uc_max;
1262 #ifdef CONFIG_UCLAMP_TASK_GROUP
1263 root_task_group.uclamp_req[clamp_id] = uc_max;
1264 root_task_group.uclamp[clamp_id] = uc_max;
1265 #endif
1266 }
1267 }
1268
1269 #else /* CONFIG_UCLAMP_TASK */
1270 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1271 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1272 static inline int uclamp_validate(struct task_struct *p,
1273 const struct sched_attr *attr)
1274 {
1275 return -EOPNOTSUPP;
1276 }
1277 static void __setscheduler_uclamp(struct task_struct *p,
1278 const struct sched_attr *attr) { }
1279 static inline void uclamp_fork(struct task_struct *p) { }
1280 static inline void init_uclamp(void) { }
1281 #endif /* CONFIG_UCLAMP_TASK */
1282
1283 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1284 {
1285 if (!(flags & ENQUEUE_NOCLOCK))
1286 update_rq_clock(rq);
1287
1288 if (!(flags & ENQUEUE_RESTORE)) {
1289 sched_info_queued(rq, p);
1290 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1291 }
1292
1293 uclamp_rq_inc(rq, p);
1294 p->sched_class->enqueue_task(rq, p, flags);
1295 }
1296
1297 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1298 {
1299 if (!(flags & DEQUEUE_NOCLOCK))
1300 update_rq_clock(rq);
1301
1302 if (!(flags & DEQUEUE_SAVE)) {
1303 sched_info_dequeued(rq, p);
1304 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1305 }
1306
1307 uclamp_rq_dec(rq, p);
1308 p->sched_class->dequeue_task(rq, p, flags);
1309 }
1310
1311 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1312 {
1313 if (task_contributes_to_load(p))
1314 rq->nr_uninterruptible--;
1315
1316 enqueue_task(rq, p, flags);
1317
1318 p->on_rq = TASK_ON_RQ_QUEUED;
1319 }
1320
1321 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1322 {
1323 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1324
1325 if (task_contributes_to_load(p))
1326 rq->nr_uninterruptible++;
1327
1328 dequeue_task(rq, p, flags);
1329 }
1330
1331 /*
1332 * __normal_prio - return the priority that is based on the static prio
1333 */
1334 static inline int __normal_prio(struct task_struct *p)
1335 {
1336 return p->static_prio;
1337 }
1338
1339 /*
1340 * Calculate the expected normal priority: i.e. priority
1341 * without taking RT-inheritance into account. Might be
1342 * boosted by interactivity modifiers. Changes upon fork,
1343 * setprio syscalls, and whenever the interactivity
1344 * estimator recalculates.
1345 */
1346 static inline int normal_prio(struct task_struct *p)
1347 {
1348 int prio;
1349
1350 if (task_has_dl_policy(p))
1351 prio = MAX_DL_PRIO-1;
1352 else if (task_has_rt_policy(p))
1353 prio = MAX_RT_PRIO-1 - p->rt_priority;
1354 else
1355 prio = __normal_prio(p);
1356 return prio;
1357 }
1358
1359 /*
1360 * Calculate the current priority, i.e. the priority
1361 * taken into account by the scheduler. This value might
1362 * be boosted by RT tasks, or might be boosted by
1363 * interactivity modifiers. Will be RT if the task got
1364 * RT-boosted. If not then it returns p->normal_prio.
1365 */
1366 static int effective_prio(struct task_struct *p)
1367 {
1368 p->normal_prio = normal_prio(p);
1369 /*
1370 * If we are RT tasks or we were boosted to RT priority,
1371 * keep the priority unchanged. Otherwise, update priority
1372 * to the normal priority:
1373 */
1374 if (!rt_prio(p->prio))
1375 return p->normal_prio;
1376 return p->prio;
1377 }
1378
1379 /**
1380 * task_curr - is this task currently executing on a CPU?
1381 * @p: the task in question.
1382 *
1383 * Return: 1 if the task is currently executing. 0 otherwise.
1384 */
1385 inline int task_curr(const struct task_struct *p)
1386 {
1387 return cpu_curr(task_cpu(p)) == p;
1388 }
1389
1390 /*
1391 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1392 * use the balance_callback list if you want balancing.
1393 *
1394 * this means any call to check_class_changed() must be followed by a call to
1395 * balance_callback().
1396 */
1397 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1398 const struct sched_class *prev_class,
1399 int oldprio)
1400 {
1401 if (prev_class != p->sched_class) {
1402 if (prev_class->switched_from)
1403 prev_class->switched_from(rq, p);
1404
1405 p->sched_class->switched_to(rq, p);
1406 } else if (oldprio != p->prio || dl_task(p))
1407 p->sched_class->prio_changed(rq, p, oldprio);
1408 }
1409
1410 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1411 {
1412 const struct sched_class *class;
1413
1414 if (p->sched_class == rq->curr->sched_class) {
1415 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1416 } else {
1417 for_each_class(class) {
1418 if (class == rq->curr->sched_class)
1419 break;
1420 if (class == p->sched_class) {
1421 resched_curr(rq);
1422 break;
1423 }
1424 }
1425 }
1426
1427 /*
1428 * A queue event has occurred, and we're going to schedule. In
1429 * this case, we can save a useless back to back clock update.
1430 */
1431 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1432 rq_clock_skip_update(rq);
1433 }
1434
1435 #ifdef CONFIG_SMP
1436
1437 /*
1438 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1439 * __set_cpus_allowed_ptr() and select_fallback_rq().
1440 */
1441 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1442 {
1443 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1444 return false;
1445
1446 if (is_per_cpu_kthread(p))
1447 return cpu_online(cpu);
1448
1449 return cpu_active(cpu);
1450 }
1451
1452 /*
1453 * This is how migration works:
1454 *
1455 * 1) we invoke migration_cpu_stop() on the target CPU using
1456 * stop_one_cpu().
1457 * 2) stopper starts to run (implicitly forcing the migrated thread
1458 * off the CPU)
1459 * 3) it checks whether the migrated task is still in the wrong runqueue.
1460 * 4) if it's in the wrong runqueue then the migration thread removes
1461 * it and puts it into the right queue.
1462 * 5) stopper completes and stop_one_cpu() returns and the migration
1463 * is done.
1464 */
1465
1466 /*
1467 * move_queued_task - move a queued task to new rq.
1468 *
1469 * Returns (locked) new rq. Old rq's lock is released.
1470 */
1471 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1472 struct task_struct *p, int new_cpu)
1473 {
1474 lockdep_assert_held(&rq->lock);
1475
1476 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1477 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1478 set_task_cpu(p, new_cpu);
1479 rq_unlock(rq, rf);
1480
1481 rq = cpu_rq(new_cpu);
1482
1483 rq_lock(rq, rf);
1484 BUG_ON(task_cpu(p) != new_cpu);
1485 enqueue_task(rq, p, 0);
1486 p->on_rq = TASK_ON_RQ_QUEUED;
1487 check_preempt_curr(rq, p, 0);
1488
1489 return rq;
1490 }
1491
1492 struct migration_arg {
1493 struct task_struct *task;
1494 int dest_cpu;
1495 };
1496
1497 /*
1498 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1499 * this because either it can't run here any more (set_cpus_allowed()
1500 * away from this CPU, or CPU going down), or because we're
1501 * attempting to rebalance this task on exec (sched_exec).
1502 *
1503 * So we race with normal scheduler movements, but that's OK, as long
1504 * as the task is no longer on this CPU.
1505 */
1506 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1507 struct task_struct *p, int dest_cpu)
1508 {
1509 /* Affinity changed (again). */
1510 if (!is_cpu_allowed(p, dest_cpu))
1511 return rq;
1512
1513 update_rq_clock(rq);
1514 rq = move_queued_task(rq, rf, p, dest_cpu);
1515
1516 return rq;
1517 }
1518
1519 /*
1520 * migration_cpu_stop - this will be executed by a highprio stopper thread
1521 * and performs thread migration by bumping thread off CPU then
1522 * 'pushing' onto another runqueue.
1523 */
1524 static int migration_cpu_stop(void *data)
1525 {
1526 struct migration_arg *arg = data;
1527 struct task_struct *p = arg->task;
1528 struct rq *rq = this_rq();
1529 struct rq_flags rf;
1530
1531 /*
1532 * The original target CPU might have gone down and we might
1533 * be on another CPU but it doesn't matter.
1534 */
1535 local_irq_disable();
1536 /*
1537 * We need to explicitly wake pending tasks before running
1538 * __migrate_task() such that we will not miss enforcing cpus_ptr
1539 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1540 */
1541 sched_ttwu_pending();
1542
1543 raw_spin_lock(&p->pi_lock);
1544 rq_lock(rq, &rf);
1545 /*
1546 * If task_rq(p) != rq, it cannot be migrated here, because we're
1547 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1548 * we're holding p->pi_lock.
1549 */
1550 if (task_rq(p) == rq) {
1551 if (task_on_rq_queued(p))
1552 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1553 else
1554 p->wake_cpu = arg->dest_cpu;
1555 }
1556 rq_unlock(rq, &rf);
1557 raw_spin_unlock(&p->pi_lock);
1558
1559 local_irq_enable();
1560 return 0;
1561 }
1562
1563 /*
1564 * sched_class::set_cpus_allowed must do the below, but is not required to
1565 * actually call this function.
1566 */
1567 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1568 {
1569 cpumask_copy(&p->cpus_mask, new_mask);
1570 p->nr_cpus_allowed = cpumask_weight(new_mask);
1571 }
1572
1573 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1574 {
1575 struct rq *rq = task_rq(p);
1576 bool queued, running;
1577
1578 lockdep_assert_held(&p->pi_lock);
1579
1580 queued = task_on_rq_queued(p);
1581 running = task_current(rq, p);
1582
1583 if (queued) {
1584 /*
1585 * Because __kthread_bind() calls this on blocked tasks without
1586 * holding rq->lock.
1587 */
1588 lockdep_assert_held(&rq->lock);
1589 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1590 }
1591 if (running)
1592 put_prev_task(rq, p);
1593
1594 p->sched_class->set_cpus_allowed(p, new_mask);
1595
1596 if (queued)
1597 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1598 if (running)
1599 set_next_task(rq, p);
1600 }
1601
1602 /*
1603 * Change a given task's CPU affinity. Migrate the thread to a
1604 * proper CPU and schedule it away if the CPU it's executing on
1605 * is removed from the allowed bitmask.
1606 *
1607 * NOTE: the caller must have a valid reference to the task, the
1608 * task must not exit() & deallocate itself prematurely. The
1609 * call is not atomic; no spinlocks may be held.
1610 */
1611 static int __set_cpus_allowed_ptr(struct task_struct *p,
1612 const struct cpumask *new_mask, bool check)
1613 {
1614 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1615 unsigned int dest_cpu;
1616 struct rq_flags rf;
1617 struct rq *rq;
1618 int ret = 0;
1619
1620 rq = task_rq_lock(p, &rf);
1621 update_rq_clock(rq);
1622
1623 if (p->flags & PF_KTHREAD) {
1624 /*
1625 * Kernel threads are allowed on online && !active CPUs
1626 */
1627 cpu_valid_mask = cpu_online_mask;
1628 }
1629
1630 /*
1631 * Must re-check here, to close a race against __kthread_bind(),
1632 * sched_setaffinity() is not guaranteed to observe the flag.
1633 */
1634 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1635 ret = -EINVAL;
1636 goto out;
1637 }
1638
1639 if (cpumask_equal(p->cpus_ptr, new_mask))
1640 goto out;
1641
1642 /*
1643 * Picking a ~random cpu helps in cases where we are changing affinity
1644 * for groups of tasks (ie. cpuset), so that load balancing is not
1645 * immediately required to distribute the tasks within their new mask.
1646 */
1647 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
1648 if (dest_cpu >= nr_cpu_ids) {
1649 ret = -EINVAL;
1650 goto out;
1651 }
1652
1653 do_set_cpus_allowed(p, new_mask);
1654
1655 if (p->flags & PF_KTHREAD) {
1656 /*
1657 * For kernel threads that do indeed end up on online &&
1658 * !active we want to ensure they are strict per-CPU threads.
1659 */
1660 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1661 !cpumask_intersects(new_mask, cpu_active_mask) &&
1662 p->nr_cpus_allowed != 1);
1663 }
1664
1665 /* Can the task run on the task's current CPU? If so, we're done */
1666 if (cpumask_test_cpu(task_cpu(p), new_mask))
1667 goto out;
1668
1669 if (task_running(rq, p) || p->state == TASK_WAKING) {
1670 struct migration_arg arg = { p, dest_cpu };
1671 /* Need help from migration thread: drop lock and wait. */
1672 task_rq_unlock(rq, p, &rf);
1673 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1674 return 0;
1675 } else if (task_on_rq_queued(p)) {
1676 /*
1677 * OK, since we're going to drop the lock immediately
1678 * afterwards anyway.
1679 */
1680 rq = move_queued_task(rq, &rf, p, dest_cpu);
1681 }
1682 out:
1683 task_rq_unlock(rq, p, &rf);
1684
1685 return ret;
1686 }
1687
1688 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1689 {
1690 return __set_cpus_allowed_ptr(p, new_mask, false);
1691 }
1692 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1693
1694 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1695 {
1696 #ifdef CONFIG_SCHED_DEBUG
1697 /*
1698 * We should never call set_task_cpu() on a blocked task,
1699 * ttwu() will sort out the placement.
1700 */
1701 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1702 !p->on_rq);
1703
1704 /*
1705 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1706 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1707 * time relying on p->on_rq.
1708 */
1709 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1710 p->sched_class == &fair_sched_class &&
1711 (p->on_rq && !task_on_rq_migrating(p)));
1712
1713 #ifdef CONFIG_LOCKDEP
1714 /*
1715 * The caller should hold either p->pi_lock or rq->lock, when changing
1716 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1717 *
1718 * sched_move_task() holds both and thus holding either pins the cgroup,
1719 * see task_group().
1720 *
1721 * Furthermore, all task_rq users should acquire both locks, see
1722 * task_rq_lock().
1723 */
1724 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1725 lockdep_is_held(&task_rq(p)->lock)));
1726 #endif
1727 /*
1728 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1729 */
1730 WARN_ON_ONCE(!cpu_online(new_cpu));
1731 #endif
1732
1733 trace_sched_migrate_task(p, new_cpu);
1734
1735 if (task_cpu(p) != new_cpu) {
1736 if (p->sched_class->migrate_task_rq)
1737 p->sched_class->migrate_task_rq(p, new_cpu);
1738 p->se.nr_migrations++;
1739 rseq_migrate(p);
1740 perf_event_task_migrate(p);
1741 }
1742
1743 __set_task_cpu(p, new_cpu);
1744 }
1745
1746 #ifdef CONFIG_NUMA_BALANCING
1747 static void __migrate_swap_task(struct task_struct *p, int cpu)
1748 {
1749 if (task_on_rq_queued(p)) {
1750 struct rq *src_rq, *dst_rq;
1751 struct rq_flags srf, drf;
1752
1753 src_rq = task_rq(p);
1754 dst_rq = cpu_rq(cpu);
1755
1756 rq_pin_lock(src_rq, &srf);
1757 rq_pin_lock(dst_rq, &drf);
1758
1759 deactivate_task(src_rq, p, 0);
1760 set_task_cpu(p, cpu);
1761 activate_task(dst_rq, p, 0);
1762 check_preempt_curr(dst_rq, p, 0);
1763
1764 rq_unpin_lock(dst_rq, &drf);
1765 rq_unpin_lock(src_rq, &srf);
1766
1767 } else {
1768 /*
1769 * Task isn't running anymore; make it appear like we migrated
1770 * it before it went to sleep. This means on wakeup we make the
1771 * previous CPU our target instead of where it really is.
1772 */
1773 p->wake_cpu = cpu;
1774 }
1775 }
1776
1777 struct migration_swap_arg {
1778 struct task_struct *src_task, *dst_task;
1779 int src_cpu, dst_cpu;
1780 };
1781
1782 static int migrate_swap_stop(void *data)
1783 {
1784 struct migration_swap_arg *arg = data;
1785 struct rq *src_rq, *dst_rq;
1786 int ret = -EAGAIN;
1787
1788 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1789 return -EAGAIN;
1790
1791 src_rq = cpu_rq(arg->src_cpu);
1792 dst_rq = cpu_rq(arg->dst_cpu);
1793
1794 double_raw_lock(&arg->src_task->pi_lock,
1795 &arg->dst_task->pi_lock);
1796 double_rq_lock(src_rq, dst_rq);
1797
1798 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1799 goto unlock;
1800
1801 if (task_cpu(arg->src_task) != arg->src_cpu)
1802 goto unlock;
1803
1804 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1805 goto unlock;
1806
1807 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1808 goto unlock;
1809
1810 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1811 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1812
1813 ret = 0;
1814
1815 unlock:
1816 double_rq_unlock(src_rq, dst_rq);
1817 raw_spin_unlock(&arg->dst_task->pi_lock);
1818 raw_spin_unlock(&arg->src_task->pi_lock);
1819
1820 return ret;
1821 }
1822
1823 /*
1824 * Cross migrate two tasks
1825 */
1826 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1827 int target_cpu, int curr_cpu)
1828 {
1829 struct migration_swap_arg arg;
1830 int ret = -EINVAL;
1831
1832 arg = (struct migration_swap_arg){
1833 .src_task = cur,
1834 .src_cpu = curr_cpu,
1835 .dst_task = p,
1836 .dst_cpu = target_cpu,
1837 };
1838
1839 if (arg.src_cpu == arg.dst_cpu)
1840 goto out;
1841
1842 /*
1843 * These three tests are all lockless; this is OK since all of them
1844 * will be re-checked with proper locks held further down the line.
1845 */
1846 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1847 goto out;
1848
1849 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1850 goto out;
1851
1852 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1853 goto out;
1854
1855 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1856 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1857
1858 out:
1859 return ret;
1860 }
1861 #endif /* CONFIG_NUMA_BALANCING */
1862
1863 /*
1864 * wait_task_inactive - wait for a thread to unschedule.
1865 *
1866 * If @match_state is nonzero, it's the @p->state value just checked and
1867 * not expected to change. If it changes, i.e. @p might have woken up,
1868 * then return zero. When we succeed in waiting for @p to be off its CPU,
1869 * we return a positive number (its total switch count). If a second call
1870 * a short while later returns the same number, the caller can be sure that
1871 * @p has remained unscheduled the whole time.
1872 *
1873 * The caller must ensure that the task *will* unschedule sometime soon,
1874 * else this function might spin for a *long* time. This function can't
1875 * be called with interrupts off, or it may introduce deadlock with
1876 * smp_call_function() if an IPI is sent by the same process we are
1877 * waiting to become inactive.
1878 */
1879 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1880 {
1881 int running, queued;
1882 struct rq_flags rf;
1883 unsigned long ncsw;
1884 struct rq *rq;
1885
1886 for (;;) {
1887 /*
1888 * We do the initial early heuristics without holding
1889 * any task-queue locks at all. We'll only try to get
1890 * the runqueue lock when things look like they will
1891 * work out!
1892 */
1893 rq = task_rq(p);
1894
1895 /*
1896 * If the task is actively running on another CPU
1897 * still, just relax and busy-wait without holding
1898 * any locks.
1899 *
1900 * NOTE! Since we don't hold any locks, it's not
1901 * even sure that "rq" stays as the right runqueue!
1902 * But we don't care, since "task_running()" will
1903 * return false if the runqueue has changed and p
1904 * is actually now running somewhere else!
1905 */
1906 while (task_running(rq, p)) {
1907 if (match_state && unlikely(p->state != match_state))
1908 return 0;
1909 cpu_relax();
1910 }
1911
1912 /*
1913 * Ok, time to look more closely! We need the rq
1914 * lock now, to be *sure*. If we're wrong, we'll
1915 * just go back and repeat.
1916 */
1917 rq = task_rq_lock(p, &rf);
1918 trace_sched_wait_task(p);
1919 running = task_running(rq, p);
1920 queued = task_on_rq_queued(p);
1921 ncsw = 0;
1922 if (!match_state || p->state == match_state)
1923 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1924 task_rq_unlock(rq, p, &rf);
1925
1926 /*
1927 * If it changed from the expected state, bail out now.
1928 */
1929 if (unlikely(!ncsw))
1930 break;
1931
1932 /*
1933 * Was it really running after all now that we
1934 * checked with the proper locks actually held?
1935 *
1936 * Oops. Go back and try again..
1937 */
1938 if (unlikely(running)) {
1939 cpu_relax();
1940 continue;
1941 }
1942
1943 /*
1944 * It's not enough that it's not actively running,
1945 * it must be off the runqueue _entirely_, and not
1946 * preempted!
1947 *
1948 * So if it was still runnable (but just not actively
1949 * running right now), it's preempted, and we should
1950 * yield - it could be a while.
1951 */
1952 if (unlikely(queued)) {
1953 ktime_t to = NSEC_PER_SEC / HZ;
1954
1955 set_current_state(TASK_UNINTERRUPTIBLE);
1956 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1957 continue;
1958 }
1959
1960 /*
1961 * Ahh, all good. It wasn't running, and it wasn't
1962 * runnable, which means that it will never become
1963 * running in the future either. We're all done!
1964 */
1965 break;
1966 }
1967
1968 return ncsw;
1969 }
1970
1971 /***
1972 * kick_process - kick a running thread to enter/exit the kernel
1973 * @p: the to-be-kicked thread
1974 *
1975 * Cause a process which is running on another CPU to enter
1976 * kernel-mode, without any delay. (to get signals handled.)
1977 *
1978 * NOTE: this function doesn't have to take the runqueue lock,
1979 * because all it wants to ensure is that the remote task enters
1980 * the kernel. If the IPI races and the task has been migrated
1981 * to another CPU then no harm is done and the purpose has been
1982 * achieved as well.
1983 */
1984 void kick_process(struct task_struct *p)
1985 {
1986 int cpu;
1987
1988 preempt_disable();
1989 cpu = task_cpu(p);
1990 if ((cpu != smp_processor_id()) && task_curr(p))
1991 smp_send_reschedule(cpu);
1992 preempt_enable();
1993 }
1994 EXPORT_SYMBOL_GPL(kick_process);
1995
1996 /*
1997 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
1998 *
1999 * A few notes on cpu_active vs cpu_online:
2000 *
2001 * - cpu_active must be a subset of cpu_online
2002 *
2003 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2004 * see __set_cpus_allowed_ptr(). At this point the newly online
2005 * CPU isn't yet part of the sched domains, and balancing will not
2006 * see it.
2007 *
2008 * - on CPU-down we clear cpu_active() to mask the sched domains and
2009 * avoid the load balancer to place new tasks on the to be removed
2010 * CPU. Existing tasks will remain running there and will be taken
2011 * off.
2012 *
2013 * This means that fallback selection must not select !active CPUs.
2014 * And can assume that any active CPU must be online. Conversely
2015 * select_task_rq() below may allow selection of !active CPUs in order
2016 * to satisfy the above rules.
2017 */
2018 static int select_fallback_rq(int cpu, struct task_struct *p)
2019 {
2020 int nid = cpu_to_node(cpu);
2021 const struct cpumask *nodemask = NULL;
2022 enum { cpuset, possible, fail } state = cpuset;
2023 int dest_cpu;
2024
2025 /*
2026 * If the node that the CPU is on has been offlined, cpu_to_node()
2027 * will return -1. There is no CPU on the node, and we should
2028 * select the CPU on the other node.
2029 */
2030 if (nid != -1) {
2031 nodemask = cpumask_of_node(nid);
2032
2033 /* Look for allowed, online CPU in same node. */
2034 for_each_cpu(dest_cpu, nodemask) {
2035 if (!cpu_active(dest_cpu))
2036 continue;
2037 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2038 return dest_cpu;
2039 }
2040 }
2041
2042 for (;;) {
2043 /* Any allowed, online CPU? */
2044 for_each_cpu(dest_cpu, p->cpus_ptr) {
2045 if (!is_cpu_allowed(p, dest_cpu))
2046 continue;
2047
2048 goto out;
2049 }
2050
2051 /* No more Mr. Nice Guy. */
2052 switch (state) {
2053 case cpuset:
2054 if (IS_ENABLED(CONFIG_CPUSETS)) {
2055 cpuset_cpus_allowed_fallback(p);
2056 state = possible;
2057 break;
2058 }
2059 /* Fall-through */
2060 case possible:
2061 do_set_cpus_allowed(p, cpu_possible_mask);
2062 state = fail;
2063 break;
2064
2065 case fail:
2066 BUG();
2067 break;
2068 }
2069 }
2070
2071 out:
2072 if (state != cpuset) {
2073 /*
2074 * Don't tell them about moving exiting tasks or
2075 * kernel threads (both mm NULL), since they never
2076 * leave kernel.
2077 */
2078 if (p->mm && printk_ratelimit()) {
2079 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2080 task_pid_nr(p), p->comm, cpu);
2081 }
2082 }
2083
2084 return dest_cpu;
2085 }
2086
2087 /*
2088 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2089 */
2090 static inline
2091 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2092 {
2093 lockdep_assert_held(&p->pi_lock);
2094
2095 if (p->nr_cpus_allowed > 1)
2096 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2097 else
2098 cpu = cpumask_any(p->cpus_ptr);
2099
2100 /*
2101 * In order not to call set_task_cpu() on a blocking task we need
2102 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2103 * CPU.
2104 *
2105 * Since this is common to all placement strategies, this lives here.
2106 *
2107 * [ this allows ->select_task() to simply return task_cpu(p) and
2108 * not worry about this generic constraint ]
2109 */
2110 if (unlikely(!is_cpu_allowed(p, cpu)))
2111 cpu = select_fallback_rq(task_cpu(p), p);
2112
2113 return cpu;
2114 }
2115
2116 void sched_set_stop_task(int cpu, struct task_struct *stop)
2117 {
2118 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2119 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2120
2121 if (stop) {
2122 /*
2123 * Make it appear like a SCHED_FIFO task, its something
2124 * userspace knows about and won't get confused about.
2125 *
2126 * Also, it will make PI more or less work without too
2127 * much confusion -- but then, stop work should not
2128 * rely on PI working anyway.
2129 */
2130 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2131
2132 stop->sched_class = &stop_sched_class;
2133 }
2134
2135 cpu_rq(cpu)->stop = stop;
2136
2137 if (old_stop) {
2138 /*
2139 * Reset it back to a normal scheduling class so that
2140 * it can die in pieces.
2141 */
2142 old_stop->sched_class = &rt_sched_class;
2143 }
2144 }
2145
2146 #else
2147
2148 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2149 const struct cpumask *new_mask, bool check)
2150 {
2151 return set_cpus_allowed_ptr(p, new_mask);
2152 }
2153
2154 #endif /* CONFIG_SMP */
2155
2156 static void
2157 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2158 {
2159 struct rq *rq;
2160
2161 if (!schedstat_enabled())
2162 return;
2163
2164 rq = this_rq();
2165
2166 #ifdef CONFIG_SMP
2167 if (cpu == rq->cpu) {
2168 __schedstat_inc(rq->ttwu_local);
2169 __schedstat_inc(p->se.statistics.nr_wakeups_local);
2170 } else {
2171 struct sched_domain *sd;
2172
2173 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2174 rcu_read_lock();
2175 for_each_domain(rq->cpu, sd) {
2176 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2177 __schedstat_inc(sd->ttwu_wake_remote);
2178 break;
2179 }
2180 }
2181 rcu_read_unlock();
2182 }
2183
2184 if (wake_flags & WF_MIGRATED)
2185 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2186 #endif /* CONFIG_SMP */
2187
2188 __schedstat_inc(rq->ttwu_count);
2189 __schedstat_inc(p->se.statistics.nr_wakeups);
2190
2191 if (wake_flags & WF_SYNC)
2192 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2193 }
2194
2195 /*
2196 * Mark the task runnable and perform wakeup-preemption.
2197 */
2198 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2199 struct rq_flags *rf)
2200 {
2201 check_preempt_curr(rq, p, wake_flags);
2202 p->state = TASK_RUNNING;
2203 trace_sched_wakeup(p);
2204
2205 #ifdef CONFIG_SMP
2206 if (p->sched_class->task_woken) {
2207 /*
2208 * Our task @p is fully woken up and running; so its safe to
2209 * drop the rq->lock, hereafter rq is only used for statistics.
2210 */
2211 rq_unpin_lock(rq, rf);
2212 p->sched_class->task_woken(rq, p);
2213 rq_repin_lock(rq, rf);
2214 }
2215
2216 if (rq->idle_stamp) {
2217 u64 delta = rq_clock(rq) - rq->idle_stamp;
2218 u64 max = 2*rq->max_idle_balance_cost;
2219
2220 update_avg(&rq->avg_idle, delta);
2221
2222 if (rq->avg_idle > max)
2223 rq->avg_idle = max;
2224
2225 rq->idle_stamp = 0;
2226 }
2227 #endif
2228 }
2229
2230 static void
2231 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2232 struct rq_flags *rf)
2233 {
2234 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2235
2236 lockdep_assert_held(&rq->lock);
2237
2238 #ifdef CONFIG_SMP
2239 if (p->sched_contributes_to_load)
2240 rq->nr_uninterruptible--;
2241
2242 if (wake_flags & WF_MIGRATED)
2243 en_flags |= ENQUEUE_MIGRATED;
2244 #endif
2245
2246 activate_task(rq, p, en_flags);
2247 ttwu_do_wakeup(rq, p, wake_flags, rf);
2248 }
2249
2250 /*
2251 * Called in case the task @p isn't fully descheduled from its runqueue,
2252 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2253 * since all we need to do is flip p->state to TASK_RUNNING, since
2254 * the task is still ->on_rq.
2255 */
2256 static int ttwu_remote(struct task_struct *p, int wake_flags)
2257 {
2258 struct rq_flags rf;
2259 struct rq *rq;
2260 int ret = 0;
2261
2262 rq = __task_rq_lock(p, &rf);
2263 if (task_on_rq_queued(p)) {
2264 /* check_preempt_curr() may use rq clock */
2265 update_rq_clock(rq);
2266 ttwu_do_wakeup(rq, p, wake_flags, &rf);
2267 ret = 1;
2268 }
2269 __task_rq_unlock(rq, &rf);
2270
2271 return ret;
2272 }
2273
2274 #ifdef CONFIG_SMP
2275 void sched_ttwu_pending(void)
2276 {
2277 struct rq *rq = this_rq();
2278 struct llist_node *llist = llist_del_all(&rq->wake_list);
2279 struct task_struct *p, *t;
2280 struct rq_flags rf;
2281
2282 if (!llist)
2283 return;
2284
2285 rq_lock_irqsave(rq, &rf);
2286 update_rq_clock(rq);
2287
2288 llist_for_each_entry_safe(p, t, llist, wake_entry)
2289 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2290
2291 rq_unlock_irqrestore(rq, &rf);
2292 }
2293
2294 static void wake_csd_func(void *info)
2295 {
2296 sched_ttwu_pending();
2297 }
2298
2299 /*
2300 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
2301 * necessary. The wakee CPU on receipt of the IPI will queue the task
2302 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
2303 * of the wakeup instead of the waker.
2304 */
2305 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2306 {
2307 struct rq *rq = cpu_rq(cpu);
2308
2309 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2310
2311 if (llist_add(&p->wake_entry, &rq->wake_list)) {
2312 if (!set_nr_if_polling(rq->idle))
2313 smp_call_function_single_async(cpu, &rq->wake_csd);
2314 else
2315 trace_sched_wake_idle_without_ipi(cpu);
2316 }
2317 }
2318
2319 void wake_up_if_idle(int cpu)
2320 {
2321 struct rq *rq = cpu_rq(cpu);
2322 struct rq_flags rf;
2323
2324 rcu_read_lock();
2325
2326 if (!is_idle_task(rcu_dereference(rq->curr)))
2327 goto out;
2328
2329 if (set_nr_if_polling(rq->idle)) {
2330 trace_sched_wake_idle_without_ipi(cpu);
2331 } else {
2332 rq_lock_irqsave(rq, &rf);
2333 if (is_idle_task(rq->curr))
2334 smp_send_reschedule(cpu);
2335 /* Else CPU is not idle, do nothing here: */
2336 rq_unlock_irqrestore(rq, &rf);
2337 }
2338
2339 out:
2340 rcu_read_unlock();
2341 }
2342
2343 bool cpus_share_cache(int this_cpu, int that_cpu)
2344 {
2345 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2346 }
2347
2348 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
2349 {
2350 /*
2351 * If the CPU does not share cache, then queue the task on the
2352 * remote rqs wakelist to avoid accessing remote data.
2353 */
2354 if (!cpus_share_cache(smp_processor_id(), cpu))
2355 return true;
2356
2357 /*
2358 * If the task is descheduling and the only running task on the
2359 * CPU then use the wakelist to offload the task activation to
2360 * the soon-to-be-idle CPU as the current CPU is likely busy.
2361 * nr_running is checked to avoid unnecessary task stacking.
2362 */
2363 if ((wake_flags & WF_ON_RQ) && cpu_rq(cpu)->nr_running <= 1)
2364 return true;
2365
2366 return false;
2367 }
2368
2369 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2370 {
2371 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
2372 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2373 __ttwu_queue_wakelist(p, cpu, wake_flags);
2374 return true;
2375 }
2376
2377 return false;
2378 }
2379 #endif /* CONFIG_SMP */
2380
2381 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2382 {
2383 struct rq *rq = cpu_rq(cpu);
2384 struct rq_flags rf;
2385
2386 #if defined(CONFIG_SMP)
2387 if (ttwu_queue_wakelist(p, cpu, wake_flags))
2388 return;
2389 #endif
2390
2391 rq_lock(rq, &rf);
2392 update_rq_clock(rq);
2393 ttwu_do_activate(rq, p, wake_flags, &rf);
2394 rq_unlock(rq, &rf);
2395 }
2396
2397 /*
2398 * Notes on Program-Order guarantees on SMP systems.
2399 *
2400 * MIGRATION
2401 *
2402 * The basic program-order guarantee on SMP systems is that when a task [t]
2403 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2404 * execution on its new CPU [c1].
2405 *
2406 * For migration (of runnable tasks) this is provided by the following means:
2407 *
2408 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2409 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2410 * rq(c1)->lock (if not at the same time, then in that order).
2411 * C) LOCK of the rq(c1)->lock scheduling in task
2412 *
2413 * Release/acquire chaining guarantees that B happens after A and C after B.
2414 * Note: the CPU doing B need not be c0 or c1
2415 *
2416 * Example:
2417 *
2418 * CPU0 CPU1 CPU2
2419 *
2420 * LOCK rq(0)->lock
2421 * sched-out X
2422 * sched-in Y
2423 * UNLOCK rq(0)->lock
2424 *
2425 * LOCK rq(0)->lock // orders against CPU0
2426 * dequeue X
2427 * UNLOCK rq(0)->lock
2428 *
2429 * LOCK rq(1)->lock
2430 * enqueue X
2431 * UNLOCK rq(1)->lock
2432 *
2433 * LOCK rq(1)->lock // orders against CPU2
2434 * sched-out Z
2435 * sched-in X
2436 * UNLOCK rq(1)->lock
2437 *
2438 *
2439 * BLOCKING -- aka. SLEEP + WAKEUP
2440 *
2441 * For blocking we (obviously) need to provide the same guarantee as for
2442 * migration. However the means are completely different as there is no lock
2443 * chain to provide order. Instead we do:
2444 *
2445 * 1) smp_store_release(X->on_cpu, 0)
2446 * 2) smp_cond_load_acquire(!X->on_cpu)
2447 *
2448 * Example:
2449 *
2450 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2451 *
2452 * LOCK rq(0)->lock LOCK X->pi_lock
2453 * dequeue X
2454 * sched-out X
2455 * smp_store_release(X->on_cpu, 0);
2456 *
2457 * smp_cond_load_acquire(&X->on_cpu, !VAL);
2458 * X->state = WAKING
2459 * set_task_cpu(X,2)
2460 *
2461 * LOCK rq(2)->lock
2462 * enqueue X
2463 * X->state = RUNNING
2464 * UNLOCK rq(2)->lock
2465 *
2466 * LOCK rq(2)->lock // orders against CPU1
2467 * sched-out Z
2468 * sched-in X
2469 * UNLOCK rq(2)->lock
2470 *
2471 * UNLOCK X->pi_lock
2472 * UNLOCK rq(0)->lock
2473 *
2474 *
2475 * However, for wakeups there is a second guarantee we must provide, namely we
2476 * must ensure that CONDITION=1 done by the caller can not be reordered with
2477 * accesses to the task state; see try_to_wake_up() and set_current_state().
2478 */
2479
2480 /**
2481 * try_to_wake_up - wake up a thread
2482 * @p: the thread to be awakened
2483 * @state: the mask of task states that can be woken
2484 * @wake_flags: wake modifier flags (WF_*)
2485 *
2486 * If (@state & @p->state) @p->state = TASK_RUNNING.
2487 *
2488 * If the task was not queued/runnable, also place it back on a runqueue.
2489 *
2490 * Atomic against schedule() which would dequeue a task, also see
2491 * set_current_state().
2492 *
2493 * This function executes a full memory barrier before accessing the task
2494 * state; see set_current_state().
2495 *
2496 * Return: %true if @p->state changes (an actual wakeup was done),
2497 * %false otherwise.
2498 */
2499 static int
2500 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2501 {
2502 unsigned long flags;
2503 int cpu, success = 0;
2504
2505 preempt_disable();
2506 if (p == current) {
2507 /*
2508 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2509 * == smp_processor_id()'. Together this means we can special
2510 * case the whole 'p->on_rq && ttwu_remote()' case below
2511 * without taking any locks.
2512 *
2513 * In particular:
2514 * - we rely on Program-Order guarantees for all the ordering,
2515 * - we're serialized against set_special_state() by virtue of
2516 * it disabling IRQs (this allows not taking ->pi_lock).
2517 */
2518 if (!(p->state & state))
2519 goto out;
2520
2521 success = 1;
2522 cpu = task_cpu(p);
2523 trace_sched_waking(p);
2524 p->state = TASK_RUNNING;
2525 trace_sched_wakeup(p);
2526 goto out;
2527 }
2528
2529 /*
2530 * If we are going to wake up a thread waiting for CONDITION we
2531 * need to ensure that CONDITION=1 done by the caller can not be
2532 * reordered with p->state check below. This pairs with mb() in
2533 * set_current_state() the waiting thread does.
2534 */
2535 raw_spin_lock_irqsave(&p->pi_lock, flags);
2536 smp_mb__after_spinlock();
2537 if (!(p->state & state))
2538 goto unlock;
2539
2540 trace_sched_waking(p);
2541
2542 /* We're going to change ->state: */
2543 success = 1;
2544 cpu = task_cpu(p);
2545
2546 /*
2547 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2548 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2549 * in smp_cond_load_acquire() below.
2550 *
2551 * sched_ttwu_pending() try_to_wake_up()
2552 * STORE p->on_rq = 1 LOAD p->state
2553 * UNLOCK rq->lock
2554 *
2555 * __schedule() (switch to task 'p')
2556 * LOCK rq->lock smp_rmb();
2557 * smp_mb__after_spinlock();
2558 * UNLOCK rq->lock
2559 *
2560 * [task p]
2561 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
2562 *
2563 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2564 * __schedule(). See the comment for smp_mb__after_spinlock().
2565 *
2566 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
2567 */
2568 smp_rmb();
2569 if (p->on_rq && ttwu_remote(p, wake_flags))
2570 goto unlock;
2571
2572 if (p->in_iowait) {
2573 delayacct_blkio_end(p);
2574 atomic_dec(&task_rq(p)->nr_iowait);
2575 }
2576
2577 #ifdef CONFIG_SMP
2578 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2579 p->state = TASK_WAKING;
2580
2581 /*
2582 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2583 * possible to, falsely, observe p->on_cpu == 0.
2584 *
2585 * One must be running (->on_cpu == 1) in order to remove oneself
2586 * from the runqueue.
2587 *
2588 * __schedule() (switch to task 'p') try_to_wake_up()
2589 * STORE p->on_cpu = 1 LOAD p->on_rq
2590 * UNLOCK rq->lock
2591 *
2592 * __schedule() (put 'p' to sleep)
2593 * LOCK rq->lock smp_rmb();
2594 * smp_mb__after_spinlock();
2595 * STORE p->on_rq = 0 LOAD p->on_cpu
2596 *
2597 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2598 * __schedule(). See the comment for smp_mb__after_spinlock().
2599 */
2600 smp_rmb();
2601
2602 /*
2603 * If the owning (remote) CPU is still in the middle of schedule() with
2604 * this task as prev, considering queueing p on the remote CPUs wake_list
2605 * which potentially sends an IPI instead of spinning on p->on_cpu to
2606 * let the waker make forward progress. This is safe because IRQs are
2607 * disabled and the IPI will deliver after on_cpu is cleared.
2608 */
2609 if (READ_ONCE(p->on_cpu) && ttwu_queue_wakelist(p, cpu, wake_flags | WF_ON_RQ))
2610 goto unlock;
2611
2612 /*
2613 * If the owning (remote) CPU is still in the middle of schedule() with
2614 * this task as prev, wait until its done referencing the task.
2615 *
2616 * Pairs with the smp_store_release() in finish_task().
2617 *
2618 * This ensures that tasks getting woken will be fully ordered against
2619 * their previous state and preserve Program Order.
2620 */
2621 smp_cond_load_acquire(&p->on_cpu, !VAL);
2622
2623 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2624 if (task_cpu(p) != cpu) {
2625 wake_flags |= WF_MIGRATED;
2626 psi_ttwu_dequeue(p);
2627 set_task_cpu(p, cpu);
2628 }
2629 #endif /* CONFIG_SMP */
2630
2631 ttwu_queue(p, cpu, wake_flags);
2632 unlock:
2633 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2634 out:
2635 if (success)
2636 ttwu_stat(p, cpu, wake_flags);
2637 preempt_enable();
2638
2639 return success;
2640 }
2641
2642 /**
2643 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
2644 * @p: Process for which the function is to be invoked.
2645 * @func: Function to invoke.
2646 * @arg: Argument to function.
2647 *
2648 * If the specified task can be quickly locked into a definite state
2649 * (either sleeping or on a given runqueue), arrange to keep it in that
2650 * state while invoking @func(@arg). This function can use ->on_rq and
2651 * task_curr() to work out what the state is, if required. Given that
2652 * @func can be invoked with a runqueue lock held, it had better be quite
2653 * lightweight.
2654 *
2655 * Returns:
2656 * @false if the task slipped out from under the locks.
2657 * @true if the task was locked onto a runqueue or is sleeping.
2658 * However, @func can override this by returning @false.
2659 */
2660 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
2661 {
2662 bool ret = false;
2663 struct rq_flags rf;
2664 struct rq *rq;
2665
2666 lockdep_assert_irqs_enabled();
2667 raw_spin_lock_irq(&p->pi_lock);
2668 if (p->on_rq) {
2669 rq = __task_rq_lock(p, &rf);
2670 if (task_rq(p) == rq)
2671 ret = func(p, arg);
2672 rq_unlock(rq, &rf);
2673 } else {
2674 switch (p->state) {
2675 case TASK_RUNNING:
2676 case TASK_WAKING:
2677 break;
2678 default:
2679 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
2680 if (!p->on_rq)
2681 ret = func(p, arg);
2682 }
2683 }
2684 raw_spin_unlock_irq(&p->pi_lock);
2685 return ret;
2686 }
2687
2688 /**
2689 * wake_up_process - Wake up a specific process
2690 * @p: The process to be woken up.
2691 *
2692 * Attempt to wake up the nominated process and move it to the set of runnable
2693 * processes.
2694 *
2695 * Return: 1 if the process was woken up, 0 if it was already running.
2696 *
2697 * This function executes a full memory barrier before accessing the task state.
2698 */
2699 int wake_up_process(struct task_struct *p)
2700 {
2701 return try_to_wake_up(p, TASK_NORMAL, 0);
2702 }
2703 EXPORT_SYMBOL(wake_up_process);
2704
2705 int wake_up_state(struct task_struct *p, unsigned int state)
2706 {
2707 return try_to_wake_up(p, state, 0);
2708 }
2709
2710 /*
2711 * Perform scheduler related setup for a newly forked process p.
2712 * p is forked by current.
2713 *
2714 * __sched_fork() is basic setup used by init_idle() too:
2715 */
2716 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2717 {
2718 p->on_rq = 0;
2719
2720 p->se.on_rq = 0;
2721 p->se.exec_start = 0;
2722 p->se.sum_exec_runtime = 0;
2723 p->se.prev_sum_exec_runtime = 0;
2724 p->se.nr_migrations = 0;
2725 p->se.vruntime = 0;
2726 INIT_LIST_HEAD(&p->se.group_node);
2727
2728 #ifdef CONFIG_FAIR_GROUP_SCHED
2729 p->se.cfs_rq = NULL;
2730 #endif
2731
2732 #ifdef CONFIG_SCHEDSTATS
2733 /* Even if schedstat is disabled, there should not be garbage */
2734 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2735 #endif
2736
2737 RB_CLEAR_NODE(&p->dl.rb_node);
2738 init_dl_task_timer(&p->dl);
2739 init_dl_inactive_task_timer(&p->dl);
2740 __dl_clear_params(p);
2741
2742 INIT_LIST_HEAD(&p->rt.run_list);
2743 p->rt.timeout = 0;
2744 p->rt.time_slice = sched_rr_timeslice;
2745 p->rt.on_rq = 0;
2746 p->rt.on_list = 0;
2747
2748 #ifdef CONFIG_PREEMPT_NOTIFIERS
2749 INIT_HLIST_HEAD(&p->preempt_notifiers);
2750 #endif
2751
2752 #ifdef CONFIG_COMPACTION
2753 p->capture_control = NULL;
2754 #endif
2755 init_numa_balancing(clone_flags, p);
2756 }
2757
2758 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2759
2760 #ifdef CONFIG_NUMA_BALANCING
2761
2762 void set_numabalancing_state(bool enabled)
2763 {
2764 if (enabled)
2765 static_branch_enable(&sched_numa_balancing);
2766 else
2767 static_branch_disable(&sched_numa_balancing);
2768 }
2769
2770 #ifdef CONFIG_PROC_SYSCTL
2771 int sysctl_numa_balancing(struct ctl_table *table, int write,
2772 void __user *buffer, size_t *lenp, loff_t *ppos)
2773 {
2774 struct ctl_table t;
2775 int err;
2776 int state = static_branch_likely(&sched_numa_balancing);
2777
2778 if (write && !capable(CAP_SYS_ADMIN))
2779 return -EPERM;
2780
2781 t = *table;
2782 t.data = &state;
2783 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2784 if (err < 0)
2785 return err;
2786 if (write)
2787 set_numabalancing_state(state);
2788 return err;
2789 }
2790 #endif
2791 #endif
2792
2793 #ifdef CONFIG_SCHEDSTATS
2794
2795 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2796 static bool __initdata __sched_schedstats = false;
2797
2798 static void set_schedstats(bool enabled)
2799 {
2800 if (enabled)
2801 static_branch_enable(&sched_schedstats);
2802 else
2803 static_branch_disable(&sched_schedstats);
2804 }
2805
2806 void force_schedstat_enabled(void)
2807 {
2808 if (!schedstat_enabled()) {
2809 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2810 static_branch_enable(&sched_schedstats);
2811 }
2812 }
2813
2814 static int __init setup_schedstats(char *str)
2815 {
2816 int ret = 0;
2817 if (!str)
2818 goto out;
2819
2820 /*
2821 * This code is called before jump labels have been set up, so we can't
2822 * change the static branch directly just yet. Instead set a temporary
2823 * variable so init_schedstats() can do it later.
2824 */
2825 if (!strcmp(str, "enable")) {
2826 __sched_schedstats = true;
2827 ret = 1;
2828 } else if (!strcmp(str, "disable")) {
2829 __sched_schedstats = false;
2830 ret = 1;
2831 }
2832 out:
2833 if (!ret)
2834 pr_warn("Unable to parse schedstats=\n");
2835
2836 return ret;
2837 }
2838 __setup("schedstats=", setup_schedstats);
2839
2840 static void __init init_schedstats(void)
2841 {
2842 set_schedstats(__sched_schedstats);
2843 }
2844
2845 #ifdef CONFIG_PROC_SYSCTL
2846 int sysctl_schedstats(struct ctl_table *table, int write,
2847 void __user *buffer, size_t *lenp, loff_t *ppos)
2848 {
2849 struct ctl_table t;
2850 int err;
2851 int state = static_branch_likely(&sched_schedstats);
2852
2853 if (write && !capable(CAP_SYS_ADMIN))
2854 return -EPERM;
2855
2856 t = *table;
2857 t.data = &state;
2858 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2859 if (err < 0)
2860 return err;
2861 if (write)
2862 set_schedstats(state);
2863 return err;
2864 }
2865 #endif /* CONFIG_PROC_SYSCTL */
2866 #else /* !CONFIG_SCHEDSTATS */
2867 static inline void init_schedstats(void) {}
2868 #endif /* CONFIG_SCHEDSTATS */
2869
2870 /*
2871 * fork()/clone()-time setup:
2872 */
2873 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2874 {
2875 unsigned long flags;
2876
2877 __sched_fork(clone_flags, p);
2878 /*
2879 * We mark the process as NEW here. This guarantees that
2880 * nobody will actually run it, and a signal or other external
2881 * event cannot wake it up and insert it on the runqueue either.
2882 */
2883 p->state = TASK_NEW;
2884
2885 /*
2886 * Make sure we do not leak PI boosting priority to the child.
2887 */
2888 p->prio = current->normal_prio;
2889
2890 uclamp_fork(p);
2891
2892 /*
2893 * Revert to default priority/policy on fork if requested.
2894 */
2895 if (unlikely(p->sched_reset_on_fork)) {
2896 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2897 p->policy = SCHED_NORMAL;
2898 p->static_prio = NICE_TO_PRIO(0);
2899 p->rt_priority = 0;
2900 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2901 p->static_prio = NICE_TO_PRIO(0);
2902
2903 p->prio = p->normal_prio = __normal_prio(p);
2904 set_load_weight(p, false);
2905
2906 /*
2907 * We don't need the reset flag anymore after the fork. It has
2908 * fulfilled its duty:
2909 */
2910 p->sched_reset_on_fork = 0;
2911 }
2912
2913 if (dl_prio(p->prio))
2914 return -EAGAIN;
2915 else if (rt_prio(p->prio))
2916 p->sched_class = &rt_sched_class;
2917 else
2918 p->sched_class = &fair_sched_class;
2919
2920 init_entity_runnable_average(&p->se);
2921
2922 /*
2923 * The child is not yet in the pid-hash so no cgroup attach races,
2924 * and the cgroup is pinned to this child due to cgroup_fork()
2925 * is ran before sched_fork().
2926 *
2927 * Silence PROVE_RCU.
2928 */
2929 raw_spin_lock_irqsave(&p->pi_lock, flags);
2930 /*
2931 * We're setting the CPU for the first time, we don't migrate,
2932 * so use __set_task_cpu().
2933 */
2934 __set_task_cpu(p, smp_processor_id());
2935 if (p->sched_class->task_fork)
2936 p->sched_class->task_fork(p);
2937 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2938
2939 #ifdef CONFIG_SCHED_INFO
2940 if (likely(sched_info_on()))
2941 memset(&p->sched_info, 0, sizeof(p->sched_info));
2942 #endif
2943 #if defined(CONFIG_SMP)
2944 p->on_cpu = 0;
2945 #endif
2946 init_task_preempt_count(p);
2947 #ifdef CONFIG_SMP
2948 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2949 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2950 #endif
2951 return 0;
2952 }
2953
2954 unsigned long to_ratio(u64 period, u64 runtime)
2955 {
2956 if (runtime == RUNTIME_INF)
2957 return BW_UNIT;
2958
2959 /*
2960 * Doing this here saves a lot of checks in all
2961 * the calling paths, and returning zero seems
2962 * safe for them anyway.
2963 */
2964 if (period == 0)
2965 return 0;
2966
2967 return div64_u64(runtime << BW_SHIFT, period);
2968 }
2969
2970 /*
2971 * wake_up_new_task - wake up a newly created task for the first time.
2972 *
2973 * This function will do some initial scheduler statistics housekeeping
2974 * that must be done for every newly created context, then puts the task
2975 * on the runqueue and wakes it.
2976 */
2977 void wake_up_new_task(struct task_struct *p)
2978 {
2979 struct rq_flags rf;
2980 struct rq *rq;
2981
2982 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2983 p->state = TASK_RUNNING;
2984 #ifdef CONFIG_SMP
2985 /*
2986 * Fork balancing, do it here and not earlier because:
2987 * - cpus_ptr can change in the fork path
2988 * - any previously selected CPU might disappear through hotplug
2989 *
2990 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2991 * as we're not fully set-up yet.
2992 */
2993 p->recent_used_cpu = task_cpu(p);
2994 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2995 #endif
2996 rq = __task_rq_lock(p, &rf);
2997 update_rq_clock(rq);
2998 post_init_entity_util_avg(p);
2999
3000 activate_task(rq, p, ENQUEUE_NOCLOCK);
3001 trace_sched_wakeup_new(p);
3002 check_preempt_curr(rq, p, WF_FORK);
3003 #ifdef CONFIG_SMP
3004 if (p->sched_class->task_woken) {
3005 /*
3006 * Nothing relies on rq->lock after this, so its fine to
3007 * drop it.
3008 */
3009 rq_unpin_lock(rq, &rf);
3010 p->sched_class->task_woken(rq, p);
3011 rq_repin_lock(rq, &rf);
3012 }
3013 #endif
3014 task_rq_unlock(rq, p, &rf);
3015 }
3016
3017 #ifdef CONFIG_PREEMPT_NOTIFIERS
3018
3019 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3020
3021 void preempt_notifier_inc(void)
3022 {
3023 static_branch_inc(&preempt_notifier_key);
3024 }
3025 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3026
3027 void preempt_notifier_dec(void)
3028 {
3029 static_branch_dec(&preempt_notifier_key);
3030 }
3031 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3032
3033 /**
3034 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3035 * @notifier: notifier struct to register
3036 */
3037 void preempt_notifier_register(struct preempt_notifier *notifier)
3038 {
3039 if (!static_branch_unlikely(&preempt_notifier_key))
3040 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3041
3042 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3043 }
3044 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3045
3046 /**
3047 * preempt_notifier_unregister - no longer interested in preemption notifications
3048 * @notifier: notifier struct to unregister
3049 *
3050 * This is *not* safe to call from within a preemption notifier.
3051 */
3052 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3053 {
3054 hlist_del(&notifier->link);
3055 }
3056 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3057
3058 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3059 {
3060 struct preempt_notifier *notifier;
3061
3062 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3063 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3064 }
3065
3066 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3067 {
3068 if (static_branch_unlikely(&preempt_notifier_key))
3069 __fire_sched_in_preempt_notifiers(curr);
3070 }
3071
3072 static void
3073 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3074 struct task_struct *next)
3075 {
3076 struct preempt_notifier *notifier;
3077
3078 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3079 notifier->ops->sched_out(notifier, next);
3080 }
3081
3082 static __always_inline void
3083 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3084 struct task_struct *next)
3085 {
3086 if (static_branch_unlikely(&preempt_notifier_key))
3087 __fire_sched_out_preempt_notifiers(curr, next);
3088 }
3089
3090 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3091
3092 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3093 {
3094 }
3095
3096 static inline void
3097 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3098 struct task_struct *next)
3099 {
3100 }
3101
3102 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3103
3104 static inline void prepare_task(struct task_struct *next)
3105 {
3106 #ifdef CONFIG_SMP
3107 /*
3108 * Claim the task as running, we do this before switching to it
3109 * such that any running task will have this set.
3110 */
3111 next->on_cpu = 1;
3112 #endif
3113 }
3114
3115 static inline void finish_task(struct task_struct *prev)
3116 {
3117 #ifdef CONFIG_SMP
3118 /*
3119 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3120 * We must ensure this doesn't happen until the switch is completely
3121 * finished.
3122 *
3123 * In particular, the load of prev->state in finish_task_switch() must
3124 * happen before this.
3125 *
3126 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3127 */
3128 smp_store_release(&prev->on_cpu, 0);
3129 #endif
3130 }
3131
3132 static inline void
3133 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3134 {
3135 /*
3136 * Since the runqueue lock will be released by the next
3137 * task (which is an invalid locking op but in the case
3138 * of the scheduler it's an obvious special-case), so we
3139 * do an early lockdep release here:
3140 */
3141 rq_unpin_lock(rq, rf);
3142 spin_release(&rq->lock.dep_map, _THIS_IP_);
3143 #ifdef CONFIG_DEBUG_SPINLOCK
3144 /* this is a valid case when another task releases the spinlock */
3145 rq->lock.owner = next;
3146 #endif
3147 }
3148
3149 static inline void finish_lock_switch(struct rq *rq)
3150 {
3151 /*
3152 * If we are tracking spinlock dependencies then we have to
3153 * fix up the runqueue lock - which gets 'carried over' from
3154 * prev into current:
3155 */
3156 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3157 raw_spin_unlock_irq(&rq->lock);
3158 }
3159
3160 /*
3161 * NOP if the arch has not defined these:
3162 */
3163
3164 #ifndef prepare_arch_switch
3165 # define prepare_arch_switch(next) do { } while (0)
3166 #endif
3167
3168 #ifndef finish_arch_post_lock_switch
3169 # define finish_arch_post_lock_switch() do { } while (0)
3170 #endif
3171
3172 /**
3173 * prepare_task_switch - prepare to switch tasks
3174 * @rq: the runqueue preparing to switch
3175 * @prev: the current task that is being switched out
3176 * @next: the task we are going to switch to.
3177 *
3178 * This is called with the rq lock held and interrupts off. It must
3179 * be paired with a subsequent finish_task_switch after the context
3180 * switch.
3181 *
3182 * prepare_task_switch sets up locking and calls architecture specific
3183 * hooks.
3184 */
3185 static inline void
3186 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3187 struct task_struct *next)
3188 {
3189 kcov_prepare_switch(prev);
3190 sched_info_switch(rq, prev, next);
3191 perf_event_task_sched_out(prev, next);
3192 rseq_preempt(prev);
3193 fire_sched_out_preempt_notifiers(prev, next);
3194 prepare_task(next);
3195 prepare_arch_switch(next);
3196 }
3197
3198 /**
3199 * finish_task_switch - clean up after a task-switch
3200 * @prev: the thread we just switched away from.
3201 *
3202 * finish_task_switch must be called after the context switch, paired
3203 * with a prepare_task_switch call before the context switch.
3204 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3205 * and do any other architecture-specific cleanup actions.
3206 *
3207 * Note that we may have delayed dropping an mm in context_switch(). If
3208 * so, we finish that here outside of the runqueue lock. (Doing it
3209 * with the lock held can cause deadlocks; see schedule() for
3210 * details.)
3211 *
3212 * The context switch have flipped the stack from under us and restored the
3213 * local variables which were saved when this task called schedule() in the
3214 * past. prev == current is still correct but we need to recalculate this_rq
3215 * because prev may have moved to another CPU.
3216 */
3217 static struct rq *finish_task_switch(struct task_struct *prev)
3218 __releases(rq->lock)
3219 {
3220 struct rq *rq = this_rq();
3221 struct mm_struct *mm = rq->prev_mm;
3222 long prev_state;
3223
3224 /*
3225 * The previous task will have left us with a preempt_count of 2
3226 * because it left us after:
3227 *
3228 * schedule()
3229 * preempt_disable(); // 1
3230 * __schedule()
3231 * raw_spin_lock_irq(&rq->lock) // 2
3232 *
3233 * Also, see FORK_PREEMPT_COUNT.
3234 */
3235 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3236 "corrupted preempt_count: %s/%d/0x%x\n",
3237 current->comm, current->pid, preempt_count()))
3238 preempt_count_set(FORK_PREEMPT_COUNT);
3239
3240 rq->prev_mm = NULL;
3241
3242 /*
3243 * A task struct has one reference for the use as "current".
3244 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3245 * schedule one last time. The schedule call will never return, and
3246 * the scheduled task must drop that reference.
3247 *
3248 * We must observe prev->state before clearing prev->on_cpu (in
3249 * finish_task), otherwise a concurrent wakeup can get prev
3250 * running on another CPU and we could rave with its RUNNING -> DEAD
3251 * transition, resulting in a double drop.
3252 */
3253 prev_state = prev->state;
3254 vtime_task_switch(prev);
3255 perf_event_task_sched_in(prev, current);
3256 finish_task(prev);
3257 finish_lock_switch(rq);
3258 finish_arch_post_lock_switch();
3259 kcov_finish_switch(current);
3260
3261 fire_sched_in_preempt_notifiers(current);
3262 /*
3263 * When switching through a kernel thread, the loop in
3264 * membarrier_{private,global}_expedited() may have observed that
3265 * kernel thread and not issued an IPI. It is therefore possible to
3266 * schedule between user->kernel->user threads without passing though
3267 * switch_mm(). Membarrier requires a barrier after storing to
3268 * rq->curr, before returning to userspace, so provide them here:
3269 *
3270 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3271 * provided by mmdrop(),
3272 * - a sync_core for SYNC_CORE.
3273 */
3274 if (mm) {
3275 membarrier_mm_sync_core_before_usermode(mm);
3276 mmdrop(mm);
3277 }
3278 if (unlikely(prev_state == TASK_DEAD)) {
3279 if (prev->sched_class->task_dead)
3280 prev->sched_class->task_dead(prev);
3281
3282 /*
3283 * Remove function-return probe instances associated with this
3284 * task and put them back on the free list.
3285 */
3286 kprobe_flush_task(prev);
3287
3288 /* Task is done with its stack. */
3289 put_task_stack(prev);
3290
3291 put_task_struct_rcu_user(prev);
3292 }
3293
3294 tick_nohz_task_switch();
3295 return rq;
3296 }
3297
3298 #ifdef CONFIG_SMP
3299
3300 /* rq->lock is NOT held, but preemption is disabled */
3301 static void __balance_callback(struct rq *rq)
3302 {
3303 struct callback_head *head, *next;
3304 void (*func)(struct rq *rq);
3305 unsigned long flags;
3306
3307 raw_spin_lock_irqsave(&rq->lock, flags);
3308 head = rq->balance_callback;
3309 rq->balance_callback = NULL;
3310 while (head) {
3311 func = (void (*)(struct rq *))head->func;
3312 next = head->next;
3313 head->next = NULL;
3314 head = next;
3315
3316 func(rq);
3317 }
3318 raw_spin_unlock_irqrestore(&rq->lock, flags);
3319 }
3320
3321 static inline void balance_callback(struct rq *rq)
3322 {
3323 if (unlikely(rq->balance_callback))
3324 __balance_callback(rq);
3325 }
3326
3327 #else
3328
3329 static inline void balance_callback(struct rq *rq)
3330 {
3331 }
3332
3333 #endif
3334
3335 /**
3336 * schedule_tail - first thing a freshly forked thread must call.
3337 * @prev: the thread we just switched away from.
3338 */
3339 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3340 __releases(rq->lock)
3341 {
3342 struct rq *rq;
3343
3344 /*
3345 * New tasks start with FORK_PREEMPT_COUNT, see there and
3346 * finish_task_switch() for details.
3347 *
3348 * finish_task_switch() will drop rq->lock() and lower preempt_count
3349 * and the preempt_enable() will end up enabling preemption (on
3350 * PREEMPT_COUNT kernels).
3351 */
3352
3353 rq = finish_task_switch(prev);
3354 balance_callback(rq);
3355 preempt_enable();
3356
3357 if (current->set_child_tid)
3358 put_user(task_pid_vnr(current), current->set_child_tid);
3359
3360 calculate_sigpending();
3361 }
3362
3363 /*
3364 * context_switch - switch to the new MM and the new thread's register state.
3365 */
3366 static __always_inline struct rq *
3367 context_switch(struct rq *rq, struct task_struct *prev,
3368 struct task_struct *next, struct rq_flags *rf)
3369 {
3370 prepare_task_switch(rq, prev, next);
3371
3372 /*
3373 * For paravirt, this is coupled with an exit in switch_to to
3374 * combine the page table reload and the switch backend into
3375 * one hypercall.
3376 */
3377 arch_start_context_switch(prev);
3378
3379 /*
3380 * kernel -> kernel lazy + transfer active
3381 * user -> kernel lazy + mmgrab() active
3382 *
3383 * kernel -> user switch + mmdrop() active
3384 * user -> user switch
3385 */
3386 if (!next->mm) { // to kernel
3387 enter_lazy_tlb(prev->active_mm, next);
3388
3389 next->active_mm = prev->active_mm;
3390 if (prev->mm) // from user
3391 mmgrab(prev->active_mm);
3392 else
3393 prev->active_mm = NULL;
3394 } else { // to user
3395 membarrier_switch_mm(rq, prev->active_mm, next->mm);
3396 /*
3397 * sys_membarrier() requires an smp_mb() between setting
3398 * rq->curr / membarrier_switch_mm() and returning to userspace.
3399 *
3400 * The below provides this either through switch_mm(), or in
3401 * case 'prev->active_mm == next->mm' through
3402 * finish_task_switch()'s mmdrop().
3403 */
3404 switch_mm_irqs_off(prev->active_mm, next->mm, next);
3405
3406 if (!prev->mm) { // from kernel
3407 /* will mmdrop() in finish_task_switch(). */
3408 rq->prev_mm = prev->active_mm;
3409 prev->active_mm = NULL;
3410 }
3411 }
3412
3413 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3414
3415 prepare_lock_switch(rq, next, rf);
3416
3417 /* Here we just switch the register state and the stack. */
3418 switch_to(prev, next, prev);
3419 barrier();
3420
3421 return finish_task_switch(prev);
3422 }
3423
3424 /*
3425 * nr_running and nr_context_switches:
3426 *
3427 * externally visible scheduler statistics: current number of runnable
3428 * threads, total number of context switches performed since bootup.
3429 */
3430 unsigned long nr_running(void)
3431 {
3432 unsigned long i, sum = 0;
3433
3434 for_each_online_cpu(i)
3435 sum += cpu_rq(i)->nr_running;
3436
3437 return sum;
3438 }
3439
3440 /*
3441 * Check if only the current task is running on the CPU.
3442 *
3443 * Caution: this function does not check that the caller has disabled
3444 * preemption, thus the result might have a time-of-check-to-time-of-use
3445 * race. The caller is responsible to use it correctly, for example:
3446 *
3447 * - from a non-preemptible section (of course)
3448 *
3449 * - from a thread that is bound to a single CPU
3450 *
3451 * - in a loop with very short iterations (e.g. a polling loop)
3452 */
3453 bool single_task_running(void)
3454 {
3455 return raw_rq()->nr_running == 1;
3456 }
3457 EXPORT_SYMBOL(single_task_running);
3458
3459 unsigned long long nr_context_switches(void)
3460 {
3461 int i;
3462 unsigned long long sum = 0;
3463
3464 for_each_possible_cpu(i)
3465 sum += cpu_rq(i)->nr_switches;
3466
3467 return sum;
3468 }
3469
3470 /*
3471 * Consumers of these two interfaces, like for example the cpuidle menu
3472 * governor, are using nonsensical data. Preferring shallow idle state selection
3473 * for a CPU that has IO-wait which might not even end up running the task when
3474 * it does become runnable.
3475 */
3476
3477 unsigned long nr_iowait_cpu(int cpu)
3478 {
3479 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3480 }
3481
3482 /*
3483 * IO-wait accounting, and how its mostly bollocks (on SMP).
3484 *
3485 * The idea behind IO-wait account is to account the idle time that we could
3486 * have spend running if it were not for IO. That is, if we were to improve the
3487 * storage performance, we'd have a proportional reduction in IO-wait time.
3488 *
3489 * This all works nicely on UP, where, when a task blocks on IO, we account
3490 * idle time as IO-wait, because if the storage were faster, it could've been
3491 * running and we'd not be idle.
3492 *
3493 * This has been extended to SMP, by doing the same for each CPU. This however
3494 * is broken.
3495 *
3496 * Imagine for instance the case where two tasks block on one CPU, only the one
3497 * CPU will have IO-wait accounted, while the other has regular idle. Even
3498 * though, if the storage were faster, both could've ran at the same time,
3499 * utilising both CPUs.
3500 *
3501 * This means, that when looking globally, the current IO-wait accounting on
3502 * SMP is a lower bound, by reason of under accounting.
3503 *
3504 * Worse, since the numbers are provided per CPU, they are sometimes
3505 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3506 * associated with any one particular CPU, it can wake to another CPU than it
3507 * blocked on. This means the per CPU IO-wait number is meaningless.
3508 *
3509 * Task CPU affinities can make all that even more 'interesting'.
3510 */
3511
3512 unsigned long nr_iowait(void)
3513 {
3514 unsigned long i, sum = 0;
3515
3516 for_each_possible_cpu(i)
3517 sum += nr_iowait_cpu(i);
3518
3519 return sum;
3520 }
3521
3522 #ifdef CONFIG_SMP
3523
3524 /*
3525 * sched_exec - execve() is a valuable balancing opportunity, because at
3526 * this point the task has the smallest effective memory and cache footprint.
3527 */
3528 void sched_exec(void)
3529 {
3530 struct task_struct *p = current;
3531 unsigned long flags;
3532 int dest_cpu;
3533
3534 raw_spin_lock_irqsave(&p->pi_lock, flags);
3535 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3536 if (dest_cpu == smp_processor_id())
3537 goto unlock;
3538
3539 if (likely(cpu_active(dest_cpu))) {
3540 struct migration_arg arg = { p, dest_cpu };
3541
3542 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3543 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3544 return;
3545 }
3546 unlock:
3547 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3548 }
3549
3550 #endif
3551
3552 DEFINE_PER_CPU(struct kernel_stat, kstat);
3553 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3554
3555 EXPORT_PER_CPU_SYMBOL(kstat);
3556 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3557
3558 /*
3559 * The function fair_sched_class.update_curr accesses the struct curr
3560 * and its field curr->exec_start; when called from task_sched_runtime(),
3561 * we observe a high rate of cache misses in practice.
3562 * Prefetching this data results in improved performance.
3563 */
3564 static inline void prefetch_curr_exec_start(struct task_struct *p)
3565 {
3566 #ifdef CONFIG_FAIR_GROUP_SCHED
3567 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3568 #else
3569 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3570 #endif
3571 prefetch(curr);
3572 prefetch(&curr->exec_start);
3573 }
3574
3575 /*
3576 * Return accounted runtime for the task.
3577 * In case the task is currently running, return the runtime plus current's
3578 * pending runtime that have not been accounted yet.
3579 */
3580 unsigned long long task_sched_runtime(struct task_struct *p)
3581 {
3582 struct rq_flags rf;
3583 struct rq *rq;
3584 u64 ns;
3585
3586 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3587 /*
3588 * 64-bit doesn't need locks to atomically read a 64-bit value.
3589 * So we have a optimization chance when the task's delta_exec is 0.
3590 * Reading ->on_cpu is racy, but this is ok.
3591 *
3592 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3593 * If we race with it entering CPU, unaccounted time is 0. This is
3594 * indistinguishable from the read occurring a few cycles earlier.
3595 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3596 * been accounted, so we're correct here as well.
3597 */
3598 if (!p->on_cpu || !task_on_rq_queued(p))
3599 return p->se.sum_exec_runtime;
3600 #endif
3601
3602 rq = task_rq_lock(p, &rf);
3603 /*
3604 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3605 * project cycles that may never be accounted to this
3606 * thread, breaking clock_gettime().
3607 */
3608 if (task_current(rq, p) && task_on_rq_queued(p)) {
3609 prefetch_curr_exec_start(p);
3610 update_rq_clock(rq);
3611 p->sched_class->update_curr(rq);
3612 }
3613 ns = p->se.sum_exec_runtime;
3614 task_rq_unlock(rq, p, &rf);
3615
3616 return ns;
3617 }
3618
3619 DEFINE_PER_CPU(unsigned long, thermal_pressure);
3620
3621 void arch_set_thermal_pressure(struct cpumask *cpus,
3622 unsigned long th_pressure)
3623 {
3624 int cpu;
3625
3626 for_each_cpu(cpu, cpus)
3627 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
3628 }
3629
3630 /*
3631 * This function gets called by the timer code, with HZ frequency.
3632 * We call it with interrupts disabled.
3633 */
3634 void scheduler_tick(void)
3635 {
3636 int cpu = smp_processor_id();
3637 struct rq *rq = cpu_rq(cpu);
3638 struct task_struct *curr = rq->curr;
3639 struct rq_flags rf;
3640 unsigned long thermal_pressure;
3641
3642 arch_scale_freq_tick();
3643 sched_clock_tick();
3644
3645 rq_lock(rq, &rf);
3646
3647 update_rq_clock(rq);
3648 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
3649 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
3650 curr->sched_class->task_tick(rq, curr, 0);
3651 calc_global_load_tick(rq);
3652 psi_task_tick(rq);
3653
3654 rq_unlock(rq, &rf);
3655
3656 perf_event_task_tick();
3657
3658 #ifdef CONFIG_SMP
3659 rq->idle_balance = idle_cpu(cpu);
3660 trigger_load_balance(rq);
3661 #endif
3662 }
3663
3664 #ifdef CONFIG_NO_HZ_FULL
3665
3666 struct tick_work {
3667 int cpu;
3668 atomic_t state;
3669 struct delayed_work work;
3670 };
3671 /* Values for ->state, see diagram below. */
3672 #define TICK_SCHED_REMOTE_OFFLINE 0
3673 #define TICK_SCHED_REMOTE_OFFLINING 1
3674 #define TICK_SCHED_REMOTE_RUNNING 2
3675
3676 /*
3677 * State diagram for ->state:
3678 *
3679 *
3680 * TICK_SCHED_REMOTE_OFFLINE
3681 * | ^
3682 * | |
3683 * | | sched_tick_remote()
3684 * | |
3685 * | |
3686 * +--TICK_SCHED_REMOTE_OFFLINING
3687 * | ^
3688 * | |
3689 * sched_tick_start() | | sched_tick_stop()
3690 * | |
3691 * V |
3692 * TICK_SCHED_REMOTE_RUNNING
3693 *
3694 *
3695 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3696 * and sched_tick_start() are happy to leave the state in RUNNING.
3697 */
3698
3699 static struct tick_work __percpu *tick_work_cpu;
3700
3701 static void sched_tick_remote(struct work_struct *work)
3702 {
3703 struct delayed_work *dwork = to_delayed_work(work);
3704 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3705 int cpu = twork->cpu;
3706 struct rq *rq = cpu_rq(cpu);
3707 struct task_struct *curr;
3708 struct rq_flags rf;
3709 u64 delta;
3710 int os;
3711
3712 /*
3713 * Handle the tick only if it appears the remote CPU is running in full
3714 * dynticks mode. The check is racy by nature, but missing a tick or
3715 * having one too much is no big deal because the scheduler tick updates
3716 * statistics and checks timeslices in a time-independent way, regardless
3717 * of when exactly it is running.
3718 */
3719 if (!tick_nohz_tick_stopped_cpu(cpu))
3720 goto out_requeue;
3721
3722 rq_lock_irq(rq, &rf);
3723 curr = rq->curr;
3724 if (cpu_is_offline(cpu))
3725 goto out_unlock;
3726
3727 update_rq_clock(rq);
3728
3729 if (!is_idle_task(curr)) {
3730 /*
3731 * Make sure the next tick runs within a reasonable
3732 * amount of time.
3733 */
3734 delta = rq_clock_task(rq) - curr->se.exec_start;
3735 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3736 }
3737 curr->sched_class->task_tick(rq, curr, 0);
3738
3739 calc_load_nohz_remote(rq);
3740 out_unlock:
3741 rq_unlock_irq(rq, &rf);
3742 out_requeue:
3743
3744 /*
3745 * Run the remote tick once per second (1Hz). This arbitrary
3746 * frequency is large enough to avoid overload but short enough
3747 * to keep scheduler internal stats reasonably up to date. But
3748 * first update state to reflect hotplug activity if required.
3749 */
3750 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3751 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3752 if (os == TICK_SCHED_REMOTE_RUNNING)
3753 queue_delayed_work(system_unbound_wq, dwork, HZ);
3754 }
3755
3756 static void sched_tick_start(int cpu)
3757 {
3758 int os;
3759 struct tick_work *twork;
3760
3761 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3762 return;
3763
3764 WARN_ON_ONCE(!tick_work_cpu);
3765
3766 twork = per_cpu_ptr(tick_work_cpu, cpu);
3767 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3768 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3769 if (os == TICK_SCHED_REMOTE_OFFLINE) {
3770 twork->cpu = cpu;
3771 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3772 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3773 }
3774 }
3775
3776 #ifdef CONFIG_HOTPLUG_CPU
3777 static void sched_tick_stop(int cpu)
3778 {
3779 struct tick_work *twork;
3780 int os;
3781
3782 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3783 return;
3784
3785 WARN_ON_ONCE(!tick_work_cpu);
3786
3787 twork = per_cpu_ptr(tick_work_cpu, cpu);
3788 /* There cannot be competing actions, but don't rely on stop-machine. */
3789 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3790 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3791 /* Don't cancel, as this would mess up the state machine. */
3792 }
3793 #endif /* CONFIG_HOTPLUG_CPU */
3794
3795 int __init sched_tick_offload_init(void)
3796 {
3797 tick_work_cpu = alloc_percpu(struct tick_work);
3798 BUG_ON(!tick_work_cpu);
3799 return 0;
3800 }
3801
3802 #else /* !CONFIG_NO_HZ_FULL */
3803 static inline void sched_tick_start(int cpu) { }
3804 static inline void sched_tick_stop(int cpu) { }
3805 #endif
3806
3807 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
3808 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3809 /*
3810 * If the value passed in is equal to the current preempt count
3811 * then we just disabled preemption. Start timing the latency.
3812 */
3813 static inline void preempt_latency_start(int val)
3814 {
3815 if (preempt_count() == val) {
3816 unsigned long ip = get_lock_parent_ip();
3817 #ifdef CONFIG_DEBUG_PREEMPT
3818 current->preempt_disable_ip = ip;
3819 #endif
3820 trace_preempt_off(CALLER_ADDR0, ip);
3821 }
3822 }
3823
3824 void preempt_count_add(int val)
3825 {
3826 #ifdef CONFIG_DEBUG_PREEMPT
3827 /*
3828 * Underflow?
3829 */
3830 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3831 return;
3832 #endif
3833 __preempt_count_add(val);
3834 #ifdef CONFIG_DEBUG_PREEMPT
3835 /*
3836 * Spinlock count overflowing soon?
3837 */
3838 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3839 PREEMPT_MASK - 10);
3840 #endif
3841 preempt_latency_start(val);
3842 }
3843 EXPORT_SYMBOL(preempt_count_add);
3844 NOKPROBE_SYMBOL(preempt_count_add);
3845
3846 /*
3847 * If the value passed in equals to the current preempt count
3848 * then we just enabled preemption. Stop timing the latency.
3849 */
3850 static inline void preempt_latency_stop(int val)
3851 {
3852 if (preempt_count() == val)
3853 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3854 }
3855
3856 void preempt_count_sub(int val)
3857 {
3858 #ifdef CONFIG_DEBUG_PREEMPT
3859 /*
3860 * Underflow?
3861 */
3862 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3863 return;
3864 /*
3865 * Is the spinlock portion underflowing?
3866 */
3867 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3868 !(preempt_count() & PREEMPT_MASK)))
3869 return;
3870 #endif
3871
3872 preempt_latency_stop(val);
3873 __preempt_count_sub(val);
3874 }
3875 EXPORT_SYMBOL(preempt_count_sub);
3876 NOKPROBE_SYMBOL(preempt_count_sub);
3877
3878 #else
3879 static inline void preempt_latency_start(int val) { }
3880 static inline void preempt_latency_stop(int val) { }
3881 #endif
3882
3883 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3884 {
3885 #ifdef CONFIG_DEBUG_PREEMPT
3886 return p->preempt_disable_ip;
3887 #else
3888 return 0;
3889 #endif
3890 }
3891
3892 /*
3893 * Print scheduling while atomic bug:
3894 */
3895 static noinline void __schedule_bug(struct task_struct *prev)
3896 {
3897 /* Save this before calling printk(), since that will clobber it */
3898 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3899
3900 if (oops_in_progress)
3901 return;
3902
3903 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3904 prev->comm, prev->pid, preempt_count());
3905
3906 debug_show_held_locks(prev);
3907 print_modules();
3908 if (irqs_disabled())
3909 print_irqtrace_events(prev);
3910 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3911 && in_atomic_preempt_off()) {
3912 pr_err("Preemption disabled at:");
3913 print_ip_sym(preempt_disable_ip);
3914 pr_cont("\n");
3915 }
3916 if (panic_on_warn)
3917 panic("scheduling while atomic\n");
3918
3919 dump_stack();
3920 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3921 }
3922
3923 /*
3924 * Various schedule()-time debugging checks and statistics:
3925 */
3926 static inline void schedule_debug(struct task_struct *prev, bool preempt)
3927 {
3928 #ifdef CONFIG_SCHED_STACK_END_CHECK
3929 if (task_stack_end_corrupted(prev))
3930 panic("corrupted stack end detected inside scheduler\n");
3931 #endif
3932
3933 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3934 if (!preempt && prev->state && prev->non_block_count) {
3935 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3936 prev->comm, prev->pid, prev->non_block_count);
3937 dump_stack();
3938 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3939 }
3940 #endif
3941
3942 if (unlikely(in_atomic_preempt_off())) {
3943 __schedule_bug(prev);
3944 preempt_count_set(PREEMPT_DISABLED);
3945 }
3946 rcu_sleep_check();
3947
3948 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3949
3950 schedstat_inc(this_rq()->sched_count);
3951 }
3952
3953 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
3954 struct rq_flags *rf)
3955 {
3956 #ifdef CONFIG_SMP
3957 const struct sched_class *class;
3958 /*
3959 * We must do the balancing pass before put_prev_task(), such
3960 * that when we release the rq->lock the task is in the same
3961 * state as before we took rq->lock.
3962 *
3963 * We can terminate the balance pass as soon as we know there is
3964 * a runnable task of @class priority or higher.
3965 */
3966 for_class_range(class, prev->sched_class, &idle_sched_class) {
3967 if (class->balance(rq, prev, rf))
3968 break;
3969 }
3970 #endif
3971
3972 put_prev_task(rq, prev);
3973 }
3974
3975 /*
3976 * Pick up the highest-prio task:
3977 */
3978 static inline struct task_struct *
3979 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3980 {
3981 const struct sched_class *class;
3982 struct task_struct *p;
3983
3984 /*
3985 * Optimization: we know that if all tasks are in the fair class we can
3986 * call that function directly, but only if the @prev task wasn't of a
3987 * higher scheduling class, because otherwise those loose the
3988 * opportunity to pull in more work from other CPUs.
3989 */
3990 if (likely((prev->sched_class == &idle_sched_class ||
3991 prev->sched_class == &fair_sched_class) &&
3992 rq->nr_running == rq->cfs.h_nr_running)) {
3993
3994 p = pick_next_task_fair(rq, prev, rf);
3995 if (unlikely(p == RETRY_TASK))
3996 goto restart;
3997
3998 /* Assumes fair_sched_class->next == idle_sched_class */
3999 if (!p) {
4000 put_prev_task(rq, prev);
4001 p = pick_next_task_idle(rq);
4002 }
4003
4004 return p;
4005 }
4006
4007 restart:
4008 put_prev_task_balance(rq, prev, rf);
4009
4010 for_each_class(class) {
4011 p = class->pick_next_task(rq);
4012 if (p)
4013 return p;
4014 }
4015
4016 /* The idle class should always have a runnable task: */
4017 BUG();
4018 }
4019
4020 /*
4021 * __schedule() is the main scheduler function.
4022 *
4023 * The main means of driving the scheduler and thus entering this function are:
4024 *
4025 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4026 *
4027 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4028 * paths. For example, see arch/x86/entry_64.S.
4029 *
4030 * To drive preemption between tasks, the scheduler sets the flag in timer
4031 * interrupt handler scheduler_tick().
4032 *
4033 * 3. Wakeups don't really cause entry into schedule(). They add a
4034 * task to the run-queue and that's it.
4035 *
4036 * Now, if the new task added to the run-queue preempts the current
4037 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4038 * called on the nearest possible occasion:
4039 *
4040 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4041 *
4042 * - in syscall or exception context, at the next outmost
4043 * preempt_enable(). (this might be as soon as the wake_up()'s
4044 * spin_unlock()!)
4045 *
4046 * - in IRQ context, return from interrupt-handler to
4047 * preemptible context
4048 *
4049 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4050 * then at the next:
4051 *
4052 * - cond_resched() call
4053 * - explicit schedule() call
4054 * - return from syscall or exception to user-space
4055 * - return from interrupt-handler to user-space
4056 *
4057 * WARNING: must be called with preemption disabled!
4058 */
4059 static void __sched notrace __schedule(bool preempt)
4060 {
4061 struct task_struct *prev, *next;
4062 unsigned long *switch_count;
4063 struct rq_flags rf;
4064 struct rq *rq;
4065 int cpu;
4066
4067 cpu = smp_processor_id();
4068 rq = cpu_rq(cpu);
4069 prev = rq->curr;
4070
4071 schedule_debug(prev, preempt);
4072
4073 if (sched_feat(HRTICK))
4074 hrtick_clear(rq);
4075
4076 local_irq_disable();
4077 rcu_note_context_switch(preempt);
4078
4079 /*
4080 * Make sure that signal_pending_state()->signal_pending() below
4081 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4082 * done by the caller to avoid the race with signal_wake_up().
4083 *
4084 * The membarrier system call requires a full memory barrier
4085 * after coming from user-space, before storing to rq->curr.
4086 */
4087 rq_lock(rq, &rf);
4088 smp_mb__after_spinlock();
4089
4090 /* Promote REQ to ACT */
4091 rq->clock_update_flags <<= 1;
4092 update_rq_clock(rq);
4093
4094 switch_count = &prev->nivcsw;
4095 if (!preempt && prev->state) {
4096 if (signal_pending_state(prev->state, prev)) {
4097 prev->state = TASK_RUNNING;
4098 } else {
4099 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4100
4101 if (prev->in_iowait) {
4102 atomic_inc(&rq->nr_iowait);
4103 delayacct_blkio_start();
4104 }
4105 }
4106 switch_count = &prev->nvcsw;
4107 }
4108
4109 next = pick_next_task(rq, prev, &rf);
4110 clear_tsk_need_resched(prev);
4111 clear_preempt_need_resched();
4112
4113 if (likely(prev != next)) {
4114 rq->nr_switches++;
4115 /*
4116 * RCU users of rcu_dereference(rq->curr) may not see
4117 * changes to task_struct made by pick_next_task().
4118 */
4119 RCU_INIT_POINTER(rq->curr, next);
4120 /*
4121 * The membarrier system call requires each architecture
4122 * to have a full memory barrier after updating
4123 * rq->curr, before returning to user-space.
4124 *
4125 * Here are the schemes providing that barrier on the
4126 * various architectures:
4127 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4128 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4129 * - finish_lock_switch() for weakly-ordered
4130 * architectures where spin_unlock is a full barrier,
4131 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4132 * is a RELEASE barrier),
4133 */
4134 ++*switch_count;
4135
4136 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4137
4138 trace_sched_switch(preempt, prev, next);
4139
4140 /* Also unlocks the rq: */
4141 rq = context_switch(rq, prev, next, &rf);
4142 } else {
4143 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4144 rq_unlock_irq(rq, &rf);
4145 }
4146
4147 balance_callback(rq);
4148 }
4149
4150 void __noreturn do_task_dead(void)
4151 {
4152 /* Causes final put_task_struct in finish_task_switch(): */
4153 set_special_state(TASK_DEAD);
4154
4155 /* Tell freezer to ignore us: */
4156 current->flags |= PF_NOFREEZE;
4157
4158 __schedule(false);
4159 BUG();
4160
4161 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4162 for (;;)
4163 cpu_relax();
4164 }
4165
4166 static inline void sched_submit_work(struct task_struct *tsk)
4167 {
4168 if (!tsk->state)
4169 return;
4170
4171 /*
4172 * If a worker went to sleep, notify and ask workqueue whether
4173 * it wants to wake up a task to maintain concurrency.
4174 * As this function is called inside the schedule() context,
4175 * we disable preemption to avoid it calling schedule() again
4176 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4177 * requires it.
4178 */
4179 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4180 preempt_disable();
4181 if (tsk->flags & PF_WQ_WORKER)
4182 wq_worker_sleeping(tsk);
4183 else
4184 io_wq_worker_sleeping(tsk);
4185 preempt_enable_no_resched();
4186 }
4187
4188 if (tsk_is_pi_blocked(tsk))
4189 return;
4190
4191 /*
4192 * If we are going to sleep and we have plugged IO queued,
4193 * make sure to submit it to avoid deadlocks.
4194 */
4195 if (blk_needs_flush_plug(tsk))
4196 blk_schedule_flush_plug(tsk);
4197 }
4198
4199 static void sched_update_worker(struct task_struct *tsk)
4200 {
4201 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4202 if (tsk->flags & PF_WQ_WORKER)
4203 wq_worker_running(tsk);
4204 else
4205 io_wq_worker_running(tsk);
4206 }
4207 }
4208
4209 asmlinkage __visible void __sched schedule(void)
4210 {
4211 struct task_struct *tsk = current;
4212
4213 sched_submit_work(tsk);
4214 do {
4215 preempt_disable();
4216 __schedule(false);
4217 sched_preempt_enable_no_resched();
4218 } while (need_resched());
4219 sched_update_worker(tsk);
4220 }
4221 EXPORT_SYMBOL(schedule);
4222
4223 /*
4224 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4225 * state (have scheduled out non-voluntarily) by making sure that all
4226 * tasks have either left the run queue or have gone into user space.
4227 * As idle tasks do not do either, they must not ever be preempted
4228 * (schedule out non-voluntarily).
4229 *
4230 * schedule_idle() is similar to schedule_preempt_disable() except that it
4231 * never enables preemption because it does not call sched_submit_work().
4232 */
4233 void __sched schedule_idle(void)
4234 {
4235 /*
4236 * As this skips calling sched_submit_work(), which the idle task does
4237 * regardless because that function is a nop when the task is in a
4238 * TASK_RUNNING state, make sure this isn't used someplace that the
4239 * current task can be in any other state. Note, idle is always in the
4240 * TASK_RUNNING state.
4241 */
4242 WARN_ON_ONCE(current->state);
4243 do {
4244 __schedule(false);
4245 } while (need_resched());
4246 }
4247
4248 #ifdef CONFIG_CONTEXT_TRACKING
4249 asmlinkage __visible void __sched schedule_user(void)
4250 {
4251 /*
4252 * If we come here after a random call to set_need_resched(),
4253 * or we have been woken up remotely but the IPI has not yet arrived,
4254 * we haven't yet exited the RCU idle mode. Do it here manually until
4255 * we find a better solution.
4256 *
4257 * NB: There are buggy callers of this function. Ideally we
4258 * should warn if prev_state != CONTEXT_USER, but that will trigger
4259 * too frequently to make sense yet.
4260 */
4261 enum ctx_state prev_state = exception_enter();
4262 schedule();
4263 exception_exit(prev_state);
4264 }
4265 #endif
4266
4267 /**
4268 * schedule_preempt_disabled - called with preemption disabled
4269 *
4270 * Returns with preemption disabled. Note: preempt_count must be 1
4271 */
4272 void __sched schedule_preempt_disabled(void)
4273 {
4274 sched_preempt_enable_no_resched();
4275 schedule();
4276 preempt_disable();
4277 }
4278
4279 static void __sched notrace preempt_schedule_common(void)
4280 {
4281 do {
4282 /*
4283 * Because the function tracer can trace preempt_count_sub()
4284 * and it also uses preempt_enable/disable_notrace(), if
4285 * NEED_RESCHED is set, the preempt_enable_notrace() called
4286 * by the function tracer will call this function again and
4287 * cause infinite recursion.
4288 *
4289 * Preemption must be disabled here before the function
4290 * tracer can trace. Break up preempt_disable() into two
4291 * calls. One to disable preemption without fear of being
4292 * traced. The other to still record the preemption latency,
4293 * which can also be traced by the function tracer.
4294 */
4295 preempt_disable_notrace();
4296 preempt_latency_start(1);
4297 __schedule(true);
4298 preempt_latency_stop(1);
4299 preempt_enable_no_resched_notrace();
4300
4301 /*
4302 * Check again in case we missed a preemption opportunity
4303 * between schedule and now.
4304 */
4305 } while (need_resched());
4306 }
4307
4308 #ifdef CONFIG_PREEMPTION
4309 /*
4310 * This is the entry point to schedule() from in-kernel preemption
4311 * off of preempt_enable.
4312 */
4313 asmlinkage __visible void __sched notrace preempt_schedule(void)
4314 {
4315 /*
4316 * If there is a non-zero preempt_count or interrupts are disabled,
4317 * we do not want to preempt the current task. Just return..
4318 */
4319 if (likely(!preemptible()))
4320 return;
4321
4322 preempt_schedule_common();
4323 }
4324 NOKPROBE_SYMBOL(preempt_schedule);
4325 EXPORT_SYMBOL(preempt_schedule);
4326
4327 /**
4328 * preempt_schedule_notrace - preempt_schedule called by tracing
4329 *
4330 * The tracing infrastructure uses preempt_enable_notrace to prevent
4331 * recursion and tracing preempt enabling caused by the tracing
4332 * infrastructure itself. But as tracing can happen in areas coming
4333 * from userspace or just about to enter userspace, a preempt enable
4334 * can occur before user_exit() is called. This will cause the scheduler
4335 * to be called when the system is still in usermode.
4336 *
4337 * To prevent this, the preempt_enable_notrace will use this function
4338 * instead of preempt_schedule() to exit user context if needed before
4339 * calling the scheduler.
4340 */
4341 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4342 {
4343 enum ctx_state prev_ctx;
4344
4345 if (likely(!preemptible()))
4346 return;
4347
4348 do {
4349 /*
4350 * Because the function tracer can trace preempt_count_sub()
4351 * and it also uses preempt_enable/disable_notrace(), if
4352 * NEED_RESCHED is set, the preempt_enable_notrace() called
4353 * by the function tracer will call this function again and
4354 * cause infinite recursion.
4355 *
4356 * Preemption must be disabled here before the function
4357 * tracer can trace. Break up preempt_disable() into two
4358 * calls. One to disable preemption without fear of being
4359 * traced. The other to still record the preemption latency,
4360 * which can also be traced by the function tracer.
4361 */
4362 preempt_disable_notrace();
4363 preempt_latency_start(1);
4364 /*
4365 * Needs preempt disabled in case user_exit() is traced
4366 * and the tracer calls preempt_enable_notrace() causing
4367 * an infinite recursion.
4368 */
4369 prev_ctx = exception_enter();
4370 __schedule(true);
4371 exception_exit(prev_ctx);
4372
4373 preempt_latency_stop(1);
4374 preempt_enable_no_resched_notrace();
4375 } while (need_resched());
4376 }
4377 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4378
4379 #endif /* CONFIG_PREEMPTION */
4380
4381 /*
4382 * This is the entry point to schedule() from kernel preemption
4383 * off of irq context.
4384 * Note, that this is called and return with irqs disabled. This will
4385 * protect us against recursive calling from irq.
4386 */
4387 asmlinkage __visible void __sched preempt_schedule_irq(void)
4388 {
4389 enum ctx_state prev_state;
4390
4391 /* Catch callers which need to be fixed */
4392 BUG_ON(preempt_count() || !irqs_disabled());
4393
4394 prev_state = exception_enter();
4395
4396 do {
4397 preempt_disable();
4398 local_irq_enable();
4399 __schedule(true);
4400 local_irq_disable();
4401 sched_preempt_enable_no_resched();
4402 } while (need_resched());
4403
4404 exception_exit(prev_state);
4405 }
4406
4407 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4408 void *key)
4409 {
4410 return try_to_wake_up(curr->private, mode, wake_flags);
4411 }
4412 EXPORT_SYMBOL(default_wake_function);
4413
4414 #ifdef CONFIG_RT_MUTEXES
4415
4416 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4417 {
4418 if (pi_task)
4419 prio = min(prio, pi_task->prio);
4420
4421 return prio;
4422 }
4423
4424 static inline int rt_effective_prio(struct task_struct *p, int prio)
4425 {
4426 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4427
4428 return __rt_effective_prio(pi_task, prio);
4429 }
4430
4431 /*
4432 * rt_mutex_setprio - set the current priority of a task
4433 * @p: task to boost
4434 * @pi_task: donor task
4435 *
4436 * This function changes the 'effective' priority of a task. It does
4437 * not touch ->normal_prio like __setscheduler().
4438 *
4439 * Used by the rt_mutex code to implement priority inheritance
4440 * logic. Call site only calls if the priority of the task changed.
4441 */
4442 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4443 {
4444 int prio, oldprio, queued, running, queue_flag =
4445 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4446 const struct sched_class *prev_class;
4447 struct rq_flags rf;
4448 struct rq *rq;
4449
4450 /* XXX used to be waiter->prio, not waiter->task->prio */
4451 prio = __rt_effective_prio(pi_task, p->normal_prio);
4452
4453 /*
4454 * If nothing changed; bail early.
4455 */
4456 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4457 return;
4458
4459 rq = __task_rq_lock(p, &rf);
4460 update_rq_clock(rq);
4461 /*
4462 * Set under pi_lock && rq->lock, such that the value can be used under
4463 * either lock.
4464 *
4465 * Note that there is loads of tricky to make this pointer cache work
4466 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4467 * ensure a task is de-boosted (pi_task is set to NULL) before the
4468 * task is allowed to run again (and can exit). This ensures the pointer
4469 * points to a blocked task -- which guaratees the task is present.
4470 */
4471 p->pi_top_task = pi_task;
4472
4473 /*
4474 * For FIFO/RR we only need to set prio, if that matches we're done.
4475 */
4476 if (prio == p->prio && !dl_prio(prio))
4477 goto out_unlock;
4478
4479 /*
4480 * Idle task boosting is a nono in general. There is one
4481 * exception, when PREEMPT_RT and NOHZ is active:
4482 *
4483 * The idle task calls get_next_timer_interrupt() and holds
4484 * the timer wheel base->lock on the CPU and another CPU wants
4485 * to access the timer (probably to cancel it). We can safely
4486 * ignore the boosting request, as the idle CPU runs this code
4487 * with interrupts disabled and will complete the lock
4488 * protected section without being interrupted. So there is no
4489 * real need to boost.
4490 */
4491 if (unlikely(p == rq->idle)) {
4492 WARN_ON(p != rq->curr);
4493 WARN_ON(p->pi_blocked_on);
4494 goto out_unlock;
4495 }
4496
4497 trace_sched_pi_setprio(p, pi_task);
4498 oldprio = p->prio;
4499
4500 if (oldprio == prio)
4501 queue_flag &= ~DEQUEUE_MOVE;
4502
4503 prev_class = p->sched_class;
4504 queued = task_on_rq_queued(p);
4505 running = task_current(rq, p);
4506 if (queued)
4507 dequeue_task(rq, p, queue_flag);
4508 if (running)
4509 put_prev_task(rq, p);
4510
4511 /*
4512 * Boosting condition are:
4513 * 1. -rt task is running and holds mutex A
4514 * --> -dl task blocks on mutex A
4515 *
4516 * 2. -dl task is running and holds mutex A
4517 * --> -dl task blocks on mutex A and could preempt the
4518 * running task
4519 */
4520 if (dl_prio(prio)) {
4521 if (!dl_prio(p->normal_prio) ||
4522 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
4523 p->dl.dl_boosted = 1;
4524 queue_flag |= ENQUEUE_REPLENISH;
4525 } else
4526 p->dl.dl_boosted = 0;
4527 p->sched_class = &dl_sched_class;
4528 } else if (rt_prio(prio)) {
4529 if (dl_prio(oldprio))
4530 p->dl.dl_boosted = 0;
4531 if (oldprio < prio)
4532 queue_flag |= ENQUEUE_HEAD;
4533 p->sched_class = &rt_sched_class;
4534 } else {
4535 if (dl_prio(oldprio))
4536 p->dl.dl_boosted = 0;
4537 if (rt_prio(oldprio))
4538 p->rt.timeout = 0;
4539 p->sched_class = &fair_sched_class;
4540 }
4541
4542 p->prio = prio;
4543
4544 if (queued)
4545 enqueue_task(rq, p, queue_flag);
4546 if (running)
4547 set_next_task(rq, p);
4548
4549 check_class_changed(rq, p, prev_class, oldprio);
4550 out_unlock:
4551 /* Avoid rq from going away on us: */
4552 preempt_disable();
4553 __task_rq_unlock(rq, &rf);
4554
4555 balance_callback(rq);
4556 preempt_enable();
4557 }
4558 #else
4559 static inline int rt_effective_prio(struct task_struct *p, int prio)
4560 {
4561 return prio;
4562 }
4563 #endif
4564
4565 void set_user_nice(struct task_struct *p, long nice)
4566 {
4567 bool queued, running;
4568 int old_prio;
4569 struct rq_flags rf;
4570 struct rq *rq;
4571
4572 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4573 return;
4574 /*
4575 * We have to be careful, if called from sys_setpriority(),
4576 * the task might be in the middle of scheduling on another CPU.
4577 */
4578 rq = task_rq_lock(p, &rf);
4579 update_rq_clock(rq);
4580
4581 /*
4582 * The RT priorities are set via sched_setscheduler(), but we still
4583 * allow the 'normal' nice value to be set - but as expected
4584 * it wont have any effect on scheduling until the task is
4585 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4586 */
4587 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4588 p->static_prio = NICE_TO_PRIO(nice);
4589 goto out_unlock;
4590 }
4591 queued = task_on_rq_queued(p);
4592 running = task_current(rq, p);
4593 if (queued)
4594 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4595 if (running)
4596 put_prev_task(rq, p);
4597
4598 p->static_prio = NICE_TO_PRIO(nice);
4599 set_load_weight(p, true);
4600 old_prio = p->prio;
4601 p->prio = effective_prio(p);
4602
4603 if (queued)
4604 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4605 if (running)
4606 set_next_task(rq, p);
4607
4608 /*
4609 * If the task increased its priority or is running and
4610 * lowered its priority, then reschedule its CPU:
4611 */
4612 p->sched_class->prio_changed(rq, p, old_prio);
4613
4614 out_unlock:
4615 task_rq_unlock(rq, p, &rf);
4616 }
4617 EXPORT_SYMBOL(set_user_nice);
4618
4619 /*
4620 * can_nice - check if a task can reduce its nice value
4621 * @p: task
4622 * @nice: nice value
4623 */
4624 int can_nice(const struct task_struct *p, const int nice)
4625 {
4626 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
4627 int nice_rlim = nice_to_rlimit(nice);
4628
4629 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4630 capable(CAP_SYS_NICE));
4631 }
4632
4633 #ifdef __ARCH_WANT_SYS_NICE
4634
4635 /*
4636 * sys_nice - change the priority of the current process.
4637 * @increment: priority increment
4638 *
4639 * sys_setpriority is a more generic, but much slower function that
4640 * does similar things.
4641 */
4642 SYSCALL_DEFINE1(nice, int, increment)
4643 {
4644 long nice, retval;
4645
4646 /*
4647 * Setpriority might change our priority at the same moment.
4648 * We don't have to worry. Conceptually one call occurs first
4649 * and we have a single winner.
4650 */
4651 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4652 nice = task_nice(current) + increment;
4653
4654 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4655 if (increment < 0 && !can_nice(current, nice))
4656 return -EPERM;
4657
4658 retval = security_task_setnice(current, nice);
4659 if (retval)
4660 return retval;
4661
4662 set_user_nice(current, nice);
4663 return 0;
4664 }
4665
4666 #endif
4667
4668 /**
4669 * task_prio - return the priority value of a given task.
4670 * @p: the task in question.
4671 *
4672 * Return: The priority value as seen by users in /proc.
4673 * RT tasks are offset by -200. Normal tasks are centered
4674 * around 0, value goes from -16 to +15.
4675 */
4676 int task_prio(const struct task_struct *p)
4677 {
4678 return p->prio - MAX_RT_PRIO;
4679 }
4680
4681 /**
4682 * idle_cpu - is a given CPU idle currently?
4683 * @cpu: the processor in question.
4684 *
4685 * Return: 1 if the CPU is currently idle. 0 otherwise.
4686 */
4687 int idle_cpu(int cpu)
4688 {
4689 struct rq *rq = cpu_rq(cpu);
4690
4691 if (rq->curr != rq->idle)
4692 return 0;
4693
4694 if (rq->nr_running)
4695 return 0;
4696
4697 #ifdef CONFIG_SMP
4698 if (!llist_empty(&rq->wake_list))
4699 return 0;
4700 #endif
4701
4702 return 1;
4703 }
4704
4705 /**
4706 * available_idle_cpu - is a given CPU idle for enqueuing work.
4707 * @cpu: the CPU in question.
4708 *
4709 * Return: 1 if the CPU is currently idle. 0 otherwise.
4710 */
4711 int available_idle_cpu(int cpu)
4712 {
4713 if (!idle_cpu(cpu))
4714 return 0;
4715
4716 if (vcpu_is_preempted(cpu))
4717 return 0;
4718
4719 return 1;
4720 }
4721
4722 /**
4723 * idle_task - return the idle task for a given CPU.
4724 * @cpu: the processor in question.
4725 *
4726 * Return: The idle task for the CPU @cpu.
4727 */
4728 struct task_struct *idle_task(int cpu)
4729 {
4730 return cpu_rq(cpu)->idle;
4731 }
4732
4733 /**
4734 * find_process_by_pid - find a process with a matching PID value.
4735 * @pid: the pid in question.
4736 *
4737 * The task of @pid, if found. %NULL otherwise.
4738 */
4739 static struct task_struct *find_process_by_pid(pid_t pid)
4740 {
4741 return pid ? find_task_by_vpid(pid) : current;
4742 }
4743
4744 /*
4745 * sched_setparam() passes in -1 for its policy, to let the functions
4746 * it calls know not to change it.
4747 */
4748 #define SETPARAM_POLICY -1
4749
4750 static void __setscheduler_params(struct task_struct *p,
4751 const struct sched_attr *attr)
4752 {
4753 int policy = attr->sched_policy;
4754
4755 if (policy == SETPARAM_POLICY)
4756 policy = p->policy;
4757
4758 p->policy = policy;
4759
4760 if (dl_policy(policy))
4761 __setparam_dl(p, attr);
4762 else if (fair_policy(policy))
4763 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4764
4765 /*
4766 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4767 * !rt_policy. Always setting this ensures that things like
4768 * getparam()/getattr() don't report silly values for !rt tasks.
4769 */
4770 p->rt_priority = attr->sched_priority;
4771 p->normal_prio = normal_prio(p);
4772 set_load_weight(p, true);
4773 }
4774
4775 /* Actually do priority change: must hold pi & rq lock. */
4776 static void __setscheduler(struct rq *rq, struct task_struct *p,
4777 const struct sched_attr *attr, bool keep_boost)
4778 {
4779 /*
4780 * If params can't change scheduling class changes aren't allowed
4781 * either.
4782 */
4783 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4784 return;
4785
4786 __setscheduler_params(p, attr);
4787
4788 /*
4789 * Keep a potential priority boosting if called from
4790 * sched_setscheduler().
4791 */
4792 p->prio = normal_prio(p);
4793 if (keep_boost)
4794 p->prio = rt_effective_prio(p, p->prio);
4795
4796 if (dl_prio(p->prio))
4797 p->sched_class = &dl_sched_class;
4798 else if (rt_prio(p->prio))
4799 p->sched_class = &rt_sched_class;
4800 else
4801 p->sched_class = &fair_sched_class;
4802 }
4803
4804 /*
4805 * Check the target process has a UID that matches the current process's:
4806 */
4807 static bool check_same_owner(struct task_struct *p)
4808 {
4809 const struct cred *cred = current_cred(), *pcred;
4810 bool match;
4811
4812 rcu_read_lock();
4813 pcred = __task_cred(p);
4814 match = (uid_eq(cred->euid, pcred->euid) ||
4815 uid_eq(cred->euid, pcred->uid));
4816 rcu_read_unlock();
4817 return match;
4818 }
4819
4820 static int __sched_setscheduler(struct task_struct *p,
4821 const struct sched_attr *attr,
4822 bool user, bool pi)
4823 {
4824 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4825 MAX_RT_PRIO - 1 - attr->sched_priority;
4826 int retval, oldprio, oldpolicy = -1, queued, running;
4827 int new_effective_prio, policy = attr->sched_policy;
4828 const struct sched_class *prev_class;
4829 struct rq_flags rf;
4830 int reset_on_fork;
4831 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4832 struct rq *rq;
4833
4834 /* The pi code expects interrupts enabled */
4835 BUG_ON(pi && in_interrupt());
4836 recheck:
4837 /* Double check policy once rq lock held: */
4838 if (policy < 0) {
4839 reset_on_fork = p->sched_reset_on_fork;
4840 policy = oldpolicy = p->policy;
4841 } else {
4842 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4843
4844 if (!valid_policy(policy))
4845 return -EINVAL;
4846 }
4847
4848 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4849 return -EINVAL;
4850
4851 /*
4852 * Valid priorities for SCHED_FIFO and SCHED_RR are
4853 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4854 * SCHED_BATCH and SCHED_IDLE is 0.
4855 */
4856 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4857 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4858 return -EINVAL;
4859 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4860 (rt_policy(policy) != (attr->sched_priority != 0)))
4861 return -EINVAL;
4862
4863 /*
4864 * Allow unprivileged RT tasks to decrease priority:
4865 */
4866 if (user && !capable(CAP_SYS_NICE)) {
4867 if (fair_policy(policy)) {
4868 if (attr->sched_nice < task_nice(p) &&
4869 !can_nice(p, attr->sched_nice))
4870 return -EPERM;
4871 }
4872
4873 if (rt_policy(policy)) {
4874 unsigned long rlim_rtprio =
4875 task_rlimit(p, RLIMIT_RTPRIO);
4876
4877 /* Can't set/change the rt policy: */
4878 if (policy != p->policy && !rlim_rtprio)
4879 return -EPERM;
4880
4881 /* Can't increase priority: */
4882 if (attr->sched_priority > p->rt_priority &&
4883 attr->sched_priority > rlim_rtprio)
4884 return -EPERM;
4885 }
4886
4887 /*
4888 * Can't set/change SCHED_DEADLINE policy at all for now
4889 * (safest behavior); in the future we would like to allow
4890 * unprivileged DL tasks to increase their relative deadline
4891 * or reduce their runtime (both ways reducing utilization)
4892 */
4893 if (dl_policy(policy))
4894 return -EPERM;
4895
4896 /*
4897 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4898 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4899 */
4900 if (task_has_idle_policy(p) && !idle_policy(policy)) {
4901 if (!can_nice(p, task_nice(p)))
4902 return -EPERM;
4903 }
4904
4905 /* Can't change other user's priorities: */
4906 if (!check_same_owner(p))
4907 return -EPERM;
4908
4909 /* Normal users shall not reset the sched_reset_on_fork flag: */
4910 if (p->sched_reset_on_fork && !reset_on_fork)
4911 return -EPERM;
4912 }
4913
4914 if (user) {
4915 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4916 return -EINVAL;
4917
4918 retval = security_task_setscheduler(p);
4919 if (retval)
4920 return retval;
4921 }
4922
4923 /* Update task specific "requested" clamps */
4924 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4925 retval = uclamp_validate(p, attr);
4926 if (retval)
4927 return retval;
4928 }
4929
4930 if (pi)
4931 cpuset_read_lock();
4932
4933 /*
4934 * Make sure no PI-waiters arrive (or leave) while we are
4935 * changing the priority of the task:
4936 *
4937 * To be able to change p->policy safely, the appropriate
4938 * runqueue lock must be held.
4939 */
4940 rq = task_rq_lock(p, &rf);
4941 update_rq_clock(rq);
4942
4943 /*
4944 * Changing the policy of the stop threads its a very bad idea:
4945 */
4946 if (p == rq->stop) {
4947 retval = -EINVAL;
4948 goto unlock;
4949 }
4950
4951 /*
4952 * If not changing anything there's no need to proceed further,
4953 * but store a possible modification of reset_on_fork.
4954 */
4955 if (unlikely(policy == p->policy)) {
4956 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4957 goto change;
4958 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4959 goto change;
4960 if (dl_policy(policy) && dl_param_changed(p, attr))
4961 goto change;
4962 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4963 goto change;
4964
4965 p->sched_reset_on_fork = reset_on_fork;
4966 retval = 0;
4967 goto unlock;
4968 }
4969 change:
4970
4971 if (user) {
4972 #ifdef CONFIG_RT_GROUP_SCHED
4973 /*
4974 * Do not allow realtime tasks into groups that have no runtime
4975 * assigned.
4976 */
4977 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4978 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4979 !task_group_is_autogroup(task_group(p))) {
4980 retval = -EPERM;
4981 goto unlock;
4982 }
4983 #endif
4984 #ifdef CONFIG_SMP
4985 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4986 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4987 cpumask_t *span = rq->rd->span;
4988
4989 /*
4990 * Don't allow tasks with an affinity mask smaller than
4991 * the entire root_domain to become SCHED_DEADLINE. We
4992 * will also fail if there's no bandwidth available.
4993 */
4994 if (!cpumask_subset(span, p->cpus_ptr) ||
4995 rq->rd->dl_bw.bw == 0) {
4996 retval = -EPERM;
4997 goto unlock;
4998 }
4999 }
5000 #endif
5001 }
5002
5003 /* Re-check policy now with rq lock held: */
5004 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5005 policy = oldpolicy = -1;
5006 task_rq_unlock(rq, p, &rf);
5007 if (pi)
5008 cpuset_read_unlock();
5009 goto recheck;
5010 }
5011
5012 /*
5013 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5014 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5015 * is available.
5016 */
5017 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5018 retval = -EBUSY;
5019 goto unlock;
5020 }
5021
5022 p->sched_reset_on_fork = reset_on_fork;
5023 oldprio = p->prio;
5024
5025 if (pi) {
5026 /*
5027 * Take priority boosted tasks into account. If the new
5028 * effective priority is unchanged, we just store the new
5029 * normal parameters and do not touch the scheduler class and
5030 * the runqueue. This will be done when the task deboost
5031 * itself.
5032 */
5033 new_effective_prio = rt_effective_prio(p, newprio);
5034 if (new_effective_prio == oldprio)
5035 queue_flags &= ~DEQUEUE_MOVE;
5036 }
5037
5038 queued = task_on_rq_queued(p);
5039 running = task_current(rq, p);
5040 if (queued)
5041 dequeue_task(rq, p, queue_flags);
5042 if (running)
5043 put_prev_task(rq, p);
5044
5045 prev_class = p->sched_class;
5046
5047 __setscheduler(rq, p, attr, pi);
5048 __setscheduler_uclamp(p, attr);
5049
5050 if (queued) {
5051 /*
5052 * We enqueue to tail when the priority of a task is
5053 * increased (user space view).
5054 */
5055 if (oldprio < p->prio)
5056 queue_flags |= ENQUEUE_HEAD;
5057
5058 enqueue_task(rq, p, queue_flags);
5059 }
5060 if (running)
5061 set_next_task(rq, p);
5062
5063 check_class_changed(rq, p, prev_class, oldprio);
5064
5065 /* Avoid rq from going away on us: */
5066 preempt_disable();
5067 task_rq_unlock(rq, p, &rf);
5068
5069 if (pi) {
5070 cpuset_read_unlock();
5071 rt_mutex_adjust_pi(p);
5072 }
5073
5074 /* Run balance callbacks after we've adjusted the PI chain: */
5075 balance_callback(rq);
5076 preempt_enable();
5077
5078 return 0;
5079
5080 unlock:
5081 task_rq_unlock(rq, p, &rf);
5082 if (pi)
5083 cpuset_read_unlock();
5084 return retval;
5085 }
5086
5087 static int _sched_setscheduler(struct task_struct *p, int policy,
5088 const struct sched_param *param, bool check)
5089 {
5090 struct sched_attr attr = {
5091 .sched_policy = policy,
5092 .sched_priority = param->sched_priority,
5093 .sched_nice = PRIO_TO_NICE(p->static_prio),
5094 };
5095
5096 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5097 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5098 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5099 policy &= ~SCHED_RESET_ON_FORK;
5100 attr.sched_policy = policy;
5101 }
5102
5103 return __sched_setscheduler(p, &attr, check, true);
5104 }
5105 /**
5106 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5107 * @p: the task in question.
5108 * @policy: new policy.
5109 * @param: structure containing the new RT priority.
5110 *
5111 * Return: 0 on success. An error code otherwise.
5112 *
5113 * NOTE that the task may be already dead.
5114 */
5115 int sched_setscheduler(struct task_struct *p, int policy,
5116 const struct sched_param *param)
5117 {
5118 return _sched_setscheduler(p, policy, param, true);
5119 }
5120 EXPORT_SYMBOL_GPL(sched_setscheduler);
5121
5122 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5123 {
5124 return __sched_setscheduler(p, attr, true, true);
5125 }
5126 EXPORT_SYMBOL_GPL(sched_setattr);
5127
5128 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5129 {
5130 return __sched_setscheduler(p, attr, false, true);
5131 }
5132
5133 /**
5134 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5135 * @p: the task in question.
5136 * @policy: new policy.
5137 * @param: structure containing the new RT priority.
5138 *
5139 * Just like sched_setscheduler, only don't bother checking if the
5140 * current context has permission. For example, this is needed in
5141 * stop_machine(): we create temporary high priority worker threads,
5142 * but our caller might not have that capability.
5143 *
5144 * Return: 0 on success. An error code otherwise.
5145 */
5146 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5147 const struct sched_param *param)
5148 {
5149 return _sched_setscheduler(p, policy, param, false);
5150 }
5151 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5152
5153 static int
5154 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5155 {
5156 struct sched_param lparam;
5157 struct task_struct *p;
5158 int retval;
5159
5160 if (!param || pid < 0)
5161 return -EINVAL;
5162 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5163 return -EFAULT;
5164
5165 rcu_read_lock();
5166 retval = -ESRCH;
5167 p = find_process_by_pid(pid);
5168 if (likely(p))
5169 get_task_struct(p);
5170 rcu_read_unlock();
5171
5172 if (likely(p)) {
5173 retval = sched_setscheduler(p, policy, &lparam);
5174 put_task_struct(p);
5175 }
5176
5177 return retval;
5178 }
5179
5180 /*
5181 * Mimics kernel/events/core.c perf_copy_attr().
5182 */
5183 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5184 {
5185 u32 size;
5186 int ret;
5187
5188 /* Zero the full structure, so that a short copy will be nice: */
5189 memset(attr, 0, sizeof(*attr));
5190
5191 ret = get_user(size, &uattr->size);
5192 if (ret)
5193 return ret;
5194
5195 /* ABI compatibility quirk: */
5196 if (!size)
5197 size = SCHED_ATTR_SIZE_VER0;
5198 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5199 goto err_size;
5200
5201 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5202 if (ret) {
5203 if (ret == -E2BIG)
5204 goto err_size;
5205 return ret;
5206 }
5207
5208 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5209 size < SCHED_ATTR_SIZE_VER1)
5210 return -EINVAL;
5211
5212 /*
5213 * XXX: Do we want to be lenient like existing syscalls; or do we want
5214 * to be strict and return an error on out-of-bounds values?
5215 */
5216 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5217
5218 return 0;
5219
5220 err_size:
5221 put_user(sizeof(*attr), &uattr->size);
5222 return -E2BIG;
5223 }
5224
5225 /**
5226 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5227 * @pid: the pid in question.
5228 * @policy: new policy.
5229 * @param: structure containing the new RT priority.
5230 *
5231 * Return: 0 on success. An error code otherwise.
5232 */
5233 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5234 {
5235 if (policy < 0)
5236 return -EINVAL;
5237
5238 return do_sched_setscheduler(pid, policy, param);
5239 }
5240
5241 /**
5242 * sys_sched_setparam - set/change the RT priority of a thread
5243 * @pid: the pid in question.
5244 * @param: structure containing the new RT priority.
5245 *
5246 * Return: 0 on success. An error code otherwise.
5247 */
5248 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5249 {
5250 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5251 }
5252
5253 /**
5254 * sys_sched_setattr - same as above, but with extended sched_attr
5255 * @pid: the pid in question.
5256 * @uattr: structure containing the extended parameters.
5257 * @flags: for future extension.
5258 */
5259 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5260 unsigned int, flags)
5261 {
5262 struct sched_attr attr;
5263 struct task_struct *p;
5264 int retval;
5265
5266 if (!uattr || pid < 0 || flags)
5267 return -EINVAL;
5268
5269 retval = sched_copy_attr(uattr, &attr);
5270 if (retval)
5271 return retval;
5272
5273 if ((int)attr.sched_policy < 0)
5274 return -EINVAL;
5275 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5276 attr.sched_policy = SETPARAM_POLICY;
5277
5278 rcu_read_lock();
5279 retval = -ESRCH;
5280 p = find_process_by_pid(pid);
5281 if (likely(p))
5282 get_task_struct(p);
5283 rcu_read_unlock();
5284
5285 if (likely(p)) {
5286 retval = sched_setattr(p, &attr);
5287 put_task_struct(p);
5288 }
5289
5290 return retval;
5291 }
5292
5293 /**
5294 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5295 * @pid: the pid in question.
5296 *
5297 * Return: On success, the policy of the thread. Otherwise, a negative error
5298 * code.
5299 */
5300 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5301 {
5302 struct task_struct *p;
5303 int retval;
5304
5305 if (pid < 0)
5306 return -EINVAL;
5307
5308 retval = -ESRCH;
5309 rcu_read_lock();
5310 p = find_process_by_pid(pid);
5311 if (p) {
5312 retval = security_task_getscheduler(p);
5313 if (!retval)
5314 retval = p->policy
5315 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5316 }
5317 rcu_read_unlock();
5318 return retval;
5319 }
5320
5321 /**
5322 * sys_sched_getparam - get the RT priority of a thread
5323 * @pid: the pid in question.
5324 * @param: structure containing the RT priority.
5325 *
5326 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5327 * code.
5328 */
5329 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5330 {
5331 struct sched_param lp = { .sched_priority = 0 };
5332 struct task_struct *p;
5333 int retval;
5334
5335 if (!param || pid < 0)
5336 return -EINVAL;
5337
5338 rcu_read_lock();
5339 p = find_process_by_pid(pid);
5340 retval = -ESRCH;
5341 if (!p)
5342 goto out_unlock;
5343
5344 retval = security_task_getscheduler(p);
5345 if (retval)
5346 goto out_unlock;
5347
5348 if (task_has_rt_policy(p))
5349 lp.sched_priority = p->rt_priority;
5350 rcu_read_unlock();
5351
5352 /*
5353 * This one might sleep, we cannot do it with a spinlock held ...
5354 */
5355 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5356
5357 return retval;
5358
5359 out_unlock:
5360 rcu_read_unlock();
5361 return retval;
5362 }
5363
5364 /*
5365 * Copy the kernel size attribute structure (which might be larger
5366 * than what user-space knows about) to user-space.
5367 *
5368 * Note that all cases are valid: user-space buffer can be larger or
5369 * smaller than the kernel-space buffer. The usual case is that both
5370 * have the same size.
5371 */
5372 static int
5373 sched_attr_copy_to_user(struct sched_attr __user *uattr,
5374 struct sched_attr *kattr,
5375 unsigned int usize)
5376 {
5377 unsigned int ksize = sizeof(*kattr);
5378
5379 if (!access_ok(uattr, usize))
5380 return -EFAULT;
5381
5382 /*
5383 * sched_getattr() ABI forwards and backwards compatibility:
5384 *
5385 * If usize == ksize then we just copy everything to user-space and all is good.
5386 *
5387 * If usize < ksize then we only copy as much as user-space has space for,
5388 * this keeps ABI compatibility as well. We skip the rest.
5389 *
5390 * If usize > ksize then user-space is using a newer version of the ABI,
5391 * which part the kernel doesn't know about. Just ignore it - tooling can
5392 * detect the kernel's knowledge of attributes from the attr->size value
5393 * which is set to ksize in this case.
5394 */
5395 kattr->size = min(usize, ksize);
5396
5397 if (copy_to_user(uattr, kattr, kattr->size))
5398 return -EFAULT;
5399
5400 return 0;
5401 }
5402
5403 /**
5404 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5405 * @pid: the pid in question.
5406 * @uattr: structure containing the extended parameters.
5407 * @usize: sizeof(attr) for fwd/bwd comp.
5408 * @flags: for future extension.
5409 */
5410 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5411 unsigned int, usize, unsigned int, flags)
5412 {
5413 struct sched_attr kattr = { };
5414 struct task_struct *p;
5415 int retval;
5416
5417 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5418 usize < SCHED_ATTR_SIZE_VER0 || flags)
5419 return -EINVAL;
5420
5421 rcu_read_lock();
5422 p = find_process_by_pid(pid);
5423 retval = -ESRCH;
5424 if (!p)
5425 goto out_unlock;
5426
5427 retval = security_task_getscheduler(p);
5428 if (retval)
5429 goto out_unlock;
5430
5431 kattr.sched_policy = p->policy;
5432 if (p->sched_reset_on_fork)
5433 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5434 if (task_has_dl_policy(p))
5435 __getparam_dl(p, &kattr);
5436 else if (task_has_rt_policy(p))
5437 kattr.sched_priority = p->rt_priority;
5438 else
5439 kattr.sched_nice = task_nice(p);
5440
5441 #ifdef CONFIG_UCLAMP_TASK
5442 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5443 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5444 #endif
5445
5446 rcu_read_unlock();
5447
5448 return sched_attr_copy_to_user(uattr, &kattr, usize);
5449
5450 out_unlock:
5451 rcu_read_unlock();
5452 return retval;
5453 }
5454
5455 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5456 {
5457 cpumask_var_t cpus_allowed, new_mask;
5458 struct task_struct *p;
5459 int retval;
5460
5461 rcu_read_lock();
5462
5463 p = find_process_by_pid(pid);
5464 if (!p) {
5465 rcu_read_unlock();
5466 return -ESRCH;
5467 }
5468
5469 /* Prevent p going away */
5470 get_task_struct(p);
5471 rcu_read_unlock();
5472
5473 if (p->flags & PF_NO_SETAFFINITY) {
5474 retval = -EINVAL;
5475 goto out_put_task;
5476 }
5477 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5478 retval = -ENOMEM;
5479 goto out_put_task;
5480 }
5481 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5482 retval = -ENOMEM;
5483 goto out_free_cpus_allowed;
5484 }
5485 retval = -EPERM;
5486 if (!check_same_owner(p)) {
5487 rcu_read_lock();
5488 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5489 rcu_read_unlock();
5490 goto out_free_new_mask;
5491 }
5492 rcu_read_unlock();
5493 }
5494
5495 retval = security_task_setscheduler(p);
5496 if (retval)
5497 goto out_free_new_mask;
5498
5499
5500 cpuset_cpus_allowed(p, cpus_allowed);
5501 cpumask_and(new_mask, in_mask, cpus_allowed);
5502
5503 /*
5504 * Since bandwidth control happens on root_domain basis,
5505 * if admission test is enabled, we only admit -deadline
5506 * tasks allowed to run on all the CPUs in the task's
5507 * root_domain.
5508 */
5509 #ifdef CONFIG_SMP
5510 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5511 rcu_read_lock();
5512 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5513 retval = -EBUSY;
5514 rcu_read_unlock();
5515 goto out_free_new_mask;
5516 }
5517 rcu_read_unlock();
5518 }
5519 #endif
5520 again:
5521 retval = __set_cpus_allowed_ptr(p, new_mask, true);
5522
5523 if (!retval) {
5524 cpuset_cpus_allowed(p, cpus_allowed);
5525 if (!cpumask_subset(new_mask, cpus_allowed)) {
5526 /*
5527 * We must have raced with a concurrent cpuset
5528 * update. Just reset the cpus_allowed to the
5529 * cpuset's cpus_allowed
5530 */
5531 cpumask_copy(new_mask, cpus_allowed);
5532 goto again;
5533 }
5534 }
5535 out_free_new_mask:
5536 free_cpumask_var(new_mask);
5537 out_free_cpus_allowed:
5538 free_cpumask_var(cpus_allowed);
5539 out_put_task:
5540 put_task_struct(p);
5541 return retval;
5542 }
5543
5544 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5545 struct cpumask *new_mask)
5546 {
5547 if (len < cpumask_size())
5548 cpumask_clear(new_mask);
5549 else if (len > cpumask_size())
5550 len = cpumask_size();
5551
5552 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5553 }
5554
5555 /**
5556 * sys_sched_setaffinity - set the CPU affinity of a process
5557 * @pid: pid of the process
5558 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5559 * @user_mask_ptr: user-space pointer to the new CPU mask
5560 *
5561 * Return: 0 on success. An error code otherwise.
5562 */
5563 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5564 unsigned long __user *, user_mask_ptr)
5565 {
5566 cpumask_var_t new_mask;
5567 int retval;
5568
5569 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5570 return -ENOMEM;
5571
5572 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5573 if (retval == 0)
5574 retval = sched_setaffinity(pid, new_mask);
5575 free_cpumask_var(new_mask);
5576 return retval;
5577 }
5578
5579 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5580 {
5581 struct task_struct *p;
5582 unsigned long flags;
5583 int retval;
5584
5585 rcu_read_lock();
5586
5587 retval = -ESRCH;
5588 p = find_process_by_pid(pid);
5589 if (!p)
5590 goto out_unlock;
5591
5592 retval = security_task_getscheduler(p);
5593 if (retval)
5594 goto out_unlock;
5595
5596 raw_spin_lock_irqsave(&p->pi_lock, flags);
5597 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5598 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5599
5600 out_unlock:
5601 rcu_read_unlock();
5602
5603 return retval;
5604 }
5605
5606 /**
5607 * sys_sched_getaffinity - get the CPU affinity of a process
5608 * @pid: pid of the process
5609 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5610 * @user_mask_ptr: user-space pointer to hold the current CPU mask
5611 *
5612 * Return: size of CPU mask copied to user_mask_ptr on success. An
5613 * error code otherwise.
5614 */
5615 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5616 unsigned long __user *, user_mask_ptr)
5617 {
5618 int ret;
5619 cpumask_var_t mask;
5620
5621 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5622 return -EINVAL;
5623 if (len & (sizeof(unsigned long)-1))
5624 return -EINVAL;
5625
5626 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5627 return -ENOMEM;
5628
5629 ret = sched_getaffinity(pid, mask);
5630 if (ret == 0) {
5631 unsigned int retlen = min(len, cpumask_size());
5632
5633 if (copy_to_user(user_mask_ptr, mask, retlen))
5634 ret = -EFAULT;
5635 else
5636 ret = retlen;
5637 }
5638 free_cpumask_var(mask);
5639
5640 return ret;
5641 }
5642
5643 /**
5644 * sys_sched_yield - yield the current processor to other threads.
5645 *
5646 * This function yields the current CPU to other tasks. If there are no
5647 * other threads running on this CPU then this function will return.
5648 *
5649 * Return: 0.
5650 */
5651 static void do_sched_yield(void)
5652 {
5653 struct rq_flags rf;
5654 struct rq *rq;
5655
5656 rq = this_rq_lock_irq(&rf);
5657
5658 schedstat_inc(rq->yld_count);
5659 current->sched_class->yield_task(rq);
5660
5661 /*
5662 * Since we are going to call schedule() anyway, there's
5663 * no need to preempt or enable interrupts:
5664 */
5665 preempt_disable();
5666 rq_unlock(rq, &rf);
5667 sched_preempt_enable_no_resched();
5668
5669 schedule();
5670 }
5671
5672 SYSCALL_DEFINE0(sched_yield)
5673 {
5674 do_sched_yield();
5675 return 0;
5676 }
5677
5678 #ifndef CONFIG_PREEMPTION
5679 int __sched _cond_resched(void)
5680 {
5681 if (should_resched(0)) {
5682 preempt_schedule_common();
5683 return 1;
5684 }
5685 rcu_all_qs();
5686 return 0;
5687 }
5688 EXPORT_SYMBOL(_cond_resched);
5689 #endif
5690
5691 /*
5692 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5693 * call schedule, and on return reacquire the lock.
5694 *
5695 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
5696 * operations here to prevent schedule() from being called twice (once via
5697 * spin_unlock(), once by hand).
5698 */
5699 int __cond_resched_lock(spinlock_t *lock)
5700 {
5701 int resched = should_resched(PREEMPT_LOCK_OFFSET);
5702 int ret = 0;
5703
5704 lockdep_assert_held(lock);
5705
5706 if (spin_needbreak(lock) || resched) {
5707 spin_unlock(lock);
5708 if (resched)
5709 preempt_schedule_common();
5710 else
5711 cpu_relax();
5712 ret = 1;
5713 spin_lock(lock);
5714 }
5715 return ret;
5716 }
5717 EXPORT_SYMBOL(__cond_resched_lock);
5718
5719 /**
5720 * yield - yield the current processor to other threads.
5721 *
5722 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5723 *
5724 * The scheduler is at all times free to pick the calling task as the most
5725 * eligible task to run, if removing the yield() call from your code breaks
5726 * it, its already broken.
5727 *
5728 * Typical broken usage is:
5729 *
5730 * while (!event)
5731 * yield();
5732 *
5733 * where one assumes that yield() will let 'the other' process run that will
5734 * make event true. If the current task is a SCHED_FIFO task that will never
5735 * happen. Never use yield() as a progress guarantee!!
5736 *
5737 * If you want to use yield() to wait for something, use wait_event().
5738 * If you want to use yield() to be 'nice' for others, use cond_resched().
5739 * If you still want to use yield(), do not!
5740 */
5741 void __sched yield(void)
5742 {
5743 set_current_state(TASK_RUNNING);
5744 do_sched_yield();
5745 }
5746 EXPORT_SYMBOL(yield);
5747
5748 /**
5749 * yield_to - yield the current processor to another thread in
5750 * your thread group, or accelerate that thread toward the
5751 * processor it's on.
5752 * @p: target task
5753 * @preempt: whether task preemption is allowed or not
5754 *
5755 * It's the caller's job to ensure that the target task struct
5756 * can't go away on us before we can do any checks.
5757 *
5758 * Return:
5759 * true (>0) if we indeed boosted the target task.
5760 * false (0) if we failed to boost the target.
5761 * -ESRCH if there's no task to yield to.
5762 */
5763 int __sched yield_to(struct task_struct *p, bool preempt)
5764 {
5765 struct task_struct *curr = current;
5766 struct rq *rq, *p_rq;
5767 unsigned long flags;
5768 int yielded = 0;
5769
5770 local_irq_save(flags);
5771 rq = this_rq();
5772
5773 again:
5774 p_rq = task_rq(p);
5775 /*
5776 * If we're the only runnable task on the rq and target rq also
5777 * has only one task, there's absolutely no point in yielding.
5778 */
5779 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5780 yielded = -ESRCH;
5781 goto out_irq;
5782 }
5783
5784 double_rq_lock(rq, p_rq);
5785 if (task_rq(p) != p_rq) {
5786 double_rq_unlock(rq, p_rq);
5787 goto again;
5788 }
5789
5790 if (!curr->sched_class->yield_to_task)
5791 goto out_unlock;
5792
5793 if (curr->sched_class != p->sched_class)
5794 goto out_unlock;
5795
5796 if (task_running(p_rq, p) || p->state)
5797 goto out_unlock;
5798
5799 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5800 if (yielded) {
5801 schedstat_inc(rq->yld_count);
5802 /*
5803 * Make p's CPU reschedule; pick_next_entity takes care of
5804 * fairness.
5805 */
5806 if (preempt && rq != p_rq)
5807 resched_curr(p_rq);
5808 }
5809
5810 out_unlock:
5811 double_rq_unlock(rq, p_rq);
5812 out_irq:
5813 local_irq_restore(flags);
5814
5815 if (yielded > 0)
5816 schedule();
5817
5818 return yielded;
5819 }
5820 EXPORT_SYMBOL_GPL(yield_to);
5821
5822 int io_schedule_prepare(void)
5823 {
5824 int old_iowait = current->in_iowait;
5825
5826 current->in_iowait = 1;
5827 blk_schedule_flush_plug(current);
5828
5829 return old_iowait;
5830 }
5831
5832 void io_schedule_finish(int token)
5833 {
5834 current->in_iowait = token;
5835 }
5836
5837 /*
5838 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5839 * that process accounting knows that this is a task in IO wait state.
5840 */
5841 long __sched io_schedule_timeout(long timeout)
5842 {
5843 int token;
5844 long ret;
5845
5846 token = io_schedule_prepare();
5847 ret = schedule_timeout(timeout);
5848 io_schedule_finish(token);
5849
5850 return ret;
5851 }
5852 EXPORT_SYMBOL(io_schedule_timeout);
5853
5854 void __sched io_schedule(void)
5855 {
5856 int token;
5857
5858 token = io_schedule_prepare();
5859 schedule();
5860 io_schedule_finish(token);
5861 }
5862 EXPORT_SYMBOL(io_schedule);
5863
5864 /**
5865 * sys_sched_get_priority_max - return maximum RT priority.
5866 * @policy: scheduling class.
5867 *
5868 * Return: On success, this syscall returns the maximum
5869 * rt_priority that can be used by a given scheduling class.
5870 * On failure, a negative error code is returned.
5871 */
5872 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5873 {
5874 int ret = -EINVAL;
5875
5876 switch (policy) {
5877 case SCHED_FIFO:
5878 case SCHED_RR:
5879 ret = MAX_USER_RT_PRIO-1;
5880 break;
5881 case SCHED_DEADLINE:
5882 case SCHED_NORMAL:
5883 case SCHED_BATCH:
5884 case SCHED_IDLE:
5885 ret = 0;
5886 break;
5887 }
5888 return ret;
5889 }
5890
5891 /**
5892 * sys_sched_get_priority_min - return minimum RT priority.
5893 * @policy: scheduling class.
5894 *
5895 * Return: On success, this syscall returns the minimum
5896 * rt_priority that can be used by a given scheduling class.
5897 * On failure, a negative error code is returned.
5898 */
5899 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5900 {
5901 int ret = -EINVAL;
5902
5903 switch (policy) {
5904 case SCHED_FIFO:
5905 case SCHED_RR:
5906 ret = 1;
5907 break;
5908 case SCHED_DEADLINE:
5909 case SCHED_NORMAL:
5910 case SCHED_BATCH:
5911 case SCHED_IDLE:
5912 ret = 0;
5913 }
5914 return ret;
5915 }
5916
5917 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5918 {
5919 struct task_struct *p;
5920 unsigned int time_slice;
5921 struct rq_flags rf;
5922 struct rq *rq;
5923 int retval;
5924
5925 if (pid < 0)
5926 return -EINVAL;
5927
5928 retval = -ESRCH;
5929 rcu_read_lock();
5930 p = find_process_by_pid(pid);
5931 if (!p)
5932 goto out_unlock;
5933
5934 retval = security_task_getscheduler(p);
5935 if (retval)
5936 goto out_unlock;
5937
5938 rq = task_rq_lock(p, &rf);
5939 time_slice = 0;
5940 if (p->sched_class->get_rr_interval)
5941 time_slice = p->sched_class->get_rr_interval(rq, p);
5942 task_rq_unlock(rq, p, &rf);
5943
5944 rcu_read_unlock();
5945 jiffies_to_timespec64(time_slice, t);
5946 return 0;
5947
5948 out_unlock:
5949 rcu_read_unlock();
5950 return retval;
5951 }
5952
5953 /**
5954 * sys_sched_rr_get_interval - return the default timeslice of a process.
5955 * @pid: pid of the process.
5956 * @interval: userspace pointer to the timeslice value.
5957 *
5958 * this syscall writes the default timeslice value of a given process
5959 * into the user-space timespec buffer. A value of '0' means infinity.
5960 *
5961 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5962 * an error code.
5963 */
5964 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5965 struct __kernel_timespec __user *, interval)
5966 {
5967 struct timespec64 t;
5968 int retval = sched_rr_get_interval(pid, &t);
5969
5970 if (retval == 0)
5971 retval = put_timespec64(&t, interval);
5972
5973 return retval;
5974 }
5975
5976 #ifdef CONFIG_COMPAT_32BIT_TIME
5977 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5978 struct old_timespec32 __user *, interval)
5979 {
5980 struct timespec64 t;
5981 int retval = sched_rr_get_interval(pid, &t);
5982
5983 if (retval == 0)
5984 retval = put_old_timespec32(&t, interval);
5985 return retval;
5986 }
5987 #endif
5988
5989 void sched_show_task(struct task_struct *p)
5990 {
5991 unsigned long free = 0;
5992 int ppid;
5993
5994 if (!try_get_task_stack(p))
5995 return;
5996
5997 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5998
5999 if (p->state == TASK_RUNNING)
6000 printk(KERN_CONT " running task ");
6001 #ifdef CONFIG_DEBUG_STACK_USAGE
6002 free = stack_not_used(p);
6003 #endif
6004 ppid = 0;
6005 rcu_read_lock();
6006 if (pid_alive(p))
6007 ppid = task_pid_nr(rcu_dereference(p->real_parent));
6008 rcu_read_unlock();
6009 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6010 task_pid_nr(p), ppid,
6011 (unsigned long)task_thread_info(p)->flags);
6012
6013 print_worker_info(KERN_INFO, p);
6014 show_stack(p, NULL);
6015 put_task_stack(p);
6016 }
6017 EXPORT_SYMBOL_GPL(sched_show_task);
6018
6019 static inline bool
6020 state_filter_match(unsigned long state_filter, struct task_struct *p)
6021 {
6022 /* no filter, everything matches */
6023 if (!state_filter)
6024 return true;
6025
6026 /* filter, but doesn't match */
6027 if (!(p->state & state_filter))
6028 return false;
6029
6030 /*
6031 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6032 * TASK_KILLABLE).
6033 */
6034 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6035 return false;
6036
6037 return true;
6038 }
6039
6040
6041 void show_state_filter(unsigned long state_filter)
6042 {
6043 struct task_struct *g, *p;
6044
6045 #if BITS_PER_LONG == 32
6046 printk(KERN_INFO
6047 " task PC stack pid father\n");
6048 #else
6049 printk(KERN_INFO
6050 " task PC stack pid father\n");
6051 #endif
6052 rcu_read_lock();
6053 for_each_process_thread(g, p) {
6054 /*
6055 * reset the NMI-timeout, listing all files on a slow
6056 * console might take a lot of time:
6057 * Also, reset softlockup watchdogs on all CPUs, because
6058 * another CPU might be blocked waiting for us to process
6059 * an IPI.
6060 */
6061 touch_nmi_watchdog();
6062 touch_all_softlockup_watchdogs();
6063 if (state_filter_match(state_filter, p))
6064 sched_show_task(p);
6065 }
6066
6067 #ifdef CONFIG_SCHED_DEBUG
6068 if (!state_filter)
6069 sysrq_sched_debug_show();
6070 #endif
6071 rcu_read_unlock();
6072 /*
6073 * Only show locks if all tasks are dumped:
6074 */
6075 if (!state_filter)
6076 debug_show_all_locks();
6077 }
6078
6079 /**
6080 * init_idle - set up an idle thread for a given CPU
6081 * @idle: task in question
6082 * @cpu: CPU the idle task belongs to
6083 *
6084 * NOTE: this function does not set the idle thread's NEED_RESCHED
6085 * flag, to make booting more robust.
6086 */
6087 void init_idle(struct task_struct *idle, int cpu)
6088 {
6089 struct rq *rq = cpu_rq(cpu);
6090 unsigned long flags;
6091
6092 __sched_fork(0, idle);
6093
6094 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6095 raw_spin_lock(&rq->lock);
6096
6097 idle->state = TASK_RUNNING;
6098 idle->se.exec_start = sched_clock();
6099 idle->flags |= PF_IDLE;
6100
6101 kasan_unpoison_task_stack(idle);
6102
6103 #ifdef CONFIG_SMP
6104 /*
6105 * Its possible that init_idle() gets called multiple times on a task,
6106 * in that case do_set_cpus_allowed() will not do the right thing.
6107 *
6108 * And since this is boot we can forgo the serialization.
6109 */
6110 set_cpus_allowed_common(idle, cpumask_of(cpu));
6111 #endif
6112 /*
6113 * We're having a chicken and egg problem, even though we are
6114 * holding rq->lock, the CPU isn't yet set to this CPU so the
6115 * lockdep check in task_group() will fail.
6116 *
6117 * Similar case to sched_fork(). / Alternatively we could
6118 * use task_rq_lock() here and obtain the other rq->lock.
6119 *
6120 * Silence PROVE_RCU
6121 */
6122 rcu_read_lock();
6123 __set_task_cpu(idle, cpu);
6124 rcu_read_unlock();
6125
6126 rq->idle = idle;
6127 rcu_assign_pointer(rq->curr, idle);
6128 idle->on_rq = TASK_ON_RQ_QUEUED;
6129 #ifdef CONFIG_SMP
6130 idle->on_cpu = 1;
6131 #endif
6132 raw_spin_unlock(&rq->lock);
6133 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6134
6135 /* Set the preempt count _outside_ the spinlocks! */
6136 init_idle_preempt_count(idle, cpu);
6137
6138 /*
6139 * The idle tasks have their own, simple scheduling class:
6140 */
6141 idle->sched_class = &idle_sched_class;
6142 ftrace_graph_init_idle_task(idle, cpu);
6143 vtime_init_idle(idle, cpu);
6144 #ifdef CONFIG_SMP
6145 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6146 #endif
6147 }
6148
6149 #ifdef CONFIG_SMP
6150
6151 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6152 const struct cpumask *trial)
6153 {
6154 int ret = 1;
6155
6156 if (!cpumask_weight(cur))
6157 return ret;
6158
6159 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6160
6161 return ret;
6162 }
6163
6164 int task_can_attach(struct task_struct *p,
6165 const struct cpumask *cs_cpus_allowed)
6166 {
6167 int ret = 0;
6168
6169 /*
6170 * Kthreads which disallow setaffinity shouldn't be moved
6171 * to a new cpuset; we don't want to change their CPU
6172 * affinity and isolating such threads by their set of
6173 * allowed nodes is unnecessary. Thus, cpusets are not
6174 * applicable for such threads. This prevents checking for
6175 * success of set_cpus_allowed_ptr() on all attached tasks
6176 * before cpus_mask may be changed.
6177 */
6178 if (p->flags & PF_NO_SETAFFINITY) {
6179 ret = -EINVAL;
6180 goto out;
6181 }
6182
6183 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6184 cs_cpus_allowed))
6185 ret = dl_task_can_attach(p, cs_cpus_allowed);
6186
6187 out:
6188 return ret;
6189 }
6190
6191 bool sched_smp_initialized __read_mostly;
6192
6193 #ifdef CONFIG_NUMA_BALANCING
6194 /* Migrate current task p to target_cpu */
6195 int migrate_task_to(struct task_struct *p, int target_cpu)
6196 {
6197 struct migration_arg arg = { p, target_cpu };
6198 int curr_cpu = task_cpu(p);
6199
6200 if (curr_cpu == target_cpu)
6201 return 0;
6202
6203 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6204 return -EINVAL;
6205
6206 /* TODO: This is not properly updating schedstats */
6207
6208 trace_sched_move_numa(p, curr_cpu, target_cpu);
6209 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6210 }
6211
6212 /*
6213 * Requeue a task on a given node and accurately track the number of NUMA
6214 * tasks on the runqueues
6215 */
6216 void sched_setnuma(struct task_struct *p, int nid)
6217 {
6218 bool queued, running;
6219 struct rq_flags rf;
6220 struct rq *rq;
6221
6222 rq = task_rq_lock(p, &rf);
6223 queued = task_on_rq_queued(p);
6224 running = task_current(rq, p);
6225
6226 if (queued)
6227 dequeue_task(rq, p, DEQUEUE_SAVE);
6228 if (running)
6229 put_prev_task(rq, p);
6230
6231 p->numa_preferred_nid = nid;
6232
6233 if (queued)
6234 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6235 if (running)
6236 set_next_task(rq, p);
6237 task_rq_unlock(rq, p, &rf);
6238 }
6239 #endif /* CONFIG_NUMA_BALANCING */
6240
6241 #ifdef CONFIG_HOTPLUG_CPU
6242 /*
6243 * Ensure that the idle task is using init_mm right before its CPU goes
6244 * offline.
6245 */
6246 void idle_task_exit(void)
6247 {
6248 struct mm_struct *mm = current->active_mm;
6249
6250 BUG_ON(cpu_online(smp_processor_id()));
6251 BUG_ON(current != this_rq()->idle);
6252
6253 if (mm != &init_mm) {
6254 switch_mm(mm, &init_mm, current);
6255 finish_arch_post_lock_switch();
6256 }
6257
6258 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
6259 }
6260
6261 /*
6262 * Since this CPU is going 'away' for a while, fold any nr_active delta
6263 * we might have. Assumes we're called after migrate_tasks() so that the
6264 * nr_active count is stable. We need to take the teardown thread which
6265 * is calling this into account, so we hand in adjust = 1 to the load
6266 * calculation.
6267 *
6268 * Also see the comment "Global load-average calculations".
6269 */
6270 static void calc_load_migrate(struct rq *rq)
6271 {
6272 long delta = calc_load_fold_active(rq, 1);
6273 if (delta)
6274 atomic_long_add(delta, &calc_load_tasks);
6275 }
6276
6277 static struct task_struct *__pick_migrate_task(struct rq *rq)
6278 {
6279 const struct sched_class *class;
6280 struct task_struct *next;
6281
6282 for_each_class(class) {
6283 next = class->pick_next_task(rq);
6284 if (next) {
6285 next->sched_class->put_prev_task(rq, next);
6286 return next;
6287 }
6288 }
6289
6290 /* The idle class should always have a runnable task */
6291 BUG();
6292 }
6293
6294 /*
6295 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6296 * try_to_wake_up()->select_task_rq().
6297 *
6298 * Called with rq->lock held even though we'er in stop_machine() and
6299 * there's no concurrency possible, we hold the required locks anyway
6300 * because of lock validation efforts.
6301 */
6302 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6303 {
6304 struct rq *rq = dead_rq;
6305 struct task_struct *next, *stop = rq->stop;
6306 struct rq_flags orf = *rf;
6307 int dest_cpu;
6308
6309 /*
6310 * Fudge the rq selection such that the below task selection loop
6311 * doesn't get stuck on the currently eligible stop task.
6312 *
6313 * We're currently inside stop_machine() and the rq is either stuck
6314 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6315 * either way we should never end up calling schedule() until we're
6316 * done here.
6317 */
6318 rq->stop = NULL;
6319
6320 /*
6321 * put_prev_task() and pick_next_task() sched
6322 * class method both need to have an up-to-date
6323 * value of rq->clock[_task]
6324 */
6325 update_rq_clock(rq);
6326
6327 for (;;) {
6328 /*
6329 * There's this thread running, bail when that's the only
6330 * remaining thread:
6331 */
6332 if (rq->nr_running == 1)
6333 break;
6334
6335 next = __pick_migrate_task(rq);
6336
6337 /*
6338 * Rules for changing task_struct::cpus_mask are holding
6339 * both pi_lock and rq->lock, such that holding either
6340 * stabilizes the mask.
6341 *
6342 * Drop rq->lock is not quite as disastrous as it usually is
6343 * because !cpu_active at this point, which means load-balance
6344 * will not interfere. Also, stop-machine.
6345 */
6346 rq_unlock(rq, rf);
6347 raw_spin_lock(&next->pi_lock);
6348 rq_relock(rq, rf);
6349
6350 /*
6351 * Since we're inside stop-machine, _nothing_ should have
6352 * changed the task, WARN if weird stuff happened, because in
6353 * that case the above rq->lock drop is a fail too.
6354 */
6355 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6356 raw_spin_unlock(&next->pi_lock);
6357 continue;
6358 }
6359
6360 /* Find suitable destination for @next, with force if needed. */
6361 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6362 rq = __migrate_task(rq, rf, next, dest_cpu);
6363 if (rq != dead_rq) {
6364 rq_unlock(rq, rf);
6365 rq = dead_rq;
6366 *rf = orf;
6367 rq_relock(rq, rf);
6368 }
6369 raw_spin_unlock(&next->pi_lock);
6370 }
6371
6372 rq->stop = stop;
6373 }
6374 #endif /* CONFIG_HOTPLUG_CPU */
6375
6376 void set_rq_online(struct rq *rq)
6377 {
6378 if (!rq->online) {
6379 const struct sched_class *class;
6380
6381 cpumask_set_cpu(rq->cpu, rq->rd->online);
6382 rq->online = 1;
6383
6384 for_each_class(class) {
6385 if (class->rq_online)
6386 class->rq_online(rq);
6387 }
6388 }
6389 }
6390
6391 void set_rq_offline(struct rq *rq)
6392 {
6393 if (rq->online) {
6394 const struct sched_class *class;
6395
6396 for_each_class(class) {
6397 if (class->rq_offline)
6398 class->rq_offline(rq);
6399 }
6400
6401 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6402 rq->online = 0;
6403 }
6404 }
6405
6406 /*
6407 * used to mark begin/end of suspend/resume:
6408 */
6409 static int num_cpus_frozen;
6410
6411 /*
6412 * Update cpusets according to cpu_active mask. If cpusets are
6413 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6414 * around partition_sched_domains().
6415 *
6416 * If we come here as part of a suspend/resume, don't touch cpusets because we
6417 * want to restore it back to its original state upon resume anyway.
6418 */
6419 static void cpuset_cpu_active(void)
6420 {
6421 if (cpuhp_tasks_frozen) {
6422 /*
6423 * num_cpus_frozen tracks how many CPUs are involved in suspend
6424 * resume sequence. As long as this is not the last online
6425 * operation in the resume sequence, just build a single sched
6426 * domain, ignoring cpusets.
6427 */
6428 partition_sched_domains(1, NULL, NULL);
6429 if (--num_cpus_frozen)
6430 return;
6431 /*
6432 * This is the last CPU online operation. So fall through and
6433 * restore the original sched domains by considering the
6434 * cpuset configurations.
6435 */
6436 cpuset_force_rebuild();
6437 }
6438 cpuset_update_active_cpus();
6439 }
6440
6441 static int cpuset_cpu_inactive(unsigned int cpu)
6442 {
6443 if (!cpuhp_tasks_frozen) {
6444 if (dl_cpu_busy(cpu))
6445 return -EBUSY;
6446 cpuset_update_active_cpus();
6447 } else {
6448 num_cpus_frozen++;
6449 partition_sched_domains(1, NULL, NULL);
6450 }
6451 return 0;
6452 }
6453
6454 int sched_cpu_activate(unsigned int cpu)
6455 {
6456 struct rq *rq = cpu_rq(cpu);
6457 struct rq_flags rf;
6458
6459 #ifdef CONFIG_SCHED_SMT
6460 /*
6461 * When going up, increment the number of cores with SMT present.
6462 */
6463 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6464 static_branch_inc_cpuslocked(&sched_smt_present);
6465 #endif
6466 set_cpu_active(cpu, true);
6467
6468 if (sched_smp_initialized) {
6469 sched_domains_numa_masks_set(cpu);
6470 cpuset_cpu_active();
6471 }
6472
6473 /*
6474 * Put the rq online, if not already. This happens:
6475 *
6476 * 1) In the early boot process, because we build the real domains
6477 * after all CPUs have been brought up.
6478 *
6479 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6480 * domains.
6481 */
6482 rq_lock_irqsave(rq, &rf);
6483 if (rq->rd) {
6484 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6485 set_rq_online(rq);
6486 }
6487 rq_unlock_irqrestore(rq, &rf);
6488
6489 return 0;
6490 }
6491
6492 int sched_cpu_deactivate(unsigned int cpu)
6493 {
6494 int ret;
6495
6496 set_cpu_active(cpu, false);
6497 /*
6498 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6499 * users of this state to go away such that all new such users will
6500 * observe it.
6501 *
6502 * Do sync before park smpboot threads to take care the rcu boost case.
6503 */
6504 synchronize_rcu();
6505
6506 #ifdef CONFIG_SCHED_SMT
6507 /*
6508 * When going down, decrement the number of cores with SMT present.
6509 */
6510 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6511 static_branch_dec_cpuslocked(&sched_smt_present);
6512 #endif
6513
6514 if (!sched_smp_initialized)
6515 return 0;
6516
6517 ret = cpuset_cpu_inactive(cpu);
6518 if (ret) {
6519 set_cpu_active(cpu, true);
6520 return ret;
6521 }
6522 sched_domains_numa_masks_clear(cpu);
6523 return 0;
6524 }
6525
6526 static void sched_rq_cpu_starting(unsigned int cpu)
6527 {
6528 struct rq *rq = cpu_rq(cpu);
6529
6530 rq->calc_load_update = calc_load_update;
6531 update_max_interval();
6532 }
6533
6534 int sched_cpu_starting(unsigned int cpu)
6535 {
6536 sched_rq_cpu_starting(cpu);
6537 sched_tick_start(cpu);
6538 return 0;
6539 }
6540
6541 #ifdef CONFIG_HOTPLUG_CPU
6542 int sched_cpu_dying(unsigned int cpu)
6543 {
6544 struct rq *rq = cpu_rq(cpu);
6545 struct rq_flags rf;
6546
6547 /* Handle pending wakeups and then migrate everything off */
6548 sched_ttwu_pending();
6549 sched_tick_stop(cpu);
6550
6551 rq_lock_irqsave(rq, &rf);
6552 if (rq->rd) {
6553 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6554 set_rq_offline(rq);
6555 }
6556 migrate_tasks(rq, &rf);
6557 BUG_ON(rq->nr_running != 1);
6558 rq_unlock_irqrestore(rq, &rf);
6559
6560 calc_load_migrate(rq);
6561 update_max_interval();
6562 nohz_balance_exit_idle(rq);
6563 hrtick_clear(rq);
6564 return 0;
6565 }
6566 #endif
6567
6568 void __init sched_init_smp(void)
6569 {
6570 sched_init_numa();
6571
6572 /*
6573 * There's no userspace yet to cause hotplug operations; hence all the
6574 * CPU masks are stable and all blatant races in the below code cannot
6575 * happen.
6576 */
6577 mutex_lock(&sched_domains_mutex);
6578 sched_init_domains(cpu_active_mask);
6579 mutex_unlock(&sched_domains_mutex);
6580
6581 /* Move init over to a non-isolated CPU */
6582 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6583 BUG();
6584 sched_init_granularity();
6585
6586 init_sched_rt_class();
6587 init_sched_dl_class();
6588
6589 sched_smp_initialized = true;
6590 }
6591
6592 static int __init migration_init(void)
6593 {
6594 sched_cpu_starting(smp_processor_id());
6595 return 0;
6596 }
6597 early_initcall(migration_init);
6598
6599 #else
6600 void __init sched_init_smp(void)
6601 {
6602 sched_init_granularity();
6603 }
6604 #endif /* CONFIG_SMP */
6605
6606 int in_sched_functions(unsigned long addr)
6607 {
6608 return in_lock_functions(addr) ||
6609 (addr >= (unsigned long)__sched_text_start
6610 && addr < (unsigned long)__sched_text_end);
6611 }
6612
6613 #ifdef CONFIG_CGROUP_SCHED
6614 /*
6615 * Default task group.
6616 * Every task in system belongs to this group at bootup.
6617 */
6618 struct task_group root_task_group;
6619 LIST_HEAD(task_groups);
6620
6621 /* Cacheline aligned slab cache for task_group */
6622 static struct kmem_cache *task_group_cache __read_mostly;
6623 #endif
6624
6625 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6626 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6627
6628 void __init sched_init(void)
6629 {
6630 unsigned long ptr = 0;
6631 int i;
6632
6633 wait_bit_init();
6634
6635 #ifdef CONFIG_FAIR_GROUP_SCHED
6636 ptr += 2 * nr_cpu_ids * sizeof(void **);
6637 #endif
6638 #ifdef CONFIG_RT_GROUP_SCHED
6639 ptr += 2 * nr_cpu_ids * sizeof(void **);
6640 #endif
6641 if (ptr) {
6642 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
6643
6644 #ifdef CONFIG_FAIR_GROUP_SCHED
6645 root_task_group.se = (struct sched_entity **)ptr;
6646 ptr += nr_cpu_ids * sizeof(void **);
6647
6648 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6649 ptr += nr_cpu_ids * sizeof(void **);
6650
6651 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6652 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6653 #endif /* CONFIG_FAIR_GROUP_SCHED */
6654 #ifdef CONFIG_RT_GROUP_SCHED
6655 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6656 ptr += nr_cpu_ids * sizeof(void **);
6657
6658 root_task_group.rt_rq = (struct rt_rq **)ptr;
6659 ptr += nr_cpu_ids * sizeof(void **);
6660
6661 #endif /* CONFIG_RT_GROUP_SCHED */
6662 }
6663 #ifdef CONFIG_CPUMASK_OFFSTACK
6664 for_each_possible_cpu(i) {
6665 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6666 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6667 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6668 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6669 }
6670 #endif /* CONFIG_CPUMASK_OFFSTACK */
6671
6672 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6673 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6674
6675 #ifdef CONFIG_SMP
6676 init_defrootdomain();
6677 #endif
6678
6679 #ifdef CONFIG_RT_GROUP_SCHED
6680 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6681 global_rt_period(), global_rt_runtime());
6682 #endif /* CONFIG_RT_GROUP_SCHED */
6683
6684 #ifdef CONFIG_CGROUP_SCHED
6685 task_group_cache = KMEM_CACHE(task_group, 0);
6686
6687 list_add(&root_task_group.list, &task_groups);
6688 INIT_LIST_HEAD(&root_task_group.children);
6689 INIT_LIST_HEAD(&root_task_group.siblings);
6690 autogroup_init(&init_task);
6691 #endif /* CONFIG_CGROUP_SCHED */
6692
6693 for_each_possible_cpu(i) {
6694 struct rq *rq;
6695
6696 rq = cpu_rq(i);
6697 raw_spin_lock_init(&rq->lock);
6698 rq->nr_running = 0;
6699 rq->calc_load_active = 0;
6700 rq->calc_load_update = jiffies + LOAD_FREQ;
6701 init_cfs_rq(&rq->cfs);
6702 init_rt_rq(&rq->rt);
6703 init_dl_rq(&rq->dl);
6704 #ifdef CONFIG_FAIR_GROUP_SCHED
6705 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6706 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6707 /*
6708 * How much CPU bandwidth does root_task_group get?
6709 *
6710 * In case of task-groups formed thr' the cgroup filesystem, it
6711 * gets 100% of the CPU resources in the system. This overall
6712 * system CPU resource is divided among the tasks of
6713 * root_task_group and its child task-groups in a fair manner,
6714 * based on each entity's (task or task-group's) weight
6715 * (se->load.weight).
6716 *
6717 * In other words, if root_task_group has 10 tasks of weight
6718 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6719 * then A0's share of the CPU resource is:
6720 *
6721 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6722 *
6723 * We achieve this by letting root_task_group's tasks sit
6724 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6725 */
6726 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6727 #endif /* CONFIG_FAIR_GROUP_SCHED */
6728
6729 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6730 #ifdef CONFIG_RT_GROUP_SCHED
6731 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6732 #endif
6733 #ifdef CONFIG_SMP
6734 rq->sd = NULL;
6735 rq->rd = NULL;
6736 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6737 rq->balance_callback = NULL;
6738 rq->active_balance = 0;
6739 rq->next_balance = jiffies;
6740 rq->push_cpu = 0;
6741 rq->cpu = i;
6742 rq->online = 0;
6743 rq->idle_stamp = 0;
6744 rq->avg_idle = 2*sysctl_sched_migration_cost;
6745 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6746
6747 rq_csd_init(rq, &rq->wake_csd, wake_csd_func);
6748
6749 INIT_LIST_HEAD(&rq->cfs_tasks);
6750
6751 rq_attach_root(rq, &def_root_domain);
6752 #ifdef CONFIG_NO_HZ_COMMON
6753 rq->last_blocked_load_update_tick = jiffies;
6754 atomic_set(&rq->nohz_flags, 0);
6755
6756 rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func);
6757 #endif
6758 #endif /* CONFIG_SMP */
6759 hrtick_rq_init(rq);
6760 atomic_set(&rq->nr_iowait, 0);
6761 }
6762
6763 set_load_weight(&init_task, false);
6764
6765 /*
6766 * The boot idle thread does lazy MMU switching as well:
6767 */
6768 mmgrab(&init_mm);
6769 enter_lazy_tlb(&init_mm, current);
6770
6771 /*
6772 * Make us the idle thread. Technically, schedule() should not be
6773 * called from this thread, however somewhere below it might be,
6774 * but because we are the idle thread, we just pick up running again
6775 * when this runqueue becomes "idle".
6776 */
6777 init_idle(current, smp_processor_id());
6778
6779 calc_load_update = jiffies + LOAD_FREQ;
6780
6781 #ifdef CONFIG_SMP
6782 idle_thread_set_boot_cpu();
6783 #endif
6784 init_sched_fair_class();
6785
6786 init_schedstats();
6787
6788 psi_init();
6789
6790 init_uclamp();
6791
6792 scheduler_running = 1;
6793 }
6794
6795 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6796 static inline int preempt_count_equals(int preempt_offset)
6797 {
6798 int nested = preempt_count() + rcu_preempt_depth();
6799
6800 return (nested == preempt_offset);
6801 }
6802
6803 void __might_sleep(const char *file, int line, int preempt_offset)
6804 {
6805 /*
6806 * Blocking primitives will set (and therefore destroy) current->state,
6807 * since we will exit with TASK_RUNNING make sure we enter with it,
6808 * otherwise we will destroy state.
6809 */
6810 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6811 "do not call blocking ops when !TASK_RUNNING; "
6812 "state=%lx set at [<%p>] %pS\n",
6813 current->state,
6814 (void *)current->task_state_change,
6815 (void *)current->task_state_change);
6816
6817 ___might_sleep(file, line, preempt_offset);
6818 }
6819 EXPORT_SYMBOL(__might_sleep);
6820
6821 void ___might_sleep(const char *file, int line, int preempt_offset)
6822 {
6823 /* Ratelimiting timestamp: */
6824 static unsigned long prev_jiffy;
6825
6826 unsigned long preempt_disable_ip;
6827
6828 /* WARN_ON_ONCE() by default, no rate limit required: */
6829 rcu_sleep_check();
6830
6831 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6832 !is_idle_task(current) && !current->non_block_count) ||
6833 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6834 oops_in_progress)
6835 return;
6836
6837 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6838 return;
6839 prev_jiffy = jiffies;
6840
6841 /* Save this before calling printk(), since that will clobber it: */
6842 preempt_disable_ip = get_preempt_disable_ip(current);
6843
6844 printk(KERN_ERR
6845 "BUG: sleeping function called from invalid context at %s:%d\n",
6846 file, line);
6847 printk(KERN_ERR
6848 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6849 in_atomic(), irqs_disabled(), current->non_block_count,
6850 current->pid, current->comm);
6851
6852 if (task_stack_end_corrupted(current))
6853 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6854
6855 debug_show_held_locks(current);
6856 if (irqs_disabled())
6857 print_irqtrace_events(current);
6858 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6859 && !preempt_count_equals(preempt_offset)) {
6860 pr_err("Preemption disabled at:");
6861 print_ip_sym(preempt_disable_ip);
6862 pr_cont("\n");
6863 }
6864 dump_stack();
6865 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6866 }
6867 EXPORT_SYMBOL(___might_sleep);
6868
6869 void __cant_sleep(const char *file, int line, int preempt_offset)
6870 {
6871 static unsigned long prev_jiffy;
6872
6873 if (irqs_disabled())
6874 return;
6875
6876 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6877 return;
6878
6879 if (preempt_count() > preempt_offset)
6880 return;
6881
6882 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6883 return;
6884 prev_jiffy = jiffies;
6885
6886 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6887 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6888 in_atomic(), irqs_disabled(),
6889 current->pid, current->comm);
6890
6891 debug_show_held_locks(current);
6892 dump_stack();
6893 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6894 }
6895 EXPORT_SYMBOL_GPL(__cant_sleep);
6896 #endif
6897
6898 #ifdef CONFIG_MAGIC_SYSRQ
6899 void normalize_rt_tasks(void)
6900 {
6901 struct task_struct *g, *p;
6902 struct sched_attr attr = {
6903 .sched_policy = SCHED_NORMAL,
6904 };
6905
6906 read_lock(&tasklist_lock);
6907 for_each_process_thread(g, p) {
6908 /*
6909 * Only normalize user tasks:
6910 */
6911 if (p->flags & PF_KTHREAD)
6912 continue;
6913
6914 p->se.exec_start = 0;
6915 schedstat_set(p->se.statistics.wait_start, 0);
6916 schedstat_set(p->se.statistics.sleep_start, 0);
6917 schedstat_set(p->se.statistics.block_start, 0);
6918
6919 if (!dl_task(p) && !rt_task(p)) {
6920 /*
6921 * Renice negative nice level userspace
6922 * tasks back to 0:
6923 */
6924 if (task_nice(p) < 0)
6925 set_user_nice(p, 0);
6926 continue;
6927 }
6928
6929 __sched_setscheduler(p, &attr, false, false);
6930 }
6931 read_unlock(&tasklist_lock);
6932 }
6933
6934 #endif /* CONFIG_MAGIC_SYSRQ */
6935
6936 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6937 /*
6938 * These functions are only useful for the IA64 MCA handling, or kdb.
6939 *
6940 * They can only be called when the whole system has been
6941 * stopped - every CPU needs to be quiescent, and no scheduling
6942 * activity can take place. Using them for anything else would
6943 * be a serious bug, and as a result, they aren't even visible
6944 * under any other configuration.
6945 */
6946
6947 /**
6948 * curr_task - return the current task for a given CPU.
6949 * @cpu: the processor in question.
6950 *
6951 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6952 *
6953 * Return: The current task for @cpu.
6954 */
6955 struct task_struct *curr_task(int cpu)
6956 {
6957 return cpu_curr(cpu);
6958 }
6959
6960 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6961
6962 #ifdef CONFIG_IA64
6963 /**
6964 * ia64_set_curr_task - set the current task for a given CPU.
6965 * @cpu: the processor in question.
6966 * @p: the task pointer to set.
6967 *
6968 * Description: This function must only be used when non-maskable interrupts
6969 * are serviced on a separate stack. It allows the architecture to switch the
6970 * notion of the current task on a CPU in a non-blocking manner. This function
6971 * must be called with all CPU's synchronized, and interrupts disabled, the
6972 * and caller must save the original value of the current task (see
6973 * curr_task() above) and restore that value before reenabling interrupts and
6974 * re-starting the system.
6975 *
6976 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6977 */
6978 void ia64_set_curr_task(int cpu, struct task_struct *p)
6979 {
6980 cpu_curr(cpu) = p;
6981 }
6982
6983 #endif
6984
6985 #ifdef CONFIG_CGROUP_SCHED
6986 /* task_group_lock serializes the addition/removal of task groups */
6987 static DEFINE_SPINLOCK(task_group_lock);
6988
6989 static inline void alloc_uclamp_sched_group(struct task_group *tg,
6990 struct task_group *parent)
6991 {
6992 #ifdef CONFIG_UCLAMP_TASK_GROUP
6993 enum uclamp_id clamp_id;
6994
6995 for_each_clamp_id(clamp_id) {
6996 uclamp_se_set(&tg->uclamp_req[clamp_id],
6997 uclamp_none(clamp_id), false);
6998 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
6999 }
7000 #endif
7001 }
7002
7003 static void sched_free_group(struct task_group *tg)
7004 {
7005 free_fair_sched_group(tg);
7006 free_rt_sched_group(tg);
7007 autogroup_free(tg);
7008 kmem_cache_free(task_group_cache, tg);
7009 }
7010
7011 /* allocate runqueue etc for a new task group */
7012 struct task_group *sched_create_group(struct task_group *parent)
7013 {
7014 struct task_group *tg;
7015
7016 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7017 if (!tg)
7018 return ERR_PTR(-ENOMEM);
7019
7020 if (!alloc_fair_sched_group(tg, parent))
7021 goto err;
7022
7023 if (!alloc_rt_sched_group(tg, parent))
7024 goto err;
7025
7026 alloc_uclamp_sched_group(tg, parent);
7027
7028 return tg;
7029
7030 err:
7031 sched_free_group(tg);
7032 return ERR_PTR(-ENOMEM);
7033 }
7034
7035 void sched_online_group(struct task_group *tg, struct task_group *parent)
7036 {
7037 unsigned long flags;
7038
7039 spin_lock_irqsave(&task_group_lock, flags);
7040 list_add_rcu(&tg->list, &task_groups);
7041
7042 /* Root should already exist: */
7043 WARN_ON(!parent);
7044
7045 tg->parent = parent;
7046 INIT_LIST_HEAD(&tg->children);
7047 list_add_rcu(&tg->siblings, &parent->children);
7048 spin_unlock_irqrestore(&task_group_lock, flags);
7049
7050 online_fair_sched_group(tg);
7051 }
7052
7053 /* rcu callback to free various structures associated with a task group */
7054 static void sched_free_group_rcu(struct rcu_head *rhp)
7055 {
7056 /* Now it should be safe to free those cfs_rqs: */
7057 sched_free_group(container_of(rhp, struct task_group, rcu));
7058 }
7059
7060 void sched_destroy_group(struct task_group *tg)
7061 {
7062 /* Wait for possible concurrent references to cfs_rqs complete: */
7063 call_rcu(&tg->rcu, sched_free_group_rcu);
7064 }
7065
7066 void sched_offline_group(struct task_group *tg)
7067 {
7068 unsigned long flags;
7069
7070 /* End participation in shares distribution: */
7071 unregister_fair_sched_group(tg);
7072
7073 spin_lock_irqsave(&task_group_lock, flags);
7074 list_del_rcu(&tg->list);
7075 list_del_rcu(&tg->siblings);
7076 spin_unlock_irqrestore(&task_group_lock, flags);
7077 }
7078
7079 static void sched_change_group(struct task_struct *tsk, int type)
7080 {
7081 struct task_group *tg;
7082
7083 /*
7084 * All callers are synchronized by task_rq_lock(); we do not use RCU
7085 * which is pointless here. Thus, we pass "true" to task_css_check()
7086 * to prevent lockdep warnings.
7087 */
7088 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7089 struct task_group, css);
7090 tg = autogroup_task_group(tsk, tg);
7091 tsk->sched_task_group = tg;
7092
7093 #ifdef CONFIG_FAIR_GROUP_SCHED
7094 if (tsk->sched_class->task_change_group)
7095 tsk->sched_class->task_change_group(tsk, type);
7096 else
7097 #endif
7098 set_task_rq(tsk, task_cpu(tsk));
7099 }
7100
7101 /*
7102 * Change task's runqueue when it moves between groups.
7103 *
7104 * The caller of this function should have put the task in its new group by
7105 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7106 * its new group.
7107 */
7108 void sched_move_task(struct task_struct *tsk)
7109 {
7110 int queued, running, queue_flags =
7111 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7112 struct rq_flags rf;
7113 struct rq *rq;
7114
7115 rq = task_rq_lock(tsk, &rf);
7116 update_rq_clock(rq);
7117
7118 running = task_current(rq, tsk);
7119 queued = task_on_rq_queued(tsk);
7120
7121 if (queued)
7122 dequeue_task(rq, tsk, queue_flags);
7123 if (running)
7124 put_prev_task(rq, tsk);
7125
7126 sched_change_group(tsk, TASK_MOVE_GROUP);
7127
7128 if (queued)
7129 enqueue_task(rq, tsk, queue_flags);
7130 if (running) {
7131 set_next_task(rq, tsk);
7132 /*
7133 * After changing group, the running task may have joined a
7134 * throttled one but it's still the running task. Trigger a
7135 * resched to make sure that task can still run.
7136 */
7137 resched_curr(rq);
7138 }
7139
7140 task_rq_unlock(rq, tsk, &rf);
7141 }
7142
7143 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7144 {
7145 return css ? container_of(css, struct task_group, css) : NULL;
7146 }
7147
7148 static struct cgroup_subsys_state *
7149 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7150 {
7151 struct task_group *parent = css_tg(parent_css);
7152 struct task_group *tg;
7153
7154 if (!parent) {
7155 /* This is early initialization for the top cgroup */
7156 return &root_task_group.css;
7157 }
7158
7159 tg = sched_create_group(parent);
7160 if (IS_ERR(tg))
7161 return ERR_PTR(-ENOMEM);
7162
7163 return &tg->css;
7164 }
7165
7166 /* Expose task group only after completing cgroup initialization */
7167 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7168 {
7169 struct task_group *tg = css_tg(css);
7170 struct task_group *parent = css_tg(css->parent);
7171
7172 if (parent)
7173 sched_online_group(tg, parent);
7174
7175 #ifdef CONFIG_UCLAMP_TASK_GROUP
7176 /* Propagate the effective uclamp value for the new group */
7177 cpu_util_update_eff(css);
7178 #endif
7179
7180 return 0;
7181 }
7182
7183 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7184 {
7185 struct task_group *tg = css_tg(css);
7186
7187 sched_offline_group(tg);
7188 }
7189
7190 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7191 {
7192 struct task_group *tg = css_tg(css);
7193
7194 /*
7195 * Relies on the RCU grace period between css_released() and this.
7196 */
7197 sched_free_group(tg);
7198 }
7199
7200 /*
7201 * This is called before wake_up_new_task(), therefore we really only
7202 * have to set its group bits, all the other stuff does not apply.
7203 */
7204 static void cpu_cgroup_fork(struct task_struct *task)
7205 {
7206 struct rq_flags rf;
7207 struct rq *rq;
7208
7209 rq = task_rq_lock(task, &rf);
7210
7211 update_rq_clock(rq);
7212 sched_change_group(task, TASK_SET_GROUP);
7213
7214 task_rq_unlock(rq, task, &rf);
7215 }
7216
7217 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7218 {
7219 struct task_struct *task;
7220 struct cgroup_subsys_state *css;
7221 int ret = 0;
7222
7223 cgroup_taskset_for_each(task, css, tset) {
7224 #ifdef CONFIG_RT_GROUP_SCHED
7225 if (!sched_rt_can_attach(css_tg(css), task))
7226 return -EINVAL;
7227 #endif
7228 /*
7229 * Serialize against wake_up_new_task() such that if its
7230 * running, we're sure to observe its full state.
7231 */
7232 raw_spin_lock_irq(&task->pi_lock);
7233 /*
7234 * Avoid calling sched_move_task() before wake_up_new_task()
7235 * has happened. This would lead to problems with PELT, due to
7236 * move wanting to detach+attach while we're not attached yet.
7237 */
7238 if (task->state == TASK_NEW)
7239 ret = -EINVAL;
7240 raw_spin_unlock_irq(&task->pi_lock);
7241
7242 if (ret)
7243 break;
7244 }
7245 return ret;
7246 }
7247
7248 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7249 {
7250 struct task_struct *task;
7251 struct cgroup_subsys_state *css;
7252
7253 cgroup_taskset_for_each(task, css, tset)
7254 sched_move_task(task);
7255 }
7256
7257 #ifdef CONFIG_UCLAMP_TASK_GROUP
7258 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7259 {
7260 struct cgroup_subsys_state *top_css = css;
7261 struct uclamp_se *uc_parent = NULL;
7262 struct uclamp_se *uc_se = NULL;
7263 unsigned int eff[UCLAMP_CNT];
7264 enum uclamp_id clamp_id;
7265 unsigned int clamps;
7266
7267 css_for_each_descendant_pre(css, top_css) {
7268 uc_parent = css_tg(css)->parent
7269 ? css_tg(css)->parent->uclamp : NULL;
7270
7271 for_each_clamp_id(clamp_id) {
7272 /* Assume effective clamps matches requested clamps */
7273 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7274 /* Cap effective clamps with parent's effective clamps */
7275 if (uc_parent &&
7276 eff[clamp_id] > uc_parent[clamp_id].value) {
7277 eff[clamp_id] = uc_parent[clamp_id].value;
7278 }
7279 }
7280 /* Ensure protection is always capped by limit */
7281 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7282
7283 /* Propagate most restrictive effective clamps */
7284 clamps = 0x0;
7285 uc_se = css_tg(css)->uclamp;
7286 for_each_clamp_id(clamp_id) {
7287 if (eff[clamp_id] == uc_se[clamp_id].value)
7288 continue;
7289 uc_se[clamp_id].value = eff[clamp_id];
7290 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7291 clamps |= (0x1 << clamp_id);
7292 }
7293 if (!clamps) {
7294 css = css_rightmost_descendant(css);
7295 continue;
7296 }
7297
7298 /* Immediately update descendants RUNNABLE tasks */
7299 uclamp_update_active_tasks(css, clamps);
7300 }
7301 }
7302
7303 /*
7304 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7305 * C expression. Since there is no way to convert a macro argument (N) into a
7306 * character constant, use two levels of macros.
7307 */
7308 #define _POW10(exp) ((unsigned int)1e##exp)
7309 #define POW10(exp) _POW10(exp)
7310
7311 struct uclamp_request {
7312 #define UCLAMP_PERCENT_SHIFT 2
7313 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
7314 s64 percent;
7315 u64 util;
7316 int ret;
7317 };
7318
7319 static inline struct uclamp_request
7320 capacity_from_percent(char *buf)
7321 {
7322 struct uclamp_request req = {
7323 .percent = UCLAMP_PERCENT_SCALE,
7324 .util = SCHED_CAPACITY_SCALE,
7325 .ret = 0,
7326 };
7327
7328 buf = strim(buf);
7329 if (strcmp(buf, "max")) {
7330 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7331 &req.percent);
7332 if (req.ret)
7333 return req;
7334 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7335 req.ret = -ERANGE;
7336 return req;
7337 }
7338
7339 req.util = req.percent << SCHED_CAPACITY_SHIFT;
7340 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7341 }
7342
7343 return req;
7344 }
7345
7346 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7347 size_t nbytes, loff_t off,
7348 enum uclamp_id clamp_id)
7349 {
7350 struct uclamp_request req;
7351 struct task_group *tg;
7352
7353 req = capacity_from_percent(buf);
7354 if (req.ret)
7355 return req.ret;
7356
7357 mutex_lock(&uclamp_mutex);
7358 rcu_read_lock();
7359
7360 tg = css_tg(of_css(of));
7361 if (tg->uclamp_req[clamp_id].value != req.util)
7362 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7363
7364 /*
7365 * Because of not recoverable conversion rounding we keep track of the
7366 * exact requested value
7367 */
7368 tg->uclamp_pct[clamp_id] = req.percent;
7369
7370 /* Update effective clamps to track the most restrictive value */
7371 cpu_util_update_eff(of_css(of));
7372
7373 rcu_read_unlock();
7374 mutex_unlock(&uclamp_mutex);
7375
7376 return nbytes;
7377 }
7378
7379 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7380 char *buf, size_t nbytes,
7381 loff_t off)
7382 {
7383 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7384 }
7385
7386 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7387 char *buf, size_t nbytes,
7388 loff_t off)
7389 {
7390 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7391 }
7392
7393 static inline void cpu_uclamp_print(struct seq_file *sf,
7394 enum uclamp_id clamp_id)
7395 {
7396 struct task_group *tg;
7397 u64 util_clamp;
7398 u64 percent;
7399 u32 rem;
7400
7401 rcu_read_lock();
7402 tg = css_tg(seq_css(sf));
7403 util_clamp = tg->uclamp_req[clamp_id].value;
7404 rcu_read_unlock();
7405
7406 if (util_clamp == SCHED_CAPACITY_SCALE) {
7407 seq_puts(sf, "max\n");
7408 return;
7409 }
7410
7411 percent = tg->uclamp_pct[clamp_id];
7412 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7413 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7414 }
7415
7416 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7417 {
7418 cpu_uclamp_print(sf, UCLAMP_MIN);
7419 return 0;
7420 }
7421
7422 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7423 {
7424 cpu_uclamp_print(sf, UCLAMP_MAX);
7425 return 0;
7426 }
7427 #endif /* CONFIG_UCLAMP_TASK_GROUP */
7428
7429 #ifdef CONFIG_FAIR_GROUP_SCHED
7430 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7431 struct cftype *cftype, u64 shareval)
7432 {
7433 if (shareval > scale_load_down(ULONG_MAX))
7434 shareval = MAX_SHARES;
7435 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7436 }
7437
7438 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7439 struct cftype *cft)
7440 {
7441 struct task_group *tg = css_tg(css);
7442
7443 return (u64) scale_load_down(tg->shares);
7444 }
7445
7446 #ifdef CONFIG_CFS_BANDWIDTH
7447 static DEFINE_MUTEX(cfs_constraints_mutex);
7448
7449 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7450 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7451 /* More than 203 days if BW_SHIFT equals 20. */
7452 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
7453
7454 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7455
7456 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7457 {
7458 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7459 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7460
7461 if (tg == &root_task_group)
7462 return -EINVAL;
7463
7464 /*
7465 * Ensure we have at some amount of bandwidth every period. This is
7466 * to prevent reaching a state of large arrears when throttled via
7467 * entity_tick() resulting in prolonged exit starvation.
7468 */
7469 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7470 return -EINVAL;
7471
7472 /*
7473 * Likewise, bound things on the otherside by preventing insane quota
7474 * periods. This also allows us to normalize in computing quota
7475 * feasibility.
7476 */
7477 if (period > max_cfs_quota_period)
7478 return -EINVAL;
7479
7480 /*
7481 * Bound quota to defend quota against overflow during bandwidth shift.
7482 */
7483 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
7484 return -EINVAL;
7485
7486 /*
7487 * Prevent race between setting of cfs_rq->runtime_enabled and
7488 * unthrottle_offline_cfs_rqs().
7489 */
7490 get_online_cpus();
7491 mutex_lock(&cfs_constraints_mutex);
7492 ret = __cfs_schedulable(tg, period, quota);
7493 if (ret)
7494 goto out_unlock;
7495
7496 runtime_enabled = quota != RUNTIME_INF;
7497 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7498 /*
7499 * If we need to toggle cfs_bandwidth_used, off->on must occur
7500 * before making related changes, and on->off must occur afterwards
7501 */
7502 if (runtime_enabled && !runtime_was_enabled)
7503 cfs_bandwidth_usage_inc();
7504 raw_spin_lock_irq(&cfs_b->lock);
7505 cfs_b->period = ns_to_ktime(period);
7506 cfs_b->quota = quota;
7507
7508 __refill_cfs_bandwidth_runtime(cfs_b);
7509
7510 /* Restart the period timer (if active) to handle new period expiry: */
7511 if (runtime_enabled)
7512 start_cfs_bandwidth(cfs_b);
7513
7514 raw_spin_unlock_irq(&cfs_b->lock);
7515
7516 for_each_online_cpu(i) {
7517 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7518 struct rq *rq = cfs_rq->rq;
7519 struct rq_flags rf;
7520
7521 rq_lock_irq(rq, &rf);
7522 cfs_rq->runtime_enabled = runtime_enabled;
7523 cfs_rq->runtime_remaining = 0;
7524
7525 if (cfs_rq->throttled)
7526 unthrottle_cfs_rq(cfs_rq);
7527 rq_unlock_irq(rq, &rf);
7528 }
7529 if (runtime_was_enabled && !runtime_enabled)
7530 cfs_bandwidth_usage_dec();
7531 out_unlock:
7532 mutex_unlock(&cfs_constraints_mutex);
7533 put_online_cpus();
7534
7535 return ret;
7536 }
7537
7538 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7539 {
7540 u64 quota, period;
7541
7542 period = ktime_to_ns(tg->cfs_bandwidth.period);
7543 if (cfs_quota_us < 0)
7544 quota = RUNTIME_INF;
7545 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7546 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7547 else
7548 return -EINVAL;
7549
7550 return tg_set_cfs_bandwidth(tg, period, quota);
7551 }
7552
7553 static long tg_get_cfs_quota(struct task_group *tg)
7554 {
7555 u64 quota_us;
7556
7557 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7558 return -1;
7559
7560 quota_us = tg->cfs_bandwidth.quota;
7561 do_div(quota_us, NSEC_PER_USEC);
7562
7563 return quota_us;
7564 }
7565
7566 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7567 {
7568 u64 quota, period;
7569
7570 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7571 return -EINVAL;
7572
7573 period = (u64)cfs_period_us * NSEC_PER_USEC;
7574 quota = tg->cfs_bandwidth.quota;
7575
7576 return tg_set_cfs_bandwidth(tg, period, quota);
7577 }
7578
7579 static long tg_get_cfs_period(struct task_group *tg)
7580 {
7581 u64 cfs_period_us;
7582
7583 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7584 do_div(cfs_period_us, NSEC_PER_USEC);
7585
7586 return cfs_period_us;
7587 }
7588
7589 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7590 struct cftype *cft)
7591 {
7592 return tg_get_cfs_quota(css_tg(css));
7593 }
7594
7595 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7596 struct cftype *cftype, s64 cfs_quota_us)
7597 {
7598 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7599 }
7600
7601 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7602 struct cftype *cft)
7603 {
7604 return tg_get_cfs_period(css_tg(css));
7605 }
7606
7607 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7608 struct cftype *cftype, u64 cfs_period_us)
7609 {
7610 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7611 }
7612
7613 struct cfs_schedulable_data {
7614 struct task_group *tg;
7615 u64 period, quota;
7616 };
7617
7618 /*
7619 * normalize group quota/period to be quota/max_period
7620 * note: units are usecs
7621 */
7622 static u64 normalize_cfs_quota(struct task_group *tg,
7623 struct cfs_schedulable_data *d)
7624 {
7625 u64 quota, period;
7626
7627 if (tg == d->tg) {
7628 period = d->period;
7629 quota = d->quota;
7630 } else {
7631 period = tg_get_cfs_period(tg);
7632 quota = tg_get_cfs_quota(tg);
7633 }
7634
7635 /* note: these should typically be equivalent */
7636 if (quota == RUNTIME_INF || quota == -1)
7637 return RUNTIME_INF;
7638
7639 return to_ratio(period, quota);
7640 }
7641
7642 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7643 {
7644 struct cfs_schedulable_data *d = data;
7645 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7646 s64 quota = 0, parent_quota = -1;
7647
7648 if (!tg->parent) {
7649 quota = RUNTIME_INF;
7650 } else {
7651 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7652
7653 quota = normalize_cfs_quota(tg, d);
7654 parent_quota = parent_b->hierarchical_quota;
7655
7656 /*
7657 * Ensure max(child_quota) <= parent_quota. On cgroup2,
7658 * always take the min. On cgroup1, only inherit when no
7659 * limit is set:
7660 */
7661 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7662 quota = min(quota, parent_quota);
7663 } else {
7664 if (quota == RUNTIME_INF)
7665 quota = parent_quota;
7666 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7667 return -EINVAL;
7668 }
7669 }
7670 cfs_b->hierarchical_quota = quota;
7671
7672 return 0;
7673 }
7674
7675 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7676 {
7677 int ret;
7678 struct cfs_schedulable_data data = {
7679 .tg = tg,
7680 .period = period,
7681 .quota = quota,
7682 };
7683
7684 if (quota != RUNTIME_INF) {
7685 do_div(data.period, NSEC_PER_USEC);
7686 do_div(data.quota, NSEC_PER_USEC);
7687 }
7688
7689 rcu_read_lock();
7690 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7691 rcu_read_unlock();
7692
7693 return ret;
7694 }
7695
7696 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7697 {
7698 struct task_group *tg = css_tg(seq_css(sf));
7699 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7700
7701 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7702 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7703 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7704
7705 if (schedstat_enabled() && tg != &root_task_group) {
7706 u64 ws = 0;
7707 int i;
7708
7709 for_each_possible_cpu(i)
7710 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7711
7712 seq_printf(sf, "wait_sum %llu\n", ws);
7713 }
7714
7715 return 0;
7716 }
7717 #endif /* CONFIG_CFS_BANDWIDTH */
7718 #endif /* CONFIG_FAIR_GROUP_SCHED */
7719
7720 #ifdef CONFIG_RT_GROUP_SCHED
7721 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7722 struct cftype *cft, s64 val)
7723 {
7724 return sched_group_set_rt_runtime(css_tg(css), val);
7725 }
7726
7727 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7728 struct cftype *cft)
7729 {
7730 return sched_group_rt_runtime(css_tg(css));
7731 }
7732
7733 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7734 struct cftype *cftype, u64 rt_period_us)
7735 {
7736 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7737 }
7738
7739 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7740 struct cftype *cft)
7741 {
7742 return sched_group_rt_period(css_tg(css));
7743 }
7744 #endif /* CONFIG_RT_GROUP_SCHED */
7745
7746 static struct cftype cpu_legacy_files[] = {
7747 #ifdef CONFIG_FAIR_GROUP_SCHED
7748 {
7749 .name = "shares",
7750 .read_u64 = cpu_shares_read_u64,
7751 .write_u64 = cpu_shares_write_u64,
7752 },
7753 #endif
7754 #ifdef CONFIG_CFS_BANDWIDTH
7755 {
7756 .name = "cfs_quota_us",
7757 .read_s64 = cpu_cfs_quota_read_s64,
7758 .write_s64 = cpu_cfs_quota_write_s64,
7759 },
7760 {
7761 .name = "cfs_period_us",
7762 .read_u64 = cpu_cfs_period_read_u64,
7763 .write_u64 = cpu_cfs_period_write_u64,
7764 },
7765 {
7766 .name = "stat",
7767 .seq_show = cpu_cfs_stat_show,
7768 },
7769 #endif
7770 #ifdef CONFIG_RT_GROUP_SCHED
7771 {
7772 .name = "rt_runtime_us",
7773 .read_s64 = cpu_rt_runtime_read,
7774 .write_s64 = cpu_rt_runtime_write,
7775 },
7776 {
7777 .name = "rt_period_us",
7778 .read_u64 = cpu_rt_period_read_uint,
7779 .write_u64 = cpu_rt_period_write_uint,
7780 },
7781 #endif
7782 #ifdef CONFIG_UCLAMP_TASK_GROUP
7783 {
7784 .name = "uclamp.min",
7785 .flags = CFTYPE_NOT_ON_ROOT,
7786 .seq_show = cpu_uclamp_min_show,
7787 .write = cpu_uclamp_min_write,
7788 },
7789 {
7790 .name = "uclamp.max",
7791 .flags = CFTYPE_NOT_ON_ROOT,
7792 .seq_show = cpu_uclamp_max_show,
7793 .write = cpu_uclamp_max_write,
7794 },
7795 #endif
7796 { } /* Terminate */
7797 };
7798
7799 static int cpu_extra_stat_show(struct seq_file *sf,
7800 struct cgroup_subsys_state *css)
7801 {
7802 #ifdef CONFIG_CFS_BANDWIDTH
7803 {
7804 struct task_group *tg = css_tg(css);
7805 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7806 u64 throttled_usec;
7807
7808 throttled_usec = cfs_b->throttled_time;
7809 do_div(throttled_usec, NSEC_PER_USEC);
7810
7811 seq_printf(sf, "nr_periods %d\n"
7812 "nr_throttled %d\n"
7813 "throttled_usec %llu\n",
7814 cfs_b->nr_periods, cfs_b->nr_throttled,
7815 throttled_usec);
7816 }
7817 #endif
7818 return 0;
7819 }
7820
7821 #ifdef CONFIG_FAIR_GROUP_SCHED
7822 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7823 struct cftype *cft)
7824 {
7825 struct task_group *tg = css_tg(css);
7826 u64 weight = scale_load_down(tg->shares);
7827
7828 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7829 }
7830
7831 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7832 struct cftype *cft, u64 weight)
7833 {
7834 /*
7835 * cgroup weight knobs should use the common MIN, DFL and MAX
7836 * values which are 1, 100 and 10000 respectively. While it loses
7837 * a bit of range on both ends, it maps pretty well onto the shares
7838 * value used by scheduler and the round-trip conversions preserve
7839 * the original value over the entire range.
7840 */
7841 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7842 return -ERANGE;
7843
7844 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7845
7846 return sched_group_set_shares(css_tg(css), scale_load(weight));
7847 }
7848
7849 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7850 struct cftype *cft)
7851 {
7852 unsigned long weight = scale_load_down(css_tg(css)->shares);
7853 int last_delta = INT_MAX;
7854 int prio, delta;
7855
7856 /* find the closest nice value to the current weight */
7857 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7858 delta = abs(sched_prio_to_weight[prio] - weight);
7859 if (delta >= last_delta)
7860 break;
7861 last_delta = delta;
7862 }
7863
7864 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7865 }
7866
7867 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7868 struct cftype *cft, s64 nice)
7869 {
7870 unsigned long weight;
7871 int idx;
7872
7873 if (nice < MIN_NICE || nice > MAX_NICE)
7874 return -ERANGE;
7875
7876 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7877 idx = array_index_nospec(idx, 40);
7878 weight = sched_prio_to_weight[idx];
7879
7880 return sched_group_set_shares(css_tg(css), scale_load(weight));
7881 }
7882 #endif
7883
7884 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7885 long period, long quota)
7886 {
7887 if (quota < 0)
7888 seq_puts(sf, "max");
7889 else
7890 seq_printf(sf, "%ld", quota);
7891
7892 seq_printf(sf, " %ld\n", period);
7893 }
7894
7895 /* caller should put the current value in *@periodp before calling */
7896 static int __maybe_unused cpu_period_quota_parse(char *buf,
7897 u64 *periodp, u64 *quotap)
7898 {
7899 char tok[21]; /* U64_MAX */
7900
7901 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7902 return -EINVAL;
7903
7904 *periodp *= NSEC_PER_USEC;
7905
7906 if (sscanf(tok, "%llu", quotap))
7907 *quotap *= NSEC_PER_USEC;
7908 else if (!strcmp(tok, "max"))
7909 *quotap = RUNTIME_INF;
7910 else
7911 return -EINVAL;
7912
7913 return 0;
7914 }
7915
7916 #ifdef CONFIG_CFS_BANDWIDTH
7917 static int cpu_max_show(struct seq_file *sf, void *v)
7918 {
7919 struct task_group *tg = css_tg(seq_css(sf));
7920
7921 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7922 return 0;
7923 }
7924
7925 static ssize_t cpu_max_write(struct kernfs_open_file *of,
7926 char *buf, size_t nbytes, loff_t off)
7927 {
7928 struct task_group *tg = css_tg(of_css(of));
7929 u64 period = tg_get_cfs_period(tg);
7930 u64 quota;
7931 int ret;
7932
7933 ret = cpu_period_quota_parse(buf, &period, &quota);
7934 if (!ret)
7935 ret = tg_set_cfs_bandwidth(tg, period, quota);
7936 return ret ?: nbytes;
7937 }
7938 #endif
7939
7940 static struct cftype cpu_files[] = {
7941 #ifdef CONFIG_FAIR_GROUP_SCHED
7942 {
7943 .name = "weight",
7944 .flags = CFTYPE_NOT_ON_ROOT,
7945 .read_u64 = cpu_weight_read_u64,
7946 .write_u64 = cpu_weight_write_u64,
7947 },
7948 {
7949 .name = "weight.nice",
7950 .flags = CFTYPE_NOT_ON_ROOT,
7951 .read_s64 = cpu_weight_nice_read_s64,
7952 .write_s64 = cpu_weight_nice_write_s64,
7953 },
7954 #endif
7955 #ifdef CONFIG_CFS_BANDWIDTH
7956 {
7957 .name = "max",
7958 .flags = CFTYPE_NOT_ON_ROOT,
7959 .seq_show = cpu_max_show,
7960 .write = cpu_max_write,
7961 },
7962 #endif
7963 #ifdef CONFIG_UCLAMP_TASK_GROUP
7964 {
7965 .name = "uclamp.min",
7966 .flags = CFTYPE_NOT_ON_ROOT,
7967 .seq_show = cpu_uclamp_min_show,
7968 .write = cpu_uclamp_min_write,
7969 },
7970 {
7971 .name = "uclamp.max",
7972 .flags = CFTYPE_NOT_ON_ROOT,
7973 .seq_show = cpu_uclamp_max_show,
7974 .write = cpu_uclamp_max_write,
7975 },
7976 #endif
7977 { } /* terminate */
7978 };
7979
7980 struct cgroup_subsys cpu_cgrp_subsys = {
7981 .css_alloc = cpu_cgroup_css_alloc,
7982 .css_online = cpu_cgroup_css_online,
7983 .css_released = cpu_cgroup_css_released,
7984 .css_free = cpu_cgroup_css_free,
7985 .css_extra_stat_show = cpu_extra_stat_show,
7986 .fork = cpu_cgroup_fork,
7987 .can_attach = cpu_cgroup_can_attach,
7988 .attach = cpu_cgroup_attach,
7989 .legacy_cftypes = cpu_legacy_files,
7990 .dfl_cftypes = cpu_files,
7991 .early_init = true,
7992 .threaded = true,
7993 };
7994
7995 #endif /* CONFIG_CGROUP_SCHED */
7996
7997 void dump_cpu_task(int cpu)
7998 {
7999 pr_info("Task dump for CPU %d:\n", cpu);
8000 sched_show_task(cpu_curr(cpu));
8001 }
8002
8003 /*
8004 * Nice levels are multiplicative, with a gentle 10% change for every
8005 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8006 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8007 * that remained on nice 0.
8008 *
8009 * The "10% effect" is relative and cumulative: from _any_ nice level,
8010 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8011 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8012 * If a task goes up by ~10% and another task goes down by ~10% then
8013 * the relative distance between them is ~25%.)
8014 */
8015 const int sched_prio_to_weight[40] = {
8016 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8017 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8018 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8019 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8020 /* 0 */ 1024, 820, 655, 526, 423,
8021 /* 5 */ 335, 272, 215, 172, 137,
8022 /* 10 */ 110, 87, 70, 56, 45,
8023 /* 15 */ 36, 29, 23, 18, 15,
8024 };
8025
8026 /*
8027 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8028 *
8029 * In cases where the weight does not change often, we can use the
8030 * precalculated inverse to speed up arithmetics by turning divisions
8031 * into multiplications:
8032 */
8033 const u32 sched_prio_to_wmult[40] = {
8034 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8035 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8036 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8037 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8038 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8039 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8040 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8041 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8042 };
8043
8044 #undef CREATE_TRACE_POINTS