]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/sched/fair.c
sched/fair: Use a recently used CPU as an idle candidate and the basis for SIS
[thirdparty/linux.git] / kernel / sched / fair.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23
24 #include <linux/sched/mm.h>
25 #include <linux/sched/topology.h>
26
27 #include <linux/latencytop.h>
28 #include <linux/cpumask.h>
29 #include <linux/cpuidle.h>
30 #include <linux/slab.h>
31 #include <linux/profile.h>
32 #include <linux/interrupt.h>
33 #include <linux/mempolicy.h>
34 #include <linux/migrate.h>
35 #include <linux/task_work.h>
36 #include <linux/sched/isolation.h>
37
38 #include <trace/events/sched.h>
39
40 #include "sched.h"
41
42 /*
43 * Targeted preemption latency for CPU-bound tasks:
44 *
45 * NOTE: this latency value is not the same as the concept of
46 * 'timeslice length' - timeslices in CFS are of variable length
47 * and have no persistent notion like in traditional, time-slice
48 * based scheduling concepts.
49 *
50 * (to see the precise effective timeslice length of your workload,
51 * run vmstat and monitor the context-switches (cs) field)
52 *
53 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
54 */
55 unsigned int sysctl_sched_latency = 6000000ULL;
56 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
57
58 /*
59 * The initial- and re-scaling of tunables is configurable
60 *
61 * Options are:
62 *
63 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
64 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
65 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
66 *
67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
68 */
69 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
70
71 /*
72 * Minimal preemption granularity for CPU-bound tasks:
73 *
74 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
75 */
76 unsigned int sysctl_sched_min_granularity = 750000ULL;
77 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
78
79 /*
80 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
81 */
82 static unsigned int sched_nr_latency = 8;
83
84 /*
85 * After fork, child runs first. If set to 0 (default) then
86 * parent will (try to) run first.
87 */
88 unsigned int sysctl_sched_child_runs_first __read_mostly;
89
90 /*
91 * SCHED_OTHER wake-up granularity.
92 *
93 * This option delays the preemption effects of decoupled workloads
94 * and reduces their over-scheduling. Synchronous workloads will still
95 * have immediate wakeup/sleep latencies.
96 *
97 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
98 */
99 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
100 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
101
102 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
103
104 #ifdef CONFIG_SMP
105 /*
106 * For asym packing, by default the lower numbered cpu has higher priority.
107 */
108 int __weak arch_asym_cpu_priority(int cpu)
109 {
110 return -cpu;
111 }
112 #endif
113
114 #ifdef CONFIG_CFS_BANDWIDTH
115 /*
116 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
117 * each time a cfs_rq requests quota.
118 *
119 * Note: in the case that the slice exceeds the runtime remaining (either due
120 * to consumption or the quota being specified to be smaller than the slice)
121 * we will always only issue the remaining available time.
122 *
123 * (default: 5 msec, units: microseconds)
124 */
125 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
126 #endif
127
128 /*
129 * The margin used when comparing utilization with CPU capacity:
130 * util * margin < capacity * 1024
131 *
132 * (default: ~20%)
133 */
134 unsigned int capacity_margin = 1280;
135
136 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
137 {
138 lw->weight += inc;
139 lw->inv_weight = 0;
140 }
141
142 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
143 {
144 lw->weight -= dec;
145 lw->inv_weight = 0;
146 }
147
148 static inline void update_load_set(struct load_weight *lw, unsigned long w)
149 {
150 lw->weight = w;
151 lw->inv_weight = 0;
152 }
153
154 /*
155 * Increase the granularity value when there are more CPUs,
156 * because with more CPUs the 'effective latency' as visible
157 * to users decreases. But the relationship is not linear,
158 * so pick a second-best guess by going with the log2 of the
159 * number of CPUs.
160 *
161 * This idea comes from the SD scheduler of Con Kolivas:
162 */
163 static unsigned int get_update_sysctl_factor(void)
164 {
165 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
166 unsigned int factor;
167
168 switch (sysctl_sched_tunable_scaling) {
169 case SCHED_TUNABLESCALING_NONE:
170 factor = 1;
171 break;
172 case SCHED_TUNABLESCALING_LINEAR:
173 factor = cpus;
174 break;
175 case SCHED_TUNABLESCALING_LOG:
176 default:
177 factor = 1 + ilog2(cpus);
178 break;
179 }
180
181 return factor;
182 }
183
184 static void update_sysctl(void)
185 {
186 unsigned int factor = get_update_sysctl_factor();
187
188 #define SET_SYSCTL(name) \
189 (sysctl_##name = (factor) * normalized_sysctl_##name)
190 SET_SYSCTL(sched_min_granularity);
191 SET_SYSCTL(sched_latency);
192 SET_SYSCTL(sched_wakeup_granularity);
193 #undef SET_SYSCTL
194 }
195
196 void sched_init_granularity(void)
197 {
198 update_sysctl();
199 }
200
201 #define WMULT_CONST (~0U)
202 #define WMULT_SHIFT 32
203
204 static void __update_inv_weight(struct load_weight *lw)
205 {
206 unsigned long w;
207
208 if (likely(lw->inv_weight))
209 return;
210
211 w = scale_load_down(lw->weight);
212
213 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
214 lw->inv_weight = 1;
215 else if (unlikely(!w))
216 lw->inv_weight = WMULT_CONST;
217 else
218 lw->inv_weight = WMULT_CONST / w;
219 }
220
221 /*
222 * delta_exec * weight / lw.weight
223 * OR
224 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
225 *
226 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
227 * we're guaranteed shift stays positive because inv_weight is guaranteed to
228 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
229 *
230 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
231 * weight/lw.weight <= 1, and therefore our shift will also be positive.
232 */
233 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
234 {
235 u64 fact = scale_load_down(weight);
236 int shift = WMULT_SHIFT;
237
238 __update_inv_weight(lw);
239
240 if (unlikely(fact >> 32)) {
241 while (fact >> 32) {
242 fact >>= 1;
243 shift--;
244 }
245 }
246
247 /* hint to use a 32x32->64 mul */
248 fact = (u64)(u32)fact * lw->inv_weight;
249
250 while (fact >> 32) {
251 fact >>= 1;
252 shift--;
253 }
254
255 return mul_u64_u32_shr(delta_exec, fact, shift);
256 }
257
258
259 const struct sched_class fair_sched_class;
260
261 /**************************************************************
262 * CFS operations on generic schedulable entities:
263 */
264
265 #ifdef CONFIG_FAIR_GROUP_SCHED
266
267 /* cpu runqueue to which this cfs_rq is attached */
268 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
269 {
270 return cfs_rq->rq;
271 }
272
273 /* An entity is a task if it doesn't "own" a runqueue */
274 #define entity_is_task(se) (!se->my_q)
275
276 static inline struct task_struct *task_of(struct sched_entity *se)
277 {
278 SCHED_WARN_ON(!entity_is_task(se));
279 return container_of(se, struct task_struct, se);
280 }
281
282 /* Walk up scheduling entities hierarchy */
283 #define for_each_sched_entity(se) \
284 for (; se; se = se->parent)
285
286 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
287 {
288 return p->se.cfs_rq;
289 }
290
291 /* runqueue on which this entity is (to be) queued */
292 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
293 {
294 return se->cfs_rq;
295 }
296
297 /* runqueue "owned" by this group */
298 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
299 {
300 return grp->my_q;
301 }
302
303 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
304 {
305 if (!cfs_rq->on_list) {
306 struct rq *rq = rq_of(cfs_rq);
307 int cpu = cpu_of(rq);
308 /*
309 * Ensure we either appear before our parent (if already
310 * enqueued) or force our parent to appear after us when it is
311 * enqueued. The fact that we always enqueue bottom-up
312 * reduces this to two cases and a special case for the root
313 * cfs_rq. Furthermore, it also means that we will always reset
314 * tmp_alone_branch either when the branch is connected
315 * to a tree or when we reach the beg of the tree
316 */
317 if (cfs_rq->tg->parent &&
318 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
319 /*
320 * If parent is already on the list, we add the child
321 * just before. Thanks to circular linked property of
322 * the list, this means to put the child at the tail
323 * of the list that starts by parent.
324 */
325 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
326 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
327 /*
328 * The branch is now connected to its tree so we can
329 * reset tmp_alone_branch to the beginning of the
330 * list.
331 */
332 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
333 } else if (!cfs_rq->tg->parent) {
334 /*
335 * cfs rq without parent should be put
336 * at the tail of the list.
337 */
338 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
339 &rq->leaf_cfs_rq_list);
340 /*
341 * We have reach the beg of a tree so we can reset
342 * tmp_alone_branch to the beginning of the list.
343 */
344 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
345 } else {
346 /*
347 * The parent has not already been added so we want to
348 * make sure that it will be put after us.
349 * tmp_alone_branch points to the beg of the branch
350 * where we will add parent.
351 */
352 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
353 rq->tmp_alone_branch);
354 /*
355 * update tmp_alone_branch to points to the new beg
356 * of the branch
357 */
358 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
359 }
360
361 cfs_rq->on_list = 1;
362 }
363 }
364
365 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
366 {
367 if (cfs_rq->on_list) {
368 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
369 cfs_rq->on_list = 0;
370 }
371 }
372
373 /* Iterate thr' all leaf cfs_rq's on a runqueue */
374 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
375 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
376 leaf_cfs_rq_list)
377
378 /* Do the two (enqueued) entities belong to the same group ? */
379 static inline struct cfs_rq *
380 is_same_group(struct sched_entity *se, struct sched_entity *pse)
381 {
382 if (se->cfs_rq == pse->cfs_rq)
383 return se->cfs_rq;
384
385 return NULL;
386 }
387
388 static inline struct sched_entity *parent_entity(struct sched_entity *se)
389 {
390 return se->parent;
391 }
392
393 static void
394 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
395 {
396 int se_depth, pse_depth;
397
398 /*
399 * preemption test can be made between sibling entities who are in the
400 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
401 * both tasks until we find their ancestors who are siblings of common
402 * parent.
403 */
404
405 /* First walk up until both entities are at same depth */
406 se_depth = (*se)->depth;
407 pse_depth = (*pse)->depth;
408
409 while (se_depth > pse_depth) {
410 se_depth--;
411 *se = parent_entity(*se);
412 }
413
414 while (pse_depth > se_depth) {
415 pse_depth--;
416 *pse = parent_entity(*pse);
417 }
418
419 while (!is_same_group(*se, *pse)) {
420 *se = parent_entity(*se);
421 *pse = parent_entity(*pse);
422 }
423 }
424
425 #else /* !CONFIG_FAIR_GROUP_SCHED */
426
427 static inline struct task_struct *task_of(struct sched_entity *se)
428 {
429 return container_of(se, struct task_struct, se);
430 }
431
432 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
433 {
434 return container_of(cfs_rq, struct rq, cfs);
435 }
436
437 #define entity_is_task(se) 1
438
439 #define for_each_sched_entity(se) \
440 for (; se; se = NULL)
441
442 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
443 {
444 return &task_rq(p)->cfs;
445 }
446
447 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
448 {
449 struct task_struct *p = task_of(se);
450 struct rq *rq = task_rq(p);
451
452 return &rq->cfs;
453 }
454
455 /* runqueue "owned" by this group */
456 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
457 {
458 return NULL;
459 }
460
461 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
462 {
463 }
464
465 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
466 {
467 }
468
469 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
470 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
471
472 static inline struct sched_entity *parent_entity(struct sched_entity *se)
473 {
474 return NULL;
475 }
476
477 static inline void
478 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
479 {
480 }
481
482 #endif /* CONFIG_FAIR_GROUP_SCHED */
483
484 static __always_inline
485 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
486
487 /**************************************************************
488 * Scheduling class tree data structure manipulation methods:
489 */
490
491 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
492 {
493 s64 delta = (s64)(vruntime - max_vruntime);
494 if (delta > 0)
495 max_vruntime = vruntime;
496
497 return max_vruntime;
498 }
499
500 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
501 {
502 s64 delta = (s64)(vruntime - min_vruntime);
503 if (delta < 0)
504 min_vruntime = vruntime;
505
506 return min_vruntime;
507 }
508
509 static inline int entity_before(struct sched_entity *a,
510 struct sched_entity *b)
511 {
512 return (s64)(a->vruntime - b->vruntime) < 0;
513 }
514
515 static void update_min_vruntime(struct cfs_rq *cfs_rq)
516 {
517 struct sched_entity *curr = cfs_rq->curr;
518 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
519
520 u64 vruntime = cfs_rq->min_vruntime;
521
522 if (curr) {
523 if (curr->on_rq)
524 vruntime = curr->vruntime;
525 else
526 curr = NULL;
527 }
528
529 if (leftmost) { /* non-empty tree */
530 struct sched_entity *se;
531 se = rb_entry(leftmost, struct sched_entity, run_node);
532
533 if (!curr)
534 vruntime = se->vruntime;
535 else
536 vruntime = min_vruntime(vruntime, se->vruntime);
537 }
538
539 /* ensure we never gain time by being placed backwards. */
540 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
541 #ifndef CONFIG_64BIT
542 smp_wmb();
543 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
544 #endif
545 }
546
547 /*
548 * Enqueue an entity into the rb-tree:
549 */
550 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
551 {
552 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
553 struct rb_node *parent = NULL;
554 struct sched_entity *entry;
555 bool leftmost = true;
556
557 /*
558 * Find the right place in the rbtree:
559 */
560 while (*link) {
561 parent = *link;
562 entry = rb_entry(parent, struct sched_entity, run_node);
563 /*
564 * We dont care about collisions. Nodes with
565 * the same key stay together.
566 */
567 if (entity_before(se, entry)) {
568 link = &parent->rb_left;
569 } else {
570 link = &parent->rb_right;
571 leftmost = false;
572 }
573 }
574
575 rb_link_node(&se->run_node, parent, link);
576 rb_insert_color_cached(&se->run_node,
577 &cfs_rq->tasks_timeline, leftmost);
578 }
579
580 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
581 {
582 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
583 }
584
585 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
586 {
587 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
588
589 if (!left)
590 return NULL;
591
592 return rb_entry(left, struct sched_entity, run_node);
593 }
594
595 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
596 {
597 struct rb_node *next = rb_next(&se->run_node);
598
599 if (!next)
600 return NULL;
601
602 return rb_entry(next, struct sched_entity, run_node);
603 }
604
605 #ifdef CONFIG_SCHED_DEBUG
606 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
607 {
608 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
609
610 if (!last)
611 return NULL;
612
613 return rb_entry(last, struct sched_entity, run_node);
614 }
615
616 /**************************************************************
617 * Scheduling class statistics methods:
618 */
619
620 int sched_proc_update_handler(struct ctl_table *table, int write,
621 void __user *buffer, size_t *lenp,
622 loff_t *ppos)
623 {
624 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
625 unsigned int factor = get_update_sysctl_factor();
626
627 if (ret || !write)
628 return ret;
629
630 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
631 sysctl_sched_min_granularity);
632
633 #define WRT_SYSCTL(name) \
634 (normalized_sysctl_##name = sysctl_##name / (factor))
635 WRT_SYSCTL(sched_min_granularity);
636 WRT_SYSCTL(sched_latency);
637 WRT_SYSCTL(sched_wakeup_granularity);
638 #undef WRT_SYSCTL
639
640 return 0;
641 }
642 #endif
643
644 /*
645 * delta /= w
646 */
647 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
648 {
649 if (unlikely(se->load.weight != NICE_0_LOAD))
650 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
651
652 return delta;
653 }
654
655 /*
656 * The idea is to set a period in which each task runs once.
657 *
658 * When there are too many tasks (sched_nr_latency) we have to stretch
659 * this period because otherwise the slices get too small.
660 *
661 * p = (nr <= nl) ? l : l*nr/nl
662 */
663 static u64 __sched_period(unsigned long nr_running)
664 {
665 if (unlikely(nr_running > sched_nr_latency))
666 return nr_running * sysctl_sched_min_granularity;
667 else
668 return sysctl_sched_latency;
669 }
670
671 /*
672 * We calculate the wall-time slice from the period by taking a part
673 * proportional to the weight.
674 *
675 * s = p*P[w/rw]
676 */
677 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
678 {
679 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
680
681 for_each_sched_entity(se) {
682 struct load_weight *load;
683 struct load_weight lw;
684
685 cfs_rq = cfs_rq_of(se);
686 load = &cfs_rq->load;
687
688 if (unlikely(!se->on_rq)) {
689 lw = cfs_rq->load;
690
691 update_load_add(&lw, se->load.weight);
692 load = &lw;
693 }
694 slice = __calc_delta(slice, se->load.weight, load);
695 }
696 return slice;
697 }
698
699 /*
700 * We calculate the vruntime slice of a to-be-inserted task.
701 *
702 * vs = s/w
703 */
704 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
705 {
706 return calc_delta_fair(sched_slice(cfs_rq, se), se);
707 }
708
709 #ifdef CONFIG_SMP
710
711 #include "sched-pelt.h"
712
713 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
714 static unsigned long task_h_load(struct task_struct *p);
715
716 /* Give new sched_entity start runnable values to heavy its load in infant time */
717 void init_entity_runnable_average(struct sched_entity *se)
718 {
719 struct sched_avg *sa = &se->avg;
720
721 memset(sa, 0, sizeof(*sa));
722
723 /*
724 * Tasks are intialized with full load to be seen as heavy tasks until
725 * they get a chance to stabilize to their real load level.
726 * Group entities are intialized with zero load to reflect the fact that
727 * nothing has been attached to the task group yet.
728 */
729 if (entity_is_task(se))
730 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
731
732 se->runnable_weight = se->load.weight;
733
734 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
735 }
736
737 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
738 static void attach_entity_cfs_rq(struct sched_entity *se);
739
740 /*
741 * With new tasks being created, their initial util_avgs are extrapolated
742 * based on the cfs_rq's current util_avg:
743 *
744 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
745 *
746 * However, in many cases, the above util_avg does not give a desired
747 * value. Moreover, the sum of the util_avgs may be divergent, such
748 * as when the series is a harmonic series.
749 *
750 * To solve this problem, we also cap the util_avg of successive tasks to
751 * only 1/2 of the left utilization budget:
752 *
753 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
754 *
755 * where n denotes the nth task.
756 *
757 * For example, a simplest series from the beginning would be like:
758 *
759 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
760 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
761 *
762 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
763 * if util_avg > util_avg_cap.
764 */
765 void post_init_entity_util_avg(struct sched_entity *se)
766 {
767 struct cfs_rq *cfs_rq = cfs_rq_of(se);
768 struct sched_avg *sa = &se->avg;
769 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
770
771 if (cap > 0) {
772 if (cfs_rq->avg.util_avg != 0) {
773 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
774 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
775
776 if (sa->util_avg > cap)
777 sa->util_avg = cap;
778 } else {
779 sa->util_avg = cap;
780 }
781 }
782
783 if (entity_is_task(se)) {
784 struct task_struct *p = task_of(se);
785 if (p->sched_class != &fair_sched_class) {
786 /*
787 * For !fair tasks do:
788 *
789 update_cfs_rq_load_avg(now, cfs_rq);
790 attach_entity_load_avg(cfs_rq, se);
791 switched_from_fair(rq, p);
792 *
793 * such that the next switched_to_fair() has the
794 * expected state.
795 */
796 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
797 return;
798 }
799 }
800
801 attach_entity_cfs_rq(se);
802 }
803
804 #else /* !CONFIG_SMP */
805 void init_entity_runnable_average(struct sched_entity *se)
806 {
807 }
808 void post_init_entity_util_avg(struct sched_entity *se)
809 {
810 }
811 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
812 {
813 }
814 #endif /* CONFIG_SMP */
815
816 /*
817 * Update the current task's runtime statistics.
818 */
819 static void update_curr(struct cfs_rq *cfs_rq)
820 {
821 struct sched_entity *curr = cfs_rq->curr;
822 u64 now = rq_clock_task(rq_of(cfs_rq));
823 u64 delta_exec;
824
825 if (unlikely(!curr))
826 return;
827
828 delta_exec = now - curr->exec_start;
829 if (unlikely((s64)delta_exec <= 0))
830 return;
831
832 curr->exec_start = now;
833
834 schedstat_set(curr->statistics.exec_max,
835 max(delta_exec, curr->statistics.exec_max));
836
837 curr->sum_exec_runtime += delta_exec;
838 schedstat_add(cfs_rq->exec_clock, delta_exec);
839
840 curr->vruntime += calc_delta_fair(delta_exec, curr);
841 update_min_vruntime(cfs_rq);
842
843 if (entity_is_task(curr)) {
844 struct task_struct *curtask = task_of(curr);
845
846 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
847 cgroup_account_cputime(curtask, delta_exec);
848 account_group_exec_runtime(curtask, delta_exec);
849 }
850
851 account_cfs_rq_runtime(cfs_rq, delta_exec);
852 }
853
854 static void update_curr_fair(struct rq *rq)
855 {
856 update_curr(cfs_rq_of(&rq->curr->se));
857 }
858
859 static inline void
860 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
861 {
862 u64 wait_start, prev_wait_start;
863
864 if (!schedstat_enabled())
865 return;
866
867 wait_start = rq_clock(rq_of(cfs_rq));
868 prev_wait_start = schedstat_val(se->statistics.wait_start);
869
870 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
871 likely(wait_start > prev_wait_start))
872 wait_start -= prev_wait_start;
873
874 __schedstat_set(se->statistics.wait_start, wait_start);
875 }
876
877 static inline void
878 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
879 {
880 struct task_struct *p;
881 u64 delta;
882
883 if (!schedstat_enabled())
884 return;
885
886 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
887
888 if (entity_is_task(se)) {
889 p = task_of(se);
890 if (task_on_rq_migrating(p)) {
891 /*
892 * Preserve migrating task's wait time so wait_start
893 * time stamp can be adjusted to accumulate wait time
894 * prior to migration.
895 */
896 __schedstat_set(se->statistics.wait_start, delta);
897 return;
898 }
899 trace_sched_stat_wait(p, delta);
900 }
901
902 __schedstat_set(se->statistics.wait_max,
903 max(schedstat_val(se->statistics.wait_max), delta));
904 __schedstat_inc(se->statistics.wait_count);
905 __schedstat_add(se->statistics.wait_sum, delta);
906 __schedstat_set(se->statistics.wait_start, 0);
907 }
908
909 static inline void
910 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
911 {
912 struct task_struct *tsk = NULL;
913 u64 sleep_start, block_start;
914
915 if (!schedstat_enabled())
916 return;
917
918 sleep_start = schedstat_val(se->statistics.sleep_start);
919 block_start = schedstat_val(se->statistics.block_start);
920
921 if (entity_is_task(se))
922 tsk = task_of(se);
923
924 if (sleep_start) {
925 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
926
927 if ((s64)delta < 0)
928 delta = 0;
929
930 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
931 __schedstat_set(se->statistics.sleep_max, delta);
932
933 __schedstat_set(se->statistics.sleep_start, 0);
934 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
935
936 if (tsk) {
937 account_scheduler_latency(tsk, delta >> 10, 1);
938 trace_sched_stat_sleep(tsk, delta);
939 }
940 }
941 if (block_start) {
942 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
943
944 if ((s64)delta < 0)
945 delta = 0;
946
947 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
948 __schedstat_set(se->statistics.block_max, delta);
949
950 __schedstat_set(se->statistics.block_start, 0);
951 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
952
953 if (tsk) {
954 if (tsk->in_iowait) {
955 __schedstat_add(se->statistics.iowait_sum, delta);
956 __schedstat_inc(se->statistics.iowait_count);
957 trace_sched_stat_iowait(tsk, delta);
958 }
959
960 trace_sched_stat_blocked(tsk, delta);
961
962 /*
963 * Blocking time is in units of nanosecs, so shift by
964 * 20 to get a milliseconds-range estimation of the
965 * amount of time that the task spent sleeping:
966 */
967 if (unlikely(prof_on == SLEEP_PROFILING)) {
968 profile_hits(SLEEP_PROFILING,
969 (void *)get_wchan(tsk),
970 delta >> 20);
971 }
972 account_scheduler_latency(tsk, delta >> 10, 0);
973 }
974 }
975 }
976
977 /*
978 * Task is being enqueued - update stats:
979 */
980 static inline void
981 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
982 {
983 if (!schedstat_enabled())
984 return;
985
986 /*
987 * Are we enqueueing a waiting task? (for current tasks
988 * a dequeue/enqueue event is a NOP)
989 */
990 if (se != cfs_rq->curr)
991 update_stats_wait_start(cfs_rq, se);
992
993 if (flags & ENQUEUE_WAKEUP)
994 update_stats_enqueue_sleeper(cfs_rq, se);
995 }
996
997 static inline void
998 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
999 {
1000
1001 if (!schedstat_enabled())
1002 return;
1003
1004 /*
1005 * Mark the end of the wait period if dequeueing a
1006 * waiting task:
1007 */
1008 if (se != cfs_rq->curr)
1009 update_stats_wait_end(cfs_rq, se);
1010
1011 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1012 struct task_struct *tsk = task_of(se);
1013
1014 if (tsk->state & TASK_INTERRUPTIBLE)
1015 __schedstat_set(se->statistics.sleep_start,
1016 rq_clock(rq_of(cfs_rq)));
1017 if (tsk->state & TASK_UNINTERRUPTIBLE)
1018 __schedstat_set(se->statistics.block_start,
1019 rq_clock(rq_of(cfs_rq)));
1020 }
1021 }
1022
1023 /*
1024 * We are picking a new current task - update its stats:
1025 */
1026 static inline void
1027 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1028 {
1029 /*
1030 * We are starting a new run period:
1031 */
1032 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1033 }
1034
1035 /**************************************************
1036 * Scheduling class queueing methods:
1037 */
1038
1039 #ifdef CONFIG_NUMA_BALANCING
1040 /*
1041 * Approximate time to scan a full NUMA task in ms. The task scan period is
1042 * calculated based on the tasks virtual memory size and
1043 * numa_balancing_scan_size.
1044 */
1045 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1046 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1047
1048 /* Portion of address space to scan in MB */
1049 unsigned int sysctl_numa_balancing_scan_size = 256;
1050
1051 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1052 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1053
1054 struct numa_group {
1055 atomic_t refcount;
1056
1057 spinlock_t lock; /* nr_tasks, tasks */
1058 int nr_tasks;
1059 pid_t gid;
1060 int active_nodes;
1061
1062 struct rcu_head rcu;
1063 unsigned long total_faults;
1064 unsigned long max_faults_cpu;
1065 /*
1066 * Faults_cpu is used to decide whether memory should move
1067 * towards the CPU. As a consequence, these stats are weighted
1068 * more by CPU use than by memory faults.
1069 */
1070 unsigned long *faults_cpu;
1071 unsigned long faults[0];
1072 };
1073
1074 static inline unsigned long group_faults_priv(struct numa_group *ng);
1075 static inline unsigned long group_faults_shared(struct numa_group *ng);
1076
1077 static unsigned int task_nr_scan_windows(struct task_struct *p)
1078 {
1079 unsigned long rss = 0;
1080 unsigned long nr_scan_pages;
1081
1082 /*
1083 * Calculations based on RSS as non-present and empty pages are skipped
1084 * by the PTE scanner and NUMA hinting faults should be trapped based
1085 * on resident pages
1086 */
1087 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1088 rss = get_mm_rss(p->mm);
1089 if (!rss)
1090 rss = nr_scan_pages;
1091
1092 rss = round_up(rss, nr_scan_pages);
1093 return rss / nr_scan_pages;
1094 }
1095
1096 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1097 #define MAX_SCAN_WINDOW 2560
1098
1099 static unsigned int task_scan_min(struct task_struct *p)
1100 {
1101 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1102 unsigned int scan, floor;
1103 unsigned int windows = 1;
1104
1105 if (scan_size < MAX_SCAN_WINDOW)
1106 windows = MAX_SCAN_WINDOW / scan_size;
1107 floor = 1000 / windows;
1108
1109 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1110 return max_t(unsigned int, floor, scan);
1111 }
1112
1113 static unsigned int task_scan_start(struct task_struct *p)
1114 {
1115 unsigned long smin = task_scan_min(p);
1116 unsigned long period = smin;
1117
1118 /* Scale the maximum scan period with the amount of shared memory. */
1119 if (p->numa_group) {
1120 struct numa_group *ng = p->numa_group;
1121 unsigned long shared = group_faults_shared(ng);
1122 unsigned long private = group_faults_priv(ng);
1123
1124 period *= atomic_read(&ng->refcount);
1125 period *= shared + 1;
1126 period /= private + shared + 1;
1127 }
1128
1129 return max(smin, period);
1130 }
1131
1132 static unsigned int task_scan_max(struct task_struct *p)
1133 {
1134 unsigned long smin = task_scan_min(p);
1135 unsigned long smax;
1136
1137 /* Watch for min being lower than max due to floor calculations */
1138 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1139
1140 /* Scale the maximum scan period with the amount of shared memory. */
1141 if (p->numa_group) {
1142 struct numa_group *ng = p->numa_group;
1143 unsigned long shared = group_faults_shared(ng);
1144 unsigned long private = group_faults_priv(ng);
1145 unsigned long period = smax;
1146
1147 period *= atomic_read(&ng->refcount);
1148 period *= shared + 1;
1149 period /= private + shared + 1;
1150
1151 smax = max(smax, period);
1152 }
1153
1154 return max(smin, smax);
1155 }
1156
1157 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1158 {
1159 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1160 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1161 }
1162
1163 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1164 {
1165 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1166 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1167 }
1168
1169 /* Shared or private faults. */
1170 #define NR_NUMA_HINT_FAULT_TYPES 2
1171
1172 /* Memory and CPU locality */
1173 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1174
1175 /* Averaged statistics, and temporary buffers. */
1176 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1177
1178 pid_t task_numa_group_id(struct task_struct *p)
1179 {
1180 return p->numa_group ? p->numa_group->gid : 0;
1181 }
1182
1183 /*
1184 * The averaged statistics, shared & private, memory & cpu,
1185 * occupy the first half of the array. The second half of the
1186 * array is for current counters, which are averaged into the
1187 * first set by task_numa_placement.
1188 */
1189 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1190 {
1191 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1192 }
1193
1194 static inline unsigned long task_faults(struct task_struct *p, int nid)
1195 {
1196 if (!p->numa_faults)
1197 return 0;
1198
1199 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1200 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1201 }
1202
1203 static inline unsigned long group_faults(struct task_struct *p, int nid)
1204 {
1205 if (!p->numa_group)
1206 return 0;
1207
1208 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1209 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1210 }
1211
1212 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1213 {
1214 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1215 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1216 }
1217
1218 static inline unsigned long group_faults_priv(struct numa_group *ng)
1219 {
1220 unsigned long faults = 0;
1221 int node;
1222
1223 for_each_online_node(node) {
1224 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1225 }
1226
1227 return faults;
1228 }
1229
1230 static inline unsigned long group_faults_shared(struct numa_group *ng)
1231 {
1232 unsigned long faults = 0;
1233 int node;
1234
1235 for_each_online_node(node) {
1236 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1237 }
1238
1239 return faults;
1240 }
1241
1242 /*
1243 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1244 * considered part of a numa group's pseudo-interleaving set. Migrations
1245 * between these nodes are slowed down, to allow things to settle down.
1246 */
1247 #define ACTIVE_NODE_FRACTION 3
1248
1249 static bool numa_is_active_node(int nid, struct numa_group *ng)
1250 {
1251 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1252 }
1253
1254 /* Handle placement on systems where not all nodes are directly connected. */
1255 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1256 int maxdist, bool task)
1257 {
1258 unsigned long score = 0;
1259 int node;
1260
1261 /*
1262 * All nodes are directly connected, and the same distance
1263 * from each other. No need for fancy placement algorithms.
1264 */
1265 if (sched_numa_topology_type == NUMA_DIRECT)
1266 return 0;
1267
1268 /*
1269 * This code is called for each node, introducing N^2 complexity,
1270 * which should be ok given the number of nodes rarely exceeds 8.
1271 */
1272 for_each_online_node(node) {
1273 unsigned long faults;
1274 int dist = node_distance(nid, node);
1275
1276 /*
1277 * The furthest away nodes in the system are not interesting
1278 * for placement; nid was already counted.
1279 */
1280 if (dist == sched_max_numa_distance || node == nid)
1281 continue;
1282
1283 /*
1284 * On systems with a backplane NUMA topology, compare groups
1285 * of nodes, and move tasks towards the group with the most
1286 * memory accesses. When comparing two nodes at distance
1287 * "hoplimit", only nodes closer by than "hoplimit" are part
1288 * of each group. Skip other nodes.
1289 */
1290 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1291 dist > maxdist)
1292 continue;
1293
1294 /* Add up the faults from nearby nodes. */
1295 if (task)
1296 faults = task_faults(p, node);
1297 else
1298 faults = group_faults(p, node);
1299
1300 /*
1301 * On systems with a glueless mesh NUMA topology, there are
1302 * no fixed "groups of nodes". Instead, nodes that are not
1303 * directly connected bounce traffic through intermediate
1304 * nodes; a numa_group can occupy any set of nodes.
1305 * The further away a node is, the less the faults count.
1306 * This seems to result in good task placement.
1307 */
1308 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1309 faults *= (sched_max_numa_distance - dist);
1310 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1311 }
1312
1313 score += faults;
1314 }
1315
1316 return score;
1317 }
1318
1319 /*
1320 * These return the fraction of accesses done by a particular task, or
1321 * task group, on a particular numa node. The group weight is given a
1322 * larger multiplier, in order to group tasks together that are almost
1323 * evenly spread out between numa nodes.
1324 */
1325 static inline unsigned long task_weight(struct task_struct *p, int nid,
1326 int dist)
1327 {
1328 unsigned long faults, total_faults;
1329
1330 if (!p->numa_faults)
1331 return 0;
1332
1333 total_faults = p->total_numa_faults;
1334
1335 if (!total_faults)
1336 return 0;
1337
1338 faults = task_faults(p, nid);
1339 faults += score_nearby_nodes(p, nid, dist, true);
1340
1341 return 1000 * faults / total_faults;
1342 }
1343
1344 static inline unsigned long group_weight(struct task_struct *p, int nid,
1345 int dist)
1346 {
1347 unsigned long faults, total_faults;
1348
1349 if (!p->numa_group)
1350 return 0;
1351
1352 total_faults = p->numa_group->total_faults;
1353
1354 if (!total_faults)
1355 return 0;
1356
1357 faults = group_faults(p, nid);
1358 faults += score_nearby_nodes(p, nid, dist, false);
1359
1360 return 1000 * faults / total_faults;
1361 }
1362
1363 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1364 int src_nid, int dst_cpu)
1365 {
1366 struct numa_group *ng = p->numa_group;
1367 int dst_nid = cpu_to_node(dst_cpu);
1368 int last_cpupid, this_cpupid;
1369
1370 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1371
1372 /*
1373 * Multi-stage node selection is used in conjunction with a periodic
1374 * migration fault to build a temporal task<->page relation. By using
1375 * a two-stage filter we remove short/unlikely relations.
1376 *
1377 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1378 * a task's usage of a particular page (n_p) per total usage of this
1379 * page (n_t) (in a given time-span) to a probability.
1380 *
1381 * Our periodic faults will sample this probability and getting the
1382 * same result twice in a row, given these samples are fully
1383 * independent, is then given by P(n)^2, provided our sample period
1384 * is sufficiently short compared to the usage pattern.
1385 *
1386 * This quadric squishes small probabilities, making it less likely we
1387 * act on an unlikely task<->page relation.
1388 */
1389 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1390 if (!cpupid_pid_unset(last_cpupid) &&
1391 cpupid_to_nid(last_cpupid) != dst_nid)
1392 return false;
1393
1394 /* Always allow migrate on private faults */
1395 if (cpupid_match_pid(p, last_cpupid))
1396 return true;
1397
1398 /* A shared fault, but p->numa_group has not been set up yet. */
1399 if (!ng)
1400 return true;
1401
1402 /*
1403 * Destination node is much more heavily used than the source
1404 * node? Allow migration.
1405 */
1406 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1407 ACTIVE_NODE_FRACTION)
1408 return true;
1409
1410 /*
1411 * Distribute memory according to CPU & memory use on each node,
1412 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1413 *
1414 * faults_cpu(dst) 3 faults_cpu(src)
1415 * --------------- * - > ---------------
1416 * faults_mem(dst) 4 faults_mem(src)
1417 */
1418 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1419 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1420 }
1421
1422 static unsigned long weighted_cpuload(struct rq *rq);
1423 static unsigned long source_load(int cpu, int type);
1424 static unsigned long target_load(int cpu, int type);
1425 static unsigned long capacity_of(int cpu);
1426
1427 /* Cached statistics for all CPUs within a node */
1428 struct numa_stats {
1429 unsigned long nr_running;
1430 unsigned long load;
1431
1432 /* Total compute capacity of CPUs on a node */
1433 unsigned long compute_capacity;
1434
1435 /* Approximate capacity in terms of runnable tasks on a node */
1436 unsigned long task_capacity;
1437 int has_free_capacity;
1438 };
1439
1440 /*
1441 * XXX borrowed from update_sg_lb_stats
1442 */
1443 static void update_numa_stats(struct numa_stats *ns, int nid)
1444 {
1445 int smt, cpu, cpus = 0;
1446 unsigned long capacity;
1447
1448 memset(ns, 0, sizeof(*ns));
1449 for_each_cpu(cpu, cpumask_of_node(nid)) {
1450 struct rq *rq = cpu_rq(cpu);
1451
1452 ns->nr_running += rq->nr_running;
1453 ns->load += weighted_cpuload(rq);
1454 ns->compute_capacity += capacity_of(cpu);
1455
1456 cpus++;
1457 }
1458
1459 /*
1460 * If we raced with hotplug and there are no CPUs left in our mask
1461 * the @ns structure is NULL'ed and task_numa_compare() will
1462 * not find this node attractive.
1463 *
1464 * We'll either bail at !has_free_capacity, or we'll detect a huge
1465 * imbalance and bail there.
1466 */
1467 if (!cpus)
1468 return;
1469
1470 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1471 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1472 capacity = cpus / smt; /* cores */
1473
1474 ns->task_capacity = min_t(unsigned, capacity,
1475 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1476 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1477 }
1478
1479 struct task_numa_env {
1480 struct task_struct *p;
1481
1482 int src_cpu, src_nid;
1483 int dst_cpu, dst_nid;
1484
1485 struct numa_stats src_stats, dst_stats;
1486
1487 int imbalance_pct;
1488 int dist;
1489
1490 struct task_struct *best_task;
1491 long best_imp;
1492 int best_cpu;
1493 };
1494
1495 static void task_numa_assign(struct task_numa_env *env,
1496 struct task_struct *p, long imp)
1497 {
1498 if (env->best_task)
1499 put_task_struct(env->best_task);
1500 if (p)
1501 get_task_struct(p);
1502
1503 env->best_task = p;
1504 env->best_imp = imp;
1505 env->best_cpu = env->dst_cpu;
1506 }
1507
1508 static bool load_too_imbalanced(long src_load, long dst_load,
1509 struct task_numa_env *env)
1510 {
1511 long imb, old_imb;
1512 long orig_src_load, orig_dst_load;
1513 long src_capacity, dst_capacity;
1514
1515 /*
1516 * The load is corrected for the CPU capacity available on each node.
1517 *
1518 * src_load dst_load
1519 * ------------ vs ---------
1520 * src_capacity dst_capacity
1521 */
1522 src_capacity = env->src_stats.compute_capacity;
1523 dst_capacity = env->dst_stats.compute_capacity;
1524
1525 /* We care about the slope of the imbalance, not the direction. */
1526 if (dst_load < src_load)
1527 swap(dst_load, src_load);
1528
1529 /* Is the difference below the threshold? */
1530 imb = dst_load * src_capacity * 100 -
1531 src_load * dst_capacity * env->imbalance_pct;
1532 if (imb <= 0)
1533 return false;
1534
1535 /*
1536 * The imbalance is above the allowed threshold.
1537 * Compare it with the old imbalance.
1538 */
1539 orig_src_load = env->src_stats.load;
1540 orig_dst_load = env->dst_stats.load;
1541
1542 if (orig_dst_load < orig_src_load)
1543 swap(orig_dst_load, orig_src_load);
1544
1545 old_imb = orig_dst_load * src_capacity * 100 -
1546 orig_src_load * dst_capacity * env->imbalance_pct;
1547
1548 /* Would this change make things worse? */
1549 return (imb > old_imb);
1550 }
1551
1552 /*
1553 * This checks if the overall compute and NUMA accesses of the system would
1554 * be improved if the source tasks was migrated to the target dst_cpu taking
1555 * into account that it might be best if task running on the dst_cpu should
1556 * be exchanged with the source task
1557 */
1558 static void task_numa_compare(struct task_numa_env *env,
1559 long taskimp, long groupimp)
1560 {
1561 struct rq *src_rq = cpu_rq(env->src_cpu);
1562 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1563 struct task_struct *cur;
1564 long src_load, dst_load;
1565 long load;
1566 long imp = env->p->numa_group ? groupimp : taskimp;
1567 long moveimp = imp;
1568 int dist = env->dist;
1569
1570 rcu_read_lock();
1571 cur = task_rcu_dereference(&dst_rq->curr);
1572 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1573 cur = NULL;
1574
1575 /*
1576 * Because we have preemption enabled we can get migrated around and
1577 * end try selecting ourselves (current == env->p) as a swap candidate.
1578 */
1579 if (cur == env->p)
1580 goto unlock;
1581
1582 /*
1583 * "imp" is the fault differential for the source task between the
1584 * source and destination node. Calculate the total differential for
1585 * the source task and potential destination task. The more negative
1586 * the value is, the more rmeote accesses that would be expected to
1587 * be incurred if the tasks were swapped.
1588 */
1589 if (cur) {
1590 /* Skip this swap candidate if cannot move to the source cpu */
1591 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1592 goto unlock;
1593
1594 /*
1595 * If dst and source tasks are in the same NUMA group, or not
1596 * in any group then look only at task weights.
1597 */
1598 if (cur->numa_group == env->p->numa_group) {
1599 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1600 task_weight(cur, env->dst_nid, dist);
1601 /*
1602 * Add some hysteresis to prevent swapping the
1603 * tasks within a group over tiny differences.
1604 */
1605 if (cur->numa_group)
1606 imp -= imp/16;
1607 } else {
1608 /*
1609 * Compare the group weights. If a task is all by
1610 * itself (not part of a group), use the task weight
1611 * instead.
1612 */
1613 if (cur->numa_group)
1614 imp += group_weight(cur, env->src_nid, dist) -
1615 group_weight(cur, env->dst_nid, dist);
1616 else
1617 imp += task_weight(cur, env->src_nid, dist) -
1618 task_weight(cur, env->dst_nid, dist);
1619 }
1620 }
1621
1622 if (imp <= env->best_imp && moveimp <= env->best_imp)
1623 goto unlock;
1624
1625 if (!cur) {
1626 /* Is there capacity at our destination? */
1627 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1628 !env->dst_stats.has_free_capacity)
1629 goto unlock;
1630
1631 goto balance;
1632 }
1633
1634 /* Balance doesn't matter much if we're running a task per cpu */
1635 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1636 dst_rq->nr_running == 1)
1637 goto assign;
1638
1639 /*
1640 * In the overloaded case, try and keep the load balanced.
1641 */
1642 balance:
1643 load = task_h_load(env->p);
1644 dst_load = env->dst_stats.load + load;
1645 src_load = env->src_stats.load - load;
1646
1647 if (moveimp > imp && moveimp > env->best_imp) {
1648 /*
1649 * If the improvement from just moving env->p direction is
1650 * better than swapping tasks around, check if a move is
1651 * possible. Store a slightly smaller score than moveimp,
1652 * so an actually idle CPU will win.
1653 */
1654 if (!load_too_imbalanced(src_load, dst_load, env)) {
1655 imp = moveimp - 1;
1656 cur = NULL;
1657 goto assign;
1658 }
1659 }
1660
1661 if (imp <= env->best_imp)
1662 goto unlock;
1663
1664 if (cur) {
1665 load = task_h_load(cur);
1666 dst_load -= load;
1667 src_load += load;
1668 }
1669
1670 if (load_too_imbalanced(src_load, dst_load, env))
1671 goto unlock;
1672
1673 /*
1674 * One idle CPU per node is evaluated for a task numa move.
1675 * Call select_idle_sibling to maybe find a better one.
1676 */
1677 if (!cur) {
1678 /*
1679 * select_idle_siblings() uses an per-cpu cpumask that
1680 * can be used from IRQ context.
1681 */
1682 local_irq_disable();
1683 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1684 env->dst_cpu);
1685 local_irq_enable();
1686 }
1687
1688 assign:
1689 task_numa_assign(env, cur, imp);
1690 unlock:
1691 rcu_read_unlock();
1692 }
1693
1694 static void task_numa_find_cpu(struct task_numa_env *env,
1695 long taskimp, long groupimp)
1696 {
1697 int cpu;
1698
1699 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1700 /* Skip this CPU if the source task cannot migrate */
1701 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1702 continue;
1703
1704 env->dst_cpu = cpu;
1705 task_numa_compare(env, taskimp, groupimp);
1706 }
1707 }
1708
1709 /* Only move tasks to a NUMA node less busy than the current node. */
1710 static bool numa_has_capacity(struct task_numa_env *env)
1711 {
1712 struct numa_stats *src = &env->src_stats;
1713 struct numa_stats *dst = &env->dst_stats;
1714
1715 if (src->has_free_capacity && !dst->has_free_capacity)
1716 return false;
1717
1718 /*
1719 * Only consider a task move if the source has a higher load
1720 * than the destination, corrected for CPU capacity on each node.
1721 *
1722 * src->load dst->load
1723 * --------------------- vs ---------------------
1724 * src->compute_capacity dst->compute_capacity
1725 */
1726 if (src->load * dst->compute_capacity * env->imbalance_pct >
1727
1728 dst->load * src->compute_capacity * 100)
1729 return true;
1730
1731 return false;
1732 }
1733
1734 static int task_numa_migrate(struct task_struct *p)
1735 {
1736 struct task_numa_env env = {
1737 .p = p,
1738
1739 .src_cpu = task_cpu(p),
1740 .src_nid = task_node(p),
1741
1742 .imbalance_pct = 112,
1743
1744 .best_task = NULL,
1745 .best_imp = 0,
1746 .best_cpu = -1,
1747 };
1748 struct sched_domain *sd;
1749 unsigned long taskweight, groupweight;
1750 int nid, ret, dist;
1751 long taskimp, groupimp;
1752
1753 /*
1754 * Pick the lowest SD_NUMA domain, as that would have the smallest
1755 * imbalance and would be the first to start moving tasks about.
1756 *
1757 * And we want to avoid any moving of tasks about, as that would create
1758 * random movement of tasks -- counter the numa conditions we're trying
1759 * to satisfy here.
1760 */
1761 rcu_read_lock();
1762 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1763 if (sd)
1764 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1765 rcu_read_unlock();
1766
1767 /*
1768 * Cpusets can break the scheduler domain tree into smaller
1769 * balance domains, some of which do not cross NUMA boundaries.
1770 * Tasks that are "trapped" in such domains cannot be migrated
1771 * elsewhere, so there is no point in (re)trying.
1772 */
1773 if (unlikely(!sd)) {
1774 p->numa_preferred_nid = task_node(p);
1775 return -EINVAL;
1776 }
1777
1778 env.dst_nid = p->numa_preferred_nid;
1779 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1780 taskweight = task_weight(p, env.src_nid, dist);
1781 groupweight = group_weight(p, env.src_nid, dist);
1782 update_numa_stats(&env.src_stats, env.src_nid);
1783 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1784 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1785 update_numa_stats(&env.dst_stats, env.dst_nid);
1786
1787 /* Try to find a spot on the preferred nid. */
1788 if (numa_has_capacity(&env))
1789 task_numa_find_cpu(&env, taskimp, groupimp);
1790
1791 /*
1792 * Look at other nodes in these cases:
1793 * - there is no space available on the preferred_nid
1794 * - the task is part of a numa_group that is interleaved across
1795 * multiple NUMA nodes; in order to better consolidate the group,
1796 * we need to check other locations.
1797 */
1798 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1799 for_each_online_node(nid) {
1800 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1801 continue;
1802
1803 dist = node_distance(env.src_nid, env.dst_nid);
1804 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1805 dist != env.dist) {
1806 taskweight = task_weight(p, env.src_nid, dist);
1807 groupweight = group_weight(p, env.src_nid, dist);
1808 }
1809
1810 /* Only consider nodes where both task and groups benefit */
1811 taskimp = task_weight(p, nid, dist) - taskweight;
1812 groupimp = group_weight(p, nid, dist) - groupweight;
1813 if (taskimp < 0 && groupimp < 0)
1814 continue;
1815
1816 env.dist = dist;
1817 env.dst_nid = nid;
1818 update_numa_stats(&env.dst_stats, env.dst_nid);
1819 if (numa_has_capacity(&env))
1820 task_numa_find_cpu(&env, taskimp, groupimp);
1821 }
1822 }
1823
1824 /*
1825 * If the task is part of a workload that spans multiple NUMA nodes,
1826 * and is migrating into one of the workload's active nodes, remember
1827 * this node as the task's preferred numa node, so the workload can
1828 * settle down.
1829 * A task that migrated to a second choice node will be better off
1830 * trying for a better one later. Do not set the preferred node here.
1831 */
1832 if (p->numa_group) {
1833 struct numa_group *ng = p->numa_group;
1834
1835 if (env.best_cpu == -1)
1836 nid = env.src_nid;
1837 else
1838 nid = env.dst_nid;
1839
1840 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1841 sched_setnuma(p, env.dst_nid);
1842 }
1843
1844 /* No better CPU than the current one was found. */
1845 if (env.best_cpu == -1)
1846 return -EAGAIN;
1847
1848 /*
1849 * Reset the scan period if the task is being rescheduled on an
1850 * alternative node to recheck if the tasks is now properly placed.
1851 */
1852 p->numa_scan_period = task_scan_start(p);
1853
1854 if (env.best_task == NULL) {
1855 ret = migrate_task_to(p, env.best_cpu);
1856 if (ret != 0)
1857 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1858 return ret;
1859 }
1860
1861 ret = migrate_swap(p, env.best_task);
1862 if (ret != 0)
1863 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1864 put_task_struct(env.best_task);
1865 return ret;
1866 }
1867
1868 /* Attempt to migrate a task to a CPU on the preferred node. */
1869 static void numa_migrate_preferred(struct task_struct *p)
1870 {
1871 unsigned long interval = HZ;
1872
1873 /* This task has no NUMA fault statistics yet */
1874 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1875 return;
1876
1877 /* Periodically retry migrating the task to the preferred node */
1878 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1879 p->numa_migrate_retry = jiffies + interval;
1880
1881 /* Success if task is already running on preferred CPU */
1882 if (task_node(p) == p->numa_preferred_nid)
1883 return;
1884
1885 /* Otherwise, try migrate to a CPU on the preferred node */
1886 task_numa_migrate(p);
1887 }
1888
1889 /*
1890 * Find out how many nodes on the workload is actively running on. Do this by
1891 * tracking the nodes from which NUMA hinting faults are triggered. This can
1892 * be different from the set of nodes where the workload's memory is currently
1893 * located.
1894 */
1895 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1896 {
1897 unsigned long faults, max_faults = 0;
1898 int nid, active_nodes = 0;
1899
1900 for_each_online_node(nid) {
1901 faults = group_faults_cpu(numa_group, nid);
1902 if (faults > max_faults)
1903 max_faults = faults;
1904 }
1905
1906 for_each_online_node(nid) {
1907 faults = group_faults_cpu(numa_group, nid);
1908 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1909 active_nodes++;
1910 }
1911
1912 numa_group->max_faults_cpu = max_faults;
1913 numa_group->active_nodes = active_nodes;
1914 }
1915
1916 /*
1917 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1918 * increments. The more local the fault statistics are, the higher the scan
1919 * period will be for the next scan window. If local/(local+remote) ratio is
1920 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1921 * the scan period will decrease. Aim for 70% local accesses.
1922 */
1923 #define NUMA_PERIOD_SLOTS 10
1924 #define NUMA_PERIOD_THRESHOLD 7
1925
1926 /*
1927 * Increase the scan period (slow down scanning) if the majority of
1928 * our memory is already on our local node, or if the majority of
1929 * the page accesses are shared with other processes.
1930 * Otherwise, decrease the scan period.
1931 */
1932 static void update_task_scan_period(struct task_struct *p,
1933 unsigned long shared, unsigned long private)
1934 {
1935 unsigned int period_slot;
1936 int lr_ratio, ps_ratio;
1937 int diff;
1938
1939 unsigned long remote = p->numa_faults_locality[0];
1940 unsigned long local = p->numa_faults_locality[1];
1941
1942 /*
1943 * If there were no record hinting faults then either the task is
1944 * completely idle or all activity is areas that are not of interest
1945 * to automatic numa balancing. Related to that, if there were failed
1946 * migration then it implies we are migrating too quickly or the local
1947 * node is overloaded. In either case, scan slower
1948 */
1949 if (local + shared == 0 || p->numa_faults_locality[2]) {
1950 p->numa_scan_period = min(p->numa_scan_period_max,
1951 p->numa_scan_period << 1);
1952
1953 p->mm->numa_next_scan = jiffies +
1954 msecs_to_jiffies(p->numa_scan_period);
1955
1956 return;
1957 }
1958
1959 /*
1960 * Prepare to scale scan period relative to the current period.
1961 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1962 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1963 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1964 */
1965 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1966 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1967 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1968
1969 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1970 /*
1971 * Most memory accesses are local. There is no need to
1972 * do fast NUMA scanning, since memory is already local.
1973 */
1974 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1975 if (!slot)
1976 slot = 1;
1977 diff = slot * period_slot;
1978 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1979 /*
1980 * Most memory accesses are shared with other tasks.
1981 * There is no point in continuing fast NUMA scanning,
1982 * since other tasks may just move the memory elsewhere.
1983 */
1984 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1985 if (!slot)
1986 slot = 1;
1987 diff = slot * period_slot;
1988 } else {
1989 /*
1990 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1991 * yet they are not on the local NUMA node. Speed up
1992 * NUMA scanning to get the memory moved over.
1993 */
1994 int ratio = max(lr_ratio, ps_ratio);
1995 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1996 }
1997
1998 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1999 task_scan_min(p), task_scan_max(p));
2000 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2001 }
2002
2003 /*
2004 * Get the fraction of time the task has been running since the last
2005 * NUMA placement cycle. The scheduler keeps similar statistics, but
2006 * decays those on a 32ms period, which is orders of magnitude off
2007 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2008 * stats only if the task is so new there are no NUMA statistics yet.
2009 */
2010 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2011 {
2012 u64 runtime, delta, now;
2013 /* Use the start of this time slice to avoid calculations. */
2014 now = p->se.exec_start;
2015 runtime = p->se.sum_exec_runtime;
2016
2017 if (p->last_task_numa_placement) {
2018 delta = runtime - p->last_sum_exec_runtime;
2019 *period = now - p->last_task_numa_placement;
2020 } else {
2021 delta = p->se.avg.load_sum;
2022 *period = LOAD_AVG_MAX;
2023 }
2024
2025 p->last_sum_exec_runtime = runtime;
2026 p->last_task_numa_placement = now;
2027
2028 return delta;
2029 }
2030
2031 /*
2032 * Determine the preferred nid for a task in a numa_group. This needs to
2033 * be done in a way that produces consistent results with group_weight,
2034 * otherwise workloads might not converge.
2035 */
2036 static int preferred_group_nid(struct task_struct *p, int nid)
2037 {
2038 nodemask_t nodes;
2039 int dist;
2040
2041 /* Direct connections between all NUMA nodes. */
2042 if (sched_numa_topology_type == NUMA_DIRECT)
2043 return nid;
2044
2045 /*
2046 * On a system with glueless mesh NUMA topology, group_weight
2047 * scores nodes according to the number of NUMA hinting faults on
2048 * both the node itself, and on nearby nodes.
2049 */
2050 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2051 unsigned long score, max_score = 0;
2052 int node, max_node = nid;
2053
2054 dist = sched_max_numa_distance;
2055
2056 for_each_online_node(node) {
2057 score = group_weight(p, node, dist);
2058 if (score > max_score) {
2059 max_score = score;
2060 max_node = node;
2061 }
2062 }
2063 return max_node;
2064 }
2065
2066 /*
2067 * Finding the preferred nid in a system with NUMA backplane
2068 * interconnect topology is more involved. The goal is to locate
2069 * tasks from numa_groups near each other in the system, and
2070 * untangle workloads from different sides of the system. This requires
2071 * searching down the hierarchy of node groups, recursively searching
2072 * inside the highest scoring group of nodes. The nodemask tricks
2073 * keep the complexity of the search down.
2074 */
2075 nodes = node_online_map;
2076 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2077 unsigned long max_faults = 0;
2078 nodemask_t max_group = NODE_MASK_NONE;
2079 int a, b;
2080
2081 /* Are there nodes at this distance from each other? */
2082 if (!find_numa_distance(dist))
2083 continue;
2084
2085 for_each_node_mask(a, nodes) {
2086 unsigned long faults = 0;
2087 nodemask_t this_group;
2088 nodes_clear(this_group);
2089
2090 /* Sum group's NUMA faults; includes a==b case. */
2091 for_each_node_mask(b, nodes) {
2092 if (node_distance(a, b) < dist) {
2093 faults += group_faults(p, b);
2094 node_set(b, this_group);
2095 node_clear(b, nodes);
2096 }
2097 }
2098
2099 /* Remember the top group. */
2100 if (faults > max_faults) {
2101 max_faults = faults;
2102 max_group = this_group;
2103 /*
2104 * subtle: at the smallest distance there is
2105 * just one node left in each "group", the
2106 * winner is the preferred nid.
2107 */
2108 nid = a;
2109 }
2110 }
2111 /* Next round, evaluate the nodes within max_group. */
2112 if (!max_faults)
2113 break;
2114 nodes = max_group;
2115 }
2116 return nid;
2117 }
2118
2119 static void task_numa_placement(struct task_struct *p)
2120 {
2121 int seq, nid, max_nid = -1, max_group_nid = -1;
2122 unsigned long max_faults = 0, max_group_faults = 0;
2123 unsigned long fault_types[2] = { 0, 0 };
2124 unsigned long total_faults;
2125 u64 runtime, period;
2126 spinlock_t *group_lock = NULL;
2127
2128 /*
2129 * The p->mm->numa_scan_seq field gets updated without
2130 * exclusive access. Use READ_ONCE() here to ensure
2131 * that the field is read in a single access:
2132 */
2133 seq = READ_ONCE(p->mm->numa_scan_seq);
2134 if (p->numa_scan_seq == seq)
2135 return;
2136 p->numa_scan_seq = seq;
2137 p->numa_scan_period_max = task_scan_max(p);
2138
2139 total_faults = p->numa_faults_locality[0] +
2140 p->numa_faults_locality[1];
2141 runtime = numa_get_avg_runtime(p, &period);
2142
2143 /* If the task is part of a group prevent parallel updates to group stats */
2144 if (p->numa_group) {
2145 group_lock = &p->numa_group->lock;
2146 spin_lock_irq(group_lock);
2147 }
2148
2149 /* Find the node with the highest number of faults */
2150 for_each_online_node(nid) {
2151 /* Keep track of the offsets in numa_faults array */
2152 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2153 unsigned long faults = 0, group_faults = 0;
2154 int priv;
2155
2156 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2157 long diff, f_diff, f_weight;
2158
2159 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2160 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2161 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2162 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2163
2164 /* Decay existing window, copy faults since last scan */
2165 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2166 fault_types[priv] += p->numa_faults[membuf_idx];
2167 p->numa_faults[membuf_idx] = 0;
2168
2169 /*
2170 * Normalize the faults_from, so all tasks in a group
2171 * count according to CPU use, instead of by the raw
2172 * number of faults. Tasks with little runtime have
2173 * little over-all impact on throughput, and thus their
2174 * faults are less important.
2175 */
2176 f_weight = div64_u64(runtime << 16, period + 1);
2177 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2178 (total_faults + 1);
2179 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2180 p->numa_faults[cpubuf_idx] = 0;
2181
2182 p->numa_faults[mem_idx] += diff;
2183 p->numa_faults[cpu_idx] += f_diff;
2184 faults += p->numa_faults[mem_idx];
2185 p->total_numa_faults += diff;
2186 if (p->numa_group) {
2187 /*
2188 * safe because we can only change our own group
2189 *
2190 * mem_idx represents the offset for a given
2191 * nid and priv in a specific region because it
2192 * is at the beginning of the numa_faults array.
2193 */
2194 p->numa_group->faults[mem_idx] += diff;
2195 p->numa_group->faults_cpu[mem_idx] += f_diff;
2196 p->numa_group->total_faults += diff;
2197 group_faults += p->numa_group->faults[mem_idx];
2198 }
2199 }
2200
2201 if (faults > max_faults) {
2202 max_faults = faults;
2203 max_nid = nid;
2204 }
2205
2206 if (group_faults > max_group_faults) {
2207 max_group_faults = group_faults;
2208 max_group_nid = nid;
2209 }
2210 }
2211
2212 update_task_scan_period(p, fault_types[0], fault_types[1]);
2213
2214 if (p->numa_group) {
2215 numa_group_count_active_nodes(p->numa_group);
2216 spin_unlock_irq(group_lock);
2217 max_nid = preferred_group_nid(p, max_group_nid);
2218 }
2219
2220 if (max_faults) {
2221 /* Set the new preferred node */
2222 if (max_nid != p->numa_preferred_nid)
2223 sched_setnuma(p, max_nid);
2224
2225 if (task_node(p) != p->numa_preferred_nid)
2226 numa_migrate_preferred(p);
2227 }
2228 }
2229
2230 static inline int get_numa_group(struct numa_group *grp)
2231 {
2232 return atomic_inc_not_zero(&grp->refcount);
2233 }
2234
2235 static inline void put_numa_group(struct numa_group *grp)
2236 {
2237 if (atomic_dec_and_test(&grp->refcount))
2238 kfree_rcu(grp, rcu);
2239 }
2240
2241 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2242 int *priv)
2243 {
2244 struct numa_group *grp, *my_grp;
2245 struct task_struct *tsk;
2246 bool join = false;
2247 int cpu = cpupid_to_cpu(cpupid);
2248 int i;
2249
2250 if (unlikely(!p->numa_group)) {
2251 unsigned int size = sizeof(struct numa_group) +
2252 4*nr_node_ids*sizeof(unsigned long);
2253
2254 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2255 if (!grp)
2256 return;
2257
2258 atomic_set(&grp->refcount, 1);
2259 grp->active_nodes = 1;
2260 grp->max_faults_cpu = 0;
2261 spin_lock_init(&grp->lock);
2262 grp->gid = p->pid;
2263 /* Second half of the array tracks nids where faults happen */
2264 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2265 nr_node_ids;
2266
2267 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2268 grp->faults[i] = p->numa_faults[i];
2269
2270 grp->total_faults = p->total_numa_faults;
2271
2272 grp->nr_tasks++;
2273 rcu_assign_pointer(p->numa_group, grp);
2274 }
2275
2276 rcu_read_lock();
2277 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2278
2279 if (!cpupid_match_pid(tsk, cpupid))
2280 goto no_join;
2281
2282 grp = rcu_dereference(tsk->numa_group);
2283 if (!grp)
2284 goto no_join;
2285
2286 my_grp = p->numa_group;
2287 if (grp == my_grp)
2288 goto no_join;
2289
2290 /*
2291 * Only join the other group if its bigger; if we're the bigger group,
2292 * the other task will join us.
2293 */
2294 if (my_grp->nr_tasks > grp->nr_tasks)
2295 goto no_join;
2296
2297 /*
2298 * Tie-break on the grp address.
2299 */
2300 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2301 goto no_join;
2302
2303 /* Always join threads in the same process. */
2304 if (tsk->mm == current->mm)
2305 join = true;
2306
2307 /* Simple filter to avoid false positives due to PID collisions */
2308 if (flags & TNF_SHARED)
2309 join = true;
2310
2311 /* Update priv based on whether false sharing was detected */
2312 *priv = !join;
2313
2314 if (join && !get_numa_group(grp))
2315 goto no_join;
2316
2317 rcu_read_unlock();
2318
2319 if (!join)
2320 return;
2321
2322 BUG_ON(irqs_disabled());
2323 double_lock_irq(&my_grp->lock, &grp->lock);
2324
2325 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2326 my_grp->faults[i] -= p->numa_faults[i];
2327 grp->faults[i] += p->numa_faults[i];
2328 }
2329 my_grp->total_faults -= p->total_numa_faults;
2330 grp->total_faults += p->total_numa_faults;
2331
2332 my_grp->nr_tasks--;
2333 grp->nr_tasks++;
2334
2335 spin_unlock(&my_grp->lock);
2336 spin_unlock_irq(&grp->lock);
2337
2338 rcu_assign_pointer(p->numa_group, grp);
2339
2340 put_numa_group(my_grp);
2341 return;
2342
2343 no_join:
2344 rcu_read_unlock();
2345 return;
2346 }
2347
2348 void task_numa_free(struct task_struct *p)
2349 {
2350 struct numa_group *grp = p->numa_group;
2351 void *numa_faults = p->numa_faults;
2352 unsigned long flags;
2353 int i;
2354
2355 if (grp) {
2356 spin_lock_irqsave(&grp->lock, flags);
2357 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2358 grp->faults[i] -= p->numa_faults[i];
2359 grp->total_faults -= p->total_numa_faults;
2360
2361 grp->nr_tasks--;
2362 spin_unlock_irqrestore(&grp->lock, flags);
2363 RCU_INIT_POINTER(p->numa_group, NULL);
2364 put_numa_group(grp);
2365 }
2366
2367 p->numa_faults = NULL;
2368 kfree(numa_faults);
2369 }
2370
2371 /*
2372 * Got a PROT_NONE fault for a page on @node.
2373 */
2374 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2375 {
2376 struct task_struct *p = current;
2377 bool migrated = flags & TNF_MIGRATED;
2378 int cpu_node = task_node(current);
2379 int local = !!(flags & TNF_FAULT_LOCAL);
2380 struct numa_group *ng;
2381 int priv;
2382
2383 if (!static_branch_likely(&sched_numa_balancing))
2384 return;
2385
2386 /* for example, ksmd faulting in a user's mm */
2387 if (!p->mm)
2388 return;
2389
2390 /* Allocate buffer to track faults on a per-node basis */
2391 if (unlikely(!p->numa_faults)) {
2392 int size = sizeof(*p->numa_faults) *
2393 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2394
2395 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2396 if (!p->numa_faults)
2397 return;
2398
2399 p->total_numa_faults = 0;
2400 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2401 }
2402
2403 /*
2404 * First accesses are treated as private, otherwise consider accesses
2405 * to be private if the accessing pid has not changed
2406 */
2407 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2408 priv = 1;
2409 } else {
2410 priv = cpupid_match_pid(p, last_cpupid);
2411 if (!priv && !(flags & TNF_NO_GROUP))
2412 task_numa_group(p, last_cpupid, flags, &priv);
2413 }
2414
2415 /*
2416 * If a workload spans multiple NUMA nodes, a shared fault that
2417 * occurs wholly within the set of nodes that the workload is
2418 * actively using should be counted as local. This allows the
2419 * scan rate to slow down when a workload has settled down.
2420 */
2421 ng = p->numa_group;
2422 if (!priv && !local && ng && ng->active_nodes > 1 &&
2423 numa_is_active_node(cpu_node, ng) &&
2424 numa_is_active_node(mem_node, ng))
2425 local = 1;
2426
2427 task_numa_placement(p);
2428
2429 /*
2430 * Retry task to preferred node migration periodically, in case it
2431 * case it previously failed, or the scheduler moved us.
2432 */
2433 if (time_after(jiffies, p->numa_migrate_retry))
2434 numa_migrate_preferred(p);
2435
2436 if (migrated)
2437 p->numa_pages_migrated += pages;
2438 if (flags & TNF_MIGRATE_FAIL)
2439 p->numa_faults_locality[2] += pages;
2440
2441 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2442 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2443 p->numa_faults_locality[local] += pages;
2444 }
2445
2446 static void reset_ptenuma_scan(struct task_struct *p)
2447 {
2448 /*
2449 * We only did a read acquisition of the mmap sem, so
2450 * p->mm->numa_scan_seq is written to without exclusive access
2451 * and the update is not guaranteed to be atomic. That's not
2452 * much of an issue though, since this is just used for
2453 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2454 * expensive, to avoid any form of compiler optimizations:
2455 */
2456 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2457 p->mm->numa_scan_offset = 0;
2458 }
2459
2460 /*
2461 * The expensive part of numa migration is done from task_work context.
2462 * Triggered from task_tick_numa().
2463 */
2464 void task_numa_work(struct callback_head *work)
2465 {
2466 unsigned long migrate, next_scan, now = jiffies;
2467 struct task_struct *p = current;
2468 struct mm_struct *mm = p->mm;
2469 u64 runtime = p->se.sum_exec_runtime;
2470 struct vm_area_struct *vma;
2471 unsigned long start, end;
2472 unsigned long nr_pte_updates = 0;
2473 long pages, virtpages;
2474
2475 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2476
2477 work->next = work; /* protect against double add */
2478 /*
2479 * Who cares about NUMA placement when they're dying.
2480 *
2481 * NOTE: make sure not to dereference p->mm before this check,
2482 * exit_task_work() happens _after_ exit_mm() so we could be called
2483 * without p->mm even though we still had it when we enqueued this
2484 * work.
2485 */
2486 if (p->flags & PF_EXITING)
2487 return;
2488
2489 if (!mm->numa_next_scan) {
2490 mm->numa_next_scan = now +
2491 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2492 }
2493
2494 /*
2495 * Enforce maximal scan/migration frequency..
2496 */
2497 migrate = mm->numa_next_scan;
2498 if (time_before(now, migrate))
2499 return;
2500
2501 if (p->numa_scan_period == 0) {
2502 p->numa_scan_period_max = task_scan_max(p);
2503 p->numa_scan_period = task_scan_start(p);
2504 }
2505
2506 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2507 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2508 return;
2509
2510 /*
2511 * Delay this task enough that another task of this mm will likely win
2512 * the next time around.
2513 */
2514 p->node_stamp += 2 * TICK_NSEC;
2515
2516 start = mm->numa_scan_offset;
2517 pages = sysctl_numa_balancing_scan_size;
2518 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2519 virtpages = pages * 8; /* Scan up to this much virtual space */
2520 if (!pages)
2521 return;
2522
2523
2524 if (!down_read_trylock(&mm->mmap_sem))
2525 return;
2526 vma = find_vma(mm, start);
2527 if (!vma) {
2528 reset_ptenuma_scan(p);
2529 start = 0;
2530 vma = mm->mmap;
2531 }
2532 for (; vma; vma = vma->vm_next) {
2533 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2534 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2535 continue;
2536 }
2537
2538 /*
2539 * Shared library pages mapped by multiple processes are not
2540 * migrated as it is expected they are cache replicated. Avoid
2541 * hinting faults in read-only file-backed mappings or the vdso
2542 * as migrating the pages will be of marginal benefit.
2543 */
2544 if (!vma->vm_mm ||
2545 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2546 continue;
2547
2548 /*
2549 * Skip inaccessible VMAs to avoid any confusion between
2550 * PROT_NONE and NUMA hinting ptes
2551 */
2552 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2553 continue;
2554
2555 do {
2556 start = max(start, vma->vm_start);
2557 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2558 end = min(end, vma->vm_end);
2559 nr_pte_updates = change_prot_numa(vma, start, end);
2560
2561 /*
2562 * Try to scan sysctl_numa_balancing_size worth of
2563 * hpages that have at least one present PTE that
2564 * is not already pte-numa. If the VMA contains
2565 * areas that are unused or already full of prot_numa
2566 * PTEs, scan up to virtpages, to skip through those
2567 * areas faster.
2568 */
2569 if (nr_pte_updates)
2570 pages -= (end - start) >> PAGE_SHIFT;
2571 virtpages -= (end - start) >> PAGE_SHIFT;
2572
2573 start = end;
2574 if (pages <= 0 || virtpages <= 0)
2575 goto out;
2576
2577 cond_resched();
2578 } while (end != vma->vm_end);
2579 }
2580
2581 out:
2582 /*
2583 * It is possible to reach the end of the VMA list but the last few
2584 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2585 * would find the !migratable VMA on the next scan but not reset the
2586 * scanner to the start so check it now.
2587 */
2588 if (vma)
2589 mm->numa_scan_offset = start;
2590 else
2591 reset_ptenuma_scan(p);
2592 up_read(&mm->mmap_sem);
2593
2594 /*
2595 * Make sure tasks use at least 32x as much time to run other code
2596 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2597 * Usually update_task_scan_period slows down scanning enough; on an
2598 * overloaded system we need to limit overhead on a per task basis.
2599 */
2600 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2601 u64 diff = p->se.sum_exec_runtime - runtime;
2602 p->node_stamp += 32 * diff;
2603 }
2604 }
2605
2606 /*
2607 * Drive the periodic memory faults..
2608 */
2609 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2610 {
2611 struct callback_head *work = &curr->numa_work;
2612 u64 period, now;
2613
2614 /*
2615 * We don't care about NUMA placement if we don't have memory.
2616 */
2617 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2618 return;
2619
2620 /*
2621 * Using runtime rather than walltime has the dual advantage that
2622 * we (mostly) drive the selection from busy threads and that the
2623 * task needs to have done some actual work before we bother with
2624 * NUMA placement.
2625 */
2626 now = curr->se.sum_exec_runtime;
2627 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2628
2629 if (now > curr->node_stamp + period) {
2630 if (!curr->node_stamp)
2631 curr->numa_scan_period = task_scan_start(curr);
2632 curr->node_stamp += period;
2633
2634 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2635 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2636 task_work_add(curr, work, true);
2637 }
2638 }
2639 }
2640
2641 #else
2642 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2643 {
2644 }
2645
2646 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2647 {
2648 }
2649
2650 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2651 {
2652 }
2653
2654 #endif /* CONFIG_NUMA_BALANCING */
2655
2656 static void
2657 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2658 {
2659 update_load_add(&cfs_rq->load, se->load.weight);
2660 if (!parent_entity(se))
2661 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2662 #ifdef CONFIG_SMP
2663 if (entity_is_task(se)) {
2664 struct rq *rq = rq_of(cfs_rq);
2665
2666 account_numa_enqueue(rq, task_of(se));
2667 list_add(&se->group_node, &rq->cfs_tasks);
2668 }
2669 #endif
2670 cfs_rq->nr_running++;
2671 }
2672
2673 static void
2674 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2675 {
2676 update_load_sub(&cfs_rq->load, se->load.weight);
2677 if (!parent_entity(se))
2678 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2679 #ifdef CONFIG_SMP
2680 if (entity_is_task(se)) {
2681 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2682 list_del_init(&se->group_node);
2683 }
2684 #endif
2685 cfs_rq->nr_running--;
2686 }
2687
2688 /*
2689 * Signed add and clamp on underflow.
2690 *
2691 * Explicitly do a load-store to ensure the intermediate value never hits
2692 * memory. This allows lockless observations without ever seeing the negative
2693 * values.
2694 */
2695 #define add_positive(_ptr, _val) do { \
2696 typeof(_ptr) ptr = (_ptr); \
2697 typeof(_val) val = (_val); \
2698 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2699 \
2700 res = var + val; \
2701 \
2702 if (val < 0 && res > var) \
2703 res = 0; \
2704 \
2705 WRITE_ONCE(*ptr, res); \
2706 } while (0)
2707
2708 /*
2709 * Unsigned subtract and clamp on underflow.
2710 *
2711 * Explicitly do a load-store to ensure the intermediate value never hits
2712 * memory. This allows lockless observations without ever seeing the negative
2713 * values.
2714 */
2715 #define sub_positive(_ptr, _val) do { \
2716 typeof(_ptr) ptr = (_ptr); \
2717 typeof(*ptr) val = (_val); \
2718 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2719 res = var - val; \
2720 if (res > var) \
2721 res = 0; \
2722 WRITE_ONCE(*ptr, res); \
2723 } while (0)
2724
2725 #ifdef CONFIG_SMP
2726 /*
2727 * XXX we want to get rid of these helpers and use the full load resolution.
2728 */
2729 static inline long se_weight(struct sched_entity *se)
2730 {
2731 return scale_load_down(se->load.weight);
2732 }
2733
2734 static inline long se_runnable(struct sched_entity *se)
2735 {
2736 return scale_load_down(se->runnable_weight);
2737 }
2738
2739 static inline void
2740 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2741 {
2742 cfs_rq->runnable_weight += se->runnable_weight;
2743
2744 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2745 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2746 }
2747
2748 static inline void
2749 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2750 {
2751 cfs_rq->runnable_weight -= se->runnable_weight;
2752
2753 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2754 sub_positive(&cfs_rq->avg.runnable_load_sum,
2755 se_runnable(se) * se->avg.runnable_load_sum);
2756 }
2757
2758 static inline void
2759 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2760 {
2761 cfs_rq->avg.load_avg += se->avg.load_avg;
2762 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2763 }
2764
2765 static inline void
2766 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2767 {
2768 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2769 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2770 }
2771 #else
2772 static inline void
2773 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2774 static inline void
2775 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2776 static inline void
2777 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2778 static inline void
2779 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2780 #endif
2781
2782 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2783 unsigned long weight, unsigned long runnable)
2784 {
2785 if (se->on_rq) {
2786 /* commit outstanding execution time */
2787 if (cfs_rq->curr == se)
2788 update_curr(cfs_rq);
2789 account_entity_dequeue(cfs_rq, se);
2790 dequeue_runnable_load_avg(cfs_rq, se);
2791 }
2792 dequeue_load_avg(cfs_rq, se);
2793
2794 se->runnable_weight = runnable;
2795 update_load_set(&se->load, weight);
2796
2797 #ifdef CONFIG_SMP
2798 do {
2799 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2800
2801 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2802 se->avg.runnable_load_avg =
2803 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2804 } while (0);
2805 #endif
2806
2807 enqueue_load_avg(cfs_rq, se);
2808 if (se->on_rq) {
2809 account_entity_enqueue(cfs_rq, se);
2810 enqueue_runnable_load_avg(cfs_rq, se);
2811 }
2812 }
2813
2814 void reweight_task(struct task_struct *p, int prio)
2815 {
2816 struct sched_entity *se = &p->se;
2817 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2818 struct load_weight *load = &se->load;
2819 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2820
2821 reweight_entity(cfs_rq, se, weight, weight);
2822 load->inv_weight = sched_prio_to_wmult[prio];
2823 }
2824
2825 #ifdef CONFIG_FAIR_GROUP_SCHED
2826 # ifdef CONFIG_SMP
2827 /*
2828 * All this does is approximate the hierarchical proportion which includes that
2829 * global sum we all love to hate.
2830 *
2831 * That is, the weight of a group entity, is the proportional share of the
2832 * group weight based on the group runqueue weights. That is:
2833 *
2834 * tg->weight * grq->load.weight
2835 * ge->load.weight = ----------------------------- (1)
2836 * \Sum grq->load.weight
2837 *
2838 * Now, because computing that sum is prohibitively expensive to compute (been
2839 * there, done that) we approximate it with this average stuff. The average
2840 * moves slower and therefore the approximation is cheaper and more stable.
2841 *
2842 * So instead of the above, we substitute:
2843 *
2844 * grq->load.weight -> grq->avg.load_avg (2)
2845 *
2846 * which yields the following:
2847 *
2848 * tg->weight * grq->avg.load_avg
2849 * ge->load.weight = ------------------------------ (3)
2850 * tg->load_avg
2851 *
2852 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2853 *
2854 * That is shares_avg, and it is right (given the approximation (2)).
2855 *
2856 * The problem with it is that because the average is slow -- it was designed
2857 * to be exactly that of course -- this leads to transients in boundary
2858 * conditions. In specific, the case where the group was idle and we start the
2859 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2860 * yielding bad latency etc..
2861 *
2862 * Now, in that special case (1) reduces to:
2863 *
2864 * tg->weight * grq->load.weight
2865 * ge->load.weight = ----------------------------- = tg->weight (4)
2866 * grp->load.weight
2867 *
2868 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2869 *
2870 * So what we do is modify our approximation (3) to approach (4) in the (near)
2871 * UP case, like:
2872 *
2873 * ge->load.weight =
2874 *
2875 * tg->weight * grq->load.weight
2876 * --------------------------------------------------- (5)
2877 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2878 *
2879 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2880 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2881 *
2882 *
2883 * tg->weight * grq->load.weight
2884 * ge->load.weight = ----------------------------- (6)
2885 * tg_load_avg'
2886 *
2887 * Where:
2888 *
2889 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2890 * max(grq->load.weight, grq->avg.load_avg)
2891 *
2892 * And that is shares_weight and is icky. In the (near) UP case it approaches
2893 * (4) while in the normal case it approaches (3). It consistently
2894 * overestimates the ge->load.weight and therefore:
2895 *
2896 * \Sum ge->load.weight >= tg->weight
2897 *
2898 * hence icky!
2899 */
2900 static long calc_group_shares(struct cfs_rq *cfs_rq)
2901 {
2902 long tg_weight, tg_shares, load, shares;
2903 struct task_group *tg = cfs_rq->tg;
2904
2905 tg_shares = READ_ONCE(tg->shares);
2906
2907 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2908
2909 tg_weight = atomic_long_read(&tg->load_avg);
2910
2911 /* Ensure tg_weight >= load */
2912 tg_weight -= cfs_rq->tg_load_avg_contrib;
2913 tg_weight += load;
2914
2915 shares = (tg_shares * load);
2916 if (tg_weight)
2917 shares /= tg_weight;
2918
2919 /*
2920 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2921 * of a group with small tg->shares value. It is a floor value which is
2922 * assigned as a minimum load.weight to the sched_entity representing
2923 * the group on a CPU.
2924 *
2925 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2926 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2927 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2928 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2929 * instead of 0.
2930 */
2931 return clamp_t(long, shares, MIN_SHARES, tg_shares);
2932 }
2933
2934 /*
2935 * This calculates the effective runnable weight for a group entity based on
2936 * the group entity weight calculated above.
2937 *
2938 * Because of the above approximation (2), our group entity weight is
2939 * an load_avg based ratio (3). This means that it includes blocked load and
2940 * does not represent the runnable weight.
2941 *
2942 * Approximate the group entity's runnable weight per ratio from the group
2943 * runqueue:
2944 *
2945 * grq->avg.runnable_load_avg
2946 * ge->runnable_weight = ge->load.weight * -------------------------- (7)
2947 * grq->avg.load_avg
2948 *
2949 * However, analogous to above, since the avg numbers are slow, this leads to
2950 * transients in the from-idle case. Instead we use:
2951 *
2952 * ge->runnable_weight = ge->load.weight *
2953 *
2954 * max(grq->avg.runnable_load_avg, grq->runnable_weight)
2955 * ----------------------------------------------------- (8)
2956 * max(grq->avg.load_avg, grq->load.weight)
2957 *
2958 * Where these max() serve both to use the 'instant' values to fix the slow
2959 * from-idle and avoid the /0 on to-idle, similar to (6).
2960 */
2961 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
2962 {
2963 long runnable, load_avg;
2964
2965 load_avg = max(cfs_rq->avg.load_avg,
2966 scale_load_down(cfs_rq->load.weight));
2967
2968 runnable = max(cfs_rq->avg.runnable_load_avg,
2969 scale_load_down(cfs_rq->runnable_weight));
2970
2971 runnable *= shares;
2972 if (load_avg)
2973 runnable /= load_avg;
2974
2975 return clamp_t(long, runnable, MIN_SHARES, shares);
2976 }
2977 # endif /* CONFIG_SMP */
2978
2979 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2980
2981 /*
2982 * Recomputes the group entity based on the current state of its group
2983 * runqueue.
2984 */
2985 static void update_cfs_group(struct sched_entity *se)
2986 {
2987 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
2988 long shares, runnable;
2989
2990 if (!gcfs_rq)
2991 return;
2992
2993 if (throttled_hierarchy(gcfs_rq))
2994 return;
2995
2996 #ifndef CONFIG_SMP
2997 runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
2998
2999 if (likely(se->load.weight == shares))
3000 return;
3001 #else
3002 shares = calc_group_shares(gcfs_rq);
3003 runnable = calc_group_runnable(gcfs_rq, shares);
3004 #endif
3005
3006 reweight_entity(cfs_rq_of(se), se, shares, runnable);
3007 }
3008
3009 #else /* CONFIG_FAIR_GROUP_SCHED */
3010 static inline void update_cfs_group(struct sched_entity *se)
3011 {
3012 }
3013 #endif /* CONFIG_FAIR_GROUP_SCHED */
3014
3015 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
3016 {
3017 struct rq *rq = rq_of(cfs_rq);
3018
3019 if (&rq->cfs == cfs_rq) {
3020 /*
3021 * There are a few boundary cases this might miss but it should
3022 * get called often enough that that should (hopefully) not be
3023 * a real problem.
3024 *
3025 * It will not get called when we go idle, because the idle
3026 * thread is a different class (!fair), nor will the utilization
3027 * number include things like RT tasks.
3028 *
3029 * As is, the util number is not freq-invariant (we'd have to
3030 * implement arch_scale_freq_capacity() for that).
3031 *
3032 * See cpu_util().
3033 */
3034 cpufreq_update_util(rq, 0);
3035 }
3036 }
3037
3038 #ifdef CONFIG_SMP
3039 /*
3040 * Approximate:
3041 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
3042 */
3043 static u64 decay_load(u64 val, u64 n)
3044 {
3045 unsigned int local_n;
3046
3047 if (unlikely(n > LOAD_AVG_PERIOD * 63))
3048 return 0;
3049
3050 /* after bounds checking we can collapse to 32-bit */
3051 local_n = n;
3052
3053 /*
3054 * As y^PERIOD = 1/2, we can combine
3055 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
3056 * With a look-up table which covers y^n (n<PERIOD)
3057 *
3058 * To achieve constant time decay_load.
3059 */
3060 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
3061 val >>= local_n / LOAD_AVG_PERIOD;
3062 local_n %= LOAD_AVG_PERIOD;
3063 }
3064
3065 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
3066 return val;
3067 }
3068
3069 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
3070 {
3071 u32 c1, c2, c3 = d3; /* y^0 == 1 */
3072
3073 /*
3074 * c1 = d1 y^p
3075 */
3076 c1 = decay_load((u64)d1, periods);
3077
3078 /*
3079 * p-1
3080 * c2 = 1024 \Sum y^n
3081 * n=1
3082 *
3083 * inf inf
3084 * = 1024 ( \Sum y^n - \Sum y^n - y^0 )
3085 * n=0 n=p
3086 */
3087 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
3088
3089 return c1 + c2 + c3;
3090 }
3091
3092 /*
3093 * Accumulate the three separate parts of the sum; d1 the remainder
3094 * of the last (incomplete) period, d2 the span of full periods and d3
3095 * the remainder of the (incomplete) current period.
3096 *
3097 * d1 d2 d3
3098 * ^ ^ ^
3099 * | | |
3100 * |<->|<----------------->|<--->|
3101 * ... |---x---|------| ... |------|-----x (now)
3102 *
3103 * p-1
3104 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
3105 * n=1
3106 *
3107 * = u y^p + (Step 1)
3108 *
3109 * p-1
3110 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2)
3111 * n=1
3112 */
3113 static __always_inline u32
3114 accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
3115 unsigned long load, unsigned long runnable, int running)
3116 {
3117 unsigned long scale_freq, scale_cpu;
3118 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
3119 u64 periods;
3120
3121 scale_freq = arch_scale_freq_capacity(cpu);
3122 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
3123
3124 delta += sa->period_contrib;
3125 periods = delta / 1024; /* A period is 1024us (~1ms) */
3126
3127 /*
3128 * Step 1: decay old *_sum if we crossed period boundaries.
3129 */
3130 if (periods) {
3131 sa->load_sum = decay_load(sa->load_sum, periods);
3132 sa->runnable_load_sum =
3133 decay_load(sa->runnable_load_sum, periods);
3134 sa->util_sum = decay_load((u64)(sa->util_sum), periods);
3135
3136 /*
3137 * Step 2
3138 */
3139 delta %= 1024;
3140 contrib = __accumulate_pelt_segments(periods,
3141 1024 - sa->period_contrib, delta);
3142 }
3143 sa->period_contrib = delta;
3144
3145 contrib = cap_scale(contrib, scale_freq);
3146 if (load)
3147 sa->load_sum += load * contrib;
3148 if (runnable)
3149 sa->runnable_load_sum += runnable * contrib;
3150 if (running)
3151 sa->util_sum += contrib * scale_cpu;
3152
3153 return periods;
3154 }
3155
3156 /*
3157 * We can represent the historical contribution to runnable average as the
3158 * coefficients of a geometric series. To do this we sub-divide our runnable
3159 * history into segments of approximately 1ms (1024us); label the segment that
3160 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
3161 *
3162 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
3163 * p0 p1 p2
3164 * (now) (~1ms ago) (~2ms ago)
3165 *
3166 * Let u_i denote the fraction of p_i that the entity was runnable.
3167 *
3168 * We then designate the fractions u_i as our co-efficients, yielding the
3169 * following representation of historical load:
3170 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
3171 *
3172 * We choose y based on the with of a reasonably scheduling period, fixing:
3173 * y^32 = 0.5
3174 *
3175 * This means that the contribution to load ~32ms ago (u_32) will be weighted
3176 * approximately half as much as the contribution to load within the last ms
3177 * (u_0).
3178 *
3179 * When a period "rolls over" and we have new u_0`, multiplying the previous
3180 * sum again by y is sufficient to update:
3181 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
3182 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
3183 */
3184 static __always_inline int
3185 ___update_load_sum(u64 now, int cpu, struct sched_avg *sa,
3186 unsigned long load, unsigned long runnable, int running)
3187 {
3188 u64 delta;
3189
3190 delta = now - sa->last_update_time;
3191 /*
3192 * This should only happen when time goes backwards, which it
3193 * unfortunately does during sched clock init when we swap over to TSC.
3194 */
3195 if ((s64)delta < 0) {
3196 sa->last_update_time = now;
3197 return 0;
3198 }
3199
3200 /*
3201 * Use 1024ns as the unit of measurement since it's a reasonable
3202 * approximation of 1us and fast to compute.
3203 */
3204 delta >>= 10;
3205 if (!delta)
3206 return 0;
3207
3208 sa->last_update_time += delta << 10;
3209
3210 /*
3211 * running is a subset of runnable (weight) so running can't be set if
3212 * runnable is clear. But there are some corner cases where the current
3213 * se has been already dequeued but cfs_rq->curr still points to it.
3214 * This means that weight will be 0 but not running for a sched_entity
3215 * but also for a cfs_rq if the latter becomes idle. As an example,
3216 * this happens during idle_balance() which calls
3217 * update_blocked_averages()
3218 */
3219 if (!load)
3220 runnable = running = 0;
3221
3222 /*
3223 * Now we know we crossed measurement unit boundaries. The *_avg
3224 * accrues by two steps:
3225 *
3226 * Step 1: accumulate *_sum since last_update_time. If we haven't
3227 * crossed period boundaries, finish.
3228 */
3229 if (!accumulate_sum(delta, cpu, sa, load, runnable, running))
3230 return 0;
3231
3232 return 1;
3233 }
3234
3235 static __always_inline void
3236 ___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runnable)
3237 {
3238 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3239
3240 /*
3241 * Step 2: update *_avg.
3242 */
3243 sa->load_avg = div_u64(load * sa->load_sum, divider);
3244 sa->runnable_load_avg = div_u64(runnable * sa->runnable_load_sum, divider);
3245 sa->util_avg = sa->util_sum / divider;
3246 }
3247
3248 /*
3249 * sched_entity:
3250 *
3251 * task:
3252 * se_runnable() == se_weight()
3253 *
3254 * group: [ see update_cfs_group() ]
3255 * se_weight() = tg->weight * grq->load_avg / tg->load_avg
3256 * se_runnable() = se_weight(se) * grq->runnable_load_avg / grq->load_avg
3257 *
3258 * load_sum := runnable_sum
3259 * load_avg = se_weight(se) * runnable_avg
3260 *
3261 * runnable_load_sum := runnable_sum
3262 * runnable_load_avg = se_runnable(se) * runnable_avg
3263 *
3264 * XXX collapse load_sum and runnable_load_sum
3265 *
3266 * cfq_rs:
3267 *
3268 * load_sum = \Sum se_weight(se) * se->avg.load_sum
3269 * load_avg = \Sum se->avg.load_avg
3270 *
3271 * runnable_load_sum = \Sum se_runnable(se) * se->avg.runnable_load_sum
3272 * runnable_load_avg = \Sum se->avg.runable_load_avg
3273 */
3274
3275 static int
3276 __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
3277 {
3278 if (entity_is_task(se))
3279 se->runnable_weight = se->load.weight;
3280
3281 if (___update_load_sum(now, cpu, &se->avg, 0, 0, 0)) {
3282 ___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
3283 return 1;
3284 }
3285
3286 return 0;
3287 }
3288
3289 static int
3290 __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
3291 {
3292 if (entity_is_task(se))
3293 se->runnable_weight = se->load.weight;
3294
3295 if (___update_load_sum(now, cpu, &se->avg, !!se->on_rq, !!se->on_rq,
3296 cfs_rq->curr == se)) {
3297
3298 ___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
3299 return 1;
3300 }
3301
3302 return 0;
3303 }
3304
3305 static int
3306 __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
3307 {
3308 if (___update_load_sum(now, cpu, &cfs_rq->avg,
3309 scale_load_down(cfs_rq->load.weight),
3310 scale_load_down(cfs_rq->runnable_weight),
3311 cfs_rq->curr != NULL)) {
3312
3313 ___update_load_avg(&cfs_rq->avg, 1, 1);
3314 return 1;
3315 }
3316
3317 return 0;
3318 }
3319
3320 #ifdef CONFIG_FAIR_GROUP_SCHED
3321 /**
3322 * update_tg_load_avg - update the tg's load avg
3323 * @cfs_rq: the cfs_rq whose avg changed
3324 * @force: update regardless of how small the difference
3325 *
3326 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3327 * However, because tg->load_avg is a global value there are performance
3328 * considerations.
3329 *
3330 * In order to avoid having to look at the other cfs_rq's, we use a
3331 * differential update where we store the last value we propagated. This in
3332 * turn allows skipping updates if the differential is 'small'.
3333 *
3334 * Updating tg's load_avg is necessary before update_cfs_share().
3335 */
3336 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3337 {
3338 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3339
3340 /*
3341 * No need to update load_avg for root_task_group as it is not used.
3342 */
3343 if (cfs_rq->tg == &root_task_group)
3344 return;
3345
3346 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3347 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3348 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3349 }
3350 }
3351
3352 /*
3353 * Called within set_task_rq() right before setting a task's cpu. The
3354 * caller only guarantees p->pi_lock is held; no other assumptions,
3355 * including the state of rq->lock, should be made.
3356 */
3357 void set_task_rq_fair(struct sched_entity *se,
3358 struct cfs_rq *prev, struct cfs_rq *next)
3359 {
3360 u64 p_last_update_time;
3361 u64 n_last_update_time;
3362
3363 if (!sched_feat(ATTACH_AGE_LOAD))
3364 return;
3365
3366 /*
3367 * We are supposed to update the task to "current" time, then its up to
3368 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3369 * getting what current time is, so simply throw away the out-of-date
3370 * time. This will result in the wakee task is less decayed, but giving
3371 * the wakee more load sounds not bad.
3372 */
3373 if (!(se->avg.last_update_time && prev))
3374 return;
3375
3376 #ifndef CONFIG_64BIT
3377 {
3378 u64 p_last_update_time_copy;
3379 u64 n_last_update_time_copy;
3380
3381 do {
3382 p_last_update_time_copy = prev->load_last_update_time_copy;
3383 n_last_update_time_copy = next->load_last_update_time_copy;
3384
3385 smp_rmb();
3386
3387 p_last_update_time = prev->avg.last_update_time;
3388 n_last_update_time = next->avg.last_update_time;
3389
3390 } while (p_last_update_time != p_last_update_time_copy ||
3391 n_last_update_time != n_last_update_time_copy);
3392 }
3393 #else
3394 p_last_update_time = prev->avg.last_update_time;
3395 n_last_update_time = next->avg.last_update_time;
3396 #endif
3397 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3398 se->avg.last_update_time = n_last_update_time;
3399 }
3400
3401
3402 /*
3403 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3404 * propagate its contribution. The key to this propagation is the invariant
3405 * that for each group:
3406 *
3407 * ge->avg == grq->avg (1)
3408 *
3409 * _IFF_ we look at the pure running and runnable sums. Because they
3410 * represent the very same entity, just at different points in the hierarchy.
3411 *
3412 * Per the above update_tg_cfs_util() is trivial and simply copies the running
3413 * sum over (but still wrong, because the group entity and group rq do not have
3414 * their PELT windows aligned).
3415 *
3416 * However, update_tg_cfs_runnable() is more complex. So we have:
3417 *
3418 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3419 *
3420 * And since, like util, the runnable part should be directly transferable,
3421 * the following would _appear_ to be the straight forward approach:
3422 *
3423 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3424 *
3425 * And per (1) we have:
3426 *
3427 * ge->avg.runnable_avg == grq->avg.runnable_avg
3428 *
3429 * Which gives:
3430 *
3431 * ge->load.weight * grq->avg.load_avg
3432 * ge->avg.load_avg = ----------------------------------- (4)
3433 * grq->load.weight
3434 *
3435 * Except that is wrong!
3436 *
3437 * Because while for entities historical weight is not important and we
3438 * really only care about our future and therefore can consider a pure
3439 * runnable sum, runqueues can NOT do this.
3440 *
3441 * We specifically want runqueues to have a load_avg that includes
3442 * historical weights. Those represent the blocked load, the load we expect
3443 * to (shortly) return to us. This only works by keeping the weights as
3444 * integral part of the sum. We therefore cannot decompose as per (3).
3445 *
3446 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3447 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3448 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3449 * runnable section of these tasks overlap (or not). If they were to perfectly
3450 * align the rq as a whole would be runnable 2/3 of the time. If however we
3451 * always have at least 1 runnable task, the rq as a whole is always runnable.
3452 *
3453 * So we'll have to approximate.. :/
3454 *
3455 * Given the constraint:
3456 *
3457 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3458 *
3459 * We can construct a rule that adds runnable to a rq by assuming minimal
3460 * overlap.
3461 *
3462 * On removal, we'll assume each task is equally runnable; which yields:
3463 *
3464 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3465 *
3466 * XXX: only do this for the part of runnable > running ?
3467 *
3468 */
3469
3470 static inline void
3471 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3472 {
3473 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3474
3475 /* Nothing to update */
3476 if (!delta)
3477 return;
3478
3479 /*
3480 * The relation between sum and avg is:
3481 *
3482 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3483 *
3484 * however, the PELT windows are not aligned between grq and gse.
3485 */
3486
3487 /* Set new sched_entity's utilization */
3488 se->avg.util_avg = gcfs_rq->avg.util_avg;
3489 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3490
3491 /* Update parent cfs_rq utilization */
3492 add_positive(&cfs_rq->avg.util_avg, delta);
3493 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3494 }
3495
3496 static inline void
3497 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3498 {
3499 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3500 unsigned long runnable_load_avg, load_avg;
3501 u64 runnable_load_sum, load_sum = 0;
3502 s64 delta_sum;
3503
3504 if (!runnable_sum)
3505 return;
3506
3507 gcfs_rq->prop_runnable_sum = 0;
3508
3509 if (runnable_sum >= 0) {
3510 /*
3511 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3512 * the CPU is saturated running == runnable.
3513 */
3514 runnable_sum += se->avg.load_sum;
3515 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3516 } else {
3517 /*
3518 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3519 * assuming all tasks are equally runnable.
3520 */
3521 if (scale_load_down(gcfs_rq->load.weight)) {
3522 load_sum = div_s64(gcfs_rq->avg.load_sum,
3523 scale_load_down(gcfs_rq->load.weight));
3524 }
3525
3526 /* But make sure to not inflate se's runnable */
3527 runnable_sum = min(se->avg.load_sum, load_sum);
3528 }
3529
3530 /*
3531 * runnable_sum can't be lower than running_sum
3532 * As running sum is scale with cpu capacity wehreas the runnable sum
3533 * is not we rescale running_sum 1st
3534 */
3535 running_sum = se->avg.util_sum /
3536 arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
3537 runnable_sum = max(runnable_sum, running_sum);
3538
3539 load_sum = (s64)se_weight(se) * runnable_sum;
3540 load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3541
3542 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3543 delta_avg = load_avg - se->avg.load_avg;
3544
3545 se->avg.load_sum = runnable_sum;
3546 se->avg.load_avg = load_avg;
3547 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3548 add_positive(&cfs_rq->avg.load_sum, delta_sum);
3549
3550 runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3551 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3552 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3553 delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3554
3555 se->avg.runnable_load_sum = runnable_sum;
3556 se->avg.runnable_load_avg = runnable_load_avg;
3557
3558 if (se->on_rq) {
3559 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3560 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3561 }
3562 }
3563
3564 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3565 {
3566 cfs_rq->propagate = 1;
3567 cfs_rq->prop_runnable_sum += runnable_sum;
3568 }
3569
3570 /* Update task and its cfs_rq load average */
3571 static inline int propagate_entity_load_avg(struct sched_entity *se)
3572 {
3573 struct cfs_rq *cfs_rq, *gcfs_rq;
3574
3575 if (entity_is_task(se))
3576 return 0;
3577
3578 gcfs_rq = group_cfs_rq(se);
3579 if (!gcfs_rq->propagate)
3580 return 0;
3581
3582 gcfs_rq->propagate = 0;
3583
3584 cfs_rq = cfs_rq_of(se);
3585
3586 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3587
3588 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3589 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3590
3591 return 1;
3592 }
3593
3594 /*
3595 * Check if we need to update the load and the utilization of a blocked
3596 * group_entity:
3597 */
3598 static inline bool skip_blocked_update(struct sched_entity *se)
3599 {
3600 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3601
3602 /*
3603 * If sched_entity still have not zero load or utilization, we have to
3604 * decay it:
3605 */
3606 if (se->avg.load_avg || se->avg.util_avg)
3607 return false;
3608
3609 /*
3610 * If there is a pending propagation, we have to update the load and
3611 * the utilization of the sched_entity:
3612 */
3613 if (gcfs_rq->propagate)
3614 return false;
3615
3616 /*
3617 * Otherwise, the load and the utilization of the sched_entity is
3618 * already zero and there is no pending propagation, so it will be a
3619 * waste of time to try to decay it:
3620 */
3621 return true;
3622 }
3623
3624 #else /* CONFIG_FAIR_GROUP_SCHED */
3625
3626 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3627
3628 static inline int propagate_entity_load_avg(struct sched_entity *se)
3629 {
3630 return 0;
3631 }
3632
3633 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3634
3635 #endif /* CONFIG_FAIR_GROUP_SCHED */
3636
3637 /**
3638 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3639 * @now: current time, as per cfs_rq_clock_task()
3640 * @cfs_rq: cfs_rq to update
3641 *
3642 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3643 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3644 * post_init_entity_util_avg().
3645 *
3646 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3647 *
3648 * Returns true if the load decayed or we removed load.
3649 *
3650 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3651 * call update_tg_load_avg() when this function returns true.
3652 */
3653 static inline int
3654 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3655 {
3656 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3657 struct sched_avg *sa = &cfs_rq->avg;
3658 int decayed = 0;
3659
3660 if (cfs_rq->removed.nr) {
3661 unsigned long r;
3662 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3663
3664 raw_spin_lock(&cfs_rq->removed.lock);
3665 swap(cfs_rq->removed.util_avg, removed_util);
3666 swap(cfs_rq->removed.load_avg, removed_load);
3667 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3668 cfs_rq->removed.nr = 0;
3669 raw_spin_unlock(&cfs_rq->removed.lock);
3670
3671 r = removed_load;
3672 sub_positive(&sa->load_avg, r);
3673 sub_positive(&sa->load_sum, r * divider);
3674
3675 r = removed_util;
3676 sub_positive(&sa->util_avg, r);
3677 sub_positive(&sa->util_sum, r * divider);
3678
3679 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3680
3681 decayed = 1;
3682 }
3683
3684 decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3685
3686 #ifndef CONFIG_64BIT
3687 smp_wmb();
3688 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3689 #endif
3690
3691 if (decayed)
3692 cfs_rq_util_change(cfs_rq);
3693
3694 return decayed;
3695 }
3696
3697 /**
3698 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3699 * @cfs_rq: cfs_rq to attach to
3700 * @se: sched_entity to attach
3701 *
3702 * Must call update_cfs_rq_load_avg() before this, since we rely on
3703 * cfs_rq->avg.last_update_time being current.
3704 */
3705 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3706 {
3707 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3708
3709 /*
3710 * When we attach the @se to the @cfs_rq, we must align the decay
3711 * window because without that, really weird and wonderful things can
3712 * happen.
3713 *
3714 * XXX illustrate
3715 */
3716 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3717 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3718
3719 /*
3720 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3721 * period_contrib. This isn't strictly correct, but since we're
3722 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3723 * _sum a little.
3724 */
3725 se->avg.util_sum = se->avg.util_avg * divider;
3726
3727 se->avg.load_sum = divider;
3728 if (se_weight(se)) {
3729 se->avg.load_sum =
3730 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3731 }
3732
3733 se->avg.runnable_load_sum = se->avg.load_sum;
3734
3735 enqueue_load_avg(cfs_rq, se);
3736 cfs_rq->avg.util_avg += se->avg.util_avg;
3737 cfs_rq->avg.util_sum += se->avg.util_sum;
3738
3739 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3740
3741 cfs_rq_util_change(cfs_rq);
3742 }
3743
3744 /**
3745 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3746 * @cfs_rq: cfs_rq to detach from
3747 * @se: sched_entity to detach
3748 *
3749 * Must call update_cfs_rq_load_avg() before this, since we rely on
3750 * cfs_rq->avg.last_update_time being current.
3751 */
3752 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3753 {
3754 dequeue_load_avg(cfs_rq, se);
3755 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3756 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3757
3758 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3759
3760 cfs_rq_util_change(cfs_rq);
3761 }
3762
3763 /*
3764 * Optional action to be done while updating the load average
3765 */
3766 #define UPDATE_TG 0x1
3767 #define SKIP_AGE_LOAD 0x2
3768 #define DO_ATTACH 0x4
3769
3770 /* Update task and its cfs_rq load average */
3771 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3772 {
3773 u64 now = cfs_rq_clock_task(cfs_rq);
3774 struct rq *rq = rq_of(cfs_rq);
3775 int cpu = cpu_of(rq);
3776 int decayed;
3777
3778 /*
3779 * Track task load average for carrying it to new CPU after migrated, and
3780 * track group sched_entity load average for task_h_load calc in migration
3781 */
3782 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3783 __update_load_avg_se(now, cpu, cfs_rq, se);
3784
3785 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3786 decayed |= propagate_entity_load_avg(se);
3787
3788 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3789
3790 attach_entity_load_avg(cfs_rq, se);
3791 update_tg_load_avg(cfs_rq, 0);
3792
3793 } else if (decayed && (flags & UPDATE_TG))
3794 update_tg_load_avg(cfs_rq, 0);
3795 }
3796
3797 #ifndef CONFIG_64BIT
3798 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3799 {
3800 u64 last_update_time_copy;
3801 u64 last_update_time;
3802
3803 do {
3804 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3805 smp_rmb();
3806 last_update_time = cfs_rq->avg.last_update_time;
3807 } while (last_update_time != last_update_time_copy);
3808
3809 return last_update_time;
3810 }
3811 #else
3812 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3813 {
3814 return cfs_rq->avg.last_update_time;
3815 }
3816 #endif
3817
3818 /*
3819 * Synchronize entity load avg of dequeued entity without locking
3820 * the previous rq.
3821 */
3822 void sync_entity_load_avg(struct sched_entity *se)
3823 {
3824 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3825 u64 last_update_time;
3826
3827 last_update_time = cfs_rq_last_update_time(cfs_rq);
3828 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3829 }
3830
3831 /*
3832 * Task first catches up with cfs_rq, and then subtract
3833 * itself from the cfs_rq (task must be off the queue now).
3834 */
3835 void remove_entity_load_avg(struct sched_entity *se)
3836 {
3837 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3838 unsigned long flags;
3839
3840 /*
3841 * tasks cannot exit without having gone through wake_up_new_task() ->
3842 * post_init_entity_util_avg() which will have added things to the
3843 * cfs_rq, so we can remove unconditionally.
3844 *
3845 * Similarly for groups, they will have passed through
3846 * post_init_entity_util_avg() before unregister_sched_fair_group()
3847 * calls this.
3848 */
3849
3850 sync_entity_load_avg(se);
3851
3852 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3853 ++cfs_rq->removed.nr;
3854 cfs_rq->removed.util_avg += se->avg.util_avg;
3855 cfs_rq->removed.load_avg += se->avg.load_avg;
3856 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */
3857 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3858 }
3859
3860 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3861 {
3862 return cfs_rq->avg.runnable_load_avg;
3863 }
3864
3865 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3866 {
3867 return cfs_rq->avg.load_avg;
3868 }
3869
3870 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3871
3872 #else /* CONFIG_SMP */
3873
3874 static inline int
3875 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3876 {
3877 return 0;
3878 }
3879
3880 #define UPDATE_TG 0x0
3881 #define SKIP_AGE_LOAD 0x0
3882 #define DO_ATTACH 0x0
3883
3884 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3885 {
3886 cfs_rq_util_change(cfs_rq);
3887 }
3888
3889 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3890
3891 static inline void
3892 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3893 static inline void
3894 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3895
3896 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3897 {
3898 return 0;
3899 }
3900
3901 #endif /* CONFIG_SMP */
3902
3903 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3904 {
3905 #ifdef CONFIG_SCHED_DEBUG
3906 s64 d = se->vruntime - cfs_rq->min_vruntime;
3907
3908 if (d < 0)
3909 d = -d;
3910
3911 if (d > 3*sysctl_sched_latency)
3912 schedstat_inc(cfs_rq->nr_spread_over);
3913 #endif
3914 }
3915
3916 static void
3917 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3918 {
3919 u64 vruntime = cfs_rq->min_vruntime;
3920
3921 /*
3922 * The 'current' period is already promised to the current tasks,
3923 * however the extra weight of the new task will slow them down a
3924 * little, place the new task so that it fits in the slot that
3925 * stays open at the end.
3926 */
3927 if (initial && sched_feat(START_DEBIT))
3928 vruntime += sched_vslice(cfs_rq, se);
3929
3930 /* sleeps up to a single latency don't count. */
3931 if (!initial) {
3932 unsigned long thresh = sysctl_sched_latency;
3933
3934 /*
3935 * Halve their sleep time's effect, to allow
3936 * for a gentler effect of sleepers:
3937 */
3938 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3939 thresh >>= 1;
3940
3941 vruntime -= thresh;
3942 }
3943
3944 /* ensure we never gain time by being placed backwards. */
3945 se->vruntime = max_vruntime(se->vruntime, vruntime);
3946 }
3947
3948 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3949
3950 static inline void check_schedstat_required(void)
3951 {
3952 #ifdef CONFIG_SCHEDSTATS
3953 if (schedstat_enabled())
3954 return;
3955
3956 /* Force schedstat enabled if a dependent tracepoint is active */
3957 if (trace_sched_stat_wait_enabled() ||
3958 trace_sched_stat_sleep_enabled() ||
3959 trace_sched_stat_iowait_enabled() ||
3960 trace_sched_stat_blocked_enabled() ||
3961 trace_sched_stat_runtime_enabled()) {
3962 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3963 "stat_blocked and stat_runtime require the "
3964 "kernel parameter schedstats=enable or "
3965 "kernel.sched_schedstats=1\n");
3966 }
3967 #endif
3968 }
3969
3970
3971 /*
3972 * MIGRATION
3973 *
3974 * dequeue
3975 * update_curr()
3976 * update_min_vruntime()
3977 * vruntime -= min_vruntime
3978 *
3979 * enqueue
3980 * update_curr()
3981 * update_min_vruntime()
3982 * vruntime += min_vruntime
3983 *
3984 * this way the vruntime transition between RQs is done when both
3985 * min_vruntime are up-to-date.
3986 *
3987 * WAKEUP (remote)
3988 *
3989 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
3990 * vruntime -= min_vruntime
3991 *
3992 * enqueue
3993 * update_curr()
3994 * update_min_vruntime()
3995 * vruntime += min_vruntime
3996 *
3997 * this way we don't have the most up-to-date min_vruntime on the originating
3998 * CPU and an up-to-date min_vruntime on the destination CPU.
3999 */
4000
4001 static void
4002 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4003 {
4004 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4005 bool curr = cfs_rq->curr == se;
4006
4007 /*
4008 * If we're the current task, we must renormalise before calling
4009 * update_curr().
4010 */
4011 if (renorm && curr)
4012 se->vruntime += cfs_rq->min_vruntime;
4013
4014 update_curr(cfs_rq);
4015
4016 /*
4017 * Otherwise, renormalise after, such that we're placed at the current
4018 * moment in time, instead of some random moment in the past. Being
4019 * placed in the past could significantly boost this task to the
4020 * fairness detriment of existing tasks.
4021 */
4022 if (renorm && !curr)
4023 se->vruntime += cfs_rq->min_vruntime;
4024
4025 /*
4026 * When enqueuing a sched_entity, we must:
4027 * - Update loads to have both entity and cfs_rq synced with now.
4028 * - Add its load to cfs_rq->runnable_avg
4029 * - For group_entity, update its weight to reflect the new share of
4030 * its group cfs_rq
4031 * - Add its new weight to cfs_rq->load.weight
4032 */
4033 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4034 update_cfs_group(se);
4035 enqueue_runnable_load_avg(cfs_rq, se);
4036 account_entity_enqueue(cfs_rq, se);
4037
4038 if (flags & ENQUEUE_WAKEUP)
4039 place_entity(cfs_rq, se, 0);
4040
4041 check_schedstat_required();
4042 update_stats_enqueue(cfs_rq, se, flags);
4043 check_spread(cfs_rq, se);
4044 if (!curr)
4045 __enqueue_entity(cfs_rq, se);
4046 se->on_rq = 1;
4047
4048 if (cfs_rq->nr_running == 1) {
4049 list_add_leaf_cfs_rq(cfs_rq);
4050 check_enqueue_throttle(cfs_rq);
4051 }
4052 }
4053
4054 static void __clear_buddies_last(struct sched_entity *se)
4055 {
4056 for_each_sched_entity(se) {
4057 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4058 if (cfs_rq->last != se)
4059 break;
4060
4061 cfs_rq->last = NULL;
4062 }
4063 }
4064
4065 static void __clear_buddies_next(struct sched_entity *se)
4066 {
4067 for_each_sched_entity(se) {
4068 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4069 if (cfs_rq->next != se)
4070 break;
4071
4072 cfs_rq->next = NULL;
4073 }
4074 }
4075
4076 static void __clear_buddies_skip(struct sched_entity *se)
4077 {
4078 for_each_sched_entity(se) {
4079 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4080 if (cfs_rq->skip != se)
4081 break;
4082
4083 cfs_rq->skip = NULL;
4084 }
4085 }
4086
4087 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4088 {
4089 if (cfs_rq->last == se)
4090 __clear_buddies_last(se);
4091
4092 if (cfs_rq->next == se)
4093 __clear_buddies_next(se);
4094
4095 if (cfs_rq->skip == se)
4096 __clear_buddies_skip(se);
4097 }
4098
4099 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4100
4101 static void
4102 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4103 {
4104 /*
4105 * Update run-time statistics of the 'current'.
4106 */
4107 update_curr(cfs_rq);
4108
4109 /*
4110 * When dequeuing a sched_entity, we must:
4111 * - Update loads to have both entity and cfs_rq synced with now.
4112 * - Substract its load from the cfs_rq->runnable_avg.
4113 * - Substract its previous weight from cfs_rq->load.weight.
4114 * - For group entity, update its weight to reflect the new share
4115 * of its group cfs_rq.
4116 */
4117 update_load_avg(cfs_rq, se, UPDATE_TG);
4118 dequeue_runnable_load_avg(cfs_rq, se);
4119
4120 update_stats_dequeue(cfs_rq, se, flags);
4121
4122 clear_buddies(cfs_rq, se);
4123
4124 if (se != cfs_rq->curr)
4125 __dequeue_entity(cfs_rq, se);
4126 se->on_rq = 0;
4127 account_entity_dequeue(cfs_rq, se);
4128
4129 /*
4130 * Normalize after update_curr(); which will also have moved
4131 * min_vruntime if @se is the one holding it back. But before doing
4132 * update_min_vruntime() again, which will discount @se's position and
4133 * can move min_vruntime forward still more.
4134 */
4135 if (!(flags & DEQUEUE_SLEEP))
4136 se->vruntime -= cfs_rq->min_vruntime;
4137
4138 /* return excess runtime on last dequeue */
4139 return_cfs_rq_runtime(cfs_rq);
4140
4141 update_cfs_group(se);
4142
4143 /*
4144 * Now advance min_vruntime if @se was the entity holding it back,
4145 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4146 * put back on, and if we advance min_vruntime, we'll be placed back
4147 * further than we started -- ie. we'll be penalized.
4148 */
4149 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
4150 update_min_vruntime(cfs_rq);
4151 }
4152
4153 /*
4154 * Preempt the current task with a newly woken task if needed:
4155 */
4156 static void
4157 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4158 {
4159 unsigned long ideal_runtime, delta_exec;
4160 struct sched_entity *se;
4161 s64 delta;
4162
4163 ideal_runtime = sched_slice(cfs_rq, curr);
4164 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4165 if (delta_exec > ideal_runtime) {
4166 resched_curr(rq_of(cfs_rq));
4167 /*
4168 * The current task ran long enough, ensure it doesn't get
4169 * re-elected due to buddy favours.
4170 */
4171 clear_buddies(cfs_rq, curr);
4172 return;
4173 }
4174
4175 /*
4176 * Ensure that a task that missed wakeup preemption by a
4177 * narrow margin doesn't have to wait for a full slice.
4178 * This also mitigates buddy induced latencies under load.
4179 */
4180 if (delta_exec < sysctl_sched_min_granularity)
4181 return;
4182
4183 se = __pick_first_entity(cfs_rq);
4184 delta = curr->vruntime - se->vruntime;
4185
4186 if (delta < 0)
4187 return;
4188
4189 if (delta > ideal_runtime)
4190 resched_curr(rq_of(cfs_rq));
4191 }
4192
4193 static void
4194 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4195 {
4196 /* 'current' is not kept within the tree. */
4197 if (se->on_rq) {
4198 /*
4199 * Any task has to be enqueued before it get to execute on
4200 * a CPU. So account for the time it spent waiting on the
4201 * runqueue.
4202 */
4203 update_stats_wait_end(cfs_rq, se);
4204 __dequeue_entity(cfs_rq, se);
4205 update_load_avg(cfs_rq, se, UPDATE_TG);
4206 }
4207
4208 update_stats_curr_start(cfs_rq, se);
4209 cfs_rq->curr = se;
4210
4211 /*
4212 * Track our maximum slice length, if the CPU's load is at
4213 * least twice that of our own weight (i.e. dont track it
4214 * when there are only lesser-weight tasks around):
4215 */
4216 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4217 schedstat_set(se->statistics.slice_max,
4218 max((u64)schedstat_val(se->statistics.slice_max),
4219 se->sum_exec_runtime - se->prev_sum_exec_runtime));
4220 }
4221
4222 se->prev_sum_exec_runtime = se->sum_exec_runtime;
4223 }
4224
4225 static int
4226 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4227
4228 /*
4229 * Pick the next process, keeping these things in mind, in this order:
4230 * 1) keep things fair between processes/task groups
4231 * 2) pick the "next" process, since someone really wants that to run
4232 * 3) pick the "last" process, for cache locality
4233 * 4) do not run the "skip" process, if something else is available
4234 */
4235 static struct sched_entity *
4236 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4237 {
4238 struct sched_entity *left = __pick_first_entity(cfs_rq);
4239 struct sched_entity *se;
4240
4241 /*
4242 * If curr is set we have to see if its left of the leftmost entity
4243 * still in the tree, provided there was anything in the tree at all.
4244 */
4245 if (!left || (curr && entity_before(curr, left)))
4246 left = curr;
4247
4248 se = left; /* ideally we run the leftmost entity */
4249
4250 /*
4251 * Avoid running the skip buddy, if running something else can
4252 * be done without getting too unfair.
4253 */
4254 if (cfs_rq->skip == se) {
4255 struct sched_entity *second;
4256
4257 if (se == curr) {
4258 second = __pick_first_entity(cfs_rq);
4259 } else {
4260 second = __pick_next_entity(se);
4261 if (!second || (curr && entity_before(curr, second)))
4262 second = curr;
4263 }
4264
4265 if (second && wakeup_preempt_entity(second, left) < 1)
4266 se = second;
4267 }
4268
4269 /*
4270 * Prefer last buddy, try to return the CPU to a preempted task.
4271 */
4272 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4273 se = cfs_rq->last;
4274
4275 /*
4276 * Someone really wants this to run. If it's not unfair, run it.
4277 */
4278 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4279 se = cfs_rq->next;
4280
4281 clear_buddies(cfs_rq, se);
4282
4283 return se;
4284 }
4285
4286 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4287
4288 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4289 {
4290 /*
4291 * If still on the runqueue then deactivate_task()
4292 * was not called and update_curr() has to be done:
4293 */
4294 if (prev->on_rq)
4295 update_curr(cfs_rq);
4296
4297 /* throttle cfs_rqs exceeding runtime */
4298 check_cfs_rq_runtime(cfs_rq);
4299
4300 check_spread(cfs_rq, prev);
4301
4302 if (prev->on_rq) {
4303 update_stats_wait_start(cfs_rq, prev);
4304 /* Put 'current' back into the tree. */
4305 __enqueue_entity(cfs_rq, prev);
4306 /* in !on_rq case, update occurred at dequeue */
4307 update_load_avg(cfs_rq, prev, 0);
4308 }
4309 cfs_rq->curr = NULL;
4310 }
4311
4312 static void
4313 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4314 {
4315 /*
4316 * Update run-time statistics of the 'current'.
4317 */
4318 update_curr(cfs_rq);
4319
4320 /*
4321 * Ensure that runnable average is periodically updated.
4322 */
4323 update_load_avg(cfs_rq, curr, UPDATE_TG);
4324 update_cfs_group(curr);
4325
4326 #ifdef CONFIG_SCHED_HRTICK
4327 /*
4328 * queued ticks are scheduled to match the slice, so don't bother
4329 * validating it and just reschedule.
4330 */
4331 if (queued) {
4332 resched_curr(rq_of(cfs_rq));
4333 return;
4334 }
4335 /*
4336 * don't let the period tick interfere with the hrtick preemption
4337 */
4338 if (!sched_feat(DOUBLE_TICK) &&
4339 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4340 return;
4341 #endif
4342
4343 if (cfs_rq->nr_running > 1)
4344 check_preempt_tick(cfs_rq, curr);
4345 }
4346
4347
4348 /**************************************************
4349 * CFS bandwidth control machinery
4350 */
4351
4352 #ifdef CONFIG_CFS_BANDWIDTH
4353
4354 #ifdef HAVE_JUMP_LABEL
4355 static struct static_key __cfs_bandwidth_used;
4356
4357 static inline bool cfs_bandwidth_used(void)
4358 {
4359 return static_key_false(&__cfs_bandwidth_used);
4360 }
4361
4362 void cfs_bandwidth_usage_inc(void)
4363 {
4364 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4365 }
4366
4367 void cfs_bandwidth_usage_dec(void)
4368 {
4369 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4370 }
4371 #else /* HAVE_JUMP_LABEL */
4372 static bool cfs_bandwidth_used(void)
4373 {
4374 return true;
4375 }
4376
4377 void cfs_bandwidth_usage_inc(void) {}
4378 void cfs_bandwidth_usage_dec(void) {}
4379 #endif /* HAVE_JUMP_LABEL */
4380
4381 /*
4382 * default period for cfs group bandwidth.
4383 * default: 0.1s, units: nanoseconds
4384 */
4385 static inline u64 default_cfs_period(void)
4386 {
4387 return 100000000ULL;
4388 }
4389
4390 static inline u64 sched_cfs_bandwidth_slice(void)
4391 {
4392 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4393 }
4394
4395 /*
4396 * Replenish runtime according to assigned quota and update expiration time.
4397 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4398 * additional synchronization around rq->lock.
4399 *
4400 * requires cfs_b->lock
4401 */
4402 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4403 {
4404 u64 now;
4405
4406 if (cfs_b->quota == RUNTIME_INF)
4407 return;
4408
4409 now = sched_clock_cpu(smp_processor_id());
4410 cfs_b->runtime = cfs_b->quota;
4411 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4412 }
4413
4414 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4415 {
4416 return &tg->cfs_bandwidth;
4417 }
4418
4419 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4420 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4421 {
4422 if (unlikely(cfs_rq->throttle_count))
4423 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4424
4425 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4426 }
4427
4428 /* returns 0 on failure to allocate runtime */
4429 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4430 {
4431 struct task_group *tg = cfs_rq->tg;
4432 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4433 u64 amount = 0, min_amount, expires;
4434
4435 /* note: this is a positive sum as runtime_remaining <= 0 */
4436 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4437
4438 raw_spin_lock(&cfs_b->lock);
4439 if (cfs_b->quota == RUNTIME_INF)
4440 amount = min_amount;
4441 else {
4442 start_cfs_bandwidth(cfs_b);
4443
4444 if (cfs_b->runtime > 0) {
4445 amount = min(cfs_b->runtime, min_amount);
4446 cfs_b->runtime -= amount;
4447 cfs_b->idle = 0;
4448 }
4449 }
4450 expires = cfs_b->runtime_expires;
4451 raw_spin_unlock(&cfs_b->lock);
4452
4453 cfs_rq->runtime_remaining += amount;
4454 /*
4455 * we may have advanced our local expiration to account for allowed
4456 * spread between our sched_clock and the one on which runtime was
4457 * issued.
4458 */
4459 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4460 cfs_rq->runtime_expires = expires;
4461
4462 return cfs_rq->runtime_remaining > 0;
4463 }
4464
4465 /*
4466 * Note: This depends on the synchronization provided by sched_clock and the
4467 * fact that rq->clock snapshots this value.
4468 */
4469 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4470 {
4471 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4472
4473 /* if the deadline is ahead of our clock, nothing to do */
4474 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4475 return;
4476
4477 if (cfs_rq->runtime_remaining < 0)
4478 return;
4479
4480 /*
4481 * If the local deadline has passed we have to consider the
4482 * possibility that our sched_clock is 'fast' and the global deadline
4483 * has not truly expired.
4484 *
4485 * Fortunately we can check determine whether this the case by checking
4486 * whether the global deadline has advanced. It is valid to compare
4487 * cfs_b->runtime_expires without any locks since we only care about
4488 * exact equality, so a partial write will still work.
4489 */
4490
4491 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
4492 /* extend local deadline, drift is bounded above by 2 ticks */
4493 cfs_rq->runtime_expires += TICK_NSEC;
4494 } else {
4495 /* global deadline is ahead, expiration has passed */
4496 cfs_rq->runtime_remaining = 0;
4497 }
4498 }
4499
4500 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4501 {
4502 /* dock delta_exec before expiring quota (as it could span periods) */
4503 cfs_rq->runtime_remaining -= delta_exec;
4504 expire_cfs_rq_runtime(cfs_rq);
4505
4506 if (likely(cfs_rq->runtime_remaining > 0))
4507 return;
4508
4509 /*
4510 * if we're unable to extend our runtime we resched so that the active
4511 * hierarchy can be throttled
4512 */
4513 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4514 resched_curr(rq_of(cfs_rq));
4515 }
4516
4517 static __always_inline
4518 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4519 {
4520 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4521 return;
4522
4523 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4524 }
4525
4526 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4527 {
4528 return cfs_bandwidth_used() && cfs_rq->throttled;
4529 }
4530
4531 /* check whether cfs_rq, or any parent, is throttled */
4532 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4533 {
4534 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4535 }
4536
4537 /*
4538 * Ensure that neither of the group entities corresponding to src_cpu or
4539 * dest_cpu are members of a throttled hierarchy when performing group
4540 * load-balance operations.
4541 */
4542 static inline int throttled_lb_pair(struct task_group *tg,
4543 int src_cpu, int dest_cpu)
4544 {
4545 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4546
4547 src_cfs_rq = tg->cfs_rq[src_cpu];
4548 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4549
4550 return throttled_hierarchy(src_cfs_rq) ||
4551 throttled_hierarchy(dest_cfs_rq);
4552 }
4553
4554 /* updated child weight may affect parent so we have to do this bottom up */
4555 static int tg_unthrottle_up(struct task_group *tg, void *data)
4556 {
4557 struct rq *rq = data;
4558 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4559
4560 cfs_rq->throttle_count--;
4561 if (!cfs_rq->throttle_count) {
4562 /* adjust cfs_rq_clock_task() */
4563 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4564 cfs_rq->throttled_clock_task;
4565 }
4566
4567 return 0;
4568 }
4569
4570 static int tg_throttle_down(struct task_group *tg, void *data)
4571 {
4572 struct rq *rq = data;
4573 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4574
4575 /* group is entering throttled state, stop time */
4576 if (!cfs_rq->throttle_count)
4577 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4578 cfs_rq->throttle_count++;
4579
4580 return 0;
4581 }
4582
4583 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4584 {
4585 struct rq *rq = rq_of(cfs_rq);
4586 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4587 struct sched_entity *se;
4588 long task_delta, dequeue = 1;
4589 bool empty;
4590
4591 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4592
4593 /* freeze hierarchy runnable averages while throttled */
4594 rcu_read_lock();
4595 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4596 rcu_read_unlock();
4597
4598 task_delta = cfs_rq->h_nr_running;
4599 for_each_sched_entity(se) {
4600 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4601 /* throttled entity or throttle-on-deactivate */
4602 if (!se->on_rq)
4603 break;
4604
4605 if (dequeue)
4606 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4607 qcfs_rq->h_nr_running -= task_delta;
4608
4609 if (qcfs_rq->load.weight)
4610 dequeue = 0;
4611 }
4612
4613 if (!se)
4614 sub_nr_running(rq, task_delta);
4615
4616 cfs_rq->throttled = 1;
4617 cfs_rq->throttled_clock = rq_clock(rq);
4618 raw_spin_lock(&cfs_b->lock);
4619 empty = list_empty(&cfs_b->throttled_cfs_rq);
4620
4621 /*
4622 * Add to the _head_ of the list, so that an already-started
4623 * distribute_cfs_runtime will not see us
4624 */
4625 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4626
4627 /*
4628 * If we're the first throttled task, make sure the bandwidth
4629 * timer is running.
4630 */
4631 if (empty)
4632 start_cfs_bandwidth(cfs_b);
4633
4634 raw_spin_unlock(&cfs_b->lock);
4635 }
4636
4637 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4638 {
4639 struct rq *rq = rq_of(cfs_rq);
4640 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4641 struct sched_entity *se;
4642 int enqueue = 1;
4643 long task_delta;
4644
4645 se = cfs_rq->tg->se[cpu_of(rq)];
4646
4647 cfs_rq->throttled = 0;
4648
4649 update_rq_clock(rq);
4650
4651 raw_spin_lock(&cfs_b->lock);
4652 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4653 list_del_rcu(&cfs_rq->throttled_list);
4654 raw_spin_unlock(&cfs_b->lock);
4655
4656 /* update hierarchical throttle state */
4657 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4658
4659 if (!cfs_rq->load.weight)
4660 return;
4661
4662 task_delta = cfs_rq->h_nr_running;
4663 for_each_sched_entity(se) {
4664 if (se->on_rq)
4665 enqueue = 0;
4666
4667 cfs_rq = cfs_rq_of(se);
4668 if (enqueue)
4669 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4670 cfs_rq->h_nr_running += task_delta;
4671
4672 if (cfs_rq_throttled(cfs_rq))
4673 break;
4674 }
4675
4676 if (!se)
4677 add_nr_running(rq, task_delta);
4678
4679 /* determine whether we need to wake up potentially idle cpu */
4680 if (rq->curr == rq->idle && rq->cfs.nr_running)
4681 resched_curr(rq);
4682 }
4683
4684 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4685 u64 remaining, u64 expires)
4686 {
4687 struct cfs_rq *cfs_rq;
4688 u64 runtime;
4689 u64 starting_runtime = remaining;
4690
4691 rcu_read_lock();
4692 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4693 throttled_list) {
4694 struct rq *rq = rq_of(cfs_rq);
4695 struct rq_flags rf;
4696
4697 rq_lock(rq, &rf);
4698 if (!cfs_rq_throttled(cfs_rq))
4699 goto next;
4700
4701 runtime = -cfs_rq->runtime_remaining + 1;
4702 if (runtime > remaining)
4703 runtime = remaining;
4704 remaining -= runtime;
4705
4706 cfs_rq->runtime_remaining += runtime;
4707 cfs_rq->runtime_expires = expires;
4708
4709 /* we check whether we're throttled above */
4710 if (cfs_rq->runtime_remaining > 0)
4711 unthrottle_cfs_rq(cfs_rq);
4712
4713 next:
4714 rq_unlock(rq, &rf);
4715
4716 if (!remaining)
4717 break;
4718 }
4719 rcu_read_unlock();
4720
4721 return starting_runtime - remaining;
4722 }
4723
4724 /*
4725 * Responsible for refilling a task_group's bandwidth and unthrottling its
4726 * cfs_rqs as appropriate. If there has been no activity within the last
4727 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4728 * used to track this state.
4729 */
4730 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4731 {
4732 u64 runtime, runtime_expires;
4733 int throttled;
4734
4735 /* no need to continue the timer with no bandwidth constraint */
4736 if (cfs_b->quota == RUNTIME_INF)
4737 goto out_deactivate;
4738
4739 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4740 cfs_b->nr_periods += overrun;
4741
4742 /*
4743 * idle depends on !throttled (for the case of a large deficit), and if
4744 * we're going inactive then everything else can be deferred
4745 */
4746 if (cfs_b->idle && !throttled)
4747 goto out_deactivate;
4748
4749 __refill_cfs_bandwidth_runtime(cfs_b);
4750
4751 if (!throttled) {
4752 /* mark as potentially idle for the upcoming period */
4753 cfs_b->idle = 1;
4754 return 0;
4755 }
4756
4757 /* account preceding periods in which throttling occurred */
4758 cfs_b->nr_throttled += overrun;
4759
4760 runtime_expires = cfs_b->runtime_expires;
4761
4762 /*
4763 * This check is repeated as we are holding onto the new bandwidth while
4764 * we unthrottle. This can potentially race with an unthrottled group
4765 * trying to acquire new bandwidth from the global pool. This can result
4766 * in us over-using our runtime if it is all used during this loop, but
4767 * only by limited amounts in that extreme case.
4768 */
4769 while (throttled && cfs_b->runtime > 0) {
4770 runtime = cfs_b->runtime;
4771 raw_spin_unlock(&cfs_b->lock);
4772 /* we can't nest cfs_b->lock while distributing bandwidth */
4773 runtime = distribute_cfs_runtime(cfs_b, runtime,
4774 runtime_expires);
4775 raw_spin_lock(&cfs_b->lock);
4776
4777 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4778
4779 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4780 }
4781
4782 /*
4783 * While we are ensured activity in the period following an
4784 * unthrottle, this also covers the case in which the new bandwidth is
4785 * insufficient to cover the existing bandwidth deficit. (Forcing the
4786 * timer to remain active while there are any throttled entities.)
4787 */
4788 cfs_b->idle = 0;
4789
4790 return 0;
4791
4792 out_deactivate:
4793 return 1;
4794 }
4795
4796 /* a cfs_rq won't donate quota below this amount */
4797 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4798 /* minimum remaining period time to redistribute slack quota */
4799 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4800 /* how long we wait to gather additional slack before distributing */
4801 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4802
4803 /*
4804 * Are we near the end of the current quota period?
4805 *
4806 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4807 * hrtimer base being cleared by hrtimer_start. In the case of
4808 * migrate_hrtimers, base is never cleared, so we are fine.
4809 */
4810 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4811 {
4812 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4813 u64 remaining;
4814
4815 /* if the call-back is running a quota refresh is already occurring */
4816 if (hrtimer_callback_running(refresh_timer))
4817 return 1;
4818
4819 /* is a quota refresh about to occur? */
4820 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4821 if (remaining < min_expire)
4822 return 1;
4823
4824 return 0;
4825 }
4826
4827 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4828 {
4829 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4830
4831 /* if there's a quota refresh soon don't bother with slack */
4832 if (runtime_refresh_within(cfs_b, min_left))
4833 return;
4834
4835 hrtimer_start(&cfs_b->slack_timer,
4836 ns_to_ktime(cfs_bandwidth_slack_period),
4837 HRTIMER_MODE_REL);
4838 }
4839
4840 /* we know any runtime found here is valid as update_curr() precedes return */
4841 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4842 {
4843 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4844 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4845
4846 if (slack_runtime <= 0)
4847 return;
4848
4849 raw_spin_lock(&cfs_b->lock);
4850 if (cfs_b->quota != RUNTIME_INF &&
4851 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4852 cfs_b->runtime += slack_runtime;
4853
4854 /* we are under rq->lock, defer unthrottling using a timer */
4855 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4856 !list_empty(&cfs_b->throttled_cfs_rq))
4857 start_cfs_slack_bandwidth(cfs_b);
4858 }
4859 raw_spin_unlock(&cfs_b->lock);
4860
4861 /* even if it's not valid for return we don't want to try again */
4862 cfs_rq->runtime_remaining -= slack_runtime;
4863 }
4864
4865 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4866 {
4867 if (!cfs_bandwidth_used())
4868 return;
4869
4870 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4871 return;
4872
4873 __return_cfs_rq_runtime(cfs_rq);
4874 }
4875
4876 /*
4877 * This is done with a timer (instead of inline with bandwidth return) since
4878 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4879 */
4880 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4881 {
4882 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4883 u64 expires;
4884
4885 /* confirm we're still not at a refresh boundary */
4886 raw_spin_lock(&cfs_b->lock);
4887 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4888 raw_spin_unlock(&cfs_b->lock);
4889 return;
4890 }
4891
4892 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4893 runtime = cfs_b->runtime;
4894
4895 expires = cfs_b->runtime_expires;
4896 raw_spin_unlock(&cfs_b->lock);
4897
4898 if (!runtime)
4899 return;
4900
4901 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4902
4903 raw_spin_lock(&cfs_b->lock);
4904 if (expires == cfs_b->runtime_expires)
4905 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4906 raw_spin_unlock(&cfs_b->lock);
4907 }
4908
4909 /*
4910 * When a group wakes up we want to make sure that its quota is not already
4911 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4912 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4913 */
4914 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4915 {
4916 if (!cfs_bandwidth_used())
4917 return;
4918
4919 /* an active group must be handled by the update_curr()->put() path */
4920 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4921 return;
4922
4923 /* ensure the group is not already throttled */
4924 if (cfs_rq_throttled(cfs_rq))
4925 return;
4926
4927 /* update runtime allocation */
4928 account_cfs_rq_runtime(cfs_rq, 0);
4929 if (cfs_rq->runtime_remaining <= 0)
4930 throttle_cfs_rq(cfs_rq);
4931 }
4932
4933 static void sync_throttle(struct task_group *tg, int cpu)
4934 {
4935 struct cfs_rq *pcfs_rq, *cfs_rq;
4936
4937 if (!cfs_bandwidth_used())
4938 return;
4939
4940 if (!tg->parent)
4941 return;
4942
4943 cfs_rq = tg->cfs_rq[cpu];
4944 pcfs_rq = tg->parent->cfs_rq[cpu];
4945
4946 cfs_rq->throttle_count = pcfs_rq->throttle_count;
4947 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4948 }
4949
4950 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4951 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4952 {
4953 if (!cfs_bandwidth_used())
4954 return false;
4955
4956 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4957 return false;
4958
4959 /*
4960 * it's possible for a throttled entity to be forced into a running
4961 * state (e.g. set_curr_task), in this case we're finished.
4962 */
4963 if (cfs_rq_throttled(cfs_rq))
4964 return true;
4965
4966 throttle_cfs_rq(cfs_rq);
4967 return true;
4968 }
4969
4970 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4971 {
4972 struct cfs_bandwidth *cfs_b =
4973 container_of(timer, struct cfs_bandwidth, slack_timer);
4974
4975 do_sched_cfs_slack_timer(cfs_b);
4976
4977 return HRTIMER_NORESTART;
4978 }
4979
4980 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4981 {
4982 struct cfs_bandwidth *cfs_b =
4983 container_of(timer, struct cfs_bandwidth, period_timer);
4984 int overrun;
4985 int idle = 0;
4986
4987 raw_spin_lock(&cfs_b->lock);
4988 for (;;) {
4989 overrun = hrtimer_forward_now(timer, cfs_b->period);
4990 if (!overrun)
4991 break;
4992
4993 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4994 }
4995 if (idle)
4996 cfs_b->period_active = 0;
4997 raw_spin_unlock(&cfs_b->lock);
4998
4999 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5000 }
5001
5002 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5003 {
5004 raw_spin_lock_init(&cfs_b->lock);
5005 cfs_b->runtime = 0;
5006 cfs_b->quota = RUNTIME_INF;
5007 cfs_b->period = ns_to_ktime(default_cfs_period());
5008
5009 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5010 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5011 cfs_b->period_timer.function = sched_cfs_period_timer;
5012 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5013 cfs_b->slack_timer.function = sched_cfs_slack_timer;
5014 }
5015
5016 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5017 {
5018 cfs_rq->runtime_enabled = 0;
5019 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5020 }
5021
5022 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5023 {
5024 lockdep_assert_held(&cfs_b->lock);
5025
5026 if (!cfs_b->period_active) {
5027 cfs_b->period_active = 1;
5028 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5029 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5030 }
5031 }
5032
5033 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5034 {
5035 /* init_cfs_bandwidth() was not called */
5036 if (!cfs_b->throttled_cfs_rq.next)
5037 return;
5038
5039 hrtimer_cancel(&cfs_b->period_timer);
5040 hrtimer_cancel(&cfs_b->slack_timer);
5041 }
5042
5043 /*
5044 * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
5045 *
5046 * The race is harmless, since modifying bandwidth settings of unhooked group
5047 * bits doesn't do much.
5048 */
5049
5050 /* cpu online calback */
5051 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5052 {
5053 struct task_group *tg;
5054
5055 lockdep_assert_held(&rq->lock);
5056
5057 rcu_read_lock();
5058 list_for_each_entry_rcu(tg, &task_groups, list) {
5059 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5060 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5061
5062 raw_spin_lock(&cfs_b->lock);
5063 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5064 raw_spin_unlock(&cfs_b->lock);
5065 }
5066 rcu_read_unlock();
5067 }
5068
5069 /* cpu offline callback */
5070 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5071 {
5072 struct task_group *tg;
5073
5074 lockdep_assert_held(&rq->lock);
5075
5076 rcu_read_lock();
5077 list_for_each_entry_rcu(tg, &task_groups, list) {
5078 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5079
5080 if (!cfs_rq->runtime_enabled)
5081 continue;
5082
5083 /*
5084 * clock_task is not advancing so we just need to make sure
5085 * there's some valid quota amount
5086 */
5087 cfs_rq->runtime_remaining = 1;
5088 /*
5089 * Offline rq is schedulable till cpu is completely disabled
5090 * in take_cpu_down(), so we prevent new cfs throttling here.
5091 */
5092 cfs_rq->runtime_enabled = 0;
5093
5094 if (cfs_rq_throttled(cfs_rq))
5095 unthrottle_cfs_rq(cfs_rq);
5096 }
5097 rcu_read_unlock();
5098 }
5099
5100 #else /* CONFIG_CFS_BANDWIDTH */
5101 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
5102 {
5103 return rq_clock_task(rq_of(cfs_rq));
5104 }
5105
5106 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5107 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5108 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5109 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5110 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5111
5112 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5113 {
5114 return 0;
5115 }
5116
5117 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5118 {
5119 return 0;
5120 }
5121
5122 static inline int throttled_lb_pair(struct task_group *tg,
5123 int src_cpu, int dest_cpu)
5124 {
5125 return 0;
5126 }
5127
5128 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5129
5130 #ifdef CONFIG_FAIR_GROUP_SCHED
5131 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5132 #endif
5133
5134 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5135 {
5136 return NULL;
5137 }
5138 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5139 static inline void update_runtime_enabled(struct rq *rq) {}
5140 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5141
5142 #endif /* CONFIG_CFS_BANDWIDTH */
5143
5144 /**************************************************
5145 * CFS operations on tasks:
5146 */
5147
5148 #ifdef CONFIG_SCHED_HRTICK
5149 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5150 {
5151 struct sched_entity *se = &p->se;
5152 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5153
5154 SCHED_WARN_ON(task_rq(p) != rq);
5155
5156 if (rq->cfs.h_nr_running > 1) {
5157 u64 slice = sched_slice(cfs_rq, se);
5158 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5159 s64 delta = slice - ran;
5160
5161 if (delta < 0) {
5162 if (rq->curr == p)
5163 resched_curr(rq);
5164 return;
5165 }
5166 hrtick_start(rq, delta);
5167 }
5168 }
5169
5170 /*
5171 * called from enqueue/dequeue and updates the hrtick when the
5172 * current task is from our class and nr_running is low enough
5173 * to matter.
5174 */
5175 static void hrtick_update(struct rq *rq)
5176 {
5177 struct task_struct *curr = rq->curr;
5178
5179 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5180 return;
5181
5182 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5183 hrtick_start_fair(rq, curr);
5184 }
5185 #else /* !CONFIG_SCHED_HRTICK */
5186 static inline void
5187 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5188 {
5189 }
5190
5191 static inline void hrtick_update(struct rq *rq)
5192 {
5193 }
5194 #endif
5195
5196 /*
5197 * The enqueue_task method is called before nr_running is
5198 * increased. Here we update the fair scheduling stats and
5199 * then put the task into the rbtree:
5200 */
5201 static void
5202 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5203 {
5204 struct cfs_rq *cfs_rq;
5205 struct sched_entity *se = &p->se;
5206
5207 /*
5208 * If in_iowait is set, the code below may not trigger any cpufreq
5209 * utilization updates, so do it here explicitly with the IOWAIT flag
5210 * passed.
5211 */
5212 if (p->in_iowait)
5213 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5214
5215 for_each_sched_entity(se) {
5216 if (se->on_rq)
5217 break;
5218 cfs_rq = cfs_rq_of(se);
5219 enqueue_entity(cfs_rq, se, flags);
5220
5221 /*
5222 * end evaluation on encountering a throttled cfs_rq
5223 *
5224 * note: in the case of encountering a throttled cfs_rq we will
5225 * post the final h_nr_running increment below.
5226 */
5227 if (cfs_rq_throttled(cfs_rq))
5228 break;
5229 cfs_rq->h_nr_running++;
5230
5231 flags = ENQUEUE_WAKEUP;
5232 }
5233
5234 for_each_sched_entity(se) {
5235 cfs_rq = cfs_rq_of(se);
5236 cfs_rq->h_nr_running++;
5237
5238 if (cfs_rq_throttled(cfs_rq))
5239 break;
5240
5241 update_load_avg(cfs_rq, se, UPDATE_TG);
5242 update_cfs_group(se);
5243 }
5244
5245 if (!se)
5246 add_nr_running(rq, 1);
5247
5248 hrtick_update(rq);
5249 }
5250
5251 static void set_next_buddy(struct sched_entity *se);
5252
5253 /*
5254 * The dequeue_task method is called before nr_running is
5255 * decreased. We remove the task from the rbtree and
5256 * update the fair scheduling stats:
5257 */
5258 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5259 {
5260 struct cfs_rq *cfs_rq;
5261 struct sched_entity *se = &p->se;
5262 int task_sleep = flags & DEQUEUE_SLEEP;
5263
5264 for_each_sched_entity(se) {
5265 cfs_rq = cfs_rq_of(se);
5266 dequeue_entity(cfs_rq, se, flags);
5267
5268 /*
5269 * end evaluation on encountering a throttled cfs_rq
5270 *
5271 * note: in the case of encountering a throttled cfs_rq we will
5272 * post the final h_nr_running decrement below.
5273 */
5274 if (cfs_rq_throttled(cfs_rq))
5275 break;
5276 cfs_rq->h_nr_running--;
5277
5278 /* Don't dequeue parent if it has other entities besides us */
5279 if (cfs_rq->load.weight) {
5280 /* Avoid re-evaluating load for this entity: */
5281 se = parent_entity(se);
5282 /*
5283 * Bias pick_next to pick a task from this cfs_rq, as
5284 * p is sleeping when it is within its sched_slice.
5285 */
5286 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5287 set_next_buddy(se);
5288 break;
5289 }
5290 flags |= DEQUEUE_SLEEP;
5291 }
5292
5293 for_each_sched_entity(se) {
5294 cfs_rq = cfs_rq_of(se);
5295 cfs_rq->h_nr_running--;
5296
5297 if (cfs_rq_throttled(cfs_rq))
5298 break;
5299
5300 update_load_avg(cfs_rq, se, UPDATE_TG);
5301 update_cfs_group(se);
5302 }
5303
5304 if (!se)
5305 sub_nr_running(rq, 1);
5306
5307 hrtick_update(rq);
5308 }
5309
5310 #ifdef CONFIG_SMP
5311
5312 /* Working cpumask for: load_balance, load_balance_newidle. */
5313 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5314 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5315
5316 #ifdef CONFIG_NO_HZ_COMMON
5317 /*
5318 * per rq 'load' arrray crap; XXX kill this.
5319 */
5320
5321 /*
5322 * The exact cpuload calculated at every tick would be:
5323 *
5324 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5325 *
5326 * If a cpu misses updates for n ticks (as it was idle) and update gets
5327 * called on the n+1-th tick when cpu may be busy, then we have:
5328 *
5329 * load_n = (1 - 1/2^i)^n * load_0
5330 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
5331 *
5332 * decay_load_missed() below does efficient calculation of
5333 *
5334 * load' = (1 - 1/2^i)^n * load
5335 *
5336 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5337 * This allows us to precompute the above in said factors, thereby allowing the
5338 * reduction of an arbitrary n in O(log_2 n) steps. (See also
5339 * fixed_power_int())
5340 *
5341 * The calculation is approximated on a 128 point scale.
5342 */
5343 #define DEGRADE_SHIFT 7
5344
5345 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5346 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5347 { 0, 0, 0, 0, 0, 0, 0, 0 },
5348 { 64, 32, 8, 0, 0, 0, 0, 0 },
5349 { 96, 72, 40, 12, 1, 0, 0, 0 },
5350 { 112, 98, 75, 43, 15, 1, 0, 0 },
5351 { 120, 112, 98, 76, 45, 16, 2, 0 }
5352 };
5353
5354 /*
5355 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5356 * would be when CPU is idle and so we just decay the old load without
5357 * adding any new load.
5358 */
5359 static unsigned long
5360 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5361 {
5362 int j = 0;
5363
5364 if (!missed_updates)
5365 return load;
5366
5367 if (missed_updates >= degrade_zero_ticks[idx])
5368 return 0;
5369
5370 if (idx == 1)
5371 return load >> missed_updates;
5372
5373 while (missed_updates) {
5374 if (missed_updates % 2)
5375 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5376
5377 missed_updates >>= 1;
5378 j++;
5379 }
5380 return load;
5381 }
5382 #endif /* CONFIG_NO_HZ_COMMON */
5383
5384 /**
5385 * __cpu_load_update - update the rq->cpu_load[] statistics
5386 * @this_rq: The rq to update statistics for
5387 * @this_load: The current load
5388 * @pending_updates: The number of missed updates
5389 *
5390 * Update rq->cpu_load[] statistics. This function is usually called every
5391 * scheduler tick (TICK_NSEC).
5392 *
5393 * This function computes a decaying average:
5394 *
5395 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5396 *
5397 * Because of NOHZ it might not get called on every tick which gives need for
5398 * the @pending_updates argument.
5399 *
5400 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5401 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5402 * = A * (A * load[i]_n-2 + B) + B
5403 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5404 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5405 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5406 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5407 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5408 *
5409 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5410 * any change in load would have resulted in the tick being turned back on.
5411 *
5412 * For regular NOHZ, this reduces to:
5413 *
5414 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5415 *
5416 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5417 * term.
5418 */
5419 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5420 unsigned long pending_updates)
5421 {
5422 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5423 int i, scale;
5424
5425 this_rq->nr_load_updates++;
5426
5427 /* Update our load: */
5428 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5429 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5430 unsigned long old_load, new_load;
5431
5432 /* scale is effectively 1 << i now, and >> i divides by scale */
5433
5434 old_load = this_rq->cpu_load[i];
5435 #ifdef CONFIG_NO_HZ_COMMON
5436 old_load = decay_load_missed(old_load, pending_updates - 1, i);
5437 if (tickless_load) {
5438 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5439 /*
5440 * old_load can never be a negative value because a
5441 * decayed tickless_load cannot be greater than the
5442 * original tickless_load.
5443 */
5444 old_load += tickless_load;
5445 }
5446 #endif
5447 new_load = this_load;
5448 /*
5449 * Round up the averaging division if load is increasing. This
5450 * prevents us from getting stuck on 9 if the load is 10, for
5451 * example.
5452 */
5453 if (new_load > old_load)
5454 new_load += scale - 1;
5455
5456 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5457 }
5458
5459 sched_avg_update(this_rq);
5460 }
5461
5462 /* Used instead of source_load when we know the type == 0 */
5463 static unsigned long weighted_cpuload(struct rq *rq)
5464 {
5465 return cfs_rq_runnable_load_avg(&rq->cfs);
5466 }
5467
5468 #ifdef CONFIG_NO_HZ_COMMON
5469 /*
5470 * There is no sane way to deal with nohz on smp when using jiffies because the
5471 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5472 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5473 *
5474 * Therefore we need to avoid the delta approach from the regular tick when
5475 * possible since that would seriously skew the load calculation. This is why we
5476 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5477 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5478 * loop exit, nohz_idle_balance, nohz full exit...)
5479 *
5480 * This means we might still be one tick off for nohz periods.
5481 */
5482
5483 static void cpu_load_update_nohz(struct rq *this_rq,
5484 unsigned long curr_jiffies,
5485 unsigned long load)
5486 {
5487 unsigned long pending_updates;
5488
5489 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5490 if (pending_updates) {
5491 this_rq->last_load_update_tick = curr_jiffies;
5492 /*
5493 * In the regular NOHZ case, we were idle, this means load 0.
5494 * In the NOHZ_FULL case, we were non-idle, we should consider
5495 * its weighted load.
5496 */
5497 cpu_load_update(this_rq, load, pending_updates);
5498 }
5499 }
5500
5501 /*
5502 * Called from nohz_idle_balance() to update the load ratings before doing the
5503 * idle balance.
5504 */
5505 static void cpu_load_update_idle(struct rq *this_rq)
5506 {
5507 /*
5508 * bail if there's load or we're actually up-to-date.
5509 */
5510 if (weighted_cpuload(this_rq))
5511 return;
5512
5513 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5514 }
5515
5516 /*
5517 * Record CPU load on nohz entry so we know the tickless load to account
5518 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5519 * than other cpu_load[idx] but it should be fine as cpu_load readers
5520 * shouldn't rely into synchronized cpu_load[*] updates.
5521 */
5522 void cpu_load_update_nohz_start(void)
5523 {
5524 struct rq *this_rq = this_rq();
5525
5526 /*
5527 * This is all lockless but should be fine. If weighted_cpuload changes
5528 * concurrently we'll exit nohz. And cpu_load write can race with
5529 * cpu_load_update_idle() but both updater would be writing the same.
5530 */
5531 this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5532 }
5533
5534 /*
5535 * Account the tickless load in the end of a nohz frame.
5536 */
5537 void cpu_load_update_nohz_stop(void)
5538 {
5539 unsigned long curr_jiffies = READ_ONCE(jiffies);
5540 struct rq *this_rq = this_rq();
5541 unsigned long load;
5542 struct rq_flags rf;
5543
5544 if (curr_jiffies == this_rq->last_load_update_tick)
5545 return;
5546
5547 load = weighted_cpuload(this_rq);
5548 rq_lock(this_rq, &rf);
5549 update_rq_clock(this_rq);
5550 cpu_load_update_nohz(this_rq, curr_jiffies, load);
5551 rq_unlock(this_rq, &rf);
5552 }
5553 #else /* !CONFIG_NO_HZ_COMMON */
5554 static inline void cpu_load_update_nohz(struct rq *this_rq,
5555 unsigned long curr_jiffies,
5556 unsigned long load) { }
5557 #endif /* CONFIG_NO_HZ_COMMON */
5558
5559 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5560 {
5561 #ifdef CONFIG_NO_HZ_COMMON
5562 /* See the mess around cpu_load_update_nohz(). */
5563 this_rq->last_load_update_tick = READ_ONCE(jiffies);
5564 #endif
5565 cpu_load_update(this_rq, load, 1);
5566 }
5567
5568 /*
5569 * Called from scheduler_tick()
5570 */
5571 void cpu_load_update_active(struct rq *this_rq)
5572 {
5573 unsigned long load = weighted_cpuload(this_rq);
5574
5575 if (tick_nohz_tick_stopped())
5576 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5577 else
5578 cpu_load_update_periodic(this_rq, load);
5579 }
5580
5581 /*
5582 * Return a low guess at the load of a migration-source cpu weighted
5583 * according to the scheduling class and "nice" value.
5584 *
5585 * We want to under-estimate the load of migration sources, to
5586 * balance conservatively.
5587 */
5588 static unsigned long source_load(int cpu, int type)
5589 {
5590 struct rq *rq = cpu_rq(cpu);
5591 unsigned long total = weighted_cpuload(rq);
5592
5593 if (type == 0 || !sched_feat(LB_BIAS))
5594 return total;
5595
5596 return min(rq->cpu_load[type-1], total);
5597 }
5598
5599 /*
5600 * Return a high guess at the load of a migration-target cpu weighted
5601 * according to the scheduling class and "nice" value.
5602 */
5603 static unsigned long target_load(int cpu, int type)
5604 {
5605 struct rq *rq = cpu_rq(cpu);
5606 unsigned long total = weighted_cpuload(rq);
5607
5608 if (type == 0 || !sched_feat(LB_BIAS))
5609 return total;
5610
5611 return max(rq->cpu_load[type-1], total);
5612 }
5613
5614 static unsigned long capacity_of(int cpu)
5615 {
5616 return cpu_rq(cpu)->cpu_capacity;
5617 }
5618
5619 static unsigned long capacity_orig_of(int cpu)
5620 {
5621 return cpu_rq(cpu)->cpu_capacity_orig;
5622 }
5623
5624 static unsigned long cpu_avg_load_per_task(int cpu)
5625 {
5626 struct rq *rq = cpu_rq(cpu);
5627 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5628 unsigned long load_avg = weighted_cpuload(rq);
5629
5630 if (nr_running)
5631 return load_avg / nr_running;
5632
5633 return 0;
5634 }
5635
5636 static void record_wakee(struct task_struct *p)
5637 {
5638 /*
5639 * Only decay a single time; tasks that have less then 1 wakeup per
5640 * jiffy will not have built up many flips.
5641 */
5642 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5643 current->wakee_flips >>= 1;
5644 current->wakee_flip_decay_ts = jiffies;
5645 }
5646
5647 if (current->last_wakee != p) {
5648 current->last_wakee = p;
5649 current->wakee_flips++;
5650 }
5651 }
5652
5653 /*
5654 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5655 *
5656 * A waker of many should wake a different task than the one last awakened
5657 * at a frequency roughly N times higher than one of its wakees.
5658 *
5659 * In order to determine whether we should let the load spread vs consolidating
5660 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5661 * partner, and a factor of lls_size higher frequency in the other.
5662 *
5663 * With both conditions met, we can be relatively sure that the relationship is
5664 * non-monogamous, with partner count exceeding socket size.
5665 *
5666 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5667 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5668 * socket size.
5669 */
5670 static int wake_wide(struct task_struct *p)
5671 {
5672 unsigned int master = current->wakee_flips;
5673 unsigned int slave = p->wakee_flips;
5674 int factor = this_cpu_read(sd_llc_size);
5675
5676 if (master < slave)
5677 swap(master, slave);
5678 if (slave < factor || master < slave * factor)
5679 return 0;
5680 return 1;
5681 }
5682
5683 /*
5684 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5685 * soonest. For the purpose of speed we only consider the waking and previous
5686 * CPU.
5687 *
5688 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5689 * cache-affine and is (or will be) idle.
5690 *
5691 * wake_affine_weight() - considers the weight to reflect the average
5692 * scheduling latency of the CPUs. This seems to work
5693 * for the overloaded case.
5694 */
5695 static int
5696 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5697 {
5698 /*
5699 * If this_cpu is idle, it implies the wakeup is from interrupt
5700 * context. Only allow the move if cache is shared. Otherwise an
5701 * interrupt intensive workload could force all tasks onto one
5702 * node depending on the IO topology or IRQ affinity settings.
5703 *
5704 * If the prev_cpu is idle and cache affine then avoid a migration.
5705 * There is no guarantee that the cache hot data from an interrupt
5706 * is more important than cache hot data on the prev_cpu and from
5707 * a cpufreq perspective, it's better to have higher utilisation
5708 * on one CPU.
5709 */
5710 if (idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5711 return idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5712
5713 if (sync && cpu_rq(this_cpu)->nr_running == 1)
5714 return this_cpu;
5715
5716 return nr_cpumask_bits;
5717 }
5718
5719 static int
5720 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5721 int this_cpu, int prev_cpu, int sync)
5722 {
5723 s64 this_eff_load, prev_eff_load;
5724 unsigned long task_load;
5725
5726 this_eff_load = target_load(this_cpu, sd->wake_idx);
5727 prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5728
5729 if (sync) {
5730 unsigned long current_load = task_h_load(current);
5731
5732 if (current_load > this_eff_load)
5733 return this_cpu;
5734
5735 this_eff_load -= current_load;
5736 }
5737
5738 task_load = task_h_load(p);
5739
5740 this_eff_load += task_load;
5741 if (sched_feat(WA_BIAS))
5742 this_eff_load *= 100;
5743 this_eff_load *= capacity_of(prev_cpu);
5744
5745 prev_eff_load -= task_load;
5746 if (sched_feat(WA_BIAS))
5747 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5748 prev_eff_load *= capacity_of(this_cpu);
5749
5750 return this_eff_load <= prev_eff_load ? this_cpu : nr_cpumask_bits;
5751 }
5752
5753 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5754 int prev_cpu, int sync)
5755 {
5756 int this_cpu = smp_processor_id();
5757 int target = nr_cpumask_bits;
5758
5759 if (sched_feat(WA_IDLE))
5760 target = wake_affine_idle(this_cpu, prev_cpu, sync);
5761
5762 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5763 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5764
5765 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5766 if (target == nr_cpumask_bits)
5767 return prev_cpu;
5768
5769 schedstat_inc(sd->ttwu_move_affine);
5770 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5771 return target;
5772 }
5773
5774 static inline unsigned long task_util(struct task_struct *p);
5775 static unsigned long cpu_util_wake(int cpu, struct task_struct *p);
5776
5777 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5778 {
5779 return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0);
5780 }
5781
5782 /*
5783 * find_idlest_group finds and returns the least busy CPU group within the
5784 * domain.
5785 *
5786 * Assumes p is allowed on at least one CPU in sd.
5787 */
5788 static struct sched_group *
5789 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5790 int this_cpu, int sd_flag)
5791 {
5792 struct sched_group *idlest = NULL, *group = sd->groups;
5793 struct sched_group *most_spare_sg = NULL;
5794 unsigned long min_runnable_load = ULONG_MAX;
5795 unsigned long this_runnable_load = ULONG_MAX;
5796 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5797 unsigned long most_spare = 0, this_spare = 0;
5798 int load_idx = sd->forkexec_idx;
5799 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5800 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5801 (sd->imbalance_pct-100) / 100;
5802
5803 if (sd_flag & SD_BALANCE_WAKE)
5804 load_idx = sd->wake_idx;
5805
5806 do {
5807 unsigned long load, avg_load, runnable_load;
5808 unsigned long spare_cap, max_spare_cap;
5809 int local_group;
5810 int i;
5811
5812 /* Skip over this group if it has no CPUs allowed */
5813 if (!cpumask_intersects(sched_group_span(group),
5814 &p->cpus_allowed))
5815 continue;
5816
5817 local_group = cpumask_test_cpu(this_cpu,
5818 sched_group_span(group));
5819
5820 /*
5821 * Tally up the load of all CPUs in the group and find
5822 * the group containing the CPU with most spare capacity.
5823 */
5824 avg_load = 0;
5825 runnable_load = 0;
5826 max_spare_cap = 0;
5827
5828 for_each_cpu(i, sched_group_span(group)) {
5829 /* Bias balancing toward cpus of our domain */
5830 if (local_group)
5831 load = source_load(i, load_idx);
5832 else
5833 load = target_load(i, load_idx);
5834
5835 runnable_load += load;
5836
5837 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5838
5839 spare_cap = capacity_spare_wake(i, p);
5840
5841 if (spare_cap > max_spare_cap)
5842 max_spare_cap = spare_cap;
5843 }
5844
5845 /* Adjust by relative CPU capacity of the group */
5846 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5847 group->sgc->capacity;
5848 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5849 group->sgc->capacity;
5850
5851 if (local_group) {
5852 this_runnable_load = runnable_load;
5853 this_avg_load = avg_load;
5854 this_spare = max_spare_cap;
5855 } else {
5856 if (min_runnable_load > (runnable_load + imbalance)) {
5857 /*
5858 * The runnable load is significantly smaller
5859 * so we can pick this new cpu
5860 */
5861 min_runnable_load = runnable_load;
5862 min_avg_load = avg_load;
5863 idlest = group;
5864 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5865 (100*min_avg_load > imbalance_scale*avg_load)) {
5866 /*
5867 * The runnable loads are close so take the
5868 * blocked load into account through avg_load.
5869 */
5870 min_avg_load = avg_load;
5871 idlest = group;
5872 }
5873
5874 if (most_spare < max_spare_cap) {
5875 most_spare = max_spare_cap;
5876 most_spare_sg = group;
5877 }
5878 }
5879 } while (group = group->next, group != sd->groups);
5880
5881 /*
5882 * The cross-over point between using spare capacity or least load
5883 * is too conservative for high utilization tasks on partially
5884 * utilized systems if we require spare_capacity > task_util(p),
5885 * so we allow for some task stuffing by using
5886 * spare_capacity > task_util(p)/2.
5887 *
5888 * Spare capacity can't be used for fork because the utilization has
5889 * not been set yet, we must first select a rq to compute the initial
5890 * utilization.
5891 */
5892 if (sd_flag & SD_BALANCE_FORK)
5893 goto skip_spare;
5894
5895 if (this_spare > task_util(p) / 2 &&
5896 imbalance_scale*this_spare > 100*most_spare)
5897 return NULL;
5898
5899 if (most_spare > task_util(p) / 2)
5900 return most_spare_sg;
5901
5902 skip_spare:
5903 if (!idlest)
5904 return NULL;
5905
5906 if (min_runnable_load > (this_runnable_load + imbalance))
5907 return NULL;
5908
5909 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5910 (100*this_avg_load < imbalance_scale*min_avg_load))
5911 return NULL;
5912
5913 return idlest;
5914 }
5915
5916 /*
5917 * find_idlest_group_cpu - find the idlest cpu among the cpus in group.
5918 */
5919 static int
5920 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5921 {
5922 unsigned long load, min_load = ULONG_MAX;
5923 unsigned int min_exit_latency = UINT_MAX;
5924 u64 latest_idle_timestamp = 0;
5925 int least_loaded_cpu = this_cpu;
5926 int shallowest_idle_cpu = -1;
5927 int i;
5928
5929 /* Check if we have any choice: */
5930 if (group->group_weight == 1)
5931 return cpumask_first(sched_group_span(group));
5932
5933 /* Traverse only the allowed CPUs */
5934 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5935 if (idle_cpu(i)) {
5936 struct rq *rq = cpu_rq(i);
5937 struct cpuidle_state *idle = idle_get_state(rq);
5938 if (idle && idle->exit_latency < min_exit_latency) {
5939 /*
5940 * We give priority to a CPU whose idle state
5941 * has the smallest exit latency irrespective
5942 * of any idle timestamp.
5943 */
5944 min_exit_latency = idle->exit_latency;
5945 latest_idle_timestamp = rq->idle_stamp;
5946 shallowest_idle_cpu = i;
5947 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5948 rq->idle_stamp > latest_idle_timestamp) {
5949 /*
5950 * If equal or no active idle state, then
5951 * the most recently idled CPU might have
5952 * a warmer cache.
5953 */
5954 latest_idle_timestamp = rq->idle_stamp;
5955 shallowest_idle_cpu = i;
5956 }
5957 } else if (shallowest_idle_cpu == -1) {
5958 load = weighted_cpuload(cpu_rq(i));
5959 if (load < min_load) {
5960 min_load = load;
5961 least_loaded_cpu = i;
5962 }
5963 }
5964 }
5965
5966 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5967 }
5968
5969 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5970 int cpu, int prev_cpu, int sd_flag)
5971 {
5972 int new_cpu = cpu;
5973
5974 if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
5975 return prev_cpu;
5976
5977 while (sd) {
5978 struct sched_group *group;
5979 struct sched_domain *tmp;
5980 int weight;
5981
5982 if (!(sd->flags & sd_flag)) {
5983 sd = sd->child;
5984 continue;
5985 }
5986
5987 group = find_idlest_group(sd, p, cpu, sd_flag);
5988 if (!group) {
5989 sd = sd->child;
5990 continue;
5991 }
5992
5993 new_cpu = find_idlest_group_cpu(group, p, cpu);
5994 if (new_cpu == cpu) {
5995 /* Now try balancing at a lower domain level of cpu */
5996 sd = sd->child;
5997 continue;
5998 }
5999
6000 /* Now try balancing at a lower domain level of new_cpu */
6001 cpu = new_cpu;
6002 weight = sd->span_weight;
6003 sd = NULL;
6004 for_each_domain(cpu, tmp) {
6005 if (weight <= tmp->span_weight)
6006 break;
6007 if (tmp->flags & sd_flag)
6008 sd = tmp;
6009 }
6010 /* while loop will break here if sd == NULL */
6011 }
6012
6013 return new_cpu;
6014 }
6015
6016 #ifdef CONFIG_SCHED_SMT
6017
6018 static inline void set_idle_cores(int cpu, int val)
6019 {
6020 struct sched_domain_shared *sds;
6021
6022 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6023 if (sds)
6024 WRITE_ONCE(sds->has_idle_cores, val);
6025 }
6026
6027 static inline bool test_idle_cores(int cpu, bool def)
6028 {
6029 struct sched_domain_shared *sds;
6030
6031 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6032 if (sds)
6033 return READ_ONCE(sds->has_idle_cores);
6034
6035 return def;
6036 }
6037
6038 /*
6039 * Scans the local SMT mask to see if the entire core is idle, and records this
6040 * information in sd_llc_shared->has_idle_cores.
6041 *
6042 * Since SMT siblings share all cache levels, inspecting this limited remote
6043 * state should be fairly cheap.
6044 */
6045 void __update_idle_core(struct rq *rq)
6046 {
6047 int core = cpu_of(rq);
6048 int cpu;
6049
6050 rcu_read_lock();
6051 if (test_idle_cores(core, true))
6052 goto unlock;
6053
6054 for_each_cpu(cpu, cpu_smt_mask(core)) {
6055 if (cpu == core)
6056 continue;
6057
6058 if (!idle_cpu(cpu))
6059 goto unlock;
6060 }
6061
6062 set_idle_cores(core, 1);
6063 unlock:
6064 rcu_read_unlock();
6065 }
6066
6067 /*
6068 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6069 * there are no idle cores left in the system; tracked through
6070 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6071 */
6072 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6073 {
6074 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6075 int core, cpu;
6076
6077 if (!static_branch_likely(&sched_smt_present))
6078 return -1;
6079
6080 if (!test_idle_cores(target, false))
6081 return -1;
6082
6083 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
6084
6085 for_each_cpu_wrap(core, cpus, target) {
6086 bool idle = true;
6087
6088 for_each_cpu(cpu, cpu_smt_mask(core)) {
6089 cpumask_clear_cpu(cpu, cpus);
6090 if (!idle_cpu(cpu))
6091 idle = false;
6092 }
6093
6094 if (idle)
6095 return core;
6096 }
6097
6098 /*
6099 * Failed to find an idle core; stop looking for one.
6100 */
6101 set_idle_cores(target, 0);
6102
6103 return -1;
6104 }
6105
6106 /*
6107 * Scan the local SMT mask for idle CPUs.
6108 */
6109 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6110 {
6111 int cpu;
6112
6113 if (!static_branch_likely(&sched_smt_present))
6114 return -1;
6115
6116 for_each_cpu(cpu, cpu_smt_mask(target)) {
6117 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6118 continue;
6119 if (idle_cpu(cpu))
6120 return cpu;
6121 }
6122
6123 return -1;
6124 }
6125
6126 #else /* CONFIG_SCHED_SMT */
6127
6128 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6129 {
6130 return -1;
6131 }
6132
6133 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6134 {
6135 return -1;
6136 }
6137
6138 #endif /* CONFIG_SCHED_SMT */
6139
6140 /*
6141 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6142 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6143 * average idle time for this rq (as found in rq->avg_idle).
6144 */
6145 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6146 {
6147 struct sched_domain *this_sd;
6148 u64 avg_cost, avg_idle;
6149 u64 time, cost;
6150 s64 delta;
6151 int cpu, nr = INT_MAX;
6152
6153 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6154 if (!this_sd)
6155 return -1;
6156
6157 /*
6158 * Due to large variance we need a large fuzz factor; hackbench in
6159 * particularly is sensitive here.
6160 */
6161 avg_idle = this_rq()->avg_idle / 512;
6162 avg_cost = this_sd->avg_scan_cost + 1;
6163
6164 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6165 return -1;
6166
6167 if (sched_feat(SIS_PROP)) {
6168 u64 span_avg = sd->span_weight * avg_idle;
6169 if (span_avg > 4*avg_cost)
6170 nr = div_u64(span_avg, avg_cost);
6171 else
6172 nr = 4;
6173 }
6174
6175 time = local_clock();
6176
6177 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6178 if (!--nr)
6179 return -1;
6180 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6181 continue;
6182 if (idle_cpu(cpu))
6183 break;
6184 }
6185
6186 time = local_clock() - time;
6187 cost = this_sd->avg_scan_cost;
6188 delta = (s64)(time - cost) / 8;
6189 this_sd->avg_scan_cost += delta;
6190
6191 return cpu;
6192 }
6193
6194 /*
6195 * Try and locate an idle core/thread in the LLC cache domain.
6196 */
6197 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6198 {
6199 struct sched_domain *sd;
6200 int i, recent_used_cpu;
6201
6202 if (idle_cpu(target))
6203 return target;
6204
6205 /*
6206 * If the previous cpu is cache affine and idle, don't be stupid.
6207 */
6208 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
6209 return prev;
6210
6211 /* Check a recently used CPU as a potential idle candidate */
6212 recent_used_cpu = p->recent_used_cpu;
6213 if (recent_used_cpu != prev &&
6214 recent_used_cpu != target &&
6215 cpus_share_cache(recent_used_cpu, target) &&
6216 idle_cpu(recent_used_cpu) &&
6217 cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
6218 /*
6219 * Replace recent_used_cpu with prev as it is a potential
6220 * candidate for the next wake.
6221 */
6222 p->recent_used_cpu = prev;
6223 return recent_used_cpu;
6224 }
6225
6226 sd = rcu_dereference(per_cpu(sd_llc, target));
6227 if (!sd)
6228 return target;
6229
6230 i = select_idle_core(p, sd, target);
6231 if ((unsigned)i < nr_cpumask_bits)
6232 return i;
6233
6234 i = select_idle_cpu(p, sd, target);
6235 if ((unsigned)i < nr_cpumask_bits)
6236 return i;
6237
6238 i = select_idle_smt(p, sd, target);
6239 if ((unsigned)i < nr_cpumask_bits)
6240 return i;
6241
6242 return target;
6243 }
6244
6245 /*
6246 * cpu_util returns the amount of capacity of a CPU that is used by CFS
6247 * tasks. The unit of the return value must be the one of capacity so we can
6248 * compare the utilization with the capacity of the CPU that is available for
6249 * CFS task (ie cpu_capacity).
6250 *
6251 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6252 * recent utilization of currently non-runnable tasks on a CPU. It represents
6253 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6254 * capacity_orig is the cpu_capacity available at the highest frequency
6255 * (arch_scale_freq_capacity()).
6256 * The utilization of a CPU converges towards a sum equal to or less than the
6257 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6258 * the running time on this CPU scaled by capacity_curr.
6259 *
6260 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6261 * higher than capacity_orig because of unfortunate rounding in
6262 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6263 * the average stabilizes with the new running time. We need to check that the
6264 * utilization stays within the range of [0..capacity_orig] and cap it if
6265 * necessary. Without utilization capping, a group could be seen as overloaded
6266 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6267 * available capacity. We allow utilization to overshoot capacity_curr (but not
6268 * capacity_orig) as it useful for predicting the capacity required after task
6269 * migrations (scheduler-driven DVFS).
6270 */
6271 static unsigned long cpu_util(int cpu)
6272 {
6273 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
6274 unsigned long capacity = capacity_orig_of(cpu);
6275
6276 return (util >= capacity) ? capacity : util;
6277 }
6278
6279 static inline unsigned long task_util(struct task_struct *p)
6280 {
6281 return p->se.avg.util_avg;
6282 }
6283
6284 /*
6285 * cpu_util_wake: Compute cpu utilization with any contributions from
6286 * the waking task p removed.
6287 */
6288 static unsigned long cpu_util_wake(int cpu, struct task_struct *p)
6289 {
6290 unsigned long util, capacity;
6291
6292 /* Task has no contribution or is new */
6293 if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
6294 return cpu_util(cpu);
6295
6296 capacity = capacity_orig_of(cpu);
6297 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
6298
6299 return (util >= capacity) ? capacity : util;
6300 }
6301
6302 /*
6303 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6304 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6305 *
6306 * In that case WAKE_AFFINE doesn't make sense and we'll let
6307 * BALANCE_WAKE sort things out.
6308 */
6309 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6310 {
6311 long min_cap, max_cap;
6312
6313 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6314 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6315
6316 /* Minimum capacity is close to max, no need to abort wake_affine */
6317 if (max_cap - min_cap < max_cap >> 3)
6318 return 0;
6319
6320 /* Bring task utilization in sync with prev_cpu */
6321 sync_entity_load_avg(&p->se);
6322
6323 return min_cap * 1024 < task_util(p) * capacity_margin;
6324 }
6325
6326 /*
6327 * select_task_rq_fair: Select target runqueue for the waking task in domains
6328 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6329 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6330 *
6331 * Balances load by selecting the idlest cpu in the idlest group, or under
6332 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
6333 *
6334 * Returns the target cpu number.
6335 *
6336 * preempt must be disabled.
6337 */
6338 static int
6339 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6340 {
6341 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
6342 int cpu = smp_processor_id();
6343 int new_cpu = prev_cpu;
6344 int want_affine = 0;
6345 int sync = wake_flags & WF_SYNC;
6346
6347 if (sd_flag & SD_BALANCE_WAKE) {
6348 record_wakee(p);
6349 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6350 && cpumask_test_cpu(cpu, &p->cpus_allowed);
6351 }
6352
6353 rcu_read_lock();
6354 for_each_domain(cpu, tmp) {
6355 if (!(tmp->flags & SD_LOAD_BALANCE))
6356 break;
6357
6358 /*
6359 * If both cpu and prev_cpu are part of this domain,
6360 * cpu is a valid SD_WAKE_AFFINE target.
6361 */
6362 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6363 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6364 affine_sd = tmp;
6365 break;
6366 }
6367
6368 if (tmp->flags & sd_flag)
6369 sd = tmp;
6370 else if (!want_affine)
6371 break;
6372 }
6373
6374 if (affine_sd) {
6375 sd = NULL; /* Prefer wake_affine over balance flags */
6376 if (cpu == prev_cpu)
6377 goto pick_cpu;
6378
6379 new_cpu = wake_affine(affine_sd, p, prev_cpu, sync);
6380 }
6381
6382 if (sd && !(sd_flag & SD_BALANCE_FORK)) {
6383 /*
6384 * We're going to need the task's util for capacity_spare_wake
6385 * in find_idlest_group. Sync it up to prev_cpu's
6386 * last_update_time.
6387 */
6388 sync_entity_load_avg(&p->se);
6389 }
6390
6391 if (!sd) {
6392 pick_cpu:
6393 if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6394 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6395
6396 if (want_affine)
6397 current->recent_used_cpu = cpu;
6398 }
6399 } else {
6400 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6401 }
6402 rcu_read_unlock();
6403
6404 return new_cpu;
6405 }
6406
6407 static void detach_entity_cfs_rq(struct sched_entity *se);
6408
6409 /*
6410 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6411 * cfs_rq_of(p) references at time of call are still valid and identify the
6412 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6413 */
6414 static void migrate_task_rq_fair(struct task_struct *p)
6415 {
6416 /*
6417 * As blocked tasks retain absolute vruntime the migration needs to
6418 * deal with this by subtracting the old and adding the new
6419 * min_vruntime -- the latter is done by enqueue_entity() when placing
6420 * the task on the new runqueue.
6421 */
6422 if (p->state == TASK_WAKING) {
6423 struct sched_entity *se = &p->se;
6424 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6425 u64 min_vruntime;
6426
6427 #ifndef CONFIG_64BIT
6428 u64 min_vruntime_copy;
6429
6430 do {
6431 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6432 smp_rmb();
6433 min_vruntime = cfs_rq->min_vruntime;
6434 } while (min_vruntime != min_vruntime_copy);
6435 #else
6436 min_vruntime = cfs_rq->min_vruntime;
6437 #endif
6438
6439 se->vruntime -= min_vruntime;
6440 }
6441
6442 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6443 /*
6444 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6445 * rq->lock and can modify state directly.
6446 */
6447 lockdep_assert_held(&task_rq(p)->lock);
6448 detach_entity_cfs_rq(&p->se);
6449
6450 } else {
6451 /*
6452 * We are supposed to update the task to "current" time, then
6453 * its up to date and ready to go to new CPU/cfs_rq. But we
6454 * have difficulty in getting what current time is, so simply
6455 * throw away the out-of-date time. This will result in the
6456 * wakee task is less decayed, but giving the wakee more load
6457 * sounds not bad.
6458 */
6459 remove_entity_load_avg(&p->se);
6460 }
6461
6462 /* Tell new CPU we are migrated */
6463 p->se.avg.last_update_time = 0;
6464
6465 /* We have migrated, no longer consider this task hot */
6466 p->se.exec_start = 0;
6467 }
6468
6469 static void task_dead_fair(struct task_struct *p)
6470 {
6471 remove_entity_load_avg(&p->se);
6472 }
6473 #endif /* CONFIG_SMP */
6474
6475 static unsigned long wakeup_gran(struct sched_entity *se)
6476 {
6477 unsigned long gran = sysctl_sched_wakeup_granularity;
6478
6479 /*
6480 * Since its curr running now, convert the gran from real-time
6481 * to virtual-time in his units.
6482 *
6483 * By using 'se' instead of 'curr' we penalize light tasks, so
6484 * they get preempted easier. That is, if 'se' < 'curr' then
6485 * the resulting gran will be larger, therefore penalizing the
6486 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6487 * be smaller, again penalizing the lighter task.
6488 *
6489 * This is especially important for buddies when the leftmost
6490 * task is higher priority than the buddy.
6491 */
6492 return calc_delta_fair(gran, se);
6493 }
6494
6495 /*
6496 * Should 'se' preempt 'curr'.
6497 *
6498 * |s1
6499 * |s2
6500 * |s3
6501 * g
6502 * |<--->|c
6503 *
6504 * w(c, s1) = -1
6505 * w(c, s2) = 0
6506 * w(c, s3) = 1
6507 *
6508 */
6509 static int
6510 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6511 {
6512 s64 gran, vdiff = curr->vruntime - se->vruntime;
6513
6514 if (vdiff <= 0)
6515 return -1;
6516
6517 gran = wakeup_gran(se);
6518 if (vdiff > gran)
6519 return 1;
6520
6521 return 0;
6522 }
6523
6524 static void set_last_buddy(struct sched_entity *se)
6525 {
6526 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6527 return;
6528
6529 for_each_sched_entity(se) {
6530 if (SCHED_WARN_ON(!se->on_rq))
6531 return;
6532 cfs_rq_of(se)->last = se;
6533 }
6534 }
6535
6536 static void set_next_buddy(struct sched_entity *se)
6537 {
6538 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6539 return;
6540
6541 for_each_sched_entity(se) {
6542 if (SCHED_WARN_ON(!se->on_rq))
6543 return;
6544 cfs_rq_of(se)->next = se;
6545 }
6546 }
6547
6548 static void set_skip_buddy(struct sched_entity *se)
6549 {
6550 for_each_sched_entity(se)
6551 cfs_rq_of(se)->skip = se;
6552 }
6553
6554 /*
6555 * Preempt the current task with a newly woken task if needed:
6556 */
6557 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6558 {
6559 struct task_struct *curr = rq->curr;
6560 struct sched_entity *se = &curr->se, *pse = &p->se;
6561 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6562 int scale = cfs_rq->nr_running >= sched_nr_latency;
6563 int next_buddy_marked = 0;
6564
6565 if (unlikely(se == pse))
6566 return;
6567
6568 /*
6569 * This is possible from callers such as attach_tasks(), in which we
6570 * unconditionally check_prempt_curr() after an enqueue (which may have
6571 * lead to a throttle). This both saves work and prevents false
6572 * next-buddy nomination below.
6573 */
6574 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6575 return;
6576
6577 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6578 set_next_buddy(pse);
6579 next_buddy_marked = 1;
6580 }
6581
6582 /*
6583 * We can come here with TIF_NEED_RESCHED already set from new task
6584 * wake up path.
6585 *
6586 * Note: this also catches the edge-case of curr being in a throttled
6587 * group (e.g. via set_curr_task), since update_curr() (in the
6588 * enqueue of curr) will have resulted in resched being set. This
6589 * prevents us from potentially nominating it as a false LAST_BUDDY
6590 * below.
6591 */
6592 if (test_tsk_need_resched(curr))
6593 return;
6594
6595 /* Idle tasks are by definition preempted by non-idle tasks. */
6596 if (unlikely(curr->policy == SCHED_IDLE) &&
6597 likely(p->policy != SCHED_IDLE))
6598 goto preempt;
6599
6600 /*
6601 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6602 * is driven by the tick):
6603 */
6604 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6605 return;
6606
6607 find_matching_se(&se, &pse);
6608 update_curr(cfs_rq_of(se));
6609 BUG_ON(!pse);
6610 if (wakeup_preempt_entity(se, pse) == 1) {
6611 /*
6612 * Bias pick_next to pick the sched entity that is
6613 * triggering this preemption.
6614 */
6615 if (!next_buddy_marked)
6616 set_next_buddy(pse);
6617 goto preempt;
6618 }
6619
6620 return;
6621
6622 preempt:
6623 resched_curr(rq);
6624 /*
6625 * Only set the backward buddy when the current task is still
6626 * on the rq. This can happen when a wakeup gets interleaved
6627 * with schedule on the ->pre_schedule() or idle_balance()
6628 * point, either of which can * drop the rq lock.
6629 *
6630 * Also, during early boot the idle thread is in the fair class,
6631 * for obvious reasons its a bad idea to schedule back to it.
6632 */
6633 if (unlikely(!se->on_rq || curr == rq->idle))
6634 return;
6635
6636 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6637 set_last_buddy(se);
6638 }
6639
6640 static struct task_struct *
6641 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6642 {
6643 struct cfs_rq *cfs_rq = &rq->cfs;
6644 struct sched_entity *se;
6645 struct task_struct *p;
6646 int new_tasks;
6647
6648 again:
6649 if (!cfs_rq->nr_running)
6650 goto idle;
6651
6652 #ifdef CONFIG_FAIR_GROUP_SCHED
6653 if (prev->sched_class != &fair_sched_class)
6654 goto simple;
6655
6656 /*
6657 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6658 * likely that a next task is from the same cgroup as the current.
6659 *
6660 * Therefore attempt to avoid putting and setting the entire cgroup
6661 * hierarchy, only change the part that actually changes.
6662 */
6663
6664 do {
6665 struct sched_entity *curr = cfs_rq->curr;
6666
6667 /*
6668 * Since we got here without doing put_prev_entity() we also
6669 * have to consider cfs_rq->curr. If it is still a runnable
6670 * entity, update_curr() will update its vruntime, otherwise
6671 * forget we've ever seen it.
6672 */
6673 if (curr) {
6674 if (curr->on_rq)
6675 update_curr(cfs_rq);
6676 else
6677 curr = NULL;
6678
6679 /*
6680 * This call to check_cfs_rq_runtime() will do the
6681 * throttle and dequeue its entity in the parent(s).
6682 * Therefore the nr_running test will indeed
6683 * be correct.
6684 */
6685 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6686 cfs_rq = &rq->cfs;
6687
6688 if (!cfs_rq->nr_running)
6689 goto idle;
6690
6691 goto simple;
6692 }
6693 }
6694
6695 se = pick_next_entity(cfs_rq, curr);
6696 cfs_rq = group_cfs_rq(se);
6697 } while (cfs_rq);
6698
6699 p = task_of(se);
6700
6701 /*
6702 * Since we haven't yet done put_prev_entity and if the selected task
6703 * is a different task than we started out with, try and touch the
6704 * least amount of cfs_rqs.
6705 */
6706 if (prev != p) {
6707 struct sched_entity *pse = &prev->se;
6708
6709 while (!(cfs_rq = is_same_group(se, pse))) {
6710 int se_depth = se->depth;
6711 int pse_depth = pse->depth;
6712
6713 if (se_depth <= pse_depth) {
6714 put_prev_entity(cfs_rq_of(pse), pse);
6715 pse = parent_entity(pse);
6716 }
6717 if (se_depth >= pse_depth) {
6718 set_next_entity(cfs_rq_of(se), se);
6719 se = parent_entity(se);
6720 }
6721 }
6722
6723 put_prev_entity(cfs_rq, pse);
6724 set_next_entity(cfs_rq, se);
6725 }
6726
6727 goto done;
6728 simple:
6729 #endif
6730
6731 put_prev_task(rq, prev);
6732
6733 do {
6734 se = pick_next_entity(cfs_rq, NULL);
6735 set_next_entity(cfs_rq, se);
6736 cfs_rq = group_cfs_rq(se);
6737 } while (cfs_rq);
6738
6739 p = task_of(se);
6740
6741 done: __maybe_unused
6742 #ifdef CONFIG_SMP
6743 /*
6744 * Move the next running task to the front of
6745 * the list, so our cfs_tasks list becomes MRU
6746 * one.
6747 */
6748 list_move(&p->se.group_node, &rq->cfs_tasks);
6749 #endif
6750
6751 if (hrtick_enabled(rq))
6752 hrtick_start_fair(rq, p);
6753
6754 return p;
6755
6756 idle:
6757 new_tasks = idle_balance(rq, rf);
6758
6759 /*
6760 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6761 * possible for any higher priority task to appear. In that case we
6762 * must re-start the pick_next_entity() loop.
6763 */
6764 if (new_tasks < 0)
6765 return RETRY_TASK;
6766
6767 if (new_tasks > 0)
6768 goto again;
6769
6770 return NULL;
6771 }
6772
6773 /*
6774 * Account for a descheduled task:
6775 */
6776 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6777 {
6778 struct sched_entity *se = &prev->se;
6779 struct cfs_rq *cfs_rq;
6780
6781 for_each_sched_entity(se) {
6782 cfs_rq = cfs_rq_of(se);
6783 put_prev_entity(cfs_rq, se);
6784 }
6785 }
6786
6787 /*
6788 * sched_yield() is very simple
6789 *
6790 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6791 */
6792 static void yield_task_fair(struct rq *rq)
6793 {
6794 struct task_struct *curr = rq->curr;
6795 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6796 struct sched_entity *se = &curr->se;
6797
6798 /*
6799 * Are we the only task in the tree?
6800 */
6801 if (unlikely(rq->nr_running == 1))
6802 return;
6803
6804 clear_buddies(cfs_rq, se);
6805
6806 if (curr->policy != SCHED_BATCH) {
6807 update_rq_clock(rq);
6808 /*
6809 * Update run-time statistics of the 'current'.
6810 */
6811 update_curr(cfs_rq);
6812 /*
6813 * Tell update_rq_clock() that we've just updated,
6814 * so we don't do microscopic update in schedule()
6815 * and double the fastpath cost.
6816 */
6817 rq_clock_skip_update(rq, true);
6818 }
6819
6820 set_skip_buddy(se);
6821 }
6822
6823 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6824 {
6825 struct sched_entity *se = &p->se;
6826
6827 /* throttled hierarchies are not runnable */
6828 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6829 return false;
6830
6831 /* Tell the scheduler that we'd really like pse to run next. */
6832 set_next_buddy(se);
6833
6834 yield_task_fair(rq);
6835
6836 return true;
6837 }
6838
6839 #ifdef CONFIG_SMP
6840 /**************************************************
6841 * Fair scheduling class load-balancing methods.
6842 *
6843 * BASICS
6844 *
6845 * The purpose of load-balancing is to achieve the same basic fairness the
6846 * per-cpu scheduler provides, namely provide a proportional amount of compute
6847 * time to each task. This is expressed in the following equation:
6848 *
6849 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6850 *
6851 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6852 * W_i,0 is defined as:
6853 *
6854 * W_i,0 = \Sum_j w_i,j (2)
6855 *
6856 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6857 * is derived from the nice value as per sched_prio_to_weight[].
6858 *
6859 * The weight average is an exponential decay average of the instantaneous
6860 * weight:
6861 *
6862 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6863 *
6864 * C_i is the compute capacity of cpu i, typically it is the
6865 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6866 * can also include other factors [XXX].
6867 *
6868 * To achieve this balance we define a measure of imbalance which follows
6869 * directly from (1):
6870 *
6871 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
6872 *
6873 * We them move tasks around to minimize the imbalance. In the continuous
6874 * function space it is obvious this converges, in the discrete case we get
6875 * a few fun cases generally called infeasible weight scenarios.
6876 *
6877 * [XXX expand on:
6878 * - infeasible weights;
6879 * - local vs global optima in the discrete case. ]
6880 *
6881 *
6882 * SCHED DOMAINS
6883 *
6884 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6885 * for all i,j solution, we create a tree of cpus that follows the hardware
6886 * topology where each level pairs two lower groups (or better). This results
6887 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6888 * tree to only the first of the previous level and we decrease the frequency
6889 * of load-balance at each level inv. proportional to the number of cpus in
6890 * the groups.
6891 *
6892 * This yields:
6893 *
6894 * log_2 n 1 n
6895 * \Sum { --- * --- * 2^i } = O(n) (5)
6896 * i = 0 2^i 2^i
6897 * `- size of each group
6898 * | | `- number of cpus doing load-balance
6899 * | `- freq
6900 * `- sum over all levels
6901 *
6902 * Coupled with a limit on how many tasks we can migrate every balance pass,
6903 * this makes (5) the runtime complexity of the balancer.
6904 *
6905 * An important property here is that each CPU is still (indirectly) connected
6906 * to every other cpu in at most O(log n) steps:
6907 *
6908 * The adjacency matrix of the resulting graph is given by:
6909 *
6910 * log_2 n
6911 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6912 * k = 0
6913 *
6914 * And you'll find that:
6915 *
6916 * A^(log_2 n)_i,j != 0 for all i,j (7)
6917 *
6918 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6919 * The task movement gives a factor of O(m), giving a convergence complexity
6920 * of:
6921 *
6922 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6923 *
6924 *
6925 * WORK CONSERVING
6926 *
6927 * In order to avoid CPUs going idle while there's still work to do, new idle
6928 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6929 * tree itself instead of relying on other CPUs to bring it work.
6930 *
6931 * This adds some complexity to both (5) and (8) but it reduces the total idle
6932 * time.
6933 *
6934 * [XXX more?]
6935 *
6936 *
6937 * CGROUPS
6938 *
6939 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6940 *
6941 * s_k,i
6942 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6943 * S_k
6944 *
6945 * Where
6946 *
6947 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6948 *
6949 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6950 *
6951 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6952 * property.
6953 *
6954 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6955 * rewrite all of this once again.]
6956 */
6957
6958 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6959
6960 enum fbq_type { regular, remote, all };
6961
6962 #define LBF_ALL_PINNED 0x01
6963 #define LBF_NEED_BREAK 0x02
6964 #define LBF_DST_PINNED 0x04
6965 #define LBF_SOME_PINNED 0x08
6966
6967 struct lb_env {
6968 struct sched_domain *sd;
6969
6970 struct rq *src_rq;
6971 int src_cpu;
6972
6973 int dst_cpu;
6974 struct rq *dst_rq;
6975
6976 struct cpumask *dst_grpmask;
6977 int new_dst_cpu;
6978 enum cpu_idle_type idle;
6979 long imbalance;
6980 /* The set of CPUs under consideration for load-balancing */
6981 struct cpumask *cpus;
6982
6983 unsigned int flags;
6984
6985 unsigned int loop;
6986 unsigned int loop_break;
6987 unsigned int loop_max;
6988
6989 enum fbq_type fbq_type;
6990 struct list_head tasks;
6991 };
6992
6993 /*
6994 * Is this task likely cache-hot:
6995 */
6996 static int task_hot(struct task_struct *p, struct lb_env *env)
6997 {
6998 s64 delta;
6999
7000 lockdep_assert_held(&env->src_rq->lock);
7001
7002 if (p->sched_class != &fair_sched_class)
7003 return 0;
7004
7005 if (unlikely(p->policy == SCHED_IDLE))
7006 return 0;
7007
7008 /*
7009 * Buddy candidates are cache hot:
7010 */
7011 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7012 (&p->se == cfs_rq_of(&p->se)->next ||
7013 &p->se == cfs_rq_of(&p->se)->last))
7014 return 1;
7015
7016 if (sysctl_sched_migration_cost == -1)
7017 return 1;
7018 if (sysctl_sched_migration_cost == 0)
7019 return 0;
7020
7021 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7022
7023 return delta < (s64)sysctl_sched_migration_cost;
7024 }
7025
7026 #ifdef CONFIG_NUMA_BALANCING
7027 /*
7028 * Returns 1, if task migration degrades locality
7029 * Returns 0, if task migration improves locality i.e migration preferred.
7030 * Returns -1, if task migration is not affected by locality.
7031 */
7032 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7033 {
7034 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7035 unsigned long src_faults, dst_faults;
7036 int src_nid, dst_nid;
7037
7038 if (!static_branch_likely(&sched_numa_balancing))
7039 return -1;
7040
7041 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7042 return -1;
7043
7044 src_nid = cpu_to_node(env->src_cpu);
7045 dst_nid = cpu_to_node(env->dst_cpu);
7046
7047 if (src_nid == dst_nid)
7048 return -1;
7049
7050 /* Migrating away from the preferred node is always bad. */
7051 if (src_nid == p->numa_preferred_nid) {
7052 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7053 return 1;
7054 else
7055 return -1;
7056 }
7057
7058 /* Encourage migration to the preferred node. */
7059 if (dst_nid == p->numa_preferred_nid)
7060 return 0;
7061
7062 /* Leaving a core idle is often worse than degrading locality. */
7063 if (env->idle != CPU_NOT_IDLE)
7064 return -1;
7065
7066 if (numa_group) {
7067 src_faults = group_faults(p, src_nid);
7068 dst_faults = group_faults(p, dst_nid);
7069 } else {
7070 src_faults = task_faults(p, src_nid);
7071 dst_faults = task_faults(p, dst_nid);
7072 }
7073
7074 return dst_faults < src_faults;
7075 }
7076
7077 #else
7078 static inline int migrate_degrades_locality(struct task_struct *p,
7079 struct lb_env *env)
7080 {
7081 return -1;
7082 }
7083 #endif
7084
7085 /*
7086 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7087 */
7088 static
7089 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7090 {
7091 int tsk_cache_hot;
7092
7093 lockdep_assert_held(&env->src_rq->lock);
7094
7095 /*
7096 * We do not migrate tasks that are:
7097 * 1) throttled_lb_pair, or
7098 * 2) cannot be migrated to this CPU due to cpus_allowed, or
7099 * 3) running (obviously), or
7100 * 4) are cache-hot on their current CPU.
7101 */
7102 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7103 return 0;
7104
7105 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
7106 int cpu;
7107
7108 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7109
7110 env->flags |= LBF_SOME_PINNED;
7111
7112 /*
7113 * Remember if this task can be migrated to any other cpu in
7114 * our sched_group. We may want to revisit it if we couldn't
7115 * meet load balance goals by pulling other tasks on src_cpu.
7116 *
7117 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7118 * already computed one in current iteration.
7119 */
7120 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7121 return 0;
7122
7123 /* Prevent to re-select dst_cpu via env's cpus */
7124 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7125 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
7126 env->flags |= LBF_DST_PINNED;
7127 env->new_dst_cpu = cpu;
7128 break;
7129 }
7130 }
7131
7132 return 0;
7133 }
7134
7135 /* Record that we found atleast one task that could run on dst_cpu */
7136 env->flags &= ~LBF_ALL_PINNED;
7137
7138 if (task_running(env->src_rq, p)) {
7139 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7140 return 0;
7141 }
7142
7143 /*
7144 * Aggressive migration if:
7145 * 1) destination numa is preferred
7146 * 2) task is cache cold, or
7147 * 3) too many balance attempts have failed.
7148 */
7149 tsk_cache_hot = migrate_degrades_locality(p, env);
7150 if (tsk_cache_hot == -1)
7151 tsk_cache_hot = task_hot(p, env);
7152
7153 if (tsk_cache_hot <= 0 ||
7154 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7155 if (tsk_cache_hot == 1) {
7156 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7157 schedstat_inc(p->se.statistics.nr_forced_migrations);
7158 }
7159 return 1;
7160 }
7161
7162 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7163 return 0;
7164 }
7165
7166 /*
7167 * detach_task() -- detach the task for the migration specified in env
7168 */
7169 static void detach_task(struct task_struct *p, struct lb_env *env)
7170 {
7171 lockdep_assert_held(&env->src_rq->lock);
7172
7173 p->on_rq = TASK_ON_RQ_MIGRATING;
7174 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7175 set_task_cpu(p, env->dst_cpu);
7176 }
7177
7178 /*
7179 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7180 * part of active balancing operations within "domain".
7181 *
7182 * Returns a task if successful and NULL otherwise.
7183 */
7184 static struct task_struct *detach_one_task(struct lb_env *env)
7185 {
7186 struct task_struct *p;
7187
7188 lockdep_assert_held(&env->src_rq->lock);
7189
7190 list_for_each_entry_reverse(p,
7191 &env->src_rq->cfs_tasks, se.group_node) {
7192 if (!can_migrate_task(p, env))
7193 continue;
7194
7195 detach_task(p, env);
7196
7197 /*
7198 * Right now, this is only the second place where
7199 * lb_gained[env->idle] is updated (other is detach_tasks)
7200 * so we can safely collect stats here rather than
7201 * inside detach_tasks().
7202 */
7203 schedstat_inc(env->sd->lb_gained[env->idle]);
7204 return p;
7205 }
7206 return NULL;
7207 }
7208
7209 static const unsigned int sched_nr_migrate_break = 32;
7210
7211 /*
7212 * detach_tasks() -- tries to detach up to imbalance weighted load from
7213 * busiest_rq, as part of a balancing operation within domain "sd".
7214 *
7215 * Returns number of detached tasks if successful and 0 otherwise.
7216 */
7217 static int detach_tasks(struct lb_env *env)
7218 {
7219 struct list_head *tasks = &env->src_rq->cfs_tasks;
7220 struct task_struct *p;
7221 unsigned long load;
7222 int detached = 0;
7223
7224 lockdep_assert_held(&env->src_rq->lock);
7225
7226 if (env->imbalance <= 0)
7227 return 0;
7228
7229 while (!list_empty(tasks)) {
7230 /*
7231 * We don't want to steal all, otherwise we may be treated likewise,
7232 * which could at worst lead to a livelock crash.
7233 */
7234 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7235 break;
7236
7237 p = list_last_entry(tasks, struct task_struct, se.group_node);
7238
7239 env->loop++;
7240 /* We've more or less seen every task there is, call it quits */
7241 if (env->loop > env->loop_max)
7242 break;
7243
7244 /* take a breather every nr_migrate tasks */
7245 if (env->loop > env->loop_break) {
7246 env->loop_break += sched_nr_migrate_break;
7247 env->flags |= LBF_NEED_BREAK;
7248 break;
7249 }
7250
7251 if (!can_migrate_task(p, env))
7252 goto next;
7253
7254 load = task_h_load(p);
7255
7256 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7257 goto next;
7258
7259 if ((load / 2) > env->imbalance)
7260 goto next;
7261
7262 detach_task(p, env);
7263 list_add(&p->se.group_node, &env->tasks);
7264
7265 detached++;
7266 env->imbalance -= load;
7267
7268 #ifdef CONFIG_PREEMPT
7269 /*
7270 * NEWIDLE balancing is a source of latency, so preemptible
7271 * kernels will stop after the first task is detached to minimize
7272 * the critical section.
7273 */
7274 if (env->idle == CPU_NEWLY_IDLE)
7275 break;
7276 #endif
7277
7278 /*
7279 * We only want to steal up to the prescribed amount of
7280 * weighted load.
7281 */
7282 if (env->imbalance <= 0)
7283 break;
7284
7285 continue;
7286 next:
7287 list_move(&p->se.group_node, tasks);
7288 }
7289
7290 /*
7291 * Right now, this is one of only two places we collect this stat
7292 * so we can safely collect detach_one_task() stats here rather
7293 * than inside detach_one_task().
7294 */
7295 schedstat_add(env->sd->lb_gained[env->idle], detached);
7296
7297 return detached;
7298 }
7299
7300 /*
7301 * attach_task() -- attach the task detached by detach_task() to its new rq.
7302 */
7303 static void attach_task(struct rq *rq, struct task_struct *p)
7304 {
7305 lockdep_assert_held(&rq->lock);
7306
7307 BUG_ON(task_rq(p) != rq);
7308 activate_task(rq, p, ENQUEUE_NOCLOCK);
7309 p->on_rq = TASK_ON_RQ_QUEUED;
7310 check_preempt_curr(rq, p, 0);
7311 }
7312
7313 /*
7314 * attach_one_task() -- attaches the task returned from detach_one_task() to
7315 * its new rq.
7316 */
7317 static void attach_one_task(struct rq *rq, struct task_struct *p)
7318 {
7319 struct rq_flags rf;
7320
7321 rq_lock(rq, &rf);
7322 update_rq_clock(rq);
7323 attach_task(rq, p);
7324 rq_unlock(rq, &rf);
7325 }
7326
7327 /*
7328 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7329 * new rq.
7330 */
7331 static void attach_tasks(struct lb_env *env)
7332 {
7333 struct list_head *tasks = &env->tasks;
7334 struct task_struct *p;
7335 struct rq_flags rf;
7336
7337 rq_lock(env->dst_rq, &rf);
7338 update_rq_clock(env->dst_rq);
7339
7340 while (!list_empty(tasks)) {
7341 p = list_first_entry(tasks, struct task_struct, se.group_node);
7342 list_del_init(&p->se.group_node);
7343
7344 attach_task(env->dst_rq, p);
7345 }
7346
7347 rq_unlock(env->dst_rq, &rf);
7348 }
7349
7350 #ifdef CONFIG_FAIR_GROUP_SCHED
7351
7352 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7353 {
7354 if (cfs_rq->load.weight)
7355 return false;
7356
7357 if (cfs_rq->avg.load_sum)
7358 return false;
7359
7360 if (cfs_rq->avg.util_sum)
7361 return false;
7362
7363 if (cfs_rq->avg.runnable_load_sum)
7364 return false;
7365
7366 return true;
7367 }
7368
7369 static void update_blocked_averages(int cpu)
7370 {
7371 struct rq *rq = cpu_rq(cpu);
7372 struct cfs_rq *cfs_rq, *pos;
7373 struct rq_flags rf;
7374
7375 rq_lock_irqsave(rq, &rf);
7376 update_rq_clock(rq);
7377
7378 /*
7379 * Iterates the task_group tree in a bottom up fashion, see
7380 * list_add_leaf_cfs_rq() for details.
7381 */
7382 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7383 struct sched_entity *se;
7384
7385 /* throttled entities do not contribute to load */
7386 if (throttled_hierarchy(cfs_rq))
7387 continue;
7388
7389 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7390 update_tg_load_avg(cfs_rq, 0);
7391
7392 /* Propagate pending load changes to the parent, if any: */
7393 se = cfs_rq->tg->se[cpu];
7394 if (se && !skip_blocked_update(se))
7395 update_load_avg(cfs_rq_of(se), se, 0);
7396
7397 /*
7398 * There can be a lot of idle CPU cgroups. Don't let fully
7399 * decayed cfs_rqs linger on the list.
7400 */
7401 if (cfs_rq_is_decayed(cfs_rq))
7402 list_del_leaf_cfs_rq(cfs_rq);
7403 }
7404 rq_unlock_irqrestore(rq, &rf);
7405 }
7406
7407 /*
7408 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7409 * This needs to be done in a top-down fashion because the load of a child
7410 * group is a fraction of its parents load.
7411 */
7412 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7413 {
7414 struct rq *rq = rq_of(cfs_rq);
7415 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7416 unsigned long now = jiffies;
7417 unsigned long load;
7418
7419 if (cfs_rq->last_h_load_update == now)
7420 return;
7421
7422 cfs_rq->h_load_next = NULL;
7423 for_each_sched_entity(se) {
7424 cfs_rq = cfs_rq_of(se);
7425 cfs_rq->h_load_next = se;
7426 if (cfs_rq->last_h_load_update == now)
7427 break;
7428 }
7429
7430 if (!se) {
7431 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7432 cfs_rq->last_h_load_update = now;
7433 }
7434
7435 while ((se = cfs_rq->h_load_next) != NULL) {
7436 load = cfs_rq->h_load;
7437 load = div64_ul(load * se->avg.load_avg,
7438 cfs_rq_load_avg(cfs_rq) + 1);
7439 cfs_rq = group_cfs_rq(se);
7440 cfs_rq->h_load = load;
7441 cfs_rq->last_h_load_update = now;
7442 }
7443 }
7444
7445 static unsigned long task_h_load(struct task_struct *p)
7446 {
7447 struct cfs_rq *cfs_rq = task_cfs_rq(p);
7448
7449 update_cfs_rq_h_load(cfs_rq);
7450 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7451 cfs_rq_load_avg(cfs_rq) + 1);
7452 }
7453 #else
7454 static inline void update_blocked_averages(int cpu)
7455 {
7456 struct rq *rq = cpu_rq(cpu);
7457 struct cfs_rq *cfs_rq = &rq->cfs;
7458 struct rq_flags rf;
7459
7460 rq_lock_irqsave(rq, &rf);
7461 update_rq_clock(rq);
7462 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7463 rq_unlock_irqrestore(rq, &rf);
7464 }
7465
7466 static unsigned long task_h_load(struct task_struct *p)
7467 {
7468 return p->se.avg.load_avg;
7469 }
7470 #endif
7471
7472 /********** Helpers for find_busiest_group ************************/
7473
7474 enum group_type {
7475 group_other = 0,
7476 group_imbalanced,
7477 group_overloaded,
7478 };
7479
7480 /*
7481 * sg_lb_stats - stats of a sched_group required for load_balancing
7482 */
7483 struct sg_lb_stats {
7484 unsigned long avg_load; /*Avg load across the CPUs of the group */
7485 unsigned long group_load; /* Total load over the CPUs of the group */
7486 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7487 unsigned long load_per_task;
7488 unsigned long group_capacity;
7489 unsigned long group_util; /* Total utilization of the group */
7490 unsigned int sum_nr_running; /* Nr tasks running in the group */
7491 unsigned int idle_cpus;
7492 unsigned int group_weight;
7493 enum group_type group_type;
7494 int group_no_capacity;
7495 #ifdef CONFIG_NUMA_BALANCING
7496 unsigned int nr_numa_running;
7497 unsigned int nr_preferred_running;
7498 #endif
7499 };
7500
7501 /*
7502 * sd_lb_stats - Structure to store the statistics of a sched_domain
7503 * during load balancing.
7504 */
7505 struct sd_lb_stats {
7506 struct sched_group *busiest; /* Busiest group in this sd */
7507 struct sched_group *local; /* Local group in this sd */
7508 unsigned long total_running;
7509 unsigned long total_load; /* Total load of all groups in sd */
7510 unsigned long total_capacity; /* Total capacity of all groups in sd */
7511 unsigned long avg_load; /* Average load across all groups in sd */
7512
7513 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7514 struct sg_lb_stats local_stat; /* Statistics of the local group */
7515 };
7516
7517 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7518 {
7519 /*
7520 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7521 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7522 * We must however clear busiest_stat::avg_load because
7523 * update_sd_pick_busiest() reads this before assignment.
7524 */
7525 *sds = (struct sd_lb_stats){
7526 .busiest = NULL,
7527 .local = NULL,
7528 .total_running = 0UL,
7529 .total_load = 0UL,
7530 .total_capacity = 0UL,
7531 .busiest_stat = {
7532 .avg_load = 0UL,
7533 .sum_nr_running = 0,
7534 .group_type = group_other,
7535 },
7536 };
7537 }
7538
7539 /**
7540 * get_sd_load_idx - Obtain the load index for a given sched domain.
7541 * @sd: The sched_domain whose load_idx is to be obtained.
7542 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7543 *
7544 * Return: The load index.
7545 */
7546 static inline int get_sd_load_idx(struct sched_domain *sd,
7547 enum cpu_idle_type idle)
7548 {
7549 int load_idx;
7550
7551 switch (idle) {
7552 case CPU_NOT_IDLE:
7553 load_idx = sd->busy_idx;
7554 break;
7555
7556 case CPU_NEWLY_IDLE:
7557 load_idx = sd->newidle_idx;
7558 break;
7559 default:
7560 load_idx = sd->idle_idx;
7561 break;
7562 }
7563
7564 return load_idx;
7565 }
7566
7567 static unsigned long scale_rt_capacity(int cpu)
7568 {
7569 struct rq *rq = cpu_rq(cpu);
7570 u64 total, used, age_stamp, avg;
7571 s64 delta;
7572
7573 /*
7574 * Since we're reading these variables without serialization make sure
7575 * we read them once before doing sanity checks on them.
7576 */
7577 age_stamp = READ_ONCE(rq->age_stamp);
7578 avg = READ_ONCE(rq->rt_avg);
7579 delta = __rq_clock_broken(rq) - age_stamp;
7580
7581 if (unlikely(delta < 0))
7582 delta = 0;
7583
7584 total = sched_avg_period() + delta;
7585
7586 used = div_u64(avg, total);
7587
7588 if (likely(used < SCHED_CAPACITY_SCALE))
7589 return SCHED_CAPACITY_SCALE - used;
7590
7591 return 1;
7592 }
7593
7594 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7595 {
7596 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7597 struct sched_group *sdg = sd->groups;
7598
7599 cpu_rq(cpu)->cpu_capacity_orig = capacity;
7600
7601 capacity *= scale_rt_capacity(cpu);
7602 capacity >>= SCHED_CAPACITY_SHIFT;
7603
7604 if (!capacity)
7605 capacity = 1;
7606
7607 cpu_rq(cpu)->cpu_capacity = capacity;
7608 sdg->sgc->capacity = capacity;
7609 sdg->sgc->min_capacity = capacity;
7610 }
7611
7612 void update_group_capacity(struct sched_domain *sd, int cpu)
7613 {
7614 struct sched_domain *child = sd->child;
7615 struct sched_group *group, *sdg = sd->groups;
7616 unsigned long capacity, min_capacity;
7617 unsigned long interval;
7618
7619 interval = msecs_to_jiffies(sd->balance_interval);
7620 interval = clamp(interval, 1UL, max_load_balance_interval);
7621 sdg->sgc->next_update = jiffies + interval;
7622
7623 if (!child) {
7624 update_cpu_capacity(sd, cpu);
7625 return;
7626 }
7627
7628 capacity = 0;
7629 min_capacity = ULONG_MAX;
7630
7631 if (child->flags & SD_OVERLAP) {
7632 /*
7633 * SD_OVERLAP domains cannot assume that child groups
7634 * span the current group.
7635 */
7636
7637 for_each_cpu(cpu, sched_group_span(sdg)) {
7638 struct sched_group_capacity *sgc;
7639 struct rq *rq = cpu_rq(cpu);
7640
7641 /*
7642 * build_sched_domains() -> init_sched_groups_capacity()
7643 * gets here before we've attached the domains to the
7644 * runqueues.
7645 *
7646 * Use capacity_of(), which is set irrespective of domains
7647 * in update_cpu_capacity().
7648 *
7649 * This avoids capacity from being 0 and
7650 * causing divide-by-zero issues on boot.
7651 */
7652 if (unlikely(!rq->sd)) {
7653 capacity += capacity_of(cpu);
7654 } else {
7655 sgc = rq->sd->groups->sgc;
7656 capacity += sgc->capacity;
7657 }
7658
7659 min_capacity = min(capacity, min_capacity);
7660 }
7661 } else {
7662 /*
7663 * !SD_OVERLAP domains can assume that child groups
7664 * span the current group.
7665 */
7666
7667 group = child->groups;
7668 do {
7669 struct sched_group_capacity *sgc = group->sgc;
7670
7671 capacity += sgc->capacity;
7672 min_capacity = min(sgc->min_capacity, min_capacity);
7673 group = group->next;
7674 } while (group != child->groups);
7675 }
7676
7677 sdg->sgc->capacity = capacity;
7678 sdg->sgc->min_capacity = min_capacity;
7679 }
7680
7681 /*
7682 * Check whether the capacity of the rq has been noticeably reduced by side
7683 * activity. The imbalance_pct is used for the threshold.
7684 * Return true is the capacity is reduced
7685 */
7686 static inline int
7687 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7688 {
7689 return ((rq->cpu_capacity * sd->imbalance_pct) <
7690 (rq->cpu_capacity_orig * 100));
7691 }
7692
7693 /*
7694 * Group imbalance indicates (and tries to solve) the problem where balancing
7695 * groups is inadequate due to ->cpus_allowed constraints.
7696 *
7697 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7698 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7699 * Something like:
7700 *
7701 * { 0 1 2 3 } { 4 5 6 7 }
7702 * * * * *
7703 *
7704 * If we were to balance group-wise we'd place two tasks in the first group and
7705 * two tasks in the second group. Clearly this is undesired as it will overload
7706 * cpu 3 and leave one of the cpus in the second group unused.
7707 *
7708 * The current solution to this issue is detecting the skew in the first group
7709 * by noticing the lower domain failed to reach balance and had difficulty
7710 * moving tasks due to affinity constraints.
7711 *
7712 * When this is so detected; this group becomes a candidate for busiest; see
7713 * update_sd_pick_busiest(). And calculate_imbalance() and
7714 * find_busiest_group() avoid some of the usual balance conditions to allow it
7715 * to create an effective group imbalance.
7716 *
7717 * This is a somewhat tricky proposition since the next run might not find the
7718 * group imbalance and decide the groups need to be balanced again. A most
7719 * subtle and fragile situation.
7720 */
7721
7722 static inline int sg_imbalanced(struct sched_group *group)
7723 {
7724 return group->sgc->imbalance;
7725 }
7726
7727 /*
7728 * group_has_capacity returns true if the group has spare capacity that could
7729 * be used by some tasks.
7730 * We consider that a group has spare capacity if the * number of task is
7731 * smaller than the number of CPUs or if the utilization is lower than the
7732 * available capacity for CFS tasks.
7733 * For the latter, we use a threshold to stabilize the state, to take into
7734 * account the variance of the tasks' load and to return true if the available
7735 * capacity in meaningful for the load balancer.
7736 * As an example, an available capacity of 1% can appear but it doesn't make
7737 * any benefit for the load balance.
7738 */
7739 static inline bool
7740 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7741 {
7742 if (sgs->sum_nr_running < sgs->group_weight)
7743 return true;
7744
7745 if ((sgs->group_capacity * 100) >
7746 (sgs->group_util * env->sd->imbalance_pct))
7747 return true;
7748
7749 return false;
7750 }
7751
7752 /*
7753 * group_is_overloaded returns true if the group has more tasks than it can
7754 * handle.
7755 * group_is_overloaded is not equals to !group_has_capacity because a group
7756 * with the exact right number of tasks, has no more spare capacity but is not
7757 * overloaded so both group_has_capacity and group_is_overloaded return
7758 * false.
7759 */
7760 static inline bool
7761 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7762 {
7763 if (sgs->sum_nr_running <= sgs->group_weight)
7764 return false;
7765
7766 if ((sgs->group_capacity * 100) <
7767 (sgs->group_util * env->sd->imbalance_pct))
7768 return true;
7769
7770 return false;
7771 }
7772
7773 /*
7774 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7775 * per-CPU capacity than sched_group ref.
7776 */
7777 static inline bool
7778 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7779 {
7780 return sg->sgc->min_capacity * capacity_margin <
7781 ref->sgc->min_capacity * 1024;
7782 }
7783
7784 static inline enum
7785 group_type group_classify(struct sched_group *group,
7786 struct sg_lb_stats *sgs)
7787 {
7788 if (sgs->group_no_capacity)
7789 return group_overloaded;
7790
7791 if (sg_imbalanced(group))
7792 return group_imbalanced;
7793
7794 return group_other;
7795 }
7796
7797 /**
7798 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7799 * @env: The load balancing environment.
7800 * @group: sched_group whose statistics are to be updated.
7801 * @load_idx: Load index of sched_domain of this_cpu for load calc.
7802 * @local_group: Does group contain this_cpu.
7803 * @sgs: variable to hold the statistics for this group.
7804 * @overload: Indicate more than one runnable task for any CPU.
7805 */
7806 static inline void update_sg_lb_stats(struct lb_env *env,
7807 struct sched_group *group, int load_idx,
7808 int local_group, struct sg_lb_stats *sgs,
7809 bool *overload)
7810 {
7811 unsigned long load;
7812 int i, nr_running;
7813
7814 memset(sgs, 0, sizeof(*sgs));
7815
7816 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7817 struct rq *rq = cpu_rq(i);
7818
7819 /* Bias balancing toward cpus of our domain */
7820 if (local_group)
7821 load = target_load(i, load_idx);
7822 else
7823 load = source_load(i, load_idx);
7824
7825 sgs->group_load += load;
7826 sgs->group_util += cpu_util(i);
7827 sgs->sum_nr_running += rq->cfs.h_nr_running;
7828
7829 nr_running = rq->nr_running;
7830 if (nr_running > 1)
7831 *overload = true;
7832
7833 #ifdef CONFIG_NUMA_BALANCING
7834 sgs->nr_numa_running += rq->nr_numa_running;
7835 sgs->nr_preferred_running += rq->nr_preferred_running;
7836 #endif
7837 sgs->sum_weighted_load += weighted_cpuload(rq);
7838 /*
7839 * No need to call idle_cpu() if nr_running is not 0
7840 */
7841 if (!nr_running && idle_cpu(i))
7842 sgs->idle_cpus++;
7843 }
7844
7845 /* Adjust by relative CPU capacity of the group */
7846 sgs->group_capacity = group->sgc->capacity;
7847 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7848
7849 if (sgs->sum_nr_running)
7850 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7851
7852 sgs->group_weight = group->group_weight;
7853
7854 sgs->group_no_capacity = group_is_overloaded(env, sgs);
7855 sgs->group_type = group_classify(group, sgs);
7856 }
7857
7858 /**
7859 * update_sd_pick_busiest - return 1 on busiest group
7860 * @env: The load balancing environment.
7861 * @sds: sched_domain statistics
7862 * @sg: sched_group candidate to be checked for being the busiest
7863 * @sgs: sched_group statistics
7864 *
7865 * Determine if @sg is a busier group than the previously selected
7866 * busiest group.
7867 *
7868 * Return: %true if @sg is a busier group than the previously selected
7869 * busiest group. %false otherwise.
7870 */
7871 static bool update_sd_pick_busiest(struct lb_env *env,
7872 struct sd_lb_stats *sds,
7873 struct sched_group *sg,
7874 struct sg_lb_stats *sgs)
7875 {
7876 struct sg_lb_stats *busiest = &sds->busiest_stat;
7877
7878 if (sgs->group_type > busiest->group_type)
7879 return true;
7880
7881 if (sgs->group_type < busiest->group_type)
7882 return false;
7883
7884 if (sgs->avg_load <= busiest->avg_load)
7885 return false;
7886
7887 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7888 goto asym_packing;
7889
7890 /*
7891 * Candidate sg has no more than one task per CPU and
7892 * has higher per-CPU capacity. Migrating tasks to less
7893 * capable CPUs may harm throughput. Maximize throughput,
7894 * power/energy consequences are not considered.
7895 */
7896 if (sgs->sum_nr_running <= sgs->group_weight &&
7897 group_smaller_cpu_capacity(sds->local, sg))
7898 return false;
7899
7900 asym_packing:
7901 /* This is the busiest node in its class. */
7902 if (!(env->sd->flags & SD_ASYM_PACKING))
7903 return true;
7904
7905 /* No ASYM_PACKING if target cpu is already busy */
7906 if (env->idle == CPU_NOT_IDLE)
7907 return true;
7908 /*
7909 * ASYM_PACKING needs to move all the work to the highest
7910 * prority CPUs in the group, therefore mark all groups
7911 * of lower priority than ourself as busy.
7912 */
7913 if (sgs->sum_nr_running &&
7914 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7915 if (!sds->busiest)
7916 return true;
7917
7918 /* Prefer to move from lowest priority cpu's work */
7919 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7920 sg->asym_prefer_cpu))
7921 return true;
7922 }
7923
7924 return false;
7925 }
7926
7927 #ifdef CONFIG_NUMA_BALANCING
7928 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7929 {
7930 if (sgs->sum_nr_running > sgs->nr_numa_running)
7931 return regular;
7932 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7933 return remote;
7934 return all;
7935 }
7936
7937 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7938 {
7939 if (rq->nr_running > rq->nr_numa_running)
7940 return regular;
7941 if (rq->nr_running > rq->nr_preferred_running)
7942 return remote;
7943 return all;
7944 }
7945 #else
7946 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7947 {
7948 return all;
7949 }
7950
7951 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7952 {
7953 return regular;
7954 }
7955 #endif /* CONFIG_NUMA_BALANCING */
7956
7957 /**
7958 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7959 * @env: The load balancing environment.
7960 * @sds: variable to hold the statistics for this sched_domain.
7961 */
7962 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7963 {
7964 struct sched_domain *child = env->sd->child;
7965 struct sched_group *sg = env->sd->groups;
7966 struct sg_lb_stats *local = &sds->local_stat;
7967 struct sg_lb_stats tmp_sgs;
7968 int load_idx, prefer_sibling = 0;
7969 bool overload = false;
7970
7971 if (child && child->flags & SD_PREFER_SIBLING)
7972 prefer_sibling = 1;
7973
7974 load_idx = get_sd_load_idx(env->sd, env->idle);
7975
7976 do {
7977 struct sg_lb_stats *sgs = &tmp_sgs;
7978 int local_group;
7979
7980 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
7981 if (local_group) {
7982 sds->local = sg;
7983 sgs = local;
7984
7985 if (env->idle != CPU_NEWLY_IDLE ||
7986 time_after_eq(jiffies, sg->sgc->next_update))
7987 update_group_capacity(env->sd, env->dst_cpu);
7988 }
7989
7990 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7991 &overload);
7992
7993 if (local_group)
7994 goto next_group;
7995
7996 /*
7997 * In case the child domain prefers tasks go to siblings
7998 * first, lower the sg capacity so that we'll try
7999 * and move all the excess tasks away. We lower the capacity
8000 * of a group only if the local group has the capacity to fit
8001 * these excess tasks. The extra check prevents the case where
8002 * you always pull from the heaviest group when it is already
8003 * under-utilized (possible with a large weight task outweighs
8004 * the tasks on the system).
8005 */
8006 if (prefer_sibling && sds->local &&
8007 group_has_capacity(env, local) &&
8008 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8009 sgs->group_no_capacity = 1;
8010 sgs->group_type = group_classify(sg, sgs);
8011 }
8012
8013 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8014 sds->busiest = sg;
8015 sds->busiest_stat = *sgs;
8016 }
8017
8018 next_group:
8019 /* Now, start updating sd_lb_stats */
8020 sds->total_running += sgs->sum_nr_running;
8021 sds->total_load += sgs->group_load;
8022 sds->total_capacity += sgs->group_capacity;
8023
8024 sg = sg->next;
8025 } while (sg != env->sd->groups);
8026
8027 if (env->sd->flags & SD_NUMA)
8028 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8029
8030 if (!env->sd->parent) {
8031 /* update overload indicator if we are at root domain */
8032 if (env->dst_rq->rd->overload != overload)
8033 env->dst_rq->rd->overload = overload;
8034 }
8035 }
8036
8037 /**
8038 * check_asym_packing - Check to see if the group is packed into the
8039 * sched domain.
8040 *
8041 * This is primarily intended to used at the sibling level. Some
8042 * cores like POWER7 prefer to use lower numbered SMT threads. In the
8043 * case of POWER7, it can move to lower SMT modes only when higher
8044 * threads are idle. When in lower SMT modes, the threads will
8045 * perform better since they share less core resources. Hence when we
8046 * have idle threads, we want them to be the higher ones.
8047 *
8048 * This packing function is run on idle threads. It checks to see if
8049 * the busiest CPU in this domain (core in the P7 case) has a higher
8050 * CPU number than the packing function is being run on. Here we are
8051 * assuming lower CPU number will be equivalent to lower a SMT thread
8052 * number.
8053 *
8054 * Return: 1 when packing is required and a task should be moved to
8055 * this CPU. The amount of the imbalance is returned in env->imbalance.
8056 *
8057 * @env: The load balancing environment.
8058 * @sds: Statistics of the sched_domain which is to be packed
8059 */
8060 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8061 {
8062 int busiest_cpu;
8063
8064 if (!(env->sd->flags & SD_ASYM_PACKING))
8065 return 0;
8066
8067 if (env->idle == CPU_NOT_IDLE)
8068 return 0;
8069
8070 if (!sds->busiest)
8071 return 0;
8072
8073 busiest_cpu = sds->busiest->asym_prefer_cpu;
8074 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8075 return 0;
8076
8077 env->imbalance = DIV_ROUND_CLOSEST(
8078 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
8079 SCHED_CAPACITY_SCALE);
8080
8081 return 1;
8082 }
8083
8084 /**
8085 * fix_small_imbalance - Calculate the minor imbalance that exists
8086 * amongst the groups of a sched_domain, during
8087 * load balancing.
8088 * @env: The load balancing environment.
8089 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
8090 */
8091 static inline
8092 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8093 {
8094 unsigned long tmp, capa_now = 0, capa_move = 0;
8095 unsigned int imbn = 2;
8096 unsigned long scaled_busy_load_per_task;
8097 struct sg_lb_stats *local, *busiest;
8098
8099 local = &sds->local_stat;
8100 busiest = &sds->busiest_stat;
8101
8102 if (!local->sum_nr_running)
8103 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8104 else if (busiest->load_per_task > local->load_per_task)
8105 imbn = 1;
8106
8107 scaled_busy_load_per_task =
8108 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8109 busiest->group_capacity;
8110
8111 if (busiest->avg_load + scaled_busy_load_per_task >=
8112 local->avg_load + (scaled_busy_load_per_task * imbn)) {
8113 env->imbalance = busiest->load_per_task;
8114 return;
8115 }
8116
8117 /*
8118 * OK, we don't have enough imbalance to justify moving tasks,
8119 * however we may be able to increase total CPU capacity used by
8120 * moving them.
8121 */
8122
8123 capa_now += busiest->group_capacity *
8124 min(busiest->load_per_task, busiest->avg_load);
8125 capa_now += local->group_capacity *
8126 min(local->load_per_task, local->avg_load);
8127 capa_now /= SCHED_CAPACITY_SCALE;
8128
8129 /* Amount of load we'd subtract */
8130 if (busiest->avg_load > scaled_busy_load_per_task) {
8131 capa_move += busiest->group_capacity *
8132 min(busiest->load_per_task,
8133 busiest->avg_load - scaled_busy_load_per_task);
8134 }
8135
8136 /* Amount of load we'd add */
8137 if (busiest->avg_load * busiest->group_capacity <
8138 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8139 tmp = (busiest->avg_load * busiest->group_capacity) /
8140 local->group_capacity;
8141 } else {
8142 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8143 local->group_capacity;
8144 }
8145 capa_move += local->group_capacity *
8146 min(local->load_per_task, local->avg_load + tmp);
8147 capa_move /= SCHED_CAPACITY_SCALE;
8148
8149 /* Move if we gain throughput */
8150 if (capa_move > capa_now)
8151 env->imbalance = busiest->load_per_task;
8152 }
8153
8154 /**
8155 * calculate_imbalance - Calculate the amount of imbalance present within the
8156 * groups of a given sched_domain during load balance.
8157 * @env: load balance environment
8158 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8159 */
8160 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8161 {
8162 unsigned long max_pull, load_above_capacity = ~0UL;
8163 struct sg_lb_stats *local, *busiest;
8164
8165 local = &sds->local_stat;
8166 busiest = &sds->busiest_stat;
8167
8168 if (busiest->group_type == group_imbalanced) {
8169 /*
8170 * In the group_imb case we cannot rely on group-wide averages
8171 * to ensure cpu-load equilibrium, look at wider averages. XXX
8172 */
8173 busiest->load_per_task =
8174 min(busiest->load_per_task, sds->avg_load);
8175 }
8176
8177 /*
8178 * Avg load of busiest sg can be less and avg load of local sg can
8179 * be greater than avg load across all sgs of sd because avg load
8180 * factors in sg capacity and sgs with smaller group_type are
8181 * skipped when updating the busiest sg:
8182 */
8183 if (busiest->avg_load <= sds->avg_load ||
8184 local->avg_load >= sds->avg_load) {
8185 env->imbalance = 0;
8186 return fix_small_imbalance(env, sds);
8187 }
8188
8189 /*
8190 * If there aren't any idle cpus, avoid creating some.
8191 */
8192 if (busiest->group_type == group_overloaded &&
8193 local->group_type == group_overloaded) {
8194 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8195 if (load_above_capacity > busiest->group_capacity) {
8196 load_above_capacity -= busiest->group_capacity;
8197 load_above_capacity *= scale_load_down(NICE_0_LOAD);
8198 load_above_capacity /= busiest->group_capacity;
8199 } else
8200 load_above_capacity = ~0UL;
8201 }
8202
8203 /*
8204 * We're trying to get all the cpus to the average_load, so we don't
8205 * want to push ourselves above the average load, nor do we wish to
8206 * reduce the max loaded cpu below the average load. At the same time,
8207 * we also don't want to reduce the group load below the group
8208 * capacity. Thus we look for the minimum possible imbalance.
8209 */
8210 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8211
8212 /* How much load to actually move to equalise the imbalance */
8213 env->imbalance = min(
8214 max_pull * busiest->group_capacity,
8215 (sds->avg_load - local->avg_load) * local->group_capacity
8216 ) / SCHED_CAPACITY_SCALE;
8217
8218 /*
8219 * if *imbalance is less than the average load per runnable task
8220 * there is no guarantee that any tasks will be moved so we'll have
8221 * a think about bumping its value to force at least one task to be
8222 * moved
8223 */
8224 if (env->imbalance < busiest->load_per_task)
8225 return fix_small_imbalance(env, sds);
8226 }
8227
8228 /******* find_busiest_group() helpers end here *********************/
8229
8230 /**
8231 * find_busiest_group - Returns the busiest group within the sched_domain
8232 * if there is an imbalance.
8233 *
8234 * Also calculates the amount of weighted load which should be moved
8235 * to restore balance.
8236 *
8237 * @env: The load balancing environment.
8238 *
8239 * Return: - The busiest group if imbalance exists.
8240 */
8241 static struct sched_group *find_busiest_group(struct lb_env *env)
8242 {
8243 struct sg_lb_stats *local, *busiest;
8244 struct sd_lb_stats sds;
8245
8246 init_sd_lb_stats(&sds);
8247
8248 /*
8249 * Compute the various statistics relavent for load balancing at
8250 * this level.
8251 */
8252 update_sd_lb_stats(env, &sds);
8253 local = &sds.local_stat;
8254 busiest = &sds.busiest_stat;
8255
8256 /* ASYM feature bypasses nice load balance check */
8257 if (check_asym_packing(env, &sds))
8258 return sds.busiest;
8259
8260 /* There is no busy sibling group to pull tasks from */
8261 if (!sds.busiest || busiest->sum_nr_running == 0)
8262 goto out_balanced;
8263
8264 /* XXX broken for overlapping NUMA groups */
8265 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8266 / sds.total_capacity;
8267
8268 /*
8269 * If the busiest group is imbalanced the below checks don't
8270 * work because they assume all things are equal, which typically
8271 * isn't true due to cpus_allowed constraints and the like.
8272 */
8273 if (busiest->group_type == group_imbalanced)
8274 goto force_balance;
8275
8276 /*
8277 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8278 * capacities from resulting in underutilization due to avg_load.
8279 */
8280 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8281 busiest->group_no_capacity)
8282 goto force_balance;
8283
8284 /*
8285 * If the local group is busier than the selected busiest group
8286 * don't try and pull any tasks.
8287 */
8288 if (local->avg_load >= busiest->avg_load)
8289 goto out_balanced;
8290
8291 /*
8292 * Don't pull any tasks if this group is already above the domain
8293 * average load.
8294 */
8295 if (local->avg_load >= sds.avg_load)
8296 goto out_balanced;
8297
8298 if (env->idle == CPU_IDLE) {
8299 /*
8300 * This cpu is idle. If the busiest group is not overloaded
8301 * and there is no imbalance between this and busiest group
8302 * wrt idle cpus, it is balanced. The imbalance becomes
8303 * significant if the diff is greater than 1 otherwise we
8304 * might end up to just move the imbalance on another group
8305 */
8306 if ((busiest->group_type != group_overloaded) &&
8307 (local->idle_cpus <= (busiest->idle_cpus + 1)))
8308 goto out_balanced;
8309 } else {
8310 /*
8311 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8312 * imbalance_pct to be conservative.
8313 */
8314 if (100 * busiest->avg_load <=
8315 env->sd->imbalance_pct * local->avg_load)
8316 goto out_balanced;
8317 }
8318
8319 force_balance:
8320 /* Looks like there is an imbalance. Compute it */
8321 calculate_imbalance(env, &sds);
8322 return sds.busiest;
8323
8324 out_balanced:
8325 env->imbalance = 0;
8326 return NULL;
8327 }
8328
8329 /*
8330 * find_busiest_queue - find the busiest runqueue among the cpus in group.
8331 */
8332 static struct rq *find_busiest_queue(struct lb_env *env,
8333 struct sched_group *group)
8334 {
8335 struct rq *busiest = NULL, *rq;
8336 unsigned long busiest_load = 0, busiest_capacity = 1;
8337 int i;
8338
8339 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8340 unsigned long capacity, wl;
8341 enum fbq_type rt;
8342
8343 rq = cpu_rq(i);
8344 rt = fbq_classify_rq(rq);
8345
8346 /*
8347 * We classify groups/runqueues into three groups:
8348 * - regular: there are !numa tasks
8349 * - remote: there are numa tasks that run on the 'wrong' node
8350 * - all: there is no distinction
8351 *
8352 * In order to avoid migrating ideally placed numa tasks,
8353 * ignore those when there's better options.
8354 *
8355 * If we ignore the actual busiest queue to migrate another
8356 * task, the next balance pass can still reduce the busiest
8357 * queue by moving tasks around inside the node.
8358 *
8359 * If we cannot move enough load due to this classification
8360 * the next pass will adjust the group classification and
8361 * allow migration of more tasks.
8362 *
8363 * Both cases only affect the total convergence complexity.
8364 */
8365 if (rt > env->fbq_type)
8366 continue;
8367
8368 capacity = capacity_of(i);
8369
8370 wl = weighted_cpuload(rq);
8371
8372 /*
8373 * When comparing with imbalance, use weighted_cpuload()
8374 * which is not scaled with the cpu capacity.
8375 */
8376
8377 if (rq->nr_running == 1 && wl > env->imbalance &&
8378 !check_cpu_capacity(rq, env->sd))
8379 continue;
8380
8381 /*
8382 * For the load comparisons with the other cpu's, consider
8383 * the weighted_cpuload() scaled with the cpu capacity, so
8384 * that the load can be moved away from the cpu that is
8385 * potentially running at a lower capacity.
8386 *
8387 * Thus we're looking for max(wl_i / capacity_i), crosswise
8388 * multiplication to rid ourselves of the division works out
8389 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
8390 * our previous maximum.
8391 */
8392 if (wl * busiest_capacity > busiest_load * capacity) {
8393 busiest_load = wl;
8394 busiest_capacity = capacity;
8395 busiest = rq;
8396 }
8397 }
8398
8399 return busiest;
8400 }
8401
8402 /*
8403 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8404 * so long as it is large enough.
8405 */
8406 #define MAX_PINNED_INTERVAL 512
8407
8408 static int need_active_balance(struct lb_env *env)
8409 {
8410 struct sched_domain *sd = env->sd;
8411
8412 if (env->idle == CPU_NEWLY_IDLE) {
8413
8414 /*
8415 * ASYM_PACKING needs to force migrate tasks from busy but
8416 * lower priority CPUs in order to pack all tasks in the
8417 * highest priority CPUs.
8418 */
8419 if ((sd->flags & SD_ASYM_PACKING) &&
8420 sched_asym_prefer(env->dst_cpu, env->src_cpu))
8421 return 1;
8422 }
8423
8424 /*
8425 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8426 * It's worth migrating the task if the src_cpu's capacity is reduced
8427 * because of other sched_class or IRQs if more capacity stays
8428 * available on dst_cpu.
8429 */
8430 if ((env->idle != CPU_NOT_IDLE) &&
8431 (env->src_rq->cfs.h_nr_running == 1)) {
8432 if ((check_cpu_capacity(env->src_rq, sd)) &&
8433 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8434 return 1;
8435 }
8436
8437 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8438 }
8439
8440 static int active_load_balance_cpu_stop(void *data);
8441
8442 static int should_we_balance(struct lb_env *env)
8443 {
8444 struct sched_group *sg = env->sd->groups;
8445 int cpu, balance_cpu = -1;
8446
8447 /*
8448 * Ensure the balancing environment is consistent; can happen
8449 * when the softirq triggers 'during' hotplug.
8450 */
8451 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8452 return 0;
8453
8454 /*
8455 * In the newly idle case, we will allow all the cpu's
8456 * to do the newly idle load balance.
8457 */
8458 if (env->idle == CPU_NEWLY_IDLE)
8459 return 1;
8460
8461 /* Try to find first idle cpu */
8462 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8463 if (!idle_cpu(cpu))
8464 continue;
8465
8466 balance_cpu = cpu;
8467 break;
8468 }
8469
8470 if (balance_cpu == -1)
8471 balance_cpu = group_balance_cpu(sg);
8472
8473 /*
8474 * First idle cpu or the first cpu(busiest) in this sched group
8475 * is eligible for doing load balancing at this and above domains.
8476 */
8477 return balance_cpu == env->dst_cpu;
8478 }
8479
8480 /*
8481 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8482 * tasks if there is an imbalance.
8483 */
8484 static int load_balance(int this_cpu, struct rq *this_rq,
8485 struct sched_domain *sd, enum cpu_idle_type idle,
8486 int *continue_balancing)
8487 {
8488 int ld_moved, cur_ld_moved, active_balance = 0;
8489 struct sched_domain *sd_parent = sd->parent;
8490 struct sched_group *group;
8491 struct rq *busiest;
8492 struct rq_flags rf;
8493 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8494
8495 struct lb_env env = {
8496 .sd = sd,
8497 .dst_cpu = this_cpu,
8498 .dst_rq = this_rq,
8499 .dst_grpmask = sched_group_span(sd->groups),
8500 .idle = idle,
8501 .loop_break = sched_nr_migrate_break,
8502 .cpus = cpus,
8503 .fbq_type = all,
8504 .tasks = LIST_HEAD_INIT(env.tasks),
8505 };
8506
8507 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8508
8509 schedstat_inc(sd->lb_count[idle]);
8510
8511 redo:
8512 if (!should_we_balance(&env)) {
8513 *continue_balancing = 0;
8514 goto out_balanced;
8515 }
8516
8517 group = find_busiest_group(&env);
8518 if (!group) {
8519 schedstat_inc(sd->lb_nobusyg[idle]);
8520 goto out_balanced;
8521 }
8522
8523 busiest = find_busiest_queue(&env, group);
8524 if (!busiest) {
8525 schedstat_inc(sd->lb_nobusyq[idle]);
8526 goto out_balanced;
8527 }
8528
8529 BUG_ON(busiest == env.dst_rq);
8530
8531 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8532
8533 env.src_cpu = busiest->cpu;
8534 env.src_rq = busiest;
8535
8536 ld_moved = 0;
8537 if (busiest->nr_running > 1) {
8538 /*
8539 * Attempt to move tasks. If find_busiest_group has found
8540 * an imbalance but busiest->nr_running <= 1, the group is
8541 * still unbalanced. ld_moved simply stays zero, so it is
8542 * correctly treated as an imbalance.
8543 */
8544 env.flags |= LBF_ALL_PINNED;
8545 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8546
8547 more_balance:
8548 rq_lock_irqsave(busiest, &rf);
8549 update_rq_clock(busiest);
8550
8551 /*
8552 * cur_ld_moved - load moved in current iteration
8553 * ld_moved - cumulative load moved across iterations
8554 */
8555 cur_ld_moved = detach_tasks(&env);
8556
8557 /*
8558 * We've detached some tasks from busiest_rq. Every
8559 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8560 * unlock busiest->lock, and we are able to be sure
8561 * that nobody can manipulate the tasks in parallel.
8562 * See task_rq_lock() family for the details.
8563 */
8564
8565 rq_unlock(busiest, &rf);
8566
8567 if (cur_ld_moved) {
8568 attach_tasks(&env);
8569 ld_moved += cur_ld_moved;
8570 }
8571
8572 local_irq_restore(rf.flags);
8573
8574 if (env.flags & LBF_NEED_BREAK) {
8575 env.flags &= ~LBF_NEED_BREAK;
8576 goto more_balance;
8577 }
8578
8579 /*
8580 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8581 * us and move them to an alternate dst_cpu in our sched_group
8582 * where they can run. The upper limit on how many times we
8583 * iterate on same src_cpu is dependent on number of cpus in our
8584 * sched_group.
8585 *
8586 * This changes load balance semantics a bit on who can move
8587 * load to a given_cpu. In addition to the given_cpu itself
8588 * (or a ilb_cpu acting on its behalf where given_cpu is
8589 * nohz-idle), we now have balance_cpu in a position to move
8590 * load to given_cpu. In rare situations, this may cause
8591 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8592 * _independently_ and at _same_ time to move some load to
8593 * given_cpu) causing exceess load to be moved to given_cpu.
8594 * This however should not happen so much in practice and
8595 * moreover subsequent load balance cycles should correct the
8596 * excess load moved.
8597 */
8598 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8599
8600 /* Prevent to re-select dst_cpu via env's cpus */
8601 cpumask_clear_cpu(env.dst_cpu, env.cpus);
8602
8603 env.dst_rq = cpu_rq(env.new_dst_cpu);
8604 env.dst_cpu = env.new_dst_cpu;
8605 env.flags &= ~LBF_DST_PINNED;
8606 env.loop = 0;
8607 env.loop_break = sched_nr_migrate_break;
8608
8609 /*
8610 * Go back to "more_balance" rather than "redo" since we
8611 * need to continue with same src_cpu.
8612 */
8613 goto more_balance;
8614 }
8615
8616 /*
8617 * We failed to reach balance because of affinity.
8618 */
8619 if (sd_parent) {
8620 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8621
8622 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8623 *group_imbalance = 1;
8624 }
8625
8626 /* All tasks on this runqueue were pinned by CPU affinity */
8627 if (unlikely(env.flags & LBF_ALL_PINNED)) {
8628 cpumask_clear_cpu(cpu_of(busiest), cpus);
8629 /*
8630 * Attempting to continue load balancing at the current
8631 * sched_domain level only makes sense if there are
8632 * active CPUs remaining as possible busiest CPUs to
8633 * pull load from which are not contained within the
8634 * destination group that is receiving any migrated
8635 * load.
8636 */
8637 if (!cpumask_subset(cpus, env.dst_grpmask)) {
8638 env.loop = 0;
8639 env.loop_break = sched_nr_migrate_break;
8640 goto redo;
8641 }
8642 goto out_all_pinned;
8643 }
8644 }
8645
8646 if (!ld_moved) {
8647 schedstat_inc(sd->lb_failed[idle]);
8648 /*
8649 * Increment the failure counter only on periodic balance.
8650 * We do not want newidle balance, which can be very
8651 * frequent, pollute the failure counter causing
8652 * excessive cache_hot migrations and active balances.
8653 */
8654 if (idle != CPU_NEWLY_IDLE)
8655 sd->nr_balance_failed++;
8656
8657 if (need_active_balance(&env)) {
8658 unsigned long flags;
8659
8660 raw_spin_lock_irqsave(&busiest->lock, flags);
8661
8662 /* don't kick the active_load_balance_cpu_stop,
8663 * if the curr task on busiest cpu can't be
8664 * moved to this_cpu
8665 */
8666 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8667 raw_spin_unlock_irqrestore(&busiest->lock,
8668 flags);
8669 env.flags |= LBF_ALL_PINNED;
8670 goto out_one_pinned;
8671 }
8672
8673 /*
8674 * ->active_balance synchronizes accesses to
8675 * ->active_balance_work. Once set, it's cleared
8676 * only after active load balance is finished.
8677 */
8678 if (!busiest->active_balance) {
8679 busiest->active_balance = 1;
8680 busiest->push_cpu = this_cpu;
8681 active_balance = 1;
8682 }
8683 raw_spin_unlock_irqrestore(&busiest->lock, flags);
8684
8685 if (active_balance) {
8686 stop_one_cpu_nowait(cpu_of(busiest),
8687 active_load_balance_cpu_stop, busiest,
8688 &busiest->active_balance_work);
8689 }
8690
8691 /* We've kicked active balancing, force task migration. */
8692 sd->nr_balance_failed = sd->cache_nice_tries+1;
8693 }
8694 } else
8695 sd->nr_balance_failed = 0;
8696
8697 if (likely(!active_balance)) {
8698 /* We were unbalanced, so reset the balancing interval */
8699 sd->balance_interval = sd->min_interval;
8700 } else {
8701 /*
8702 * If we've begun active balancing, start to back off. This
8703 * case may not be covered by the all_pinned logic if there
8704 * is only 1 task on the busy runqueue (because we don't call
8705 * detach_tasks).
8706 */
8707 if (sd->balance_interval < sd->max_interval)
8708 sd->balance_interval *= 2;
8709 }
8710
8711 goto out;
8712
8713 out_balanced:
8714 /*
8715 * We reach balance although we may have faced some affinity
8716 * constraints. Clear the imbalance flag if it was set.
8717 */
8718 if (sd_parent) {
8719 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8720
8721 if (*group_imbalance)
8722 *group_imbalance = 0;
8723 }
8724
8725 out_all_pinned:
8726 /*
8727 * We reach balance because all tasks are pinned at this level so
8728 * we can't migrate them. Let the imbalance flag set so parent level
8729 * can try to migrate them.
8730 */
8731 schedstat_inc(sd->lb_balanced[idle]);
8732
8733 sd->nr_balance_failed = 0;
8734
8735 out_one_pinned:
8736 /* tune up the balancing interval */
8737 if (((env.flags & LBF_ALL_PINNED) &&
8738 sd->balance_interval < MAX_PINNED_INTERVAL) ||
8739 (sd->balance_interval < sd->max_interval))
8740 sd->balance_interval *= 2;
8741
8742 ld_moved = 0;
8743 out:
8744 return ld_moved;
8745 }
8746
8747 static inline unsigned long
8748 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8749 {
8750 unsigned long interval = sd->balance_interval;
8751
8752 if (cpu_busy)
8753 interval *= sd->busy_factor;
8754
8755 /* scale ms to jiffies */
8756 interval = msecs_to_jiffies(interval);
8757 interval = clamp(interval, 1UL, max_load_balance_interval);
8758
8759 return interval;
8760 }
8761
8762 static inline void
8763 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8764 {
8765 unsigned long interval, next;
8766
8767 /* used by idle balance, so cpu_busy = 0 */
8768 interval = get_sd_balance_interval(sd, 0);
8769 next = sd->last_balance + interval;
8770
8771 if (time_after(*next_balance, next))
8772 *next_balance = next;
8773 }
8774
8775 /*
8776 * idle_balance is called by schedule() if this_cpu is about to become
8777 * idle. Attempts to pull tasks from other CPUs.
8778 */
8779 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
8780 {
8781 unsigned long next_balance = jiffies + HZ;
8782 int this_cpu = this_rq->cpu;
8783 struct sched_domain *sd;
8784 int pulled_task = 0;
8785 u64 curr_cost = 0;
8786
8787 /*
8788 * We must set idle_stamp _before_ calling idle_balance(), such that we
8789 * measure the duration of idle_balance() as idle time.
8790 */
8791 this_rq->idle_stamp = rq_clock(this_rq);
8792
8793 /*
8794 * Do not pull tasks towards !active CPUs...
8795 */
8796 if (!cpu_active(this_cpu))
8797 return 0;
8798
8799 /*
8800 * This is OK, because current is on_cpu, which avoids it being picked
8801 * for load-balance and preemption/IRQs are still disabled avoiding
8802 * further scheduler activity on it and we're being very careful to
8803 * re-start the picking loop.
8804 */
8805 rq_unpin_lock(this_rq, rf);
8806
8807 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8808 !this_rq->rd->overload) {
8809 rcu_read_lock();
8810 sd = rcu_dereference_check_sched_domain(this_rq->sd);
8811 if (sd)
8812 update_next_balance(sd, &next_balance);
8813 rcu_read_unlock();
8814
8815 goto out;
8816 }
8817
8818 raw_spin_unlock(&this_rq->lock);
8819
8820 update_blocked_averages(this_cpu);
8821 rcu_read_lock();
8822 for_each_domain(this_cpu, sd) {
8823 int continue_balancing = 1;
8824 u64 t0, domain_cost;
8825
8826 if (!(sd->flags & SD_LOAD_BALANCE))
8827 continue;
8828
8829 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8830 update_next_balance(sd, &next_balance);
8831 break;
8832 }
8833
8834 if (sd->flags & SD_BALANCE_NEWIDLE) {
8835 t0 = sched_clock_cpu(this_cpu);
8836
8837 pulled_task = load_balance(this_cpu, this_rq,
8838 sd, CPU_NEWLY_IDLE,
8839 &continue_balancing);
8840
8841 domain_cost = sched_clock_cpu(this_cpu) - t0;
8842 if (domain_cost > sd->max_newidle_lb_cost)
8843 sd->max_newidle_lb_cost = domain_cost;
8844
8845 curr_cost += domain_cost;
8846 }
8847
8848 update_next_balance(sd, &next_balance);
8849
8850 /*
8851 * Stop searching for tasks to pull if there are
8852 * now runnable tasks on this rq.
8853 */
8854 if (pulled_task || this_rq->nr_running > 0)
8855 break;
8856 }
8857 rcu_read_unlock();
8858
8859 raw_spin_lock(&this_rq->lock);
8860
8861 if (curr_cost > this_rq->max_idle_balance_cost)
8862 this_rq->max_idle_balance_cost = curr_cost;
8863
8864 /*
8865 * While browsing the domains, we released the rq lock, a task could
8866 * have been enqueued in the meantime. Since we're not going idle,
8867 * pretend we pulled a task.
8868 */
8869 if (this_rq->cfs.h_nr_running && !pulled_task)
8870 pulled_task = 1;
8871
8872 out:
8873 /* Move the next balance forward */
8874 if (time_after(this_rq->next_balance, next_balance))
8875 this_rq->next_balance = next_balance;
8876
8877 /* Is there a task of a high priority class? */
8878 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8879 pulled_task = -1;
8880
8881 if (pulled_task)
8882 this_rq->idle_stamp = 0;
8883
8884 rq_repin_lock(this_rq, rf);
8885
8886 return pulled_task;
8887 }
8888
8889 /*
8890 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8891 * running tasks off the busiest CPU onto idle CPUs. It requires at
8892 * least 1 task to be running on each physical CPU where possible, and
8893 * avoids physical / logical imbalances.
8894 */
8895 static int active_load_balance_cpu_stop(void *data)
8896 {
8897 struct rq *busiest_rq = data;
8898 int busiest_cpu = cpu_of(busiest_rq);
8899 int target_cpu = busiest_rq->push_cpu;
8900 struct rq *target_rq = cpu_rq(target_cpu);
8901 struct sched_domain *sd;
8902 struct task_struct *p = NULL;
8903 struct rq_flags rf;
8904
8905 rq_lock_irq(busiest_rq, &rf);
8906 /*
8907 * Between queueing the stop-work and running it is a hole in which
8908 * CPUs can become inactive. We should not move tasks from or to
8909 * inactive CPUs.
8910 */
8911 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
8912 goto out_unlock;
8913
8914 /* make sure the requested cpu hasn't gone down in the meantime */
8915 if (unlikely(busiest_cpu != smp_processor_id() ||
8916 !busiest_rq->active_balance))
8917 goto out_unlock;
8918
8919 /* Is there any task to move? */
8920 if (busiest_rq->nr_running <= 1)
8921 goto out_unlock;
8922
8923 /*
8924 * This condition is "impossible", if it occurs
8925 * we need to fix it. Originally reported by
8926 * Bjorn Helgaas on a 128-cpu setup.
8927 */
8928 BUG_ON(busiest_rq == target_rq);
8929
8930 /* Search for an sd spanning us and the target CPU. */
8931 rcu_read_lock();
8932 for_each_domain(target_cpu, sd) {
8933 if ((sd->flags & SD_LOAD_BALANCE) &&
8934 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8935 break;
8936 }
8937
8938 if (likely(sd)) {
8939 struct lb_env env = {
8940 .sd = sd,
8941 .dst_cpu = target_cpu,
8942 .dst_rq = target_rq,
8943 .src_cpu = busiest_rq->cpu,
8944 .src_rq = busiest_rq,
8945 .idle = CPU_IDLE,
8946 /*
8947 * can_migrate_task() doesn't need to compute new_dst_cpu
8948 * for active balancing. Since we have CPU_IDLE, but no
8949 * @dst_grpmask we need to make that test go away with lying
8950 * about DST_PINNED.
8951 */
8952 .flags = LBF_DST_PINNED,
8953 };
8954
8955 schedstat_inc(sd->alb_count);
8956 update_rq_clock(busiest_rq);
8957
8958 p = detach_one_task(&env);
8959 if (p) {
8960 schedstat_inc(sd->alb_pushed);
8961 /* Active balancing done, reset the failure counter. */
8962 sd->nr_balance_failed = 0;
8963 } else {
8964 schedstat_inc(sd->alb_failed);
8965 }
8966 }
8967 rcu_read_unlock();
8968 out_unlock:
8969 busiest_rq->active_balance = 0;
8970 rq_unlock(busiest_rq, &rf);
8971
8972 if (p)
8973 attach_one_task(target_rq, p);
8974
8975 local_irq_enable();
8976
8977 return 0;
8978 }
8979
8980 static inline int on_null_domain(struct rq *rq)
8981 {
8982 return unlikely(!rcu_dereference_sched(rq->sd));
8983 }
8984
8985 #ifdef CONFIG_NO_HZ_COMMON
8986 /*
8987 * idle load balancing details
8988 * - When one of the busy CPUs notice that there may be an idle rebalancing
8989 * needed, they will kick the idle load balancer, which then does idle
8990 * load balancing for all the idle CPUs.
8991 */
8992 static struct {
8993 cpumask_var_t idle_cpus_mask;
8994 atomic_t nr_cpus;
8995 unsigned long next_balance; /* in jiffy units */
8996 } nohz ____cacheline_aligned;
8997
8998 static inline int find_new_ilb(void)
8999 {
9000 int ilb = cpumask_first(nohz.idle_cpus_mask);
9001
9002 if (ilb < nr_cpu_ids && idle_cpu(ilb))
9003 return ilb;
9004
9005 return nr_cpu_ids;
9006 }
9007
9008 /*
9009 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
9010 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
9011 * CPU (if there is one).
9012 */
9013 static void nohz_balancer_kick(void)
9014 {
9015 int ilb_cpu;
9016
9017 nohz.next_balance++;
9018
9019 ilb_cpu = find_new_ilb();
9020
9021 if (ilb_cpu >= nr_cpu_ids)
9022 return;
9023
9024 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
9025 return;
9026 /*
9027 * Use smp_send_reschedule() instead of resched_cpu().
9028 * This way we generate a sched IPI on the target cpu which
9029 * is idle. And the softirq performing nohz idle load balance
9030 * will be run before returning from the IPI.
9031 */
9032 smp_send_reschedule(ilb_cpu);
9033 return;
9034 }
9035
9036 void nohz_balance_exit_idle(unsigned int cpu)
9037 {
9038 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
9039 /*
9040 * Completely isolated CPUs don't ever set, so we must test.
9041 */
9042 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
9043 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
9044 atomic_dec(&nohz.nr_cpus);
9045 }
9046 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
9047 }
9048 }
9049
9050 static inline void set_cpu_sd_state_busy(void)
9051 {
9052 struct sched_domain *sd;
9053 int cpu = smp_processor_id();
9054
9055 rcu_read_lock();
9056 sd = rcu_dereference(per_cpu(sd_llc, cpu));
9057
9058 if (!sd || !sd->nohz_idle)
9059 goto unlock;
9060 sd->nohz_idle = 0;
9061
9062 atomic_inc(&sd->shared->nr_busy_cpus);
9063 unlock:
9064 rcu_read_unlock();
9065 }
9066
9067 void set_cpu_sd_state_idle(void)
9068 {
9069 struct sched_domain *sd;
9070 int cpu = smp_processor_id();
9071
9072 rcu_read_lock();
9073 sd = rcu_dereference(per_cpu(sd_llc, cpu));
9074
9075 if (!sd || sd->nohz_idle)
9076 goto unlock;
9077 sd->nohz_idle = 1;
9078
9079 atomic_dec(&sd->shared->nr_busy_cpus);
9080 unlock:
9081 rcu_read_unlock();
9082 }
9083
9084 /*
9085 * This routine will record that the cpu is going idle with tick stopped.
9086 * This info will be used in performing idle load balancing in the future.
9087 */
9088 void nohz_balance_enter_idle(int cpu)
9089 {
9090 /*
9091 * If this cpu is going down, then nothing needs to be done.
9092 */
9093 if (!cpu_active(cpu))
9094 return;
9095
9096 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
9097 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9098 return;
9099
9100 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
9101 return;
9102
9103 /*
9104 * If we're a completely isolated CPU, we don't play.
9105 */
9106 if (on_null_domain(cpu_rq(cpu)))
9107 return;
9108
9109 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9110 atomic_inc(&nohz.nr_cpus);
9111 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
9112 }
9113 #endif
9114
9115 static DEFINE_SPINLOCK(balancing);
9116
9117 /*
9118 * Scale the max load_balance interval with the number of CPUs in the system.
9119 * This trades load-balance latency on larger machines for less cross talk.
9120 */
9121 void update_max_interval(void)
9122 {
9123 max_load_balance_interval = HZ*num_online_cpus()/10;
9124 }
9125
9126 /*
9127 * It checks each scheduling domain to see if it is due to be balanced,
9128 * and initiates a balancing operation if so.
9129 *
9130 * Balancing parameters are set up in init_sched_domains.
9131 */
9132 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9133 {
9134 int continue_balancing = 1;
9135 int cpu = rq->cpu;
9136 unsigned long interval;
9137 struct sched_domain *sd;
9138 /* Earliest time when we have to do rebalance again */
9139 unsigned long next_balance = jiffies + 60*HZ;
9140 int update_next_balance = 0;
9141 int need_serialize, need_decay = 0;
9142 u64 max_cost = 0;
9143
9144 update_blocked_averages(cpu);
9145
9146 rcu_read_lock();
9147 for_each_domain(cpu, sd) {
9148 /*
9149 * Decay the newidle max times here because this is a regular
9150 * visit to all the domains. Decay ~1% per second.
9151 */
9152 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9153 sd->max_newidle_lb_cost =
9154 (sd->max_newidle_lb_cost * 253) / 256;
9155 sd->next_decay_max_lb_cost = jiffies + HZ;
9156 need_decay = 1;
9157 }
9158 max_cost += sd->max_newidle_lb_cost;
9159
9160 if (!(sd->flags & SD_LOAD_BALANCE))
9161 continue;
9162
9163 /*
9164 * Stop the load balance at this level. There is another
9165 * CPU in our sched group which is doing load balancing more
9166 * actively.
9167 */
9168 if (!continue_balancing) {
9169 if (need_decay)
9170 continue;
9171 break;
9172 }
9173
9174 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9175
9176 need_serialize = sd->flags & SD_SERIALIZE;
9177 if (need_serialize) {
9178 if (!spin_trylock(&balancing))
9179 goto out;
9180 }
9181
9182 if (time_after_eq(jiffies, sd->last_balance + interval)) {
9183 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9184 /*
9185 * The LBF_DST_PINNED logic could have changed
9186 * env->dst_cpu, so we can't know our idle
9187 * state even if we migrated tasks. Update it.
9188 */
9189 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9190 }
9191 sd->last_balance = jiffies;
9192 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9193 }
9194 if (need_serialize)
9195 spin_unlock(&balancing);
9196 out:
9197 if (time_after(next_balance, sd->last_balance + interval)) {
9198 next_balance = sd->last_balance + interval;
9199 update_next_balance = 1;
9200 }
9201 }
9202 if (need_decay) {
9203 /*
9204 * Ensure the rq-wide value also decays but keep it at a
9205 * reasonable floor to avoid funnies with rq->avg_idle.
9206 */
9207 rq->max_idle_balance_cost =
9208 max((u64)sysctl_sched_migration_cost, max_cost);
9209 }
9210 rcu_read_unlock();
9211
9212 /*
9213 * next_balance will be updated only when there is a need.
9214 * When the cpu is attached to null domain for ex, it will not be
9215 * updated.
9216 */
9217 if (likely(update_next_balance)) {
9218 rq->next_balance = next_balance;
9219
9220 #ifdef CONFIG_NO_HZ_COMMON
9221 /*
9222 * If this CPU has been elected to perform the nohz idle
9223 * balance. Other idle CPUs have already rebalanced with
9224 * nohz_idle_balance() and nohz.next_balance has been
9225 * updated accordingly. This CPU is now running the idle load
9226 * balance for itself and we need to update the
9227 * nohz.next_balance accordingly.
9228 */
9229 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9230 nohz.next_balance = rq->next_balance;
9231 #endif
9232 }
9233 }
9234
9235 #ifdef CONFIG_NO_HZ_COMMON
9236 /*
9237 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9238 * rebalancing for all the cpus for whom scheduler ticks are stopped.
9239 */
9240 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9241 {
9242 int this_cpu = this_rq->cpu;
9243 struct rq *rq;
9244 int balance_cpu;
9245 /* Earliest time when we have to do rebalance again */
9246 unsigned long next_balance = jiffies + 60*HZ;
9247 int update_next_balance = 0;
9248
9249 if (idle != CPU_IDLE ||
9250 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
9251 goto end;
9252
9253 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9254 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9255 continue;
9256
9257 /*
9258 * If this cpu gets work to do, stop the load balancing
9259 * work being done for other cpus. Next load
9260 * balancing owner will pick it up.
9261 */
9262 if (need_resched())
9263 break;
9264
9265 rq = cpu_rq(balance_cpu);
9266
9267 /*
9268 * If time for next balance is due,
9269 * do the balance.
9270 */
9271 if (time_after_eq(jiffies, rq->next_balance)) {
9272 struct rq_flags rf;
9273
9274 rq_lock_irq(rq, &rf);
9275 update_rq_clock(rq);
9276 cpu_load_update_idle(rq);
9277 rq_unlock_irq(rq, &rf);
9278
9279 rebalance_domains(rq, CPU_IDLE);
9280 }
9281
9282 if (time_after(next_balance, rq->next_balance)) {
9283 next_balance = rq->next_balance;
9284 update_next_balance = 1;
9285 }
9286 }
9287
9288 /*
9289 * next_balance will be updated only when there is a need.
9290 * When the CPU is attached to null domain for ex, it will not be
9291 * updated.
9292 */
9293 if (likely(update_next_balance))
9294 nohz.next_balance = next_balance;
9295 end:
9296 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
9297 }
9298
9299 /*
9300 * Current heuristic for kicking the idle load balancer in the presence
9301 * of an idle cpu in the system.
9302 * - This rq has more than one task.
9303 * - This rq has at least one CFS task and the capacity of the CPU is
9304 * significantly reduced because of RT tasks or IRQs.
9305 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
9306 * multiple busy cpu.
9307 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
9308 * domain span are idle.
9309 */
9310 static inline bool nohz_kick_needed(struct rq *rq)
9311 {
9312 unsigned long now = jiffies;
9313 struct sched_domain_shared *sds;
9314 struct sched_domain *sd;
9315 int nr_busy, i, cpu = rq->cpu;
9316 bool kick = false;
9317
9318 if (unlikely(rq->idle_balance))
9319 return false;
9320
9321 /*
9322 * We may be recently in ticked or tickless idle mode. At the first
9323 * busy tick after returning from idle, we will update the busy stats.
9324 */
9325 set_cpu_sd_state_busy();
9326 nohz_balance_exit_idle(cpu);
9327
9328 /*
9329 * None are in tickless mode and hence no need for NOHZ idle load
9330 * balancing.
9331 */
9332 if (likely(!atomic_read(&nohz.nr_cpus)))
9333 return false;
9334
9335 if (time_before(now, nohz.next_balance))
9336 return false;
9337
9338 if (rq->nr_running >= 2)
9339 return true;
9340
9341 rcu_read_lock();
9342 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9343 if (sds) {
9344 /*
9345 * XXX: write a coherent comment on why we do this.
9346 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
9347 */
9348 nr_busy = atomic_read(&sds->nr_busy_cpus);
9349 if (nr_busy > 1) {
9350 kick = true;
9351 goto unlock;
9352 }
9353
9354 }
9355
9356 sd = rcu_dereference(rq->sd);
9357 if (sd) {
9358 if ((rq->cfs.h_nr_running >= 1) &&
9359 check_cpu_capacity(rq, sd)) {
9360 kick = true;
9361 goto unlock;
9362 }
9363 }
9364
9365 sd = rcu_dereference(per_cpu(sd_asym, cpu));
9366 if (sd) {
9367 for_each_cpu(i, sched_domain_span(sd)) {
9368 if (i == cpu ||
9369 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9370 continue;
9371
9372 if (sched_asym_prefer(i, cpu)) {
9373 kick = true;
9374 goto unlock;
9375 }
9376 }
9377 }
9378 unlock:
9379 rcu_read_unlock();
9380 return kick;
9381 }
9382 #else
9383 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
9384 #endif
9385
9386 /*
9387 * run_rebalance_domains is triggered when needed from the scheduler tick.
9388 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9389 */
9390 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9391 {
9392 struct rq *this_rq = this_rq();
9393 enum cpu_idle_type idle = this_rq->idle_balance ?
9394 CPU_IDLE : CPU_NOT_IDLE;
9395
9396 /*
9397 * If this cpu has a pending nohz_balance_kick, then do the
9398 * balancing on behalf of the other idle cpus whose ticks are
9399 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9400 * give the idle cpus a chance to load balance. Else we may
9401 * load balance only within the local sched_domain hierarchy
9402 * and abort nohz_idle_balance altogether if we pull some load.
9403 */
9404 nohz_idle_balance(this_rq, idle);
9405 rebalance_domains(this_rq, idle);
9406 }
9407
9408 /*
9409 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
9410 */
9411 void trigger_load_balance(struct rq *rq)
9412 {
9413 /* Don't need to rebalance while attached to NULL domain */
9414 if (unlikely(on_null_domain(rq)))
9415 return;
9416
9417 if (time_after_eq(jiffies, rq->next_balance))
9418 raise_softirq(SCHED_SOFTIRQ);
9419 #ifdef CONFIG_NO_HZ_COMMON
9420 if (nohz_kick_needed(rq))
9421 nohz_balancer_kick();
9422 #endif
9423 }
9424
9425 static void rq_online_fair(struct rq *rq)
9426 {
9427 update_sysctl();
9428
9429 update_runtime_enabled(rq);
9430 }
9431
9432 static void rq_offline_fair(struct rq *rq)
9433 {
9434 update_sysctl();
9435
9436 /* Ensure any throttled groups are reachable by pick_next_task */
9437 unthrottle_offline_cfs_rqs(rq);
9438 }
9439
9440 #endif /* CONFIG_SMP */
9441
9442 /*
9443 * scheduler tick hitting a task of our scheduling class:
9444 */
9445 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9446 {
9447 struct cfs_rq *cfs_rq;
9448 struct sched_entity *se = &curr->se;
9449
9450 for_each_sched_entity(se) {
9451 cfs_rq = cfs_rq_of(se);
9452 entity_tick(cfs_rq, se, queued);
9453 }
9454
9455 if (static_branch_unlikely(&sched_numa_balancing))
9456 task_tick_numa(rq, curr);
9457 }
9458
9459 /*
9460 * called on fork with the child task as argument from the parent's context
9461 * - child not yet on the tasklist
9462 * - preemption disabled
9463 */
9464 static void task_fork_fair(struct task_struct *p)
9465 {
9466 struct cfs_rq *cfs_rq;
9467 struct sched_entity *se = &p->se, *curr;
9468 struct rq *rq = this_rq();
9469 struct rq_flags rf;
9470
9471 rq_lock(rq, &rf);
9472 update_rq_clock(rq);
9473
9474 cfs_rq = task_cfs_rq(current);
9475 curr = cfs_rq->curr;
9476 if (curr) {
9477 update_curr(cfs_rq);
9478 se->vruntime = curr->vruntime;
9479 }
9480 place_entity(cfs_rq, se, 1);
9481
9482 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
9483 /*
9484 * Upon rescheduling, sched_class::put_prev_task() will place
9485 * 'current' within the tree based on its new key value.
9486 */
9487 swap(curr->vruntime, se->vruntime);
9488 resched_curr(rq);
9489 }
9490
9491 se->vruntime -= cfs_rq->min_vruntime;
9492 rq_unlock(rq, &rf);
9493 }
9494
9495 /*
9496 * Priority of the task has changed. Check to see if we preempt
9497 * the current task.
9498 */
9499 static void
9500 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9501 {
9502 if (!task_on_rq_queued(p))
9503 return;
9504
9505 /*
9506 * Reschedule if we are currently running on this runqueue and
9507 * our priority decreased, or if we are not currently running on
9508 * this runqueue and our priority is higher than the current's
9509 */
9510 if (rq->curr == p) {
9511 if (p->prio > oldprio)
9512 resched_curr(rq);
9513 } else
9514 check_preempt_curr(rq, p, 0);
9515 }
9516
9517 static inline bool vruntime_normalized(struct task_struct *p)
9518 {
9519 struct sched_entity *se = &p->se;
9520
9521 /*
9522 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9523 * the dequeue_entity(.flags=0) will already have normalized the
9524 * vruntime.
9525 */
9526 if (p->on_rq)
9527 return true;
9528
9529 /*
9530 * When !on_rq, vruntime of the task has usually NOT been normalized.
9531 * But there are some cases where it has already been normalized:
9532 *
9533 * - A forked child which is waiting for being woken up by
9534 * wake_up_new_task().
9535 * - A task which has been woken up by try_to_wake_up() and
9536 * waiting for actually being woken up by sched_ttwu_pending().
9537 */
9538 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9539 return true;
9540
9541 return false;
9542 }
9543
9544 #ifdef CONFIG_FAIR_GROUP_SCHED
9545 /*
9546 * Propagate the changes of the sched_entity across the tg tree to make it
9547 * visible to the root
9548 */
9549 static void propagate_entity_cfs_rq(struct sched_entity *se)
9550 {
9551 struct cfs_rq *cfs_rq;
9552
9553 /* Start to propagate at parent */
9554 se = se->parent;
9555
9556 for_each_sched_entity(se) {
9557 cfs_rq = cfs_rq_of(se);
9558
9559 if (cfs_rq_throttled(cfs_rq))
9560 break;
9561
9562 update_load_avg(cfs_rq, se, UPDATE_TG);
9563 }
9564 }
9565 #else
9566 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9567 #endif
9568
9569 static void detach_entity_cfs_rq(struct sched_entity *se)
9570 {
9571 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9572
9573 /* Catch up with the cfs_rq and remove our load when we leave */
9574 update_load_avg(cfs_rq, se, 0);
9575 detach_entity_load_avg(cfs_rq, se);
9576 update_tg_load_avg(cfs_rq, false);
9577 propagate_entity_cfs_rq(se);
9578 }
9579
9580 static void attach_entity_cfs_rq(struct sched_entity *se)
9581 {
9582 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9583
9584 #ifdef CONFIG_FAIR_GROUP_SCHED
9585 /*
9586 * Since the real-depth could have been changed (only FAIR
9587 * class maintain depth value), reset depth properly.
9588 */
9589 se->depth = se->parent ? se->parent->depth + 1 : 0;
9590 #endif
9591
9592 /* Synchronize entity with its cfs_rq */
9593 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9594 attach_entity_load_avg(cfs_rq, se);
9595 update_tg_load_avg(cfs_rq, false);
9596 propagate_entity_cfs_rq(se);
9597 }
9598
9599 static void detach_task_cfs_rq(struct task_struct *p)
9600 {
9601 struct sched_entity *se = &p->se;
9602 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9603
9604 if (!vruntime_normalized(p)) {
9605 /*
9606 * Fix up our vruntime so that the current sleep doesn't
9607 * cause 'unlimited' sleep bonus.
9608 */
9609 place_entity(cfs_rq, se, 0);
9610 se->vruntime -= cfs_rq->min_vruntime;
9611 }
9612
9613 detach_entity_cfs_rq(se);
9614 }
9615
9616 static void attach_task_cfs_rq(struct task_struct *p)
9617 {
9618 struct sched_entity *se = &p->se;
9619 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9620
9621 attach_entity_cfs_rq(se);
9622
9623 if (!vruntime_normalized(p))
9624 se->vruntime += cfs_rq->min_vruntime;
9625 }
9626
9627 static void switched_from_fair(struct rq *rq, struct task_struct *p)
9628 {
9629 detach_task_cfs_rq(p);
9630 }
9631
9632 static void switched_to_fair(struct rq *rq, struct task_struct *p)
9633 {
9634 attach_task_cfs_rq(p);
9635
9636 if (task_on_rq_queued(p)) {
9637 /*
9638 * We were most likely switched from sched_rt, so
9639 * kick off the schedule if running, otherwise just see
9640 * if we can still preempt the current task.
9641 */
9642 if (rq->curr == p)
9643 resched_curr(rq);
9644 else
9645 check_preempt_curr(rq, p, 0);
9646 }
9647 }
9648
9649 /* Account for a task changing its policy or group.
9650 *
9651 * This routine is mostly called to set cfs_rq->curr field when a task
9652 * migrates between groups/classes.
9653 */
9654 static void set_curr_task_fair(struct rq *rq)
9655 {
9656 struct sched_entity *se = &rq->curr->se;
9657
9658 for_each_sched_entity(se) {
9659 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9660
9661 set_next_entity(cfs_rq, se);
9662 /* ensure bandwidth has been allocated on our new cfs_rq */
9663 account_cfs_rq_runtime(cfs_rq, 0);
9664 }
9665 }
9666
9667 void init_cfs_rq(struct cfs_rq *cfs_rq)
9668 {
9669 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
9670 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9671 #ifndef CONFIG_64BIT
9672 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9673 #endif
9674 #ifdef CONFIG_SMP
9675 raw_spin_lock_init(&cfs_rq->removed.lock);
9676 #endif
9677 }
9678
9679 #ifdef CONFIG_FAIR_GROUP_SCHED
9680 static void task_set_group_fair(struct task_struct *p)
9681 {
9682 struct sched_entity *se = &p->se;
9683
9684 set_task_rq(p, task_cpu(p));
9685 se->depth = se->parent ? se->parent->depth + 1 : 0;
9686 }
9687
9688 static void task_move_group_fair(struct task_struct *p)
9689 {
9690 detach_task_cfs_rq(p);
9691 set_task_rq(p, task_cpu(p));
9692
9693 #ifdef CONFIG_SMP
9694 /* Tell se's cfs_rq has been changed -- migrated */
9695 p->se.avg.last_update_time = 0;
9696 #endif
9697 attach_task_cfs_rq(p);
9698 }
9699
9700 static void task_change_group_fair(struct task_struct *p, int type)
9701 {
9702 switch (type) {
9703 case TASK_SET_GROUP:
9704 task_set_group_fair(p);
9705 break;
9706
9707 case TASK_MOVE_GROUP:
9708 task_move_group_fair(p);
9709 break;
9710 }
9711 }
9712
9713 void free_fair_sched_group(struct task_group *tg)
9714 {
9715 int i;
9716
9717 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9718
9719 for_each_possible_cpu(i) {
9720 if (tg->cfs_rq)
9721 kfree(tg->cfs_rq[i]);
9722 if (tg->se)
9723 kfree(tg->se[i]);
9724 }
9725
9726 kfree(tg->cfs_rq);
9727 kfree(tg->se);
9728 }
9729
9730 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9731 {
9732 struct sched_entity *se;
9733 struct cfs_rq *cfs_rq;
9734 int i;
9735
9736 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9737 if (!tg->cfs_rq)
9738 goto err;
9739 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9740 if (!tg->se)
9741 goto err;
9742
9743 tg->shares = NICE_0_LOAD;
9744
9745 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9746
9747 for_each_possible_cpu(i) {
9748 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9749 GFP_KERNEL, cpu_to_node(i));
9750 if (!cfs_rq)
9751 goto err;
9752
9753 se = kzalloc_node(sizeof(struct sched_entity),
9754 GFP_KERNEL, cpu_to_node(i));
9755 if (!se)
9756 goto err_free_rq;
9757
9758 init_cfs_rq(cfs_rq);
9759 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9760 init_entity_runnable_average(se);
9761 }
9762
9763 return 1;
9764
9765 err_free_rq:
9766 kfree(cfs_rq);
9767 err:
9768 return 0;
9769 }
9770
9771 void online_fair_sched_group(struct task_group *tg)
9772 {
9773 struct sched_entity *se;
9774 struct rq *rq;
9775 int i;
9776
9777 for_each_possible_cpu(i) {
9778 rq = cpu_rq(i);
9779 se = tg->se[i];
9780
9781 raw_spin_lock_irq(&rq->lock);
9782 update_rq_clock(rq);
9783 attach_entity_cfs_rq(se);
9784 sync_throttle(tg, i);
9785 raw_spin_unlock_irq(&rq->lock);
9786 }
9787 }
9788
9789 void unregister_fair_sched_group(struct task_group *tg)
9790 {
9791 unsigned long flags;
9792 struct rq *rq;
9793 int cpu;
9794
9795 for_each_possible_cpu(cpu) {
9796 if (tg->se[cpu])
9797 remove_entity_load_avg(tg->se[cpu]);
9798
9799 /*
9800 * Only empty task groups can be destroyed; so we can speculatively
9801 * check on_list without danger of it being re-added.
9802 */
9803 if (!tg->cfs_rq[cpu]->on_list)
9804 continue;
9805
9806 rq = cpu_rq(cpu);
9807
9808 raw_spin_lock_irqsave(&rq->lock, flags);
9809 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9810 raw_spin_unlock_irqrestore(&rq->lock, flags);
9811 }
9812 }
9813
9814 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9815 struct sched_entity *se, int cpu,
9816 struct sched_entity *parent)
9817 {
9818 struct rq *rq = cpu_rq(cpu);
9819
9820 cfs_rq->tg = tg;
9821 cfs_rq->rq = rq;
9822 init_cfs_rq_runtime(cfs_rq);
9823
9824 tg->cfs_rq[cpu] = cfs_rq;
9825 tg->se[cpu] = se;
9826
9827 /* se could be NULL for root_task_group */
9828 if (!se)
9829 return;
9830
9831 if (!parent) {
9832 se->cfs_rq = &rq->cfs;
9833 se->depth = 0;
9834 } else {
9835 se->cfs_rq = parent->my_q;
9836 se->depth = parent->depth + 1;
9837 }
9838
9839 se->my_q = cfs_rq;
9840 /* guarantee group entities always have weight */
9841 update_load_set(&se->load, NICE_0_LOAD);
9842 se->parent = parent;
9843 }
9844
9845 static DEFINE_MUTEX(shares_mutex);
9846
9847 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9848 {
9849 int i;
9850
9851 /*
9852 * We can't change the weight of the root cgroup.
9853 */
9854 if (!tg->se[0])
9855 return -EINVAL;
9856
9857 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9858
9859 mutex_lock(&shares_mutex);
9860 if (tg->shares == shares)
9861 goto done;
9862
9863 tg->shares = shares;
9864 for_each_possible_cpu(i) {
9865 struct rq *rq = cpu_rq(i);
9866 struct sched_entity *se = tg->se[i];
9867 struct rq_flags rf;
9868
9869 /* Propagate contribution to hierarchy */
9870 rq_lock_irqsave(rq, &rf);
9871 update_rq_clock(rq);
9872 for_each_sched_entity(se) {
9873 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9874 update_cfs_group(se);
9875 }
9876 rq_unlock_irqrestore(rq, &rf);
9877 }
9878
9879 done:
9880 mutex_unlock(&shares_mutex);
9881 return 0;
9882 }
9883 #else /* CONFIG_FAIR_GROUP_SCHED */
9884
9885 void free_fair_sched_group(struct task_group *tg) { }
9886
9887 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9888 {
9889 return 1;
9890 }
9891
9892 void online_fair_sched_group(struct task_group *tg) { }
9893
9894 void unregister_fair_sched_group(struct task_group *tg) { }
9895
9896 #endif /* CONFIG_FAIR_GROUP_SCHED */
9897
9898
9899 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9900 {
9901 struct sched_entity *se = &task->se;
9902 unsigned int rr_interval = 0;
9903
9904 /*
9905 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9906 * idle runqueue:
9907 */
9908 if (rq->cfs.load.weight)
9909 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9910
9911 return rr_interval;
9912 }
9913
9914 /*
9915 * All the scheduling class methods:
9916 */
9917 const struct sched_class fair_sched_class = {
9918 .next = &idle_sched_class,
9919 .enqueue_task = enqueue_task_fair,
9920 .dequeue_task = dequeue_task_fair,
9921 .yield_task = yield_task_fair,
9922 .yield_to_task = yield_to_task_fair,
9923
9924 .check_preempt_curr = check_preempt_wakeup,
9925
9926 .pick_next_task = pick_next_task_fair,
9927 .put_prev_task = put_prev_task_fair,
9928
9929 #ifdef CONFIG_SMP
9930 .select_task_rq = select_task_rq_fair,
9931 .migrate_task_rq = migrate_task_rq_fair,
9932
9933 .rq_online = rq_online_fair,
9934 .rq_offline = rq_offline_fair,
9935
9936 .task_dead = task_dead_fair,
9937 .set_cpus_allowed = set_cpus_allowed_common,
9938 #endif
9939
9940 .set_curr_task = set_curr_task_fair,
9941 .task_tick = task_tick_fair,
9942 .task_fork = task_fork_fair,
9943
9944 .prio_changed = prio_changed_fair,
9945 .switched_from = switched_from_fair,
9946 .switched_to = switched_to_fair,
9947
9948 .get_rr_interval = get_rr_interval_fair,
9949
9950 .update_curr = update_curr_fair,
9951
9952 #ifdef CONFIG_FAIR_GROUP_SCHED
9953 .task_change_group = task_change_group_fair,
9954 #endif
9955 };
9956
9957 #ifdef CONFIG_SCHED_DEBUG
9958 void print_cfs_stats(struct seq_file *m, int cpu)
9959 {
9960 struct cfs_rq *cfs_rq, *pos;
9961
9962 rcu_read_lock();
9963 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
9964 print_cfs_rq(m, cpu, cfs_rq);
9965 rcu_read_unlock();
9966 }
9967
9968 #ifdef CONFIG_NUMA_BALANCING
9969 void show_numa_stats(struct task_struct *p, struct seq_file *m)
9970 {
9971 int node;
9972 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9973
9974 for_each_online_node(node) {
9975 if (p->numa_faults) {
9976 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9977 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9978 }
9979 if (p->numa_group) {
9980 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9981 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9982 }
9983 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9984 }
9985 }
9986 #endif /* CONFIG_NUMA_BALANCING */
9987 #endif /* CONFIG_SCHED_DEBUG */
9988
9989 __init void init_sched_fair_class(void)
9990 {
9991 #ifdef CONFIG_SMP
9992 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9993
9994 #ifdef CONFIG_NO_HZ_COMMON
9995 nohz.next_balance = jiffies;
9996 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
9997 #endif
9998 #endif /* SMP */
9999
10000 }