]> git.ipfire.org Git - people/arne_f/kernel.git/blob - kernel/sched/deadline.c
Merge branch 'linus' into sched/core, to pick up fixes
[people/arne_f/kernel.git] / kernel / sched / deadline.c
1 /*
2 * Deadline Scheduling Class (SCHED_DEADLINE)
3 *
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
5 *
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
11 *
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13 * Juri Lelli <juri.lelli@gmail.com>,
14 * Michael Trimarchi <michael@amarulasolutions.com>,
15 * Fabio Checconi <fchecconi@gmail.com>
16 */
17 #include "sched.h"
18
19 #include <linux/slab.h>
20 #include <uapi/linux/sched/types.h>
21
22 struct dl_bandwidth def_dl_bandwidth;
23
24 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
25 {
26 return container_of(dl_se, struct task_struct, dl);
27 }
28
29 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
30 {
31 return container_of(dl_rq, struct rq, dl);
32 }
33
34 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
35 {
36 struct task_struct *p = dl_task_of(dl_se);
37 struct rq *rq = task_rq(p);
38
39 return &rq->dl;
40 }
41
42 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
43 {
44 return !RB_EMPTY_NODE(&dl_se->rb_node);
45 }
46
47 #ifdef CONFIG_SMP
48 static inline struct dl_bw *dl_bw_of(int i)
49 {
50 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
51 "sched RCU must be held");
52 return &cpu_rq(i)->rd->dl_bw;
53 }
54
55 static inline int dl_bw_cpus(int i)
56 {
57 struct root_domain *rd = cpu_rq(i)->rd;
58 int cpus = 0;
59
60 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
61 "sched RCU must be held");
62 for_each_cpu_and(i, rd->span, cpu_active_mask)
63 cpus++;
64
65 return cpus;
66 }
67 #else
68 static inline struct dl_bw *dl_bw_of(int i)
69 {
70 return &cpu_rq(i)->dl.dl_bw;
71 }
72
73 static inline int dl_bw_cpus(int i)
74 {
75 return 1;
76 }
77 #endif
78
79 static inline
80 void add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
81 {
82 u64 old = dl_rq->running_bw;
83
84 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
85 dl_rq->running_bw += dl_bw;
86 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
87 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
88 }
89
90 static inline
91 void sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
92 {
93 u64 old = dl_rq->running_bw;
94
95 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
96 dl_rq->running_bw -= dl_bw;
97 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
98 if (dl_rq->running_bw > old)
99 dl_rq->running_bw = 0;
100 }
101
102 static inline
103 void add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
104 {
105 u64 old = dl_rq->this_bw;
106
107 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
108 dl_rq->this_bw += dl_bw;
109 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
110 }
111
112 static inline
113 void sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
114 {
115 u64 old = dl_rq->this_bw;
116
117 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
118 dl_rq->this_bw -= dl_bw;
119 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
120 if (dl_rq->this_bw > old)
121 dl_rq->this_bw = 0;
122 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
123 }
124
125 void dl_change_utilization(struct task_struct *p, u64 new_bw)
126 {
127 struct rq *rq;
128
129 if (task_on_rq_queued(p))
130 return;
131
132 rq = task_rq(p);
133 if (p->dl.dl_non_contending) {
134 sub_running_bw(p->dl.dl_bw, &rq->dl);
135 p->dl.dl_non_contending = 0;
136 /*
137 * If the timer handler is currently running and the
138 * timer cannot be cancelled, inactive_task_timer()
139 * will see that dl_not_contending is not set, and
140 * will not touch the rq's active utilization,
141 * so we are still safe.
142 */
143 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
144 put_task_struct(p);
145 }
146 sub_rq_bw(p->dl.dl_bw, &rq->dl);
147 add_rq_bw(new_bw, &rq->dl);
148 }
149
150 /*
151 * The utilization of a task cannot be immediately removed from
152 * the rq active utilization (running_bw) when the task blocks.
153 * Instead, we have to wait for the so called "0-lag time".
154 *
155 * If a task blocks before the "0-lag time", a timer (the inactive
156 * timer) is armed, and running_bw is decreased when the timer
157 * fires.
158 *
159 * If the task wakes up again before the inactive timer fires,
160 * the timer is cancelled, whereas if the task wakes up after the
161 * inactive timer fired (and running_bw has been decreased) the
162 * task's utilization has to be added to running_bw again.
163 * A flag in the deadline scheduling entity (dl_non_contending)
164 * is used to avoid race conditions between the inactive timer handler
165 * and task wakeups.
166 *
167 * The following diagram shows how running_bw is updated. A task is
168 * "ACTIVE" when its utilization contributes to running_bw; an
169 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
170 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
171 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
172 * time already passed, which does not contribute to running_bw anymore.
173 * +------------------+
174 * wakeup | ACTIVE |
175 * +------------------>+ contending |
176 * | add_running_bw | |
177 * | +----+------+------+
178 * | | ^
179 * | dequeue | |
180 * +--------+-------+ | |
181 * | | t >= 0-lag | | wakeup
182 * | INACTIVE |<---------------+ |
183 * | | sub_running_bw | |
184 * +--------+-------+ | |
185 * ^ | |
186 * | t < 0-lag | |
187 * | | |
188 * | V |
189 * | +----+------+------+
190 * | sub_running_bw | ACTIVE |
191 * +-------------------+ |
192 * inactive timer | non contending |
193 * fired +------------------+
194 *
195 * The task_non_contending() function is invoked when a task
196 * blocks, and checks if the 0-lag time already passed or
197 * not (in the first case, it directly updates running_bw;
198 * in the second case, it arms the inactive timer).
199 *
200 * The task_contending() function is invoked when a task wakes
201 * up, and checks if the task is still in the "ACTIVE non contending"
202 * state or not (in the second case, it updates running_bw).
203 */
204 static void task_non_contending(struct task_struct *p)
205 {
206 struct sched_dl_entity *dl_se = &p->dl;
207 struct hrtimer *timer = &dl_se->inactive_timer;
208 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
209 struct rq *rq = rq_of_dl_rq(dl_rq);
210 s64 zerolag_time;
211
212 /*
213 * If this is a non-deadline task that has been boosted,
214 * do nothing
215 */
216 if (dl_se->dl_runtime == 0)
217 return;
218
219 WARN_ON(hrtimer_active(&dl_se->inactive_timer));
220 WARN_ON(dl_se->dl_non_contending);
221
222 zerolag_time = dl_se->deadline -
223 div64_long((dl_se->runtime * dl_se->dl_period),
224 dl_se->dl_runtime);
225
226 /*
227 * Using relative times instead of the absolute "0-lag time"
228 * allows to simplify the code
229 */
230 zerolag_time -= rq_clock(rq);
231
232 /*
233 * If the "0-lag time" already passed, decrease the active
234 * utilization now, instead of starting a timer
235 */
236 if (zerolag_time < 0) {
237 if (dl_task(p))
238 sub_running_bw(dl_se->dl_bw, dl_rq);
239 if (!dl_task(p) || p->state == TASK_DEAD) {
240 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
241
242 if (p->state == TASK_DEAD)
243 sub_rq_bw(p->dl.dl_bw, &rq->dl);
244 raw_spin_lock(&dl_b->lock);
245 __dl_clear(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
246 __dl_clear_params(p);
247 raw_spin_unlock(&dl_b->lock);
248 }
249
250 return;
251 }
252
253 dl_se->dl_non_contending = 1;
254 get_task_struct(p);
255 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL);
256 }
257
258 static void task_contending(struct sched_dl_entity *dl_se, int flags)
259 {
260 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
261
262 /*
263 * If this is a non-deadline task that has been boosted,
264 * do nothing
265 */
266 if (dl_se->dl_runtime == 0)
267 return;
268
269 if (flags & ENQUEUE_MIGRATED)
270 add_rq_bw(dl_se->dl_bw, dl_rq);
271
272 if (dl_se->dl_non_contending) {
273 dl_se->dl_non_contending = 0;
274 /*
275 * If the timer handler is currently running and the
276 * timer cannot be cancelled, inactive_task_timer()
277 * will see that dl_not_contending is not set, and
278 * will not touch the rq's active utilization,
279 * so we are still safe.
280 */
281 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
282 put_task_struct(dl_task_of(dl_se));
283 } else {
284 /*
285 * Since "dl_non_contending" is not set, the
286 * task's utilization has already been removed from
287 * active utilization (either when the task blocked,
288 * when the "inactive timer" fired).
289 * So, add it back.
290 */
291 add_running_bw(dl_se->dl_bw, dl_rq);
292 }
293 }
294
295 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
296 {
297 struct sched_dl_entity *dl_se = &p->dl;
298
299 return dl_rq->rb_leftmost == &dl_se->rb_node;
300 }
301
302 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
303 {
304 raw_spin_lock_init(&dl_b->dl_runtime_lock);
305 dl_b->dl_period = period;
306 dl_b->dl_runtime = runtime;
307 }
308
309 void init_dl_bw(struct dl_bw *dl_b)
310 {
311 raw_spin_lock_init(&dl_b->lock);
312 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
313 if (global_rt_runtime() == RUNTIME_INF)
314 dl_b->bw = -1;
315 else
316 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
317 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
318 dl_b->total_bw = 0;
319 }
320
321 void init_dl_rq(struct dl_rq *dl_rq)
322 {
323 dl_rq->rb_root = RB_ROOT;
324
325 #ifdef CONFIG_SMP
326 /* zero means no -deadline tasks */
327 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
328
329 dl_rq->dl_nr_migratory = 0;
330 dl_rq->overloaded = 0;
331 dl_rq->pushable_dl_tasks_root = RB_ROOT;
332 #else
333 init_dl_bw(&dl_rq->dl_bw);
334 #endif
335
336 dl_rq->running_bw = 0;
337 dl_rq->this_bw = 0;
338 init_dl_rq_bw_ratio(dl_rq);
339 }
340
341 #ifdef CONFIG_SMP
342
343 static inline int dl_overloaded(struct rq *rq)
344 {
345 return atomic_read(&rq->rd->dlo_count);
346 }
347
348 static inline void dl_set_overload(struct rq *rq)
349 {
350 if (!rq->online)
351 return;
352
353 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
354 /*
355 * Must be visible before the overload count is
356 * set (as in sched_rt.c).
357 *
358 * Matched by the barrier in pull_dl_task().
359 */
360 smp_wmb();
361 atomic_inc(&rq->rd->dlo_count);
362 }
363
364 static inline void dl_clear_overload(struct rq *rq)
365 {
366 if (!rq->online)
367 return;
368
369 atomic_dec(&rq->rd->dlo_count);
370 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
371 }
372
373 static void update_dl_migration(struct dl_rq *dl_rq)
374 {
375 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
376 if (!dl_rq->overloaded) {
377 dl_set_overload(rq_of_dl_rq(dl_rq));
378 dl_rq->overloaded = 1;
379 }
380 } else if (dl_rq->overloaded) {
381 dl_clear_overload(rq_of_dl_rq(dl_rq));
382 dl_rq->overloaded = 0;
383 }
384 }
385
386 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
387 {
388 struct task_struct *p = dl_task_of(dl_se);
389
390 if (p->nr_cpus_allowed > 1)
391 dl_rq->dl_nr_migratory++;
392
393 update_dl_migration(dl_rq);
394 }
395
396 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
397 {
398 struct task_struct *p = dl_task_of(dl_se);
399
400 if (p->nr_cpus_allowed > 1)
401 dl_rq->dl_nr_migratory--;
402
403 update_dl_migration(dl_rq);
404 }
405
406 /*
407 * The list of pushable -deadline task is not a plist, like in
408 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
409 */
410 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
411 {
412 struct dl_rq *dl_rq = &rq->dl;
413 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
414 struct rb_node *parent = NULL;
415 struct task_struct *entry;
416 int leftmost = 1;
417
418 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
419
420 while (*link) {
421 parent = *link;
422 entry = rb_entry(parent, struct task_struct,
423 pushable_dl_tasks);
424 if (dl_entity_preempt(&p->dl, &entry->dl))
425 link = &parent->rb_left;
426 else {
427 link = &parent->rb_right;
428 leftmost = 0;
429 }
430 }
431
432 if (leftmost) {
433 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
434 dl_rq->earliest_dl.next = p->dl.deadline;
435 }
436
437 rb_link_node(&p->pushable_dl_tasks, parent, link);
438 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
439 }
440
441 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
442 {
443 struct dl_rq *dl_rq = &rq->dl;
444
445 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
446 return;
447
448 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
449 struct rb_node *next_node;
450
451 next_node = rb_next(&p->pushable_dl_tasks);
452 dl_rq->pushable_dl_tasks_leftmost = next_node;
453 if (next_node) {
454 dl_rq->earliest_dl.next = rb_entry(next_node,
455 struct task_struct, pushable_dl_tasks)->dl.deadline;
456 }
457 }
458
459 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
460 RB_CLEAR_NODE(&p->pushable_dl_tasks);
461 }
462
463 static inline int has_pushable_dl_tasks(struct rq *rq)
464 {
465 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
466 }
467
468 static int push_dl_task(struct rq *rq);
469
470 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
471 {
472 return dl_task(prev);
473 }
474
475 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
476 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
477
478 static void push_dl_tasks(struct rq *);
479 static void pull_dl_task(struct rq *);
480
481 static inline void queue_push_tasks(struct rq *rq)
482 {
483 if (!has_pushable_dl_tasks(rq))
484 return;
485
486 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
487 }
488
489 static inline void queue_pull_task(struct rq *rq)
490 {
491 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
492 }
493
494 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
495
496 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
497 {
498 struct rq *later_rq = NULL;
499
500 later_rq = find_lock_later_rq(p, rq);
501 if (!later_rq) {
502 int cpu;
503
504 /*
505 * If we cannot preempt any rq, fall back to pick any
506 * online cpu.
507 */
508 cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
509 if (cpu >= nr_cpu_ids) {
510 /*
511 * Fail to find any suitable cpu.
512 * The task will never come back!
513 */
514 BUG_ON(dl_bandwidth_enabled());
515
516 /*
517 * If admission control is disabled we
518 * try a little harder to let the task
519 * run.
520 */
521 cpu = cpumask_any(cpu_active_mask);
522 }
523 later_rq = cpu_rq(cpu);
524 double_lock_balance(rq, later_rq);
525 }
526
527 set_task_cpu(p, later_rq->cpu);
528 double_unlock_balance(later_rq, rq);
529
530 return later_rq;
531 }
532
533 #else
534
535 static inline
536 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
537 {
538 }
539
540 static inline
541 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
542 {
543 }
544
545 static inline
546 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
547 {
548 }
549
550 static inline
551 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
552 {
553 }
554
555 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
556 {
557 return false;
558 }
559
560 static inline void pull_dl_task(struct rq *rq)
561 {
562 }
563
564 static inline void queue_push_tasks(struct rq *rq)
565 {
566 }
567
568 static inline void queue_pull_task(struct rq *rq)
569 {
570 }
571 #endif /* CONFIG_SMP */
572
573 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
574 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
575 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
576 int flags);
577
578 /*
579 * We are being explicitly informed that a new instance is starting,
580 * and this means that:
581 * - the absolute deadline of the entity has to be placed at
582 * current time + relative deadline;
583 * - the runtime of the entity has to be set to the maximum value.
584 *
585 * The capability of specifying such event is useful whenever a -deadline
586 * entity wants to (try to!) synchronize its behaviour with the scheduler's
587 * one, and to (try to!) reconcile itself with its own scheduling
588 * parameters.
589 */
590 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
591 {
592 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
593 struct rq *rq = rq_of_dl_rq(dl_rq);
594
595 WARN_ON(dl_se->dl_boosted);
596 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
597
598 /*
599 * We are racing with the deadline timer. So, do nothing because
600 * the deadline timer handler will take care of properly recharging
601 * the runtime and postponing the deadline
602 */
603 if (dl_se->dl_throttled)
604 return;
605
606 /*
607 * We use the regular wall clock time to set deadlines in the
608 * future; in fact, we must consider execution overheads (time
609 * spent on hardirq context, etc.).
610 */
611 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
612 dl_se->runtime = dl_se->dl_runtime;
613 }
614
615 /*
616 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
617 * possibility of a entity lasting more than what it declared, and thus
618 * exhausting its runtime.
619 *
620 * Here we are interested in making runtime overrun possible, but we do
621 * not want a entity which is misbehaving to affect the scheduling of all
622 * other entities.
623 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
624 * is used, in order to confine each entity within its own bandwidth.
625 *
626 * This function deals exactly with that, and ensures that when the runtime
627 * of a entity is replenished, its deadline is also postponed. That ensures
628 * the overrunning entity can't interfere with other entity in the system and
629 * can't make them miss their deadlines. Reasons why this kind of overruns
630 * could happen are, typically, a entity voluntarily trying to overcome its
631 * runtime, or it just underestimated it during sched_setattr().
632 */
633 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
634 struct sched_dl_entity *pi_se)
635 {
636 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
637 struct rq *rq = rq_of_dl_rq(dl_rq);
638
639 BUG_ON(pi_se->dl_runtime <= 0);
640
641 /*
642 * This could be the case for a !-dl task that is boosted.
643 * Just go with full inherited parameters.
644 */
645 if (dl_se->dl_deadline == 0) {
646 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
647 dl_se->runtime = pi_se->dl_runtime;
648 }
649
650 if (dl_se->dl_yielded && dl_se->runtime > 0)
651 dl_se->runtime = 0;
652
653 /*
654 * We keep moving the deadline away until we get some
655 * available runtime for the entity. This ensures correct
656 * handling of situations where the runtime overrun is
657 * arbitrary large.
658 */
659 while (dl_se->runtime <= 0) {
660 dl_se->deadline += pi_se->dl_period;
661 dl_se->runtime += pi_se->dl_runtime;
662 }
663
664 /*
665 * At this point, the deadline really should be "in
666 * the future" with respect to rq->clock. If it's
667 * not, we are, for some reason, lagging too much!
668 * Anyway, after having warn userspace abut that,
669 * we still try to keep the things running by
670 * resetting the deadline and the budget of the
671 * entity.
672 */
673 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
674 printk_deferred_once("sched: DL replenish lagged too much\n");
675 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
676 dl_se->runtime = pi_se->dl_runtime;
677 }
678
679 if (dl_se->dl_yielded)
680 dl_se->dl_yielded = 0;
681 if (dl_se->dl_throttled)
682 dl_se->dl_throttled = 0;
683 }
684
685 /*
686 * Here we check if --at time t-- an entity (which is probably being
687 * [re]activated or, in general, enqueued) can use its remaining runtime
688 * and its current deadline _without_ exceeding the bandwidth it is
689 * assigned (function returns true if it can't). We are in fact applying
690 * one of the CBS rules: when a task wakes up, if the residual runtime
691 * over residual deadline fits within the allocated bandwidth, then we
692 * can keep the current (absolute) deadline and residual budget without
693 * disrupting the schedulability of the system. Otherwise, we should
694 * refill the runtime and set the deadline a period in the future,
695 * because keeping the current (absolute) deadline of the task would
696 * result in breaking guarantees promised to other tasks (refer to
697 * Documentation/scheduler/sched-deadline.txt for more informations).
698 *
699 * This function returns true if:
700 *
701 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
702 *
703 * IOW we can't recycle current parameters.
704 *
705 * Notice that the bandwidth check is done against the deadline. For
706 * task with deadline equal to period this is the same of using
707 * dl_period instead of dl_deadline in the equation above.
708 */
709 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
710 struct sched_dl_entity *pi_se, u64 t)
711 {
712 u64 left, right;
713
714 /*
715 * left and right are the two sides of the equation above,
716 * after a bit of shuffling to use multiplications instead
717 * of divisions.
718 *
719 * Note that none of the time values involved in the two
720 * multiplications are absolute: dl_deadline and dl_runtime
721 * are the relative deadline and the maximum runtime of each
722 * instance, runtime is the runtime left for the last instance
723 * and (deadline - t), since t is rq->clock, is the time left
724 * to the (absolute) deadline. Even if overflowing the u64 type
725 * is very unlikely to occur in both cases, here we scale down
726 * as we want to avoid that risk at all. Scaling down by 10
727 * means that we reduce granularity to 1us. We are fine with it,
728 * since this is only a true/false check and, anyway, thinking
729 * of anything below microseconds resolution is actually fiction
730 * (but still we want to give the user that illusion >;).
731 */
732 left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
733 right = ((dl_se->deadline - t) >> DL_SCALE) *
734 (pi_se->dl_runtime >> DL_SCALE);
735
736 return dl_time_before(right, left);
737 }
738
739 /*
740 * Revised wakeup rule [1]: For self-suspending tasks, rather then
741 * re-initializing task's runtime and deadline, the revised wakeup
742 * rule adjusts the task's runtime to avoid the task to overrun its
743 * density.
744 *
745 * Reasoning: a task may overrun the density if:
746 * runtime / (deadline - t) > dl_runtime / dl_deadline
747 *
748 * Therefore, runtime can be adjusted to:
749 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
750 *
751 * In such way that runtime will be equal to the maximum density
752 * the task can use without breaking any rule.
753 *
754 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
755 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
756 */
757 static void
758 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
759 {
760 u64 laxity = dl_se->deadline - rq_clock(rq);
761
762 /*
763 * If the task has deadline < period, and the deadline is in the past,
764 * it should already be throttled before this check.
765 *
766 * See update_dl_entity() comments for further details.
767 */
768 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
769
770 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
771 }
772
773 /*
774 * Regarding the deadline, a task with implicit deadline has a relative
775 * deadline == relative period. A task with constrained deadline has a
776 * relative deadline <= relative period.
777 *
778 * We support constrained deadline tasks. However, there are some restrictions
779 * applied only for tasks which do not have an implicit deadline. See
780 * update_dl_entity() to know more about such restrictions.
781 *
782 * The dl_is_implicit() returns true if the task has an implicit deadline.
783 */
784 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
785 {
786 return dl_se->dl_deadline == dl_se->dl_period;
787 }
788
789 /*
790 * When a deadline entity is placed in the runqueue, its runtime and deadline
791 * might need to be updated. This is done by a CBS wake up rule. There are two
792 * different rules: 1) the original CBS; and 2) the Revisited CBS.
793 *
794 * When the task is starting a new period, the Original CBS is used. In this
795 * case, the runtime is replenished and a new absolute deadline is set.
796 *
797 * When a task is queued before the begin of the next period, using the
798 * remaining runtime and deadline could make the entity to overflow, see
799 * dl_entity_overflow() to find more about runtime overflow. When such case
800 * is detected, the runtime and deadline need to be updated.
801 *
802 * If the task has an implicit deadline, i.e., deadline == period, the Original
803 * CBS is applied. the runtime is replenished and a new absolute deadline is
804 * set, as in the previous cases.
805 *
806 * However, the Original CBS does not work properly for tasks with
807 * deadline < period, which are said to have a constrained deadline. By
808 * applying the Original CBS, a constrained deadline task would be able to run
809 * runtime/deadline in a period. With deadline < period, the task would
810 * overrun the runtime/period allowed bandwidth, breaking the admission test.
811 *
812 * In order to prevent this misbehave, the Revisited CBS is used for
813 * constrained deadline tasks when a runtime overflow is detected. In the
814 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
815 * the remaining runtime of the task is reduced to avoid runtime overflow.
816 * Please refer to the comments update_dl_revised_wakeup() function to find
817 * more about the Revised CBS rule.
818 */
819 static void update_dl_entity(struct sched_dl_entity *dl_se,
820 struct sched_dl_entity *pi_se)
821 {
822 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
823 struct rq *rq = rq_of_dl_rq(dl_rq);
824
825 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
826 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
827
828 if (unlikely(!dl_is_implicit(dl_se) &&
829 !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
830 !dl_se->dl_boosted)){
831 update_dl_revised_wakeup(dl_se, rq);
832 return;
833 }
834
835 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
836 dl_se->runtime = pi_se->dl_runtime;
837 }
838 }
839
840 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
841 {
842 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
843 }
844
845 /*
846 * If the entity depleted all its runtime, and if we want it to sleep
847 * while waiting for some new execution time to become available, we
848 * set the bandwidth replenishment timer to the replenishment instant
849 * and try to activate it.
850 *
851 * Notice that it is important for the caller to know if the timer
852 * actually started or not (i.e., the replenishment instant is in
853 * the future or in the past).
854 */
855 static int start_dl_timer(struct task_struct *p)
856 {
857 struct sched_dl_entity *dl_se = &p->dl;
858 struct hrtimer *timer = &dl_se->dl_timer;
859 struct rq *rq = task_rq(p);
860 ktime_t now, act;
861 s64 delta;
862
863 lockdep_assert_held(&rq->lock);
864
865 /*
866 * We want the timer to fire at the deadline, but considering
867 * that it is actually coming from rq->clock and not from
868 * hrtimer's time base reading.
869 */
870 act = ns_to_ktime(dl_next_period(dl_se));
871 now = hrtimer_cb_get_time(timer);
872 delta = ktime_to_ns(now) - rq_clock(rq);
873 act = ktime_add_ns(act, delta);
874
875 /*
876 * If the expiry time already passed, e.g., because the value
877 * chosen as the deadline is too small, don't even try to
878 * start the timer in the past!
879 */
880 if (ktime_us_delta(act, now) < 0)
881 return 0;
882
883 /*
884 * !enqueued will guarantee another callback; even if one is already in
885 * progress. This ensures a balanced {get,put}_task_struct().
886 *
887 * The race against __run_timer() clearing the enqueued state is
888 * harmless because we're holding task_rq()->lock, therefore the timer
889 * expiring after we've done the check will wait on its task_rq_lock()
890 * and observe our state.
891 */
892 if (!hrtimer_is_queued(timer)) {
893 get_task_struct(p);
894 hrtimer_start(timer, act, HRTIMER_MODE_ABS);
895 }
896
897 return 1;
898 }
899
900 /*
901 * This is the bandwidth enforcement timer callback. If here, we know
902 * a task is not on its dl_rq, since the fact that the timer was running
903 * means the task is throttled and needs a runtime replenishment.
904 *
905 * However, what we actually do depends on the fact the task is active,
906 * (it is on its rq) or has been removed from there by a call to
907 * dequeue_task_dl(). In the former case we must issue the runtime
908 * replenishment and add the task back to the dl_rq; in the latter, we just
909 * do nothing but clearing dl_throttled, so that runtime and deadline
910 * updating (and the queueing back to dl_rq) will be done by the
911 * next call to enqueue_task_dl().
912 */
913 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
914 {
915 struct sched_dl_entity *dl_se = container_of(timer,
916 struct sched_dl_entity,
917 dl_timer);
918 struct task_struct *p = dl_task_of(dl_se);
919 struct rq_flags rf;
920 struct rq *rq;
921
922 rq = task_rq_lock(p, &rf);
923
924 /*
925 * The task might have changed its scheduling policy to something
926 * different than SCHED_DEADLINE (through switched_from_dl()).
927 */
928 if (!dl_task(p))
929 goto unlock;
930
931 /*
932 * The task might have been boosted by someone else and might be in the
933 * boosting/deboosting path, its not throttled.
934 */
935 if (dl_se->dl_boosted)
936 goto unlock;
937
938 /*
939 * Spurious timer due to start_dl_timer() race; or we already received
940 * a replenishment from rt_mutex_setprio().
941 */
942 if (!dl_se->dl_throttled)
943 goto unlock;
944
945 sched_clock_tick();
946 update_rq_clock(rq);
947
948 /*
949 * If the throttle happened during sched-out; like:
950 *
951 * schedule()
952 * deactivate_task()
953 * dequeue_task_dl()
954 * update_curr_dl()
955 * start_dl_timer()
956 * __dequeue_task_dl()
957 * prev->on_rq = 0;
958 *
959 * We can be both throttled and !queued. Replenish the counter
960 * but do not enqueue -- wait for our wakeup to do that.
961 */
962 if (!task_on_rq_queued(p)) {
963 replenish_dl_entity(dl_se, dl_se);
964 goto unlock;
965 }
966
967 #ifdef CONFIG_SMP
968 if (unlikely(!rq->online)) {
969 /*
970 * If the runqueue is no longer available, migrate the
971 * task elsewhere. This necessarily changes rq.
972 */
973 lockdep_unpin_lock(&rq->lock, rf.cookie);
974 rq = dl_task_offline_migration(rq, p);
975 rf.cookie = lockdep_pin_lock(&rq->lock);
976 update_rq_clock(rq);
977
978 /*
979 * Now that the task has been migrated to the new RQ and we
980 * have that locked, proceed as normal and enqueue the task
981 * there.
982 */
983 }
984 #endif
985
986 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
987 if (dl_task(rq->curr))
988 check_preempt_curr_dl(rq, p, 0);
989 else
990 resched_curr(rq);
991
992 #ifdef CONFIG_SMP
993 /*
994 * Queueing this task back might have overloaded rq, check if we need
995 * to kick someone away.
996 */
997 if (has_pushable_dl_tasks(rq)) {
998 /*
999 * Nothing relies on rq->lock after this, so its safe to drop
1000 * rq->lock.
1001 */
1002 rq_unpin_lock(rq, &rf);
1003 push_dl_task(rq);
1004 rq_repin_lock(rq, &rf);
1005 }
1006 #endif
1007
1008 unlock:
1009 task_rq_unlock(rq, p, &rf);
1010
1011 /*
1012 * This can free the task_struct, including this hrtimer, do not touch
1013 * anything related to that after this.
1014 */
1015 put_task_struct(p);
1016
1017 return HRTIMER_NORESTART;
1018 }
1019
1020 void init_dl_task_timer(struct sched_dl_entity *dl_se)
1021 {
1022 struct hrtimer *timer = &dl_se->dl_timer;
1023
1024 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1025 timer->function = dl_task_timer;
1026 }
1027
1028 /*
1029 * During the activation, CBS checks if it can reuse the current task's
1030 * runtime and period. If the deadline of the task is in the past, CBS
1031 * cannot use the runtime, and so it replenishes the task. This rule
1032 * works fine for implicit deadline tasks (deadline == period), and the
1033 * CBS was designed for implicit deadline tasks. However, a task with
1034 * constrained deadline (deadine < period) might be awakened after the
1035 * deadline, but before the next period. In this case, replenishing the
1036 * task would allow it to run for runtime / deadline. As in this case
1037 * deadline < period, CBS enables a task to run for more than the
1038 * runtime / period. In a very loaded system, this can cause a domino
1039 * effect, making other tasks miss their deadlines.
1040 *
1041 * To avoid this problem, in the activation of a constrained deadline
1042 * task after the deadline but before the next period, throttle the
1043 * task and set the replenishing timer to the begin of the next period,
1044 * unless it is boosted.
1045 */
1046 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1047 {
1048 struct task_struct *p = dl_task_of(dl_se);
1049 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1050
1051 if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1052 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1053 if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
1054 return;
1055 dl_se->dl_throttled = 1;
1056 if (dl_se->runtime > 0)
1057 dl_se->runtime = 0;
1058 }
1059 }
1060
1061 static
1062 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1063 {
1064 return (dl_se->runtime <= 0);
1065 }
1066
1067 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1068
1069 /*
1070 * This function implements the GRUB accounting rule:
1071 * according to the GRUB reclaiming algorithm, the runtime is
1072 * not decreased as "dq = -dt", but as
1073 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1074 * where u is the utilization of the task, Umax is the maximum reclaimable
1075 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1076 * as the difference between the "total runqueue utilization" and the
1077 * runqueue active utilization, and Uextra is the (per runqueue) extra
1078 * reclaimable utilization.
1079 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1080 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1081 * BW_SHIFT.
1082 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1083 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1084 * Since delta is a 64 bit variable, to have an overflow its value
1085 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1086 * So, overflow is not an issue here.
1087 */
1088 u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1089 {
1090 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1091 u64 u_act;
1092 u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1093
1094 /*
1095 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1096 * we compare u_inact + rq->dl.extra_bw with
1097 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1098 * u_inact + rq->dl.extra_bw can be larger than
1099 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1100 * leading to wrong results)
1101 */
1102 if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1103 u_act = u_act_min;
1104 else
1105 u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1106
1107 return (delta * u_act) >> BW_SHIFT;
1108 }
1109
1110 /*
1111 * Update the current task's runtime statistics (provided it is still
1112 * a -deadline task and has not been removed from the dl_rq).
1113 */
1114 static void update_curr_dl(struct rq *rq)
1115 {
1116 struct task_struct *curr = rq->curr;
1117 struct sched_dl_entity *dl_se = &curr->dl;
1118 u64 delta_exec;
1119
1120 if (!dl_task(curr) || !on_dl_rq(dl_se))
1121 return;
1122
1123 /*
1124 * Consumed budget is computed considering the time as
1125 * observed by schedulable tasks (excluding time spent
1126 * in hardirq context, etc.). Deadlines are instead
1127 * computed using hard walltime. This seems to be the more
1128 * natural solution, but the full ramifications of this
1129 * approach need further study.
1130 */
1131 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
1132 if (unlikely((s64)delta_exec <= 0)) {
1133 if (unlikely(dl_se->dl_yielded))
1134 goto throttle;
1135 return;
1136 }
1137
1138 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
1139 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_DL);
1140
1141 schedstat_set(curr->se.statistics.exec_max,
1142 max(curr->se.statistics.exec_max, delta_exec));
1143
1144 curr->se.sum_exec_runtime += delta_exec;
1145 account_group_exec_runtime(curr, delta_exec);
1146
1147 curr->se.exec_start = rq_clock_task(rq);
1148 cpuacct_charge(curr, delta_exec);
1149
1150 sched_rt_avg_update(rq, delta_exec);
1151
1152 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM))
1153 delta_exec = grub_reclaim(delta_exec, rq, &curr->dl);
1154 dl_se->runtime -= delta_exec;
1155
1156 throttle:
1157 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1158 dl_se->dl_throttled = 1;
1159 __dequeue_task_dl(rq, curr, 0);
1160 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
1161 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1162
1163 if (!is_leftmost(curr, &rq->dl))
1164 resched_curr(rq);
1165 }
1166
1167 /*
1168 * Because -- for now -- we share the rt bandwidth, we need to
1169 * account our runtime there too, otherwise actual rt tasks
1170 * would be able to exceed the shared quota.
1171 *
1172 * Account to the root rt group for now.
1173 *
1174 * The solution we're working towards is having the RT groups scheduled
1175 * using deadline servers -- however there's a few nasties to figure
1176 * out before that can happen.
1177 */
1178 if (rt_bandwidth_enabled()) {
1179 struct rt_rq *rt_rq = &rq->rt;
1180
1181 raw_spin_lock(&rt_rq->rt_runtime_lock);
1182 /*
1183 * We'll let actual RT tasks worry about the overflow here, we
1184 * have our own CBS to keep us inline; only account when RT
1185 * bandwidth is relevant.
1186 */
1187 if (sched_rt_bandwidth_account(rt_rq))
1188 rt_rq->rt_time += delta_exec;
1189 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1190 }
1191 }
1192
1193 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1194 {
1195 struct sched_dl_entity *dl_se = container_of(timer,
1196 struct sched_dl_entity,
1197 inactive_timer);
1198 struct task_struct *p = dl_task_of(dl_se);
1199 struct rq_flags rf;
1200 struct rq *rq;
1201
1202 rq = task_rq_lock(p, &rf);
1203
1204 if (!dl_task(p) || p->state == TASK_DEAD) {
1205 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1206
1207 if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
1208 sub_running_bw(p->dl.dl_bw, dl_rq_of_se(&p->dl));
1209 sub_rq_bw(p->dl.dl_bw, dl_rq_of_se(&p->dl));
1210 dl_se->dl_non_contending = 0;
1211 }
1212
1213 raw_spin_lock(&dl_b->lock);
1214 __dl_clear(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1215 raw_spin_unlock(&dl_b->lock);
1216 __dl_clear_params(p);
1217
1218 goto unlock;
1219 }
1220 if (dl_se->dl_non_contending == 0)
1221 goto unlock;
1222
1223 sched_clock_tick();
1224 update_rq_clock(rq);
1225
1226 sub_running_bw(dl_se->dl_bw, &rq->dl);
1227 dl_se->dl_non_contending = 0;
1228 unlock:
1229 task_rq_unlock(rq, p, &rf);
1230 put_task_struct(p);
1231
1232 return HRTIMER_NORESTART;
1233 }
1234
1235 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1236 {
1237 struct hrtimer *timer = &dl_se->inactive_timer;
1238
1239 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1240 timer->function = inactive_task_timer;
1241 }
1242
1243 #ifdef CONFIG_SMP
1244
1245 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1246 {
1247 struct rq *rq = rq_of_dl_rq(dl_rq);
1248
1249 if (dl_rq->earliest_dl.curr == 0 ||
1250 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1251 dl_rq->earliest_dl.curr = deadline;
1252 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1253 }
1254 }
1255
1256 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1257 {
1258 struct rq *rq = rq_of_dl_rq(dl_rq);
1259
1260 /*
1261 * Since we may have removed our earliest (and/or next earliest)
1262 * task we must recompute them.
1263 */
1264 if (!dl_rq->dl_nr_running) {
1265 dl_rq->earliest_dl.curr = 0;
1266 dl_rq->earliest_dl.next = 0;
1267 cpudl_clear(&rq->rd->cpudl, rq->cpu);
1268 } else {
1269 struct rb_node *leftmost = dl_rq->rb_leftmost;
1270 struct sched_dl_entity *entry;
1271
1272 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1273 dl_rq->earliest_dl.curr = entry->deadline;
1274 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1275 }
1276 }
1277
1278 #else
1279
1280 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1281 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1282
1283 #endif /* CONFIG_SMP */
1284
1285 static inline
1286 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1287 {
1288 int prio = dl_task_of(dl_se)->prio;
1289 u64 deadline = dl_se->deadline;
1290
1291 WARN_ON(!dl_prio(prio));
1292 dl_rq->dl_nr_running++;
1293 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1294
1295 inc_dl_deadline(dl_rq, deadline);
1296 inc_dl_migration(dl_se, dl_rq);
1297 }
1298
1299 static inline
1300 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1301 {
1302 int prio = dl_task_of(dl_se)->prio;
1303
1304 WARN_ON(!dl_prio(prio));
1305 WARN_ON(!dl_rq->dl_nr_running);
1306 dl_rq->dl_nr_running--;
1307 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1308
1309 dec_dl_deadline(dl_rq, dl_se->deadline);
1310 dec_dl_migration(dl_se, dl_rq);
1311 }
1312
1313 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1314 {
1315 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1316 struct rb_node **link = &dl_rq->rb_root.rb_node;
1317 struct rb_node *parent = NULL;
1318 struct sched_dl_entity *entry;
1319 int leftmost = 1;
1320
1321 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1322
1323 while (*link) {
1324 parent = *link;
1325 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1326 if (dl_time_before(dl_se->deadline, entry->deadline))
1327 link = &parent->rb_left;
1328 else {
1329 link = &parent->rb_right;
1330 leftmost = 0;
1331 }
1332 }
1333
1334 if (leftmost)
1335 dl_rq->rb_leftmost = &dl_se->rb_node;
1336
1337 rb_link_node(&dl_se->rb_node, parent, link);
1338 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
1339
1340 inc_dl_tasks(dl_se, dl_rq);
1341 }
1342
1343 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1344 {
1345 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1346
1347 if (RB_EMPTY_NODE(&dl_se->rb_node))
1348 return;
1349
1350 if (dl_rq->rb_leftmost == &dl_se->rb_node) {
1351 struct rb_node *next_node;
1352
1353 next_node = rb_next(&dl_se->rb_node);
1354 dl_rq->rb_leftmost = next_node;
1355 }
1356
1357 rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
1358 RB_CLEAR_NODE(&dl_se->rb_node);
1359
1360 dec_dl_tasks(dl_se, dl_rq);
1361 }
1362
1363 static void
1364 enqueue_dl_entity(struct sched_dl_entity *dl_se,
1365 struct sched_dl_entity *pi_se, int flags)
1366 {
1367 BUG_ON(on_dl_rq(dl_se));
1368
1369 /*
1370 * If this is a wakeup or a new instance, the scheduling
1371 * parameters of the task might need updating. Otherwise,
1372 * we want a replenishment of its runtime.
1373 */
1374 if (flags & ENQUEUE_WAKEUP) {
1375 task_contending(dl_se, flags);
1376 update_dl_entity(dl_se, pi_se);
1377 } else if (flags & ENQUEUE_REPLENISH) {
1378 replenish_dl_entity(dl_se, pi_se);
1379 }
1380
1381 __enqueue_dl_entity(dl_se);
1382 }
1383
1384 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1385 {
1386 __dequeue_dl_entity(dl_se);
1387 }
1388
1389 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1390 {
1391 struct task_struct *pi_task = rt_mutex_get_top_task(p);
1392 struct sched_dl_entity *pi_se = &p->dl;
1393
1394 /*
1395 * Use the scheduling parameters of the top pi-waiter task if:
1396 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND
1397 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is
1398 * smaller than our deadline OR we are a !SCHED_DEADLINE task getting
1399 * boosted due to a SCHED_DEADLINE pi-waiter).
1400 * Otherwise we keep our runtime and deadline.
1401 */
1402 if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) {
1403 pi_se = &pi_task->dl;
1404 } else if (!dl_prio(p->normal_prio)) {
1405 /*
1406 * Special case in which we have a !SCHED_DEADLINE task
1407 * that is going to be deboosted, but exceeds its
1408 * runtime while doing so. No point in replenishing
1409 * it, as it's going to return back to its original
1410 * scheduling class after this.
1411 */
1412 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
1413 return;
1414 }
1415
1416 /*
1417 * Check if a constrained deadline task was activated
1418 * after the deadline but before the next period.
1419 * If that is the case, the task will be throttled and
1420 * the replenishment timer will be set to the next period.
1421 */
1422 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1423 dl_check_constrained_dl(&p->dl);
1424
1425 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1426 add_rq_bw(p->dl.dl_bw, &rq->dl);
1427 add_running_bw(p->dl.dl_bw, &rq->dl);
1428 }
1429
1430 /*
1431 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1432 * its budget it needs a replenishment and, since it now is on
1433 * its rq, the bandwidth timer callback (which clearly has not
1434 * run yet) will take care of this.
1435 * However, the active utilization does not depend on the fact
1436 * that the task is on the runqueue or not (but depends on the
1437 * task's state - in GRUB parlance, "inactive" vs "active contending").
1438 * In other words, even if a task is throttled its utilization must
1439 * be counted in the active utilization; hence, we need to call
1440 * add_running_bw().
1441 */
1442 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1443 if (flags & ENQUEUE_WAKEUP)
1444 task_contending(&p->dl, flags);
1445
1446 return;
1447 }
1448
1449 enqueue_dl_entity(&p->dl, pi_se, flags);
1450
1451 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1452 enqueue_pushable_dl_task(rq, p);
1453 }
1454
1455 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1456 {
1457 dequeue_dl_entity(&p->dl);
1458 dequeue_pushable_dl_task(rq, p);
1459 }
1460
1461 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1462 {
1463 update_curr_dl(rq);
1464 __dequeue_task_dl(rq, p, flags);
1465
1466 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1467 sub_running_bw(p->dl.dl_bw, &rq->dl);
1468 sub_rq_bw(p->dl.dl_bw, &rq->dl);
1469 }
1470
1471 /*
1472 * This check allows to start the inactive timer (or to immediately
1473 * decrease the active utilization, if needed) in two cases:
1474 * when the task blocks and when it is terminating
1475 * (p->state == TASK_DEAD). We can handle the two cases in the same
1476 * way, because from GRUB's point of view the same thing is happening
1477 * (the task moves from "active contending" to "active non contending"
1478 * or "inactive")
1479 */
1480 if (flags & DEQUEUE_SLEEP)
1481 task_non_contending(p);
1482 }
1483
1484 /*
1485 * Yield task semantic for -deadline tasks is:
1486 *
1487 * get off from the CPU until our next instance, with
1488 * a new runtime. This is of little use now, since we
1489 * don't have a bandwidth reclaiming mechanism. Anyway,
1490 * bandwidth reclaiming is planned for the future, and
1491 * yield_task_dl will indicate that some spare budget
1492 * is available for other task instances to use it.
1493 */
1494 static void yield_task_dl(struct rq *rq)
1495 {
1496 /*
1497 * We make the task go to sleep until its current deadline by
1498 * forcing its runtime to zero. This way, update_curr_dl() stops
1499 * it and the bandwidth timer will wake it up and will give it
1500 * new scheduling parameters (thanks to dl_yielded=1).
1501 */
1502 rq->curr->dl.dl_yielded = 1;
1503
1504 update_rq_clock(rq);
1505 update_curr_dl(rq);
1506 /*
1507 * Tell update_rq_clock() that we've just updated,
1508 * so we don't do microscopic update in schedule()
1509 * and double the fastpath cost.
1510 */
1511 rq_clock_skip_update(rq, true);
1512 }
1513
1514 #ifdef CONFIG_SMP
1515
1516 static int find_later_rq(struct task_struct *task);
1517
1518 static int
1519 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1520 {
1521 struct task_struct *curr;
1522 struct rq *rq;
1523
1524 if (sd_flag != SD_BALANCE_WAKE)
1525 goto out;
1526
1527 rq = cpu_rq(cpu);
1528
1529 rcu_read_lock();
1530 curr = READ_ONCE(rq->curr); /* unlocked access */
1531
1532 /*
1533 * If we are dealing with a -deadline task, we must
1534 * decide where to wake it up.
1535 * If it has a later deadline and the current task
1536 * on this rq can't move (provided the waking task
1537 * can!) we prefer to send it somewhere else. On the
1538 * other hand, if it has a shorter deadline, we
1539 * try to make it stay here, it might be important.
1540 */
1541 if (unlikely(dl_task(curr)) &&
1542 (curr->nr_cpus_allowed < 2 ||
1543 !dl_entity_preempt(&p->dl, &curr->dl)) &&
1544 (p->nr_cpus_allowed > 1)) {
1545 int target = find_later_rq(p);
1546
1547 if (target != -1 &&
1548 (dl_time_before(p->dl.deadline,
1549 cpu_rq(target)->dl.earliest_dl.curr) ||
1550 (cpu_rq(target)->dl.dl_nr_running == 0)))
1551 cpu = target;
1552 }
1553 rcu_read_unlock();
1554
1555 out:
1556 return cpu;
1557 }
1558
1559 static void migrate_task_rq_dl(struct task_struct *p)
1560 {
1561 struct rq *rq;
1562
1563 if (p->state != TASK_WAKING)
1564 return;
1565
1566 rq = task_rq(p);
1567 /*
1568 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1569 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1570 * rq->lock is not... So, lock it
1571 */
1572 raw_spin_lock(&rq->lock);
1573 if (p->dl.dl_non_contending) {
1574 sub_running_bw(p->dl.dl_bw, &rq->dl);
1575 p->dl.dl_non_contending = 0;
1576 /*
1577 * If the timer handler is currently running and the
1578 * timer cannot be cancelled, inactive_task_timer()
1579 * will see that dl_not_contending is not set, and
1580 * will not touch the rq's active utilization,
1581 * so we are still safe.
1582 */
1583 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1584 put_task_struct(p);
1585 }
1586 sub_rq_bw(p->dl.dl_bw, &rq->dl);
1587 raw_spin_unlock(&rq->lock);
1588 }
1589
1590 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1591 {
1592 /*
1593 * Current can't be migrated, useless to reschedule,
1594 * let's hope p can move out.
1595 */
1596 if (rq->curr->nr_cpus_allowed == 1 ||
1597 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1598 return;
1599
1600 /*
1601 * p is migratable, so let's not schedule it and
1602 * see if it is pushed or pulled somewhere else.
1603 */
1604 if (p->nr_cpus_allowed != 1 &&
1605 cpudl_find(&rq->rd->cpudl, p, NULL))
1606 return;
1607
1608 resched_curr(rq);
1609 }
1610
1611 #endif /* CONFIG_SMP */
1612
1613 /*
1614 * Only called when both the current and waking task are -deadline
1615 * tasks.
1616 */
1617 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1618 int flags)
1619 {
1620 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1621 resched_curr(rq);
1622 return;
1623 }
1624
1625 #ifdef CONFIG_SMP
1626 /*
1627 * In the unlikely case current and p have the same deadline
1628 * let us try to decide what's the best thing to do...
1629 */
1630 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1631 !test_tsk_need_resched(rq->curr))
1632 check_preempt_equal_dl(rq, p);
1633 #endif /* CONFIG_SMP */
1634 }
1635
1636 #ifdef CONFIG_SCHED_HRTICK
1637 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1638 {
1639 hrtick_start(rq, p->dl.runtime);
1640 }
1641 #else /* !CONFIG_SCHED_HRTICK */
1642 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1643 {
1644 }
1645 #endif
1646
1647 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1648 struct dl_rq *dl_rq)
1649 {
1650 struct rb_node *left = dl_rq->rb_leftmost;
1651
1652 if (!left)
1653 return NULL;
1654
1655 return rb_entry(left, struct sched_dl_entity, rb_node);
1656 }
1657
1658 static struct task_struct *
1659 pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1660 {
1661 struct sched_dl_entity *dl_se;
1662 struct task_struct *p;
1663 struct dl_rq *dl_rq;
1664
1665 dl_rq = &rq->dl;
1666
1667 if (need_pull_dl_task(rq, prev)) {
1668 /*
1669 * This is OK, because current is on_cpu, which avoids it being
1670 * picked for load-balance and preemption/IRQs are still
1671 * disabled avoiding further scheduler activity on it and we're
1672 * being very careful to re-start the picking loop.
1673 */
1674 rq_unpin_lock(rq, rf);
1675 pull_dl_task(rq);
1676 rq_repin_lock(rq, rf);
1677 /*
1678 * pull_dl_task() can drop (and re-acquire) rq->lock; this
1679 * means a stop task can slip in, in which case we need to
1680 * re-start task selection.
1681 */
1682 if (rq->stop && task_on_rq_queued(rq->stop))
1683 return RETRY_TASK;
1684 }
1685
1686 /*
1687 * When prev is DL, we may throttle it in put_prev_task().
1688 * So, we update time before we check for dl_nr_running.
1689 */
1690 if (prev->sched_class == &dl_sched_class)
1691 update_curr_dl(rq);
1692
1693 if (unlikely(!dl_rq->dl_nr_running))
1694 return NULL;
1695
1696 put_prev_task(rq, prev);
1697
1698 dl_se = pick_next_dl_entity(rq, dl_rq);
1699 BUG_ON(!dl_se);
1700
1701 p = dl_task_of(dl_se);
1702 p->se.exec_start = rq_clock_task(rq);
1703
1704 /* Running task will never be pushed. */
1705 dequeue_pushable_dl_task(rq, p);
1706
1707 if (hrtick_enabled(rq))
1708 start_hrtick_dl(rq, p);
1709
1710 queue_push_tasks(rq);
1711
1712 return p;
1713 }
1714
1715 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1716 {
1717 update_curr_dl(rq);
1718
1719 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1720 enqueue_pushable_dl_task(rq, p);
1721 }
1722
1723 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1724 {
1725 update_curr_dl(rq);
1726
1727 /*
1728 * Even when we have runtime, update_curr_dl() might have resulted in us
1729 * not being the leftmost task anymore. In that case NEED_RESCHED will
1730 * be set and schedule() will start a new hrtick for the next task.
1731 */
1732 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1733 is_leftmost(p, &rq->dl))
1734 start_hrtick_dl(rq, p);
1735 }
1736
1737 static void task_fork_dl(struct task_struct *p)
1738 {
1739 /*
1740 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1741 * sched_fork()
1742 */
1743 }
1744
1745 static void set_curr_task_dl(struct rq *rq)
1746 {
1747 struct task_struct *p = rq->curr;
1748
1749 p->se.exec_start = rq_clock_task(rq);
1750
1751 /* You can't push away the running task */
1752 dequeue_pushable_dl_task(rq, p);
1753 }
1754
1755 #ifdef CONFIG_SMP
1756
1757 /* Only try algorithms three times */
1758 #define DL_MAX_TRIES 3
1759
1760 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1761 {
1762 if (!task_running(rq, p) &&
1763 cpumask_test_cpu(cpu, &p->cpus_allowed))
1764 return 1;
1765 return 0;
1766 }
1767
1768 /*
1769 * Return the earliest pushable rq's task, which is suitable to be executed
1770 * on the CPU, NULL otherwise:
1771 */
1772 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1773 {
1774 struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost;
1775 struct task_struct *p = NULL;
1776
1777 if (!has_pushable_dl_tasks(rq))
1778 return NULL;
1779
1780 next_node:
1781 if (next_node) {
1782 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1783
1784 if (pick_dl_task(rq, p, cpu))
1785 return p;
1786
1787 next_node = rb_next(next_node);
1788 goto next_node;
1789 }
1790
1791 return NULL;
1792 }
1793
1794 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1795
1796 static int find_later_rq(struct task_struct *task)
1797 {
1798 struct sched_domain *sd;
1799 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1800 int this_cpu = smp_processor_id();
1801 int cpu = task_cpu(task);
1802
1803 /* Make sure the mask is initialized first */
1804 if (unlikely(!later_mask))
1805 return -1;
1806
1807 if (task->nr_cpus_allowed == 1)
1808 return -1;
1809
1810 /*
1811 * We have to consider system topology and task affinity
1812 * first, then we can look for a suitable cpu.
1813 */
1814 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1815 return -1;
1816
1817 /*
1818 * If we are here, some targets have been found, including
1819 * the most suitable which is, among the runqueues where the
1820 * current tasks have later deadlines than the task's one, the
1821 * rq with the latest possible one.
1822 *
1823 * Now we check how well this matches with task's
1824 * affinity and system topology.
1825 *
1826 * The last cpu where the task run is our first
1827 * guess, since it is most likely cache-hot there.
1828 */
1829 if (cpumask_test_cpu(cpu, later_mask))
1830 return cpu;
1831 /*
1832 * Check if this_cpu is to be skipped (i.e., it is
1833 * not in the mask) or not.
1834 */
1835 if (!cpumask_test_cpu(this_cpu, later_mask))
1836 this_cpu = -1;
1837
1838 rcu_read_lock();
1839 for_each_domain(cpu, sd) {
1840 if (sd->flags & SD_WAKE_AFFINE) {
1841 int best_cpu;
1842
1843 /*
1844 * If possible, preempting this_cpu is
1845 * cheaper than migrating.
1846 */
1847 if (this_cpu != -1 &&
1848 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1849 rcu_read_unlock();
1850 return this_cpu;
1851 }
1852
1853 best_cpu = cpumask_first_and(later_mask,
1854 sched_domain_span(sd));
1855 /*
1856 * Last chance: if a cpu being in both later_mask
1857 * and current sd span is valid, that becomes our
1858 * choice. Of course, the latest possible cpu is
1859 * already under consideration through later_mask.
1860 */
1861 if (best_cpu < nr_cpu_ids) {
1862 rcu_read_unlock();
1863 return best_cpu;
1864 }
1865 }
1866 }
1867 rcu_read_unlock();
1868
1869 /*
1870 * At this point, all our guesses failed, we just return
1871 * 'something', and let the caller sort the things out.
1872 */
1873 if (this_cpu != -1)
1874 return this_cpu;
1875
1876 cpu = cpumask_any(later_mask);
1877 if (cpu < nr_cpu_ids)
1878 return cpu;
1879
1880 return -1;
1881 }
1882
1883 /* Locks the rq it finds */
1884 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1885 {
1886 struct rq *later_rq = NULL;
1887 int tries;
1888 int cpu;
1889
1890 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1891 cpu = find_later_rq(task);
1892
1893 if ((cpu == -1) || (cpu == rq->cpu))
1894 break;
1895
1896 later_rq = cpu_rq(cpu);
1897
1898 if (later_rq->dl.dl_nr_running &&
1899 !dl_time_before(task->dl.deadline,
1900 later_rq->dl.earliest_dl.curr)) {
1901 /*
1902 * Target rq has tasks of equal or earlier deadline,
1903 * retrying does not release any lock and is unlikely
1904 * to yield a different result.
1905 */
1906 later_rq = NULL;
1907 break;
1908 }
1909
1910 /* Retry if something changed. */
1911 if (double_lock_balance(rq, later_rq)) {
1912 if (unlikely(task_rq(task) != rq ||
1913 !cpumask_test_cpu(later_rq->cpu, &task->cpus_allowed) ||
1914 task_running(rq, task) ||
1915 !dl_task(task) ||
1916 !task_on_rq_queued(task))) {
1917 double_unlock_balance(rq, later_rq);
1918 later_rq = NULL;
1919 break;
1920 }
1921 }
1922
1923 /*
1924 * If the rq we found has no -deadline task, or
1925 * its earliest one has a later deadline than our
1926 * task, the rq is a good one.
1927 */
1928 if (!later_rq->dl.dl_nr_running ||
1929 dl_time_before(task->dl.deadline,
1930 later_rq->dl.earliest_dl.curr))
1931 break;
1932
1933 /* Otherwise we try again. */
1934 double_unlock_balance(rq, later_rq);
1935 later_rq = NULL;
1936 }
1937
1938 return later_rq;
1939 }
1940
1941 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1942 {
1943 struct task_struct *p;
1944
1945 if (!has_pushable_dl_tasks(rq))
1946 return NULL;
1947
1948 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1949 struct task_struct, pushable_dl_tasks);
1950
1951 BUG_ON(rq->cpu != task_cpu(p));
1952 BUG_ON(task_current(rq, p));
1953 BUG_ON(p->nr_cpus_allowed <= 1);
1954
1955 BUG_ON(!task_on_rq_queued(p));
1956 BUG_ON(!dl_task(p));
1957
1958 return p;
1959 }
1960
1961 /*
1962 * See if the non running -deadline tasks on this rq
1963 * can be sent to some other CPU where they can preempt
1964 * and start executing.
1965 */
1966 static int push_dl_task(struct rq *rq)
1967 {
1968 struct task_struct *next_task;
1969 struct rq *later_rq;
1970 int ret = 0;
1971
1972 if (!rq->dl.overloaded)
1973 return 0;
1974
1975 next_task = pick_next_pushable_dl_task(rq);
1976 if (!next_task)
1977 return 0;
1978
1979 retry:
1980 if (unlikely(next_task == rq->curr)) {
1981 WARN_ON(1);
1982 return 0;
1983 }
1984
1985 /*
1986 * If next_task preempts rq->curr, and rq->curr
1987 * can move away, it makes sense to just reschedule
1988 * without going further in pushing next_task.
1989 */
1990 if (dl_task(rq->curr) &&
1991 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1992 rq->curr->nr_cpus_allowed > 1) {
1993 resched_curr(rq);
1994 return 0;
1995 }
1996
1997 /* We might release rq lock */
1998 get_task_struct(next_task);
1999
2000 /* Will lock the rq it'll find */
2001 later_rq = find_lock_later_rq(next_task, rq);
2002 if (!later_rq) {
2003 struct task_struct *task;
2004
2005 /*
2006 * We must check all this again, since
2007 * find_lock_later_rq releases rq->lock and it is
2008 * then possible that next_task has migrated.
2009 */
2010 task = pick_next_pushable_dl_task(rq);
2011 if (task == next_task) {
2012 /*
2013 * The task is still there. We don't try
2014 * again, some other cpu will pull it when ready.
2015 */
2016 goto out;
2017 }
2018
2019 if (!task)
2020 /* No more tasks */
2021 goto out;
2022
2023 put_task_struct(next_task);
2024 next_task = task;
2025 goto retry;
2026 }
2027
2028 deactivate_task(rq, next_task, 0);
2029 sub_running_bw(next_task->dl.dl_bw, &rq->dl);
2030 sub_rq_bw(next_task->dl.dl_bw, &rq->dl);
2031 set_task_cpu(next_task, later_rq->cpu);
2032 add_rq_bw(next_task->dl.dl_bw, &later_rq->dl);
2033 add_running_bw(next_task->dl.dl_bw, &later_rq->dl);
2034 activate_task(later_rq, next_task, 0);
2035 ret = 1;
2036
2037 resched_curr(later_rq);
2038
2039 double_unlock_balance(rq, later_rq);
2040
2041 out:
2042 put_task_struct(next_task);
2043
2044 return ret;
2045 }
2046
2047 static void push_dl_tasks(struct rq *rq)
2048 {
2049 /* push_dl_task() will return true if it moved a -deadline task */
2050 while (push_dl_task(rq))
2051 ;
2052 }
2053
2054 static void pull_dl_task(struct rq *this_rq)
2055 {
2056 int this_cpu = this_rq->cpu, cpu;
2057 struct task_struct *p;
2058 bool resched = false;
2059 struct rq *src_rq;
2060 u64 dmin = LONG_MAX;
2061
2062 if (likely(!dl_overloaded(this_rq)))
2063 return;
2064
2065 /*
2066 * Match the barrier from dl_set_overloaded; this guarantees that if we
2067 * see overloaded we must also see the dlo_mask bit.
2068 */
2069 smp_rmb();
2070
2071 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2072 if (this_cpu == cpu)
2073 continue;
2074
2075 src_rq = cpu_rq(cpu);
2076
2077 /*
2078 * It looks racy, abd it is! However, as in sched_rt.c,
2079 * we are fine with this.
2080 */
2081 if (this_rq->dl.dl_nr_running &&
2082 dl_time_before(this_rq->dl.earliest_dl.curr,
2083 src_rq->dl.earliest_dl.next))
2084 continue;
2085
2086 /* Might drop this_rq->lock */
2087 double_lock_balance(this_rq, src_rq);
2088
2089 /*
2090 * If there are no more pullable tasks on the
2091 * rq, we're done with it.
2092 */
2093 if (src_rq->dl.dl_nr_running <= 1)
2094 goto skip;
2095
2096 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2097
2098 /*
2099 * We found a task to be pulled if:
2100 * - it preempts our current (if there's one),
2101 * - it will preempt the last one we pulled (if any).
2102 */
2103 if (p && dl_time_before(p->dl.deadline, dmin) &&
2104 (!this_rq->dl.dl_nr_running ||
2105 dl_time_before(p->dl.deadline,
2106 this_rq->dl.earliest_dl.curr))) {
2107 WARN_ON(p == src_rq->curr);
2108 WARN_ON(!task_on_rq_queued(p));
2109
2110 /*
2111 * Then we pull iff p has actually an earlier
2112 * deadline than the current task of its runqueue.
2113 */
2114 if (dl_time_before(p->dl.deadline,
2115 src_rq->curr->dl.deadline))
2116 goto skip;
2117
2118 resched = true;
2119
2120 deactivate_task(src_rq, p, 0);
2121 sub_running_bw(p->dl.dl_bw, &src_rq->dl);
2122 sub_rq_bw(p->dl.dl_bw, &src_rq->dl);
2123 set_task_cpu(p, this_cpu);
2124 add_rq_bw(p->dl.dl_bw, &this_rq->dl);
2125 add_running_bw(p->dl.dl_bw, &this_rq->dl);
2126 activate_task(this_rq, p, 0);
2127 dmin = p->dl.deadline;
2128
2129 /* Is there any other task even earlier? */
2130 }
2131 skip:
2132 double_unlock_balance(this_rq, src_rq);
2133 }
2134
2135 if (resched)
2136 resched_curr(this_rq);
2137 }
2138
2139 /*
2140 * Since the task is not running and a reschedule is not going to happen
2141 * anytime soon on its runqueue, we try pushing it away now.
2142 */
2143 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2144 {
2145 if (!task_running(rq, p) &&
2146 !test_tsk_need_resched(rq->curr) &&
2147 p->nr_cpus_allowed > 1 &&
2148 dl_task(rq->curr) &&
2149 (rq->curr->nr_cpus_allowed < 2 ||
2150 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2151 push_dl_tasks(rq);
2152 }
2153 }
2154
2155 static void set_cpus_allowed_dl(struct task_struct *p,
2156 const struct cpumask *new_mask)
2157 {
2158 struct root_domain *src_rd;
2159 struct rq *rq;
2160
2161 BUG_ON(!dl_task(p));
2162
2163 rq = task_rq(p);
2164 src_rd = rq->rd;
2165 /*
2166 * Migrating a SCHED_DEADLINE task between exclusive
2167 * cpusets (different root_domains) entails a bandwidth
2168 * update. We already made space for us in the destination
2169 * domain (see cpuset_can_attach()).
2170 */
2171 if (!cpumask_intersects(src_rd->span, new_mask)) {
2172 struct dl_bw *src_dl_b;
2173
2174 src_dl_b = dl_bw_of(cpu_of(rq));
2175 /*
2176 * We now free resources of the root_domain we are migrating
2177 * off. In the worst case, sched_setattr() may temporary fail
2178 * until we complete the update.
2179 */
2180 raw_spin_lock(&src_dl_b->lock);
2181 __dl_clear(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2182 raw_spin_unlock(&src_dl_b->lock);
2183 }
2184
2185 set_cpus_allowed_common(p, new_mask);
2186 }
2187
2188 /* Assumes rq->lock is held */
2189 static void rq_online_dl(struct rq *rq)
2190 {
2191 if (rq->dl.overloaded)
2192 dl_set_overload(rq);
2193
2194 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2195 if (rq->dl.dl_nr_running > 0)
2196 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2197 }
2198
2199 /* Assumes rq->lock is held */
2200 static void rq_offline_dl(struct rq *rq)
2201 {
2202 if (rq->dl.overloaded)
2203 dl_clear_overload(rq);
2204
2205 cpudl_clear(&rq->rd->cpudl, rq->cpu);
2206 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2207 }
2208
2209 void __init init_sched_dl_class(void)
2210 {
2211 unsigned int i;
2212
2213 for_each_possible_cpu(i)
2214 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2215 GFP_KERNEL, cpu_to_node(i));
2216 }
2217
2218 #endif /* CONFIG_SMP */
2219
2220 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2221 {
2222 /*
2223 * task_non_contending() can start the "inactive timer" (if the 0-lag
2224 * time is in the future). If the task switches back to dl before
2225 * the "inactive timer" fires, it can continue to consume its current
2226 * runtime using its current deadline. If it stays outside of
2227 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2228 * will reset the task parameters.
2229 */
2230 if (task_on_rq_queued(p) && p->dl.dl_runtime)
2231 task_non_contending(p);
2232
2233 if (!task_on_rq_queued(p))
2234 sub_rq_bw(p->dl.dl_bw, &rq->dl);
2235
2236 /*
2237 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2238 * at the 0-lag time, because the task could have been migrated
2239 * while SCHED_OTHER in the meanwhile.
2240 */
2241 if (p->dl.dl_non_contending)
2242 p->dl.dl_non_contending = 0;
2243
2244 /*
2245 * Since this might be the only -deadline task on the rq,
2246 * this is the right place to try to pull some other one
2247 * from an overloaded cpu, if any.
2248 */
2249 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2250 return;
2251
2252 queue_pull_task(rq);
2253 }
2254
2255 /*
2256 * When switching to -deadline, we may overload the rq, then
2257 * we try to push someone off, if possible.
2258 */
2259 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2260 {
2261 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2262 put_task_struct(p);
2263
2264 /* If p is not queued we will update its parameters at next wakeup. */
2265 if (!task_on_rq_queued(p)) {
2266 add_rq_bw(p->dl.dl_bw, &rq->dl);
2267
2268 return;
2269 }
2270 /*
2271 * If p is boosted we already updated its params in
2272 * rt_mutex_setprio()->enqueue_task(..., ENQUEUE_REPLENISH),
2273 * p's deadline being now already after rq_clock(rq).
2274 */
2275 if (dl_time_before(p->dl.deadline, rq_clock(rq)))
2276 setup_new_dl_entity(&p->dl);
2277
2278 if (rq->curr != p) {
2279 #ifdef CONFIG_SMP
2280 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2281 queue_push_tasks(rq);
2282 #endif
2283 if (dl_task(rq->curr))
2284 check_preempt_curr_dl(rq, p, 0);
2285 else
2286 resched_curr(rq);
2287 }
2288 }
2289
2290 /*
2291 * If the scheduling parameters of a -deadline task changed,
2292 * a push or pull operation might be needed.
2293 */
2294 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2295 int oldprio)
2296 {
2297 if (task_on_rq_queued(p) || rq->curr == p) {
2298 #ifdef CONFIG_SMP
2299 /*
2300 * This might be too much, but unfortunately
2301 * we don't have the old deadline value, and
2302 * we can't argue if the task is increasing
2303 * or lowering its prio, so...
2304 */
2305 if (!rq->dl.overloaded)
2306 queue_pull_task(rq);
2307
2308 /*
2309 * If we now have a earlier deadline task than p,
2310 * then reschedule, provided p is still on this
2311 * runqueue.
2312 */
2313 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2314 resched_curr(rq);
2315 #else
2316 /*
2317 * Again, we don't know if p has a earlier
2318 * or later deadline, so let's blindly set a
2319 * (maybe not needed) rescheduling point.
2320 */
2321 resched_curr(rq);
2322 #endif /* CONFIG_SMP */
2323 }
2324 }
2325
2326 const struct sched_class dl_sched_class = {
2327 .next = &rt_sched_class,
2328 .enqueue_task = enqueue_task_dl,
2329 .dequeue_task = dequeue_task_dl,
2330 .yield_task = yield_task_dl,
2331
2332 .check_preempt_curr = check_preempt_curr_dl,
2333
2334 .pick_next_task = pick_next_task_dl,
2335 .put_prev_task = put_prev_task_dl,
2336
2337 #ifdef CONFIG_SMP
2338 .select_task_rq = select_task_rq_dl,
2339 .migrate_task_rq = migrate_task_rq_dl,
2340 .set_cpus_allowed = set_cpus_allowed_dl,
2341 .rq_online = rq_online_dl,
2342 .rq_offline = rq_offline_dl,
2343 .task_woken = task_woken_dl,
2344 #endif
2345
2346 .set_curr_task = set_curr_task_dl,
2347 .task_tick = task_tick_dl,
2348 .task_fork = task_fork_dl,
2349
2350 .prio_changed = prio_changed_dl,
2351 .switched_from = switched_from_dl,
2352 .switched_to = switched_to_dl,
2353
2354 .update_curr = update_curr_dl,
2355 };
2356
2357 int sched_dl_global_validate(void)
2358 {
2359 u64 runtime = global_rt_runtime();
2360 u64 period = global_rt_period();
2361 u64 new_bw = to_ratio(period, runtime);
2362 struct dl_bw *dl_b;
2363 int cpu, ret = 0;
2364 unsigned long flags;
2365
2366 /*
2367 * Here we want to check the bandwidth not being set to some
2368 * value smaller than the currently allocated bandwidth in
2369 * any of the root_domains.
2370 *
2371 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2372 * cycling on root_domains... Discussion on different/better
2373 * solutions is welcome!
2374 */
2375 for_each_possible_cpu(cpu) {
2376 rcu_read_lock_sched();
2377 dl_b = dl_bw_of(cpu);
2378
2379 raw_spin_lock_irqsave(&dl_b->lock, flags);
2380 if (new_bw < dl_b->total_bw)
2381 ret = -EBUSY;
2382 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2383
2384 rcu_read_unlock_sched();
2385
2386 if (ret)
2387 break;
2388 }
2389
2390 return ret;
2391 }
2392
2393 void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2394 {
2395 if (global_rt_runtime() == RUNTIME_INF) {
2396 dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2397 dl_rq->extra_bw = 1 << BW_SHIFT;
2398 } else {
2399 dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2400 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2401 dl_rq->extra_bw = to_ratio(global_rt_period(),
2402 global_rt_runtime());
2403 }
2404 }
2405
2406 void sched_dl_do_global(void)
2407 {
2408 u64 new_bw = -1;
2409 struct dl_bw *dl_b;
2410 int cpu;
2411 unsigned long flags;
2412
2413 def_dl_bandwidth.dl_period = global_rt_period();
2414 def_dl_bandwidth.dl_runtime = global_rt_runtime();
2415
2416 if (global_rt_runtime() != RUNTIME_INF)
2417 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2418
2419 /*
2420 * FIXME: As above...
2421 */
2422 for_each_possible_cpu(cpu) {
2423 rcu_read_lock_sched();
2424 dl_b = dl_bw_of(cpu);
2425
2426 raw_spin_lock_irqsave(&dl_b->lock, flags);
2427 dl_b->bw = new_bw;
2428 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2429
2430 rcu_read_unlock_sched();
2431 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2432 }
2433 }
2434
2435 /*
2436 * We must be sure that accepting a new task (or allowing changing the
2437 * parameters of an existing one) is consistent with the bandwidth
2438 * constraints. If yes, this function also accordingly updates the currently
2439 * allocated bandwidth to reflect the new situation.
2440 *
2441 * This function is called while holding p's rq->lock.
2442 */
2443 int sched_dl_overflow(struct task_struct *p, int policy,
2444 const struct sched_attr *attr)
2445 {
2446 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2447 u64 period = attr->sched_period ?: attr->sched_deadline;
2448 u64 runtime = attr->sched_runtime;
2449 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2450 int cpus, err = -1;
2451
2452 /* !deadline task may carry old deadline bandwidth */
2453 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2454 return 0;
2455
2456 /*
2457 * Either if a task, enters, leave, or stays -deadline but changes
2458 * its parameters, we may need to update accordingly the total
2459 * allocated bandwidth of the container.
2460 */
2461 raw_spin_lock(&dl_b->lock);
2462 cpus = dl_bw_cpus(task_cpu(p));
2463 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2464 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2465 if (hrtimer_active(&p->dl.inactive_timer))
2466 __dl_clear(dl_b, p->dl.dl_bw, cpus);
2467 __dl_add(dl_b, new_bw, cpus);
2468 err = 0;
2469 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2470 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2471 /*
2472 * XXX this is slightly incorrect: when the task
2473 * utilization decreases, we should delay the total
2474 * utilization change until the task's 0-lag point.
2475 * But this would require to set the task's "inactive
2476 * timer" when the task is not inactive.
2477 */
2478 __dl_clear(dl_b, p->dl.dl_bw, cpus);
2479 __dl_add(dl_b, new_bw, cpus);
2480 dl_change_utilization(p, new_bw);
2481 err = 0;
2482 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2483 /*
2484 * Do not decrease the total deadline utilization here,
2485 * switched_from_dl() will take care to do it at the correct
2486 * (0-lag) time.
2487 */
2488 err = 0;
2489 }
2490 raw_spin_unlock(&dl_b->lock);
2491
2492 return err;
2493 }
2494
2495 /*
2496 * This function initializes the sched_dl_entity of a newly becoming
2497 * SCHED_DEADLINE task.
2498 *
2499 * Only the static values are considered here, the actual runtime and the
2500 * absolute deadline will be properly calculated when the task is enqueued
2501 * for the first time with its new policy.
2502 */
2503 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2504 {
2505 struct sched_dl_entity *dl_se = &p->dl;
2506
2507 dl_se->dl_runtime = attr->sched_runtime;
2508 dl_se->dl_deadline = attr->sched_deadline;
2509 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2510 dl_se->flags = attr->sched_flags;
2511 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2512 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2513 }
2514
2515 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2516 {
2517 struct sched_dl_entity *dl_se = &p->dl;
2518
2519 attr->sched_priority = p->rt_priority;
2520 attr->sched_runtime = dl_se->dl_runtime;
2521 attr->sched_deadline = dl_se->dl_deadline;
2522 attr->sched_period = dl_se->dl_period;
2523 attr->sched_flags = dl_se->flags;
2524 }
2525
2526 /*
2527 * This function validates the new parameters of a -deadline task.
2528 * We ask for the deadline not being zero, and greater or equal
2529 * than the runtime, as well as the period of being zero or
2530 * greater than deadline. Furthermore, we have to be sure that
2531 * user parameters are above the internal resolution of 1us (we
2532 * check sched_runtime only since it is always the smaller one) and
2533 * below 2^63 ns (we have to check both sched_deadline and
2534 * sched_period, as the latter can be zero).
2535 */
2536 bool __checkparam_dl(const struct sched_attr *attr)
2537 {
2538 /* deadline != 0 */
2539 if (attr->sched_deadline == 0)
2540 return false;
2541
2542 /*
2543 * Since we truncate DL_SCALE bits, make sure we're at least
2544 * that big.
2545 */
2546 if (attr->sched_runtime < (1ULL << DL_SCALE))
2547 return false;
2548
2549 /*
2550 * Since we use the MSB for wrap-around and sign issues, make
2551 * sure it's not set (mind that period can be equal to zero).
2552 */
2553 if (attr->sched_deadline & (1ULL << 63) ||
2554 attr->sched_period & (1ULL << 63))
2555 return false;
2556
2557 /* runtime <= deadline <= period (if period != 0) */
2558 if ((attr->sched_period != 0 &&
2559 attr->sched_period < attr->sched_deadline) ||
2560 attr->sched_deadline < attr->sched_runtime)
2561 return false;
2562
2563 return true;
2564 }
2565
2566 /*
2567 * This function clears the sched_dl_entity static params.
2568 */
2569 void __dl_clear_params(struct task_struct *p)
2570 {
2571 struct sched_dl_entity *dl_se = &p->dl;
2572
2573 dl_se->dl_runtime = 0;
2574 dl_se->dl_deadline = 0;
2575 dl_se->dl_period = 0;
2576 dl_se->flags = 0;
2577 dl_se->dl_bw = 0;
2578 dl_se->dl_density = 0;
2579
2580 dl_se->dl_throttled = 0;
2581 dl_se->dl_yielded = 0;
2582 dl_se->dl_non_contending = 0;
2583 }
2584
2585 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2586 {
2587 struct sched_dl_entity *dl_se = &p->dl;
2588
2589 if (dl_se->dl_runtime != attr->sched_runtime ||
2590 dl_se->dl_deadline != attr->sched_deadline ||
2591 dl_se->dl_period != attr->sched_period ||
2592 dl_se->flags != attr->sched_flags)
2593 return true;
2594
2595 return false;
2596 }
2597
2598 #ifdef CONFIG_SMP
2599 int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2600 {
2601 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
2602 cs_cpus_allowed);
2603 struct dl_bw *dl_b;
2604 bool overflow;
2605 int cpus, ret;
2606 unsigned long flags;
2607
2608 rcu_read_lock_sched();
2609 dl_b = dl_bw_of(dest_cpu);
2610 raw_spin_lock_irqsave(&dl_b->lock, flags);
2611 cpus = dl_bw_cpus(dest_cpu);
2612 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
2613 if (overflow)
2614 ret = -EBUSY;
2615 else {
2616 /*
2617 * We reserve space for this task in the destination
2618 * root_domain, as we can't fail after this point.
2619 * We will free resources in the source root_domain
2620 * later on (see set_cpus_allowed_dl()).
2621 */
2622 __dl_add(dl_b, p->dl.dl_bw, cpus);
2623 ret = 0;
2624 }
2625 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2626 rcu_read_unlock_sched();
2627 return ret;
2628 }
2629
2630 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2631 const struct cpumask *trial)
2632 {
2633 int ret = 1, trial_cpus;
2634 struct dl_bw *cur_dl_b;
2635 unsigned long flags;
2636
2637 rcu_read_lock_sched();
2638 cur_dl_b = dl_bw_of(cpumask_any(cur));
2639 trial_cpus = cpumask_weight(trial);
2640
2641 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2642 if (cur_dl_b->bw != -1 &&
2643 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2644 ret = 0;
2645 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2646 rcu_read_unlock_sched();
2647 return ret;
2648 }
2649
2650 bool dl_cpu_busy(unsigned int cpu)
2651 {
2652 unsigned long flags;
2653 struct dl_bw *dl_b;
2654 bool overflow;
2655 int cpus;
2656
2657 rcu_read_lock_sched();
2658 dl_b = dl_bw_of(cpu);
2659 raw_spin_lock_irqsave(&dl_b->lock, flags);
2660 cpus = dl_bw_cpus(cpu);
2661 overflow = __dl_overflow(dl_b, cpus, 0, 0);
2662 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2663 rcu_read_unlock_sched();
2664 return overflow;
2665 }
2666 #endif
2667
2668 #ifdef CONFIG_SCHED_DEBUG
2669 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2670
2671 void print_dl_stats(struct seq_file *m, int cpu)
2672 {
2673 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2674 }
2675 #endif /* CONFIG_SCHED_DEBUG */