]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/sched/core.c
Merge branch 'sched/urgent' into sched/core, to pick up fix
[thirdparty/linux.git] / kernel / sched / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #include "sched.h"
10
11 #include <linux/nospec.h>
12
13 #include <linux/kcov.h>
14
15 #include <asm/switch_to.h>
16 #include <asm/tlb.h>
17
18 #include "../workqueue_internal.h"
19 #include "../../fs/io-wq.h"
20 #include "../smpboot.h"
21
22 #include "pelt.h"
23
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/sched.h>
26
27 /*
28 * Export tracepoints that act as a bare tracehook (ie: have no trace event
29 * associated with them) to allow external modules to probe them.
30 */
31 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
32 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
37
38 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
39
40 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
41 /*
42 * Debugging: various feature bits
43 *
44 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
45 * sysctl_sched_features, defined in sched.h, to allow constants propagation
46 * at compile time and compiler optimization based on features default.
47 */
48 #define SCHED_FEAT(name, enabled) \
49 (1UL << __SCHED_FEAT_##name) * enabled |
50 const_debug unsigned int sysctl_sched_features =
51 #include "features.h"
52 0;
53 #undef SCHED_FEAT
54 #endif
55
56 /*
57 * Number of tasks to iterate in a single balance run.
58 * Limited because this is done with IRQs disabled.
59 */
60 const_debug unsigned int sysctl_sched_nr_migrate = 32;
61
62 /*
63 * period over which we measure -rt task CPU usage in us.
64 * default: 1s
65 */
66 unsigned int sysctl_sched_rt_period = 1000000;
67
68 __read_mostly int scheduler_running;
69
70 /*
71 * part of the period that we allow rt tasks to run in us.
72 * default: 0.95s
73 */
74 int sysctl_sched_rt_runtime = 950000;
75
76 /*
77 * __task_rq_lock - lock the rq @p resides on.
78 */
79 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
80 __acquires(rq->lock)
81 {
82 struct rq *rq;
83
84 lockdep_assert_held(&p->pi_lock);
85
86 for (;;) {
87 rq = task_rq(p);
88 raw_spin_lock(&rq->lock);
89 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
90 rq_pin_lock(rq, rf);
91 return rq;
92 }
93 raw_spin_unlock(&rq->lock);
94
95 while (unlikely(task_on_rq_migrating(p)))
96 cpu_relax();
97 }
98 }
99
100 /*
101 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
102 */
103 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
104 __acquires(p->pi_lock)
105 __acquires(rq->lock)
106 {
107 struct rq *rq;
108
109 for (;;) {
110 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
111 rq = task_rq(p);
112 raw_spin_lock(&rq->lock);
113 /*
114 * move_queued_task() task_rq_lock()
115 *
116 * ACQUIRE (rq->lock)
117 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
118 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
119 * [S] ->cpu = new_cpu [L] task_rq()
120 * [L] ->on_rq
121 * RELEASE (rq->lock)
122 *
123 * If we observe the old CPU in task_rq_lock(), the acquire of
124 * the old rq->lock will fully serialize against the stores.
125 *
126 * If we observe the new CPU in task_rq_lock(), the address
127 * dependency headed by '[L] rq = task_rq()' and the acquire
128 * will pair with the WMB to ensure we then also see migrating.
129 */
130 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
131 rq_pin_lock(rq, rf);
132 return rq;
133 }
134 raw_spin_unlock(&rq->lock);
135 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
136
137 while (unlikely(task_on_rq_migrating(p)))
138 cpu_relax();
139 }
140 }
141
142 /*
143 * RQ-clock updating methods:
144 */
145
146 static void update_rq_clock_task(struct rq *rq, s64 delta)
147 {
148 /*
149 * In theory, the compile should just see 0 here, and optimize out the call
150 * to sched_rt_avg_update. But I don't trust it...
151 */
152 s64 __maybe_unused steal = 0, irq_delta = 0;
153
154 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
155 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
156
157 /*
158 * Since irq_time is only updated on {soft,}irq_exit, we might run into
159 * this case when a previous update_rq_clock() happened inside a
160 * {soft,}irq region.
161 *
162 * When this happens, we stop ->clock_task and only update the
163 * prev_irq_time stamp to account for the part that fit, so that a next
164 * update will consume the rest. This ensures ->clock_task is
165 * monotonic.
166 *
167 * It does however cause some slight miss-attribution of {soft,}irq
168 * time, a more accurate solution would be to update the irq_time using
169 * the current rq->clock timestamp, except that would require using
170 * atomic ops.
171 */
172 if (irq_delta > delta)
173 irq_delta = delta;
174
175 rq->prev_irq_time += irq_delta;
176 delta -= irq_delta;
177 #endif
178 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
179 if (static_key_false((&paravirt_steal_rq_enabled))) {
180 steal = paravirt_steal_clock(cpu_of(rq));
181 steal -= rq->prev_steal_time_rq;
182
183 if (unlikely(steal > delta))
184 steal = delta;
185
186 rq->prev_steal_time_rq += steal;
187 delta -= steal;
188 }
189 #endif
190
191 rq->clock_task += delta;
192
193 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
194 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
195 update_irq_load_avg(rq, irq_delta + steal);
196 #endif
197 update_rq_clock_pelt(rq, delta);
198 }
199
200 void update_rq_clock(struct rq *rq)
201 {
202 s64 delta;
203
204 lockdep_assert_held(&rq->lock);
205
206 if (rq->clock_update_flags & RQCF_ACT_SKIP)
207 return;
208
209 #ifdef CONFIG_SCHED_DEBUG
210 if (sched_feat(WARN_DOUBLE_CLOCK))
211 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
212 rq->clock_update_flags |= RQCF_UPDATED;
213 #endif
214
215 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
216 if (delta < 0)
217 return;
218 rq->clock += delta;
219 update_rq_clock_task(rq, delta);
220 }
221
222 static inline void
223 rq_csd_init(struct rq *rq, call_single_data_t *csd, smp_call_func_t func)
224 {
225 csd->flags = 0;
226 csd->func = func;
227 csd->info = rq;
228 }
229
230 #ifdef CONFIG_SCHED_HRTICK
231 /*
232 * Use HR-timers to deliver accurate preemption points.
233 */
234
235 static void hrtick_clear(struct rq *rq)
236 {
237 if (hrtimer_active(&rq->hrtick_timer))
238 hrtimer_cancel(&rq->hrtick_timer);
239 }
240
241 /*
242 * High-resolution timer tick.
243 * Runs from hardirq context with interrupts disabled.
244 */
245 static enum hrtimer_restart hrtick(struct hrtimer *timer)
246 {
247 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
248 struct rq_flags rf;
249
250 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
251
252 rq_lock(rq, &rf);
253 update_rq_clock(rq);
254 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
255 rq_unlock(rq, &rf);
256
257 return HRTIMER_NORESTART;
258 }
259
260 #ifdef CONFIG_SMP
261
262 static void __hrtick_restart(struct rq *rq)
263 {
264 struct hrtimer *timer = &rq->hrtick_timer;
265
266 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
267 }
268
269 /*
270 * called from hardirq (IPI) context
271 */
272 static void __hrtick_start(void *arg)
273 {
274 struct rq *rq = arg;
275 struct rq_flags rf;
276
277 rq_lock(rq, &rf);
278 __hrtick_restart(rq);
279 rq_unlock(rq, &rf);
280 }
281
282 /*
283 * Called to set the hrtick timer state.
284 *
285 * called with rq->lock held and irqs disabled
286 */
287 void hrtick_start(struct rq *rq, u64 delay)
288 {
289 struct hrtimer *timer = &rq->hrtick_timer;
290 ktime_t time;
291 s64 delta;
292
293 /*
294 * Don't schedule slices shorter than 10000ns, that just
295 * doesn't make sense and can cause timer DoS.
296 */
297 delta = max_t(s64, delay, 10000LL);
298 time = ktime_add_ns(timer->base->get_time(), delta);
299
300 hrtimer_set_expires(timer, time);
301
302 if (rq == this_rq())
303 __hrtick_restart(rq);
304 else
305 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
306 }
307
308 #else
309 /*
310 * Called to set the hrtick timer state.
311 *
312 * called with rq->lock held and irqs disabled
313 */
314 void hrtick_start(struct rq *rq, u64 delay)
315 {
316 /*
317 * Don't schedule slices shorter than 10000ns, that just
318 * doesn't make sense. Rely on vruntime for fairness.
319 */
320 delay = max_t(u64, delay, 10000LL);
321 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
322 HRTIMER_MODE_REL_PINNED_HARD);
323 }
324
325 #endif /* CONFIG_SMP */
326
327 static void hrtick_rq_init(struct rq *rq)
328 {
329 #ifdef CONFIG_SMP
330 rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start);
331 #endif
332 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
333 rq->hrtick_timer.function = hrtick;
334 }
335 #else /* CONFIG_SCHED_HRTICK */
336 static inline void hrtick_clear(struct rq *rq)
337 {
338 }
339
340 static inline void hrtick_rq_init(struct rq *rq)
341 {
342 }
343 #endif /* CONFIG_SCHED_HRTICK */
344
345 /*
346 * cmpxchg based fetch_or, macro so it works for different integer types
347 */
348 #define fetch_or(ptr, mask) \
349 ({ \
350 typeof(ptr) _ptr = (ptr); \
351 typeof(mask) _mask = (mask); \
352 typeof(*_ptr) _old, _val = *_ptr; \
353 \
354 for (;;) { \
355 _old = cmpxchg(_ptr, _val, _val | _mask); \
356 if (_old == _val) \
357 break; \
358 _val = _old; \
359 } \
360 _old; \
361 })
362
363 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
364 /*
365 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
366 * this avoids any races wrt polling state changes and thereby avoids
367 * spurious IPIs.
368 */
369 static bool set_nr_and_not_polling(struct task_struct *p)
370 {
371 struct thread_info *ti = task_thread_info(p);
372 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
373 }
374
375 /*
376 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
377 *
378 * If this returns true, then the idle task promises to call
379 * sched_ttwu_pending() and reschedule soon.
380 */
381 static bool set_nr_if_polling(struct task_struct *p)
382 {
383 struct thread_info *ti = task_thread_info(p);
384 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
385
386 for (;;) {
387 if (!(val & _TIF_POLLING_NRFLAG))
388 return false;
389 if (val & _TIF_NEED_RESCHED)
390 return true;
391 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
392 if (old == val)
393 break;
394 val = old;
395 }
396 return true;
397 }
398
399 #else
400 static bool set_nr_and_not_polling(struct task_struct *p)
401 {
402 set_tsk_need_resched(p);
403 return true;
404 }
405
406 #ifdef CONFIG_SMP
407 static bool set_nr_if_polling(struct task_struct *p)
408 {
409 return false;
410 }
411 #endif
412 #endif
413
414 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
415 {
416 struct wake_q_node *node = &task->wake_q;
417
418 /*
419 * Atomically grab the task, if ->wake_q is !nil already it means
420 * its already queued (either by us or someone else) and will get the
421 * wakeup due to that.
422 *
423 * In order to ensure that a pending wakeup will observe our pending
424 * state, even in the failed case, an explicit smp_mb() must be used.
425 */
426 smp_mb__before_atomic();
427 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
428 return false;
429
430 /*
431 * The head is context local, there can be no concurrency.
432 */
433 *head->lastp = node;
434 head->lastp = &node->next;
435 return true;
436 }
437
438 /**
439 * wake_q_add() - queue a wakeup for 'later' waking.
440 * @head: the wake_q_head to add @task to
441 * @task: the task to queue for 'later' wakeup
442 *
443 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
444 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
445 * instantly.
446 *
447 * This function must be used as-if it were wake_up_process(); IOW the task
448 * must be ready to be woken at this location.
449 */
450 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
451 {
452 if (__wake_q_add(head, task))
453 get_task_struct(task);
454 }
455
456 /**
457 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
458 * @head: the wake_q_head to add @task to
459 * @task: the task to queue for 'later' wakeup
460 *
461 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
462 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
463 * instantly.
464 *
465 * This function must be used as-if it were wake_up_process(); IOW the task
466 * must be ready to be woken at this location.
467 *
468 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
469 * that already hold reference to @task can call the 'safe' version and trust
470 * wake_q to do the right thing depending whether or not the @task is already
471 * queued for wakeup.
472 */
473 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
474 {
475 if (!__wake_q_add(head, task))
476 put_task_struct(task);
477 }
478
479 void wake_up_q(struct wake_q_head *head)
480 {
481 struct wake_q_node *node = head->first;
482
483 while (node != WAKE_Q_TAIL) {
484 struct task_struct *task;
485
486 task = container_of(node, struct task_struct, wake_q);
487 BUG_ON(!task);
488 /* Task can safely be re-inserted now: */
489 node = node->next;
490 task->wake_q.next = NULL;
491
492 /*
493 * wake_up_process() executes a full barrier, which pairs with
494 * the queueing in wake_q_add() so as not to miss wakeups.
495 */
496 wake_up_process(task);
497 put_task_struct(task);
498 }
499 }
500
501 /*
502 * resched_curr - mark rq's current task 'to be rescheduled now'.
503 *
504 * On UP this means the setting of the need_resched flag, on SMP it
505 * might also involve a cross-CPU call to trigger the scheduler on
506 * the target CPU.
507 */
508 void resched_curr(struct rq *rq)
509 {
510 struct task_struct *curr = rq->curr;
511 int cpu;
512
513 lockdep_assert_held(&rq->lock);
514
515 if (test_tsk_need_resched(curr))
516 return;
517
518 cpu = cpu_of(rq);
519
520 if (cpu == smp_processor_id()) {
521 set_tsk_need_resched(curr);
522 set_preempt_need_resched();
523 return;
524 }
525
526 if (set_nr_and_not_polling(curr))
527 smp_send_reschedule(cpu);
528 else
529 trace_sched_wake_idle_without_ipi(cpu);
530 }
531
532 void resched_cpu(int cpu)
533 {
534 struct rq *rq = cpu_rq(cpu);
535 unsigned long flags;
536
537 raw_spin_lock_irqsave(&rq->lock, flags);
538 if (cpu_online(cpu) || cpu == smp_processor_id())
539 resched_curr(rq);
540 raw_spin_unlock_irqrestore(&rq->lock, flags);
541 }
542
543 #ifdef CONFIG_SMP
544 #ifdef CONFIG_NO_HZ_COMMON
545 /*
546 * In the semi idle case, use the nearest busy CPU for migrating timers
547 * from an idle CPU. This is good for power-savings.
548 *
549 * We don't do similar optimization for completely idle system, as
550 * selecting an idle CPU will add more delays to the timers than intended
551 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
552 */
553 int get_nohz_timer_target(void)
554 {
555 int i, cpu = smp_processor_id(), default_cpu = -1;
556 struct sched_domain *sd;
557
558 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
559 if (!idle_cpu(cpu))
560 return cpu;
561 default_cpu = cpu;
562 }
563
564 rcu_read_lock();
565 for_each_domain(cpu, sd) {
566 for_each_cpu_and(i, sched_domain_span(sd),
567 housekeeping_cpumask(HK_FLAG_TIMER)) {
568 if (cpu == i)
569 continue;
570
571 if (!idle_cpu(i)) {
572 cpu = i;
573 goto unlock;
574 }
575 }
576 }
577
578 if (default_cpu == -1)
579 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
580 cpu = default_cpu;
581 unlock:
582 rcu_read_unlock();
583 return cpu;
584 }
585
586 /*
587 * When add_timer_on() enqueues a timer into the timer wheel of an
588 * idle CPU then this timer might expire before the next timer event
589 * which is scheduled to wake up that CPU. In case of a completely
590 * idle system the next event might even be infinite time into the
591 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
592 * leaves the inner idle loop so the newly added timer is taken into
593 * account when the CPU goes back to idle and evaluates the timer
594 * wheel for the next timer event.
595 */
596 static void wake_up_idle_cpu(int cpu)
597 {
598 struct rq *rq = cpu_rq(cpu);
599
600 if (cpu == smp_processor_id())
601 return;
602
603 if (set_nr_and_not_polling(rq->idle))
604 smp_send_reschedule(cpu);
605 else
606 trace_sched_wake_idle_without_ipi(cpu);
607 }
608
609 static bool wake_up_full_nohz_cpu(int cpu)
610 {
611 /*
612 * We just need the target to call irq_exit() and re-evaluate
613 * the next tick. The nohz full kick at least implies that.
614 * If needed we can still optimize that later with an
615 * empty IRQ.
616 */
617 if (cpu_is_offline(cpu))
618 return true; /* Don't try to wake offline CPUs. */
619 if (tick_nohz_full_cpu(cpu)) {
620 if (cpu != smp_processor_id() ||
621 tick_nohz_tick_stopped())
622 tick_nohz_full_kick_cpu(cpu);
623 return true;
624 }
625
626 return false;
627 }
628
629 /*
630 * Wake up the specified CPU. If the CPU is going offline, it is the
631 * caller's responsibility to deal with the lost wakeup, for example,
632 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
633 */
634 void wake_up_nohz_cpu(int cpu)
635 {
636 if (!wake_up_full_nohz_cpu(cpu))
637 wake_up_idle_cpu(cpu);
638 }
639
640 static inline bool got_nohz_idle_kick(void)
641 {
642 int cpu = smp_processor_id();
643
644 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
645 return false;
646
647 if (idle_cpu(cpu) && !need_resched())
648 return true;
649
650 /*
651 * We can't run Idle Load Balance on this CPU for this time so we
652 * cancel it and clear NOHZ_BALANCE_KICK
653 */
654 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
655 return false;
656 }
657
658 static void nohz_csd_func(void *info)
659 {
660 struct rq *rq = info;
661
662 if (got_nohz_idle_kick()) {
663 rq->idle_balance = 1;
664 raise_softirq_irqoff(SCHED_SOFTIRQ);
665 }
666 }
667
668 #else /* CONFIG_NO_HZ_COMMON */
669
670 static inline bool got_nohz_idle_kick(void)
671 {
672 return false;
673 }
674
675 #endif /* CONFIG_NO_HZ_COMMON */
676
677 #ifdef CONFIG_NO_HZ_FULL
678 bool sched_can_stop_tick(struct rq *rq)
679 {
680 int fifo_nr_running;
681
682 /* Deadline tasks, even if single, need the tick */
683 if (rq->dl.dl_nr_running)
684 return false;
685
686 /*
687 * If there are more than one RR tasks, we need the tick to effect the
688 * actual RR behaviour.
689 */
690 if (rq->rt.rr_nr_running) {
691 if (rq->rt.rr_nr_running == 1)
692 return true;
693 else
694 return false;
695 }
696
697 /*
698 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
699 * forced preemption between FIFO tasks.
700 */
701 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
702 if (fifo_nr_running)
703 return true;
704
705 /*
706 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
707 * if there's more than one we need the tick for involuntary
708 * preemption.
709 */
710 if (rq->nr_running > 1)
711 return false;
712
713 return true;
714 }
715 #endif /* CONFIG_NO_HZ_FULL */
716 #endif /* CONFIG_SMP */
717
718 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
719 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
720 /*
721 * Iterate task_group tree rooted at *from, calling @down when first entering a
722 * node and @up when leaving it for the final time.
723 *
724 * Caller must hold rcu_lock or sufficient equivalent.
725 */
726 int walk_tg_tree_from(struct task_group *from,
727 tg_visitor down, tg_visitor up, void *data)
728 {
729 struct task_group *parent, *child;
730 int ret;
731
732 parent = from;
733
734 down:
735 ret = (*down)(parent, data);
736 if (ret)
737 goto out;
738 list_for_each_entry_rcu(child, &parent->children, siblings) {
739 parent = child;
740 goto down;
741
742 up:
743 continue;
744 }
745 ret = (*up)(parent, data);
746 if (ret || parent == from)
747 goto out;
748
749 child = parent;
750 parent = parent->parent;
751 if (parent)
752 goto up;
753 out:
754 return ret;
755 }
756
757 int tg_nop(struct task_group *tg, void *data)
758 {
759 return 0;
760 }
761 #endif
762
763 static void set_load_weight(struct task_struct *p, bool update_load)
764 {
765 int prio = p->static_prio - MAX_RT_PRIO;
766 struct load_weight *load = &p->se.load;
767
768 /*
769 * SCHED_IDLE tasks get minimal weight:
770 */
771 if (task_has_idle_policy(p)) {
772 load->weight = scale_load(WEIGHT_IDLEPRIO);
773 load->inv_weight = WMULT_IDLEPRIO;
774 return;
775 }
776
777 /*
778 * SCHED_OTHER tasks have to update their load when changing their
779 * weight
780 */
781 if (update_load && p->sched_class == &fair_sched_class) {
782 reweight_task(p, prio);
783 } else {
784 load->weight = scale_load(sched_prio_to_weight[prio]);
785 load->inv_weight = sched_prio_to_wmult[prio];
786 }
787 }
788
789 #ifdef CONFIG_UCLAMP_TASK
790 /*
791 * Serializes updates of utilization clamp values
792 *
793 * The (slow-path) user-space triggers utilization clamp value updates which
794 * can require updates on (fast-path) scheduler's data structures used to
795 * support enqueue/dequeue operations.
796 * While the per-CPU rq lock protects fast-path update operations, user-space
797 * requests are serialized using a mutex to reduce the risk of conflicting
798 * updates or API abuses.
799 */
800 static DEFINE_MUTEX(uclamp_mutex);
801
802 /* Max allowed minimum utilization */
803 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
804
805 /* Max allowed maximum utilization */
806 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
807
808 /* All clamps are required to be less or equal than these values */
809 static struct uclamp_se uclamp_default[UCLAMP_CNT];
810
811 /* Integer rounded range for each bucket */
812 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
813
814 #define for_each_clamp_id(clamp_id) \
815 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
816
817 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
818 {
819 return clamp_value / UCLAMP_BUCKET_DELTA;
820 }
821
822 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
823 {
824 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
825 }
826
827 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
828 {
829 if (clamp_id == UCLAMP_MIN)
830 return 0;
831 return SCHED_CAPACITY_SCALE;
832 }
833
834 static inline void uclamp_se_set(struct uclamp_se *uc_se,
835 unsigned int value, bool user_defined)
836 {
837 uc_se->value = value;
838 uc_se->bucket_id = uclamp_bucket_id(value);
839 uc_se->user_defined = user_defined;
840 }
841
842 static inline unsigned int
843 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
844 unsigned int clamp_value)
845 {
846 /*
847 * Avoid blocked utilization pushing up the frequency when we go
848 * idle (which drops the max-clamp) by retaining the last known
849 * max-clamp.
850 */
851 if (clamp_id == UCLAMP_MAX) {
852 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
853 return clamp_value;
854 }
855
856 return uclamp_none(UCLAMP_MIN);
857 }
858
859 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
860 unsigned int clamp_value)
861 {
862 /* Reset max-clamp retention only on idle exit */
863 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
864 return;
865
866 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
867 }
868
869 static inline
870 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
871 unsigned int clamp_value)
872 {
873 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
874 int bucket_id = UCLAMP_BUCKETS - 1;
875
876 /*
877 * Since both min and max clamps are max aggregated, find the
878 * top most bucket with tasks in.
879 */
880 for ( ; bucket_id >= 0; bucket_id--) {
881 if (!bucket[bucket_id].tasks)
882 continue;
883 return bucket[bucket_id].value;
884 }
885
886 /* No tasks -- default clamp values */
887 return uclamp_idle_value(rq, clamp_id, clamp_value);
888 }
889
890 static inline struct uclamp_se
891 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
892 {
893 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
894 #ifdef CONFIG_UCLAMP_TASK_GROUP
895 struct uclamp_se uc_max;
896
897 /*
898 * Tasks in autogroups or root task group will be
899 * restricted by system defaults.
900 */
901 if (task_group_is_autogroup(task_group(p)))
902 return uc_req;
903 if (task_group(p) == &root_task_group)
904 return uc_req;
905
906 uc_max = task_group(p)->uclamp[clamp_id];
907 if (uc_req.value > uc_max.value || !uc_req.user_defined)
908 return uc_max;
909 #endif
910
911 return uc_req;
912 }
913
914 /*
915 * The effective clamp bucket index of a task depends on, by increasing
916 * priority:
917 * - the task specific clamp value, when explicitly requested from userspace
918 * - the task group effective clamp value, for tasks not either in the root
919 * group or in an autogroup
920 * - the system default clamp value, defined by the sysadmin
921 */
922 static inline struct uclamp_se
923 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
924 {
925 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
926 struct uclamp_se uc_max = uclamp_default[clamp_id];
927
928 /* System default restrictions always apply */
929 if (unlikely(uc_req.value > uc_max.value))
930 return uc_max;
931
932 return uc_req;
933 }
934
935 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
936 {
937 struct uclamp_se uc_eff;
938
939 /* Task currently refcounted: use back-annotated (effective) value */
940 if (p->uclamp[clamp_id].active)
941 return (unsigned long)p->uclamp[clamp_id].value;
942
943 uc_eff = uclamp_eff_get(p, clamp_id);
944
945 return (unsigned long)uc_eff.value;
946 }
947
948 /*
949 * When a task is enqueued on a rq, the clamp bucket currently defined by the
950 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
951 * updates the rq's clamp value if required.
952 *
953 * Tasks can have a task-specific value requested from user-space, track
954 * within each bucket the maximum value for tasks refcounted in it.
955 * This "local max aggregation" allows to track the exact "requested" value
956 * for each bucket when all its RUNNABLE tasks require the same clamp.
957 */
958 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
959 enum uclamp_id clamp_id)
960 {
961 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
962 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
963 struct uclamp_bucket *bucket;
964
965 lockdep_assert_held(&rq->lock);
966
967 /* Update task effective clamp */
968 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
969
970 bucket = &uc_rq->bucket[uc_se->bucket_id];
971 bucket->tasks++;
972 uc_se->active = true;
973
974 uclamp_idle_reset(rq, clamp_id, uc_se->value);
975
976 /*
977 * Local max aggregation: rq buckets always track the max
978 * "requested" clamp value of its RUNNABLE tasks.
979 */
980 if (bucket->tasks == 1 || uc_se->value > bucket->value)
981 bucket->value = uc_se->value;
982
983 if (uc_se->value > READ_ONCE(uc_rq->value))
984 WRITE_ONCE(uc_rq->value, uc_se->value);
985 }
986
987 /*
988 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
989 * is released. If this is the last task reference counting the rq's max
990 * active clamp value, then the rq's clamp value is updated.
991 *
992 * Both refcounted tasks and rq's cached clamp values are expected to be
993 * always valid. If it's detected they are not, as defensive programming,
994 * enforce the expected state and warn.
995 */
996 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
997 enum uclamp_id clamp_id)
998 {
999 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1000 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1001 struct uclamp_bucket *bucket;
1002 unsigned int bkt_clamp;
1003 unsigned int rq_clamp;
1004
1005 lockdep_assert_held(&rq->lock);
1006
1007 bucket = &uc_rq->bucket[uc_se->bucket_id];
1008 SCHED_WARN_ON(!bucket->tasks);
1009 if (likely(bucket->tasks))
1010 bucket->tasks--;
1011 uc_se->active = false;
1012
1013 /*
1014 * Keep "local max aggregation" simple and accept to (possibly)
1015 * overboost some RUNNABLE tasks in the same bucket.
1016 * The rq clamp bucket value is reset to its base value whenever
1017 * there are no more RUNNABLE tasks refcounting it.
1018 */
1019 if (likely(bucket->tasks))
1020 return;
1021
1022 rq_clamp = READ_ONCE(uc_rq->value);
1023 /*
1024 * Defensive programming: this should never happen. If it happens,
1025 * e.g. due to future modification, warn and fixup the expected value.
1026 */
1027 SCHED_WARN_ON(bucket->value > rq_clamp);
1028 if (bucket->value >= rq_clamp) {
1029 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1030 WRITE_ONCE(uc_rq->value, bkt_clamp);
1031 }
1032 }
1033
1034 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1035 {
1036 enum uclamp_id clamp_id;
1037
1038 if (unlikely(!p->sched_class->uclamp_enabled))
1039 return;
1040
1041 for_each_clamp_id(clamp_id)
1042 uclamp_rq_inc_id(rq, p, clamp_id);
1043
1044 /* Reset clamp idle holding when there is one RUNNABLE task */
1045 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1046 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1047 }
1048
1049 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1050 {
1051 enum uclamp_id clamp_id;
1052
1053 if (unlikely(!p->sched_class->uclamp_enabled))
1054 return;
1055
1056 for_each_clamp_id(clamp_id)
1057 uclamp_rq_dec_id(rq, p, clamp_id);
1058 }
1059
1060 static inline void
1061 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1062 {
1063 struct rq_flags rf;
1064 struct rq *rq;
1065
1066 /*
1067 * Lock the task and the rq where the task is (or was) queued.
1068 *
1069 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1070 * price to pay to safely serialize util_{min,max} updates with
1071 * enqueues, dequeues and migration operations.
1072 * This is the same locking schema used by __set_cpus_allowed_ptr().
1073 */
1074 rq = task_rq_lock(p, &rf);
1075
1076 /*
1077 * Setting the clamp bucket is serialized by task_rq_lock().
1078 * If the task is not yet RUNNABLE and its task_struct is not
1079 * affecting a valid clamp bucket, the next time it's enqueued,
1080 * it will already see the updated clamp bucket value.
1081 */
1082 if (p->uclamp[clamp_id].active) {
1083 uclamp_rq_dec_id(rq, p, clamp_id);
1084 uclamp_rq_inc_id(rq, p, clamp_id);
1085 }
1086
1087 task_rq_unlock(rq, p, &rf);
1088 }
1089
1090 #ifdef CONFIG_UCLAMP_TASK_GROUP
1091 static inline void
1092 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1093 unsigned int clamps)
1094 {
1095 enum uclamp_id clamp_id;
1096 struct css_task_iter it;
1097 struct task_struct *p;
1098
1099 css_task_iter_start(css, 0, &it);
1100 while ((p = css_task_iter_next(&it))) {
1101 for_each_clamp_id(clamp_id) {
1102 if ((0x1 << clamp_id) & clamps)
1103 uclamp_update_active(p, clamp_id);
1104 }
1105 }
1106 css_task_iter_end(&it);
1107 }
1108
1109 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1110 static void uclamp_update_root_tg(void)
1111 {
1112 struct task_group *tg = &root_task_group;
1113
1114 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1115 sysctl_sched_uclamp_util_min, false);
1116 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1117 sysctl_sched_uclamp_util_max, false);
1118
1119 rcu_read_lock();
1120 cpu_util_update_eff(&root_task_group.css);
1121 rcu_read_unlock();
1122 }
1123 #else
1124 static void uclamp_update_root_tg(void) { }
1125 #endif
1126
1127 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1128 void __user *buffer, size_t *lenp,
1129 loff_t *ppos)
1130 {
1131 bool update_root_tg = false;
1132 int old_min, old_max;
1133 int result;
1134
1135 mutex_lock(&uclamp_mutex);
1136 old_min = sysctl_sched_uclamp_util_min;
1137 old_max = sysctl_sched_uclamp_util_max;
1138
1139 result = proc_dointvec(table, write, buffer, lenp, ppos);
1140 if (result)
1141 goto undo;
1142 if (!write)
1143 goto done;
1144
1145 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1146 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1147 result = -EINVAL;
1148 goto undo;
1149 }
1150
1151 if (old_min != sysctl_sched_uclamp_util_min) {
1152 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1153 sysctl_sched_uclamp_util_min, false);
1154 update_root_tg = true;
1155 }
1156 if (old_max != sysctl_sched_uclamp_util_max) {
1157 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1158 sysctl_sched_uclamp_util_max, false);
1159 update_root_tg = true;
1160 }
1161
1162 if (update_root_tg)
1163 uclamp_update_root_tg();
1164
1165 /*
1166 * We update all RUNNABLE tasks only when task groups are in use.
1167 * Otherwise, keep it simple and do just a lazy update at each next
1168 * task enqueue time.
1169 */
1170
1171 goto done;
1172
1173 undo:
1174 sysctl_sched_uclamp_util_min = old_min;
1175 sysctl_sched_uclamp_util_max = old_max;
1176 done:
1177 mutex_unlock(&uclamp_mutex);
1178
1179 return result;
1180 }
1181
1182 static int uclamp_validate(struct task_struct *p,
1183 const struct sched_attr *attr)
1184 {
1185 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1186 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1187
1188 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1189 lower_bound = attr->sched_util_min;
1190 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1191 upper_bound = attr->sched_util_max;
1192
1193 if (lower_bound > upper_bound)
1194 return -EINVAL;
1195 if (upper_bound > SCHED_CAPACITY_SCALE)
1196 return -EINVAL;
1197
1198 return 0;
1199 }
1200
1201 static void __setscheduler_uclamp(struct task_struct *p,
1202 const struct sched_attr *attr)
1203 {
1204 enum uclamp_id clamp_id;
1205
1206 /*
1207 * On scheduling class change, reset to default clamps for tasks
1208 * without a task-specific value.
1209 */
1210 for_each_clamp_id(clamp_id) {
1211 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1212 unsigned int clamp_value = uclamp_none(clamp_id);
1213
1214 /* Keep using defined clamps across class changes */
1215 if (uc_se->user_defined)
1216 continue;
1217
1218 /* By default, RT tasks always get 100% boost */
1219 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1220 clamp_value = uclamp_none(UCLAMP_MAX);
1221
1222 uclamp_se_set(uc_se, clamp_value, false);
1223 }
1224
1225 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1226 return;
1227
1228 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1229 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1230 attr->sched_util_min, true);
1231 }
1232
1233 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1234 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1235 attr->sched_util_max, true);
1236 }
1237 }
1238
1239 static void uclamp_fork(struct task_struct *p)
1240 {
1241 enum uclamp_id clamp_id;
1242
1243 for_each_clamp_id(clamp_id)
1244 p->uclamp[clamp_id].active = false;
1245
1246 if (likely(!p->sched_reset_on_fork))
1247 return;
1248
1249 for_each_clamp_id(clamp_id) {
1250 uclamp_se_set(&p->uclamp_req[clamp_id],
1251 uclamp_none(clamp_id), false);
1252 }
1253 }
1254
1255 static void __init init_uclamp(void)
1256 {
1257 struct uclamp_se uc_max = {};
1258 enum uclamp_id clamp_id;
1259 int cpu;
1260
1261 mutex_init(&uclamp_mutex);
1262
1263 for_each_possible_cpu(cpu) {
1264 memset(&cpu_rq(cpu)->uclamp, 0,
1265 sizeof(struct uclamp_rq)*UCLAMP_CNT);
1266 cpu_rq(cpu)->uclamp_flags = 0;
1267 }
1268
1269 for_each_clamp_id(clamp_id) {
1270 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1271 uclamp_none(clamp_id), false);
1272 }
1273
1274 /* System defaults allow max clamp values for both indexes */
1275 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1276 for_each_clamp_id(clamp_id) {
1277 uclamp_default[clamp_id] = uc_max;
1278 #ifdef CONFIG_UCLAMP_TASK_GROUP
1279 root_task_group.uclamp_req[clamp_id] = uc_max;
1280 root_task_group.uclamp[clamp_id] = uc_max;
1281 #endif
1282 }
1283 }
1284
1285 #else /* CONFIG_UCLAMP_TASK */
1286 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1287 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1288 static inline int uclamp_validate(struct task_struct *p,
1289 const struct sched_attr *attr)
1290 {
1291 return -EOPNOTSUPP;
1292 }
1293 static void __setscheduler_uclamp(struct task_struct *p,
1294 const struct sched_attr *attr) { }
1295 static inline void uclamp_fork(struct task_struct *p) { }
1296 static inline void init_uclamp(void) { }
1297 #endif /* CONFIG_UCLAMP_TASK */
1298
1299 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1300 {
1301 if (!(flags & ENQUEUE_NOCLOCK))
1302 update_rq_clock(rq);
1303
1304 if (!(flags & ENQUEUE_RESTORE)) {
1305 sched_info_queued(rq, p);
1306 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1307 }
1308
1309 uclamp_rq_inc(rq, p);
1310 p->sched_class->enqueue_task(rq, p, flags);
1311 }
1312
1313 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1314 {
1315 if (!(flags & DEQUEUE_NOCLOCK))
1316 update_rq_clock(rq);
1317
1318 if (!(flags & DEQUEUE_SAVE)) {
1319 sched_info_dequeued(rq, p);
1320 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1321 }
1322
1323 uclamp_rq_dec(rq, p);
1324 p->sched_class->dequeue_task(rq, p, flags);
1325 }
1326
1327 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1328 {
1329 if (task_contributes_to_load(p))
1330 rq->nr_uninterruptible--;
1331
1332 enqueue_task(rq, p, flags);
1333
1334 p->on_rq = TASK_ON_RQ_QUEUED;
1335 }
1336
1337 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1338 {
1339 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1340
1341 if (task_contributes_to_load(p))
1342 rq->nr_uninterruptible++;
1343
1344 dequeue_task(rq, p, flags);
1345 }
1346
1347 /*
1348 * __normal_prio - return the priority that is based on the static prio
1349 */
1350 static inline int __normal_prio(struct task_struct *p)
1351 {
1352 return p->static_prio;
1353 }
1354
1355 /*
1356 * Calculate the expected normal priority: i.e. priority
1357 * without taking RT-inheritance into account. Might be
1358 * boosted by interactivity modifiers. Changes upon fork,
1359 * setprio syscalls, and whenever the interactivity
1360 * estimator recalculates.
1361 */
1362 static inline int normal_prio(struct task_struct *p)
1363 {
1364 int prio;
1365
1366 if (task_has_dl_policy(p))
1367 prio = MAX_DL_PRIO-1;
1368 else if (task_has_rt_policy(p))
1369 prio = MAX_RT_PRIO-1 - p->rt_priority;
1370 else
1371 prio = __normal_prio(p);
1372 return prio;
1373 }
1374
1375 /*
1376 * Calculate the current priority, i.e. the priority
1377 * taken into account by the scheduler. This value might
1378 * be boosted by RT tasks, or might be boosted by
1379 * interactivity modifiers. Will be RT if the task got
1380 * RT-boosted. If not then it returns p->normal_prio.
1381 */
1382 static int effective_prio(struct task_struct *p)
1383 {
1384 p->normal_prio = normal_prio(p);
1385 /*
1386 * If we are RT tasks or we were boosted to RT priority,
1387 * keep the priority unchanged. Otherwise, update priority
1388 * to the normal priority:
1389 */
1390 if (!rt_prio(p->prio))
1391 return p->normal_prio;
1392 return p->prio;
1393 }
1394
1395 /**
1396 * task_curr - is this task currently executing on a CPU?
1397 * @p: the task in question.
1398 *
1399 * Return: 1 if the task is currently executing. 0 otherwise.
1400 */
1401 inline int task_curr(const struct task_struct *p)
1402 {
1403 return cpu_curr(task_cpu(p)) == p;
1404 }
1405
1406 /*
1407 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1408 * use the balance_callback list if you want balancing.
1409 *
1410 * this means any call to check_class_changed() must be followed by a call to
1411 * balance_callback().
1412 */
1413 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1414 const struct sched_class *prev_class,
1415 int oldprio)
1416 {
1417 if (prev_class != p->sched_class) {
1418 if (prev_class->switched_from)
1419 prev_class->switched_from(rq, p);
1420
1421 p->sched_class->switched_to(rq, p);
1422 } else if (oldprio != p->prio || dl_task(p))
1423 p->sched_class->prio_changed(rq, p, oldprio);
1424 }
1425
1426 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1427 {
1428 const struct sched_class *class;
1429
1430 if (p->sched_class == rq->curr->sched_class) {
1431 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1432 } else {
1433 for_each_class(class) {
1434 if (class == rq->curr->sched_class)
1435 break;
1436 if (class == p->sched_class) {
1437 resched_curr(rq);
1438 break;
1439 }
1440 }
1441 }
1442
1443 /*
1444 * A queue event has occurred, and we're going to schedule. In
1445 * this case, we can save a useless back to back clock update.
1446 */
1447 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1448 rq_clock_skip_update(rq);
1449 }
1450
1451 #ifdef CONFIG_SMP
1452
1453 /*
1454 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1455 * __set_cpus_allowed_ptr() and select_fallback_rq().
1456 */
1457 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1458 {
1459 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1460 return false;
1461
1462 if (is_per_cpu_kthread(p))
1463 return cpu_online(cpu);
1464
1465 return cpu_active(cpu);
1466 }
1467
1468 /*
1469 * This is how migration works:
1470 *
1471 * 1) we invoke migration_cpu_stop() on the target CPU using
1472 * stop_one_cpu().
1473 * 2) stopper starts to run (implicitly forcing the migrated thread
1474 * off the CPU)
1475 * 3) it checks whether the migrated task is still in the wrong runqueue.
1476 * 4) if it's in the wrong runqueue then the migration thread removes
1477 * it and puts it into the right queue.
1478 * 5) stopper completes and stop_one_cpu() returns and the migration
1479 * is done.
1480 */
1481
1482 /*
1483 * move_queued_task - move a queued task to new rq.
1484 *
1485 * Returns (locked) new rq. Old rq's lock is released.
1486 */
1487 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1488 struct task_struct *p, int new_cpu)
1489 {
1490 lockdep_assert_held(&rq->lock);
1491
1492 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1493 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1494 set_task_cpu(p, new_cpu);
1495 rq_unlock(rq, rf);
1496
1497 rq = cpu_rq(new_cpu);
1498
1499 rq_lock(rq, rf);
1500 BUG_ON(task_cpu(p) != new_cpu);
1501 enqueue_task(rq, p, 0);
1502 p->on_rq = TASK_ON_RQ_QUEUED;
1503 check_preempt_curr(rq, p, 0);
1504
1505 return rq;
1506 }
1507
1508 struct migration_arg {
1509 struct task_struct *task;
1510 int dest_cpu;
1511 };
1512
1513 /*
1514 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1515 * this because either it can't run here any more (set_cpus_allowed()
1516 * away from this CPU, or CPU going down), or because we're
1517 * attempting to rebalance this task on exec (sched_exec).
1518 *
1519 * So we race with normal scheduler movements, but that's OK, as long
1520 * as the task is no longer on this CPU.
1521 */
1522 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1523 struct task_struct *p, int dest_cpu)
1524 {
1525 /* Affinity changed (again). */
1526 if (!is_cpu_allowed(p, dest_cpu))
1527 return rq;
1528
1529 update_rq_clock(rq);
1530 rq = move_queued_task(rq, rf, p, dest_cpu);
1531
1532 return rq;
1533 }
1534
1535 /*
1536 * migration_cpu_stop - this will be executed by a highprio stopper thread
1537 * and performs thread migration by bumping thread off CPU then
1538 * 'pushing' onto another runqueue.
1539 */
1540 static int migration_cpu_stop(void *data)
1541 {
1542 struct migration_arg *arg = data;
1543 struct task_struct *p = arg->task;
1544 struct rq *rq = this_rq();
1545 struct rq_flags rf;
1546
1547 /*
1548 * The original target CPU might have gone down and we might
1549 * be on another CPU but it doesn't matter.
1550 */
1551 local_irq_disable();
1552 /*
1553 * We need to explicitly wake pending tasks before running
1554 * __migrate_task() such that we will not miss enforcing cpus_ptr
1555 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1556 */
1557 sched_ttwu_pending();
1558
1559 raw_spin_lock(&p->pi_lock);
1560 rq_lock(rq, &rf);
1561 /*
1562 * If task_rq(p) != rq, it cannot be migrated here, because we're
1563 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1564 * we're holding p->pi_lock.
1565 */
1566 if (task_rq(p) == rq) {
1567 if (task_on_rq_queued(p))
1568 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1569 else
1570 p->wake_cpu = arg->dest_cpu;
1571 }
1572 rq_unlock(rq, &rf);
1573 raw_spin_unlock(&p->pi_lock);
1574
1575 local_irq_enable();
1576 return 0;
1577 }
1578
1579 /*
1580 * sched_class::set_cpus_allowed must do the below, but is not required to
1581 * actually call this function.
1582 */
1583 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1584 {
1585 cpumask_copy(&p->cpus_mask, new_mask);
1586 p->nr_cpus_allowed = cpumask_weight(new_mask);
1587 }
1588
1589 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1590 {
1591 struct rq *rq = task_rq(p);
1592 bool queued, running;
1593
1594 lockdep_assert_held(&p->pi_lock);
1595
1596 queued = task_on_rq_queued(p);
1597 running = task_current(rq, p);
1598
1599 if (queued) {
1600 /*
1601 * Because __kthread_bind() calls this on blocked tasks without
1602 * holding rq->lock.
1603 */
1604 lockdep_assert_held(&rq->lock);
1605 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1606 }
1607 if (running)
1608 put_prev_task(rq, p);
1609
1610 p->sched_class->set_cpus_allowed(p, new_mask);
1611
1612 if (queued)
1613 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1614 if (running)
1615 set_next_task(rq, p);
1616 }
1617
1618 /*
1619 * Change a given task's CPU affinity. Migrate the thread to a
1620 * proper CPU and schedule it away if the CPU it's executing on
1621 * is removed from the allowed bitmask.
1622 *
1623 * NOTE: the caller must have a valid reference to the task, the
1624 * task must not exit() & deallocate itself prematurely. The
1625 * call is not atomic; no spinlocks may be held.
1626 */
1627 static int __set_cpus_allowed_ptr(struct task_struct *p,
1628 const struct cpumask *new_mask, bool check)
1629 {
1630 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1631 unsigned int dest_cpu;
1632 struct rq_flags rf;
1633 struct rq *rq;
1634 int ret = 0;
1635
1636 rq = task_rq_lock(p, &rf);
1637 update_rq_clock(rq);
1638
1639 if (p->flags & PF_KTHREAD) {
1640 /*
1641 * Kernel threads are allowed on online && !active CPUs
1642 */
1643 cpu_valid_mask = cpu_online_mask;
1644 }
1645
1646 /*
1647 * Must re-check here, to close a race against __kthread_bind(),
1648 * sched_setaffinity() is not guaranteed to observe the flag.
1649 */
1650 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1651 ret = -EINVAL;
1652 goto out;
1653 }
1654
1655 if (cpumask_equal(p->cpus_ptr, new_mask))
1656 goto out;
1657
1658 /*
1659 * Picking a ~random cpu helps in cases where we are changing affinity
1660 * for groups of tasks (ie. cpuset), so that load balancing is not
1661 * immediately required to distribute the tasks within their new mask.
1662 */
1663 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
1664 if (dest_cpu >= nr_cpu_ids) {
1665 ret = -EINVAL;
1666 goto out;
1667 }
1668
1669 do_set_cpus_allowed(p, new_mask);
1670
1671 if (p->flags & PF_KTHREAD) {
1672 /*
1673 * For kernel threads that do indeed end up on online &&
1674 * !active we want to ensure they are strict per-CPU threads.
1675 */
1676 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1677 !cpumask_intersects(new_mask, cpu_active_mask) &&
1678 p->nr_cpus_allowed != 1);
1679 }
1680
1681 /* Can the task run on the task's current CPU? If so, we're done */
1682 if (cpumask_test_cpu(task_cpu(p), new_mask))
1683 goto out;
1684
1685 if (task_running(rq, p) || p->state == TASK_WAKING) {
1686 struct migration_arg arg = { p, dest_cpu };
1687 /* Need help from migration thread: drop lock and wait. */
1688 task_rq_unlock(rq, p, &rf);
1689 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1690 return 0;
1691 } else if (task_on_rq_queued(p)) {
1692 /*
1693 * OK, since we're going to drop the lock immediately
1694 * afterwards anyway.
1695 */
1696 rq = move_queued_task(rq, &rf, p, dest_cpu);
1697 }
1698 out:
1699 task_rq_unlock(rq, p, &rf);
1700
1701 return ret;
1702 }
1703
1704 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1705 {
1706 return __set_cpus_allowed_ptr(p, new_mask, false);
1707 }
1708 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1709
1710 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1711 {
1712 #ifdef CONFIG_SCHED_DEBUG
1713 /*
1714 * We should never call set_task_cpu() on a blocked task,
1715 * ttwu() will sort out the placement.
1716 */
1717 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1718 !p->on_rq);
1719
1720 /*
1721 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1722 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1723 * time relying on p->on_rq.
1724 */
1725 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1726 p->sched_class == &fair_sched_class &&
1727 (p->on_rq && !task_on_rq_migrating(p)));
1728
1729 #ifdef CONFIG_LOCKDEP
1730 /*
1731 * The caller should hold either p->pi_lock or rq->lock, when changing
1732 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1733 *
1734 * sched_move_task() holds both and thus holding either pins the cgroup,
1735 * see task_group().
1736 *
1737 * Furthermore, all task_rq users should acquire both locks, see
1738 * task_rq_lock().
1739 */
1740 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1741 lockdep_is_held(&task_rq(p)->lock)));
1742 #endif
1743 /*
1744 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1745 */
1746 WARN_ON_ONCE(!cpu_online(new_cpu));
1747 #endif
1748
1749 trace_sched_migrate_task(p, new_cpu);
1750
1751 if (task_cpu(p) != new_cpu) {
1752 if (p->sched_class->migrate_task_rq)
1753 p->sched_class->migrate_task_rq(p, new_cpu);
1754 p->se.nr_migrations++;
1755 rseq_migrate(p);
1756 perf_event_task_migrate(p);
1757 }
1758
1759 __set_task_cpu(p, new_cpu);
1760 }
1761
1762 #ifdef CONFIG_NUMA_BALANCING
1763 static void __migrate_swap_task(struct task_struct *p, int cpu)
1764 {
1765 if (task_on_rq_queued(p)) {
1766 struct rq *src_rq, *dst_rq;
1767 struct rq_flags srf, drf;
1768
1769 src_rq = task_rq(p);
1770 dst_rq = cpu_rq(cpu);
1771
1772 rq_pin_lock(src_rq, &srf);
1773 rq_pin_lock(dst_rq, &drf);
1774
1775 deactivate_task(src_rq, p, 0);
1776 set_task_cpu(p, cpu);
1777 activate_task(dst_rq, p, 0);
1778 check_preempt_curr(dst_rq, p, 0);
1779
1780 rq_unpin_lock(dst_rq, &drf);
1781 rq_unpin_lock(src_rq, &srf);
1782
1783 } else {
1784 /*
1785 * Task isn't running anymore; make it appear like we migrated
1786 * it before it went to sleep. This means on wakeup we make the
1787 * previous CPU our target instead of where it really is.
1788 */
1789 p->wake_cpu = cpu;
1790 }
1791 }
1792
1793 struct migration_swap_arg {
1794 struct task_struct *src_task, *dst_task;
1795 int src_cpu, dst_cpu;
1796 };
1797
1798 static int migrate_swap_stop(void *data)
1799 {
1800 struct migration_swap_arg *arg = data;
1801 struct rq *src_rq, *dst_rq;
1802 int ret = -EAGAIN;
1803
1804 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1805 return -EAGAIN;
1806
1807 src_rq = cpu_rq(arg->src_cpu);
1808 dst_rq = cpu_rq(arg->dst_cpu);
1809
1810 double_raw_lock(&arg->src_task->pi_lock,
1811 &arg->dst_task->pi_lock);
1812 double_rq_lock(src_rq, dst_rq);
1813
1814 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1815 goto unlock;
1816
1817 if (task_cpu(arg->src_task) != arg->src_cpu)
1818 goto unlock;
1819
1820 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1821 goto unlock;
1822
1823 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1824 goto unlock;
1825
1826 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1827 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1828
1829 ret = 0;
1830
1831 unlock:
1832 double_rq_unlock(src_rq, dst_rq);
1833 raw_spin_unlock(&arg->dst_task->pi_lock);
1834 raw_spin_unlock(&arg->src_task->pi_lock);
1835
1836 return ret;
1837 }
1838
1839 /*
1840 * Cross migrate two tasks
1841 */
1842 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1843 int target_cpu, int curr_cpu)
1844 {
1845 struct migration_swap_arg arg;
1846 int ret = -EINVAL;
1847
1848 arg = (struct migration_swap_arg){
1849 .src_task = cur,
1850 .src_cpu = curr_cpu,
1851 .dst_task = p,
1852 .dst_cpu = target_cpu,
1853 };
1854
1855 if (arg.src_cpu == arg.dst_cpu)
1856 goto out;
1857
1858 /*
1859 * These three tests are all lockless; this is OK since all of them
1860 * will be re-checked with proper locks held further down the line.
1861 */
1862 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1863 goto out;
1864
1865 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1866 goto out;
1867
1868 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1869 goto out;
1870
1871 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1872 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1873
1874 out:
1875 return ret;
1876 }
1877 #endif /* CONFIG_NUMA_BALANCING */
1878
1879 /*
1880 * wait_task_inactive - wait for a thread to unschedule.
1881 *
1882 * If @match_state is nonzero, it's the @p->state value just checked and
1883 * not expected to change. If it changes, i.e. @p might have woken up,
1884 * then return zero. When we succeed in waiting for @p to be off its CPU,
1885 * we return a positive number (its total switch count). If a second call
1886 * a short while later returns the same number, the caller can be sure that
1887 * @p has remained unscheduled the whole time.
1888 *
1889 * The caller must ensure that the task *will* unschedule sometime soon,
1890 * else this function might spin for a *long* time. This function can't
1891 * be called with interrupts off, or it may introduce deadlock with
1892 * smp_call_function() if an IPI is sent by the same process we are
1893 * waiting to become inactive.
1894 */
1895 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1896 {
1897 int running, queued;
1898 struct rq_flags rf;
1899 unsigned long ncsw;
1900 struct rq *rq;
1901
1902 for (;;) {
1903 /*
1904 * We do the initial early heuristics without holding
1905 * any task-queue locks at all. We'll only try to get
1906 * the runqueue lock when things look like they will
1907 * work out!
1908 */
1909 rq = task_rq(p);
1910
1911 /*
1912 * If the task is actively running on another CPU
1913 * still, just relax and busy-wait without holding
1914 * any locks.
1915 *
1916 * NOTE! Since we don't hold any locks, it's not
1917 * even sure that "rq" stays as the right runqueue!
1918 * But we don't care, since "task_running()" will
1919 * return false if the runqueue has changed and p
1920 * is actually now running somewhere else!
1921 */
1922 while (task_running(rq, p)) {
1923 if (match_state && unlikely(p->state != match_state))
1924 return 0;
1925 cpu_relax();
1926 }
1927
1928 /*
1929 * Ok, time to look more closely! We need the rq
1930 * lock now, to be *sure*. If we're wrong, we'll
1931 * just go back and repeat.
1932 */
1933 rq = task_rq_lock(p, &rf);
1934 trace_sched_wait_task(p);
1935 running = task_running(rq, p);
1936 queued = task_on_rq_queued(p);
1937 ncsw = 0;
1938 if (!match_state || p->state == match_state)
1939 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1940 task_rq_unlock(rq, p, &rf);
1941
1942 /*
1943 * If it changed from the expected state, bail out now.
1944 */
1945 if (unlikely(!ncsw))
1946 break;
1947
1948 /*
1949 * Was it really running after all now that we
1950 * checked with the proper locks actually held?
1951 *
1952 * Oops. Go back and try again..
1953 */
1954 if (unlikely(running)) {
1955 cpu_relax();
1956 continue;
1957 }
1958
1959 /*
1960 * It's not enough that it's not actively running,
1961 * it must be off the runqueue _entirely_, and not
1962 * preempted!
1963 *
1964 * So if it was still runnable (but just not actively
1965 * running right now), it's preempted, and we should
1966 * yield - it could be a while.
1967 */
1968 if (unlikely(queued)) {
1969 ktime_t to = NSEC_PER_SEC / HZ;
1970
1971 set_current_state(TASK_UNINTERRUPTIBLE);
1972 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1973 continue;
1974 }
1975
1976 /*
1977 * Ahh, all good. It wasn't running, and it wasn't
1978 * runnable, which means that it will never become
1979 * running in the future either. We're all done!
1980 */
1981 break;
1982 }
1983
1984 return ncsw;
1985 }
1986
1987 /***
1988 * kick_process - kick a running thread to enter/exit the kernel
1989 * @p: the to-be-kicked thread
1990 *
1991 * Cause a process which is running on another CPU to enter
1992 * kernel-mode, without any delay. (to get signals handled.)
1993 *
1994 * NOTE: this function doesn't have to take the runqueue lock,
1995 * because all it wants to ensure is that the remote task enters
1996 * the kernel. If the IPI races and the task has been migrated
1997 * to another CPU then no harm is done and the purpose has been
1998 * achieved as well.
1999 */
2000 void kick_process(struct task_struct *p)
2001 {
2002 int cpu;
2003
2004 preempt_disable();
2005 cpu = task_cpu(p);
2006 if ((cpu != smp_processor_id()) && task_curr(p))
2007 smp_send_reschedule(cpu);
2008 preempt_enable();
2009 }
2010 EXPORT_SYMBOL_GPL(kick_process);
2011
2012 /*
2013 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2014 *
2015 * A few notes on cpu_active vs cpu_online:
2016 *
2017 * - cpu_active must be a subset of cpu_online
2018 *
2019 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2020 * see __set_cpus_allowed_ptr(). At this point the newly online
2021 * CPU isn't yet part of the sched domains, and balancing will not
2022 * see it.
2023 *
2024 * - on CPU-down we clear cpu_active() to mask the sched domains and
2025 * avoid the load balancer to place new tasks on the to be removed
2026 * CPU. Existing tasks will remain running there and will be taken
2027 * off.
2028 *
2029 * This means that fallback selection must not select !active CPUs.
2030 * And can assume that any active CPU must be online. Conversely
2031 * select_task_rq() below may allow selection of !active CPUs in order
2032 * to satisfy the above rules.
2033 */
2034 static int select_fallback_rq(int cpu, struct task_struct *p)
2035 {
2036 int nid = cpu_to_node(cpu);
2037 const struct cpumask *nodemask = NULL;
2038 enum { cpuset, possible, fail } state = cpuset;
2039 int dest_cpu;
2040
2041 /*
2042 * If the node that the CPU is on has been offlined, cpu_to_node()
2043 * will return -1. There is no CPU on the node, and we should
2044 * select the CPU on the other node.
2045 */
2046 if (nid != -1) {
2047 nodemask = cpumask_of_node(nid);
2048
2049 /* Look for allowed, online CPU in same node. */
2050 for_each_cpu(dest_cpu, nodemask) {
2051 if (!cpu_active(dest_cpu))
2052 continue;
2053 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2054 return dest_cpu;
2055 }
2056 }
2057
2058 for (;;) {
2059 /* Any allowed, online CPU? */
2060 for_each_cpu(dest_cpu, p->cpus_ptr) {
2061 if (!is_cpu_allowed(p, dest_cpu))
2062 continue;
2063
2064 goto out;
2065 }
2066
2067 /* No more Mr. Nice Guy. */
2068 switch (state) {
2069 case cpuset:
2070 if (IS_ENABLED(CONFIG_CPUSETS)) {
2071 cpuset_cpus_allowed_fallback(p);
2072 state = possible;
2073 break;
2074 }
2075 /* Fall-through */
2076 case possible:
2077 do_set_cpus_allowed(p, cpu_possible_mask);
2078 state = fail;
2079 break;
2080
2081 case fail:
2082 BUG();
2083 break;
2084 }
2085 }
2086
2087 out:
2088 if (state != cpuset) {
2089 /*
2090 * Don't tell them about moving exiting tasks or
2091 * kernel threads (both mm NULL), since they never
2092 * leave kernel.
2093 */
2094 if (p->mm && printk_ratelimit()) {
2095 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2096 task_pid_nr(p), p->comm, cpu);
2097 }
2098 }
2099
2100 return dest_cpu;
2101 }
2102
2103 /*
2104 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2105 */
2106 static inline
2107 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2108 {
2109 lockdep_assert_held(&p->pi_lock);
2110
2111 if (p->nr_cpus_allowed > 1)
2112 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2113 else
2114 cpu = cpumask_any(p->cpus_ptr);
2115
2116 /*
2117 * In order not to call set_task_cpu() on a blocking task we need
2118 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2119 * CPU.
2120 *
2121 * Since this is common to all placement strategies, this lives here.
2122 *
2123 * [ this allows ->select_task() to simply return task_cpu(p) and
2124 * not worry about this generic constraint ]
2125 */
2126 if (unlikely(!is_cpu_allowed(p, cpu)))
2127 cpu = select_fallback_rq(task_cpu(p), p);
2128
2129 return cpu;
2130 }
2131
2132 void sched_set_stop_task(int cpu, struct task_struct *stop)
2133 {
2134 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2135 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2136
2137 if (stop) {
2138 /*
2139 * Make it appear like a SCHED_FIFO task, its something
2140 * userspace knows about and won't get confused about.
2141 *
2142 * Also, it will make PI more or less work without too
2143 * much confusion -- but then, stop work should not
2144 * rely on PI working anyway.
2145 */
2146 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2147
2148 stop->sched_class = &stop_sched_class;
2149 }
2150
2151 cpu_rq(cpu)->stop = stop;
2152
2153 if (old_stop) {
2154 /*
2155 * Reset it back to a normal scheduling class so that
2156 * it can die in pieces.
2157 */
2158 old_stop->sched_class = &rt_sched_class;
2159 }
2160 }
2161
2162 #else
2163
2164 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2165 const struct cpumask *new_mask, bool check)
2166 {
2167 return set_cpus_allowed_ptr(p, new_mask);
2168 }
2169
2170 #endif /* CONFIG_SMP */
2171
2172 static void
2173 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2174 {
2175 struct rq *rq;
2176
2177 if (!schedstat_enabled())
2178 return;
2179
2180 rq = this_rq();
2181
2182 #ifdef CONFIG_SMP
2183 if (cpu == rq->cpu) {
2184 __schedstat_inc(rq->ttwu_local);
2185 __schedstat_inc(p->se.statistics.nr_wakeups_local);
2186 } else {
2187 struct sched_domain *sd;
2188
2189 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2190 rcu_read_lock();
2191 for_each_domain(rq->cpu, sd) {
2192 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2193 __schedstat_inc(sd->ttwu_wake_remote);
2194 break;
2195 }
2196 }
2197 rcu_read_unlock();
2198 }
2199
2200 if (wake_flags & WF_MIGRATED)
2201 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2202 #endif /* CONFIG_SMP */
2203
2204 __schedstat_inc(rq->ttwu_count);
2205 __schedstat_inc(p->se.statistics.nr_wakeups);
2206
2207 if (wake_flags & WF_SYNC)
2208 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2209 }
2210
2211 /*
2212 * Mark the task runnable and perform wakeup-preemption.
2213 */
2214 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2215 struct rq_flags *rf)
2216 {
2217 check_preempt_curr(rq, p, wake_flags);
2218 p->state = TASK_RUNNING;
2219 trace_sched_wakeup(p);
2220
2221 #ifdef CONFIG_SMP
2222 if (p->sched_class->task_woken) {
2223 /*
2224 * Our task @p is fully woken up and running; so its safe to
2225 * drop the rq->lock, hereafter rq is only used for statistics.
2226 */
2227 rq_unpin_lock(rq, rf);
2228 p->sched_class->task_woken(rq, p);
2229 rq_repin_lock(rq, rf);
2230 }
2231
2232 if (rq->idle_stamp) {
2233 u64 delta = rq_clock(rq) - rq->idle_stamp;
2234 u64 max = 2*rq->max_idle_balance_cost;
2235
2236 update_avg(&rq->avg_idle, delta);
2237
2238 if (rq->avg_idle > max)
2239 rq->avg_idle = max;
2240
2241 rq->idle_stamp = 0;
2242 }
2243 #endif
2244 }
2245
2246 static void
2247 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2248 struct rq_flags *rf)
2249 {
2250 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2251
2252 lockdep_assert_held(&rq->lock);
2253
2254 #ifdef CONFIG_SMP
2255 if (p->sched_contributes_to_load)
2256 rq->nr_uninterruptible--;
2257
2258 if (wake_flags & WF_MIGRATED)
2259 en_flags |= ENQUEUE_MIGRATED;
2260 #endif
2261
2262 activate_task(rq, p, en_flags);
2263 ttwu_do_wakeup(rq, p, wake_flags, rf);
2264 }
2265
2266 /*
2267 * Called in case the task @p isn't fully descheduled from its runqueue,
2268 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2269 * since all we need to do is flip p->state to TASK_RUNNING, since
2270 * the task is still ->on_rq.
2271 */
2272 static int ttwu_remote(struct task_struct *p, int wake_flags)
2273 {
2274 struct rq_flags rf;
2275 struct rq *rq;
2276 int ret = 0;
2277
2278 rq = __task_rq_lock(p, &rf);
2279 if (task_on_rq_queued(p)) {
2280 /* check_preempt_curr() may use rq clock */
2281 update_rq_clock(rq);
2282 ttwu_do_wakeup(rq, p, wake_flags, &rf);
2283 ret = 1;
2284 }
2285 __task_rq_unlock(rq, &rf);
2286
2287 return ret;
2288 }
2289
2290 #ifdef CONFIG_SMP
2291 void sched_ttwu_pending(void)
2292 {
2293 struct rq *rq = this_rq();
2294 struct llist_node *llist = llist_del_all(&rq->wake_list);
2295 struct task_struct *p, *t;
2296 struct rq_flags rf;
2297
2298 if (!llist)
2299 return;
2300
2301 rq_lock_irqsave(rq, &rf);
2302 update_rq_clock(rq);
2303
2304 llist_for_each_entry_safe(p, t, llist, wake_entry)
2305 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2306
2307 rq_unlock_irqrestore(rq, &rf);
2308 }
2309
2310 static void wake_csd_func(void *info)
2311 {
2312 sched_ttwu_pending();
2313 }
2314
2315 /*
2316 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
2317 * necessary. The wakee CPU on receipt of the IPI will queue the task
2318 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
2319 * of the wakeup instead of the waker.
2320 */
2321 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2322 {
2323 struct rq *rq = cpu_rq(cpu);
2324
2325 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2326
2327 if (llist_add(&p->wake_entry, &rq->wake_list)) {
2328 if (!set_nr_if_polling(rq->idle))
2329 smp_call_function_single_async(cpu, &rq->wake_csd);
2330 else
2331 trace_sched_wake_idle_without_ipi(cpu);
2332 }
2333 }
2334
2335 void wake_up_if_idle(int cpu)
2336 {
2337 struct rq *rq = cpu_rq(cpu);
2338 struct rq_flags rf;
2339
2340 rcu_read_lock();
2341
2342 if (!is_idle_task(rcu_dereference(rq->curr)))
2343 goto out;
2344
2345 if (set_nr_if_polling(rq->idle)) {
2346 trace_sched_wake_idle_without_ipi(cpu);
2347 } else {
2348 rq_lock_irqsave(rq, &rf);
2349 if (is_idle_task(rq->curr))
2350 smp_send_reschedule(cpu);
2351 /* Else CPU is not idle, do nothing here: */
2352 rq_unlock_irqrestore(rq, &rf);
2353 }
2354
2355 out:
2356 rcu_read_unlock();
2357 }
2358
2359 bool cpus_share_cache(int this_cpu, int that_cpu)
2360 {
2361 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2362 }
2363
2364 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
2365 {
2366 /*
2367 * If the CPU does not share cache, then queue the task on the
2368 * remote rqs wakelist to avoid accessing remote data.
2369 */
2370 if (!cpus_share_cache(smp_processor_id(), cpu))
2371 return true;
2372
2373 /*
2374 * If the task is descheduling and the only running task on the
2375 * CPU then use the wakelist to offload the task activation to
2376 * the soon-to-be-idle CPU as the current CPU is likely busy.
2377 * nr_running is checked to avoid unnecessary task stacking.
2378 */
2379 if ((wake_flags & WF_ON_RQ) && cpu_rq(cpu)->nr_running <= 1)
2380 return true;
2381
2382 return false;
2383 }
2384
2385 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2386 {
2387 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
2388 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2389 __ttwu_queue_wakelist(p, cpu, wake_flags);
2390 return true;
2391 }
2392
2393 return false;
2394 }
2395 #endif /* CONFIG_SMP */
2396
2397 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2398 {
2399 struct rq *rq = cpu_rq(cpu);
2400 struct rq_flags rf;
2401
2402 #if defined(CONFIG_SMP)
2403 if (ttwu_queue_wakelist(p, cpu, wake_flags))
2404 return;
2405 #endif
2406
2407 rq_lock(rq, &rf);
2408 update_rq_clock(rq);
2409 ttwu_do_activate(rq, p, wake_flags, &rf);
2410 rq_unlock(rq, &rf);
2411 }
2412
2413 /*
2414 * Notes on Program-Order guarantees on SMP systems.
2415 *
2416 * MIGRATION
2417 *
2418 * The basic program-order guarantee on SMP systems is that when a task [t]
2419 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2420 * execution on its new CPU [c1].
2421 *
2422 * For migration (of runnable tasks) this is provided by the following means:
2423 *
2424 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2425 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2426 * rq(c1)->lock (if not at the same time, then in that order).
2427 * C) LOCK of the rq(c1)->lock scheduling in task
2428 *
2429 * Release/acquire chaining guarantees that B happens after A and C after B.
2430 * Note: the CPU doing B need not be c0 or c1
2431 *
2432 * Example:
2433 *
2434 * CPU0 CPU1 CPU2
2435 *
2436 * LOCK rq(0)->lock
2437 * sched-out X
2438 * sched-in Y
2439 * UNLOCK rq(0)->lock
2440 *
2441 * LOCK rq(0)->lock // orders against CPU0
2442 * dequeue X
2443 * UNLOCK rq(0)->lock
2444 *
2445 * LOCK rq(1)->lock
2446 * enqueue X
2447 * UNLOCK rq(1)->lock
2448 *
2449 * LOCK rq(1)->lock // orders against CPU2
2450 * sched-out Z
2451 * sched-in X
2452 * UNLOCK rq(1)->lock
2453 *
2454 *
2455 * BLOCKING -- aka. SLEEP + WAKEUP
2456 *
2457 * For blocking we (obviously) need to provide the same guarantee as for
2458 * migration. However the means are completely different as there is no lock
2459 * chain to provide order. Instead we do:
2460 *
2461 * 1) smp_store_release(X->on_cpu, 0)
2462 * 2) smp_cond_load_acquire(!X->on_cpu)
2463 *
2464 * Example:
2465 *
2466 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2467 *
2468 * LOCK rq(0)->lock LOCK X->pi_lock
2469 * dequeue X
2470 * sched-out X
2471 * smp_store_release(X->on_cpu, 0);
2472 *
2473 * smp_cond_load_acquire(&X->on_cpu, !VAL);
2474 * X->state = WAKING
2475 * set_task_cpu(X,2)
2476 *
2477 * LOCK rq(2)->lock
2478 * enqueue X
2479 * X->state = RUNNING
2480 * UNLOCK rq(2)->lock
2481 *
2482 * LOCK rq(2)->lock // orders against CPU1
2483 * sched-out Z
2484 * sched-in X
2485 * UNLOCK rq(2)->lock
2486 *
2487 * UNLOCK X->pi_lock
2488 * UNLOCK rq(0)->lock
2489 *
2490 *
2491 * However, for wakeups there is a second guarantee we must provide, namely we
2492 * must ensure that CONDITION=1 done by the caller can not be reordered with
2493 * accesses to the task state; see try_to_wake_up() and set_current_state().
2494 */
2495
2496 /**
2497 * try_to_wake_up - wake up a thread
2498 * @p: the thread to be awakened
2499 * @state: the mask of task states that can be woken
2500 * @wake_flags: wake modifier flags (WF_*)
2501 *
2502 * If (@state & @p->state) @p->state = TASK_RUNNING.
2503 *
2504 * If the task was not queued/runnable, also place it back on a runqueue.
2505 *
2506 * Atomic against schedule() which would dequeue a task, also see
2507 * set_current_state().
2508 *
2509 * This function executes a full memory barrier before accessing the task
2510 * state; see set_current_state().
2511 *
2512 * Return: %true if @p->state changes (an actual wakeup was done),
2513 * %false otherwise.
2514 */
2515 static int
2516 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2517 {
2518 unsigned long flags;
2519 int cpu, success = 0;
2520
2521 preempt_disable();
2522 if (p == current) {
2523 /*
2524 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2525 * == smp_processor_id()'. Together this means we can special
2526 * case the whole 'p->on_rq && ttwu_remote()' case below
2527 * without taking any locks.
2528 *
2529 * In particular:
2530 * - we rely on Program-Order guarantees for all the ordering,
2531 * - we're serialized against set_special_state() by virtue of
2532 * it disabling IRQs (this allows not taking ->pi_lock).
2533 */
2534 if (!(p->state & state))
2535 goto out;
2536
2537 success = 1;
2538 cpu = task_cpu(p);
2539 trace_sched_waking(p);
2540 p->state = TASK_RUNNING;
2541 trace_sched_wakeup(p);
2542 goto out;
2543 }
2544
2545 /*
2546 * If we are going to wake up a thread waiting for CONDITION we
2547 * need to ensure that CONDITION=1 done by the caller can not be
2548 * reordered with p->state check below. This pairs with mb() in
2549 * set_current_state() the waiting thread does.
2550 */
2551 raw_spin_lock_irqsave(&p->pi_lock, flags);
2552 smp_mb__after_spinlock();
2553 if (!(p->state & state))
2554 goto unlock;
2555
2556 trace_sched_waking(p);
2557
2558 /* We're going to change ->state: */
2559 success = 1;
2560 cpu = task_cpu(p);
2561
2562 /*
2563 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2564 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2565 * in smp_cond_load_acquire() below.
2566 *
2567 * sched_ttwu_pending() try_to_wake_up()
2568 * STORE p->on_rq = 1 LOAD p->state
2569 * UNLOCK rq->lock
2570 *
2571 * __schedule() (switch to task 'p')
2572 * LOCK rq->lock smp_rmb();
2573 * smp_mb__after_spinlock();
2574 * UNLOCK rq->lock
2575 *
2576 * [task p]
2577 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
2578 *
2579 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2580 * __schedule(). See the comment for smp_mb__after_spinlock().
2581 */
2582 smp_rmb();
2583 if (p->on_rq && ttwu_remote(p, wake_flags))
2584 goto unlock;
2585
2586 if (p->in_iowait) {
2587 delayacct_blkio_end(p);
2588 atomic_dec(&task_rq(p)->nr_iowait);
2589 }
2590
2591 #ifdef CONFIG_SMP
2592 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2593 p->state = TASK_WAKING;
2594
2595 /*
2596 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2597 * possible to, falsely, observe p->on_cpu == 0.
2598 *
2599 * One must be running (->on_cpu == 1) in order to remove oneself
2600 * from the runqueue.
2601 *
2602 * __schedule() (switch to task 'p') try_to_wake_up()
2603 * STORE p->on_cpu = 1 LOAD p->on_rq
2604 * UNLOCK rq->lock
2605 *
2606 * __schedule() (put 'p' to sleep)
2607 * LOCK rq->lock smp_rmb();
2608 * smp_mb__after_spinlock();
2609 * STORE p->on_rq = 0 LOAD p->on_cpu
2610 *
2611 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2612 * __schedule(). See the comment for smp_mb__after_spinlock().
2613 */
2614 smp_rmb();
2615
2616 /*
2617 * If the owning (remote) CPU is still in the middle of schedule() with
2618 * this task as prev, considering queueing p on the remote CPUs wake_list
2619 * which potentially sends an IPI instead of spinning on p->on_cpu to
2620 * let the waker make forward progress. This is safe because IRQs are
2621 * disabled and the IPI will deliver after on_cpu is cleared.
2622 */
2623 if (READ_ONCE(p->on_cpu) && ttwu_queue_wakelist(p, cpu, wake_flags | WF_ON_RQ))
2624 goto unlock;
2625
2626 /*
2627 * If the owning (remote) CPU is still in the middle of schedule() with
2628 * this task as prev, wait until its done referencing the task.
2629 *
2630 * Pairs with the smp_store_release() in finish_task().
2631 *
2632 * This ensures that tasks getting woken will be fully ordered against
2633 * their previous state and preserve Program Order.
2634 */
2635 smp_cond_load_acquire(&p->on_cpu, !VAL);
2636
2637 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2638 if (task_cpu(p) != cpu) {
2639 wake_flags |= WF_MIGRATED;
2640 psi_ttwu_dequeue(p);
2641 set_task_cpu(p, cpu);
2642 }
2643 #endif /* CONFIG_SMP */
2644
2645 ttwu_queue(p, cpu, wake_flags);
2646 unlock:
2647 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2648 out:
2649 if (success)
2650 ttwu_stat(p, cpu, wake_flags);
2651 preempt_enable();
2652
2653 return success;
2654 }
2655
2656 /**
2657 * wake_up_process - Wake up a specific process
2658 * @p: The process to be woken up.
2659 *
2660 * Attempt to wake up the nominated process and move it to the set of runnable
2661 * processes.
2662 *
2663 * Return: 1 if the process was woken up, 0 if it was already running.
2664 *
2665 * This function executes a full memory barrier before accessing the task state.
2666 */
2667 int wake_up_process(struct task_struct *p)
2668 {
2669 return try_to_wake_up(p, TASK_NORMAL, 0);
2670 }
2671 EXPORT_SYMBOL(wake_up_process);
2672
2673 int wake_up_state(struct task_struct *p, unsigned int state)
2674 {
2675 return try_to_wake_up(p, state, 0);
2676 }
2677
2678 /*
2679 * Perform scheduler related setup for a newly forked process p.
2680 * p is forked by current.
2681 *
2682 * __sched_fork() is basic setup used by init_idle() too:
2683 */
2684 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2685 {
2686 p->on_rq = 0;
2687
2688 p->se.on_rq = 0;
2689 p->se.exec_start = 0;
2690 p->se.sum_exec_runtime = 0;
2691 p->se.prev_sum_exec_runtime = 0;
2692 p->se.nr_migrations = 0;
2693 p->se.vruntime = 0;
2694 INIT_LIST_HEAD(&p->se.group_node);
2695
2696 #ifdef CONFIG_FAIR_GROUP_SCHED
2697 p->se.cfs_rq = NULL;
2698 #endif
2699
2700 #ifdef CONFIG_SCHEDSTATS
2701 /* Even if schedstat is disabled, there should not be garbage */
2702 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2703 #endif
2704
2705 RB_CLEAR_NODE(&p->dl.rb_node);
2706 init_dl_task_timer(&p->dl);
2707 init_dl_inactive_task_timer(&p->dl);
2708 __dl_clear_params(p);
2709
2710 INIT_LIST_HEAD(&p->rt.run_list);
2711 p->rt.timeout = 0;
2712 p->rt.time_slice = sched_rr_timeslice;
2713 p->rt.on_rq = 0;
2714 p->rt.on_list = 0;
2715
2716 #ifdef CONFIG_PREEMPT_NOTIFIERS
2717 INIT_HLIST_HEAD(&p->preempt_notifiers);
2718 #endif
2719
2720 #ifdef CONFIG_COMPACTION
2721 p->capture_control = NULL;
2722 #endif
2723 init_numa_balancing(clone_flags, p);
2724 }
2725
2726 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2727
2728 #ifdef CONFIG_NUMA_BALANCING
2729
2730 void set_numabalancing_state(bool enabled)
2731 {
2732 if (enabled)
2733 static_branch_enable(&sched_numa_balancing);
2734 else
2735 static_branch_disable(&sched_numa_balancing);
2736 }
2737
2738 #ifdef CONFIG_PROC_SYSCTL
2739 int sysctl_numa_balancing(struct ctl_table *table, int write,
2740 void __user *buffer, size_t *lenp, loff_t *ppos)
2741 {
2742 struct ctl_table t;
2743 int err;
2744 int state = static_branch_likely(&sched_numa_balancing);
2745
2746 if (write && !capable(CAP_SYS_ADMIN))
2747 return -EPERM;
2748
2749 t = *table;
2750 t.data = &state;
2751 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2752 if (err < 0)
2753 return err;
2754 if (write)
2755 set_numabalancing_state(state);
2756 return err;
2757 }
2758 #endif
2759 #endif
2760
2761 #ifdef CONFIG_SCHEDSTATS
2762
2763 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2764 static bool __initdata __sched_schedstats = false;
2765
2766 static void set_schedstats(bool enabled)
2767 {
2768 if (enabled)
2769 static_branch_enable(&sched_schedstats);
2770 else
2771 static_branch_disable(&sched_schedstats);
2772 }
2773
2774 void force_schedstat_enabled(void)
2775 {
2776 if (!schedstat_enabled()) {
2777 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2778 static_branch_enable(&sched_schedstats);
2779 }
2780 }
2781
2782 static int __init setup_schedstats(char *str)
2783 {
2784 int ret = 0;
2785 if (!str)
2786 goto out;
2787
2788 /*
2789 * This code is called before jump labels have been set up, so we can't
2790 * change the static branch directly just yet. Instead set a temporary
2791 * variable so init_schedstats() can do it later.
2792 */
2793 if (!strcmp(str, "enable")) {
2794 __sched_schedstats = true;
2795 ret = 1;
2796 } else if (!strcmp(str, "disable")) {
2797 __sched_schedstats = false;
2798 ret = 1;
2799 }
2800 out:
2801 if (!ret)
2802 pr_warn("Unable to parse schedstats=\n");
2803
2804 return ret;
2805 }
2806 __setup("schedstats=", setup_schedstats);
2807
2808 static void __init init_schedstats(void)
2809 {
2810 set_schedstats(__sched_schedstats);
2811 }
2812
2813 #ifdef CONFIG_PROC_SYSCTL
2814 int sysctl_schedstats(struct ctl_table *table, int write,
2815 void __user *buffer, size_t *lenp, loff_t *ppos)
2816 {
2817 struct ctl_table t;
2818 int err;
2819 int state = static_branch_likely(&sched_schedstats);
2820
2821 if (write && !capable(CAP_SYS_ADMIN))
2822 return -EPERM;
2823
2824 t = *table;
2825 t.data = &state;
2826 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2827 if (err < 0)
2828 return err;
2829 if (write)
2830 set_schedstats(state);
2831 return err;
2832 }
2833 #endif /* CONFIG_PROC_SYSCTL */
2834 #else /* !CONFIG_SCHEDSTATS */
2835 static inline void init_schedstats(void) {}
2836 #endif /* CONFIG_SCHEDSTATS */
2837
2838 /*
2839 * fork()/clone()-time setup:
2840 */
2841 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2842 {
2843 unsigned long flags;
2844
2845 __sched_fork(clone_flags, p);
2846 /*
2847 * We mark the process as NEW here. This guarantees that
2848 * nobody will actually run it, and a signal or other external
2849 * event cannot wake it up and insert it on the runqueue either.
2850 */
2851 p->state = TASK_NEW;
2852
2853 /*
2854 * Make sure we do not leak PI boosting priority to the child.
2855 */
2856 p->prio = current->normal_prio;
2857
2858 uclamp_fork(p);
2859
2860 /*
2861 * Revert to default priority/policy on fork if requested.
2862 */
2863 if (unlikely(p->sched_reset_on_fork)) {
2864 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2865 p->policy = SCHED_NORMAL;
2866 p->static_prio = NICE_TO_PRIO(0);
2867 p->rt_priority = 0;
2868 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2869 p->static_prio = NICE_TO_PRIO(0);
2870
2871 p->prio = p->normal_prio = __normal_prio(p);
2872 set_load_weight(p, false);
2873
2874 /*
2875 * We don't need the reset flag anymore after the fork. It has
2876 * fulfilled its duty:
2877 */
2878 p->sched_reset_on_fork = 0;
2879 }
2880
2881 if (dl_prio(p->prio))
2882 return -EAGAIN;
2883 else if (rt_prio(p->prio))
2884 p->sched_class = &rt_sched_class;
2885 else
2886 p->sched_class = &fair_sched_class;
2887
2888 init_entity_runnable_average(&p->se);
2889
2890 /*
2891 * The child is not yet in the pid-hash so no cgroup attach races,
2892 * and the cgroup is pinned to this child due to cgroup_fork()
2893 * is ran before sched_fork().
2894 *
2895 * Silence PROVE_RCU.
2896 */
2897 raw_spin_lock_irqsave(&p->pi_lock, flags);
2898 /*
2899 * We're setting the CPU for the first time, we don't migrate,
2900 * so use __set_task_cpu().
2901 */
2902 __set_task_cpu(p, smp_processor_id());
2903 if (p->sched_class->task_fork)
2904 p->sched_class->task_fork(p);
2905 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2906
2907 #ifdef CONFIG_SCHED_INFO
2908 if (likely(sched_info_on()))
2909 memset(&p->sched_info, 0, sizeof(p->sched_info));
2910 #endif
2911 #if defined(CONFIG_SMP)
2912 p->on_cpu = 0;
2913 #endif
2914 init_task_preempt_count(p);
2915 #ifdef CONFIG_SMP
2916 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2917 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2918 #endif
2919 return 0;
2920 }
2921
2922 unsigned long to_ratio(u64 period, u64 runtime)
2923 {
2924 if (runtime == RUNTIME_INF)
2925 return BW_UNIT;
2926
2927 /*
2928 * Doing this here saves a lot of checks in all
2929 * the calling paths, and returning zero seems
2930 * safe for them anyway.
2931 */
2932 if (period == 0)
2933 return 0;
2934
2935 return div64_u64(runtime << BW_SHIFT, period);
2936 }
2937
2938 /*
2939 * wake_up_new_task - wake up a newly created task for the first time.
2940 *
2941 * This function will do some initial scheduler statistics housekeeping
2942 * that must be done for every newly created context, then puts the task
2943 * on the runqueue and wakes it.
2944 */
2945 void wake_up_new_task(struct task_struct *p)
2946 {
2947 struct rq_flags rf;
2948 struct rq *rq;
2949
2950 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2951 p->state = TASK_RUNNING;
2952 #ifdef CONFIG_SMP
2953 /*
2954 * Fork balancing, do it here and not earlier because:
2955 * - cpus_ptr can change in the fork path
2956 * - any previously selected CPU might disappear through hotplug
2957 *
2958 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2959 * as we're not fully set-up yet.
2960 */
2961 p->recent_used_cpu = task_cpu(p);
2962 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2963 #endif
2964 rq = __task_rq_lock(p, &rf);
2965 update_rq_clock(rq);
2966 post_init_entity_util_avg(p);
2967
2968 activate_task(rq, p, ENQUEUE_NOCLOCK);
2969 trace_sched_wakeup_new(p);
2970 check_preempt_curr(rq, p, WF_FORK);
2971 #ifdef CONFIG_SMP
2972 if (p->sched_class->task_woken) {
2973 /*
2974 * Nothing relies on rq->lock after this, so its fine to
2975 * drop it.
2976 */
2977 rq_unpin_lock(rq, &rf);
2978 p->sched_class->task_woken(rq, p);
2979 rq_repin_lock(rq, &rf);
2980 }
2981 #endif
2982 task_rq_unlock(rq, p, &rf);
2983 }
2984
2985 #ifdef CONFIG_PREEMPT_NOTIFIERS
2986
2987 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2988
2989 void preempt_notifier_inc(void)
2990 {
2991 static_branch_inc(&preempt_notifier_key);
2992 }
2993 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2994
2995 void preempt_notifier_dec(void)
2996 {
2997 static_branch_dec(&preempt_notifier_key);
2998 }
2999 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3000
3001 /**
3002 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3003 * @notifier: notifier struct to register
3004 */
3005 void preempt_notifier_register(struct preempt_notifier *notifier)
3006 {
3007 if (!static_branch_unlikely(&preempt_notifier_key))
3008 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3009
3010 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3011 }
3012 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3013
3014 /**
3015 * preempt_notifier_unregister - no longer interested in preemption notifications
3016 * @notifier: notifier struct to unregister
3017 *
3018 * This is *not* safe to call from within a preemption notifier.
3019 */
3020 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3021 {
3022 hlist_del(&notifier->link);
3023 }
3024 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3025
3026 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3027 {
3028 struct preempt_notifier *notifier;
3029
3030 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3031 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3032 }
3033
3034 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3035 {
3036 if (static_branch_unlikely(&preempt_notifier_key))
3037 __fire_sched_in_preempt_notifiers(curr);
3038 }
3039
3040 static void
3041 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3042 struct task_struct *next)
3043 {
3044 struct preempt_notifier *notifier;
3045
3046 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3047 notifier->ops->sched_out(notifier, next);
3048 }
3049
3050 static __always_inline void
3051 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3052 struct task_struct *next)
3053 {
3054 if (static_branch_unlikely(&preempt_notifier_key))
3055 __fire_sched_out_preempt_notifiers(curr, next);
3056 }
3057
3058 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3059
3060 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3061 {
3062 }
3063
3064 static inline void
3065 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3066 struct task_struct *next)
3067 {
3068 }
3069
3070 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3071
3072 static inline void prepare_task(struct task_struct *next)
3073 {
3074 #ifdef CONFIG_SMP
3075 /*
3076 * Claim the task as running, we do this before switching to it
3077 * such that any running task will have this set.
3078 */
3079 next->on_cpu = 1;
3080 #endif
3081 }
3082
3083 static inline void finish_task(struct task_struct *prev)
3084 {
3085 #ifdef CONFIG_SMP
3086 /*
3087 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3088 * We must ensure this doesn't happen until the switch is completely
3089 * finished.
3090 *
3091 * In particular, the load of prev->state in finish_task_switch() must
3092 * happen before this.
3093 *
3094 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3095 */
3096 smp_store_release(&prev->on_cpu, 0);
3097 #endif
3098 }
3099
3100 static inline void
3101 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3102 {
3103 /*
3104 * Since the runqueue lock will be released by the next
3105 * task (which is an invalid locking op but in the case
3106 * of the scheduler it's an obvious special-case), so we
3107 * do an early lockdep release here:
3108 */
3109 rq_unpin_lock(rq, rf);
3110 spin_release(&rq->lock.dep_map, _THIS_IP_);
3111 #ifdef CONFIG_DEBUG_SPINLOCK
3112 /* this is a valid case when another task releases the spinlock */
3113 rq->lock.owner = next;
3114 #endif
3115 }
3116
3117 static inline void finish_lock_switch(struct rq *rq)
3118 {
3119 /*
3120 * If we are tracking spinlock dependencies then we have to
3121 * fix up the runqueue lock - which gets 'carried over' from
3122 * prev into current:
3123 */
3124 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3125 raw_spin_unlock_irq(&rq->lock);
3126 }
3127
3128 /*
3129 * NOP if the arch has not defined these:
3130 */
3131
3132 #ifndef prepare_arch_switch
3133 # define prepare_arch_switch(next) do { } while (0)
3134 #endif
3135
3136 #ifndef finish_arch_post_lock_switch
3137 # define finish_arch_post_lock_switch() do { } while (0)
3138 #endif
3139
3140 /**
3141 * prepare_task_switch - prepare to switch tasks
3142 * @rq: the runqueue preparing to switch
3143 * @prev: the current task that is being switched out
3144 * @next: the task we are going to switch to.
3145 *
3146 * This is called with the rq lock held and interrupts off. It must
3147 * be paired with a subsequent finish_task_switch after the context
3148 * switch.
3149 *
3150 * prepare_task_switch sets up locking and calls architecture specific
3151 * hooks.
3152 */
3153 static inline void
3154 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3155 struct task_struct *next)
3156 {
3157 kcov_prepare_switch(prev);
3158 sched_info_switch(rq, prev, next);
3159 perf_event_task_sched_out(prev, next);
3160 rseq_preempt(prev);
3161 fire_sched_out_preempt_notifiers(prev, next);
3162 prepare_task(next);
3163 prepare_arch_switch(next);
3164 }
3165
3166 /**
3167 * finish_task_switch - clean up after a task-switch
3168 * @prev: the thread we just switched away from.
3169 *
3170 * finish_task_switch must be called after the context switch, paired
3171 * with a prepare_task_switch call before the context switch.
3172 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3173 * and do any other architecture-specific cleanup actions.
3174 *
3175 * Note that we may have delayed dropping an mm in context_switch(). If
3176 * so, we finish that here outside of the runqueue lock. (Doing it
3177 * with the lock held can cause deadlocks; see schedule() for
3178 * details.)
3179 *
3180 * The context switch have flipped the stack from under us and restored the
3181 * local variables which were saved when this task called schedule() in the
3182 * past. prev == current is still correct but we need to recalculate this_rq
3183 * because prev may have moved to another CPU.
3184 */
3185 static struct rq *finish_task_switch(struct task_struct *prev)
3186 __releases(rq->lock)
3187 {
3188 struct rq *rq = this_rq();
3189 struct mm_struct *mm = rq->prev_mm;
3190 long prev_state;
3191
3192 /*
3193 * The previous task will have left us with a preempt_count of 2
3194 * because it left us after:
3195 *
3196 * schedule()
3197 * preempt_disable(); // 1
3198 * __schedule()
3199 * raw_spin_lock_irq(&rq->lock) // 2
3200 *
3201 * Also, see FORK_PREEMPT_COUNT.
3202 */
3203 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3204 "corrupted preempt_count: %s/%d/0x%x\n",
3205 current->comm, current->pid, preempt_count()))
3206 preempt_count_set(FORK_PREEMPT_COUNT);
3207
3208 rq->prev_mm = NULL;
3209
3210 /*
3211 * A task struct has one reference for the use as "current".
3212 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3213 * schedule one last time. The schedule call will never return, and
3214 * the scheduled task must drop that reference.
3215 *
3216 * We must observe prev->state before clearing prev->on_cpu (in
3217 * finish_task), otherwise a concurrent wakeup can get prev
3218 * running on another CPU and we could rave with its RUNNING -> DEAD
3219 * transition, resulting in a double drop.
3220 */
3221 prev_state = prev->state;
3222 vtime_task_switch(prev);
3223 perf_event_task_sched_in(prev, current);
3224 finish_task(prev);
3225 finish_lock_switch(rq);
3226 finish_arch_post_lock_switch();
3227 kcov_finish_switch(current);
3228
3229 fire_sched_in_preempt_notifiers(current);
3230 /*
3231 * When switching through a kernel thread, the loop in
3232 * membarrier_{private,global}_expedited() may have observed that
3233 * kernel thread and not issued an IPI. It is therefore possible to
3234 * schedule between user->kernel->user threads without passing though
3235 * switch_mm(). Membarrier requires a barrier after storing to
3236 * rq->curr, before returning to userspace, so provide them here:
3237 *
3238 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3239 * provided by mmdrop(),
3240 * - a sync_core for SYNC_CORE.
3241 */
3242 if (mm) {
3243 membarrier_mm_sync_core_before_usermode(mm);
3244 mmdrop(mm);
3245 }
3246 if (unlikely(prev_state == TASK_DEAD)) {
3247 if (prev->sched_class->task_dead)
3248 prev->sched_class->task_dead(prev);
3249
3250 /*
3251 * Remove function-return probe instances associated with this
3252 * task and put them back on the free list.
3253 */
3254 kprobe_flush_task(prev);
3255
3256 /* Task is done with its stack. */
3257 put_task_stack(prev);
3258
3259 put_task_struct_rcu_user(prev);
3260 }
3261
3262 tick_nohz_task_switch();
3263 return rq;
3264 }
3265
3266 #ifdef CONFIG_SMP
3267
3268 /* rq->lock is NOT held, but preemption is disabled */
3269 static void __balance_callback(struct rq *rq)
3270 {
3271 struct callback_head *head, *next;
3272 void (*func)(struct rq *rq);
3273 unsigned long flags;
3274
3275 raw_spin_lock_irqsave(&rq->lock, flags);
3276 head = rq->balance_callback;
3277 rq->balance_callback = NULL;
3278 while (head) {
3279 func = (void (*)(struct rq *))head->func;
3280 next = head->next;
3281 head->next = NULL;
3282 head = next;
3283
3284 func(rq);
3285 }
3286 raw_spin_unlock_irqrestore(&rq->lock, flags);
3287 }
3288
3289 static inline void balance_callback(struct rq *rq)
3290 {
3291 if (unlikely(rq->balance_callback))
3292 __balance_callback(rq);
3293 }
3294
3295 #else
3296
3297 static inline void balance_callback(struct rq *rq)
3298 {
3299 }
3300
3301 #endif
3302
3303 /**
3304 * schedule_tail - first thing a freshly forked thread must call.
3305 * @prev: the thread we just switched away from.
3306 */
3307 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3308 __releases(rq->lock)
3309 {
3310 struct rq *rq;
3311
3312 /*
3313 * New tasks start with FORK_PREEMPT_COUNT, see there and
3314 * finish_task_switch() for details.
3315 *
3316 * finish_task_switch() will drop rq->lock() and lower preempt_count
3317 * and the preempt_enable() will end up enabling preemption (on
3318 * PREEMPT_COUNT kernels).
3319 */
3320
3321 rq = finish_task_switch(prev);
3322 balance_callback(rq);
3323 preempt_enable();
3324
3325 if (current->set_child_tid)
3326 put_user(task_pid_vnr(current), current->set_child_tid);
3327
3328 calculate_sigpending();
3329 }
3330
3331 /*
3332 * context_switch - switch to the new MM and the new thread's register state.
3333 */
3334 static __always_inline struct rq *
3335 context_switch(struct rq *rq, struct task_struct *prev,
3336 struct task_struct *next, struct rq_flags *rf)
3337 {
3338 prepare_task_switch(rq, prev, next);
3339
3340 /*
3341 * For paravirt, this is coupled with an exit in switch_to to
3342 * combine the page table reload and the switch backend into
3343 * one hypercall.
3344 */
3345 arch_start_context_switch(prev);
3346
3347 /*
3348 * kernel -> kernel lazy + transfer active
3349 * user -> kernel lazy + mmgrab() active
3350 *
3351 * kernel -> user switch + mmdrop() active
3352 * user -> user switch
3353 */
3354 if (!next->mm) { // to kernel
3355 enter_lazy_tlb(prev->active_mm, next);
3356
3357 next->active_mm = prev->active_mm;
3358 if (prev->mm) // from user
3359 mmgrab(prev->active_mm);
3360 else
3361 prev->active_mm = NULL;
3362 } else { // to user
3363 membarrier_switch_mm(rq, prev->active_mm, next->mm);
3364 /*
3365 * sys_membarrier() requires an smp_mb() between setting
3366 * rq->curr / membarrier_switch_mm() and returning to userspace.
3367 *
3368 * The below provides this either through switch_mm(), or in
3369 * case 'prev->active_mm == next->mm' through
3370 * finish_task_switch()'s mmdrop().
3371 */
3372 switch_mm_irqs_off(prev->active_mm, next->mm, next);
3373
3374 if (!prev->mm) { // from kernel
3375 /* will mmdrop() in finish_task_switch(). */
3376 rq->prev_mm = prev->active_mm;
3377 prev->active_mm = NULL;
3378 }
3379 }
3380
3381 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3382
3383 prepare_lock_switch(rq, next, rf);
3384
3385 /* Here we just switch the register state and the stack. */
3386 switch_to(prev, next, prev);
3387 barrier();
3388
3389 return finish_task_switch(prev);
3390 }
3391
3392 /*
3393 * nr_running and nr_context_switches:
3394 *
3395 * externally visible scheduler statistics: current number of runnable
3396 * threads, total number of context switches performed since bootup.
3397 */
3398 unsigned long nr_running(void)
3399 {
3400 unsigned long i, sum = 0;
3401
3402 for_each_online_cpu(i)
3403 sum += cpu_rq(i)->nr_running;
3404
3405 return sum;
3406 }
3407
3408 /*
3409 * Check if only the current task is running on the CPU.
3410 *
3411 * Caution: this function does not check that the caller has disabled
3412 * preemption, thus the result might have a time-of-check-to-time-of-use
3413 * race. The caller is responsible to use it correctly, for example:
3414 *
3415 * - from a non-preemptible section (of course)
3416 *
3417 * - from a thread that is bound to a single CPU
3418 *
3419 * - in a loop with very short iterations (e.g. a polling loop)
3420 */
3421 bool single_task_running(void)
3422 {
3423 return raw_rq()->nr_running == 1;
3424 }
3425 EXPORT_SYMBOL(single_task_running);
3426
3427 unsigned long long nr_context_switches(void)
3428 {
3429 int i;
3430 unsigned long long sum = 0;
3431
3432 for_each_possible_cpu(i)
3433 sum += cpu_rq(i)->nr_switches;
3434
3435 return sum;
3436 }
3437
3438 /*
3439 * Consumers of these two interfaces, like for example the cpuidle menu
3440 * governor, are using nonsensical data. Preferring shallow idle state selection
3441 * for a CPU that has IO-wait which might not even end up running the task when
3442 * it does become runnable.
3443 */
3444
3445 unsigned long nr_iowait_cpu(int cpu)
3446 {
3447 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3448 }
3449
3450 /*
3451 * IO-wait accounting, and how its mostly bollocks (on SMP).
3452 *
3453 * The idea behind IO-wait account is to account the idle time that we could
3454 * have spend running if it were not for IO. That is, if we were to improve the
3455 * storage performance, we'd have a proportional reduction in IO-wait time.
3456 *
3457 * This all works nicely on UP, where, when a task blocks on IO, we account
3458 * idle time as IO-wait, because if the storage were faster, it could've been
3459 * running and we'd not be idle.
3460 *
3461 * This has been extended to SMP, by doing the same for each CPU. This however
3462 * is broken.
3463 *
3464 * Imagine for instance the case where two tasks block on one CPU, only the one
3465 * CPU will have IO-wait accounted, while the other has regular idle. Even
3466 * though, if the storage were faster, both could've ran at the same time,
3467 * utilising both CPUs.
3468 *
3469 * This means, that when looking globally, the current IO-wait accounting on
3470 * SMP is a lower bound, by reason of under accounting.
3471 *
3472 * Worse, since the numbers are provided per CPU, they are sometimes
3473 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3474 * associated with any one particular CPU, it can wake to another CPU than it
3475 * blocked on. This means the per CPU IO-wait number is meaningless.
3476 *
3477 * Task CPU affinities can make all that even more 'interesting'.
3478 */
3479
3480 unsigned long nr_iowait(void)
3481 {
3482 unsigned long i, sum = 0;
3483
3484 for_each_possible_cpu(i)
3485 sum += nr_iowait_cpu(i);
3486
3487 return sum;
3488 }
3489
3490 #ifdef CONFIG_SMP
3491
3492 /*
3493 * sched_exec - execve() is a valuable balancing opportunity, because at
3494 * this point the task has the smallest effective memory and cache footprint.
3495 */
3496 void sched_exec(void)
3497 {
3498 struct task_struct *p = current;
3499 unsigned long flags;
3500 int dest_cpu;
3501
3502 raw_spin_lock_irqsave(&p->pi_lock, flags);
3503 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3504 if (dest_cpu == smp_processor_id())
3505 goto unlock;
3506
3507 if (likely(cpu_active(dest_cpu))) {
3508 struct migration_arg arg = { p, dest_cpu };
3509
3510 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3511 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3512 return;
3513 }
3514 unlock:
3515 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3516 }
3517
3518 #endif
3519
3520 DEFINE_PER_CPU(struct kernel_stat, kstat);
3521 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3522
3523 EXPORT_PER_CPU_SYMBOL(kstat);
3524 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3525
3526 /*
3527 * The function fair_sched_class.update_curr accesses the struct curr
3528 * and its field curr->exec_start; when called from task_sched_runtime(),
3529 * we observe a high rate of cache misses in practice.
3530 * Prefetching this data results in improved performance.
3531 */
3532 static inline void prefetch_curr_exec_start(struct task_struct *p)
3533 {
3534 #ifdef CONFIG_FAIR_GROUP_SCHED
3535 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3536 #else
3537 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3538 #endif
3539 prefetch(curr);
3540 prefetch(&curr->exec_start);
3541 }
3542
3543 /*
3544 * Return accounted runtime for the task.
3545 * In case the task is currently running, return the runtime plus current's
3546 * pending runtime that have not been accounted yet.
3547 */
3548 unsigned long long task_sched_runtime(struct task_struct *p)
3549 {
3550 struct rq_flags rf;
3551 struct rq *rq;
3552 u64 ns;
3553
3554 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3555 /*
3556 * 64-bit doesn't need locks to atomically read a 64-bit value.
3557 * So we have a optimization chance when the task's delta_exec is 0.
3558 * Reading ->on_cpu is racy, but this is ok.
3559 *
3560 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3561 * If we race with it entering CPU, unaccounted time is 0. This is
3562 * indistinguishable from the read occurring a few cycles earlier.
3563 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3564 * been accounted, so we're correct here as well.
3565 */
3566 if (!p->on_cpu || !task_on_rq_queued(p))
3567 return p->se.sum_exec_runtime;
3568 #endif
3569
3570 rq = task_rq_lock(p, &rf);
3571 /*
3572 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3573 * project cycles that may never be accounted to this
3574 * thread, breaking clock_gettime().
3575 */
3576 if (task_current(rq, p) && task_on_rq_queued(p)) {
3577 prefetch_curr_exec_start(p);
3578 update_rq_clock(rq);
3579 p->sched_class->update_curr(rq);
3580 }
3581 ns = p->se.sum_exec_runtime;
3582 task_rq_unlock(rq, p, &rf);
3583
3584 return ns;
3585 }
3586
3587 DEFINE_PER_CPU(unsigned long, thermal_pressure);
3588
3589 void arch_set_thermal_pressure(struct cpumask *cpus,
3590 unsigned long th_pressure)
3591 {
3592 int cpu;
3593
3594 for_each_cpu(cpu, cpus)
3595 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
3596 }
3597
3598 /*
3599 * This function gets called by the timer code, with HZ frequency.
3600 * We call it with interrupts disabled.
3601 */
3602 void scheduler_tick(void)
3603 {
3604 int cpu = smp_processor_id();
3605 struct rq *rq = cpu_rq(cpu);
3606 struct task_struct *curr = rq->curr;
3607 struct rq_flags rf;
3608 unsigned long thermal_pressure;
3609
3610 arch_scale_freq_tick();
3611 sched_clock_tick();
3612
3613 rq_lock(rq, &rf);
3614
3615 update_rq_clock(rq);
3616 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
3617 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
3618 curr->sched_class->task_tick(rq, curr, 0);
3619 calc_global_load_tick(rq);
3620 psi_task_tick(rq);
3621
3622 rq_unlock(rq, &rf);
3623
3624 perf_event_task_tick();
3625
3626 #ifdef CONFIG_SMP
3627 rq->idle_balance = idle_cpu(cpu);
3628 trigger_load_balance(rq);
3629 #endif
3630 }
3631
3632 #ifdef CONFIG_NO_HZ_FULL
3633
3634 struct tick_work {
3635 int cpu;
3636 atomic_t state;
3637 struct delayed_work work;
3638 };
3639 /* Values for ->state, see diagram below. */
3640 #define TICK_SCHED_REMOTE_OFFLINE 0
3641 #define TICK_SCHED_REMOTE_OFFLINING 1
3642 #define TICK_SCHED_REMOTE_RUNNING 2
3643
3644 /*
3645 * State diagram for ->state:
3646 *
3647 *
3648 * TICK_SCHED_REMOTE_OFFLINE
3649 * | ^
3650 * | |
3651 * | | sched_tick_remote()
3652 * | |
3653 * | |
3654 * +--TICK_SCHED_REMOTE_OFFLINING
3655 * | ^
3656 * | |
3657 * sched_tick_start() | | sched_tick_stop()
3658 * | |
3659 * V |
3660 * TICK_SCHED_REMOTE_RUNNING
3661 *
3662 *
3663 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3664 * and sched_tick_start() are happy to leave the state in RUNNING.
3665 */
3666
3667 static struct tick_work __percpu *tick_work_cpu;
3668
3669 static void sched_tick_remote(struct work_struct *work)
3670 {
3671 struct delayed_work *dwork = to_delayed_work(work);
3672 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3673 int cpu = twork->cpu;
3674 struct rq *rq = cpu_rq(cpu);
3675 struct task_struct *curr;
3676 struct rq_flags rf;
3677 u64 delta;
3678 int os;
3679
3680 /*
3681 * Handle the tick only if it appears the remote CPU is running in full
3682 * dynticks mode. The check is racy by nature, but missing a tick or
3683 * having one too much is no big deal because the scheduler tick updates
3684 * statistics and checks timeslices in a time-independent way, regardless
3685 * of when exactly it is running.
3686 */
3687 if (!tick_nohz_tick_stopped_cpu(cpu))
3688 goto out_requeue;
3689
3690 rq_lock_irq(rq, &rf);
3691 curr = rq->curr;
3692 if (cpu_is_offline(cpu))
3693 goto out_unlock;
3694
3695 update_rq_clock(rq);
3696
3697 if (!is_idle_task(curr)) {
3698 /*
3699 * Make sure the next tick runs within a reasonable
3700 * amount of time.
3701 */
3702 delta = rq_clock_task(rq) - curr->se.exec_start;
3703 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3704 }
3705 curr->sched_class->task_tick(rq, curr, 0);
3706
3707 calc_load_nohz_remote(rq);
3708 out_unlock:
3709 rq_unlock_irq(rq, &rf);
3710 out_requeue:
3711
3712 /*
3713 * Run the remote tick once per second (1Hz). This arbitrary
3714 * frequency is large enough to avoid overload but short enough
3715 * to keep scheduler internal stats reasonably up to date. But
3716 * first update state to reflect hotplug activity if required.
3717 */
3718 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3719 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3720 if (os == TICK_SCHED_REMOTE_RUNNING)
3721 queue_delayed_work(system_unbound_wq, dwork, HZ);
3722 }
3723
3724 static void sched_tick_start(int cpu)
3725 {
3726 int os;
3727 struct tick_work *twork;
3728
3729 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3730 return;
3731
3732 WARN_ON_ONCE(!tick_work_cpu);
3733
3734 twork = per_cpu_ptr(tick_work_cpu, cpu);
3735 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3736 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3737 if (os == TICK_SCHED_REMOTE_OFFLINE) {
3738 twork->cpu = cpu;
3739 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3740 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3741 }
3742 }
3743
3744 #ifdef CONFIG_HOTPLUG_CPU
3745 static void sched_tick_stop(int cpu)
3746 {
3747 struct tick_work *twork;
3748 int os;
3749
3750 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3751 return;
3752
3753 WARN_ON_ONCE(!tick_work_cpu);
3754
3755 twork = per_cpu_ptr(tick_work_cpu, cpu);
3756 /* There cannot be competing actions, but don't rely on stop-machine. */
3757 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3758 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3759 /* Don't cancel, as this would mess up the state machine. */
3760 }
3761 #endif /* CONFIG_HOTPLUG_CPU */
3762
3763 int __init sched_tick_offload_init(void)
3764 {
3765 tick_work_cpu = alloc_percpu(struct tick_work);
3766 BUG_ON(!tick_work_cpu);
3767 return 0;
3768 }
3769
3770 #else /* !CONFIG_NO_HZ_FULL */
3771 static inline void sched_tick_start(int cpu) { }
3772 static inline void sched_tick_stop(int cpu) { }
3773 #endif
3774
3775 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
3776 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3777 /*
3778 * If the value passed in is equal to the current preempt count
3779 * then we just disabled preemption. Start timing the latency.
3780 */
3781 static inline void preempt_latency_start(int val)
3782 {
3783 if (preempt_count() == val) {
3784 unsigned long ip = get_lock_parent_ip();
3785 #ifdef CONFIG_DEBUG_PREEMPT
3786 current->preempt_disable_ip = ip;
3787 #endif
3788 trace_preempt_off(CALLER_ADDR0, ip);
3789 }
3790 }
3791
3792 void preempt_count_add(int val)
3793 {
3794 #ifdef CONFIG_DEBUG_PREEMPT
3795 /*
3796 * Underflow?
3797 */
3798 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3799 return;
3800 #endif
3801 __preempt_count_add(val);
3802 #ifdef CONFIG_DEBUG_PREEMPT
3803 /*
3804 * Spinlock count overflowing soon?
3805 */
3806 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3807 PREEMPT_MASK - 10);
3808 #endif
3809 preempt_latency_start(val);
3810 }
3811 EXPORT_SYMBOL(preempt_count_add);
3812 NOKPROBE_SYMBOL(preempt_count_add);
3813
3814 /*
3815 * If the value passed in equals to the current preempt count
3816 * then we just enabled preemption. Stop timing the latency.
3817 */
3818 static inline void preempt_latency_stop(int val)
3819 {
3820 if (preempt_count() == val)
3821 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3822 }
3823
3824 void preempt_count_sub(int val)
3825 {
3826 #ifdef CONFIG_DEBUG_PREEMPT
3827 /*
3828 * Underflow?
3829 */
3830 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3831 return;
3832 /*
3833 * Is the spinlock portion underflowing?
3834 */
3835 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3836 !(preempt_count() & PREEMPT_MASK)))
3837 return;
3838 #endif
3839
3840 preempt_latency_stop(val);
3841 __preempt_count_sub(val);
3842 }
3843 EXPORT_SYMBOL(preempt_count_sub);
3844 NOKPROBE_SYMBOL(preempt_count_sub);
3845
3846 #else
3847 static inline void preempt_latency_start(int val) { }
3848 static inline void preempt_latency_stop(int val) { }
3849 #endif
3850
3851 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3852 {
3853 #ifdef CONFIG_DEBUG_PREEMPT
3854 return p->preempt_disable_ip;
3855 #else
3856 return 0;
3857 #endif
3858 }
3859
3860 /*
3861 * Print scheduling while atomic bug:
3862 */
3863 static noinline void __schedule_bug(struct task_struct *prev)
3864 {
3865 /* Save this before calling printk(), since that will clobber it */
3866 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3867
3868 if (oops_in_progress)
3869 return;
3870
3871 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3872 prev->comm, prev->pid, preempt_count());
3873
3874 debug_show_held_locks(prev);
3875 print_modules();
3876 if (irqs_disabled())
3877 print_irqtrace_events(prev);
3878 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3879 && in_atomic_preempt_off()) {
3880 pr_err("Preemption disabled at:");
3881 print_ip_sym(preempt_disable_ip);
3882 pr_cont("\n");
3883 }
3884 if (panic_on_warn)
3885 panic("scheduling while atomic\n");
3886
3887 dump_stack();
3888 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3889 }
3890
3891 /*
3892 * Various schedule()-time debugging checks and statistics:
3893 */
3894 static inline void schedule_debug(struct task_struct *prev, bool preempt)
3895 {
3896 #ifdef CONFIG_SCHED_STACK_END_CHECK
3897 if (task_stack_end_corrupted(prev))
3898 panic("corrupted stack end detected inside scheduler\n");
3899 #endif
3900
3901 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3902 if (!preempt && prev->state && prev->non_block_count) {
3903 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3904 prev->comm, prev->pid, prev->non_block_count);
3905 dump_stack();
3906 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3907 }
3908 #endif
3909
3910 if (unlikely(in_atomic_preempt_off())) {
3911 __schedule_bug(prev);
3912 preempt_count_set(PREEMPT_DISABLED);
3913 }
3914 rcu_sleep_check();
3915
3916 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3917
3918 schedstat_inc(this_rq()->sched_count);
3919 }
3920
3921 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
3922 struct rq_flags *rf)
3923 {
3924 #ifdef CONFIG_SMP
3925 const struct sched_class *class;
3926 /*
3927 * We must do the balancing pass before put_prev_task(), such
3928 * that when we release the rq->lock the task is in the same
3929 * state as before we took rq->lock.
3930 *
3931 * We can terminate the balance pass as soon as we know there is
3932 * a runnable task of @class priority or higher.
3933 */
3934 for_class_range(class, prev->sched_class, &idle_sched_class) {
3935 if (class->balance(rq, prev, rf))
3936 break;
3937 }
3938 #endif
3939
3940 put_prev_task(rq, prev);
3941 }
3942
3943 /*
3944 * Pick up the highest-prio task:
3945 */
3946 static inline struct task_struct *
3947 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3948 {
3949 const struct sched_class *class;
3950 struct task_struct *p;
3951
3952 /*
3953 * Optimization: we know that if all tasks are in the fair class we can
3954 * call that function directly, but only if the @prev task wasn't of a
3955 * higher scheduling class, because otherwise those loose the
3956 * opportunity to pull in more work from other CPUs.
3957 */
3958 if (likely((prev->sched_class == &idle_sched_class ||
3959 prev->sched_class == &fair_sched_class) &&
3960 rq->nr_running == rq->cfs.h_nr_running)) {
3961
3962 p = pick_next_task_fair(rq, prev, rf);
3963 if (unlikely(p == RETRY_TASK))
3964 goto restart;
3965
3966 /* Assumes fair_sched_class->next == idle_sched_class */
3967 if (!p) {
3968 put_prev_task(rq, prev);
3969 p = pick_next_task_idle(rq);
3970 }
3971
3972 return p;
3973 }
3974
3975 restart:
3976 put_prev_task_balance(rq, prev, rf);
3977
3978 for_each_class(class) {
3979 p = class->pick_next_task(rq);
3980 if (p)
3981 return p;
3982 }
3983
3984 /* The idle class should always have a runnable task: */
3985 BUG();
3986 }
3987
3988 /*
3989 * __schedule() is the main scheduler function.
3990 *
3991 * The main means of driving the scheduler and thus entering this function are:
3992 *
3993 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3994 *
3995 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3996 * paths. For example, see arch/x86/entry_64.S.
3997 *
3998 * To drive preemption between tasks, the scheduler sets the flag in timer
3999 * interrupt handler scheduler_tick().
4000 *
4001 * 3. Wakeups don't really cause entry into schedule(). They add a
4002 * task to the run-queue and that's it.
4003 *
4004 * Now, if the new task added to the run-queue preempts the current
4005 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4006 * called on the nearest possible occasion:
4007 *
4008 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4009 *
4010 * - in syscall or exception context, at the next outmost
4011 * preempt_enable(). (this might be as soon as the wake_up()'s
4012 * spin_unlock()!)
4013 *
4014 * - in IRQ context, return from interrupt-handler to
4015 * preemptible context
4016 *
4017 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4018 * then at the next:
4019 *
4020 * - cond_resched() call
4021 * - explicit schedule() call
4022 * - return from syscall or exception to user-space
4023 * - return from interrupt-handler to user-space
4024 *
4025 * WARNING: must be called with preemption disabled!
4026 */
4027 static void __sched notrace __schedule(bool preempt)
4028 {
4029 struct task_struct *prev, *next;
4030 unsigned long *switch_count;
4031 struct rq_flags rf;
4032 struct rq *rq;
4033 int cpu;
4034
4035 cpu = smp_processor_id();
4036 rq = cpu_rq(cpu);
4037 prev = rq->curr;
4038
4039 schedule_debug(prev, preempt);
4040
4041 if (sched_feat(HRTICK))
4042 hrtick_clear(rq);
4043
4044 local_irq_disable();
4045 rcu_note_context_switch(preempt);
4046
4047 /*
4048 * Make sure that signal_pending_state()->signal_pending() below
4049 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4050 * done by the caller to avoid the race with signal_wake_up().
4051 *
4052 * The membarrier system call requires a full memory barrier
4053 * after coming from user-space, before storing to rq->curr.
4054 */
4055 rq_lock(rq, &rf);
4056 smp_mb__after_spinlock();
4057
4058 /* Promote REQ to ACT */
4059 rq->clock_update_flags <<= 1;
4060 update_rq_clock(rq);
4061
4062 switch_count = &prev->nivcsw;
4063 if (!preempt && prev->state) {
4064 if (signal_pending_state(prev->state, prev)) {
4065 prev->state = TASK_RUNNING;
4066 } else {
4067 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4068
4069 if (prev->in_iowait) {
4070 atomic_inc(&rq->nr_iowait);
4071 delayacct_blkio_start();
4072 }
4073 }
4074 switch_count = &prev->nvcsw;
4075 }
4076
4077 next = pick_next_task(rq, prev, &rf);
4078 clear_tsk_need_resched(prev);
4079 clear_preempt_need_resched();
4080
4081 if (likely(prev != next)) {
4082 rq->nr_switches++;
4083 /*
4084 * RCU users of rcu_dereference(rq->curr) may not see
4085 * changes to task_struct made by pick_next_task().
4086 */
4087 RCU_INIT_POINTER(rq->curr, next);
4088 /*
4089 * The membarrier system call requires each architecture
4090 * to have a full memory barrier after updating
4091 * rq->curr, before returning to user-space.
4092 *
4093 * Here are the schemes providing that barrier on the
4094 * various architectures:
4095 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4096 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4097 * - finish_lock_switch() for weakly-ordered
4098 * architectures where spin_unlock is a full barrier,
4099 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4100 * is a RELEASE barrier),
4101 */
4102 ++*switch_count;
4103
4104 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4105
4106 trace_sched_switch(preempt, prev, next);
4107
4108 /* Also unlocks the rq: */
4109 rq = context_switch(rq, prev, next, &rf);
4110 } else {
4111 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4112 rq_unlock_irq(rq, &rf);
4113 }
4114
4115 balance_callback(rq);
4116 }
4117
4118 void __noreturn do_task_dead(void)
4119 {
4120 /* Causes final put_task_struct in finish_task_switch(): */
4121 set_special_state(TASK_DEAD);
4122
4123 /* Tell freezer to ignore us: */
4124 current->flags |= PF_NOFREEZE;
4125
4126 __schedule(false);
4127 BUG();
4128
4129 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4130 for (;;)
4131 cpu_relax();
4132 }
4133
4134 static inline void sched_submit_work(struct task_struct *tsk)
4135 {
4136 if (!tsk->state)
4137 return;
4138
4139 /*
4140 * If a worker went to sleep, notify and ask workqueue whether
4141 * it wants to wake up a task to maintain concurrency.
4142 * As this function is called inside the schedule() context,
4143 * we disable preemption to avoid it calling schedule() again
4144 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4145 * requires it.
4146 */
4147 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4148 preempt_disable();
4149 if (tsk->flags & PF_WQ_WORKER)
4150 wq_worker_sleeping(tsk);
4151 else
4152 io_wq_worker_sleeping(tsk);
4153 preempt_enable_no_resched();
4154 }
4155
4156 if (tsk_is_pi_blocked(tsk))
4157 return;
4158
4159 /*
4160 * If we are going to sleep and we have plugged IO queued,
4161 * make sure to submit it to avoid deadlocks.
4162 */
4163 if (blk_needs_flush_plug(tsk))
4164 blk_schedule_flush_plug(tsk);
4165 }
4166
4167 static void sched_update_worker(struct task_struct *tsk)
4168 {
4169 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4170 if (tsk->flags & PF_WQ_WORKER)
4171 wq_worker_running(tsk);
4172 else
4173 io_wq_worker_running(tsk);
4174 }
4175 }
4176
4177 asmlinkage __visible void __sched schedule(void)
4178 {
4179 struct task_struct *tsk = current;
4180
4181 sched_submit_work(tsk);
4182 do {
4183 preempt_disable();
4184 __schedule(false);
4185 sched_preempt_enable_no_resched();
4186 } while (need_resched());
4187 sched_update_worker(tsk);
4188 }
4189 EXPORT_SYMBOL(schedule);
4190
4191 /*
4192 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4193 * state (have scheduled out non-voluntarily) by making sure that all
4194 * tasks have either left the run queue or have gone into user space.
4195 * As idle tasks do not do either, they must not ever be preempted
4196 * (schedule out non-voluntarily).
4197 *
4198 * schedule_idle() is similar to schedule_preempt_disable() except that it
4199 * never enables preemption because it does not call sched_submit_work().
4200 */
4201 void __sched schedule_idle(void)
4202 {
4203 /*
4204 * As this skips calling sched_submit_work(), which the idle task does
4205 * regardless because that function is a nop when the task is in a
4206 * TASK_RUNNING state, make sure this isn't used someplace that the
4207 * current task can be in any other state. Note, idle is always in the
4208 * TASK_RUNNING state.
4209 */
4210 WARN_ON_ONCE(current->state);
4211 do {
4212 __schedule(false);
4213 } while (need_resched());
4214 }
4215
4216 #ifdef CONFIG_CONTEXT_TRACKING
4217 asmlinkage __visible void __sched schedule_user(void)
4218 {
4219 /*
4220 * If we come here after a random call to set_need_resched(),
4221 * or we have been woken up remotely but the IPI has not yet arrived,
4222 * we haven't yet exited the RCU idle mode. Do it here manually until
4223 * we find a better solution.
4224 *
4225 * NB: There are buggy callers of this function. Ideally we
4226 * should warn if prev_state != CONTEXT_USER, but that will trigger
4227 * too frequently to make sense yet.
4228 */
4229 enum ctx_state prev_state = exception_enter();
4230 schedule();
4231 exception_exit(prev_state);
4232 }
4233 #endif
4234
4235 /**
4236 * schedule_preempt_disabled - called with preemption disabled
4237 *
4238 * Returns with preemption disabled. Note: preempt_count must be 1
4239 */
4240 void __sched schedule_preempt_disabled(void)
4241 {
4242 sched_preempt_enable_no_resched();
4243 schedule();
4244 preempt_disable();
4245 }
4246
4247 static void __sched notrace preempt_schedule_common(void)
4248 {
4249 do {
4250 /*
4251 * Because the function tracer can trace preempt_count_sub()
4252 * and it also uses preempt_enable/disable_notrace(), if
4253 * NEED_RESCHED is set, the preempt_enable_notrace() called
4254 * by the function tracer will call this function again and
4255 * cause infinite recursion.
4256 *
4257 * Preemption must be disabled here before the function
4258 * tracer can trace. Break up preempt_disable() into two
4259 * calls. One to disable preemption without fear of being
4260 * traced. The other to still record the preemption latency,
4261 * which can also be traced by the function tracer.
4262 */
4263 preempt_disable_notrace();
4264 preempt_latency_start(1);
4265 __schedule(true);
4266 preempt_latency_stop(1);
4267 preempt_enable_no_resched_notrace();
4268
4269 /*
4270 * Check again in case we missed a preemption opportunity
4271 * between schedule and now.
4272 */
4273 } while (need_resched());
4274 }
4275
4276 #ifdef CONFIG_PREEMPTION
4277 /*
4278 * This is the entry point to schedule() from in-kernel preemption
4279 * off of preempt_enable.
4280 */
4281 asmlinkage __visible void __sched notrace preempt_schedule(void)
4282 {
4283 /*
4284 * If there is a non-zero preempt_count or interrupts are disabled,
4285 * we do not want to preempt the current task. Just return..
4286 */
4287 if (likely(!preemptible()))
4288 return;
4289
4290 preempt_schedule_common();
4291 }
4292 NOKPROBE_SYMBOL(preempt_schedule);
4293 EXPORT_SYMBOL(preempt_schedule);
4294
4295 /**
4296 * preempt_schedule_notrace - preempt_schedule called by tracing
4297 *
4298 * The tracing infrastructure uses preempt_enable_notrace to prevent
4299 * recursion and tracing preempt enabling caused by the tracing
4300 * infrastructure itself. But as tracing can happen in areas coming
4301 * from userspace or just about to enter userspace, a preempt enable
4302 * can occur before user_exit() is called. This will cause the scheduler
4303 * to be called when the system is still in usermode.
4304 *
4305 * To prevent this, the preempt_enable_notrace will use this function
4306 * instead of preempt_schedule() to exit user context if needed before
4307 * calling the scheduler.
4308 */
4309 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4310 {
4311 enum ctx_state prev_ctx;
4312
4313 if (likely(!preemptible()))
4314 return;
4315
4316 do {
4317 /*
4318 * Because the function tracer can trace preempt_count_sub()
4319 * and it also uses preempt_enable/disable_notrace(), if
4320 * NEED_RESCHED is set, the preempt_enable_notrace() called
4321 * by the function tracer will call this function again and
4322 * cause infinite recursion.
4323 *
4324 * Preemption must be disabled here before the function
4325 * tracer can trace. Break up preempt_disable() into two
4326 * calls. One to disable preemption without fear of being
4327 * traced. The other to still record the preemption latency,
4328 * which can also be traced by the function tracer.
4329 */
4330 preempt_disable_notrace();
4331 preempt_latency_start(1);
4332 /*
4333 * Needs preempt disabled in case user_exit() is traced
4334 * and the tracer calls preempt_enable_notrace() causing
4335 * an infinite recursion.
4336 */
4337 prev_ctx = exception_enter();
4338 __schedule(true);
4339 exception_exit(prev_ctx);
4340
4341 preempt_latency_stop(1);
4342 preempt_enable_no_resched_notrace();
4343 } while (need_resched());
4344 }
4345 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4346
4347 #endif /* CONFIG_PREEMPTION */
4348
4349 /*
4350 * This is the entry point to schedule() from kernel preemption
4351 * off of irq context.
4352 * Note, that this is called and return with irqs disabled. This will
4353 * protect us against recursive calling from irq.
4354 */
4355 asmlinkage __visible void __sched preempt_schedule_irq(void)
4356 {
4357 enum ctx_state prev_state;
4358
4359 /* Catch callers which need to be fixed */
4360 BUG_ON(preempt_count() || !irqs_disabled());
4361
4362 prev_state = exception_enter();
4363
4364 do {
4365 preempt_disable();
4366 local_irq_enable();
4367 __schedule(true);
4368 local_irq_disable();
4369 sched_preempt_enable_no_resched();
4370 } while (need_resched());
4371
4372 exception_exit(prev_state);
4373 }
4374
4375 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4376 void *key)
4377 {
4378 return try_to_wake_up(curr->private, mode, wake_flags);
4379 }
4380 EXPORT_SYMBOL(default_wake_function);
4381
4382 #ifdef CONFIG_RT_MUTEXES
4383
4384 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4385 {
4386 if (pi_task)
4387 prio = min(prio, pi_task->prio);
4388
4389 return prio;
4390 }
4391
4392 static inline int rt_effective_prio(struct task_struct *p, int prio)
4393 {
4394 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4395
4396 return __rt_effective_prio(pi_task, prio);
4397 }
4398
4399 /*
4400 * rt_mutex_setprio - set the current priority of a task
4401 * @p: task to boost
4402 * @pi_task: donor task
4403 *
4404 * This function changes the 'effective' priority of a task. It does
4405 * not touch ->normal_prio like __setscheduler().
4406 *
4407 * Used by the rt_mutex code to implement priority inheritance
4408 * logic. Call site only calls if the priority of the task changed.
4409 */
4410 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4411 {
4412 int prio, oldprio, queued, running, queue_flag =
4413 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4414 const struct sched_class *prev_class;
4415 struct rq_flags rf;
4416 struct rq *rq;
4417
4418 /* XXX used to be waiter->prio, not waiter->task->prio */
4419 prio = __rt_effective_prio(pi_task, p->normal_prio);
4420
4421 /*
4422 * If nothing changed; bail early.
4423 */
4424 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4425 return;
4426
4427 rq = __task_rq_lock(p, &rf);
4428 update_rq_clock(rq);
4429 /*
4430 * Set under pi_lock && rq->lock, such that the value can be used under
4431 * either lock.
4432 *
4433 * Note that there is loads of tricky to make this pointer cache work
4434 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4435 * ensure a task is de-boosted (pi_task is set to NULL) before the
4436 * task is allowed to run again (and can exit). This ensures the pointer
4437 * points to a blocked task -- which guaratees the task is present.
4438 */
4439 p->pi_top_task = pi_task;
4440
4441 /*
4442 * For FIFO/RR we only need to set prio, if that matches we're done.
4443 */
4444 if (prio == p->prio && !dl_prio(prio))
4445 goto out_unlock;
4446
4447 /*
4448 * Idle task boosting is a nono in general. There is one
4449 * exception, when PREEMPT_RT and NOHZ is active:
4450 *
4451 * The idle task calls get_next_timer_interrupt() and holds
4452 * the timer wheel base->lock on the CPU and another CPU wants
4453 * to access the timer (probably to cancel it). We can safely
4454 * ignore the boosting request, as the idle CPU runs this code
4455 * with interrupts disabled and will complete the lock
4456 * protected section without being interrupted. So there is no
4457 * real need to boost.
4458 */
4459 if (unlikely(p == rq->idle)) {
4460 WARN_ON(p != rq->curr);
4461 WARN_ON(p->pi_blocked_on);
4462 goto out_unlock;
4463 }
4464
4465 trace_sched_pi_setprio(p, pi_task);
4466 oldprio = p->prio;
4467
4468 if (oldprio == prio)
4469 queue_flag &= ~DEQUEUE_MOVE;
4470
4471 prev_class = p->sched_class;
4472 queued = task_on_rq_queued(p);
4473 running = task_current(rq, p);
4474 if (queued)
4475 dequeue_task(rq, p, queue_flag);
4476 if (running)
4477 put_prev_task(rq, p);
4478
4479 /*
4480 * Boosting condition are:
4481 * 1. -rt task is running and holds mutex A
4482 * --> -dl task blocks on mutex A
4483 *
4484 * 2. -dl task is running and holds mutex A
4485 * --> -dl task blocks on mutex A and could preempt the
4486 * running task
4487 */
4488 if (dl_prio(prio)) {
4489 if (!dl_prio(p->normal_prio) ||
4490 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
4491 p->dl.dl_boosted = 1;
4492 queue_flag |= ENQUEUE_REPLENISH;
4493 } else
4494 p->dl.dl_boosted = 0;
4495 p->sched_class = &dl_sched_class;
4496 } else if (rt_prio(prio)) {
4497 if (dl_prio(oldprio))
4498 p->dl.dl_boosted = 0;
4499 if (oldprio < prio)
4500 queue_flag |= ENQUEUE_HEAD;
4501 p->sched_class = &rt_sched_class;
4502 } else {
4503 if (dl_prio(oldprio))
4504 p->dl.dl_boosted = 0;
4505 if (rt_prio(oldprio))
4506 p->rt.timeout = 0;
4507 p->sched_class = &fair_sched_class;
4508 }
4509
4510 p->prio = prio;
4511
4512 if (queued)
4513 enqueue_task(rq, p, queue_flag);
4514 if (running)
4515 set_next_task(rq, p);
4516
4517 check_class_changed(rq, p, prev_class, oldprio);
4518 out_unlock:
4519 /* Avoid rq from going away on us: */
4520 preempt_disable();
4521 __task_rq_unlock(rq, &rf);
4522
4523 balance_callback(rq);
4524 preempt_enable();
4525 }
4526 #else
4527 static inline int rt_effective_prio(struct task_struct *p, int prio)
4528 {
4529 return prio;
4530 }
4531 #endif
4532
4533 void set_user_nice(struct task_struct *p, long nice)
4534 {
4535 bool queued, running;
4536 int old_prio;
4537 struct rq_flags rf;
4538 struct rq *rq;
4539
4540 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4541 return;
4542 /*
4543 * We have to be careful, if called from sys_setpriority(),
4544 * the task might be in the middle of scheduling on another CPU.
4545 */
4546 rq = task_rq_lock(p, &rf);
4547 update_rq_clock(rq);
4548
4549 /*
4550 * The RT priorities are set via sched_setscheduler(), but we still
4551 * allow the 'normal' nice value to be set - but as expected
4552 * it wont have any effect on scheduling until the task is
4553 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4554 */
4555 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4556 p->static_prio = NICE_TO_PRIO(nice);
4557 goto out_unlock;
4558 }
4559 queued = task_on_rq_queued(p);
4560 running = task_current(rq, p);
4561 if (queued)
4562 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4563 if (running)
4564 put_prev_task(rq, p);
4565
4566 p->static_prio = NICE_TO_PRIO(nice);
4567 set_load_weight(p, true);
4568 old_prio = p->prio;
4569 p->prio = effective_prio(p);
4570
4571 if (queued)
4572 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4573 if (running)
4574 set_next_task(rq, p);
4575
4576 /*
4577 * If the task increased its priority or is running and
4578 * lowered its priority, then reschedule its CPU:
4579 */
4580 p->sched_class->prio_changed(rq, p, old_prio);
4581
4582 out_unlock:
4583 task_rq_unlock(rq, p, &rf);
4584 }
4585 EXPORT_SYMBOL(set_user_nice);
4586
4587 /*
4588 * can_nice - check if a task can reduce its nice value
4589 * @p: task
4590 * @nice: nice value
4591 */
4592 int can_nice(const struct task_struct *p, const int nice)
4593 {
4594 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
4595 int nice_rlim = nice_to_rlimit(nice);
4596
4597 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4598 capable(CAP_SYS_NICE));
4599 }
4600
4601 #ifdef __ARCH_WANT_SYS_NICE
4602
4603 /*
4604 * sys_nice - change the priority of the current process.
4605 * @increment: priority increment
4606 *
4607 * sys_setpriority is a more generic, but much slower function that
4608 * does similar things.
4609 */
4610 SYSCALL_DEFINE1(nice, int, increment)
4611 {
4612 long nice, retval;
4613
4614 /*
4615 * Setpriority might change our priority at the same moment.
4616 * We don't have to worry. Conceptually one call occurs first
4617 * and we have a single winner.
4618 */
4619 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4620 nice = task_nice(current) + increment;
4621
4622 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4623 if (increment < 0 && !can_nice(current, nice))
4624 return -EPERM;
4625
4626 retval = security_task_setnice(current, nice);
4627 if (retval)
4628 return retval;
4629
4630 set_user_nice(current, nice);
4631 return 0;
4632 }
4633
4634 #endif
4635
4636 /**
4637 * task_prio - return the priority value of a given task.
4638 * @p: the task in question.
4639 *
4640 * Return: The priority value as seen by users in /proc.
4641 * RT tasks are offset by -200. Normal tasks are centered
4642 * around 0, value goes from -16 to +15.
4643 */
4644 int task_prio(const struct task_struct *p)
4645 {
4646 return p->prio - MAX_RT_PRIO;
4647 }
4648
4649 /**
4650 * idle_cpu - is a given CPU idle currently?
4651 * @cpu: the processor in question.
4652 *
4653 * Return: 1 if the CPU is currently idle. 0 otherwise.
4654 */
4655 int idle_cpu(int cpu)
4656 {
4657 struct rq *rq = cpu_rq(cpu);
4658
4659 if (rq->curr != rq->idle)
4660 return 0;
4661
4662 if (rq->nr_running)
4663 return 0;
4664
4665 #ifdef CONFIG_SMP
4666 if (!llist_empty(&rq->wake_list))
4667 return 0;
4668 #endif
4669
4670 return 1;
4671 }
4672
4673 /**
4674 * available_idle_cpu - is a given CPU idle for enqueuing work.
4675 * @cpu: the CPU in question.
4676 *
4677 * Return: 1 if the CPU is currently idle. 0 otherwise.
4678 */
4679 int available_idle_cpu(int cpu)
4680 {
4681 if (!idle_cpu(cpu))
4682 return 0;
4683
4684 if (vcpu_is_preempted(cpu))
4685 return 0;
4686
4687 return 1;
4688 }
4689
4690 /**
4691 * idle_task - return the idle task for a given CPU.
4692 * @cpu: the processor in question.
4693 *
4694 * Return: The idle task for the CPU @cpu.
4695 */
4696 struct task_struct *idle_task(int cpu)
4697 {
4698 return cpu_rq(cpu)->idle;
4699 }
4700
4701 /**
4702 * find_process_by_pid - find a process with a matching PID value.
4703 * @pid: the pid in question.
4704 *
4705 * The task of @pid, if found. %NULL otherwise.
4706 */
4707 static struct task_struct *find_process_by_pid(pid_t pid)
4708 {
4709 return pid ? find_task_by_vpid(pid) : current;
4710 }
4711
4712 /*
4713 * sched_setparam() passes in -1 for its policy, to let the functions
4714 * it calls know not to change it.
4715 */
4716 #define SETPARAM_POLICY -1
4717
4718 static void __setscheduler_params(struct task_struct *p,
4719 const struct sched_attr *attr)
4720 {
4721 int policy = attr->sched_policy;
4722
4723 if (policy == SETPARAM_POLICY)
4724 policy = p->policy;
4725
4726 p->policy = policy;
4727
4728 if (dl_policy(policy))
4729 __setparam_dl(p, attr);
4730 else if (fair_policy(policy))
4731 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4732
4733 /*
4734 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4735 * !rt_policy. Always setting this ensures that things like
4736 * getparam()/getattr() don't report silly values for !rt tasks.
4737 */
4738 p->rt_priority = attr->sched_priority;
4739 p->normal_prio = normal_prio(p);
4740 set_load_weight(p, true);
4741 }
4742
4743 /* Actually do priority change: must hold pi & rq lock. */
4744 static void __setscheduler(struct rq *rq, struct task_struct *p,
4745 const struct sched_attr *attr, bool keep_boost)
4746 {
4747 /*
4748 * If params can't change scheduling class changes aren't allowed
4749 * either.
4750 */
4751 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4752 return;
4753
4754 __setscheduler_params(p, attr);
4755
4756 /*
4757 * Keep a potential priority boosting if called from
4758 * sched_setscheduler().
4759 */
4760 p->prio = normal_prio(p);
4761 if (keep_boost)
4762 p->prio = rt_effective_prio(p, p->prio);
4763
4764 if (dl_prio(p->prio))
4765 p->sched_class = &dl_sched_class;
4766 else if (rt_prio(p->prio))
4767 p->sched_class = &rt_sched_class;
4768 else
4769 p->sched_class = &fair_sched_class;
4770 }
4771
4772 /*
4773 * Check the target process has a UID that matches the current process's:
4774 */
4775 static bool check_same_owner(struct task_struct *p)
4776 {
4777 const struct cred *cred = current_cred(), *pcred;
4778 bool match;
4779
4780 rcu_read_lock();
4781 pcred = __task_cred(p);
4782 match = (uid_eq(cred->euid, pcred->euid) ||
4783 uid_eq(cred->euid, pcred->uid));
4784 rcu_read_unlock();
4785 return match;
4786 }
4787
4788 static int __sched_setscheduler(struct task_struct *p,
4789 const struct sched_attr *attr,
4790 bool user, bool pi)
4791 {
4792 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4793 MAX_RT_PRIO - 1 - attr->sched_priority;
4794 int retval, oldprio, oldpolicy = -1, queued, running;
4795 int new_effective_prio, policy = attr->sched_policy;
4796 const struct sched_class *prev_class;
4797 struct rq_flags rf;
4798 int reset_on_fork;
4799 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4800 struct rq *rq;
4801
4802 /* The pi code expects interrupts enabled */
4803 BUG_ON(pi && in_interrupt());
4804 recheck:
4805 /* Double check policy once rq lock held: */
4806 if (policy < 0) {
4807 reset_on_fork = p->sched_reset_on_fork;
4808 policy = oldpolicy = p->policy;
4809 } else {
4810 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4811
4812 if (!valid_policy(policy))
4813 return -EINVAL;
4814 }
4815
4816 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4817 return -EINVAL;
4818
4819 /*
4820 * Valid priorities for SCHED_FIFO and SCHED_RR are
4821 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4822 * SCHED_BATCH and SCHED_IDLE is 0.
4823 */
4824 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4825 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4826 return -EINVAL;
4827 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4828 (rt_policy(policy) != (attr->sched_priority != 0)))
4829 return -EINVAL;
4830
4831 /*
4832 * Allow unprivileged RT tasks to decrease priority:
4833 */
4834 if (user && !capable(CAP_SYS_NICE)) {
4835 if (fair_policy(policy)) {
4836 if (attr->sched_nice < task_nice(p) &&
4837 !can_nice(p, attr->sched_nice))
4838 return -EPERM;
4839 }
4840
4841 if (rt_policy(policy)) {
4842 unsigned long rlim_rtprio =
4843 task_rlimit(p, RLIMIT_RTPRIO);
4844
4845 /* Can't set/change the rt policy: */
4846 if (policy != p->policy && !rlim_rtprio)
4847 return -EPERM;
4848
4849 /* Can't increase priority: */
4850 if (attr->sched_priority > p->rt_priority &&
4851 attr->sched_priority > rlim_rtprio)
4852 return -EPERM;
4853 }
4854
4855 /*
4856 * Can't set/change SCHED_DEADLINE policy at all for now
4857 * (safest behavior); in the future we would like to allow
4858 * unprivileged DL tasks to increase their relative deadline
4859 * or reduce their runtime (both ways reducing utilization)
4860 */
4861 if (dl_policy(policy))
4862 return -EPERM;
4863
4864 /*
4865 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4866 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4867 */
4868 if (task_has_idle_policy(p) && !idle_policy(policy)) {
4869 if (!can_nice(p, task_nice(p)))
4870 return -EPERM;
4871 }
4872
4873 /* Can't change other user's priorities: */
4874 if (!check_same_owner(p))
4875 return -EPERM;
4876
4877 /* Normal users shall not reset the sched_reset_on_fork flag: */
4878 if (p->sched_reset_on_fork && !reset_on_fork)
4879 return -EPERM;
4880 }
4881
4882 if (user) {
4883 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4884 return -EINVAL;
4885
4886 retval = security_task_setscheduler(p);
4887 if (retval)
4888 return retval;
4889 }
4890
4891 /* Update task specific "requested" clamps */
4892 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4893 retval = uclamp_validate(p, attr);
4894 if (retval)
4895 return retval;
4896 }
4897
4898 if (pi)
4899 cpuset_read_lock();
4900
4901 /*
4902 * Make sure no PI-waiters arrive (or leave) while we are
4903 * changing the priority of the task:
4904 *
4905 * To be able to change p->policy safely, the appropriate
4906 * runqueue lock must be held.
4907 */
4908 rq = task_rq_lock(p, &rf);
4909 update_rq_clock(rq);
4910
4911 /*
4912 * Changing the policy of the stop threads its a very bad idea:
4913 */
4914 if (p == rq->stop) {
4915 retval = -EINVAL;
4916 goto unlock;
4917 }
4918
4919 /*
4920 * If not changing anything there's no need to proceed further,
4921 * but store a possible modification of reset_on_fork.
4922 */
4923 if (unlikely(policy == p->policy)) {
4924 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4925 goto change;
4926 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4927 goto change;
4928 if (dl_policy(policy) && dl_param_changed(p, attr))
4929 goto change;
4930 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4931 goto change;
4932
4933 p->sched_reset_on_fork = reset_on_fork;
4934 retval = 0;
4935 goto unlock;
4936 }
4937 change:
4938
4939 if (user) {
4940 #ifdef CONFIG_RT_GROUP_SCHED
4941 /*
4942 * Do not allow realtime tasks into groups that have no runtime
4943 * assigned.
4944 */
4945 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4946 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4947 !task_group_is_autogroup(task_group(p))) {
4948 retval = -EPERM;
4949 goto unlock;
4950 }
4951 #endif
4952 #ifdef CONFIG_SMP
4953 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4954 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4955 cpumask_t *span = rq->rd->span;
4956
4957 /*
4958 * Don't allow tasks with an affinity mask smaller than
4959 * the entire root_domain to become SCHED_DEADLINE. We
4960 * will also fail if there's no bandwidth available.
4961 */
4962 if (!cpumask_subset(span, p->cpus_ptr) ||
4963 rq->rd->dl_bw.bw == 0) {
4964 retval = -EPERM;
4965 goto unlock;
4966 }
4967 }
4968 #endif
4969 }
4970
4971 /* Re-check policy now with rq lock held: */
4972 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4973 policy = oldpolicy = -1;
4974 task_rq_unlock(rq, p, &rf);
4975 if (pi)
4976 cpuset_read_unlock();
4977 goto recheck;
4978 }
4979
4980 /*
4981 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4982 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4983 * is available.
4984 */
4985 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4986 retval = -EBUSY;
4987 goto unlock;
4988 }
4989
4990 p->sched_reset_on_fork = reset_on_fork;
4991 oldprio = p->prio;
4992
4993 if (pi) {
4994 /*
4995 * Take priority boosted tasks into account. If the new
4996 * effective priority is unchanged, we just store the new
4997 * normal parameters and do not touch the scheduler class and
4998 * the runqueue. This will be done when the task deboost
4999 * itself.
5000 */
5001 new_effective_prio = rt_effective_prio(p, newprio);
5002 if (new_effective_prio == oldprio)
5003 queue_flags &= ~DEQUEUE_MOVE;
5004 }
5005
5006 queued = task_on_rq_queued(p);
5007 running = task_current(rq, p);
5008 if (queued)
5009 dequeue_task(rq, p, queue_flags);
5010 if (running)
5011 put_prev_task(rq, p);
5012
5013 prev_class = p->sched_class;
5014
5015 __setscheduler(rq, p, attr, pi);
5016 __setscheduler_uclamp(p, attr);
5017
5018 if (queued) {
5019 /*
5020 * We enqueue to tail when the priority of a task is
5021 * increased (user space view).
5022 */
5023 if (oldprio < p->prio)
5024 queue_flags |= ENQUEUE_HEAD;
5025
5026 enqueue_task(rq, p, queue_flags);
5027 }
5028 if (running)
5029 set_next_task(rq, p);
5030
5031 check_class_changed(rq, p, prev_class, oldprio);
5032
5033 /* Avoid rq from going away on us: */
5034 preempt_disable();
5035 task_rq_unlock(rq, p, &rf);
5036
5037 if (pi) {
5038 cpuset_read_unlock();
5039 rt_mutex_adjust_pi(p);
5040 }
5041
5042 /* Run balance callbacks after we've adjusted the PI chain: */
5043 balance_callback(rq);
5044 preempt_enable();
5045
5046 return 0;
5047
5048 unlock:
5049 task_rq_unlock(rq, p, &rf);
5050 if (pi)
5051 cpuset_read_unlock();
5052 return retval;
5053 }
5054
5055 static int _sched_setscheduler(struct task_struct *p, int policy,
5056 const struct sched_param *param, bool check)
5057 {
5058 struct sched_attr attr = {
5059 .sched_policy = policy,
5060 .sched_priority = param->sched_priority,
5061 .sched_nice = PRIO_TO_NICE(p->static_prio),
5062 };
5063
5064 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5065 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5066 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5067 policy &= ~SCHED_RESET_ON_FORK;
5068 attr.sched_policy = policy;
5069 }
5070
5071 return __sched_setscheduler(p, &attr, check, true);
5072 }
5073 /**
5074 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5075 * @p: the task in question.
5076 * @policy: new policy.
5077 * @param: structure containing the new RT priority.
5078 *
5079 * Return: 0 on success. An error code otherwise.
5080 *
5081 * NOTE that the task may be already dead.
5082 */
5083 int sched_setscheduler(struct task_struct *p, int policy,
5084 const struct sched_param *param)
5085 {
5086 return _sched_setscheduler(p, policy, param, true);
5087 }
5088 EXPORT_SYMBOL_GPL(sched_setscheduler);
5089
5090 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5091 {
5092 return __sched_setscheduler(p, attr, true, true);
5093 }
5094 EXPORT_SYMBOL_GPL(sched_setattr);
5095
5096 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5097 {
5098 return __sched_setscheduler(p, attr, false, true);
5099 }
5100
5101 /**
5102 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5103 * @p: the task in question.
5104 * @policy: new policy.
5105 * @param: structure containing the new RT priority.
5106 *
5107 * Just like sched_setscheduler, only don't bother checking if the
5108 * current context has permission. For example, this is needed in
5109 * stop_machine(): we create temporary high priority worker threads,
5110 * but our caller might not have that capability.
5111 *
5112 * Return: 0 on success. An error code otherwise.
5113 */
5114 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5115 const struct sched_param *param)
5116 {
5117 return _sched_setscheduler(p, policy, param, false);
5118 }
5119 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5120
5121 static int
5122 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5123 {
5124 struct sched_param lparam;
5125 struct task_struct *p;
5126 int retval;
5127
5128 if (!param || pid < 0)
5129 return -EINVAL;
5130 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5131 return -EFAULT;
5132
5133 rcu_read_lock();
5134 retval = -ESRCH;
5135 p = find_process_by_pid(pid);
5136 if (likely(p))
5137 get_task_struct(p);
5138 rcu_read_unlock();
5139
5140 if (likely(p)) {
5141 retval = sched_setscheduler(p, policy, &lparam);
5142 put_task_struct(p);
5143 }
5144
5145 return retval;
5146 }
5147
5148 /*
5149 * Mimics kernel/events/core.c perf_copy_attr().
5150 */
5151 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5152 {
5153 u32 size;
5154 int ret;
5155
5156 /* Zero the full structure, so that a short copy will be nice: */
5157 memset(attr, 0, sizeof(*attr));
5158
5159 ret = get_user(size, &uattr->size);
5160 if (ret)
5161 return ret;
5162
5163 /* ABI compatibility quirk: */
5164 if (!size)
5165 size = SCHED_ATTR_SIZE_VER0;
5166 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5167 goto err_size;
5168
5169 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5170 if (ret) {
5171 if (ret == -E2BIG)
5172 goto err_size;
5173 return ret;
5174 }
5175
5176 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5177 size < SCHED_ATTR_SIZE_VER1)
5178 return -EINVAL;
5179
5180 /*
5181 * XXX: Do we want to be lenient like existing syscalls; or do we want
5182 * to be strict and return an error on out-of-bounds values?
5183 */
5184 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5185
5186 return 0;
5187
5188 err_size:
5189 put_user(sizeof(*attr), &uattr->size);
5190 return -E2BIG;
5191 }
5192
5193 /**
5194 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5195 * @pid: the pid in question.
5196 * @policy: new policy.
5197 * @param: structure containing the new RT priority.
5198 *
5199 * Return: 0 on success. An error code otherwise.
5200 */
5201 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5202 {
5203 if (policy < 0)
5204 return -EINVAL;
5205
5206 return do_sched_setscheduler(pid, policy, param);
5207 }
5208
5209 /**
5210 * sys_sched_setparam - set/change the RT priority of a thread
5211 * @pid: the pid in question.
5212 * @param: structure containing the new RT priority.
5213 *
5214 * Return: 0 on success. An error code otherwise.
5215 */
5216 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5217 {
5218 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5219 }
5220
5221 /**
5222 * sys_sched_setattr - same as above, but with extended sched_attr
5223 * @pid: the pid in question.
5224 * @uattr: structure containing the extended parameters.
5225 * @flags: for future extension.
5226 */
5227 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5228 unsigned int, flags)
5229 {
5230 struct sched_attr attr;
5231 struct task_struct *p;
5232 int retval;
5233
5234 if (!uattr || pid < 0 || flags)
5235 return -EINVAL;
5236
5237 retval = sched_copy_attr(uattr, &attr);
5238 if (retval)
5239 return retval;
5240
5241 if ((int)attr.sched_policy < 0)
5242 return -EINVAL;
5243 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5244 attr.sched_policy = SETPARAM_POLICY;
5245
5246 rcu_read_lock();
5247 retval = -ESRCH;
5248 p = find_process_by_pid(pid);
5249 if (likely(p))
5250 get_task_struct(p);
5251 rcu_read_unlock();
5252
5253 if (likely(p)) {
5254 retval = sched_setattr(p, &attr);
5255 put_task_struct(p);
5256 }
5257
5258 return retval;
5259 }
5260
5261 /**
5262 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5263 * @pid: the pid in question.
5264 *
5265 * Return: On success, the policy of the thread. Otherwise, a negative error
5266 * code.
5267 */
5268 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5269 {
5270 struct task_struct *p;
5271 int retval;
5272
5273 if (pid < 0)
5274 return -EINVAL;
5275
5276 retval = -ESRCH;
5277 rcu_read_lock();
5278 p = find_process_by_pid(pid);
5279 if (p) {
5280 retval = security_task_getscheduler(p);
5281 if (!retval)
5282 retval = p->policy
5283 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5284 }
5285 rcu_read_unlock();
5286 return retval;
5287 }
5288
5289 /**
5290 * sys_sched_getparam - get the RT priority of a thread
5291 * @pid: the pid in question.
5292 * @param: structure containing the RT priority.
5293 *
5294 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5295 * code.
5296 */
5297 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5298 {
5299 struct sched_param lp = { .sched_priority = 0 };
5300 struct task_struct *p;
5301 int retval;
5302
5303 if (!param || pid < 0)
5304 return -EINVAL;
5305
5306 rcu_read_lock();
5307 p = find_process_by_pid(pid);
5308 retval = -ESRCH;
5309 if (!p)
5310 goto out_unlock;
5311
5312 retval = security_task_getscheduler(p);
5313 if (retval)
5314 goto out_unlock;
5315
5316 if (task_has_rt_policy(p))
5317 lp.sched_priority = p->rt_priority;
5318 rcu_read_unlock();
5319
5320 /*
5321 * This one might sleep, we cannot do it with a spinlock held ...
5322 */
5323 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5324
5325 return retval;
5326
5327 out_unlock:
5328 rcu_read_unlock();
5329 return retval;
5330 }
5331
5332 /*
5333 * Copy the kernel size attribute structure (which might be larger
5334 * than what user-space knows about) to user-space.
5335 *
5336 * Note that all cases are valid: user-space buffer can be larger or
5337 * smaller than the kernel-space buffer. The usual case is that both
5338 * have the same size.
5339 */
5340 static int
5341 sched_attr_copy_to_user(struct sched_attr __user *uattr,
5342 struct sched_attr *kattr,
5343 unsigned int usize)
5344 {
5345 unsigned int ksize = sizeof(*kattr);
5346
5347 if (!access_ok(uattr, usize))
5348 return -EFAULT;
5349
5350 /*
5351 * sched_getattr() ABI forwards and backwards compatibility:
5352 *
5353 * If usize == ksize then we just copy everything to user-space and all is good.
5354 *
5355 * If usize < ksize then we only copy as much as user-space has space for,
5356 * this keeps ABI compatibility as well. We skip the rest.
5357 *
5358 * If usize > ksize then user-space is using a newer version of the ABI,
5359 * which part the kernel doesn't know about. Just ignore it - tooling can
5360 * detect the kernel's knowledge of attributes from the attr->size value
5361 * which is set to ksize in this case.
5362 */
5363 kattr->size = min(usize, ksize);
5364
5365 if (copy_to_user(uattr, kattr, kattr->size))
5366 return -EFAULT;
5367
5368 return 0;
5369 }
5370
5371 /**
5372 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5373 * @pid: the pid in question.
5374 * @uattr: structure containing the extended parameters.
5375 * @usize: sizeof(attr) for fwd/bwd comp.
5376 * @flags: for future extension.
5377 */
5378 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5379 unsigned int, usize, unsigned int, flags)
5380 {
5381 struct sched_attr kattr = { };
5382 struct task_struct *p;
5383 int retval;
5384
5385 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5386 usize < SCHED_ATTR_SIZE_VER0 || flags)
5387 return -EINVAL;
5388
5389 rcu_read_lock();
5390 p = find_process_by_pid(pid);
5391 retval = -ESRCH;
5392 if (!p)
5393 goto out_unlock;
5394
5395 retval = security_task_getscheduler(p);
5396 if (retval)
5397 goto out_unlock;
5398
5399 kattr.sched_policy = p->policy;
5400 if (p->sched_reset_on_fork)
5401 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5402 if (task_has_dl_policy(p))
5403 __getparam_dl(p, &kattr);
5404 else if (task_has_rt_policy(p))
5405 kattr.sched_priority = p->rt_priority;
5406 else
5407 kattr.sched_nice = task_nice(p);
5408
5409 #ifdef CONFIG_UCLAMP_TASK
5410 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5411 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5412 #endif
5413
5414 rcu_read_unlock();
5415
5416 return sched_attr_copy_to_user(uattr, &kattr, usize);
5417
5418 out_unlock:
5419 rcu_read_unlock();
5420 return retval;
5421 }
5422
5423 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5424 {
5425 cpumask_var_t cpus_allowed, new_mask;
5426 struct task_struct *p;
5427 int retval;
5428
5429 rcu_read_lock();
5430
5431 p = find_process_by_pid(pid);
5432 if (!p) {
5433 rcu_read_unlock();
5434 return -ESRCH;
5435 }
5436
5437 /* Prevent p going away */
5438 get_task_struct(p);
5439 rcu_read_unlock();
5440
5441 if (p->flags & PF_NO_SETAFFINITY) {
5442 retval = -EINVAL;
5443 goto out_put_task;
5444 }
5445 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5446 retval = -ENOMEM;
5447 goto out_put_task;
5448 }
5449 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5450 retval = -ENOMEM;
5451 goto out_free_cpus_allowed;
5452 }
5453 retval = -EPERM;
5454 if (!check_same_owner(p)) {
5455 rcu_read_lock();
5456 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5457 rcu_read_unlock();
5458 goto out_free_new_mask;
5459 }
5460 rcu_read_unlock();
5461 }
5462
5463 retval = security_task_setscheduler(p);
5464 if (retval)
5465 goto out_free_new_mask;
5466
5467
5468 cpuset_cpus_allowed(p, cpus_allowed);
5469 cpumask_and(new_mask, in_mask, cpus_allowed);
5470
5471 /*
5472 * Since bandwidth control happens on root_domain basis,
5473 * if admission test is enabled, we only admit -deadline
5474 * tasks allowed to run on all the CPUs in the task's
5475 * root_domain.
5476 */
5477 #ifdef CONFIG_SMP
5478 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5479 rcu_read_lock();
5480 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5481 retval = -EBUSY;
5482 rcu_read_unlock();
5483 goto out_free_new_mask;
5484 }
5485 rcu_read_unlock();
5486 }
5487 #endif
5488 again:
5489 retval = __set_cpus_allowed_ptr(p, new_mask, true);
5490
5491 if (!retval) {
5492 cpuset_cpus_allowed(p, cpus_allowed);
5493 if (!cpumask_subset(new_mask, cpus_allowed)) {
5494 /*
5495 * We must have raced with a concurrent cpuset
5496 * update. Just reset the cpus_allowed to the
5497 * cpuset's cpus_allowed
5498 */
5499 cpumask_copy(new_mask, cpus_allowed);
5500 goto again;
5501 }
5502 }
5503 out_free_new_mask:
5504 free_cpumask_var(new_mask);
5505 out_free_cpus_allowed:
5506 free_cpumask_var(cpus_allowed);
5507 out_put_task:
5508 put_task_struct(p);
5509 return retval;
5510 }
5511
5512 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5513 struct cpumask *new_mask)
5514 {
5515 if (len < cpumask_size())
5516 cpumask_clear(new_mask);
5517 else if (len > cpumask_size())
5518 len = cpumask_size();
5519
5520 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5521 }
5522
5523 /**
5524 * sys_sched_setaffinity - set the CPU affinity of a process
5525 * @pid: pid of the process
5526 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5527 * @user_mask_ptr: user-space pointer to the new CPU mask
5528 *
5529 * Return: 0 on success. An error code otherwise.
5530 */
5531 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5532 unsigned long __user *, user_mask_ptr)
5533 {
5534 cpumask_var_t new_mask;
5535 int retval;
5536
5537 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5538 return -ENOMEM;
5539
5540 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5541 if (retval == 0)
5542 retval = sched_setaffinity(pid, new_mask);
5543 free_cpumask_var(new_mask);
5544 return retval;
5545 }
5546
5547 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5548 {
5549 struct task_struct *p;
5550 unsigned long flags;
5551 int retval;
5552
5553 rcu_read_lock();
5554
5555 retval = -ESRCH;
5556 p = find_process_by_pid(pid);
5557 if (!p)
5558 goto out_unlock;
5559
5560 retval = security_task_getscheduler(p);
5561 if (retval)
5562 goto out_unlock;
5563
5564 raw_spin_lock_irqsave(&p->pi_lock, flags);
5565 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5566 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5567
5568 out_unlock:
5569 rcu_read_unlock();
5570
5571 return retval;
5572 }
5573
5574 /**
5575 * sys_sched_getaffinity - get the CPU affinity of a process
5576 * @pid: pid of the process
5577 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5578 * @user_mask_ptr: user-space pointer to hold the current CPU mask
5579 *
5580 * Return: size of CPU mask copied to user_mask_ptr on success. An
5581 * error code otherwise.
5582 */
5583 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5584 unsigned long __user *, user_mask_ptr)
5585 {
5586 int ret;
5587 cpumask_var_t mask;
5588
5589 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5590 return -EINVAL;
5591 if (len & (sizeof(unsigned long)-1))
5592 return -EINVAL;
5593
5594 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5595 return -ENOMEM;
5596
5597 ret = sched_getaffinity(pid, mask);
5598 if (ret == 0) {
5599 unsigned int retlen = min(len, cpumask_size());
5600
5601 if (copy_to_user(user_mask_ptr, mask, retlen))
5602 ret = -EFAULT;
5603 else
5604 ret = retlen;
5605 }
5606 free_cpumask_var(mask);
5607
5608 return ret;
5609 }
5610
5611 /**
5612 * sys_sched_yield - yield the current processor to other threads.
5613 *
5614 * This function yields the current CPU to other tasks. If there are no
5615 * other threads running on this CPU then this function will return.
5616 *
5617 * Return: 0.
5618 */
5619 static void do_sched_yield(void)
5620 {
5621 struct rq_flags rf;
5622 struct rq *rq;
5623
5624 rq = this_rq_lock_irq(&rf);
5625
5626 schedstat_inc(rq->yld_count);
5627 current->sched_class->yield_task(rq);
5628
5629 /*
5630 * Since we are going to call schedule() anyway, there's
5631 * no need to preempt or enable interrupts:
5632 */
5633 preempt_disable();
5634 rq_unlock(rq, &rf);
5635 sched_preempt_enable_no_resched();
5636
5637 schedule();
5638 }
5639
5640 SYSCALL_DEFINE0(sched_yield)
5641 {
5642 do_sched_yield();
5643 return 0;
5644 }
5645
5646 #ifndef CONFIG_PREEMPTION
5647 int __sched _cond_resched(void)
5648 {
5649 if (should_resched(0)) {
5650 preempt_schedule_common();
5651 return 1;
5652 }
5653 rcu_all_qs();
5654 return 0;
5655 }
5656 EXPORT_SYMBOL(_cond_resched);
5657 #endif
5658
5659 /*
5660 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5661 * call schedule, and on return reacquire the lock.
5662 *
5663 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
5664 * operations here to prevent schedule() from being called twice (once via
5665 * spin_unlock(), once by hand).
5666 */
5667 int __cond_resched_lock(spinlock_t *lock)
5668 {
5669 int resched = should_resched(PREEMPT_LOCK_OFFSET);
5670 int ret = 0;
5671
5672 lockdep_assert_held(lock);
5673
5674 if (spin_needbreak(lock) || resched) {
5675 spin_unlock(lock);
5676 if (resched)
5677 preempt_schedule_common();
5678 else
5679 cpu_relax();
5680 ret = 1;
5681 spin_lock(lock);
5682 }
5683 return ret;
5684 }
5685 EXPORT_SYMBOL(__cond_resched_lock);
5686
5687 /**
5688 * yield - yield the current processor to other threads.
5689 *
5690 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5691 *
5692 * The scheduler is at all times free to pick the calling task as the most
5693 * eligible task to run, if removing the yield() call from your code breaks
5694 * it, its already broken.
5695 *
5696 * Typical broken usage is:
5697 *
5698 * while (!event)
5699 * yield();
5700 *
5701 * where one assumes that yield() will let 'the other' process run that will
5702 * make event true. If the current task is a SCHED_FIFO task that will never
5703 * happen. Never use yield() as a progress guarantee!!
5704 *
5705 * If you want to use yield() to wait for something, use wait_event().
5706 * If you want to use yield() to be 'nice' for others, use cond_resched().
5707 * If you still want to use yield(), do not!
5708 */
5709 void __sched yield(void)
5710 {
5711 set_current_state(TASK_RUNNING);
5712 do_sched_yield();
5713 }
5714 EXPORT_SYMBOL(yield);
5715
5716 /**
5717 * yield_to - yield the current processor to another thread in
5718 * your thread group, or accelerate that thread toward the
5719 * processor it's on.
5720 * @p: target task
5721 * @preempt: whether task preemption is allowed or not
5722 *
5723 * It's the caller's job to ensure that the target task struct
5724 * can't go away on us before we can do any checks.
5725 *
5726 * Return:
5727 * true (>0) if we indeed boosted the target task.
5728 * false (0) if we failed to boost the target.
5729 * -ESRCH if there's no task to yield to.
5730 */
5731 int __sched yield_to(struct task_struct *p, bool preempt)
5732 {
5733 struct task_struct *curr = current;
5734 struct rq *rq, *p_rq;
5735 unsigned long flags;
5736 int yielded = 0;
5737
5738 local_irq_save(flags);
5739 rq = this_rq();
5740
5741 again:
5742 p_rq = task_rq(p);
5743 /*
5744 * If we're the only runnable task on the rq and target rq also
5745 * has only one task, there's absolutely no point in yielding.
5746 */
5747 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5748 yielded = -ESRCH;
5749 goto out_irq;
5750 }
5751
5752 double_rq_lock(rq, p_rq);
5753 if (task_rq(p) != p_rq) {
5754 double_rq_unlock(rq, p_rq);
5755 goto again;
5756 }
5757
5758 if (!curr->sched_class->yield_to_task)
5759 goto out_unlock;
5760
5761 if (curr->sched_class != p->sched_class)
5762 goto out_unlock;
5763
5764 if (task_running(p_rq, p) || p->state)
5765 goto out_unlock;
5766
5767 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5768 if (yielded) {
5769 schedstat_inc(rq->yld_count);
5770 /*
5771 * Make p's CPU reschedule; pick_next_entity takes care of
5772 * fairness.
5773 */
5774 if (preempt && rq != p_rq)
5775 resched_curr(p_rq);
5776 }
5777
5778 out_unlock:
5779 double_rq_unlock(rq, p_rq);
5780 out_irq:
5781 local_irq_restore(flags);
5782
5783 if (yielded > 0)
5784 schedule();
5785
5786 return yielded;
5787 }
5788 EXPORT_SYMBOL_GPL(yield_to);
5789
5790 int io_schedule_prepare(void)
5791 {
5792 int old_iowait = current->in_iowait;
5793
5794 current->in_iowait = 1;
5795 blk_schedule_flush_plug(current);
5796
5797 return old_iowait;
5798 }
5799
5800 void io_schedule_finish(int token)
5801 {
5802 current->in_iowait = token;
5803 }
5804
5805 /*
5806 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5807 * that process accounting knows that this is a task in IO wait state.
5808 */
5809 long __sched io_schedule_timeout(long timeout)
5810 {
5811 int token;
5812 long ret;
5813
5814 token = io_schedule_prepare();
5815 ret = schedule_timeout(timeout);
5816 io_schedule_finish(token);
5817
5818 return ret;
5819 }
5820 EXPORT_SYMBOL(io_schedule_timeout);
5821
5822 void __sched io_schedule(void)
5823 {
5824 int token;
5825
5826 token = io_schedule_prepare();
5827 schedule();
5828 io_schedule_finish(token);
5829 }
5830 EXPORT_SYMBOL(io_schedule);
5831
5832 /**
5833 * sys_sched_get_priority_max - return maximum RT priority.
5834 * @policy: scheduling class.
5835 *
5836 * Return: On success, this syscall returns the maximum
5837 * rt_priority that can be used by a given scheduling class.
5838 * On failure, a negative error code is returned.
5839 */
5840 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5841 {
5842 int ret = -EINVAL;
5843
5844 switch (policy) {
5845 case SCHED_FIFO:
5846 case SCHED_RR:
5847 ret = MAX_USER_RT_PRIO-1;
5848 break;
5849 case SCHED_DEADLINE:
5850 case SCHED_NORMAL:
5851 case SCHED_BATCH:
5852 case SCHED_IDLE:
5853 ret = 0;
5854 break;
5855 }
5856 return ret;
5857 }
5858
5859 /**
5860 * sys_sched_get_priority_min - return minimum RT priority.
5861 * @policy: scheduling class.
5862 *
5863 * Return: On success, this syscall returns the minimum
5864 * rt_priority that can be used by a given scheduling class.
5865 * On failure, a negative error code is returned.
5866 */
5867 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5868 {
5869 int ret = -EINVAL;
5870
5871 switch (policy) {
5872 case SCHED_FIFO:
5873 case SCHED_RR:
5874 ret = 1;
5875 break;
5876 case SCHED_DEADLINE:
5877 case SCHED_NORMAL:
5878 case SCHED_BATCH:
5879 case SCHED_IDLE:
5880 ret = 0;
5881 }
5882 return ret;
5883 }
5884
5885 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5886 {
5887 struct task_struct *p;
5888 unsigned int time_slice;
5889 struct rq_flags rf;
5890 struct rq *rq;
5891 int retval;
5892
5893 if (pid < 0)
5894 return -EINVAL;
5895
5896 retval = -ESRCH;
5897 rcu_read_lock();
5898 p = find_process_by_pid(pid);
5899 if (!p)
5900 goto out_unlock;
5901
5902 retval = security_task_getscheduler(p);
5903 if (retval)
5904 goto out_unlock;
5905
5906 rq = task_rq_lock(p, &rf);
5907 time_slice = 0;
5908 if (p->sched_class->get_rr_interval)
5909 time_slice = p->sched_class->get_rr_interval(rq, p);
5910 task_rq_unlock(rq, p, &rf);
5911
5912 rcu_read_unlock();
5913 jiffies_to_timespec64(time_slice, t);
5914 return 0;
5915
5916 out_unlock:
5917 rcu_read_unlock();
5918 return retval;
5919 }
5920
5921 /**
5922 * sys_sched_rr_get_interval - return the default timeslice of a process.
5923 * @pid: pid of the process.
5924 * @interval: userspace pointer to the timeslice value.
5925 *
5926 * this syscall writes the default timeslice value of a given process
5927 * into the user-space timespec buffer. A value of '0' means infinity.
5928 *
5929 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5930 * an error code.
5931 */
5932 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5933 struct __kernel_timespec __user *, interval)
5934 {
5935 struct timespec64 t;
5936 int retval = sched_rr_get_interval(pid, &t);
5937
5938 if (retval == 0)
5939 retval = put_timespec64(&t, interval);
5940
5941 return retval;
5942 }
5943
5944 #ifdef CONFIG_COMPAT_32BIT_TIME
5945 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5946 struct old_timespec32 __user *, interval)
5947 {
5948 struct timespec64 t;
5949 int retval = sched_rr_get_interval(pid, &t);
5950
5951 if (retval == 0)
5952 retval = put_old_timespec32(&t, interval);
5953 return retval;
5954 }
5955 #endif
5956
5957 void sched_show_task(struct task_struct *p)
5958 {
5959 unsigned long free = 0;
5960 int ppid;
5961
5962 if (!try_get_task_stack(p))
5963 return;
5964
5965 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5966
5967 if (p->state == TASK_RUNNING)
5968 printk(KERN_CONT " running task ");
5969 #ifdef CONFIG_DEBUG_STACK_USAGE
5970 free = stack_not_used(p);
5971 #endif
5972 ppid = 0;
5973 rcu_read_lock();
5974 if (pid_alive(p))
5975 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5976 rcu_read_unlock();
5977 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5978 task_pid_nr(p), ppid,
5979 (unsigned long)task_thread_info(p)->flags);
5980
5981 print_worker_info(KERN_INFO, p);
5982 show_stack(p, NULL);
5983 put_task_stack(p);
5984 }
5985 EXPORT_SYMBOL_GPL(sched_show_task);
5986
5987 static inline bool
5988 state_filter_match(unsigned long state_filter, struct task_struct *p)
5989 {
5990 /* no filter, everything matches */
5991 if (!state_filter)
5992 return true;
5993
5994 /* filter, but doesn't match */
5995 if (!(p->state & state_filter))
5996 return false;
5997
5998 /*
5999 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6000 * TASK_KILLABLE).
6001 */
6002 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6003 return false;
6004
6005 return true;
6006 }
6007
6008
6009 void show_state_filter(unsigned long state_filter)
6010 {
6011 struct task_struct *g, *p;
6012
6013 #if BITS_PER_LONG == 32
6014 printk(KERN_INFO
6015 " task PC stack pid father\n");
6016 #else
6017 printk(KERN_INFO
6018 " task PC stack pid father\n");
6019 #endif
6020 rcu_read_lock();
6021 for_each_process_thread(g, p) {
6022 /*
6023 * reset the NMI-timeout, listing all files on a slow
6024 * console might take a lot of time:
6025 * Also, reset softlockup watchdogs on all CPUs, because
6026 * another CPU might be blocked waiting for us to process
6027 * an IPI.
6028 */
6029 touch_nmi_watchdog();
6030 touch_all_softlockup_watchdogs();
6031 if (state_filter_match(state_filter, p))
6032 sched_show_task(p);
6033 }
6034
6035 #ifdef CONFIG_SCHED_DEBUG
6036 if (!state_filter)
6037 sysrq_sched_debug_show();
6038 #endif
6039 rcu_read_unlock();
6040 /*
6041 * Only show locks if all tasks are dumped:
6042 */
6043 if (!state_filter)
6044 debug_show_all_locks();
6045 }
6046
6047 /**
6048 * init_idle - set up an idle thread for a given CPU
6049 * @idle: task in question
6050 * @cpu: CPU the idle task belongs to
6051 *
6052 * NOTE: this function does not set the idle thread's NEED_RESCHED
6053 * flag, to make booting more robust.
6054 */
6055 void init_idle(struct task_struct *idle, int cpu)
6056 {
6057 struct rq *rq = cpu_rq(cpu);
6058 unsigned long flags;
6059
6060 __sched_fork(0, idle);
6061
6062 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6063 raw_spin_lock(&rq->lock);
6064
6065 idle->state = TASK_RUNNING;
6066 idle->se.exec_start = sched_clock();
6067 idle->flags |= PF_IDLE;
6068
6069 kasan_unpoison_task_stack(idle);
6070
6071 #ifdef CONFIG_SMP
6072 /*
6073 * Its possible that init_idle() gets called multiple times on a task,
6074 * in that case do_set_cpus_allowed() will not do the right thing.
6075 *
6076 * And since this is boot we can forgo the serialization.
6077 */
6078 set_cpus_allowed_common(idle, cpumask_of(cpu));
6079 #endif
6080 /*
6081 * We're having a chicken and egg problem, even though we are
6082 * holding rq->lock, the CPU isn't yet set to this CPU so the
6083 * lockdep check in task_group() will fail.
6084 *
6085 * Similar case to sched_fork(). / Alternatively we could
6086 * use task_rq_lock() here and obtain the other rq->lock.
6087 *
6088 * Silence PROVE_RCU
6089 */
6090 rcu_read_lock();
6091 __set_task_cpu(idle, cpu);
6092 rcu_read_unlock();
6093
6094 rq->idle = idle;
6095 rcu_assign_pointer(rq->curr, idle);
6096 idle->on_rq = TASK_ON_RQ_QUEUED;
6097 #ifdef CONFIG_SMP
6098 idle->on_cpu = 1;
6099 #endif
6100 raw_spin_unlock(&rq->lock);
6101 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6102
6103 /* Set the preempt count _outside_ the spinlocks! */
6104 init_idle_preempt_count(idle, cpu);
6105
6106 /*
6107 * The idle tasks have their own, simple scheduling class:
6108 */
6109 idle->sched_class = &idle_sched_class;
6110 ftrace_graph_init_idle_task(idle, cpu);
6111 vtime_init_idle(idle, cpu);
6112 #ifdef CONFIG_SMP
6113 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6114 #endif
6115 }
6116
6117 #ifdef CONFIG_SMP
6118
6119 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6120 const struct cpumask *trial)
6121 {
6122 int ret = 1;
6123
6124 if (!cpumask_weight(cur))
6125 return ret;
6126
6127 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6128
6129 return ret;
6130 }
6131
6132 int task_can_attach(struct task_struct *p,
6133 const struct cpumask *cs_cpus_allowed)
6134 {
6135 int ret = 0;
6136
6137 /*
6138 * Kthreads which disallow setaffinity shouldn't be moved
6139 * to a new cpuset; we don't want to change their CPU
6140 * affinity and isolating such threads by their set of
6141 * allowed nodes is unnecessary. Thus, cpusets are not
6142 * applicable for such threads. This prevents checking for
6143 * success of set_cpus_allowed_ptr() on all attached tasks
6144 * before cpus_mask may be changed.
6145 */
6146 if (p->flags & PF_NO_SETAFFINITY) {
6147 ret = -EINVAL;
6148 goto out;
6149 }
6150
6151 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6152 cs_cpus_allowed))
6153 ret = dl_task_can_attach(p, cs_cpus_allowed);
6154
6155 out:
6156 return ret;
6157 }
6158
6159 bool sched_smp_initialized __read_mostly;
6160
6161 #ifdef CONFIG_NUMA_BALANCING
6162 /* Migrate current task p to target_cpu */
6163 int migrate_task_to(struct task_struct *p, int target_cpu)
6164 {
6165 struct migration_arg arg = { p, target_cpu };
6166 int curr_cpu = task_cpu(p);
6167
6168 if (curr_cpu == target_cpu)
6169 return 0;
6170
6171 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6172 return -EINVAL;
6173
6174 /* TODO: This is not properly updating schedstats */
6175
6176 trace_sched_move_numa(p, curr_cpu, target_cpu);
6177 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6178 }
6179
6180 /*
6181 * Requeue a task on a given node and accurately track the number of NUMA
6182 * tasks on the runqueues
6183 */
6184 void sched_setnuma(struct task_struct *p, int nid)
6185 {
6186 bool queued, running;
6187 struct rq_flags rf;
6188 struct rq *rq;
6189
6190 rq = task_rq_lock(p, &rf);
6191 queued = task_on_rq_queued(p);
6192 running = task_current(rq, p);
6193
6194 if (queued)
6195 dequeue_task(rq, p, DEQUEUE_SAVE);
6196 if (running)
6197 put_prev_task(rq, p);
6198
6199 p->numa_preferred_nid = nid;
6200
6201 if (queued)
6202 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6203 if (running)
6204 set_next_task(rq, p);
6205 task_rq_unlock(rq, p, &rf);
6206 }
6207 #endif /* CONFIG_NUMA_BALANCING */
6208
6209 #ifdef CONFIG_HOTPLUG_CPU
6210 /*
6211 * Ensure that the idle task is using init_mm right before its CPU goes
6212 * offline.
6213 */
6214 void idle_task_exit(void)
6215 {
6216 struct mm_struct *mm = current->active_mm;
6217
6218 BUG_ON(cpu_online(smp_processor_id()));
6219 BUG_ON(current != this_rq()->idle);
6220
6221 if (mm != &init_mm) {
6222 switch_mm(mm, &init_mm, current);
6223 finish_arch_post_lock_switch();
6224 }
6225
6226 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
6227 }
6228
6229 /*
6230 * Since this CPU is going 'away' for a while, fold any nr_active delta
6231 * we might have. Assumes we're called after migrate_tasks() so that the
6232 * nr_active count is stable. We need to take the teardown thread which
6233 * is calling this into account, so we hand in adjust = 1 to the load
6234 * calculation.
6235 *
6236 * Also see the comment "Global load-average calculations".
6237 */
6238 static void calc_load_migrate(struct rq *rq)
6239 {
6240 long delta = calc_load_fold_active(rq, 1);
6241 if (delta)
6242 atomic_long_add(delta, &calc_load_tasks);
6243 }
6244
6245 static struct task_struct *__pick_migrate_task(struct rq *rq)
6246 {
6247 const struct sched_class *class;
6248 struct task_struct *next;
6249
6250 for_each_class(class) {
6251 next = class->pick_next_task(rq);
6252 if (next) {
6253 next->sched_class->put_prev_task(rq, next);
6254 return next;
6255 }
6256 }
6257
6258 /* The idle class should always have a runnable task */
6259 BUG();
6260 }
6261
6262 /*
6263 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6264 * try_to_wake_up()->select_task_rq().
6265 *
6266 * Called with rq->lock held even though we'er in stop_machine() and
6267 * there's no concurrency possible, we hold the required locks anyway
6268 * because of lock validation efforts.
6269 */
6270 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6271 {
6272 struct rq *rq = dead_rq;
6273 struct task_struct *next, *stop = rq->stop;
6274 struct rq_flags orf = *rf;
6275 int dest_cpu;
6276
6277 /*
6278 * Fudge the rq selection such that the below task selection loop
6279 * doesn't get stuck on the currently eligible stop task.
6280 *
6281 * We're currently inside stop_machine() and the rq is either stuck
6282 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6283 * either way we should never end up calling schedule() until we're
6284 * done here.
6285 */
6286 rq->stop = NULL;
6287
6288 /*
6289 * put_prev_task() and pick_next_task() sched
6290 * class method both need to have an up-to-date
6291 * value of rq->clock[_task]
6292 */
6293 update_rq_clock(rq);
6294
6295 for (;;) {
6296 /*
6297 * There's this thread running, bail when that's the only
6298 * remaining thread:
6299 */
6300 if (rq->nr_running == 1)
6301 break;
6302
6303 next = __pick_migrate_task(rq);
6304
6305 /*
6306 * Rules for changing task_struct::cpus_mask are holding
6307 * both pi_lock and rq->lock, such that holding either
6308 * stabilizes the mask.
6309 *
6310 * Drop rq->lock is not quite as disastrous as it usually is
6311 * because !cpu_active at this point, which means load-balance
6312 * will not interfere. Also, stop-machine.
6313 */
6314 rq_unlock(rq, rf);
6315 raw_spin_lock(&next->pi_lock);
6316 rq_relock(rq, rf);
6317
6318 /*
6319 * Since we're inside stop-machine, _nothing_ should have
6320 * changed the task, WARN if weird stuff happened, because in
6321 * that case the above rq->lock drop is a fail too.
6322 */
6323 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6324 raw_spin_unlock(&next->pi_lock);
6325 continue;
6326 }
6327
6328 /* Find suitable destination for @next, with force if needed. */
6329 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6330 rq = __migrate_task(rq, rf, next, dest_cpu);
6331 if (rq != dead_rq) {
6332 rq_unlock(rq, rf);
6333 rq = dead_rq;
6334 *rf = orf;
6335 rq_relock(rq, rf);
6336 }
6337 raw_spin_unlock(&next->pi_lock);
6338 }
6339
6340 rq->stop = stop;
6341 }
6342 #endif /* CONFIG_HOTPLUG_CPU */
6343
6344 void set_rq_online(struct rq *rq)
6345 {
6346 if (!rq->online) {
6347 const struct sched_class *class;
6348
6349 cpumask_set_cpu(rq->cpu, rq->rd->online);
6350 rq->online = 1;
6351
6352 for_each_class(class) {
6353 if (class->rq_online)
6354 class->rq_online(rq);
6355 }
6356 }
6357 }
6358
6359 void set_rq_offline(struct rq *rq)
6360 {
6361 if (rq->online) {
6362 const struct sched_class *class;
6363
6364 for_each_class(class) {
6365 if (class->rq_offline)
6366 class->rq_offline(rq);
6367 }
6368
6369 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6370 rq->online = 0;
6371 }
6372 }
6373
6374 /*
6375 * used to mark begin/end of suspend/resume:
6376 */
6377 static int num_cpus_frozen;
6378
6379 /*
6380 * Update cpusets according to cpu_active mask. If cpusets are
6381 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6382 * around partition_sched_domains().
6383 *
6384 * If we come here as part of a suspend/resume, don't touch cpusets because we
6385 * want to restore it back to its original state upon resume anyway.
6386 */
6387 static void cpuset_cpu_active(void)
6388 {
6389 if (cpuhp_tasks_frozen) {
6390 /*
6391 * num_cpus_frozen tracks how many CPUs are involved in suspend
6392 * resume sequence. As long as this is not the last online
6393 * operation in the resume sequence, just build a single sched
6394 * domain, ignoring cpusets.
6395 */
6396 partition_sched_domains(1, NULL, NULL);
6397 if (--num_cpus_frozen)
6398 return;
6399 /*
6400 * This is the last CPU online operation. So fall through and
6401 * restore the original sched domains by considering the
6402 * cpuset configurations.
6403 */
6404 cpuset_force_rebuild();
6405 }
6406 cpuset_update_active_cpus();
6407 }
6408
6409 static int cpuset_cpu_inactive(unsigned int cpu)
6410 {
6411 if (!cpuhp_tasks_frozen) {
6412 if (dl_cpu_busy(cpu))
6413 return -EBUSY;
6414 cpuset_update_active_cpus();
6415 } else {
6416 num_cpus_frozen++;
6417 partition_sched_domains(1, NULL, NULL);
6418 }
6419 return 0;
6420 }
6421
6422 int sched_cpu_activate(unsigned int cpu)
6423 {
6424 struct rq *rq = cpu_rq(cpu);
6425 struct rq_flags rf;
6426
6427 #ifdef CONFIG_SCHED_SMT
6428 /*
6429 * When going up, increment the number of cores with SMT present.
6430 */
6431 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6432 static_branch_inc_cpuslocked(&sched_smt_present);
6433 #endif
6434 set_cpu_active(cpu, true);
6435
6436 if (sched_smp_initialized) {
6437 sched_domains_numa_masks_set(cpu);
6438 cpuset_cpu_active();
6439 }
6440
6441 /*
6442 * Put the rq online, if not already. This happens:
6443 *
6444 * 1) In the early boot process, because we build the real domains
6445 * after all CPUs have been brought up.
6446 *
6447 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6448 * domains.
6449 */
6450 rq_lock_irqsave(rq, &rf);
6451 if (rq->rd) {
6452 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6453 set_rq_online(rq);
6454 }
6455 rq_unlock_irqrestore(rq, &rf);
6456
6457 return 0;
6458 }
6459
6460 int sched_cpu_deactivate(unsigned int cpu)
6461 {
6462 int ret;
6463
6464 set_cpu_active(cpu, false);
6465 /*
6466 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6467 * users of this state to go away such that all new such users will
6468 * observe it.
6469 *
6470 * Do sync before park smpboot threads to take care the rcu boost case.
6471 */
6472 synchronize_rcu();
6473
6474 #ifdef CONFIG_SCHED_SMT
6475 /*
6476 * When going down, decrement the number of cores with SMT present.
6477 */
6478 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6479 static_branch_dec_cpuslocked(&sched_smt_present);
6480 #endif
6481
6482 if (!sched_smp_initialized)
6483 return 0;
6484
6485 ret = cpuset_cpu_inactive(cpu);
6486 if (ret) {
6487 set_cpu_active(cpu, true);
6488 return ret;
6489 }
6490 sched_domains_numa_masks_clear(cpu);
6491 return 0;
6492 }
6493
6494 static void sched_rq_cpu_starting(unsigned int cpu)
6495 {
6496 struct rq *rq = cpu_rq(cpu);
6497
6498 rq->calc_load_update = calc_load_update;
6499 update_max_interval();
6500 }
6501
6502 int sched_cpu_starting(unsigned int cpu)
6503 {
6504 sched_rq_cpu_starting(cpu);
6505 sched_tick_start(cpu);
6506 return 0;
6507 }
6508
6509 #ifdef CONFIG_HOTPLUG_CPU
6510 int sched_cpu_dying(unsigned int cpu)
6511 {
6512 struct rq *rq = cpu_rq(cpu);
6513 struct rq_flags rf;
6514
6515 /* Handle pending wakeups and then migrate everything off */
6516 sched_ttwu_pending();
6517 sched_tick_stop(cpu);
6518
6519 rq_lock_irqsave(rq, &rf);
6520 if (rq->rd) {
6521 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6522 set_rq_offline(rq);
6523 }
6524 migrate_tasks(rq, &rf);
6525 BUG_ON(rq->nr_running != 1);
6526 rq_unlock_irqrestore(rq, &rf);
6527
6528 calc_load_migrate(rq);
6529 update_max_interval();
6530 nohz_balance_exit_idle(rq);
6531 hrtick_clear(rq);
6532 return 0;
6533 }
6534 #endif
6535
6536 void __init sched_init_smp(void)
6537 {
6538 sched_init_numa();
6539
6540 /*
6541 * There's no userspace yet to cause hotplug operations; hence all the
6542 * CPU masks are stable and all blatant races in the below code cannot
6543 * happen.
6544 */
6545 mutex_lock(&sched_domains_mutex);
6546 sched_init_domains(cpu_active_mask);
6547 mutex_unlock(&sched_domains_mutex);
6548
6549 /* Move init over to a non-isolated CPU */
6550 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6551 BUG();
6552 sched_init_granularity();
6553
6554 init_sched_rt_class();
6555 init_sched_dl_class();
6556
6557 sched_smp_initialized = true;
6558 }
6559
6560 static int __init migration_init(void)
6561 {
6562 sched_cpu_starting(smp_processor_id());
6563 return 0;
6564 }
6565 early_initcall(migration_init);
6566
6567 #else
6568 void __init sched_init_smp(void)
6569 {
6570 sched_init_granularity();
6571 }
6572 #endif /* CONFIG_SMP */
6573
6574 int in_sched_functions(unsigned long addr)
6575 {
6576 return in_lock_functions(addr) ||
6577 (addr >= (unsigned long)__sched_text_start
6578 && addr < (unsigned long)__sched_text_end);
6579 }
6580
6581 #ifdef CONFIG_CGROUP_SCHED
6582 /*
6583 * Default task group.
6584 * Every task in system belongs to this group at bootup.
6585 */
6586 struct task_group root_task_group;
6587 LIST_HEAD(task_groups);
6588
6589 /* Cacheline aligned slab cache for task_group */
6590 static struct kmem_cache *task_group_cache __read_mostly;
6591 #endif
6592
6593 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6594 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6595
6596 void __init sched_init(void)
6597 {
6598 unsigned long ptr = 0;
6599 int i;
6600
6601 wait_bit_init();
6602
6603 #ifdef CONFIG_FAIR_GROUP_SCHED
6604 ptr += 2 * nr_cpu_ids * sizeof(void **);
6605 #endif
6606 #ifdef CONFIG_RT_GROUP_SCHED
6607 ptr += 2 * nr_cpu_ids * sizeof(void **);
6608 #endif
6609 if (ptr) {
6610 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
6611
6612 #ifdef CONFIG_FAIR_GROUP_SCHED
6613 root_task_group.se = (struct sched_entity **)ptr;
6614 ptr += nr_cpu_ids * sizeof(void **);
6615
6616 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6617 ptr += nr_cpu_ids * sizeof(void **);
6618
6619 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6620 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6621 #endif /* CONFIG_FAIR_GROUP_SCHED */
6622 #ifdef CONFIG_RT_GROUP_SCHED
6623 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6624 ptr += nr_cpu_ids * sizeof(void **);
6625
6626 root_task_group.rt_rq = (struct rt_rq **)ptr;
6627 ptr += nr_cpu_ids * sizeof(void **);
6628
6629 #endif /* CONFIG_RT_GROUP_SCHED */
6630 }
6631 #ifdef CONFIG_CPUMASK_OFFSTACK
6632 for_each_possible_cpu(i) {
6633 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6634 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6635 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6636 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6637 }
6638 #endif /* CONFIG_CPUMASK_OFFSTACK */
6639
6640 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6641 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6642
6643 #ifdef CONFIG_SMP
6644 init_defrootdomain();
6645 #endif
6646
6647 #ifdef CONFIG_RT_GROUP_SCHED
6648 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6649 global_rt_period(), global_rt_runtime());
6650 #endif /* CONFIG_RT_GROUP_SCHED */
6651
6652 #ifdef CONFIG_CGROUP_SCHED
6653 task_group_cache = KMEM_CACHE(task_group, 0);
6654
6655 list_add(&root_task_group.list, &task_groups);
6656 INIT_LIST_HEAD(&root_task_group.children);
6657 INIT_LIST_HEAD(&root_task_group.siblings);
6658 autogroup_init(&init_task);
6659 #endif /* CONFIG_CGROUP_SCHED */
6660
6661 for_each_possible_cpu(i) {
6662 struct rq *rq;
6663
6664 rq = cpu_rq(i);
6665 raw_spin_lock_init(&rq->lock);
6666 rq->nr_running = 0;
6667 rq->calc_load_active = 0;
6668 rq->calc_load_update = jiffies + LOAD_FREQ;
6669 init_cfs_rq(&rq->cfs);
6670 init_rt_rq(&rq->rt);
6671 init_dl_rq(&rq->dl);
6672 #ifdef CONFIG_FAIR_GROUP_SCHED
6673 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6674 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6675 /*
6676 * How much CPU bandwidth does root_task_group get?
6677 *
6678 * In case of task-groups formed thr' the cgroup filesystem, it
6679 * gets 100% of the CPU resources in the system. This overall
6680 * system CPU resource is divided among the tasks of
6681 * root_task_group and its child task-groups in a fair manner,
6682 * based on each entity's (task or task-group's) weight
6683 * (se->load.weight).
6684 *
6685 * In other words, if root_task_group has 10 tasks of weight
6686 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6687 * then A0's share of the CPU resource is:
6688 *
6689 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6690 *
6691 * We achieve this by letting root_task_group's tasks sit
6692 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6693 */
6694 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6695 #endif /* CONFIG_FAIR_GROUP_SCHED */
6696
6697 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6698 #ifdef CONFIG_RT_GROUP_SCHED
6699 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6700 #endif
6701 #ifdef CONFIG_SMP
6702 rq->sd = NULL;
6703 rq->rd = NULL;
6704 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6705 rq->balance_callback = NULL;
6706 rq->active_balance = 0;
6707 rq->next_balance = jiffies;
6708 rq->push_cpu = 0;
6709 rq->cpu = i;
6710 rq->online = 0;
6711 rq->idle_stamp = 0;
6712 rq->avg_idle = 2*sysctl_sched_migration_cost;
6713 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6714
6715 rq_csd_init(rq, &rq->wake_csd, wake_csd_func);
6716
6717 INIT_LIST_HEAD(&rq->cfs_tasks);
6718
6719 rq_attach_root(rq, &def_root_domain);
6720 #ifdef CONFIG_NO_HZ_COMMON
6721 rq->last_blocked_load_update_tick = jiffies;
6722 atomic_set(&rq->nohz_flags, 0);
6723
6724 rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func);
6725 #endif
6726 #endif /* CONFIG_SMP */
6727 hrtick_rq_init(rq);
6728 atomic_set(&rq->nr_iowait, 0);
6729 }
6730
6731 set_load_weight(&init_task, false);
6732
6733 /*
6734 * The boot idle thread does lazy MMU switching as well:
6735 */
6736 mmgrab(&init_mm);
6737 enter_lazy_tlb(&init_mm, current);
6738
6739 /*
6740 * Make us the idle thread. Technically, schedule() should not be
6741 * called from this thread, however somewhere below it might be,
6742 * but because we are the idle thread, we just pick up running again
6743 * when this runqueue becomes "idle".
6744 */
6745 init_idle(current, smp_processor_id());
6746
6747 calc_load_update = jiffies + LOAD_FREQ;
6748
6749 #ifdef CONFIG_SMP
6750 idle_thread_set_boot_cpu();
6751 #endif
6752 init_sched_fair_class();
6753
6754 init_schedstats();
6755
6756 psi_init();
6757
6758 init_uclamp();
6759
6760 scheduler_running = 1;
6761 }
6762
6763 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6764 static inline int preempt_count_equals(int preempt_offset)
6765 {
6766 int nested = preempt_count() + rcu_preempt_depth();
6767
6768 return (nested == preempt_offset);
6769 }
6770
6771 void __might_sleep(const char *file, int line, int preempt_offset)
6772 {
6773 /*
6774 * Blocking primitives will set (and therefore destroy) current->state,
6775 * since we will exit with TASK_RUNNING make sure we enter with it,
6776 * otherwise we will destroy state.
6777 */
6778 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6779 "do not call blocking ops when !TASK_RUNNING; "
6780 "state=%lx set at [<%p>] %pS\n",
6781 current->state,
6782 (void *)current->task_state_change,
6783 (void *)current->task_state_change);
6784
6785 ___might_sleep(file, line, preempt_offset);
6786 }
6787 EXPORT_SYMBOL(__might_sleep);
6788
6789 void ___might_sleep(const char *file, int line, int preempt_offset)
6790 {
6791 /* Ratelimiting timestamp: */
6792 static unsigned long prev_jiffy;
6793
6794 unsigned long preempt_disable_ip;
6795
6796 /* WARN_ON_ONCE() by default, no rate limit required: */
6797 rcu_sleep_check();
6798
6799 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6800 !is_idle_task(current) && !current->non_block_count) ||
6801 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6802 oops_in_progress)
6803 return;
6804
6805 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6806 return;
6807 prev_jiffy = jiffies;
6808
6809 /* Save this before calling printk(), since that will clobber it: */
6810 preempt_disable_ip = get_preempt_disable_ip(current);
6811
6812 printk(KERN_ERR
6813 "BUG: sleeping function called from invalid context at %s:%d\n",
6814 file, line);
6815 printk(KERN_ERR
6816 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6817 in_atomic(), irqs_disabled(), current->non_block_count,
6818 current->pid, current->comm);
6819
6820 if (task_stack_end_corrupted(current))
6821 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6822
6823 debug_show_held_locks(current);
6824 if (irqs_disabled())
6825 print_irqtrace_events(current);
6826 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6827 && !preempt_count_equals(preempt_offset)) {
6828 pr_err("Preemption disabled at:");
6829 print_ip_sym(preempt_disable_ip);
6830 pr_cont("\n");
6831 }
6832 dump_stack();
6833 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6834 }
6835 EXPORT_SYMBOL(___might_sleep);
6836
6837 void __cant_sleep(const char *file, int line, int preempt_offset)
6838 {
6839 static unsigned long prev_jiffy;
6840
6841 if (irqs_disabled())
6842 return;
6843
6844 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6845 return;
6846
6847 if (preempt_count() > preempt_offset)
6848 return;
6849
6850 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6851 return;
6852 prev_jiffy = jiffies;
6853
6854 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6855 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6856 in_atomic(), irqs_disabled(),
6857 current->pid, current->comm);
6858
6859 debug_show_held_locks(current);
6860 dump_stack();
6861 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6862 }
6863 EXPORT_SYMBOL_GPL(__cant_sleep);
6864 #endif
6865
6866 #ifdef CONFIG_MAGIC_SYSRQ
6867 void normalize_rt_tasks(void)
6868 {
6869 struct task_struct *g, *p;
6870 struct sched_attr attr = {
6871 .sched_policy = SCHED_NORMAL,
6872 };
6873
6874 read_lock(&tasklist_lock);
6875 for_each_process_thread(g, p) {
6876 /*
6877 * Only normalize user tasks:
6878 */
6879 if (p->flags & PF_KTHREAD)
6880 continue;
6881
6882 p->se.exec_start = 0;
6883 schedstat_set(p->se.statistics.wait_start, 0);
6884 schedstat_set(p->se.statistics.sleep_start, 0);
6885 schedstat_set(p->se.statistics.block_start, 0);
6886
6887 if (!dl_task(p) && !rt_task(p)) {
6888 /*
6889 * Renice negative nice level userspace
6890 * tasks back to 0:
6891 */
6892 if (task_nice(p) < 0)
6893 set_user_nice(p, 0);
6894 continue;
6895 }
6896
6897 __sched_setscheduler(p, &attr, false, false);
6898 }
6899 read_unlock(&tasklist_lock);
6900 }
6901
6902 #endif /* CONFIG_MAGIC_SYSRQ */
6903
6904 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6905 /*
6906 * These functions are only useful for the IA64 MCA handling, or kdb.
6907 *
6908 * They can only be called when the whole system has been
6909 * stopped - every CPU needs to be quiescent, and no scheduling
6910 * activity can take place. Using them for anything else would
6911 * be a serious bug, and as a result, they aren't even visible
6912 * under any other configuration.
6913 */
6914
6915 /**
6916 * curr_task - return the current task for a given CPU.
6917 * @cpu: the processor in question.
6918 *
6919 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6920 *
6921 * Return: The current task for @cpu.
6922 */
6923 struct task_struct *curr_task(int cpu)
6924 {
6925 return cpu_curr(cpu);
6926 }
6927
6928 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6929
6930 #ifdef CONFIG_IA64
6931 /**
6932 * ia64_set_curr_task - set the current task for a given CPU.
6933 * @cpu: the processor in question.
6934 * @p: the task pointer to set.
6935 *
6936 * Description: This function must only be used when non-maskable interrupts
6937 * are serviced on a separate stack. It allows the architecture to switch the
6938 * notion of the current task on a CPU in a non-blocking manner. This function
6939 * must be called with all CPU's synchronized, and interrupts disabled, the
6940 * and caller must save the original value of the current task (see
6941 * curr_task() above) and restore that value before reenabling interrupts and
6942 * re-starting the system.
6943 *
6944 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6945 */
6946 void ia64_set_curr_task(int cpu, struct task_struct *p)
6947 {
6948 cpu_curr(cpu) = p;
6949 }
6950
6951 #endif
6952
6953 #ifdef CONFIG_CGROUP_SCHED
6954 /* task_group_lock serializes the addition/removal of task groups */
6955 static DEFINE_SPINLOCK(task_group_lock);
6956
6957 static inline void alloc_uclamp_sched_group(struct task_group *tg,
6958 struct task_group *parent)
6959 {
6960 #ifdef CONFIG_UCLAMP_TASK_GROUP
6961 enum uclamp_id clamp_id;
6962
6963 for_each_clamp_id(clamp_id) {
6964 uclamp_se_set(&tg->uclamp_req[clamp_id],
6965 uclamp_none(clamp_id), false);
6966 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
6967 }
6968 #endif
6969 }
6970
6971 static void sched_free_group(struct task_group *tg)
6972 {
6973 free_fair_sched_group(tg);
6974 free_rt_sched_group(tg);
6975 autogroup_free(tg);
6976 kmem_cache_free(task_group_cache, tg);
6977 }
6978
6979 /* allocate runqueue etc for a new task group */
6980 struct task_group *sched_create_group(struct task_group *parent)
6981 {
6982 struct task_group *tg;
6983
6984 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6985 if (!tg)
6986 return ERR_PTR(-ENOMEM);
6987
6988 if (!alloc_fair_sched_group(tg, parent))
6989 goto err;
6990
6991 if (!alloc_rt_sched_group(tg, parent))
6992 goto err;
6993
6994 alloc_uclamp_sched_group(tg, parent);
6995
6996 return tg;
6997
6998 err:
6999 sched_free_group(tg);
7000 return ERR_PTR(-ENOMEM);
7001 }
7002
7003 void sched_online_group(struct task_group *tg, struct task_group *parent)
7004 {
7005 unsigned long flags;
7006
7007 spin_lock_irqsave(&task_group_lock, flags);
7008 list_add_rcu(&tg->list, &task_groups);
7009
7010 /* Root should already exist: */
7011 WARN_ON(!parent);
7012
7013 tg->parent = parent;
7014 INIT_LIST_HEAD(&tg->children);
7015 list_add_rcu(&tg->siblings, &parent->children);
7016 spin_unlock_irqrestore(&task_group_lock, flags);
7017
7018 online_fair_sched_group(tg);
7019 }
7020
7021 /* rcu callback to free various structures associated with a task group */
7022 static void sched_free_group_rcu(struct rcu_head *rhp)
7023 {
7024 /* Now it should be safe to free those cfs_rqs: */
7025 sched_free_group(container_of(rhp, struct task_group, rcu));
7026 }
7027
7028 void sched_destroy_group(struct task_group *tg)
7029 {
7030 /* Wait for possible concurrent references to cfs_rqs complete: */
7031 call_rcu(&tg->rcu, sched_free_group_rcu);
7032 }
7033
7034 void sched_offline_group(struct task_group *tg)
7035 {
7036 unsigned long flags;
7037
7038 /* End participation in shares distribution: */
7039 unregister_fair_sched_group(tg);
7040
7041 spin_lock_irqsave(&task_group_lock, flags);
7042 list_del_rcu(&tg->list);
7043 list_del_rcu(&tg->siblings);
7044 spin_unlock_irqrestore(&task_group_lock, flags);
7045 }
7046
7047 static void sched_change_group(struct task_struct *tsk, int type)
7048 {
7049 struct task_group *tg;
7050
7051 /*
7052 * All callers are synchronized by task_rq_lock(); we do not use RCU
7053 * which is pointless here. Thus, we pass "true" to task_css_check()
7054 * to prevent lockdep warnings.
7055 */
7056 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7057 struct task_group, css);
7058 tg = autogroup_task_group(tsk, tg);
7059 tsk->sched_task_group = tg;
7060
7061 #ifdef CONFIG_FAIR_GROUP_SCHED
7062 if (tsk->sched_class->task_change_group)
7063 tsk->sched_class->task_change_group(tsk, type);
7064 else
7065 #endif
7066 set_task_rq(tsk, task_cpu(tsk));
7067 }
7068
7069 /*
7070 * Change task's runqueue when it moves between groups.
7071 *
7072 * The caller of this function should have put the task in its new group by
7073 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7074 * its new group.
7075 */
7076 void sched_move_task(struct task_struct *tsk)
7077 {
7078 int queued, running, queue_flags =
7079 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7080 struct rq_flags rf;
7081 struct rq *rq;
7082
7083 rq = task_rq_lock(tsk, &rf);
7084 update_rq_clock(rq);
7085
7086 running = task_current(rq, tsk);
7087 queued = task_on_rq_queued(tsk);
7088
7089 if (queued)
7090 dequeue_task(rq, tsk, queue_flags);
7091 if (running)
7092 put_prev_task(rq, tsk);
7093
7094 sched_change_group(tsk, TASK_MOVE_GROUP);
7095
7096 if (queued)
7097 enqueue_task(rq, tsk, queue_flags);
7098 if (running) {
7099 set_next_task(rq, tsk);
7100 /*
7101 * After changing group, the running task may have joined a
7102 * throttled one but it's still the running task. Trigger a
7103 * resched to make sure that task can still run.
7104 */
7105 resched_curr(rq);
7106 }
7107
7108 task_rq_unlock(rq, tsk, &rf);
7109 }
7110
7111 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7112 {
7113 return css ? container_of(css, struct task_group, css) : NULL;
7114 }
7115
7116 static struct cgroup_subsys_state *
7117 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7118 {
7119 struct task_group *parent = css_tg(parent_css);
7120 struct task_group *tg;
7121
7122 if (!parent) {
7123 /* This is early initialization for the top cgroup */
7124 return &root_task_group.css;
7125 }
7126
7127 tg = sched_create_group(parent);
7128 if (IS_ERR(tg))
7129 return ERR_PTR(-ENOMEM);
7130
7131 return &tg->css;
7132 }
7133
7134 /* Expose task group only after completing cgroup initialization */
7135 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7136 {
7137 struct task_group *tg = css_tg(css);
7138 struct task_group *parent = css_tg(css->parent);
7139
7140 if (parent)
7141 sched_online_group(tg, parent);
7142
7143 #ifdef CONFIG_UCLAMP_TASK_GROUP
7144 /* Propagate the effective uclamp value for the new group */
7145 cpu_util_update_eff(css);
7146 #endif
7147
7148 return 0;
7149 }
7150
7151 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7152 {
7153 struct task_group *tg = css_tg(css);
7154
7155 sched_offline_group(tg);
7156 }
7157
7158 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7159 {
7160 struct task_group *tg = css_tg(css);
7161
7162 /*
7163 * Relies on the RCU grace period between css_released() and this.
7164 */
7165 sched_free_group(tg);
7166 }
7167
7168 /*
7169 * This is called before wake_up_new_task(), therefore we really only
7170 * have to set its group bits, all the other stuff does not apply.
7171 */
7172 static void cpu_cgroup_fork(struct task_struct *task)
7173 {
7174 struct rq_flags rf;
7175 struct rq *rq;
7176
7177 rq = task_rq_lock(task, &rf);
7178
7179 update_rq_clock(rq);
7180 sched_change_group(task, TASK_SET_GROUP);
7181
7182 task_rq_unlock(rq, task, &rf);
7183 }
7184
7185 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7186 {
7187 struct task_struct *task;
7188 struct cgroup_subsys_state *css;
7189 int ret = 0;
7190
7191 cgroup_taskset_for_each(task, css, tset) {
7192 #ifdef CONFIG_RT_GROUP_SCHED
7193 if (!sched_rt_can_attach(css_tg(css), task))
7194 return -EINVAL;
7195 #endif
7196 /*
7197 * Serialize against wake_up_new_task() such that if its
7198 * running, we're sure to observe its full state.
7199 */
7200 raw_spin_lock_irq(&task->pi_lock);
7201 /*
7202 * Avoid calling sched_move_task() before wake_up_new_task()
7203 * has happened. This would lead to problems with PELT, due to
7204 * move wanting to detach+attach while we're not attached yet.
7205 */
7206 if (task->state == TASK_NEW)
7207 ret = -EINVAL;
7208 raw_spin_unlock_irq(&task->pi_lock);
7209
7210 if (ret)
7211 break;
7212 }
7213 return ret;
7214 }
7215
7216 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7217 {
7218 struct task_struct *task;
7219 struct cgroup_subsys_state *css;
7220
7221 cgroup_taskset_for_each(task, css, tset)
7222 sched_move_task(task);
7223 }
7224
7225 #ifdef CONFIG_UCLAMP_TASK_GROUP
7226 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7227 {
7228 struct cgroup_subsys_state *top_css = css;
7229 struct uclamp_se *uc_parent = NULL;
7230 struct uclamp_se *uc_se = NULL;
7231 unsigned int eff[UCLAMP_CNT];
7232 enum uclamp_id clamp_id;
7233 unsigned int clamps;
7234
7235 css_for_each_descendant_pre(css, top_css) {
7236 uc_parent = css_tg(css)->parent
7237 ? css_tg(css)->parent->uclamp : NULL;
7238
7239 for_each_clamp_id(clamp_id) {
7240 /* Assume effective clamps matches requested clamps */
7241 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7242 /* Cap effective clamps with parent's effective clamps */
7243 if (uc_parent &&
7244 eff[clamp_id] > uc_parent[clamp_id].value) {
7245 eff[clamp_id] = uc_parent[clamp_id].value;
7246 }
7247 }
7248 /* Ensure protection is always capped by limit */
7249 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7250
7251 /* Propagate most restrictive effective clamps */
7252 clamps = 0x0;
7253 uc_se = css_tg(css)->uclamp;
7254 for_each_clamp_id(clamp_id) {
7255 if (eff[clamp_id] == uc_se[clamp_id].value)
7256 continue;
7257 uc_se[clamp_id].value = eff[clamp_id];
7258 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7259 clamps |= (0x1 << clamp_id);
7260 }
7261 if (!clamps) {
7262 css = css_rightmost_descendant(css);
7263 continue;
7264 }
7265
7266 /* Immediately update descendants RUNNABLE tasks */
7267 uclamp_update_active_tasks(css, clamps);
7268 }
7269 }
7270
7271 /*
7272 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7273 * C expression. Since there is no way to convert a macro argument (N) into a
7274 * character constant, use two levels of macros.
7275 */
7276 #define _POW10(exp) ((unsigned int)1e##exp)
7277 #define POW10(exp) _POW10(exp)
7278
7279 struct uclamp_request {
7280 #define UCLAMP_PERCENT_SHIFT 2
7281 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
7282 s64 percent;
7283 u64 util;
7284 int ret;
7285 };
7286
7287 static inline struct uclamp_request
7288 capacity_from_percent(char *buf)
7289 {
7290 struct uclamp_request req = {
7291 .percent = UCLAMP_PERCENT_SCALE,
7292 .util = SCHED_CAPACITY_SCALE,
7293 .ret = 0,
7294 };
7295
7296 buf = strim(buf);
7297 if (strcmp(buf, "max")) {
7298 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7299 &req.percent);
7300 if (req.ret)
7301 return req;
7302 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7303 req.ret = -ERANGE;
7304 return req;
7305 }
7306
7307 req.util = req.percent << SCHED_CAPACITY_SHIFT;
7308 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7309 }
7310
7311 return req;
7312 }
7313
7314 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7315 size_t nbytes, loff_t off,
7316 enum uclamp_id clamp_id)
7317 {
7318 struct uclamp_request req;
7319 struct task_group *tg;
7320
7321 req = capacity_from_percent(buf);
7322 if (req.ret)
7323 return req.ret;
7324
7325 mutex_lock(&uclamp_mutex);
7326 rcu_read_lock();
7327
7328 tg = css_tg(of_css(of));
7329 if (tg->uclamp_req[clamp_id].value != req.util)
7330 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7331
7332 /*
7333 * Because of not recoverable conversion rounding we keep track of the
7334 * exact requested value
7335 */
7336 tg->uclamp_pct[clamp_id] = req.percent;
7337
7338 /* Update effective clamps to track the most restrictive value */
7339 cpu_util_update_eff(of_css(of));
7340
7341 rcu_read_unlock();
7342 mutex_unlock(&uclamp_mutex);
7343
7344 return nbytes;
7345 }
7346
7347 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7348 char *buf, size_t nbytes,
7349 loff_t off)
7350 {
7351 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7352 }
7353
7354 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7355 char *buf, size_t nbytes,
7356 loff_t off)
7357 {
7358 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7359 }
7360
7361 static inline void cpu_uclamp_print(struct seq_file *sf,
7362 enum uclamp_id clamp_id)
7363 {
7364 struct task_group *tg;
7365 u64 util_clamp;
7366 u64 percent;
7367 u32 rem;
7368
7369 rcu_read_lock();
7370 tg = css_tg(seq_css(sf));
7371 util_clamp = tg->uclamp_req[clamp_id].value;
7372 rcu_read_unlock();
7373
7374 if (util_clamp == SCHED_CAPACITY_SCALE) {
7375 seq_puts(sf, "max\n");
7376 return;
7377 }
7378
7379 percent = tg->uclamp_pct[clamp_id];
7380 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7381 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7382 }
7383
7384 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7385 {
7386 cpu_uclamp_print(sf, UCLAMP_MIN);
7387 return 0;
7388 }
7389
7390 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7391 {
7392 cpu_uclamp_print(sf, UCLAMP_MAX);
7393 return 0;
7394 }
7395 #endif /* CONFIG_UCLAMP_TASK_GROUP */
7396
7397 #ifdef CONFIG_FAIR_GROUP_SCHED
7398 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7399 struct cftype *cftype, u64 shareval)
7400 {
7401 if (shareval > scale_load_down(ULONG_MAX))
7402 shareval = MAX_SHARES;
7403 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7404 }
7405
7406 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7407 struct cftype *cft)
7408 {
7409 struct task_group *tg = css_tg(css);
7410
7411 return (u64) scale_load_down(tg->shares);
7412 }
7413
7414 #ifdef CONFIG_CFS_BANDWIDTH
7415 static DEFINE_MUTEX(cfs_constraints_mutex);
7416
7417 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7418 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7419 /* More than 203 days if BW_SHIFT equals 20. */
7420 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
7421
7422 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7423
7424 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7425 {
7426 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7427 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7428
7429 if (tg == &root_task_group)
7430 return -EINVAL;
7431
7432 /*
7433 * Ensure we have at some amount of bandwidth every period. This is
7434 * to prevent reaching a state of large arrears when throttled via
7435 * entity_tick() resulting in prolonged exit starvation.
7436 */
7437 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7438 return -EINVAL;
7439
7440 /*
7441 * Likewise, bound things on the otherside by preventing insane quota
7442 * periods. This also allows us to normalize in computing quota
7443 * feasibility.
7444 */
7445 if (period > max_cfs_quota_period)
7446 return -EINVAL;
7447
7448 /*
7449 * Bound quota to defend quota against overflow during bandwidth shift.
7450 */
7451 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
7452 return -EINVAL;
7453
7454 /*
7455 * Prevent race between setting of cfs_rq->runtime_enabled and
7456 * unthrottle_offline_cfs_rqs().
7457 */
7458 get_online_cpus();
7459 mutex_lock(&cfs_constraints_mutex);
7460 ret = __cfs_schedulable(tg, period, quota);
7461 if (ret)
7462 goto out_unlock;
7463
7464 runtime_enabled = quota != RUNTIME_INF;
7465 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7466 /*
7467 * If we need to toggle cfs_bandwidth_used, off->on must occur
7468 * before making related changes, and on->off must occur afterwards
7469 */
7470 if (runtime_enabled && !runtime_was_enabled)
7471 cfs_bandwidth_usage_inc();
7472 raw_spin_lock_irq(&cfs_b->lock);
7473 cfs_b->period = ns_to_ktime(period);
7474 cfs_b->quota = quota;
7475
7476 __refill_cfs_bandwidth_runtime(cfs_b);
7477
7478 /* Restart the period timer (if active) to handle new period expiry: */
7479 if (runtime_enabled)
7480 start_cfs_bandwidth(cfs_b);
7481
7482 raw_spin_unlock_irq(&cfs_b->lock);
7483
7484 for_each_online_cpu(i) {
7485 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7486 struct rq *rq = cfs_rq->rq;
7487 struct rq_flags rf;
7488
7489 rq_lock_irq(rq, &rf);
7490 cfs_rq->runtime_enabled = runtime_enabled;
7491 cfs_rq->runtime_remaining = 0;
7492
7493 if (cfs_rq->throttled)
7494 unthrottle_cfs_rq(cfs_rq);
7495 rq_unlock_irq(rq, &rf);
7496 }
7497 if (runtime_was_enabled && !runtime_enabled)
7498 cfs_bandwidth_usage_dec();
7499 out_unlock:
7500 mutex_unlock(&cfs_constraints_mutex);
7501 put_online_cpus();
7502
7503 return ret;
7504 }
7505
7506 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7507 {
7508 u64 quota, period;
7509
7510 period = ktime_to_ns(tg->cfs_bandwidth.period);
7511 if (cfs_quota_us < 0)
7512 quota = RUNTIME_INF;
7513 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7514 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7515 else
7516 return -EINVAL;
7517
7518 return tg_set_cfs_bandwidth(tg, period, quota);
7519 }
7520
7521 static long tg_get_cfs_quota(struct task_group *tg)
7522 {
7523 u64 quota_us;
7524
7525 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7526 return -1;
7527
7528 quota_us = tg->cfs_bandwidth.quota;
7529 do_div(quota_us, NSEC_PER_USEC);
7530
7531 return quota_us;
7532 }
7533
7534 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7535 {
7536 u64 quota, period;
7537
7538 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7539 return -EINVAL;
7540
7541 period = (u64)cfs_period_us * NSEC_PER_USEC;
7542 quota = tg->cfs_bandwidth.quota;
7543
7544 return tg_set_cfs_bandwidth(tg, period, quota);
7545 }
7546
7547 static long tg_get_cfs_period(struct task_group *tg)
7548 {
7549 u64 cfs_period_us;
7550
7551 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7552 do_div(cfs_period_us, NSEC_PER_USEC);
7553
7554 return cfs_period_us;
7555 }
7556
7557 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7558 struct cftype *cft)
7559 {
7560 return tg_get_cfs_quota(css_tg(css));
7561 }
7562
7563 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7564 struct cftype *cftype, s64 cfs_quota_us)
7565 {
7566 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7567 }
7568
7569 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7570 struct cftype *cft)
7571 {
7572 return tg_get_cfs_period(css_tg(css));
7573 }
7574
7575 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7576 struct cftype *cftype, u64 cfs_period_us)
7577 {
7578 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7579 }
7580
7581 struct cfs_schedulable_data {
7582 struct task_group *tg;
7583 u64 period, quota;
7584 };
7585
7586 /*
7587 * normalize group quota/period to be quota/max_period
7588 * note: units are usecs
7589 */
7590 static u64 normalize_cfs_quota(struct task_group *tg,
7591 struct cfs_schedulable_data *d)
7592 {
7593 u64 quota, period;
7594
7595 if (tg == d->tg) {
7596 period = d->period;
7597 quota = d->quota;
7598 } else {
7599 period = tg_get_cfs_period(tg);
7600 quota = tg_get_cfs_quota(tg);
7601 }
7602
7603 /* note: these should typically be equivalent */
7604 if (quota == RUNTIME_INF || quota == -1)
7605 return RUNTIME_INF;
7606
7607 return to_ratio(period, quota);
7608 }
7609
7610 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7611 {
7612 struct cfs_schedulable_data *d = data;
7613 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7614 s64 quota = 0, parent_quota = -1;
7615
7616 if (!tg->parent) {
7617 quota = RUNTIME_INF;
7618 } else {
7619 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7620
7621 quota = normalize_cfs_quota(tg, d);
7622 parent_quota = parent_b->hierarchical_quota;
7623
7624 /*
7625 * Ensure max(child_quota) <= parent_quota. On cgroup2,
7626 * always take the min. On cgroup1, only inherit when no
7627 * limit is set:
7628 */
7629 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7630 quota = min(quota, parent_quota);
7631 } else {
7632 if (quota == RUNTIME_INF)
7633 quota = parent_quota;
7634 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7635 return -EINVAL;
7636 }
7637 }
7638 cfs_b->hierarchical_quota = quota;
7639
7640 return 0;
7641 }
7642
7643 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7644 {
7645 int ret;
7646 struct cfs_schedulable_data data = {
7647 .tg = tg,
7648 .period = period,
7649 .quota = quota,
7650 };
7651
7652 if (quota != RUNTIME_INF) {
7653 do_div(data.period, NSEC_PER_USEC);
7654 do_div(data.quota, NSEC_PER_USEC);
7655 }
7656
7657 rcu_read_lock();
7658 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7659 rcu_read_unlock();
7660
7661 return ret;
7662 }
7663
7664 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7665 {
7666 struct task_group *tg = css_tg(seq_css(sf));
7667 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7668
7669 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7670 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7671 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7672
7673 if (schedstat_enabled() && tg != &root_task_group) {
7674 u64 ws = 0;
7675 int i;
7676
7677 for_each_possible_cpu(i)
7678 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7679
7680 seq_printf(sf, "wait_sum %llu\n", ws);
7681 }
7682
7683 return 0;
7684 }
7685 #endif /* CONFIG_CFS_BANDWIDTH */
7686 #endif /* CONFIG_FAIR_GROUP_SCHED */
7687
7688 #ifdef CONFIG_RT_GROUP_SCHED
7689 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7690 struct cftype *cft, s64 val)
7691 {
7692 return sched_group_set_rt_runtime(css_tg(css), val);
7693 }
7694
7695 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7696 struct cftype *cft)
7697 {
7698 return sched_group_rt_runtime(css_tg(css));
7699 }
7700
7701 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7702 struct cftype *cftype, u64 rt_period_us)
7703 {
7704 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7705 }
7706
7707 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7708 struct cftype *cft)
7709 {
7710 return sched_group_rt_period(css_tg(css));
7711 }
7712 #endif /* CONFIG_RT_GROUP_SCHED */
7713
7714 static struct cftype cpu_legacy_files[] = {
7715 #ifdef CONFIG_FAIR_GROUP_SCHED
7716 {
7717 .name = "shares",
7718 .read_u64 = cpu_shares_read_u64,
7719 .write_u64 = cpu_shares_write_u64,
7720 },
7721 #endif
7722 #ifdef CONFIG_CFS_BANDWIDTH
7723 {
7724 .name = "cfs_quota_us",
7725 .read_s64 = cpu_cfs_quota_read_s64,
7726 .write_s64 = cpu_cfs_quota_write_s64,
7727 },
7728 {
7729 .name = "cfs_period_us",
7730 .read_u64 = cpu_cfs_period_read_u64,
7731 .write_u64 = cpu_cfs_period_write_u64,
7732 },
7733 {
7734 .name = "stat",
7735 .seq_show = cpu_cfs_stat_show,
7736 },
7737 #endif
7738 #ifdef CONFIG_RT_GROUP_SCHED
7739 {
7740 .name = "rt_runtime_us",
7741 .read_s64 = cpu_rt_runtime_read,
7742 .write_s64 = cpu_rt_runtime_write,
7743 },
7744 {
7745 .name = "rt_period_us",
7746 .read_u64 = cpu_rt_period_read_uint,
7747 .write_u64 = cpu_rt_period_write_uint,
7748 },
7749 #endif
7750 #ifdef CONFIG_UCLAMP_TASK_GROUP
7751 {
7752 .name = "uclamp.min",
7753 .flags = CFTYPE_NOT_ON_ROOT,
7754 .seq_show = cpu_uclamp_min_show,
7755 .write = cpu_uclamp_min_write,
7756 },
7757 {
7758 .name = "uclamp.max",
7759 .flags = CFTYPE_NOT_ON_ROOT,
7760 .seq_show = cpu_uclamp_max_show,
7761 .write = cpu_uclamp_max_write,
7762 },
7763 #endif
7764 { } /* Terminate */
7765 };
7766
7767 static int cpu_extra_stat_show(struct seq_file *sf,
7768 struct cgroup_subsys_state *css)
7769 {
7770 #ifdef CONFIG_CFS_BANDWIDTH
7771 {
7772 struct task_group *tg = css_tg(css);
7773 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7774 u64 throttled_usec;
7775
7776 throttled_usec = cfs_b->throttled_time;
7777 do_div(throttled_usec, NSEC_PER_USEC);
7778
7779 seq_printf(sf, "nr_periods %d\n"
7780 "nr_throttled %d\n"
7781 "throttled_usec %llu\n",
7782 cfs_b->nr_periods, cfs_b->nr_throttled,
7783 throttled_usec);
7784 }
7785 #endif
7786 return 0;
7787 }
7788
7789 #ifdef CONFIG_FAIR_GROUP_SCHED
7790 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7791 struct cftype *cft)
7792 {
7793 struct task_group *tg = css_tg(css);
7794 u64 weight = scale_load_down(tg->shares);
7795
7796 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7797 }
7798
7799 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7800 struct cftype *cft, u64 weight)
7801 {
7802 /*
7803 * cgroup weight knobs should use the common MIN, DFL and MAX
7804 * values which are 1, 100 and 10000 respectively. While it loses
7805 * a bit of range on both ends, it maps pretty well onto the shares
7806 * value used by scheduler and the round-trip conversions preserve
7807 * the original value over the entire range.
7808 */
7809 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7810 return -ERANGE;
7811
7812 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7813
7814 return sched_group_set_shares(css_tg(css), scale_load(weight));
7815 }
7816
7817 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7818 struct cftype *cft)
7819 {
7820 unsigned long weight = scale_load_down(css_tg(css)->shares);
7821 int last_delta = INT_MAX;
7822 int prio, delta;
7823
7824 /* find the closest nice value to the current weight */
7825 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7826 delta = abs(sched_prio_to_weight[prio] - weight);
7827 if (delta >= last_delta)
7828 break;
7829 last_delta = delta;
7830 }
7831
7832 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7833 }
7834
7835 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7836 struct cftype *cft, s64 nice)
7837 {
7838 unsigned long weight;
7839 int idx;
7840
7841 if (nice < MIN_NICE || nice > MAX_NICE)
7842 return -ERANGE;
7843
7844 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7845 idx = array_index_nospec(idx, 40);
7846 weight = sched_prio_to_weight[idx];
7847
7848 return sched_group_set_shares(css_tg(css), scale_load(weight));
7849 }
7850 #endif
7851
7852 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7853 long period, long quota)
7854 {
7855 if (quota < 0)
7856 seq_puts(sf, "max");
7857 else
7858 seq_printf(sf, "%ld", quota);
7859
7860 seq_printf(sf, " %ld\n", period);
7861 }
7862
7863 /* caller should put the current value in *@periodp before calling */
7864 static int __maybe_unused cpu_period_quota_parse(char *buf,
7865 u64 *periodp, u64 *quotap)
7866 {
7867 char tok[21]; /* U64_MAX */
7868
7869 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7870 return -EINVAL;
7871
7872 *periodp *= NSEC_PER_USEC;
7873
7874 if (sscanf(tok, "%llu", quotap))
7875 *quotap *= NSEC_PER_USEC;
7876 else if (!strcmp(tok, "max"))
7877 *quotap = RUNTIME_INF;
7878 else
7879 return -EINVAL;
7880
7881 return 0;
7882 }
7883
7884 #ifdef CONFIG_CFS_BANDWIDTH
7885 static int cpu_max_show(struct seq_file *sf, void *v)
7886 {
7887 struct task_group *tg = css_tg(seq_css(sf));
7888
7889 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7890 return 0;
7891 }
7892
7893 static ssize_t cpu_max_write(struct kernfs_open_file *of,
7894 char *buf, size_t nbytes, loff_t off)
7895 {
7896 struct task_group *tg = css_tg(of_css(of));
7897 u64 period = tg_get_cfs_period(tg);
7898 u64 quota;
7899 int ret;
7900
7901 ret = cpu_period_quota_parse(buf, &period, &quota);
7902 if (!ret)
7903 ret = tg_set_cfs_bandwidth(tg, period, quota);
7904 return ret ?: nbytes;
7905 }
7906 #endif
7907
7908 static struct cftype cpu_files[] = {
7909 #ifdef CONFIG_FAIR_GROUP_SCHED
7910 {
7911 .name = "weight",
7912 .flags = CFTYPE_NOT_ON_ROOT,
7913 .read_u64 = cpu_weight_read_u64,
7914 .write_u64 = cpu_weight_write_u64,
7915 },
7916 {
7917 .name = "weight.nice",
7918 .flags = CFTYPE_NOT_ON_ROOT,
7919 .read_s64 = cpu_weight_nice_read_s64,
7920 .write_s64 = cpu_weight_nice_write_s64,
7921 },
7922 #endif
7923 #ifdef CONFIG_CFS_BANDWIDTH
7924 {
7925 .name = "max",
7926 .flags = CFTYPE_NOT_ON_ROOT,
7927 .seq_show = cpu_max_show,
7928 .write = cpu_max_write,
7929 },
7930 #endif
7931 #ifdef CONFIG_UCLAMP_TASK_GROUP
7932 {
7933 .name = "uclamp.min",
7934 .flags = CFTYPE_NOT_ON_ROOT,
7935 .seq_show = cpu_uclamp_min_show,
7936 .write = cpu_uclamp_min_write,
7937 },
7938 {
7939 .name = "uclamp.max",
7940 .flags = CFTYPE_NOT_ON_ROOT,
7941 .seq_show = cpu_uclamp_max_show,
7942 .write = cpu_uclamp_max_write,
7943 },
7944 #endif
7945 { } /* terminate */
7946 };
7947
7948 struct cgroup_subsys cpu_cgrp_subsys = {
7949 .css_alloc = cpu_cgroup_css_alloc,
7950 .css_online = cpu_cgroup_css_online,
7951 .css_released = cpu_cgroup_css_released,
7952 .css_free = cpu_cgroup_css_free,
7953 .css_extra_stat_show = cpu_extra_stat_show,
7954 .fork = cpu_cgroup_fork,
7955 .can_attach = cpu_cgroup_can_attach,
7956 .attach = cpu_cgroup_attach,
7957 .legacy_cftypes = cpu_legacy_files,
7958 .dfl_cftypes = cpu_files,
7959 .early_init = true,
7960 .threaded = true,
7961 };
7962
7963 #endif /* CONFIG_CGROUP_SCHED */
7964
7965 void dump_cpu_task(int cpu)
7966 {
7967 pr_info("Task dump for CPU %d:\n", cpu);
7968 sched_show_task(cpu_curr(cpu));
7969 }
7970
7971 /*
7972 * Nice levels are multiplicative, with a gentle 10% change for every
7973 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7974 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7975 * that remained on nice 0.
7976 *
7977 * The "10% effect" is relative and cumulative: from _any_ nice level,
7978 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7979 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7980 * If a task goes up by ~10% and another task goes down by ~10% then
7981 * the relative distance between them is ~25%.)
7982 */
7983 const int sched_prio_to_weight[40] = {
7984 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7985 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7986 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7987 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7988 /* 0 */ 1024, 820, 655, 526, 423,
7989 /* 5 */ 335, 272, 215, 172, 137,
7990 /* 10 */ 110, 87, 70, 56, 45,
7991 /* 15 */ 36, 29, 23, 18, 15,
7992 };
7993
7994 /*
7995 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7996 *
7997 * In cases where the weight does not change often, we can use the
7998 * precalculated inverse to speed up arithmetics by turning divisions
7999 * into multiplications:
8000 */
8001 const u32 sched_prio_to_wmult[40] = {
8002 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8003 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8004 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8005 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8006 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8007 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8008 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8009 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8010 };
8011
8012 #undef CREATE_TRACE_POINTS