]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - kernel/sched/fair.c
Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[thirdparty/kernel/stable.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 */
22
23 #include <linux/sched.h>
24 #include <linux/latencytop.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33
34 #include <trace/events/sched.h>
35
36 #include "sched.h"
37
38 /*
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 *
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
46 *
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
49 */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52
53 /*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
65 /*
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71
72 /*
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
75 static unsigned int sched_nr_latency = 8;
76
77 /*
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
80 */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82
83 /*
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
96 /*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116
117 /*
118 * The margin used when comparing utilization with CPU capacity:
119 * util * 1024 < capacity * margin
120 */
121 unsigned int capacity_margin = 1280; /* ~20% */
122
123 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
124 {
125 lw->weight += inc;
126 lw->inv_weight = 0;
127 }
128
129 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
130 {
131 lw->weight -= dec;
132 lw->inv_weight = 0;
133 }
134
135 static inline void update_load_set(struct load_weight *lw, unsigned long w)
136 {
137 lw->weight = w;
138 lw->inv_weight = 0;
139 }
140
141 /*
142 * Increase the granularity value when there are more CPUs,
143 * because with more CPUs the 'effective latency' as visible
144 * to users decreases. But the relationship is not linear,
145 * so pick a second-best guess by going with the log2 of the
146 * number of CPUs.
147 *
148 * This idea comes from the SD scheduler of Con Kolivas:
149 */
150 static unsigned int get_update_sysctl_factor(void)
151 {
152 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
153 unsigned int factor;
154
155 switch (sysctl_sched_tunable_scaling) {
156 case SCHED_TUNABLESCALING_NONE:
157 factor = 1;
158 break;
159 case SCHED_TUNABLESCALING_LINEAR:
160 factor = cpus;
161 break;
162 case SCHED_TUNABLESCALING_LOG:
163 default:
164 factor = 1 + ilog2(cpus);
165 break;
166 }
167
168 return factor;
169 }
170
171 static void update_sysctl(void)
172 {
173 unsigned int factor = get_update_sysctl_factor();
174
175 #define SET_SYSCTL(name) \
176 (sysctl_##name = (factor) * normalized_sysctl_##name)
177 SET_SYSCTL(sched_min_granularity);
178 SET_SYSCTL(sched_latency);
179 SET_SYSCTL(sched_wakeup_granularity);
180 #undef SET_SYSCTL
181 }
182
183 void sched_init_granularity(void)
184 {
185 update_sysctl();
186 }
187
188 #define WMULT_CONST (~0U)
189 #define WMULT_SHIFT 32
190
191 static void __update_inv_weight(struct load_weight *lw)
192 {
193 unsigned long w;
194
195 if (likely(lw->inv_weight))
196 return;
197
198 w = scale_load_down(lw->weight);
199
200 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
201 lw->inv_weight = 1;
202 else if (unlikely(!w))
203 lw->inv_weight = WMULT_CONST;
204 else
205 lw->inv_weight = WMULT_CONST / w;
206 }
207
208 /*
209 * delta_exec * weight / lw.weight
210 * OR
211 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
212 *
213 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
214 * we're guaranteed shift stays positive because inv_weight is guaranteed to
215 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
216 *
217 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
218 * weight/lw.weight <= 1, and therefore our shift will also be positive.
219 */
220 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
221 {
222 u64 fact = scale_load_down(weight);
223 int shift = WMULT_SHIFT;
224
225 __update_inv_weight(lw);
226
227 if (unlikely(fact >> 32)) {
228 while (fact >> 32) {
229 fact >>= 1;
230 shift--;
231 }
232 }
233
234 /* hint to use a 32x32->64 mul */
235 fact = (u64)(u32)fact * lw->inv_weight;
236
237 while (fact >> 32) {
238 fact >>= 1;
239 shift--;
240 }
241
242 return mul_u64_u32_shr(delta_exec, fact, shift);
243 }
244
245
246 const struct sched_class fair_sched_class;
247
248 /**************************************************************
249 * CFS operations on generic schedulable entities:
250 */
251
252 #ifdef CONFIG_FAIR_GROUP_SCHED
253
254 /* cpu runqueue to which this cfs_rq is attached */
255 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
256 {
257 return cfs_rq->rq;
258 }
259
260 /* An entity is a task if it doesn't "own" a runqueue */
261 #define entity_is_task(se) (!se->my_q)
262
263 static inline struct task_struct *task_of(struct sched_entity *se)
264 {
265 SCHED_WARN_ON(!entity_is_task(se));
266 return container_of(se, struct task_struct, se);
267 }
268
269 /* Walk up scheduling entities hierarchy */
270 #define for_each_sched_entity(se) \
271 for (; se; se = se->parent)
272
273 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
274 {
275 return p->se.cfs_rq;
276 }
277
278 /* runqueue on which this entity is (to be) queued */
279 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
280 {
281 return se->cfs_rq;
282 }
283
284 /* runqueue "owned" by this group */
285 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
286 {
287 return grp->my_q;
288 }
289
290 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
291 {
292 if (!cfs_rq->on_list) {
293 /*
294 * Ensure we either appear before our parent (if already
295 * enqueued) or force our parent to appear after us when it is
296 * enqueued. The fact that we always enqueue bottom-up
297 * reduces this to two cases.
298 */
299 if (cfs_rq->tg->parent &&
300 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
301 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
302 &rq_of(cfs_rq)->leaf_cfs_rq_list);
303 } else {
304 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
305 &rq_of(cfs_rq)->leaf_cfs_rq_list);
306 }
307
308 cfs_rq->on_list = 1;
309 }
310 }
311
312 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313 {
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318 }
319
320 /* Iterate thr' all leaf cfs_rq's on a runqueue */
321 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324 /* Do the two (enqueued) entities belong to the same group ? */
325 static inline struct cfs_rq *
326 is_same_group(struct sched_entity *se, struct sched_entity *pse)
327 {
328 if (se->cfs_rq == pse->cfs_rq)
329 return se->cfs_rq;
330
331 return NULL;
332 }
333
334 static inline struct sched_entity *parent_entity(struct sched_entity *se)
335 {
336 return se->parent;
337 }
338
339 static void
340 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341 {
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369 }
370
371 #else /* !CONFIG_FAIR_GROUP_SCHED */
372
373 static inline struct task_struct *task_of(struct sched_entity *se)
374 {
375 return container_of(se, struct task_struct, se);
376 }
377
378 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379 {
380 return container_of(cfs_rq, struct rq, cfs);
381 }
382
383 #define entity_is_task(se) 1
384
385 #define for_each_sched_entity(se) \
386 for (; se; se = NULL)
387
388 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
389 {
390 return &task_rq(p)->cfs;
391 }
392
393 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394 {
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399 }
400
401 /* runqueue "owned" by this group */
402 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403 {
404 return NULL;
405 }
406
407 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408 {
409 }
410
411 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412 {
413 }
414
415 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
418 static inline struct sched_entity *parent_entity(struct sched_entity *se)
419 {
420 return NULL;
421 }
422
423 static inline void
424 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425 {
426 }
427
428 #endif /* CONFIG_FAIR_GROUP_SCHED */
429
430 static __always_inline
431 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
432
433 /**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
437 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
438 {
439 s64 delta = (s64)(vruntime - max_vruntime);
440 if (delta > 0)
441 max_vruntime = vruntime;
442
443 return max_vruntime;
444 }
445
446 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
447 {
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453 }
454
455 static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457 {
458 return (s64)(a->vruntime - b->vruntime) < 0;
459 }
460
461 static void update_min_vruntime(struct cfs_rq *cfs_rq)
462 {
463 struct sched_entity *curr = cfs_rq->curr;
464
465 u64 vruntime = cfs_rq->min_vruntime;
466
467 if (curr) {
468 if (curr->on_rq)
469 vruntime = curr->vruntime;
470 else
471 curr = NULL;
472 }
473
474 if (cfs_rq->rb_leftmost) {
475 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
476 struct sched_entity,
477 run_node);
478
479 if (!curr)
480 vruntime = se->vruntime;
481 else
482 vruntime = min_vruntime(vruntime, se->vruntime);
483 }
484
485 /* ensure we never gain time by being placed backwards. */
486 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
487 #ifndef CONFIG_64BIT
488 smp_wmb();
489 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
490 #endif
491 }
492
493 /*
494 * Enqueue an entity into the rb-tree:
495 */
496 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
497 {
498 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
499 struct rb_node *parent = NULL;
500 struct sched_entity *entry;
501 int leftmost = 1;
502
503 /*
504 * Find the right place in the rbtree:
505 */
506 while (*link) {
507 parent = *link;
508 entry = rb_entry(parent, struct sched_entity, run_node);
509 /*
510 * We dont care about collisions. Nodes with
511 * the same key stay together.
512 */
513 if (entity_before(se, entry)) {
514 link = &parent->rb_left;
515 } else {
516 link = &parent->rb_right;
517 leftmost = 0;
518 }
519 }
520
521 /*
522 * Maintain a cache of leftmost tree entries (it is frequently
523 * used):
524 */
525 if (leftmost)
526 cfs_rq->rb_leftmost = &se->run_node;
527
528 rb_link_node(&se->run_node, parent, link);
529 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
530 }
531
532 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
533 {
534 if (cfs_rq->rb_leftmost == &se->run_node) {
535 struct rb_node *next_node;
536
537 next_node = rb_next(&se->run_node);
538 cfs_rq->rb_leftmost = next_node;
539 }
540
541 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
542 }
543
544 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
545 {
546 struct rb_node *left = cfs_rq->rb_leftmost;
547
548 if (!left)
549 return NULL;
550
551 return rb_entry(left, struct sched_entity, run_node);
552 }
553
554 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
555 {
556 struct rb_node *next = rb_next(&se->run_node);
557
558 if (!next)
559 return NULL;
560
561 return rb_entry(next, struct sched_entity, run_node);
562 }
563
564 #ifdef CONFIG_SCHED_DEBUG
565 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
566 {
567 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
568
569 if (!last)
570 return NULL;
571
572 return rb_entry(last, struct sched_entity, run_node);
573 }
574
575 /**************************************************************
576 * Scheduling class statistics methods:
577 */
578
579 int sched_proc_update_handler(struct ctl_table *table, int write,
580 void __user *buffer, size_t *lenp,
581 loff_t *ppos)
582 {
583 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
584 unsigned int factor = get_update_sysctl_factor();
585
586 if (ret || !write)
587 return ret;
588
589 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
590 sysctl_sched_min_granularity);
591
592 #define WRT_SYSCTL(name) \
593 (normalized_sysctl_##name = sysctl_##name / (factor))
594 WRT_SYSCTL(sched_min_granularity);
595 WRT_SYSCTL(sched_latency);
596 WRT_SYSCTL(sched_wakeup_granularity);
597 #undef WRT_SYSCTL
598
599 return 0;
600 }
601 #endif
602
603 /*
604 * delta /= w
605 */
606 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
607 {
608 if (unlikely(se->load.weight != NICE_0_LOAD))
609 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
610
611 return delta;
612 }
613
614 /*
615 * The idea is to set a period in which each task runs once.
616 *
617 * When there are too many tasks (sched_nr_latency) we have to stretch
618 * this period because otherwise the slices get too small.
619 *
620 * p = (nr <= nl) ? l : l*nr/nl
621 */
622 static u64 __sched_period(unsigned long nr_running)
623 {
624 if (unlikely(nr_running > sched_nr_latency))
625 return nr_running * sysctl_sched_min_granularity;
626 else
627 return sysctl_sched_latency;
628 }
629
630 /*
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
633 *
634 * s = p*P[w/rw]
635 */
636 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
637 {
638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
639
640 for_each_sched_entity(se) {
641 struct load_weight *load;
642 struct load_weight lw;
643
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
646
647 if (unlikely(!se->on_rq)) {
648 lw = cfs_rq->load;
649
650 update_load_add(&lw, se->load.weight);
651 load = &lw;
652 }
653 slice = __calc_delta(slice, se->load.weight, load);
654 }
655 return slice;
656 }
657
658 /*
659 * We calculate the vruntime slice of a to-be-inserted task.
660 *
661 * vs = s/w
662 */
663 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
664 {
665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
666 }
667
668 #ifdef CONFIG_SMP
669 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
670 static unsigned long task_h_load(struct task_struct *p);
671
672 /*
673 * We choose a half-life close to 1 scheduling period.
674 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
675 * dependent on this value.
676 */
677 #define LOAD_AVG_PERIOD 32
678 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
679 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
680
681 /* Give new sched_entity start runnable values to heavy its load in infant time */
682 void init_entity_runnable_average(struct sched_entity *se)
683 {
684 struct sched_avg *sa = &se->avg;
685
686 sa->last_update_time = 0;
687 /*
688 * sched_avg's period_contrib should be strictly less then 1024, so
689 * we give it 1023 to make sure it is almost a period (1024us), and
690 * will definitely be update (after enqueue).
691 */
692 sa->period_contrib = 1023;
693 sa->load_avg = scale_load_down(se->load.weight);
694 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
695 /*
696 * At this point, util_avg won't be used in select_task_rq_fair anyway
697 */
698 sa->util_avg = 0;
699 sa->util_sum = 0;
700 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
701 }
702
703 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
704 static int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq);
705 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force);
706 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se);
707
708 /*
709 * With new tasks being created, their initial util_avgs are extrapolated
710 * based on the cfs_rq's current util_avg:
711 *
712 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
713 *
714 * However, in many cases, the above util_avg does not give a desired
715 * value. Moreover, the sum of the util_avgs may be divergent, such
716 * as when the series is a harmonic series.
717 *
718 * To solve this problem, we also cap the util_avg of successive tasks to
719 * only 1/2 of the left utilization budget:
720 *
721 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
722 *
723 * where n denotes the nth task.
724 *
725 * For example, a simplest series from the beginning would be like:
726 *
727 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
728 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
729 *
730 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
731 * if util_avg > util_avg_cap.
732 */
733 void post_init_entity_util_avg(struct sched_entity *se)
734 {
735 struct cfs_rq *cfs_rq = cfs_rq_of(se);
736 struct sched_avg *sa = &se->avg;
737 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
738 u64 now = cfs_rq_clock_task(cfs_rq);
739
740 if (cap > 0) {
741 if (cfs_rq->avg.util_avg != 0) {
742 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
743 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
744
745 if (sa->util_avg > cap)
746 sa->util_avg = cap;
747 } else {
748 sa->util_avg = cap;
749 }
750 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
751 }
752
753 if (entity_is_task(se)) {
754 struct task_struct *p = task_of(se);
755 if (p->sched_class != &fair_sched_class) {
756 /*
757 * For !fair tasks do:
758 *
759 update_cfs_rq_load_avg(now, cfs_rq, false);
760 attach_entity_load_avg(cfs_rq, se);
761 switched_from_fair(rq, p);
762 *
763 * such that the next switched_to_fair() has the
764 * expected state.
765 */
766 se->avg.last_update_time = now;
767 return;
768 }
769 }
770
771 update_cfs_rq_load_avg(now, cfs_rq, false);
772 attach_entity_load_avg(cfs_rq, se);
773 update_tg_load_avg(cfs_rq, false);
774 }
775
776 #else /* !CONFIG_SMP */
777 void init_entity_runnable_average(struct sched_entity *se)
778 {
779 }
780 void post_init_entity_util_avg(struct sched_entity *se)
781 {
782 }
783 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
784 {
785 }
786 #endif /* CONFIG_SMP */
787
788 /*
789 * Update the current task's runtime statistics.
790 */
791 static void update_curr(struct cfs_rq *cfs_rq)
792 {
793 struct sched_entity *curr = cfs_rq->curr;
794 u64 now = rq_clock_task(rq_of(cfs_rq));
795 u64 delta_exec;
796
797 if (unlikely(!curr))
798 return;
799
800 delta_exec = now - curr->exec_start;
801 if (unlikely((s64)delta_exec <= 0))
802 return;
803
804 curr->exec_start = now;
805
806 schedstat_set(curr->statistics.exec_max,
807 max(delta_exec, curr->statistics.exec_max));
808
809 curr->sum_exec_runtime += delta_exec;
810 schedstat_add(cfs_rq->exec_clock, delta_exec);
811
812 curr->vruntime += calc_delta_fair(delta_exec, curr);
813 update_min_vruntime(cfs_rq);
814
815 if (entity_is_task(curr)) {
816 struct task_struct *curtask = task_of(curr);
817
818 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
819 cpuacct_charge(curtask, delta_exec);
820 account_group_exec_runtime(curtask, delta_exec);
821 }
822
823 account_cfs_rq_runtime(cfs_rq, delta_exec);
824 }
825
826 static void update_curr_fair(struct rq *rq)
827 {
828 update_curr(cfs_rq_of(&rq->curr->se));
829 }
830
831 static inline void
832 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
833 {
834 u64 wait_start, prev_wait_start;
835
836 if (!schedstat_enabled())
837 return;
838
839 wait_start = rq_clock(rq_of(cfs_rq));
840 prev_wait_start = schedstat_val(se->statistics.wait_start);
841
842 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
843 likely(wait_start > prev_wait_start))
844 wait_start -= prev_wait_start;
845
846 schedstat_set(se->statistics.wait_start, wait_start);
847 }
848
849 static inline void
850 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
851 {
852 struct task_struct *p;
853 u64 delta;
854
855 if (!schedstat_enabled())
856 return;
857
858 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
859
860 if (entity_is_task(se)) {
861 p = task_of(se);
862 if (task_on_rq_migrating(p)) {
863 /*
864 * Preserve migrating task's wait time so wait_start
865 * time stamp can be adjusted to accumulate wait time
866 * prior to migration.
867 */
868 schedstat_set(se->statistics.wait_start, delta);
869 return;
870 }
871 trace_sched_stat_wait(p, delta);
872 }
873
874 schedstat_set(se->statistics.wait_max,
875 max(schedstat_val(se->statistics.wait_max), delta));
876 schedstat_inc(se->statistics.wait_count);
877 schedstat_add(se->statistics.wait_sum, delta);
878 schedstat_set(se->statistics.wait_start, 0);
879 }
880
881 static inline void
882 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
883 {
884 struct task_struct *tsk = NULL;
885 u64 sleep_start, block_start;
886
887 if (!schedstat_enabled())
888 return;
889
890 sleep_start = schedstat_val(se->statistics.sleep_start);
891 block_start = schedstat_val(se->statistics.block_start);
892
893 if (entity_is_task(se))
894 tsk = task_of(se);
895
896 if (sleep_start) {
897 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
898
899 if ((s64)delta < 0)
900 delta = 0;
901
902 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
903 schedstat_set(se->statistics.sleep_max, delta);
904
905 schedstat_set(se->statistics.sleep_start, 0);
906 schedstat_add(se->statistics.sum_sleep_runtime, delta);
907
908 if (tsk) {
909 account_scheduler_latency(tsk, delta >> 10, 1);
910 trace_sched_stat_sleep(tsk, delta);
911 }
912 }
913 if (block_start) {
914 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
915
916 if ((s64)delta < 0)
917 delta = 0;
918
919 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
920 schedstat_set(se->statistics.block_max, delta);
921
922 schedstat_set(se->statistics.block_start, 0);
923 schedstat_add(se->statistics.sum_sleep_runtime, delta);
924
925 if (tsk) {
926 if (tsk->in_iowait) {
927 schedstat_add(se->statistics.iowait_sum, delta);
928 schedstat_inc(se->statistics.iowait_count);
929 trace_sched_stat_iowait(tsk, delta);
930 }
931
932 trace_sched_stat_blocked(tsk, delta);
933
934 /*
935 * Blocking time is in units of nanosecs, so shift by
936 * 20 to get a milliseconds-range estimation of the
937 * amount of time that the task spent sleeping:
938 */
939 if (unlikely(prof_on == SLEEP_PROFILING)) {
940 profile_hits(SLEEP_PROFILING,
941 (void *)get_wchan(tsk),
942 delta >> 20);
943 }
944 account_scheduler_latency(tsk, delta >> 10, 0);
945 }
946 }
947 }
948
949 /*
950 * Task is being enqueued - update stats:
951 */
952 static inline void
953 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
954 {
955 if (!schedstat_enabled())
956 return;
957
958 /*
959 * Are we enqueueing a waiting task? (for current tasks
960 * a dequeue/enqueue event is a NOP)
961 */
962 if (se != cfs_rq->curr)
963 update_stats_wait_start(cfs_rq, se);
964
965 if (flags & ENQUEUE_WAKEUP)
966 update_stats_enqueue_sleeper(cfs_rq, se);
967 }
968
969 static inline void
970 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
971 {
972
973 if (!schedstat_enabled())
974 return;
975
976 /*
977 * Mark the end of the wait period if dequeueing a
978 * waiting task:
979 */
980 if (se != cfs_rq->curr)
981 update_stats_wait_end(cfs_rq, se);
982
983 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
984 struct task_struct *tsk = task_of(se);
985
986 if (tsk->state & TASK_INTERRUPTIBLE)
987 schedstat_set(se->statistics.sleep_start,
988 rq_clock(rq_of(cfs_rq)));
989 if (tsk->state & TASK_UNINTERRUPTIBLE)
990 schedstat_set(se->statistics.block_start,
991 rq_clock(rq_of(cfs_rq)));
992 }
993 }
994
995 /*
996 * We are picking a new current task - update its stats:
997 */
998 static inline void
999 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1000 {
1001 /*
1002 * We are starting a new run period:
1003 */
1004 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1005 }
1006
1007 /**************************************************
1008 * Scheduling class queueing methods:
1009 */
1010
1011 #ifdef CONFIG_NUMA_BALANCING
1012 /*
1013 * Approximate time to scan a full NUMA task in ms. The task scan period is
1014 * calculated based on the tasks virtual memory size and
1015 * numa_balancing_scan_size.
1016 */
1017 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1018 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1019
1020 /* Portion of address space to scan in MB */
1021 unsigned int sysctl_numa_balancing_scan_size = 256;
1022
1023 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1024 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1025
1026 static unsigned int task_nr_scan_windows(struct task_struct *p)
1027 {
1028 unsigned long rss = 0;
1029 unsigned long nr_scan_pages;
1030
1031 /*
1032 * Calculations based on RSS as non-present and empty pages are skipped
1033 * by the PTE scanner and NUMA hinting faults should be trapped based
1034 * on resident pages
1035 */
1036 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1037 rss = get_mm_rss(p->mm);
1038 if (!rss)
1039 rss = nr_scan_pages;
1040
1041 rss = round_up(rss, nr_scan_pages);
1042 return rss / nr_scan_pages;
1043 }
1044
1045 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1046 #define MAX_SCAN_WINDOW 2560
1047
1048 static unsigned int task_scan_min(struct task_struct *p)
1049 {
1050 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1051 unsigned int scan, floor;
1052 unsigned int windows = 1;
1053
1054 if (scan_size < MAX_SCAN_WINDOW)
1055 windows = MAX_SCAN_WINDOW / scan_size;
1056 floor = 1000 / windows;
1057
1058 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1059 return max_t(unsigned int, floor, scan);
1060 }
1061
1062 static unsigned int task_scan_max(struct task_struct *p)
1063 {
1064 unsigned int smin = task_scan_min(p);
1065 unsigned int smax;
1066
1067 /* Watch for min being lower than max due to floor calculations */
1068 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1069 return max(smin, smax);
1070 }
1071
1072 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1073 {
1074 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1075 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1076 }
1077
1078 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1079 {
1080 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1081 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1082 }
1083
1084 struct numa_group {
1085 atomic_t refcount;
1086
1087 spinlock_t lock; /* nr_tasks, tasks */
1088 int nr_tasks;
1089 pid_t gid;
1090 int active_nodes;
1091
1092 struct rcu_head rcu;
1093 unsigned long total_faults;
1094 unsigned long max_faults_cpu;
1095 /*
1096 * Faults_cpu is used to decide whether memory should move
1097 * towards the CPU. As a consequence, these stats are weighted
1098 * more by CPU use than by memory faults.
1099 */
1100 unsigned long *faults_cpu;
1101 unsigned long faults[0];
1102 };
1103
1104 /* Shared or private faults. */
1105 #define NR_NUMA_HINT_FAULT_TYPES 2
1106
1107 /* Memory and CPU locality */
1108 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1109
1110 /* Averaged statistics, and temporary buffers. */
1111 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1112
1113 pid_t task_numa_group_id(struct task_struct *p)
1114 {
1115 return p->numa_group ? p->numa_group->gid : 0;
1116 }
1117
1118 /*
1119 * The averaged statistics, shared & private, memory & cpu,
1120 * occupy the first half of the array. The second half of the
1121 * array is for current counters, which are averaged into the
1122 * first set by task_numa_placement.
1123 */
1124 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1125 {
1126 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1127 }
1128
1129 static inline unsigned long task_faults(struct task_struct *p, int nid)
1130 {
1131 if (!p->numa_faults)
1132 return 0;
1133
1134 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1135 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1136 }
1137
1138 static inline unsigned long group_faults(struct task_struct *p, int nid)
1139 {
1140 if (!p->numa_group)
1141 return 0;
1142
1143 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1144 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1145 }
1146
1147 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1148 {
1149 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1150 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1151 }
1152
1153 /*
1154 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1155 * considered part of a numa group's pseudo-interleaving set. Migrations
1156 * between these nodes are slowed down, to allow things to settle down.
1157 */
1158 #define ACTIVE_NODE_FRACTION 3
1159
1160 static bool numa_is_active_node(int nid, struct numa_group *ng)
1161 {
1162 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1163 }
1164
1165 /* Handle placement on systems where not all nodes are directly connected. */
1166 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1167 int maxdist, bool task)
1168 {
1169 unsigned long score = 0;
1170 int node;
1171
1172 /*
1173 * All nodes are directly connected, and the same distance
1174 * from each other. No need for fancy placement algorithms.
1175 */
1176 if (sched_numa_topology_type == NUMA_DIRECT)
1177 return 0;
1178
1179 /*
1180 * This code is called for each node, introducing N^2 complexity,
1181 * which should be ok given the number of nodes rarely exceeds 8.
1182 */
1183 for_each_online_node(node) {
1184 unsigned long faults;
1185 int dist = node_distance(nid, node);
1186
1187 /*
1188 * The furthest away nodes in the system are not interesting
1189 * for placement; nid was already counted.
1190 */
1191 if (dist == sched_max_numa_distance || node == nid)
1192 continue;
1193
1194 /*
1195 * On systems with a backplane NUMA topology, compare groups
1196 * of nodes, and move tasks towards the group with the most
1197 * memory accesses. When comparing two nodes at distance
1198 * "hoplimit", only nodes closer by than "hoplimit" are part
1199 * of each group. Skip other nodes.
1200 */
1201 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1202 dist > maxdist)
1203 continue;
1204
1205 /* Add up the faults from nearby nodes. */
1206 if (task)
1207 faults = task_faults(p, node);
1208 else
1209 faults = group_faults(p, node);
1210
1211 /*
1212 * On systems with a glueless mesh NUMA topology, there are
1213 * no fixed "groups of nodes". Instead, nodes that are not
1214 * directly connected bounce traffic through intermediate
1215 * nodes; a numa_group can occupy any set of nodes.
1216 * The further away a node is, the less the faults count.
1217 * This seems to result in good task placement.
1218 */
1219 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1220 faults *= (sched_max_numa_distance - dist);
1221 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1222 }
1223
1224 score += faults;
1225 }
1226
1227 return score;
1228 }
1229
1230 /*
1231 * These return the fraction of accesses done by a particular task, or
1232 * task group, on a particular numa node. The group weight is given a
1233 * larger multiplier, in order to group tasks together that are almost
1234 * evenly spread out between numa nodes.
1235 */
1236 static inline unsigned long task_weight(struct task_struct *p, int nid,
1237 int dist)
1238 {
1239 unsigned long faults, total_faults;
1240
1241 if (!p->numa_faults)
1242 return 0;
1243
1244 total_faults = p->total_numa_faults;
1245
1246 if (!total_faults)
1247 return 0;
1248
1249 faults = task_faults(p, nid);
1250 faults += score_nearby_nodes(p, nid, dist, true);
1251
1252 return 1000 * faults / total_faults;
1253 }
1254
1255 static inline unsigned long group_weight(struct task_struct *p, int nid,
1256 int dist)
1257 {
1258 unsigned long faults, total_faults;
1259
1260 if (!p->numa_group)
1261 return 0;
1262
1263 total_faults = p->numa_group->total_faults;
1264
1265 if (!total_faults)
1266 return 0;
1267
1268 faults = group_faults(p, nid);
1269 faults += score_nearby_nodes(p, nid, dist, false);
1270
1271 return 1000 * faults / total_faults;
1272 }
1273
1274 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1275 int src_nid, int dst_cpu)
1276 {
1277 struct numa_group *ng = p->numa_group;
1278 int dst_nid = cpu_to_node(dst_cpu);
1279 int last_cpupid, this_cpupid;
1280
1281 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1282
1283 /*
1284 * Multi-stage node selection is used in conjunction with a periodic
1285 * migration fault to build a temporal task<->page relation. By using
1286 * a two-stage filter we remove short/unlikely relations.
1287 *
1288 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1289 * a task's usage of a particular page (n_p) per total usage of this
1290 * page (n_t) (in a given time-span) to a probability.
1291 *
1292 * Our periodic faults will sample this probability and getting the
1293 * same result twice in a row, given these samples are fully
1294 * independent, is then given by P(n)^2, provided our sample period
1295 * is sufficiently short compared to the usage pattern.
1296 *
1297 * This quadric squishes small probabilities, making it less likely we
1298 * act on an unlikely task<->page relation.
1299 */
1300 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1301 if (!cpupid_pid_unset(last_cpupid) &&
1302 cpupid_to_nid(last_cpupid) != dst_nid)
1303 return false;
1304
1305 /* Always allow migrate on private faults */
1306 if (cpupid_match_pid(p, last_cpupid))
1307 return true;
1308
1309 /* A shared fault, but p->numa_group has not been set up yet. */
1310 if (!ng)
1311 return true;
1312
1313 /*
1314 * Destination node is much more heavily used than the source
1315 * node? Allow migration.
1316 */
1317 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1318 ACTIVE_NODE_FRACTION)
1319 return true;
1320
1321 /*
1322 * Distribute memory according to CPU & memory use on each node,
1323 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1324 *
1325 * faults_cpu(dst) 3 faults_cpu(src)
1326 * --------------- * - > ---------------
1327 * faults_mem(dst) 4 faults_mem(src)
1328 */
1329 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1330 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1331 }
1332
1333 static unsigned long weighted_cpuload(const int cpu);
1334 static unsigned long source_load(int cpu, int type);
1335 static unsigned long target_load(int cpu, int type);
1336 static unsigned long capacity_of(int cpu);
1337 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1338
1339 /* Cached statistics for all CPUs within a node */
1340 struct numa_stats {
1341 unsigned long nr_running;
1342 unsigned long load;
1343
1344 /* Total compute capacity of CPUs on a node */
1345 unsigned long compute_capacity;
1346
1347 /* Approximate capacity in terms of runnable tasks on a node */
1348 unsigned long task_capacity;
1349 int has_free_capacity;
1350 };
1351
1352 /*
1353 * XXX borrowed from update_sg_lb_stats
1354 */
1355 static void update_numa_stats(struct numa_stats *ns, int nid)
1356 {
1357 int smt, cpu, cpus = 0;
1358 unsigned long capacity;
1359
1360 memset(ns, 0, sizeof(*ns));
1361 for_each_cpu(cpu, cpumask_of_node(nid)) {
1362 struct rq *rq = cpu_rq(cpu);
1363
1364 ns->nr_running += rq->nr_running;
1365 ns->load += weighted_cpuload(cpu);
1366 ns->compute_capacity += capacity_of(cpu);
1367
1368 cpus++;
1369 }
1370
1371 /*
1372 * If we raced with hotplug and there are no CPUs left in our mask
1373 * the @ns structure is NULL'ed and task_numa_compare() will
1374 * not find this node attractive.
1375 *
1376 * We'll either bail at !has_free_capacity, or we'll detect a huge
1377 * imbalance and bail there.
1378 */
1379 if (!cpus)
1380 return;
1381
1382 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1383 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1384 capacity = cpus / smt; /* cores */
1385
1386 ns->task_capacity = min_t(unsigned, capacity,
1387 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1388 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1389 }
1390
1391 struct task_numa_env {
1392 struct task_struct *p;
1393
1394 int src_cpu, src_nid;
1395 int dst_cpu, dst_nid;
1396
1397 struct numa_stats src_stats, dst_stats;
1398
1399 int imbalance_pct;
1400 int dist;
1401
1402 struct task_struct *best_task;
1403 long best_imp;
1404 int best_cpu;
1405 };
1406
1407 static void task_numa_assign(struct task_numa_env *env,
1408 struct task_struct *p, long imp)
1409 {
1410 if (env->best_task)
1411 put_task_struct(env->best_task);
1412 if (p)
1413 get_task_struct(p);
1414
1415 env->best_task = p;
1416 env->best_imp = imp;
1417 env->best_cpu = env->dst_cpu;
1418 }
1419
1420 static bool load_too_imbalanced(long src_load, long dst_load,
1421 struct task_numa_env *env)
1422 {
1423 long imb, old_imb;
1424 long orig_src_load, orig_dst_load;
1425 long src_capacity, dst_capacity;
1426
1427 /*
1428 * The load is corrected for the CPU capacity available on each node.
1429 *
1430 * src_load dst_load
1431 * ------------ vs ---------
1432 * src_capacity dst_capacity
1433 */
1434 src_capacity = env->src_stats.compute_capacity;
1435 dst_capacity = env->dst_stats.compute_capacity;
1436
1437 /* We care about the slope of the imbalance, not the direction. */
1438 if (dst_load < src_load)
1439 swap(dst_load, src_load);
1440
1441 /* Is the difference below the threshold? */
1442 imb = dst_load * src_capacity * 100 -
1443 src_load * dst_capacity * env->imbalance_pct;
1444 if (imb <= 0)
1445 return false;
1446
1447 /*
1448 * The imbalance is above the allowed threshold.
1449 * Compare it with the old imbalance.
1450 */
1451 orig_src_load = env->src_stats.load;
1452 orig_dst_load = env->dst_stats.load;
1453
1454 if (orig_dst_load < orig_src_load)
1455 swap(orig_dst_load, orig_src_load);
1456
1457 old_imb = orig_dst_load * src_capacity * 100 -
1458 orig_src_load * dst_capacity * env->imbalance_pct;
1459
1460 /* Would this change make things worse? */
1461 return (imb > old_imb);
1462 }
1463
1464 /*
1465 * This checks if the overall compute and NUMA accesses of the system would
1466 * be improved if the source tasks was migrated to the target dst_cpu taking
1467 * into account that it might be best if task running on the dst_cpu should
1468 * be exchanged with the source task
1469 */
1470 static void task_numa_compare(struct task_numa_env *env,
1471 long taskimp, long groupimp)
1472 {
1473 struct rq *src_rq = cpu_rq(env->src_cpu);
1474 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1475 struct task_struct *cur;
1476 long src_load, dst_load;
1477 long load;
1478 long imp = env->p->numa_group ? groupimp : taskimp;
1479 long moveimp = imp;
1480 int dist = env->dist;
1481
1482 rcu_read_lock();
1483 cur = task_rcu_dereference(&dst_rq->curr);
1484 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1485 cur = NULL;
1486
1487 /*
1488 * Because we have preemption enabled we can get migrated around and
1489 * end try selecting ourselves (current == env->p) as a swap candidate.
1490 */
1491 if (cur == env->p)
1492 goto unlock;
1493
1494 /*
1495 * "imp" is the fault differential for the source task between the
1496 * source and destination node. Calculate the total differential for
1497 * the source task and potential destination task. The more negative
1498 * the value is, the more rmeote accesses that would be expected to
1499 * be incurred if the tasks were swapped.
1500 */
1501 if (cur) {
1502 /* Skip this swap candidate if cannot move to the source cpu */
1503 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1504 goto unlock;
1505
1506 /*
1507 * If dst and source tasks are in the same NUMA group, or not
1508 * in any group then look only at task weights.
1509 */
1510 if (cur->numa_group == env->p->numa_group) {
1511 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1512 task_weight(cur, env->dst_nid, dist);
1513 /*
1514 * Add some hysteresis to prevent swapping the
1515 * tasks within a group over tiny differences.
1516 */
1517 if (cur->numa_group)
1518 imp -= imp/16;
1519 } else {
1520 /*
1521 * Compare the group weights. If a task is all by
1522 * itself (not part of a group), use the task weight
1523 * instead.
1524 */
1525 if (cur->numa_group)
1526 imp += group_weight(cur, env->src_nid, dist) -
1527 group_weight(cur, env->dst_nid, dist);
1528 else
1529 imp += task_weight(cur, env->src_nid, dist) -
1530 task_weight(cur, env->dst_nid, dist);
1531 }
1532 }
1533
1534 if (imp <= env->best_imp && moveimp <= env->best_imp)
1535 goto unlock;
1536
1537 if (!cur) {
1538 /* Is there capacity at our destination? */
1539 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1540 !env->dst_stats.has_free_capacity)
1541 goto unlock;
1542
1543 goto balance;
1544 }
1545
1546 /* Balance doesn't matter much if we're running a task per cpu */
1547 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1548 dst_rq->nr_running == 1)
1549 goto assign;
1550
1551 /*
1552 * In the overloaded case, try and keep the load balanced.
1553 */
1554 balance:
1555 load = task_h_load(env->p);
1556 dst_load = env->dst_stats.load + load;
1557 src_load = env->src_stats.load - load;
1558
1559 if (moveimp > imp && moveimp > env->best_imp) {
1560 /*
1561 * If the improvement from just moving env->p direction is
1562 * better than swapping tasks around, check if a move is
1563 * possible. Store a slightly smaller score than moveimp,
1564 * so an actually idle CPU will win.
1565 */
1566 if (!load_too_imbalanced(src_load, dst_load, env)) {
1567 imp = moveimp - 1;
1568 cur = NULL;
1569 goto assign;
1570 }
1571 }
1572
1573 if (imp <= env->best_imp)
1574 goto unlock;
1575
1576 if (cur) {
1577 load = task_h_load(cur);
1578 dst_load -= load;
1579 src_load += load;
1580 }
1581
1582 if (load_too_imbalanced(src_load, dst_load, env))
1583 goto unlock;
1584
1585 /*
1586 * One idle CPU per node is evaluated for a task numa move.
1587 * Call select_idle_sibling to maybe find a better one.
1588 */
1589 if (!cur) {
1590 /*
1591 * select_idle_siblings() uses an per-cpu cpumask that
1592 * can be used from IRQ context.
1593 */
1594 local_irq_disable();
1595 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1596 env->dst_cpu);
1597 local_irq_enable();
1598 }
1599
1600 assign:
1601 task_numa_assign(env, cur, imp);
1602 unlock:
1603 rcu_read_unlock();
1604 }
1605
1606 static void task_numa_find_cpu(struct task_numa_env *env,
1607 long taskimp, long groupimp)
1608 {
1609 int cpu;
1610
1611 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1612 /* Skip this CPU if the source task cannot migrate */
1613 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1614 continue;
1615
1616 env->dst_cpu = cpu;
1617 task_numa_compare(env, taskimp, groupimp);
1618 }
1619 }
1620
1621 /* Only move tasks to a NUMA node less busy than the current node. */
1622 static bool numa_has_capacity(struct task_numa_env *env)
1623 {
1624 struct numa_stats *src = &env->src_stats;
1625 struct numa_stats *dst = &env->dst_stats;
1626
1627 if (src->has_free_capacity && !dst->has_free_capacity)
1628 return false;
1629
1630 /*
1631 * Only consider a task move if the source has a higher load
1632 * than the destination, corrected for CPU capacity on each node.
1633 *
1634 * src->load dst->load
1635 * --------------------- vs ---------------------
1636 * src->compute_capacity dst->compute_capacity
1637 */
1638 if (src->load * dst->compute_capacity * env->imbalance_pct >
1639
1640 dst->load * src->compute_capacity * 100)
1641 return true;
1642
1643 return false;
1644 }
1645
1646 static int task_numa_migrate(struct task_struct *p)
1647 {
1648 struct task_numa_env env = {
1649 .p = p,
1650
1651 .src_cpu = task_cpu(p),
1652 .src_nid = task_node(p),
1653
1654 .imbalance_pct = 112,
1655
1656 .best_task = NULL,
1657 .best_imp = 0,
1658 .best_cpu = -1,
1659 };
1660 struct sched_domain *sd;
1661 unsigned long taskweight, groupweight;
1662 int nid, ret, dist;
1663 long taskimp, groupimp;
1664
1665 /*
1666 * Pick the lowest SD_NUMA domain, as that would have the smallest
1667 * imbalance and would be the first to start moving tasks about.
1668 *
1669 * And we want to avoid any moving of tasks about, as that would create
1670 * random movement of tasks -- counter the numa conditions we're trying
1671 * to satisfy here.
1672 */
1673 rcu_read_lock();
1674 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1675 if (sd)
1676 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1677 rcu_read_unlock();
1678
1679 /*
1680 * Cpusets can break the scheduler domain tree into smaller
1681 * balance domains, some of which do not cross NUMA boundaries.
1682 * Tasks that are "trapped" in such domains cannot be migrated
1683 * elsewhere, so there is no point in (re)trying.
1684 */
1685 if (unlikely(!sd)) {
1686 p->numa_preferred_nid = task_node(p);
1687 return -EINVAL;
1688 }
1689
1690 env.dst_nid = p->numa_preferred_nid;
1691 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1692 taskweight = task_weight(p, env.src_nid, dist);
1693 groupweight = group_weight(p, env.src_nid, dist);
1694 update_numa_stats(&env.src_stats, env.src_nid);
1695 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1696 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1697 update_numa_stats(&env.dst_stats, env.dst_nid);
1698
1699 /* Try to find a spot on the preferred nid. */
1700 if (numa_has_capacity(&env))
1701 task_numa_find_cpu(&env, taskimp, groupimp);
1702
1703 /*
1704 * Look at other nodes in these cases:
1705 * - there is no space available on the preferred_nid
1706 * - the task is part of a numa_group that is interleaved across
1707 * multiple NUMA nodes; in order to better consolidate the group,
1708 * we need to check other locations.
1709 */
1710 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1711 for_each_online_node(nid) {
1712 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1713 continue;
1714
1715 dist = node_distance(env.src_nid, env.dst_nid);
1716 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1717 dist != env.dist) {
1718 taskweight = task_weight(p, env.src_nid, dist);
1719 groupweight = group_weight(p, env.src_nid, dist);
1720 }
1721
1722 /* Only consider nodes where both task and groups benefit */
1723 taskimp = task_weight(p, nid, dist) - taskweight;
1724 groupimp = group_weight(p, nid, dist) - groupweight;
1725 if (taskimp < 0 && groupimp < 0)
1726 continue;
1727
1728 env.dist = dist;
1729 env.dst_nid = nid;
1730 update_numa_stats(&env.dst_stats, env.dst_nid);
1731 if (numa_has_capacity(&env))
1732 task_numa_find_cpu(&env, taskimp, groupimp);
1733 }
1734 }
1735
1736 /*
1737 * If the task is part of a workload that spans multiple NUMA nodes,
1738 * and is migrating into one of the workload's active nodes, remember
1739 * this node as the task's preferred numa node, so the workload can
1740 * settle down.
1741 * A task that migrated to a second choice node will be better off
1742 * trying for a better one later. Do not set the preferred node here.
1743 */
1744 if (p->numa_group) {
1745 struct numa_group *ng = p->numa_group;
1746
1747 if (env.best_cpu == -1)
1748 nid = env.src_nid;
1749 else
1750 nid = env.dst_nid;
1751
1752 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1753 sched_setnuma(p, env.dst_nid);
1754 }
1755
1756 /* No better CPU than the current one was found. */
1757 if (env.best_cpu == -1)
1758 return -EAGAIN;
1759
1760 /*
1761 * Reset the scan period if the task is being rescheduled on an
1762 * alternative node to recheck if the tasks is now properly placed.
1763 */
1764 p->numa_scan_period = task_scan_min(p);
1765
1766 if (env.best_task == NULL) {
1767 ret = migrate_task_to(p, env.best_cpu);
1768 if (ret != 0)
1769 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1770 return ret;
1771 }
1772
1773 ret = migrate_swap(p, env.best_task);
1774 if (ret != 0)
1775 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1776 put_task_struct(env.best_task);
1777 return ret;
1778 }
1779
1780 /* Attempt to migrate a task to a CPU on the preferred node. */
1781 static void numa_migrate_preferred(struct task_struct *p)
1782 {
1783 unsigned long interval = HZ;
1784
1785 /* This task has no NUMA fault statistics yet */
1786 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1787 return;
1788
1789 /* Periodically retry migrating the task to the preferred node */
1790 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1791 p->numa_migrate_retry = jiffies + interval;
1792
1793 /* Success if task is already running on preferred CPU */
1794 if (task_node(p) == p->numa_preferred_nid)
1795 return;
1796
1797 /* Otherwise, try migrate to a CPU on the preferred node */
1798 task_numa_migrate(p);
1799 }
1800
1801 /*
1802 * Find out how many nodes on the workload is actively running on. Do this by
1803 * tracking the nodes from which NUMA hinting faults are triggered. This can
1804 * be different from the set of nodes where the workload's memory is currently
1805 * located.
1806 */
1807 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1808 {
1809 unsigned long faults, max_faults = 0;
1810 int nid, active_nodes = 0;
1811
1812 for_each_online_node(nid) {
1813 faults = group_faults_cpu(numa_group, nid);
1814 if (faults > max_faults)
1815 max_faults = faults;
1816 }
1817
1818 for_each_online_node(nid) {
1819 faults = group_faults_cpu(numa_group, nid);
1820 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1821 active_nodes++;
1822 }
1823
1824 numa_group->max_faults_cpu = max_faults;
1825 numa_group->active_nodes = active_nodes;
1826 }
1827
1828 /*
1829 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1830 * increments. The more local the fault statistics are, the higher the scan
1831 * period will be for the next scan window. If local/(local+remote) ratio is
1832 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1833 * the scan period will decrease. Aim for 70% local accesses.
1834 */
1835 #define NUMA_PERIOD_SLOTS 10
1836 #define NUMA_PERIOD_THRESHOLD 7
1837
1838 /*
1839 * Increase the scan period (slow down scanning) if the majority of
1840 * our memory is already on our local node, or if the majority of
1841 * the page accesses are shared with other processes.
1842 * Otherwise, decrease the scan period.
1843 */
1844 static void update_task_scan_period(struct task_struct *p,
1845 unsigned long shared, unsigned long private)
1846 {
1847 unsigned int period_slot;
1848 int ratio;
1849 int diff;
1850
1851 unsigned long remote = p->numa_faults_locality[0];
1852 unsigned long local = p->numa_faults_locality[1];
1853
1854 /*
1855 * If there were no record hinting faults then either the task is
1856 * completely idle or all activity is areas that are not of interest
1857 * to automatic numa balancing. Related to that, if there were failed
1858 * migration then it implies we are migrating too quickly or the local
1859 * node is overloaded. In either case, scan slower
1860 */
1861 if (local + shared == 0 || p->numa_faults_locality[2]) {
1862 p->numa_scan_period = min(p->numa_scan_period_max,
1863 p->numa_scan_period << 1);
1864
1865 p->mm->numa_next_scan = jiffies +
1866 msecs_to_jiffies(p->numa_scan_period);
1867
1868 return;
1869 }
1870
1871 /*
1872 * Prepare to scale scan period relative to the current period.
1873 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1874 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1875 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1876 */
1877 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1878 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1879 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1880 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1881 if (!slot)
1882 slot = 1;
1883 diff = slot * period_slot;
1884 } else {
1885 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1886
1887 /*
1888 * Scale scan rate increases based on sharing. There is an
1889 * inverse relationship between the degree of sharing and
1890 * the adjustment made to the scanning period. Broadly
1891 * speaking the intent is that there is little point
1892 * scanning faster if shared accesses dominate as it may
1893 * simply bounce migrations uselessly
1894 */
1895 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1896 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1897 }
1898
1899 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1900 task_scan_min(p), task_scan_max(p));
1901 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1902 }
1903
1904 /*
1905 * Get the fraction of time the task has been running since the last
1906 * NUMA placement cycle. The scheduler keeps similar statistics, but
1907 * decays those on a 32ms period, which is orders of magnitude off
1908 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1909 * stats only if the task is so new there are no NUMA statistics yet.
1910 */
1911 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1912 {
1913 u64 runtime, delta, now;
1914 /* Use the start of this time slice to avoid calculations. */
1915 now = p->se.exec_start;
1916 runtime = p->se.sum_exec_runtime;
1917
1918 if (p->last_task_numa_placement) {
1919 delta = runtime - p->last_sum_exec_runtime;
1920 *period = now - p->last_task_numa_placement;
1921 } else {
1922 delta = p->se.avg.load_sum / p->se.load.weight;
1923 *period = LOAD_AVG_MAX;
1924 }
1925
1926 p->last_sum_exec_runtime = runtime;
1927 p->last_task_numa_placement = now;
1928
1929 return delta;
1930 }
1931
1932 /*
1933 * Determine the preferred nid for a task in a numa_group. This needs to
1934 * be done in a way that produces consistent results with group_weight,
1935 * otherwise workloads might not converge.
1936 */
1937 static int preferred_group_nid(struct task_struct *p, int nid)
1938 {
1939 nodemask_t nodes;
1940 int dist;
1941
1942 /* Direct connections between all NUMA nodes. */
1943 if (sched_numa_topology_type == NUMA_DIRECT)
1944 return nid;
1945
1946 /*
1947 * On a system with glueless mesh NUMA topology, group_weight
1948 * scores nodes according to the number of NUMA hinting faults on
1949 * both the node itself, and on nearby nodes.
1950 */
1951 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1952 unsigned long score, max_score = 0;
1953 int node, max_node = nid;
1954
1955 dist = sched_max_numa_distance;
1956
1957 for_each_online_node(node) {
1958 score = group_weight(p, node, dist);
1959 if (score > max_score) {
1960 max_score = score;
1961 max_node = node;
1962 }
1963 }
1964 return max_node;
1965 }
1966
1967 /*
1968 * Finding the preferred nid in a system with NUMA backplane
1969 * interconnect topology is more involved. The goal is to locate
1970 * tasks from numa_groups near each other in the system, and
1971 * untangle workloads from different sides of the system. This requires
1972 * searching down the hierarchy of node groups, recursively searching
1973 * inside the highest scoring group of nodes. The nodemask tricks
1974 * keep the complexity of the search down.
1975 */
1976 nodes = node_online_map;
1977 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1978 unsigned long max_faults = 0;
1979 nodemask_t max_group = NODE_MASK_NONE;
1980 int a, b;
1981
1982 /* Are there nodes at this distance from each other? */
1983 if (!find_numa_distance(dist))
1984 continue;
1985
1986 for_each_node_mask(a, nodes) {
1987 unsigned long faults = 0;
1988 nodemask_t this_group;
1989 nodes_clear(this_group);
1990
1991 /* Sum group's NUMA faults; includes a==b case. */
1992 for_each_node_mask(b, nodes) {
1993 if (node_distance(a, b) < dist) {
1994 faults += group_faults(p, b);
1995 node_set(b, this_group);
1996 node_clear(b, nodes);
1997 }
1998 }
1999
2000 /* Remember the top group. */
2001 if (faults > max_faults) {
2002 max_faults = faults;
2003 max_group = this_group;
2004 /*
2005 * subtle: at the smallest distance there is
2006 * just one node left in each "group", the
2007 * winner is the preferred nid.
2008 */
2009 nid = a;
2010 }
2011 }
2012 /* Next round, evaluate the nodes within max_group. */
2013 if (!max_faults)
2014 break;
2015 nodes = max_group;
2016 }
2017 return nid;
2018 }
2019
2020 static void task_numa_placement(struct task_struct *p)
2021 {
2022 int seq, nid, max_nid = -1, max_group_nid = -1;
2023 unsigned long max_faults = 0, max_group_faults = 0;
2024 unsigned long fault_types[2] = { 0, 0 };
2025 unsigned long total_faults;
2026 u64 runtime, period;
2027 spinlock_t *group_lock = NULL;
2028
2029 /*
2030 * The p->mm->numa_scan_seq field gets updated without
2031 * exclusive access. Use READ_ONCE() here to ensure
2032 * that the field is read in a single access:
2033 */
2034 seq = READ_ONCE(p->mm->numa_scan_seq);
2035 if (p->numa_scan_seq == seq)
2036 return;
2037 p->numa_scan_seq = seq;
2038 p->numa_scan_period_max = task_scan_max(p);
2039
2040 total_faults = p->numa_faults_locality[0] +
2041 p->numa_faults_locality[1];
2042 runtime = numa_get_avg_runtime(p, &period);
2043
2044 /* If the task is part of a group prevent parallel updates to group stats */
2045 if (p->numa_group) {
2046 group_lock = &p->numa_group->lock;
2047 spin_lock_irq(group_lock);
2048 }
2049
2050 /* Find the node with the highest number of faults */
2051 for_each_online_node(nid) {
2052 /* Keep track of the offsets in numa_faults array */
2053 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2054 unsigned long faults = 0, group_faults = 0;
2055 int priv;
2056
2057 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2058 long diff, f_diff, f_weight;
2059
2060 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2061 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2062 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2063 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2064
2065 /* Decay existing window, copy faults since last scan */
2066 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2067 fault_types[priv] += p->numa_faults[membuf_idx];
2068 p->numa_faults[membuf_idx] = 0;
2069
2070 /*
2071 * Normalize the faults_from, so all tasks in a group
2072 * count according to CPU use, instead of by the raw
2073 * number of faults. Tasks with little runtime have
2074 * little over-all impact on throughput, and thus their
2075 * faults are less important.
2076 */
2077 f_weight = div64_u64(runtime << 16, period + 1);
2078 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2079 (total_faults + 1);
2080 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2081 p->numa_faults[cpubuf_idx] = 0;
2082
2083 p->numa_faults[mem_idx] += diff;
2084 p->numa_faults[cpu_idx] += f_diff;
2085 faults += p->numa_faults[mem_idx];
2086 p->total_numa_faults += diff;
2087 if (p->numa_group) {
2088 /*
2089 * safe because we can only change our own group
2090 *
2091 * mem_idx represents the offset for a given
2092 * nid and priv in a specific region because it
2093 * is at the beginning of the numa_faults array.
2094 */
2095 p->numa_group->faults[mem_idx] += diff;
2096 p->numa_group->faults_cpu[mem_idx] += f_diff;
2097 p->numa_group->total_faults += diff;
2098 group_faults += p->numa_group->faults[mem_idx];
2099 }
2100 }
2101
2102 if (faults > max_faults) {
2103 max_faults = faults;
2104 max_nid = nid;
2105 }
2106
2107 if (group_faults > max_group_faults) {
2108 max_group_faults = group_faults;
2109 max_group_nid = nid;
2110 }
2111 }
2112
2113 update_task_scan_period(p, fault_types[0], fault_types[1]);
2114
2115 if (p->numa_group) {
2116 numa_group_count_active_nodes(p->numa_group);
2117 spin_unlock_irq(group_lock);
2118 max_nid = preferred_group_nid(p, max_group_nid);
2119 }
2120
2121 if (max_faults) {
2122 /* Set the new preferred node */
2123 if (max_nid != p->numa_preferred_nid)
2124 sched_setnuma(p, max_nid);
2125
2126 if (task_node(p) != p->numa_preferred_nid)
2127 numa_migrate_preferred(p);
2128 }
2129 }
2130
2131 static inline int get_numa_group(struct numa_group *grp)
2132 {
2133 return atomic_inc_not_zero(&grp->refcount);
2134 }
2135
2136 static inline void put_numa_group(struct numa_group *grp)
2137 {
2138 if (atomic_dec_and_test(&grp->refcount))
2139 kfree_rcu(grp, rcu);
2140 }
2141
2142 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2143 int *priv)
2144 {
2145 struct numa_group *grp, *my_grp;
2146 struct task_struct *tsk;
2147 bool join = false;
2148 int cpu = cpupid_to_cpu(cpupid);
2149 int i;
2150
2151 if (unlikely(!p->numa_group)) {
2152 unsigned int size = sizeof(struct numa_group) +
2153 4*nr_node_ids*sizeof(unsigned long);
2154
2155 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2156 if (!grp)
2157 return;
2158
2159 atomic_set(&grp->refcount, 1);
2160 grp->active_nodes = 1;
2161 grp->max_faults_cpu = 0;
2162 spin_lock_init(&grp->lock);
2163 grp->gid = p->pid;
2164 /* Second half of the array tracks nids where faults happen */
2165 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2166 nr_node_ids;
2167
2168 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2169 grp->faults[i] = p->numa_faults[i];
2170
2171 grp->total_faults = p->total_numa_faults;
2172
2173 grp->nr_tasks++;
2174 rcu_assign_pointer(p->numa_group, grp);
2175 }
2176
2177 rcu_read_lock();
2178 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2179
2180 if (!cpupid_match_pid(tsk, cpupid))
2181 goto no_join;
2182
2183 grp = rcu_dereference(tsk->numa_group);
2184 if (!grp)
2185 goto no_join;
2186
2187 my_grp = p->numa_group;
2188 if (grp == my_grp)
2189 goto no_join;
2190
2191 /*
2192 * Only join the other group if its bigger; if we're the bigger group,
2193 * the other task will join us.
2194 */
2195 if (my_grp->nr_tasks > grp->nr_tasks)
2196 goto no_join;
2197
2198 /*
2199 * Tie-break on the grp address.
2200 */
2201 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2202 goto no_join;
2203
2204 /* Always join threads in the same process. */
2205 if (tsk->mm == current->mm)
2206 join = true;
2207
2208 /* Simple filter to avoid false positives due to PID collisions */
2209 if (flags & TNF_SHARED)
2210 join = true;
2211
2212 /* Update priv based on whether false sharing was detected */
2213 *priv = !join;
2214
2215 if (join && !get_numa_group(grp))
2216 goto no_join;
2217
2218 rcu_read_unlock();
2219
2220 if (!join)
2221 return;
2222
2223 BUG_ON(irqs_disabled());
2224 double_lock_irq(&my_grp->lock, &grp->lock);
2225
2226 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2227 my_grp->faults[i] -= p->numa_faults[i];
2228 grp->faults[i] += p->numa_faults[i];
2229 }
2230 my_grp->total_faults -= p->total_numa_faults;
2231 grp->total_faults += p->total_numa_faults;
2232
2233 my_grp->nr_tasks--;
2234 grp->nr_tasks++;
2235
2236 spin_unlock(&my_grp->lock);
2237 spin_unlock_irq(&grp->lock);
2238
2239 rcu_assign_pointer(p->numa_group, grp);
2240
2241 put_numa_group(my_grp);
2242 return;
2243
2244 no_join:
2245 rcu_read_unlock();
2246 return;
2247 }
2248
2249 void task_numa_free(struct task_struct *p)
2250 {
2251 struct numa_group *grp = p->numa_group;
2252 void *numa_faults = p->numa_faults;
2253 unsigned long flags;
2254 int i;
2255
2256 if (grp) {
2257 spin_lock_irqsave(&grp->lock, flags);
2258 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2259 grp->faults[i] -= p->numa_faults[i];
2260 grp->total_faults -= p->total_numa_faults;
2261
2262 grp->nr_tasks--;
2263 spin_unlock_irqrestore(&grp->lock, flags);
2264 RCU_INIT_POINTER(p->numa_group, NULL);
2265 put_numa_group(grp);
2266 }
2267
2268 p->numa_faults = NULL;
2269 kfree(numa_faults);
2270 }
2271
2272 /*
2273 * Got a PROT_NONE fault for a page on @node.
2274 */
2275 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2276 {
2277 struct task_struct *p = current;
2278 bool migrated = flags & TNF_MIGRATED;
2279 int cpu_node = task_node(current);
2280 int local = !!(flags & TNF_FAULT_LOCAL);
2281 struct numa_group *ng;
2282 int priv;
2283
2284 if (!static_branch_likely(&sched_numa_balancing))
2285 return;
2286
2287 /* for example, ksmd faulting in a user's mm */
2288 if (!p->mm)
2289 return;
2290
2291 /* Allocate buffer to track faults on a per-node basis */
2292 if (unlikely(!p->numa_faults)) {
2293 int size = sizeof(*p->numa_faults) *
2294 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2295
2296 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2297 if (!p->numa_faults)
2298 return;
2299
2300 p->total_numa_faults = 0;
2301 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2302 }
2303
2304 /*
2305 * First accesses are treated as private, otherwise consider accesses
2306 * to be private if the accessing pid has not changed
2307 */
2308 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2309 priv = 1;
2310 } else {
2311 priv = cpupid_match_pid(p, last_cpupid);
2312 if (!priv && !(flags & TNF_NO_GROUP))
2313 task_numa_group(p, last_cpupid, flags, &priv);
2314 }
2315
2316 /*
2317 * If a workload spans multiple NUMA nodes, a shared fault that
2318 * occurs wholly within the set of nodes that the workload is
2319 * actively using should be counted as local. This allows the
2320 * scan rate to slow down when a workload has settled down.
2321 */
2322 ng = p->numa_group;
2323 if (!priv && !local && ng && ng->active_nodes > 1 &&
2324 numa_is_active_node(cpu_node, ng) &&
2325 numa_is_active_node(mem_node, ng))
2326 local = 1;
2327
2328 task_numa_placement(p);
2329
2330 /*
2331 * Retry task to preferred node migration periodically, in case it
2332 * case it previously failed, or the scheduler moved us.
2333 */
2334 if (time_after(jiffies, p->numa_migrate_retry))
2335 numa_migrate_preferred(p);
2336
2337 if (migrated)
2338 p->numa_pages_migrated += pages;
2339 if (flags & TNF_MIGRATE_FAIL)
2340 p->numa_faults_locality[2] += pages;
2341
2342 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2343 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2344 p->numa_faults_locality[local] += pages;
2345 }
2346
2347 static void reset_ptenuma_scan(struct task_struct *p)
2348 {
2349 /*
2350 * We only did a read acquisition of the mmap sem, so
2351 * p->mm->numa_scan_seq is written to without exclusive access
2352 * and the update is not guaranteed to be atomic. That's not
2353 * much of an issue though, since this is just used for
2354 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2355 * expensive, to avoid any form of compiler optimizations:
2356 */
2357 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2358 p->mm->numa_scan_offset = 0;
2359 }
2360
2361 /*
2362 * The expensive part of numa migration is done from task_work context.
2363 * Triggered from task_tick_numa().
2364 */
2365 void task_numa_work(struct callback_head *work)
2366 {
2367 unsigned long migrate, next_scan, now = jiffies;
2368 struct task_struct *p = current;
2369 struct mm_struct *mm = p->mm;
2370 u64 runtime = p->se.sum_exec_runtime;
2371 struct vm_area_struct *vma;
2372 unsigned long start, end;
2373 unsigned long nr_pte_updates = 0;
2374 long pages, virtpages;
2375
2376 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2377
2378 work->next = work; /* protect against double add */
2379 /*
2380 * Who cares about NUMA placement when they're dying.
2381 *
2382 * NOTE: make sure not to dereference p->mm before this check,
2383 * exit_task_work() happens _after_ exit_mm() so we could be called
2384 * without p->mm even though we still had it when we enqueued this
2385 * work.
2386 */
2387 if (p->flags & PF_EXITING)
2388 return;
2389
2390 if (!mm->numa_next_scan) {
2391 mm->numa_next_scan = now +
2392 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2393 }
2394
2395 /*
2396 * Enforce maximal scan/migration frequency..
2397 */
2398 migrate = mm->numa_next_scan;
2399 if (time_before(now, migrate))
2400 return;
2401
2402 if (p->numa_scan_period == 0) {
2403 p->numa_scan_period_max = task_scan_max(p);
2404 p->numa_scan_period = task_scan_min(p);
2405 }
2406
2407 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2408 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2409 return;
2410
2411 /*
2412 * Delay this task enough that another task of this mm will likely win
2413 * the next time around.
2414 */
2415 p->node_stamp += 2 * TICK_NSEC;
2416
2417 start = mm->numa_scan_offset;
2418 pages = sysctl_numa_balancing_scan_size;
2419 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2420 virtpages = pages * 8; /* Scan up to this much virtual space */
2421 if (!pages)
2422 return;
2423
2424
2425 down_read(&mm->mmap_sem);
2426 vma = find_vma(mm, start);
2427 if (!vma) {
2428 reset_ptenuma_scan(p);
2429 start = 0;
2430 vma = mm->mmap;
2431 }
2432 for (; vma; vma = vma->vm_next) {
2433 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2434 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2435 continue;
2436 }
2437
2438 /*
2439 * Shared library pages mapped by multiple processes are not
2440 * migrated as it is expected they are cache replicated. Avoid
2441 * hinting faults in read-only file-backed mappings or the vdso
2442 * as migrating the pages will be of marginal benefit.
2443 */
2444 if (!vma->vm_mm ||
2445 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2446 continue;
2447
2448 /*
2449 * Skip inaccessible VMAs to avoid any confusion between
2450 * PROT_NONE and NUMA hinting ptes
2451 */
2452 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2453 continue;
2454
2455 do {
2456 start = max(start, vma->vm_start);
2457 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2458 end = min(end, vma->vm_end);
2459 nr_pte_updates = change_prot_numa(vma, start, end);
2460
2461 /*
2462 * Try to scan sysctl_numa_balancing_size worth of
2463 * hpages that have at least one present PTE that
2464 * is not already pte-numa. If the VMA contains
2465 * areas that are unused or already full of prot_numa
2466 * PTEs, scan up to virtpages, to skip through those
2467 * areas faster.
2468 */
2469 if (nr_pte_updates)
2470 pages -= (end - start) >> PAGE_SHIFT;
2471 virtpages -= (end - start) >> PAGE_SHIFT;
2472
2473 start = end;
2474 if (pages <= 0 || virtpages <= 0)
2475 goto out;
2476
2477 cond_resched();
2478 } while (end != vma->vm_end);
2479 }
2480
2481 out:
2482 /*
2483 * It is possible to reach the end of the VMA list but the last few
2484 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2485 * would find the !migratable VMA on the next scan but not reset the
2486 * scanner to the start so check it now.
2487 */
2488 if (vma)
2489 mm->numa_scan_offset = start;
2490 else
2491 reset_ptenuma_scan(p);
2492 up_read(&mm->mmap_sem);
2493
2494 /*
2495 * Make sure tasks use at least 32x as much time to run other code
2496 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2497 * Usually update_task_scan_period slows down scanning enough; on an
2498 * overloaded system we need to limit overhead on a per task basis.
2499 */
2500 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2501 u64 diff = p->se.sum_exec_runtime - runtime;
2502 p->node_stamp += 32 * diff;
2503 }
2504 }
2505
2506 /*
2507 * Drive the periodic memory faults..
2508 */
2509 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2510 {
2511 struct callback_head *work = &curr->numa_work;
2512 u64 period, now;
2513
2514 /*
2515 * We don't care about NUMA placement if we don't have memory.
2516 */
2517 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2518 return;
2519
2520 /*
2521 * Using runtime rather than walltime has the dual advantage that
2522 * we (mostly) drive the selection from busy threads and that the
2523 * task needs to have done some actual work before we bother with
2524 * NUMA placement.
2525 */
2526 now = curr->se.sum_exec_runtime;
2527 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2528
2529 if (now > curr->node_stamp + period) {
2530 if (!curr->node_stamp)
2531 curr->numa_scan_period = task_scan_min(curr);
2532 curr->node_stamp += period;
2533
2534 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2535 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2536 task_work_add(curr, work, true);
2537 }
2538 }
2539 }
2540 #else
2541 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2542 {
2543 }
2544
2545 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2546 {
2547 }
2548
2549 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2550 {
2551 }
2552 #endif /* CONFIG_NUMA_BALANCING */
2553
2554 static void
2555 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2556 {
2557 update_load_add(&cfs_rq->load, se->load.weight);
2558 if (!parent_entity(se))
2559 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2560 #ifdef CONFIG_SMP
2561 if (entity_is_task(se)) {
2562 struct rq *rq = rq_of(cfs_rq);
2563
2564 account_numa_enqueue(rq, task_of(se));
2565 list_add(&se->group_node, &rq->cfs_tasks);
2566 }
2567 #endif
2568 cfs_rq->nr_running++;
2569 }
2570
2571 static void
2572 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2573 {
2574 update_load_sub(&cfs_rq->load, se->load.weight);
2575 if (!parent_entity(se))
2576 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2577 #ifdef CONFIG_SMP
2578 if (entity_is_task(se)) {
2579 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2580 list_del_init(&se->group_node);
2581 }
2582 #endif
2583 cfs_rq->nr_running--;
2584 }
2585
2586 #ifdef CONFIG_FAIR_GROUP_SCHED
2587 # ifdef CONFIG_SMP
2588 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2589 {
2590 long tg_weight, load, shares;
2591
2592 /*
2593 * This really should be: cfs_rq->avg.load_avg, but instead we use
2594 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2595 * the shares for small weight interactive tasks.
2596 */
2597 load = scale_load_down(cfs_rq->load.weight);
2598
2599 tg_weight = atomic_long_read(&tg->load_avg);
2600
2601 /* Ensure tg_weight >= load */
2602 tg_weight -= cfs_rq->tg_load_avg_contrib;
2603 tg_weight += load;
2604
2605 shares = (tg->shares * load);
2606 if (tg_weight)
2607 shares /= tg_weight;
2608
2609 if (shares < MIN_SHARES)
2610 shares = MIN_SHARES;
2611 if (shares > tg->shares)
2612 shares = tg->shares;
2613
2614 return shares;
2615 }
2616 # else /* CONFIG_SMP */
2617 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2618 {
2619 return tg->shares;
2620 }
2621 # endif /* CONFIG_SMP */
2622
2623 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2624 unsigned long weight)
2625 {
2626 if (se->on_rq) {
2627 /* commit outstanding execution time */
2628 if (cfs_rq->curr == se)
2629 update_curr(cfs_rq);
2630 account_entity_dequeue(cfs_rq, se);
2631 }
2632
2633 update_load_set(&se->load, weight);
2634
2635 if (se->on_rq)
2636 account_entity_enqueue(cfs_rq, se);
2637 }
2638
2639 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2640
2641 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2642 {
2643 struct task_group *tg;
2644 struct sched_entity *se;
2645 long shares;
2646
2647 tg = cfs_rq->tg;
2648 se = tg->se[cpu_of(rq_of(cfs_rq))];
2649 if (!se || throttled_hierarchy(cfs_rq))
2650 return;
2651 #ifndef CONFIG_SMP
2652 if (likely(se->load.weight == tg->shares))
2653 return;
2654 #endif
2655 shares = calc_cfs_shares(cfs_rq, tg);
2656
2657 reweight_entity(cfs_rq_of(se), se, shares);
2658 }
2659 #else /* CONFIG_FAIR_GROUP_SCHED */
2660 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2661 {
2662 }
2663 #endif /* CONFIG_FAIR_GROUP_SCHED */
2664
2665 #ifdef CONFIG_SMP
2666 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2667 static const u32 runnable_avg_yN_inv[] = {
2668 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2669 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2670 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2671 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2672 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2673 0x85aac367, 0x82cd8698,
2674 };
2675
2676 /*
2677 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2678 * over-estimates when re-combining.
2679 */
2680 static const u32 runnable_avg_yN_sum[] = {
2681 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2682 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2683 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2684 };
2685
2686 /*
2687 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2688 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2689 * were generated:
2690 */
2691 static const u32 __accumulated_sum_N32[] = {
2692 0, 23371, 35056, 40899, 43820, 45281,
2693 46011, 46376, 46559, 46650, 46696, 46719,
2694 };
2695
2696 /*
2697 * Approximate:
2698 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2699 */
2700 static __always_inline u64 decay_load(u64 val, u64 n)
2701 {
2702 unsigned int local_n;
2703
2704 if (!n)
2705 return val;
2706 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2707 return 0;
2708
2709 /* after bounds checking we can collapse to 32-bit */
2710 local_n = n;
2711
2712 /*
2713 * As y^PERIOD = 1/2, we can combine
2714 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2715 * With a look-up table which covers y^n (n<PERIOD)
2716 *
2717 * To achieve constant time decay_load.
2718 */
2719 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2720 val >>= local_n / LOAD_AVG_PERIOD;
2721 local_n %= LOAD_AVG_PERIOD;
2722 }
2723
2724 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2725 return val;
2726 }
2727
2728 /*
2729 * For updates fully spanning n periods, the contribution to runnable
2730 * average will be: \Sum 1024*y^n
2731 *
2732 * We can compute this reasonably efficiently by combining:
2733 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2734 */
2735 static u32 __compute_runnable_contrib(u64 n)
2736 {
2737 u32 contrib = 0;
2738
2739 if (likely(n <= LOAD_AVG_PERIOD))
2740 return runnable_avg_yN_sum[n];
2741 else if (unlikely(n >= LOAD_AVG_MAX_N))
2742 return LOAD_AVG_MAX;
2743
2744 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2745 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2746 n %= LOAD_AVG_PERIOD;
2747 contrib = decay_load(contrib, n);
2748 return contrib + runnable_avg_yN_sum[n];
2749 }
2750
2751 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2752
2753 /*
2754 * We can represent the historical contribution to runnable average as the
2755 * coefficients of a geometric series. To do this we sub-divide our runnable
2756 * history into segments of approximately 1ms (1024us); label the segment that
2757 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2758 *
2759 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2760 * p0 p1 p2
2761 * (now) (~1ms ago) (~2ms ago)
2762 *
2763 * Let u_i denote the fraction of p_i that the entity was runnable.
2764 *
2765 * We then designate the fractions u_i as our co-efficients, yielding the
2766 * following representation of historical load:
2767 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2768 *
2769 * We choose y based on the with of a reasonably scheduling period, fixing:
2770 * y^32 = 0.5
2771 *
2772 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2773 * approximately half as much as the contribution to load within the last ms
2774 * (u_0).
2775 *
2776 * When a period "rolls over" and we have new u_0`, multiplying the previous
2777 * sum again by y is sufficient to update:
2778 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2779 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2780 */
2781 static __always_inline int
2782 __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2783 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2784 {
2785 u64 delta, scaled_delta, periods;
2786 u32 contrib;
2787 unsigned int delta_w, scaled_delta_w, decayed = 0;
2788 unsigned long scale_freq, scale_cpu;
2789
2790 delta = now - sa->last_update_time;
2791 /*
2792 * This should only happen when time goes backwards, which it
2793 * unfortunately does during sched clock init when we swap over to TSC.
2794 */
2795 if ((s64)delta < 0) {
2796 sa->last_update_time = now;
2797 return 0;
2798 }
2799
2800 /*
2801 * Use 1024ns as the unit of measurement since it's a reasonable
2802 * approximation of 1us and fast to compute.
2803 */
2804 delta >>= 10;
2805 if (!delta)
2806 return 0;
2807 sa->last_update_time = now;
2808
2809 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2810 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2811
2812 /* delta_w is the amount already accumulated against our next period */
2813 delta_w = sa->period_contrib;
2814 if (delta + delta_w >= 1024) {
2815 decayed = 1;
2816
2817 /* how much left for next period will start over, we don't know yet */
2818 sa->period_contrib = 0;
2819
2820 /*
2821 * Now that we know we're crossing a period boundary, figure
2822 * out how much from delta we need to complete the current
2823 * period and accrue it.
2824 */
2825 delta_w = 1024 - delta_w;
2826 scaled_delta_w = cap_scale(delta_w, scale_freq);
2827 if (weight) {
2828 sa->load_sum += weight * scaled_delta_w;
2829 if (cfs_rq) {
2830 cfs_rq->runnable_load_sum +=
2831 weight * scaled_delta_w;
2832 }
2833 }
2834 if (running)
2835 sa->util_sum += scaled_delta_w * scale_cpu;
2836
2837 delta -= delta_w;
2838
2839 /* Figure out how many additional periods this update spans */
2840 periods = delta / 1024;
2841 delta %= 1024;
2842
2843 sa->load_sum = decay_load(sa->load_sum, periods + 1);
2844 if (cfs_rq) {
2845 cfs_rq->runnable_load_sum =
2846 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2847 }
2848 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2849
2850 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2851 contrib = __compute_runnable_contrib(periods);
2852 contrib = cap_scale(contrib, scale_freq);
2853 if (weight) {
2854 sa->load_sum += weight * contrib;
2855 if (cfs_rq)
2856 cfs_rq->runnable_load_sum += weight * contrib;
2857 }
2858 if (running)
2859 sa->util_sum += contrib * scale_cpu;
2860 }
2861
2862 /* Remainder of delta accrued against u_0` */
2863 scaled_delta = cap_scale(delta, scale_freq);
2864 if (weight) {
2865 sa->load_sum += weight * scaled_delta;
2866 if (cfs_rq)
2867 cfs_rq->runnable_load_sum += weight * scaled_delta;
2868 }
2869 if (running)
2870 sa->util_sum += scaled_delta * scale_cpu;
2871
2872 sa->period_contrib += delta;
2873
2874 if (decayed) {
2875 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2876 if (cfs_rq) {
2877 cfs_rq->runnable_load_avg =
2878 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2879 }
2880 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2881 }
2882
2883 return decayed;
2884 }
2885
2886 #ifdef CONFIG_FAIR_GROUP_SCHED
2887 /**
2888 * update_tg_load_avg - update the tg's load avg
2889 * @cfs_rq: the cfs_rq whose avg changed
2890 * @force: update regardless of how small the difference
2891 *
2892 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2893 * However, because tg->load_avg is a global value there are performance
2894 * considerations.
2895 *
2896 * In order to avoid having to look at the other cfs_rq's, we use a
2897 * differential update where we store the last value we propagated. This in
2898 * turn allows skipping updates if the differential is 'small'.
2899 *
2900 * Updating tg's load_avg is necessary before update_cfs_share() (which is
2901 * done) and effective_load() (which is not done because it is too costly).
2902 */
2903 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2904 {
2905 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2906
2907 /*
2908 * No need to update load_avg for root_task_group as it is not used.
2909 */
2910 if (cfs_rq->tg == &root_task_group)
2911 return;
2912
2913 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2914 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2915 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2916 }
2917 }
2918
2919 /*
2920 * Called within set_task_rq() right before setting a task's cpu. The
2921 * caller only guarantees p->pi_lock is held; no other assumptions,
2922 * including the state of rq->lock, should be made.
2923 */
2924 void set_task_rq_fair(struct sched_entity *se,
2925 struct cfs_rq *prev, struct cfs_rq *next)
2926 {
2927 if (!sched_feat(ATTACH_AGE_LOAD))
2928 return;
2929
2930 /*
2931 * We are supposed to update the task to "current" time, then its up to
2932 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2933 * getting what current time is, so simply throw away the out-of-date
2934 * time. This will result in the wakee task is less decayed, but giving
2935 * the wakee more load sounds not bad.
2936 */
2937 if (se->avg.last_update_time && prev) {
2938 u64 p_last_update_time;
2939 u64 n_last_update_time;
2940
2941 #ifndef CONFIG_64BIT
2942 u64 p_last_update_time_copy;
2943 u64 n_last_update_time_copy;
2944
2945 do {
2946 p_last_update_time_copy = prev->load_last_update_time_copy;
2947 n_last_update_time_copy = next->load_last_update_time_copy;
2948
2949 smp_rmb();
2950
2951 p_last_update_time = prev->avg.last_update_time;
2952 n_last_update_time = next->avg.last_update_time;
2953
2954 } while (p_last_update_time != p_last_update_time_copy ||
2955 n_last_update_time != n_last_update_time_copy);
2956 #else
2957 p_last_update_time = prev->avg.last_update_time;
2958 n_last_update_time = next->avg.last_update_time;
2959 #endif
2960 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2961 &se->avg, 0, 0, NULL);
2962 se->avg.last_update_time = n_last_update_time;
2963 }
2964 }
2965 #else /* CONFIG_FAIR_GROUP_SCHED */
2966 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2967 #endif /* CONFIG_FAIR_GROUP_SCHED */
2968
2969 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2970 {
2971 if (&this_rq()->cfs == cfs_rq) {
2972 /*
2973 * There are a few boundary cases this might miss but it should
2974 * get called often enough that that should (hopefully) not be
2975 * a real problem -- added to that it only calls on the local
2976 * CPU, so if we enqueue remotely we'll miss an update, but
2977 * the next tick/schedule should update.
2978 *
2979 * It will not get called when we go idle, because the idle
2980 * thread is a different class (!fair), nor will the utilization
2981 * number include things like RT tasks.
2982 *
2983 * As is, the util number is not freq-invariant (we'd have to
2984 * implement arch_scale_freq_capacity() for that).
2985 *
2986 * See cpu_util().
2987 */
2988 cpufreq_update_util(rq_of(cfs_rq), 0);
2989 }
2990 }
2991
2992 /*
2993 * Unsigned subtract and clamp on underflow.
2994 *
2995 * Explicitly do a load-store to ensure the intermediate value never hits
2996 * memory. This allows lockless observations without ever seeing the negative
2997 * values.
2998 */
2999 #define sub_positive(_ptr, _val) do { \
3000 typeof(_ptr) ptr = (_ptr); \
3001 typeof(*ptr) val = (_val); \
3002 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3003 res = var - val; \
3004 if (res > var) \
3005 res = 0; \
3006 WRITE_ONCE(*ptr, res); \
3007 } while (0)
3008
3009 /**
3010 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3011 * @now: current time, as per cfs_rq_clock_task()
3012 * @cfs_rq: cfs_rq to update
3013 * @update_freq: should we call cfs_rq_util_change() or will the call do so
3014 *
3015 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3016 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3017 * post_init_entity_util_avg().
3018 *
3019 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3020 *
3021 * Returns true if the load decayed or we removed load.
3022 *
3023 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3024 * call update_tg_load_avg() when this function returns true.
3025 */
3026 static inline int
3027 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3028 {
3029 struct sched_avg *sa = &cfs_rq->avg;
3030 int decayed, removed_load = 0, removed_util = 0;
3031
3032 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
3033 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
3034 sub_positive(&sa->load_avg, r);
3035 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
3036 removed_load = 1;
3037 }
3038
3039 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3040 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
3041 sub_positive(&sa->util_avg, r);
3042 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
3043 removed_util = 1;
3044 }
3045
3046 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
3047 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
3048
3049 #ifndef CONFIG_64BIT
3050 smp_wmb();
3051 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3052 #endif
3053
3054 if (update_freq && (decayed || removed_util))
3055 cfs_rq_util_change(cfs_rq);
3056
3057 return decayed || removed_load;
3058 }
3059
3060 /* Update task and its cfs_rq load average */
3061 static inline void update_load_avg(struct sched_entity *se, int update_tg)
3062 {
3063 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3064 u64 now = cfs_rq_clock_task(cfs_rq);
3065 struct rq *rq = rq_of(cfs_rq);
3066 int cpu = cpu_of(rq);
3067
3068 /*
3069 * Track task load average for carrying it to new CPU after migrated, and
3070 * track group sched_entity load average for task_h_load calc in migration
3071 */
3072 __update_load_avg(now, cpu, &se->avg,
3073 se->on_rq * scale_load_down(se->load.weight),
3074 cfs_rq->curr == se, NULL);
3075
3076 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
3077 update_tg_load_avg(cfs_rq, 0);
3078 }
3079
3080 /**
3081 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3082 * @cfs_rq: cfs_rq to attach to
3083 * @se: sched_entity to attach
3084 *
3085 * Must call update_cfs_rq_load_avg() before this, since we rely on
3086 * cfs_rq->avg.last_update_time being current.
3087 */
3088 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3089 {
3090 if (!sched_feat(ATTACH_AGE_LOAD))
3091 goto skip_aging;
3092
3093 /*
3094 * If we got migrated (either between CPUs or between cgroups) we'll
3095 * have aged the average right before clearing @last_update_time.
3096 *
3097 * Or we're fresh through post_init_entity_util_avg().
3098 */
3099 if (se->avg.last_update_time) {
3100 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3101 &se->avg, 0, 0, NULL);
3102
3103 /*
3104 * XXX: we could have just aged the entire load away if we've been
3105 * absent from the fair class for too long.
3106 */
3107 }
3108
3109 skip_aging:
3110 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3111 cfs_rq->avg.load_avg += se->avg.load_avg;
3112 cfs_rq->avg.load_sum += se->avg.load_sum;
3113 cfs_rq->avg.util_avg += se->avg.util_avg;
3114 cfs_rq->avg.util_sum += se->avg.util_sum;
3115
3116 cfs_rq_util_change(cfs_rq);
3117 }
3118
3119 /**
3120 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3121 * @cfs_rq: cfs_rq to detach from
3122 * @se: sched_entity to detach
3123 *
3124 * Must call update_cfs_rq_load_avg() before this, since we rely on
3125 * cfs_rq->avg.last_update_time being current.
3126 */
3127 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3128 {
3129 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3130 &se->avg, se->on_rq * scale_load_down(se->load.weight),
3131 cfs_rq->curr == se, NULL);
3132
3133 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3134 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3135 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3136 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3137
3138 cfs_rq_util_change(cfs_rq);
3139 }
3140
3141 /* Add the load generated by se into cfs_rq's load average */
3142 static inline void
3143 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3144 {
3145 struct sched_avg *sa = &se->avg;
3146 u64 now = cfs_rq_clock_task(cfs_rq);
3147 int migrated, decayed;
3148
3149 migrated = !sa->last_update_time;
3150 if (!migrated) {
3151 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
3152 se->on_rq * scale_load_down(se->load.weight),
3153 cfs_rq->curr == se, NULL);
3154 }
3155
3156 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
3157
3158 cfs_rq->runnable_load_avg += sa->load_avg;
3159 cfs_rq->runnable_load_sum += sa->load_sum;
3160
3161 if (migrated)
3162 attach_entity_load_avg(cfs_rq, se);
3163
3164 if (decayed || migrated)
3165 update_tg_load_avg(cfs_rq, 0);
3166 }
3167
3168 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
3169 static inline void
3170 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3171 {
3172 update_load_avg(se, 1);
3173
3174 cfs_rq->runnable_load_avg =
3175 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3176 cfs_rq->runnable_load_sum =
3177 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3178 }
3179
3180 #ifndef CONFIG_64BIT
3181 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3182 {
3183 u64 last_update_time_copy;
3184 u64 last_update_time;
3185
3186 do {
3187 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3188 smp_rmb();
3189 last_update_time = cfs_rq->avg.last_update_time;
3190 } while (last_update_time != last_update_time_copy);
3191
3192 return last_update_time;
3193 }
3194 #else
3195 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3196 {
3197 return cfs_rq->avg.last_update_time;
3198 }
3199 #endif
3200
3201 /*
3202 * Task first catches up with cfs_rq, and then subtract
3203 * itself from the cfs_rq (task must be off the queue now).
3204 */
3205 void remove_entity_load_avg(struct sched_entity *se)
3206 {
3207 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3208 u64 last_update_time;
3209
3210 /*
3211 * tasks cannot exit without having gone through wake_up_new_task() ->
3212 * post_init_entity_util_avg() which will have added things to the
3213 * cfs_rq, so we can remove unconditionally.
3214 *
3215 * Similarly for groups, they will have passed through
3216 * post_init_entity_util_avg() before unregister_sched_fair_group()
3217 * calls this.
3218 */
3219
3220 last_update_time = cfs_rq_last_update_time(cfs_rq);
3221
3222 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3223 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3224 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3225 }
3226
3227 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3228 {
3229 return cfs_rq->runnable_load_avg;
3230 }
3231
3232 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3233 {
3234 return cfs_rq->avg.load_avg;
3235 }
3236
3237 static int idle_balance(struct rq *this_rq);
3238
3239 #else /* CONFIG_SMP */
3240
3241 static inline int
3242 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3243 {
3244 return 0;
3245 }
3246
3247 static inline void update_load_avg(struct sched_entity *se, int not_used)
3248 {
3249 cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
3250 }
3251
3252 static inline void
3253 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3254 static inline void
3255 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3256 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3257
3258 static inline void
3259 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3260 static inline void
3261 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3262
3263 static inline int idle_balance(struct rq *rq)
3264 {
3265 return 0;
3266 }
3267
3268 #endif /* CONFIG_SMP */
3269
3270 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3271 {
3272 #ifdef CONFIG_SCHED_DEBUG
3273 s64 d = se->vruntime - cfs_rq->min_vruntime;
3274
3275 if (d < 0)
3276 d = -d;
3277
3278 if (d > 3*sysctl_sched_latency)
3279 schedstat_inc(cfs_rq->nr_spread_over);
3280 #endif
3281 }
3282
3283 static void
3284 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3285 {
3286 u64 vruntime = cfs_rq->min_vruntime;
3287
3288 /*
3289 * The 'current' period is already promised to the current tasks,
3290 * however the extra weight of the new task will slow them down a
3291 * little, place the new task so that it fits in the slot that
3292 * stays open at the end.
3293 */
3294 if (initial && sched_feat(START_DEBIT))
3295 vruntime += sched_vslice(cfs_rq, se);
3296
3297 /* sleeps up to a single latency don't count. */
3298 if (!initial) {
3299 unsigned long thresh = sysctl_sched_latency;
3300
3301 /*
3302 * Halve their sleep time's effect, to allow
3303 * for a gentler effect of sleepers:
3304 */
3305 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3306 thresh >>= 1;
3307
3308 vruntime -= thresh;
3309 }
3310
3311 /* ensure we never gain time by being placed backwards. */
3312 se->vruntime = max_vruntime(se->vruntime, vruntime);
3313 }
3314
3315 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3316
3317 static inline void check_schedstat_required(void)
3318 {
3319 #ifdef CONFIG_SCHEDSTATS
3320 if (schedstat_enabled())
3321 return;
3322
3323 /* Force schedstat enabled if a dependent tracepoint is active */
3324 if (trace_sched_stat_wait_enabled() ||
3325 trace_sched_stat_sleep_enabled() ||
3326 trace_sched_stat_iowait_enabled() ||
3327 trace_sched_stat_blocked_enabled() ||
3328 trace_sched_stat_runtime_enabled()) {
3329 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3330 "stat_blocked and stat_runtime require the "
3331 "kernel parameter schedstats=enabled or "
3332 "kernel.sched_schedstats=1\n");
3333 }
3334 #endif
3335 }
3336
3337
3338 /*
3339 * MIGRATION
3340 *
3341 * dequeue
3342 * update_curr()
3343 * update_min_vruntime()
3344 * vruntime -= min_vruntime
3345 *
3346 * enqueue
3347 * update_curr()
3348 * update_min_vruntime()
3349 * vruntime += min_vruntime
3350 *
3351 * this way the vruntime transition between RQs is done when both
3352 * min_vruntime are up-to-date.
3353 *
3354 * WAKEUP (remote)
3355 *
3356 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
3357 * vruntime -= min_vruntime
3358 *
3359 * enqueue
3360 * update_curr()
3361 * update_min_vruntime()
3362 * vruntime += min_vruntime
3363 *
3364 * this way we don't have the most up-to-date min_vruntime on the originating
3365 * CPU and an up-to-date min_vruntime on the destination CPU.
3366 */
3367
3368 static void
3369 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3370 {
3371 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3372 bool curr = cfs_rq->curr == se;
3373
3374 /*
3375 * If we're the current task, we must renormalise before calling
3376 * update_curr().
3377 */
3378 if (renorm && curr)
3379 se->vruntime += cfs_rq->min_vruntime;
3380
3381 update_curr(cfs_rq);
3382
3383 /*
3384 * Otherwise, renormalise after, such that we're placed at the current
3385 * moment in time, instead of some random moment in the past. Being
3386 * placed in the past could significantly boost this task to the
3387 * fairness detriment of existing tasks.
3388 */
3389 if (renorm && !curr)
3390 se->vruntime += cfs_rq->min_vruntime;
3391
3392 enqueue_entity_load_avg(cfs_rq, se);
3393 account_entity_enqueue(cfs_rq, se);
3394 update_cfs_shares(cfs_rq);
3395
3396 if (flags & ENQUEUE_WAKEUP)
3397 place_entity(cfs_rq, se, 0);
3398
3399 check_schedstat_required();
3400 update_stats_enqueue(cfs_rq, se, flags);
3401 check_spread(cfs_rq, se);
3402 if (!curr)
3403 __enqueue_entity(cfs_rq, se);
3404 se->on_rq = 1;
3405
3406 if (cfs_rq->nr_running == 1) {
3407 list_add_leaf_cfs_rq(cfs_rq);
3408 check_enqueue_throttle(cfs_rq);
3409 }
3410 }
3411
3412 static void __clear_buddies_last(struct sched_entity *se)
3413 {
3414 for_each_sched_entity(se) {
3415 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3416 if (cfs_rq->last != se)
3417 break;
3418
3419 cfs_rq->last = NULL;
3420 }
3421 }
3422
3423 static void __clear_buddies_next(struct sched_entity *se)
3424 {
3425 for_each_sched_entity(se) {
3426 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3427 if (cfs_rq->next != se)
3428 break;
3429
3430 cfs_rq->next = NULL;
3431 }
3432 }
3433
3434 static void __clear_buddies_skip(struct sched_entity *se)
3435 {
3436 for_each_sched_entity(se) {
3437 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3438 if (cfs_rq->skip != se)
3439 break;
3440
3441 cfs_rq->skip = NULL;
3442 }
3443 }
3444
3445 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3446 {
3447 if (cfs_rq->last == se)
3448 __clear_buddies_last(se);
3449
3450 if (cfs_rq->next == se)
3451 __clear_buddies_next(se);
3452
3453 if (cfs_rq->skip == se)
3454 __clear_buddies_skip(se);
3455 }
3456
3457 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3458
3459 static void
3460 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3461 {
3462 /*
3463 * Update run-time statistics of the 'current'.
3464 */
3465 update_curr(cfs_rq);
3466 dequeue_entity_load_avg(cfs_rq, se);
3467
3468 update_stats_dequeue(cfs_rq, se, flags);
3469
3470 clear_buddies(cfs_rq, se);
3471
3472 if (se != cfs_rq->curr)
3473 __dequeue_entity(cfs_rq, se);
3474 se->on_rq = 0;
3475 account_entity_dequeue(cfs_rq, se);
3476
3477 /*
3478 * Normalize after update_curr(); which will also have moved
3479 * min_vruntime if @se is the one holding it back. But before doing
3480 * update_min_vruntime() again, which will discount @se's position and
3481 * can move min_vruntime forward still more.
3482 */
3483 if (!(flags & DEQUEUE_SLEEP))
3484 se->vruntime -= cfs_rq->min_vruntime;
3485
3486 /* return excess runtime on last dequeue */
3487 return_cfs_rq_runtime(cfs_rq);
3488
3489 update_cfs_shares(cfs_rq);
3490
3491 /*
3492 * Now advance min_vruntime if @se was the entity holding it back,
3493 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3494 * put back on, and if we advance min_vruntime, we'll be placed back
3495 * further than we started -- ie. we'll be penalized.
3496 */
3497 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3498 update_min_vruntime(cfs_rq);
3499 }
3500
3501 /*
3502 * Preempt the current task with a newly woken task if needed:
3503 */
3504 static void
3505 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3506 {
3507 unsigned long ideal_runtime, delta_exec;
3508 struct sched_entity *se;
3509 s64 delta;
3510
3511 ideal_runtime = sched_slice(cfs_rq, curr);
3512 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3513 if (delta_exec > ideal_runtime) {
3514 resched_curr(rq_of(cfs_rq));
3515 /*
3516 * The current task ran long enough, ensure it doesn't get
3517 * re-elected due to buddy favours.
3518 */
3519 clear_buddies(cfs_rq, curr);
3520 return;
3521 }
3522
3523 /*
3524 * Ensure that a task that missed wakeup preemption by a
3525 * narrow margin doesn't have to wait for a full slice.
3526 * This also mitigates buddy induced latencies under load.
3527 */
3528 if (delta_exec < sysctl_sched_min_granularity)
3529 return;
3530
3531 se = __pick_first_entity(cfs_rq);
3532 delta = curr->vruntime - se->vruntime;
3533
3534 if (delta < 0)
3535 return;
3536
3537 if (delta > ideal_runtime)
3538 resched_curr(rq_of(cfs_rq));
3539 }
3540
3541 static void
3542 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3543 {
3544 /* 'current' is not kept within the tree. */
3545 if (se->on_rq) {
3546 /*
3547 * Any task has to be enqueued before it get to execute on
3548 * a CPU. So account for the time it spent waiting on the
3549 * runqueue.
3550 */
3551 update_stats_wait_end(cfs_rq, se);
3552 __dequeue_entity(cfs_rq, se);
3553 update_load_avg(se, 1);
3554 }
3555
3556 update_stats_curr_start(cfs_rq, se);
3557 cfs_rq->curr = se;
3558
3559 /*
3560 * Track our maximum slice length, if the CPU's load is at
3561 * least twice that of our own weight (i.e. dont track it
3562 * when there are only lesser-weight tasks around):
3563 */
3564 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3565 schedstat_set(se->statistics.slice_max,
3566 max((u64)schedstat_val(se->statistics.slice_max),
3567 se->sum_exec_runtime - se->prev_sum_exec_runtime));
3568 }
3569
3570 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3571 }
3572
3573 static int
3574 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3575
3576 /*
3577 * Pick the next process, keeping these things in mind, in this order:
3578 * 1) keep things fair between processes/task groups
3579 * 2) pick the "next" process, since someone really wants that to run
3580 * 3) pick the "last" process, for cache locality
3581 * 4) do not run the "skip" process, if something else is available
3582 */
3583 static struct sched_entity *
3584 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3585 {
3586 struct sched_entity *left = __pick_first_entity(cfs_rq);
3587 struct sched_entity *se;
3588
3589 /*
3590 * If curr is set we have to see if its left of the leftmost entity
3591 * still in the tree, provided there was anything in the tree at all.
3592 */
3593 if (!left || (curr && entity_before(curr, left)))
3594 left = curr;
3595
3596 se = left; /* ideally we run the leftmost entity */
3597
3598 /*
3599 * Avoid running the skip buddy, if running something else can
3600 * be done without getting too unfair.
3601 */
3602 if (cfs_rq->skip == se) {
3603 struct sched_entity *second;
3604
3605 if (se == curr) {
3606 second = __pick_first_entity(cfs_rq);
3607 } else {
3608 second = __pick_next_entity(se);
3609 if (!second || (curr && entity_before(curr, second)))
3610 second = curr;
3611 }
3612
3613 if (second && wakeup_preempt_entity(second, left) < 1)
3614 se = second;
3615 }
3616
3617 /*
3618 * Prefer last buddy, try to return the CPU to a preempted task.
3619 */
3620 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3621 se = cfs_rq->last;
3622
3623 /*
3624 * Someone really wants this to run. If it's not unfair, run it.
3625 */
3626 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3627 se = cfs_rq->next;
3628
3629 clear_buddies(cfs_rq, se);
3630
3631 return se;
3632 }
3633
3634 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3635
3636 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3637 {
3638 /*
3639 * If still on the runqueue then deactivate_task()
3640 * was not called and update_curr() has to be done:
3641 */
3642 if (prev->on_rq)
3643 update_curr(cfs_rq);
3644
3645 /* throttle cfs_rqs exceeding runtime */
3646 check_cfs_rq_runtime(cfs_rq);
3647
3648 check_spread(cfs_rq, prev);
3649
3650 if (prev->on_rq) {
3651 update_stats_wait_start(cfs_rq, prev);
3652 /* Put 'current' back into the tree. */
3653 __enqueue_entity(cfs_rq, prev);
3654 /* in !on_rq case, update occurred at dequeue */
3655 update_load_avg(prev, 0);
3656 }
3657 cfs_rq->curr = NULL;
3658 }
3659
3660 static void
3661 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3662 {
3663 /*
3664 * Update run-time statistics of the 'current'.
3665 */
3666 update_curr(cfs_rq);
3667
3668 /*
3669 * Ensure that runnable average is periodically updated.
3670 */
3671 update_load_avg(curr, 1);
3672 update_cfs_shares(cfs_rq);
3673
3674 #ifdef CONFIG_SCHED_HRTICK
3675 /*
3676 * queued ticks are scheduled to match the slice, so don't bother
3677 * validating it and just reschedule.
3678 */
3679 if (queued) {
3680 resched_curr(rq_of(cfs_rq));
3681 return;
3682 }
3683 /*
3684 * don't let the period tick interfere with the hrtick preemption
3685 */
3686 if (!sched_feat(DOUBLE_TICK) &&
3687 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3688 return;
3689 #endif
3690
3691 if (cfs_rq->nr_running > 1)
3692 check_preempt_tick(cfs_rq, curr);
3693 }
3694
3695
3696 /**************************************************
3697 * CFS bandwidth control machinery
3698 */
3699
3700 #ifdef CONFIG_CFS_BANDWIDTH
3701
3702 #ifdef HAVE_JUMP_LABEL
3703 static struct static_key __cfs_bandwidth_used;
3704
3705 static inline bool cfs_bandwidth_used(void)
3706 {
3707 return static_key_false(&__cfs_bandwidth_used);
3708 }
3709
3710 void cfs_bandwidth_usage_inc(void)
3711 {
3712 static_key_slow_inc(&__cfs_bandwidth_used);
3713 }
3714
3715 void cfs_bandwidth_usage_dec(void)
3716 {
3717 static_key_slow_dec(&__cfs_bandwidth_used);
3718 }
3719 #else /* HAVE_JUMP_LABEL */
3720 static bool cfs_bandwidth_used(void)
3721 {
3722 return true;
3723 }
3724
3725 void cfs_bandwidth_usage_inc(void) {}
3726 void cfs_bandwidth_usage_dec(void) {}
3727 #endif /* HAVE_JUMP_LABEL */
3728
3729 /*
3730 * default period for cfs group bandwidth.
3731 * default: 0.1s, units: nanoseconds
3732 */
3733 static inline u64 default_cfs_period(void)
3734 {
3735 return 100000000ULL;
3736 }
3737
3738 static inline u64 sched_cfs_bandwidth_slice(void)
3739 {
3740 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3741 }
3742
3743 /*
3744 * Replenish runtime according to assigned quota and update expiration time.
3745 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3746 * additional synchronization around rq->lock.
3747 *
3748 * requires cfs_b->lock
3749 */
3750 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3751 {
3752 u64 now;
3753
3754 if (cfs_b->quota == RUNTIME_INF)
3755 return;
3756
3757 now = sched_clock_cpu(smp_processor_id());
3758 cfs_b->runtime = cfs_b->quota;
3759 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3760 }
3761
3762 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3763 {
3764 return &tg->cfs_bandwidth;
3765 }
3766
3767 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3768 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3769 {
3770 if (unlikely(cfs_rq->throttle_count))
3771 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
3772
3773 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3774 }
3775
3776 /* returns 0 on failure to allocate runtime */
3777 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3778 {
3779 struct task_group *tg = cfs_rq->tg;
3780 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3781 u64 amount = 0, min_amount, expires;
3782
3783 /* note: this is a positive sum as runtime_remaining <= 0 */
3784 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3785
3786 raw_spin_lock(&cfs_b->lock);
3787 if (cfs_b->quota == RUNTIME_INF)
3788 amount = min_amount;
3789 else {
3790 start_cfs_bandwidth(cfs_b);
3791
3792 if (cfs_b->runtime > 0) {
3793 amount = min(cfs_b->runtime, min_amount);
3794 cfs_b->runtime -= amount;
3795 cfs_b->idle = 0;
3796 }
3797 }
3798 expires = cfs_b->runtime_expires;
3799 raw_spin_unlock(&cfs_b->lock);
3800
3801 cfs_rq->runtime_remaining += amount;
3802 /*
3803 * we may have advanced our local expiration to account for allowed
3804 * spread between our sched_clock and the one on which runtime was
3805 * issued.
3806 */
3807 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3808 cfs_rq->runtime_expires = expires;
3809
3810 return cfs_rq->runtime_remaining > 0;
3811 }
3812
3813 /*
3814 * Note: This depends on the synchronization provided by sched_clock and the
3815 * fact that rq->clock snapshots this value.
3816 */
3817 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3818 {
3819 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3820
3821 /* if the deadline is ahead of our clock, nothing to do */
3822 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3823 return;
3824
3825 if (cfs_rq->runtime_remaining < 0)
3826 return;
3827
3828 /*
3829 * If the local deadline has passed we have to consider the
3830 * possibility that our sched_clock is 'fast' and the global deadline
3831 * has not truly expired.
3832 *
3833 * Fortunately we can check determine whether this the case by checking
3834 * whether the global deadline has advanced. It is valid to compare
3835 * cfs_b->runtime_expires without any locks since we only care about
3836 * exact equality, so a partial write will still work.
3837 */
3838
3839 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3840 /* extend local deadline, drift is bounded above by 2 ticks */
3841 cfs_rq->runtime_expires += TICK_NSEC;
3842 } else {
3843 /* global deadline is ahead, expiration has passed */
3844 cfs_rq->runtime_remaining = 0;
3845 }
3846 }
3847
3848 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3849 {
3850 /* dock delta_exec before expiring quota (as it could span periods) */
3851 cfs_rq->runtime_remaining -= delta_exec;
3852 expire_cfs_rq_runtime(cfs_rq);
3853
3854 if (likely(cfs_rq->runtime_remaining > 0))
3855 return;
3856
3857 /*
3858 * if we're unable to extend our runtime we resched so that the active
3859 * hierarchy can be throttled
3860 */
3861 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3862 resched_curr(rq_of(cfs_rq));
3863 }
3864
3865 static __always_inline
3866 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3867 {
3868 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3869 return;
3870
3871 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3872 }
3873
3874 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3875 {
3876 return cfs_bandwidth_used() && cfs_rq->throttled;
3877 }
3878
3879 /* check whether cfs_rq, or any parent, is throttled */
3880 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3881 {
3882 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3883 }
3884
3885 /*
3886 * Ensure that neither of the group entities corresponding to src_cpu or
3887 * dest_cpu are members of a throttled hierarchy when performing group
3888 * load-balance operations.
3889 */
3890 static inline int throttled_lb_pair(struct task_group *tg,
3891 int src_cpu, int dest_cpu)
3892 {
3893 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3894
3895 src_cfs_rq = tg->cfs_rq[src_cpu];
3896 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3897
3898 return throttled_hierarchy(src_cfs_rq) ||
3899 throttled_hierarchy(dest_cfs_rq);
3900 }
3901
3902 /* updated child weight may affect parent so we have to do this bottom up */
3903 static int tg_unthrottle_up(struct task_group *tg, void *data)
3904 {
3905 struct rq *rq = data;
3906 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3907
3908 cfs_rq->throttle_count--;
3909 if (!cfs_rq->throttle_count) {
3910 /* adjust cfs_rq_clock_task() */
3911 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3912 cfs_rq->throttled_clock_task;
3913 }
3914
3915 return 0;
3916 }
3917
3918 static int tg_throttle_down(struct task_group *tg, void *data)
3919 {
3920 struct rq *rq = data;
3921 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3922
3923 /* group is entering throttled state, stop time */
3924 if (!cfs_rq->throttle_count)
3925 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3926 cfs_rq->throttle_count++;
3927
3928 return 0;
3929 }
3930
3931 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3932 {
3933 struct rq *rq = rq_of(cfs_rq);
3934 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3935 struct sched_entity *se;
3936 long task_delta, dequeue = 1;
3937 bool empty;
3938
3939 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3940
3941 /* freeze hierarchy runnable averages while throttled */
3942 rcu_read_lock();
3943 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3944 rcu_read_unlock();
3945
3946 task_delta = cfs_rq->h_nr_running;
3947 for_each_sched_entity(se) {
3948 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3949 /* throttled entity or throttle-on-deactivate */
3950 if (!se->on_rq)
3951 break;
3952
3953 if (dequeue)
3954 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3955 qcfs_rq->h_nr_running -= task_delta;
3956
3957 if (qcfs_rq->load.weight)
3958 dequeue = 0;
3959 }
3960
3961 if (!se)
3962 sub_nr_running(rq, task_delta);
3963
3964 cfs_rq->throttled = 1;
3965 cfs_rq->throttled_clock = rq_clock(rq);
3966 raw_spin_lock(&cfs_b->lock);
3967 empty = list_empty(&cfs_b->throttled_cfs_rq);
3968
3969 /*
3970 * Add to the _head_ of the list, so that an already-started
3971 * distribute_cfs_runtime will not see us
3972 */
3973 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3974
3975 /*
3976 * If we're the first throttled task, make sure the bandwidth
3977 * timer is running.
3978 */
3979 if (empty)
3980 start_cfs_bandwidth(cfs_b);
3981
3982 raw_spin_unlock(&cfs_b->lock);
3983 }
3984
3985 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3986 {
3987 struct rq *rq = rq_of(cfs_rq);
3988 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3989 struct sched_entity *se;
3990 int enqueue = 1;
3991 long task_delta;
3992
3993 se = cfs_rq->tg->se[cpu_of(rq)];
3994
3995 cfs_rq->throttled = 0;
3996
3997 update_rq_clock(rq);
3998
3999 raw_spin_lock(&cfs_b->lock);
4000 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4001 list_del_rcu(&cfs_rq->throttled_list);
4002 raw_spin_unlock(&cfs_b->lock);
4003
4004 /* update hierarchical throttle state */
4005 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4006
4007 if (!cfs_rq->load.weight)
4008 return;
4009
4010 task_delta = cfs_rq->h_nr_running;
4011 for_each_sched_entity(se) {
4012 if (se->on_rq)
4013 enqueue = 0;
4014
4015 cfs_rq = cfs_rq_of(se);
4016 if (enqueue)
4017 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4018 cfs_rq->h_nr_running += task_delta;
4019
4020 if (cfs_rq_throttled(cfs_rq))
4021 break;
4022 }
4023
4024 if (!se)
4025 add_nr_running(rq, task_delta);
4026
4027 /* determine whether we need to wake up potentially idle cpu */
4028 if (rq->curr == rq->idle && rq->cfs.nr_running)
4029 resched_curr(rq);
4030 }
4031
4032 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4033 u64 remaining, u64 expires)
4034 {
4035 struct cfs_rq *cfs_rq;
4036 u64 runtime;
4037 u64 starting_runtime = remaining;
4038
4039 rcu_read_lock();
4040 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4041 throttled_list) {
4042 struct rq *rq = rq_of(cfs_rq);
4043
4044 raw_spin_lock(&rq->lock);
4045 if (!cfs_rq_throttled(cfs_rq))
4046 goto next;
4047
4048 runtime = -cfs_rq->runtime_remaining + 1;
4049 if (runtime > remaining)
4050 runtime = remaining;
4051 remaining -= runtime;
4052
4053 cfs_rq->runtime_remaining += runtime;
4054 cfs_rq->runtime_expires = expires;
4055
4056 /* we check whether we're throttled above */
4057 if (cfs_rq->runtime_remaining > 0)
4058 unthrottle_cfs_rq(cfs_rq);
4059
4060 next:
4061 raw_spin_unlock(&rq->lock);
4062
4063 if (!remaining)
4064 break;
4065 }
4066 rcu_read_unlock();
4067
4068 return starting_runtime - remaining;
4069 }
4070
4071 /*
4072 * Responsible for refilling a task_group's bandwidth and unthrottling its
4073 * cfs_rqs as appropriate. If there has been no activity within the last
4074 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4075 * used to track this state.
4076 */
4077 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4078 {
4079 u64 runtime, runtime_expires;
4080 int throttled;
4081
4082 /* no need to continue the timer with no bandwidth constraint */
4083 if (cfs_b->quota == RUNTIME_INF)
4084 goto out_deactivate;
4085
4086 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4087 cfs_b->nr_periods += overrun;
4088
4089 /*
4090 * idle depends on !throttled (for the case of a large deficit), and if
4091 * we're going inactive then everything else can be deferred
4092 */
4093 if (cfs_b->idle && !throttled)
4094 goto out_deactivate;
4095
4096 __refill_cfs_bandwidth_runtime(cfs_b);
4097
4098 if (!throttled) {
4099 /* mark as potentially idle for the upcoming period */
4100 cfs_b->idle = 1;
4101 return 0;
4102 }
4103
4104 /* account preceding periods in which throttling occurred */
4105 cfs_b->nr_throttled += overrun;
4106
4107 runtime_expires = cfs_b->runtime_expires;
4108
4109 /*
4110 * This check is repeated as we are holding onto the new bandwidth while
4111 * we unthrottle. This can potentially race with an unthrottled group
4112 * trying to acquire new bandwidth from the global pool. This can result
4113 * in us over-using our runtime if it is all used during this loop, but
4114 * only by limited amounts in that extreme case.
4115 */
4116 while (throttled && cfs_b->runtime > 0) {
4117 runtime = cfs_b->runtime;
4118 raw_spin_unlock(&cfs_b->lock);
4119 /* we can't nest cfs_b->lock while distributing bandwidth */
4120 runtime = distribute_cfs_runtime(cfs_b, runtime,
4121 runtime_expires);
4122 raw_spin_lock(&cfs_b->lock);
4123
4124 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4125
4126 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4127 }
4128
4129 /*
4130 * While we are ensured activity in the period following an
4131 * unthrottle, this also covers the case in which the new bandwidth is
4132 * insufficient to cover the existing bandwidth deficit. (Forcing the
4133 * timer to remain active while there are any throttled entities.)
4134 */
4135 cfs_b->idle = 0;
4136
4137 return 0;
4138
4139 out_deactivate:
4140 return 1;
4141 }
4142
4143 /* a cfs_rq won't donate quota below this amount */
4144 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4145 /* minimum remaining period time to redistribute slack quota */
4146 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4147 /* how long we wait to gather additional slack before distributing */
4148 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4149
4150 /*
4151 * Are we near the end of the current quota period?
4152 *
4153 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4154 * hrtimer base being cleared by hrtimer_start. In the case of
4155 * migrate_hrtimers, base is never cleared, so we are fine.
4156 */
4157 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4158 {
4159 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4160 u64 remaining;
4161
4162 /* if the call-back is running a quota refresh is already occurring */
4163 if (hrtimer_callback_running(refresh_timer))
4164 return 1;
4165
4166 /* is a quota refresh about to occur? */
4167 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4168 if (remaining < min_expire)
4169 return 1;
4170
4171 return 0;
4172 }
4173
4174 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4175 {
4176 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4177
4178 /* if there's a quota refresh soon don't bother with slack */
4179 if (runtime_refresh_within(cfs_b, min_left))
4180 return;
4181
4182 hrtimer_start(&cfs_b->slack_timer,
4183 ns_to_ktime(cfs_bandwidth_slack_period),
4184 HRTIMER_MODE_REL);
4185 }
4186
4187 /* we know any runtime found here is valid as update_curr() precedes return */
4188 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4189 {
4190 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4191 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4192
4193 if (slack_runtime <= 0)
4194 return;
4195
4196 raw_spin_lock(&cfs_b->lock);
4197 if (cfs_b->quota != RUNTIME_INF &&
4198 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4199 cfs_b->runtime += slack_runtime;
4200
4201 /* we are under rq->lock, defer unthrottling using a timer */
4202 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4203 !list_empty(&cfs_b->throttled_cfs_rq))
4204 start_cfs_slack_bandwidth(cfs_b);
4205 }
4206 raw_spin_unlock(&cfs_b->lock);
4207
4208 /* even if it's not valid for return we don't want to try again */
4209 cfs_rq->runtime_remaining -= slack_runtime;
4210 }
4211
4212 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4213 {
4214 if (!cfs_bandwidth_used())
4215 return;
4216
4217 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4218 return;
4219
4220 __return_cfs_rq_runtime(cfs_rq);
4221 }
4222
4223 /*
4224 * This is done with a timer (instead of inline with bandwidth return) since
4225 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4226 */
4227 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4228 {
4229 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4230 u64 expires;
4231
4232 /* confirm we're still not at a refresh boundary */
4233 raw_spin_lock(&cfs_b->lock);
4234 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4235 raw_spin_unlock(&cfs_b->lock);
4236 return;
4237 }
4238
4239 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4240 runtime = cfs_b->runtime;
4241
4242 expires = cfs_b->runtime_expires;
4243 raw_spin_unlock(&cfs_b->lock);
4244
4245 if (!runtime)
4246 return;
4247
4248 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4249
4250 raw_spin_lock(&cfs_b->lock);
4251 if (expires == cfs_b->runtime_expires)
4252 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4253 raw_spin_unlock(&cfs_b->lock);
4254 }
4255
4256 /*
4257 * When a group wakes up we want to make sure that its quota is not already
4258 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4259 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4260 */
4261 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4262 {
4263 if (!cfs_bandwidth_used())
4264 return;
4265
4266 /* an active group must be handled by the update_curr()->put() path */
4267 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4268 return;
4269
4270 /* ensure the group is not already throttled */
4271 if (cfs_rq_throttled(cfs_rq))
4272 return;
4273
4274 /* update runtime allocation */
4275 account_cfs_rq_runtime(cfs_rq, 0);
4276 if (cfs_rq->runtime_remaining <= 0)
4277 throttle_cfs_rq(cfs_rq);
4278 }
4279
4280 static void sync_throttle(struct task_group *tg, int cpu)
4281 {
4282 struct cfs_rq *pcfs_rq, *cfs_rq;
4283
4284 if (!cfs_bandwidth_used())
4285 return;
4286
4287 if (!tg->parent)
4288 return;
4289
4290 cfs_rq = tg->cfs_rq[cpu];
4291 pcfs_rq = tg->parent->cfs_rq[cpu];
4292
4293 cfs_rq->throttle_count = pcfs_rq->throttle_count;
4294 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4295 }
4296
4297 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4298 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4299 {
4300 if (!cfs_bandwidth_used())
4301 return false;
4302
4303 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4304 return false;
4305
4306 /*
4307 * it's possible for a throttled entity to be forced into a running
4308 * state (e.g. set_curr_task), in this case we're finished.
4309 */
4310 if (cfs_rq_throttled(cfs_rq))
4311 return true;
4312
4313 throttle_cfs_rq(cfs_rq);
4314 return true;
4315 }
4316
4317 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4318 {
4319 struct cfs_bandwidth *cfs_b =
4320 container_of(timer, struct cfs_bandwidth, slack_timer);
4321
4322 do_sched_cfs_slack_timer(cfs_b);
4323
4324 return HRTIMER_NORESTART;
4325 }
4326
4327 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4328 {
4329 struct cfs_bandwidth *cfs_b =
4330 container_of(timer, struct cfs_bandwidth, period_timer);
4331 int overrun;
4332 int idle = 0;
4333
4334 raw_spin_lock(&cfs_b->lock);
4335 for (;;) {
4336 overrun = hrtimer_forward_now(timer, cfs_b->period);
4337 if (!overrun)
4338 break;
4339
4340 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4341 }
4342 if (idle)
4343 cfs_b->period_active = 0;
4344 raw_spin_unlock(&cfs_b->lock);
4345
4346 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4347 }
4348
4349 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4350 {
4351 raw_spin_lock_init(&cfs_b->lock);
4352 cfs_b->runtime = 0;
4353 cfs_b->quota = RUNTIME_INF;
4354 cfs_b->period = ns_to_ktime(default_cfs_period());
4355
4356 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4357 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4358 cfs_b->period_timer.function = sched_cfs_period_timer;
4359 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4360 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4361 }
4362
4363 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4364 {
4365 cfs_rq->runtime_enabled = 0;
4366 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4367 }
4368
4369 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4370 {
4371 lockdep_assert_held(&cfs_b->lock);
4372
4373 if (!cfs_b->period_active) {
4374 cfs_b->period_active = 1;
4375 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4376 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4377 }
4378 }
4379
4380 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4381 {
4382 /* init_cfs_bandwidth() was not called */
4383 if (!cfs_b->throttled_cfs_rq.next)
4384 return;
4385
4386 hrtimer_cancel(&cfs_b->period_timer);
4387 hrtimer_cancel(&cfs_b->slack_timer);
4388 }
4389
4390 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4391 {
4392 struct cfs_rq *cfs_rq;
4393
4394 for_each_leaf_cfs_rq(rq, cfs_rq) {
4395 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4396
4397 raw_spin_lock(&cfs_b->lock);
4398 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4399 raw_spin_unlock(&cfs_b->lock);
4400 }
4401 }
4402
4403 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4404 {
4405 struct cfs_rq *cfs_rq;
4406
4407 for_each_leaf_cfs_rq(rq, cfs_rq) {
4408 if (!cfs_rq->runtime_enabled)
4409 continue;
4410
4411 /*
4412 * clock_task is not advancing so we just need to make sure
4413 * there's some valid quota amount
4414 */
4415 cfs_rq->runtime_remaining = 1;
4416 /*
4417 * Offline rq is schedulable till cpu is completely disabled
4418 * in take_cpu_down(), so we prevent new cfs throttling here.
4419 */
4420 cfs_rq->runtime_enabled = 0;
4421
4422 if (cfs_rq_throttled(cfs_rq))
4423 unthrottle_cfs_rq(cfs_rq);
4424 }
4425 }
4426
4427 #else /* CONFIG_CFS_BANDWIDTH */
4428 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4429 {
4430 return rq_clock_task(rq_of(cfs_rq));
4431 }
4432
4433 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4434 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4435 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4436 static inline void sync_throttle(struct task_group *tg, int cpu) {}
4437 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4438
4439 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4440 {
4441 return 0;
4442 }
4443
4444 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4445 {
4446 return 0;
4447 }
4448
4449 static inline int throttled_lb_pair(struct task_group *tg,
4450 int src_cpu, int dest_cpu)
4451 {
4452 return 0;
4453 }
4454
4455 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4456
4457 #ifdef CONFIG_FAIR_GROUP_SCHED
4458 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4459 #endif
4460
4461 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4462 {
4463 return NULL;
4464 }
4465 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4466 static inline void update_runtime_enabled(struct rq *rq) {}
4467 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4468
4469 #endif /* CONFIG_CFS_BANDWIDTH */
4470
4471 /**************************************************
4472 * CFS operations on tasks:
4473 */
4474
4475 #ifdef CONFIG_SCHED_HRTICK
4476 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4477 {
4478 struct sched_entity *se = &p->se;
4479 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4480
4481 SCHED_WARN_ON(task_rq(p) != rq);
4482
4483 if (rq->cfs.h_nr_running > 1) {
4484 u64 slice = sched_slice(cfs_rq, se);
4485 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4486 s64 delta = slice - ran;
4487
4488 if (delta < 0) {
4489 if (rq->curr == p)
4490 resched_curr(rq);
4491 return;
4492 }
4493 hrtick_start(rq, delta);
4494 }
4495 }
4496
4497 /*
4498 * called from enqueue/dequeue and updates the hrtick when the
4499 * current task is from our class and nr_running is low enough
4500 * to matter.
4501 */
4502 static void hrtick_update(struct rq *rq)
4503 {
4504 struct task_struct *curr = rq->curr;
4505
4506 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4507 return;
4508
4509 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4510 hrtick_start_fair(rq, curr);
4511 }
4512 #else /* !CONFIG_SCHED_HRTICK */
4513 static inline void
4514 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4515 {
4516 }
4517
4518 static inline void hrtick_update(struct rq *rq)
4519 {
4520 }
4521 #endif
4522
4523 /*
4524 * The enqueue_task method is called before nr_running is
4525 * increased. Here we update the fair scheduling stats and
4526 * then put the task into the rbtree:
4527 */
4528 static void
4529 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4530 {
4531 struct cfs_rq *cfs_rq;
4532 struct sched_entity *se = &p->se;
4533
4534 /*
4535 * If in_iowait is set, the code below may not trigger any cpufreq
4536 * utilization updates, so do it here explicitly with the IOWAIT flag
4537 * passed.
4538 */
4539 if (p->in_iowait)
4540 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);
4541
4542 for_each_sched_entity(se) {
4543 if (se->on_rq)
4544 break;
4545 cfs_rq = cfs_rq_of(se);
4546 enqueue_entity(cfs_rq, se, flags);
4547
4548 /*
4549 * end evaluation on encountering a throttled cfs_rq
4550 *
4551 * note: in the case of encountering a throttled cfs_rq we will
4552 * post the final h_nr_running increment below.
4553 */
4554 if (cfs_rq_throttled(cfs_rq))
4555 break;
4556 cfs_rq->h_nr_running++;
4557
4558 flags = ENQUEUE_WAKEUP;
4559 }
4560
4561 for_each_sched_entity(se) {
4562 cfs_rq = cfs_rq_of(se);
4563 cfs_rq->h_nr_running++;
4564
4565 if (cfs_rq_throttled(cfs_rq))
4566 break;
4567
4568 update_load_avg(se, 1);
4569 update_cfs_shares(cfs_rq);
4570 }
4571
4572 if (!se)
4573 add_nr_running(rq, 1);
4574
4575 hrtick_update(rq);
4576 }
4577
4578 static void set_next_buddy(struct sched_entity *se);
4579
4580 /*
4581 * The dequeue_task method is called before nr_running is
4582 * decreased. We remove the task from the rbtree and
4583 * update the fair scheduling stats:
4584 */
4585 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4586 {
4587 struct cfs_rq *cfs_rq;
4588 struct sched_entity *se = &p->se;
4589 int task_sleep = flags & DEQUEUE_SLEEP;
4590
4591 for_each_sched_entity(se) {
4592 cfs_rq = cfs_rq_of(se);
4593 dequeue_entity(cfs_rq, se, flags);
4594
4595 /*
4596 * end evaluation on encountering a throttled cfs_rq
4597 *
4598 * note: in the case of encountering a throttled cfs_rq we will
4599 * post the final h_nr_running decrement below.
4600 */
4601 if (cfs_rq_throttled(cfs_rq))
4602 break;
4603 cfs_rq->h_nr_running--;
4604
4605 /* Don't dequeue parent if it has other entities besides us */
4606 if (cfs_rq->load.weight) {
4607 /* Avoid re-evaluating load for this entity: */
4608 se = parent_entity(se);
4609 /*
4610 * Bias pick_next to pick a task from this cfs_rq, as
4611 * p is sleeping when it is within its sched_slice.
4612 */
4613 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4614 set_next_buddy(se);
4615 break;
4616 }
4617 flags |= DEQUEUE_SLEEP;
4618 }
4619
4620 for_each_sched_entity(se) {
4621 cfs_rq = cfs_rq_of(se);
4622 cfs_rq->h_nr_running--;
4623
4624 if (cfs_rq_throttled(cfs_rq))
4625 break;
4626
4627 update_load_avg(se, 1);
4628 update_cfs_shares(cfs_rq);
4629 }
4630
4631 if (!se)
4632 sub_nr_running(rq, 1);
4633
4634 hrtick_update(rq);
4635 }
4636
4637 #ifdef CONFIG_SMP
4638
4639 /* Working cpumask for: load_balance, load_balance_newidle. */
4640 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
4641 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
4642
4643 #ifdef CONFIG_NO_HZ_COMMON
4644 /*
4645 * per rq 'load' arrray crap; XXX kill this.
4646 */
4647
4648 /*
4649 * The exact cpuload calculated at every tick would be:
4650 *
4651 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4652 *
4653 * If a cpu misses updates for n ticks (as it was idle) and update gets
4654 * called on the n+1-th tick when cpu may be busy, then we have:
4655 *
4656 * load_n = (1 - 1/2^i)^n * load_0
4657 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
4658 *
4659 * decay_load_missed() below does efficient calculation of
4660 *
4661 * load' = (1 - 1/2^i)^n * load
4662 *
4663 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4664 * This allows us to precompute the above in said factors, thereby allowing the
4665 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4666 * fixed_power_int())
4667 *
4668 * The calculation is approximated on a 128 point scale.
4669 */
4670 #define DEGRADE_SHIFT 7
4671
4672 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4673 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4674 { 0, 0, 0, 0, 0, 0, 0, 0 },
4675 { 64, 32, 8, 0, 0, 0, 0, 0 },
4676 { 96, 72, 40, 12, 1, 0, 0, 0 },
4677 { 112, 98, 75, 43, 15, 1, 0, 0 },
4678 { 120, 112, 98, 76, 45, 16, 2, 0 }
4679 };
4680
4681 /*
4682 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4683 * would be when CPU is idle and so we just decay the old load without
4684 * adding any new load.
4685 */
4686 static unsigned long
4687 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4688 {
4689 int j = 0;
4690
4691 if (!missed_updates)
4692 return load;
4693
4694 if (missed_updates >= degrade_zero_ticks[idx])
4695 return 0;
4696
4697 if (idx == 1)
4698 return load >> missed_updates;
4699
4700 while (missed_updates) {
4701 if (missed_updates % 2)
4702 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4703
4704 missed_updates >>= 1;
4705 j++;
4706 }
4707 return load;
4708 }
4709 #endif /* CONFIG_NO_HZ_COMMON */
4710
4711 /**
4712 * __cpu_load_update - update the rq->cpu_load[] statistics
4713 * @this_rq: The rq to update statistics for
4714 * @this_load: The current load
4715 * @pending_updates: The number of missed updates
4716 *
4717 * Update rq->cpu_load[] statistics. This function is usually called every
4718 * scheduler tick (TICK_NSEC).
4719 *
4720 * This function computes a decaying average:
4721 *
4722 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4723 *
4724 * Because of NOHZ it might not get called on every tick which gives need for
4725 * the @pending_updates argument.
4726 *
4727 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4728 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4729 * = A * (A * load[i]_n-2 + B) + B
4730 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4731 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4732 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4733 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4734 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4735 *
4736 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4737 * any change in load would have resulted in the tick being turned back on.
4738 *
4739 * For regular NOHZ, this reduces to:
4740 *
4741 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4742 *
4743 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4744 * term.
4745 */
4746 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4747 unsigned long pending_updates)
4748 {
4749 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
4750 int i, scale;
4751
4752 this_rq->nr_load_updates++;
4753
4754 /* Update our load: */
4755 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4756 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4757 unsigned long old_load, new_load;
4758
4759 /* scale is effectively 1 << i now, and >> i divides by scale */
4760
4761 old_load = this_rq->cpu_load[i];
4762 #ifdef CONFIG_NO_HZ_COMMON
4763 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4764 if (tickless_load) {
4765 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4766 /*
4767 * old_load can never be a negative value because a
4768 * decayed tickless_load cannot be greater than the
4769 * original tickless_load.
4770 */
4771 old_load += tickless_load;
4772 }
4773 #endif
4774 new_load = this_load;
4775 /*
4776 * Round up the averaging division if load is increasing. This
4777 * prevents us from getting stuck on 9 if the load is 10, for
4778 * example.
4779 */
4780 if (new_load > old_load)
4781 new_load += scale - 1;
4782
4783 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4784 }
4785
4786 sched_avg_update(this_rq);
4787 }
4788
4789 /* Used instead of source_load when we know the type == 0 */
4790 static unsigned long weighted_cpuload(const int cpu)
4791 {
4792 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4793 }
4794
4795 #ifdef CONFIG_NO_HZ_COMMON
4796 /*
4797 * There is no sane way to deal with nohz on smp when using jiffies because the
4798 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4799 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4800 *
4801 * Therefore we need to avoid the delta approach from the regular tick when
4802 * possible since that would seriously skew the load calculation. This is why we
4803 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4804 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4805 * loop exit, nohz_idle_balance, nohz full exit...)
4806 *
4807 * This means we might still be one tick off for nohz periods.
4808 */
4809
4810 static void cpu_load_update_nohz(struct rq *this_rq,
4811 unsigned long curr_jiffies,
4812 unsigned long load)
4813 {
4814 unsigned long pending_updates;
4815
4816 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4817 if (pending_updates) {
4818 this_rq->last_load_update_tick = curr_jiffies;
4819 /*
4820 * In the regular NOHZ case, we were idle, this means load 0.
4821 * In the NOHZ_FULL case, we were non-idle, we should consider
4822 * its weighted load.
4823 */
4824 cpu_load_update(this_rq, load, pending_updates);
4825 }
4826 }
4827
4828 /*
4829 * Called from nohz_idle_balance() to update the load ratings before doing the
4830 * idle balance.
4831 */
4832 static void cpu_load_update_idle(struct rq *this_rq)
4833 {
4834 /*
4835 * bail if there's load or we're actually up-to-date.
4836 */
4837 if (weighted_cpuload(cpu_of(this_rq)))
4838 return;
4839
4840 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
4841 }
4842
4843 /*
4844 * Record CPU load on nohz entry so we know the tickless load to account
4845 * on nohz exit. cpu_load[0] happens then to be updated more frequently
4846 * than other cpu_load[idx] but it should be fine as cpu_load readers
4847 * shouldn't rely into synchronized cpu_load[*] updates.
4848 */
4849 void cpu_load_update_nohz_start(void)
4850 {
4851 struct rq *this_rq = this_rq();
4852
4853 /*
4854 * This is all lockless but should be fine. If weighted_cpuload changes
4855 * concurrently we'll exit nohz. And cpu_load write can race with
4856 * cpu_load_update_idle() but both updater would be writing the same.
4857 */
4858 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
4859 }
4860
4861 /*
4862 * Account the tickless load in the end of a nohz frame.
4863 */
4864 void cpu_load_update_nohz_stop(void)
4865 {
4866 unsigned long curr_jiffies = READ_ONCE(jiffies);
4867 struct rq *this_rq = this_rq();
4868 unsigned long load;
4869
4870 if (curr_jiffies == this_rq->last_load_update_tick)
4871 return;
4872
4873 load = weighted_cpuload(cpu_of(this_rq));
4874 raw_spin_lock(&this_rq->lock);
4875 update_rq_clock(this_rq);
4876 cpu_load_update_nohz(this_rq, curr_jiffies, load);
4877 raw_spin_unlock(&this_rq->lock);
4878 }
4879 #else /* !CONFIG_NO_HZ_COMMON */
4880 static inline void cpu_load_update_nohz(struct rq *this_rq,
4881 unsigned long curr_jiffies,
4882 unsigned long load) { }
4883 #endif /* CONFIG_NO_HZ_COMMON */
4884
4885 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
4886 {
4887 #ifdef CONFIG_NO_HZ_COMMON
4888 /* See the mess around cpu_load_update_nohz(). */
4889 this_rq->last_load_update_tick = READ_ONCE(jiffies);
4890 #endif
4891 cpu_load_update(this_rq, load, 1);
4892 }
4893
4894 /*
4895 * Called from scheduler_tick()
4896 */
4897 void cpu_load_update_active(struct rq *this_rq)
4898 {
4899 unsigned long load = weighted_cpuload(cpu_of(this_rq));
4900
4901 if (tick_nohz_tick_stopped())
4902 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
4903 else
4904 cpu_load_update_periodic(this_rq, load);
4905 }
4906
4907 /*
4908 * Return a low guess at the load of a migration-source cpu weighted
4909 * according to the scheduling class and "nice" value.
4910 *
4911 * We want to under-estimate the load of migration sources, to
4912 * balance conservatively.
4913 */
4914 static unsigned long source_load(int cpu, int type)
4915 {
4916 struct rq *rq = cpu_rq(cpu);
4917 unsigned long total = weighted_cpuload(cpu);
4918
4919 if (type == 0 || !sched_feat(LB_BIAS))
4920 return total;
4921
4922 return min(rq->cpu_load[type-1], total);
4923 }
4924
4925 /*
4926 * Return a high guess at the load of a migration-target cpu weighted
4927 * according to the scheduling class and "nice" value.
4928 */
4929 static unsigned long target_load(int cpu, int type)
4930 {
4931 struct rq *rq = cpu_rq(cpu);
4932 unsigned long total = weighted_cpuload(cpu);
4933
4934 if (type == 0 || !sched_feat(LB_BIAS))
4935 return total;
4936
4937 return max(rq->cpu_load[type-1], total);
4938 }
4939
4940 static unsigned long capacity_of(int cpu)
4941 {
4942 return cpu_rq(cpu)->cpu_capacity;
4943 }
4944
4945 static unsigned long capacity_orig_of(int cpu)
4946 {
4947 return cpu_rq(cpu)->cpu_capacity_orig;
4948 }
4949
4950 static unsigned long cpu_avg_load_per_task(int cpu)
4951 {
4952 struct rq *rq = cpu_rq(cpu);
4953 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4954 unsigned long load_avg = weighted_cpuload(cpu);
4955
4956 if (nr_running)
4957 return load_avg / nr_running;
4958
4959 return 0;
4960 }
4961
4962 #ifdef CONFIG_FAIR_GROUP_SCHED
4963 /*
4964 * effective_load() calculates the load change as seen from the root_task_group
4965 *
4966 * Adding load to a group doesn't make a group heavier, but can cause movement
4967 * of group shares between cpus. Assuming the shares were perfectly aligned one
4968 * can calculate the shift in shares.
4969 *
4970 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4971 * on this @cpu and results in a total addition (subtraction) of @wg to the
4972 * total group weight.
4973 *
4974 * Given a runqueue weight distribution (rw_i) we can compute a shares
4975 * distribution (s_i) using:
4976 *
4977 * s_i = rw_i / \Sum rw_j (1)
4978 *
4979 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4980 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4981 * shares distribution (s_i):
4982 *
4983 * rw_i = { 2, 4, 1, 0 }
4984 * s_i = { 2/7, 4/7, 1/7, 0 }
4985 *
4986 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4987 * task used to run on and the CPU the waker is running on), we need to
4988 * compute the effect of waking a task on either CPU and, in case of a sync
4989 * wakeup, compute the effect of the current task going to sleep.
4990 *
4991 * So for a change of @wl to the local @cpu with an overall group weight change
4992 * of @wl we can compute the new shares distribution (s'_i) using:
4993 *
4994 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4995 *
4996 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4997 * differences in waking a task to CPU 0. The additional task changes the
4998 * weight and shares distributions like:
4999 *
5000 * rw'_i = { 3, 4, 1, 0 }
5001 * s'_i = { 3/8, 4/8, 1/8, 0 }
5002 *
5003 * We can then compute the difference in effective weight by using:
5004 *
5005 * dw_i = S * (s'_i - s_i) (3)
5006 *
5007 * Where 'S' is the group weight as seen by its parent.
5008 *
5009 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
5010 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
5011 * 4/7) times the weight of the group.
5012 */
5013 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5014 {
5015 struct sched_entity *se = tg->se[cpu];
5016
5017 if (!tg->parent) /* the trivial, non-cgroup case */
5018 return wl;
5019
5020 for_each_sched_entity(se) {
5021 struct cfs_rq *cfs_rq = se->my_q;
5022 long W, w = cfs_rq_load_avg(cfs_rq);
5023
5024 tg = cfs_rq->tg;
5025
5026 /*
5027 * W = @wg + \Sum rw_j
5028 */
5029 W = wg + atomic_long_read(&tg->load_avg);
5030
5031 /* Ensure \Sum rw_j >= rw_i */
5032 W -= cfs_rq->tg_load_avg_contrib;
5033 W += w;
5034
5035 /*
5036 * w = rw_i + @wl
5037 */
5038 w += wl;
5039
5040 /*
5041 * wl = S * s'_i; see (2)
5042 */
5043 if (W > 0 && w < W)
5044 wl = (w * (long)scale_load_down(tg->shares)) / W;
5045 else
5046 wl = scale_load_down(tg->shares);
5047
5048 /*
5049 * Per the above, wl is the new se->load.weight value; since
5050 * those are clipped to [MIN_SHARES, ...) do so now. See
5051 * calc_cfs_shares().
5052 */
5053 if (wl < MIN_SHARES)
5054 wl = MIN_SHARES;
5055
5056 /*
5057 * wl = dw_i = S * (s'_i - s_i); see (3)
5058 */
5059 wl -= se->avg.load_avg;
5060
5061 /*
5062 * Recursively apply this logic to all parent groups to compute
5063 * the final effective load change on the root group. Since
5064 * only the @tg group gets extra weight, all parent groups can
5065 * only redistribute existing shares. @wl is the shift in shares
5066 * resulting from this level per the above.
5067 */
5068 wg = 0;
5069 }
5070
5071 return wl;
5072 }
5073 #else
5074
5075 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5076 {
5077 return wl;
5078 }
5079
5080 #endif
5081
5082 static void record_wakee(struct task_struct *p)
5083 {
5084 /*
5085 * Only decay a single time; tasks that have less then 1 wakeup per
5086 * jiffy will not have built up many flips.
5087 */
5088 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5089 current->wakee_flips >>= 1;
5090 current->wakee_flip_decay_ts = jiffies;
5091 }
5092
5093 if (current->last_wakee != p) {
5094 current->last_wakee = p;
5095 current->wakee_flips++;
5096 }
5097 }
5098
5099 /*
5100 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5101 *
5102 * A waker of many should wake a different task than the one last awakened
5103 * at a frequency roughly N times higher than one of its wakees.
5104 *
5105 * In order to determine whether we should let the load spread vs consolidating
5106 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5107 * partner, and a factor of lls_size higher frequency in the other.
5108 *
5109 * With both conditions met, we can be relatively sure that the relationship is
5110 * non-monogamous, with partner count exceeding socket size.
5111 *
5112 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5113 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5114 * socket size.
5115 */
5116 static int wake_wide(struct task_struct *p)
5117 {
5118 unsigned int master = current->wakee_flips;
5119 unsigned int slave = p->wakee_flips;
5120 int factor = this_cpu_read(sd_llc_size);
5121
5122 if (master < slave)
5123 swap(master, slave);
5124 if (slave < factor || master < slave * factor)
5125 return 0;
5126 return 1;
5127 }
5128
5129 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5130 int prev_cpu, int sync)
5131 {
5132 s64 this_load, load;
5133 s64 this_eff_load, prev_eff_load;
5134 int idx, this_cpu;
5135 struct task_group *tg;
5136 unsigned long weight;
5137 int balanced;
5138
5139 idx = sd->wake_idx;
5140 this_cpu = smp_processor_id();
5141 load = source_load(prev_cpu, idx);
5142 this_load = target_load(this_cpu, idx);
5143
5144 /*
5145 * If sync wakeup then subtract the (maximum possible)
5146 * effect of the currently running task from the load
5147 * of the current CPU:
5148 */
5149 if (sync) {
5150 tg = task_group(current);
5151 weight = current->se.avg.load_avg;
5152
5153 this_load += effective_load(tg, this_cpu, -weight, -weight);
5154 load += effective_load(tg, prev_cpu, 0, -weight);
5155 }
5156
5157 tg = task_group(p);
5158 weight = p->se.avg.load_avg;
5159
5160 /*
5161 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5162 * due to the sync cause above having dropped this_load to 0, we'll
5163 * always have an imbalance, but there's really nothing you can do
5164 * about that, so that's good too.
5165 *
5166 * Otherwise check if either cpus are near enough in load to allow this
5167 * task to be woken on this_cpu.
5168 */
5169 this_eff_load = 100;
5170 this_eff_load *= capacity_of(prev_cpu);
5171
5172 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5173 prev_eff_load *= capacity_of(this_cpu);
5174
5175 if (this_load > 0) {
5176 this_eff_load *= this_load +
5177 effective_load(tg, this_cpu, weight, weight);
5178
5179 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
5180 }
5181
5182 balanced = this_eff_load <= prev_eff_load;
5183
5184 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5185
5186 if (!balanced)
5187 return 0;
5188
5189 schedstat_inc(sd->ttwu_move_affine);
5190 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5191
5192 return 1;
5193 }
5194
5195 /*
5196 * find_idlest_group finds and returns the least busy CPU group within the
5197 * domain.
5198 */
5199 static struct sched_group *
5200 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5201 int this_cpu, int sd_flag)
5202 {
5203 struct sched_group *idlest = NULL, *group = sd->groups;
5204 unsigned long min_load = ULONG_MAX, this_load = 0;
5205 int load_idx = sd->forkexec_idx;
5206 int imbalance = 100 + (sd->imbalance_pct-100)/2;
5207
5208 if (sd_flag & SD_BALANCE_WAKE)
5209 load_idx = sd->wake_idx;
5210
5211 do {
5212 unsigned long load, avg_load;
5213 int local_group;
5214 int i;
5215
5216 /* Skip over this group if it has no CPUs allowed */
5217 if (!cpumask_intersects(sched_group_cpus(group),
5218 tsk_cpus_allowed(p)))
5219 continue;
5220
5221 local_group = cpumask_test_cpu(this_cpu,
5222 sched_group_cpus(group));
5223
5224 /* Tally up the load of all CPUs in the group */
5225 avg_load = 0;
5226
5227 for_each_cpu(i, sched_group_cpus(group)) {
5228 /* Bias balancing toward cpus of our domain */
5229 if (local_group)
5230 load = source_load(i, load_idx);
5231 else
5232 load = target_load(i, load_idx);
5233
5234 avg_load += load;
5235 }
5236
5237 /* Adjust by relative CPU capacity of the group */
5238 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
5239
5240 if (local_group) {
5241 this_load = avg_load;
5242 } else if (avg_load < min_load) {
5243 min_load = avg_load;
5244 idlest = group;
5245 }
5246 } while (group = group->next, group != sd->groups);
5247
5248 if (!idlest || 100*this_load < imbalance*min_load)
5249 return NULL;
5250 return idlest;
5251 }
5252
5253 /*
5254 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5255 */
5256 static int
5257 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5258 {
5259 unsigned long load, min_load = ULONG_MAX;
5260 unsigned int min_exit_latency = UINT_MAX;
5261 u64 latest_idle_timestamp = 0;
5262 int least_loaded_cpu = this_cpu;
5263 int shallowest_idle_cpu = -1;
5264 int i;
5265
5266 /* Check if we have any choice: */
5267 if (group->group_weight == 1)
5268 return cpumask_first(sched_group_cpus(group));
5269
5270 /* Traverse only the allowed CPUs */
5271 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
5272 if (idle_cpu(i)) {
5273 struct rq *rq = cpu_rq(i);
5274 struct cpuidle_state *idle = idle_get_state(rq);
5275 if (idle && idle->exit_latency < min_exit_latency) {
5276 /*
5277 * We give priority to a CPU whose idle state
5278 * has the smallest exit latency irrespective
5279 * of any idle timestamp.
5280 */
5281 min_exit_latency = idle->exit_latency;
5282 latest_idle_timestamp = rq->idle_stamp;
5283 shallowest_idle_cpu = i;
5284 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5285 rq->idle_stamp > latest_idle_timestamp) {
5286 /*
5287 * If equal or no active idle state, then
5288 * the most recently idled CPU might have
5289 * a warmer cache.
5290 */
5291 latest_idle_timestamp = rq->idle_stamp;
5292 shallowest_idle_cpu = i;
5293 }
5294 } else if (shallowest_idle_cpu == -1) {
5295 load = weighted_cpuload(i);
5296 if (load < min_load || (load == min_load && i == this_cpu)) {
5297 min_load = load;
5298 least_loaded_cpu = i;
5299 }
5300 }
5301 }
5302
5303 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5304 }
5305
5306 /*
5307 * Implement a for_each_cpu() variant that starts the scan at a given cpu
5308 * (@start), and wraps around.
5309 *
5310 * This is used to scan for idle CPUs; such that not all CPUs looking for an
5311 * idle CPU find the same CPU. The down-side is that tasks tend to cycle
5312 * through the LLC domain.
5313 *
5314 * Especially tbench is found sensitive to this.
5315 */
5316
5317 static int cpumask_next_wrap(int n, const struct cpumask *mask, int start, int *wrapped)
5318 {
5319 int next;
5320
5321 again:
5322 next = find_next_bit(cpumask_bits(mask), nr_cpumask_bits, n+1);
5323
5324 if (*wrapped) {
5325 if (next >= start)
5326 return nr_cpumask_bits;
5327 } else {
5328 if (next >= nr_cpumask_bits) {
5329 *wrapped = 1;
5330 n = -1;
5331 goto again;
5332 }
5333 }
5334
5335 return next;
5336 }
5337
5338 #define for_each_cpu_wrap(cpu, mask, start, wrap) \
5339 for ((wrap) = 0, (cpu) = (start)-1; \
5340 (cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)), \
5341 (cpu) < nr_cpumask_bits; )
5342
5343 #ifdef CONFIG_SCHED_SMT
5344
5345 static inline void set_idle_cores(int cpu, int val)
5346 {
5347 struct sched_domain_shared *sds;
5348
5349 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5350 if (sds)
5351 WRITE_ONCE(sds->has_idle_cores, val);
5352 }
5353
5354 static inline bool test_idle_cores(int cpu, bool def)
5355 {
5356 struct sched_domain_shared *sds;
5357
5358 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5359 if (sds)
5360 return READ_ONCE(sds->has_idle_cores);
5361
5362 return def;
5363 }
5364
5365 /*
5366 * Scans the local SMT mask to see if the entire core is idle, and records this
5367 * information in sd_llc_shared->has_idle_cores.
5368 *
5369 * Since SMT siblings share all cache levels, inspecting this limited remote
5370 * state should be fairly cheap.
5371 */
5372 void __update_idle_core(struct rq *rq)
5373 {
5374 int core = cpu_of(rq);
5375 int cpu;
5376
5377 rcu_read_lock();
5378 if (test_idle_cores(core, true))
5379 goto unlock;
5380
5381 for_each_cpu(cpu, cpu_smt_mask(core)) {
5382 if (cpu == core)
5383 continue;
5384
5385 if (!idle_cpu(cpu))
5386 goto unlock;
5387 }
5388
5389 set_idle_cores(core, 1);
5390 unlock:
5391 rcu_read_unlock();
5392 }
5393
5394 /*
5395 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5396 * there are no idle cores left in the system; tracked through
5397 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5398 */
5399 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5400 {
5401 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5402 int core, cpu, wrap;
5403
5404 if (!static_branch_likely(&sched_smt_present))
5405 return -1;
5406
5407 if (!test_idle_cores(target, false))
5408 return -1;
5409
5410 cpumask_and(cpus, sched_domain_span(sd), tsk_cpus_allowed(p));
5411
5412 for_each_cpu_wrap(core, cpus, target, wrap) {
5413 bool idle = true;
5414
5415 for_each_cpu(cpu, cpu_smt_mask(core)) {
5416 cpumask_clear_cpu(cpu, cpus);
5417 if (!idle_cpu(cpu))
5418 idle = false;
5419 }
5420
5421 if (idle)
5422 return core;
5423 }
5424
5425 /*
5426 * Failed to find an idle core; stop looking for one.
5427 */
5428 set_idle_cores(target, 0);
5429
5430 return -1;
5431 }
5432
5433 /*
5434 * Scan the local SMT mask for idle CPUs.
5435 */
5436 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5437 {
5438 int cpu;
5439
5440 if (!static_branch_likely(&sched_smt_present))
5441 return -1;
5442
5443 for_each_cpu(cpu, cpu_smt_mask(target)) {
5444 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
5445 continue;
5446 if (idle_cpu(cpu))
5447 return cpu;
5448 }
5449
5450 return -1;
5451 }
5452
5453 #else /* CONFIG_SCHED_SMT */
5454
5455 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5456 {
5457 return -1;
5458 }
5459
5460 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5461 {
5462 return -1;
5463 }
5464
5465 #endif /* CONFIG_SCHED_SMT */
5466
5467 /*
5468 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5469 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5470 * average idle time for this rq (as found in rq->avg_idle).
5471 */
5472 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5473 {
5474 struct sched_domain *this_sd;
5475 u64 avg_cost, avg_idle = this_rq()->avg_idle;
5476 u64 time, cost;
5477 s64 delta;
5478 int cpu, wrap;
5479
5480 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5481 if (!this_sd)
5482 return -1;
5483
5484 avg_cost = this_sd->avg_scan_cost;
5485
5486 /*
5487 * Due to large variance we need a large fuzz factor; hackbench in
5488 * particularly is sensitive here.
5489 */
5490 if ((avg_idle / 512) < avg_cost)
5491 return -1;
5492
5493 time = local_clock();
5494
5495 for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) {
5496 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
5497 continue;
5498 if (idle_cpu(cpu))
5499 break;
5500 }
5501
5502 time = local_clock() - time;
5503 cost = this_sd->avg_scan_cost;
5504 delta = (s64)(time - cost) / 8;
5505 this_sd->avg_scan_cost += delta;
5506
5507 return cpu;
5508 }
5509
5510 /*
5511 * Try and locate an idle core/thread in the LLC cache domain.
5512 */
5513 static int select_idle_sibling(struct task_struct *p, int prev, int target)
5514 {
5515 struct sched_domain *sd;
5516 int i;
5517
5518 if (idle_cpu(target))
5519 return target;
5520
5521 /*
5522 * If the previous cpu is cache affine and idle, don't be stupid.
5523 */
5524 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5525 return prev;
5526
5527 sd = rcu_dereference(per_cpu(sd_llc, target));
5528 if (!sd)
5529 return target;
5530
5531 i = select_idle_core(p, sd, target);
5532 if ((unsigned)i < nr_cpumask_bits)
5533 return i;
5534
5535 i = select_idle_cpu(p, sd, target);
5536 if ((unsigned)i < nr_cpumask_bits)
5537 return i;
5538
5539 i = select_idle_smt(p, sd, target);
5540 if ((unsigned)i < nr_cpumask_bits)
5541 return i;
5542
5543 return target;
5544 }
5545
5546 /*
5547 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5548 * tasks. The unit of the return value must be the one of capacity so we can
5549 * compare the utilization with the capacity of the CPU that is available for
5550 * CFS task (ie cpu_capacity).
5551 *
5552 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5553 * recent utilization of currently non-runnable tasks on a CPU. It represents
5554 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5555 * capacity_orig is the cpu_capacity available at the highest frequency
5556 * (arch_scale_freq_capacity()).
5557 * The utilization of a CPU converges towards a sum equal to or less than the
5558 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5559 * the running time on this CPU scaled by capacity_curr.
5560 *
5561 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5562 * higher than capacity_orig because of unfortunate rounding in
5563 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5564 * the average stabilizes with the new running time. We need to check that the
5565 * utilization stays within the range of [0..capacity_orig] and cap it if
5566 * necessary. Without utilization capping, a group could be seen as overloaded
5567 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5568 * available capacity. We allow utilization to overshoot capacity_curr (but not
5569 * capacity_orig) as it useful for predicting the capacity required after task
5570 * migrations (scheduler-driven DVFS).
5571 */
5572 static int cpu_util(int cpu)
5573 {
5574 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5575 unsigned long capacity = capacity_orig_of(cpu);
5576
5577 return (util >= capacity) ? capacity : util;
5578 }
5579
5580 static inline int task_util(struct task_struct *p)
5581 {
5582 return p->se.avg.util_avg;
5583 }
5584
5585 /*
5586 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5587 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5588 *
5589 * In that case WAKE_AFFINE doesn't make sense and we'll let
5590 * BALANCE_WAKE sort things out.
5591 */
5592 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5593 {
5594 long min_cap, max_cap;
5595
5596 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5597 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5598
5599 /* Minimum capacity is close to max, no need to abort wake_affine */
5600 if (max_cap - min_cap < max_cap >> 3)
5601 return 0;
5602
5603 return min_cap * 1024 < task_util(p) * capacity_margin;
5604 }
5605
5606 /*
5607 * select_task_rq_fair: Select target runqueue for the waking task in domains
5608 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5609 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5610 *
5611 * Balances load by selecting the idlest cpu in the idlest group, or under
5612 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5613 *
5614 * Returns the target cpu number.
5615 *
5616 * preempt must be disabled.
5617 */
5618 static int
5619 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5620 {
5621 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5622 int cpu = smp_processor_id();
5623 int new_cpu = prev_cpu;
5624 int want_affine = 0;
5625 int sync = wake_flags & WF_SYNC;
5626
5627 if (sd_flag & SD_BALANCE_WAKE) {
5628 record_wakee(p);
5629 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
5630 && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
5631 }
5632
5633 rcu_read_lock();
5634 for_each_domain(cpu, tmp) {
5635 if (!(tmp->flags & SD_LOAD_BALANCE))
5636 break;
5637
5638 /*
5639 * If both cpu and prev_cpu are part of this domain,
5640 * cpu is a valid SD_WAKE_AFFINE target.
5641 */
5642 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5643 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5644 affine_sd = tmp;
5645 break;
5646 }
5647
5648 if (tmp->flags & sd_flag)
5649 sd = tmp;
5650 else if (!want_affine)
5651 break;
5652 }
5653
5654 if (affine_sd) {
5655 sd = NULL; /* Prefer wake_affine over balance flags */
5656 if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
5657 new_cpu = cpu;
5658 }
5659
5660 if (!sd) {
5661 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5662 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
5663
5664 } else while (sd) {
5665 struct sched_group *group;
5666 int weight;
5667
5668 if (!(sd->flags & sd_flag)) {
5669 sd = sd->child;
5670 continue;
5671 }
5672
5673 group = find_idlest_group(sd, p, cpu, sd_flag);
5674 if (!group) {
5675 sd = sd->child;
5676 continue;
5677 }
5678
5679 new_cpu = find_idlest_cpu(group, p, cpu);
5680 if (new_cpu == -1 || new_cpu == cpu) {
5681 /* Now try balancing at a lower domain level of cpu */
5682 sd = sd->child;
5683 continue;
5684 }
5685
5686 /* Now try balancing at a lower domain level of new_cpu */
5687 cpu = new_cpu;
5688 weight = sd->span_weight;
5689 sd = NULL;
5690 for_each_domain(cpu, tmp) {
5691 if (weight <= tmp->span_weight)
5692 break;
5693 if (tmp->flags & sd_flag)
5694 sd = tmp;
5695 }
5696 /* while loop will break here if sd == NULL */
5697 }
5698 rcu_read_unlock();
5699
5700 return new_cpu;
5701 }
5702
5703 /*
5704 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5705 * cfs_rq_of(p) references at time of call are still valid and identify the
5706 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5707 */
5708 static void migrate_task_rq_fair(struct task_struct *p)
5709 {
5710 /*
5711 * As blocked tasks retain absolute vruntime the migration needs to
5712 * deal with this by subtracting the old and adding the new
5713 * min_vruntime -- the latter is done by enqueue_entity() when placing
5714 * the task on the new runqueue.
5715 */
5716 if (p->state == TASK_WAKING) {
5717 struct sched_entity *se = &p->se;
5718 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5719 u64 min_vruntime;
5720
5721 #ifndef CONFIG_64BIT
5722 u64 min_vruntime_copy;
5723
5724 do {
5725 min_vruntime_copy = cfs_rq->min_vruntime_copy;
5726 smp_rmb();
5727 min_vruntime = cfs_rq->min_vruntime;
5728 } while (min_vruntime != min_vruntime_copy);
5729 #else
5730 min_vruntime = cfs_rq->min_vruntime;
5731 #endif
5732
5733 se->vruntime -= min_vruntime;
5734 }
5735
5736 /*
5737 * We are supposed to update the task to "current" time, then its up to date
5738 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5739 * what current time is, so simply throw away the out-of-date time. This
5740 * will result in the wakee task is less decayed, but giving the wakee more
5741 * load sounds not bad.
5742 */
5743 remove_entity_load_avg(&p->se);
5744
5745 /* Tell new CPU we are migrated */
5746 p->se.avg.last_update_time = 0;
5747
5748 /* We have migrated, no longer consider this task hot */
5749 p->se.exec_start = 0;
5750 }
5751
5752 static void task_dead_fair(struct task_struct *p)
5753 {
5754 remove_entity_load_avg(&p->se);
5755 }
5756 #endif /* CONFIG_SMP */
5757
5758 static unsigned long
5759 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5760 {
5761 unsigned long gran = sysctl_sched_wakeup_granularity;
5762
5763 /*
5764 * Since its curr running now, convert the gran from real-time
5765 * to virtual-time in his units.
5766 *
5767 * By using 'se' instead of 'curr' we penalize light tasks, so
5768 * they get preempted easier. That is, if 'se' < 'curr' then
5769 * the resulting gran will be larger, therefore penalizing the
5770 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5771 * be smaller, again penalizing the lighter task.
5772 *
5773 * This is especially important for buddies when the leftmost
5774 * task is higher priority than the buddy.
5775 */
5776 return calc_delta_fair(gran, se);
5777 }
5778
5779 /*
5780 * Should 'se' preempt 'curr'.
5781 *
5782 * |s1
5783 * |s2
5784 * |s3
5785 * g
5786 * |<--->|c
5787 *
5788 * w(c, s1) = -1
5789 * w(c, s2) = 0
5790 * w(c, s3) = 1
5791 *
5792 */
5793 static int
5794 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5795 {
5796 s64 gran, vdiff = curr->vruntime - se->vruntime;
5797
5798 if (vdiff <= 0)
5799 return -1;
5800
5801 gran = wakeup_gran(curr, se);
5802 if (vdiff > gran)
5803 return 1;
5804
5805 return 0;
5806 }
5807
5808 static void set_last_buddy(struct sched_entity *se)
5809 {
5810 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5811 return;
5812
5813 for_each_sched_entity(se)
5814 cfs_rq_of(se)->last = se;
5815 }
5816
5817 static void set_next_buddy(struct sched_entity *se)
5818 {
5819 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5820 return;
5821
5822 for_each_sched_entity(se)
5823 cfs_rq_of(se)->next = se;
5824 }
5825
5826 static void set_skip_buddy(struct sched_entity *se)
5827 {
5828 for_each_sched_entity(se)
5829 cfs_rq_of(se)->skip = se;
5830 }
5831
5832 /*
5833 * Preempt the current task with a newly woken task if needed:
5834 */
5835 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5836 {
5837 struct task_struct *curr = rq->curr;
5838 struct sched_entity *se = &curr->se, *pse = &p->se;
5839 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5840 int scale = cfs_rq->nr_running >= sched_nr_latency;
5841 int next_buddy_marked = 0;
5842
5843 if (unlikely(se == pse))
5844 return;
5845
5846 /*
5847 * This is possible from callers such as attach_tasks(), in which we
5848 * unconditionally check_prempt_curr() after an enqueue (which may have
5849 * lead to a throttle). This both saves work and prevents false
5850 * next-buddy nomination below.
5851 */
5852 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5853 return;
5854
5855 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5856 set_next_buddy(pse);
5857 next_buddy_marked = 1;
5858 }
5859
5860 /*
5861 * We can come here with TIF_NEED_RESCHED already set from new task
5862 * wake up path.
5863 *
5864 * Note: this also catches the edge-case of curr being in a throttled
5865 * group (e.g. via set_curr_task), since update_curr() (in the
5866 * enqueue of curr) will have resulted in resched being set. This
5867 * prevents us from potentially nominating it as a false LAST_BUDDY
5868 * below.
5869 */
5870 if (test_tsk_need_resched(curr))
5871 return;
5872
5873 /* Idle tasks are by definition preempted by non-idle tasks. */
5874 if (unlikely(curr->policy == SCHED_IDLE) &&
5875 likely(p->policy != SCHED_IDLE))
5876 goto preempt;
5877
5878 /*
5879 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5880 * is driven by the tick):
5881 */
5882 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5883 return;
5884
5885 find_matching_se(&se, &pse);
5886 update_curr(cfs_rq_of(se));
5887 BUG_ON(!pse);
5888 if (wakeup_preempt_entity(se, pse) == 1) {
5889 /*
5890 * Bias pick_next to pick the sched entity that is
5891 * triggering this preemption.
5892 */
5893 if (!next_buddy_marked)
5894 set_next_buddy(pse);
5895 goto preempt;
5896 }
5897
5898 return;
5899
5900 preempt:
5901 resched_curr(rq);
5902 /*
5903 * Only set the backward buddy when the current task is still
5904 * on the rq. This can happen when a wakeup gets interleaved
5905 * with schedule on the ->pre_schedule() or idle_balance()
5906 * point, either of which can * drop the rq lock.
5907 *
5908 * Also, during early boot the idle thread is in the fair class,
5909 * for obvious reasons its a bad idea to schedule back to it.
5910 */
5911 if (unlikely(!se->on_rq || curr == rq->idle))
5912 return;
5913
5914 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5915 set_last_buddy(se);
5916 }
5917
5918 static struct task_struct *
5919 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
5920 {
5921 struct cfs_rq *cfs_rq = &rq->cfs;
5922 struct sched_entity *se;
5923 struct task_struct *p;
5924 int new_tasks;
5925
5926 again:
5927 #ifdef CONFIG_FAIR_GROUP_SCHED
5928 if (!cfs_rq->nr_running)
5929 goto idle;
5930
5931 if (prev->sched_class != &fair_sched_class)
5932 goto simple;
5933
5934 /*
5935 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5936 * likely that a next task is from the same cgroup as the current.
5937 *
5938 * Therefore attempt to avoid putting and setting the entire cgroup
5939 * hierarchy, only change the part that actually changes.
5940 */
5941
5942 do {
5943 struct sched_entity *curr = cfs_rq->curr;
5944
5945 /*
5946 * Since we got here without doing put_prev_entity() we also
5947 * have to consider cfs_rq->curr. If it is still a runnable
5948 * entity, update_curr() will update its vruntime, otherwise
5949 * forget we've ever seen it.
5950 */
5951 if (curr) {
5952 if (curr->on_rq)
5953 update_curr(cfs_rq);
5954 else
5955 curr = NULL;
5956
5957 /*
5958 * This call to check_cfs_rq_runtime() will do the
5959 * throttle and dequeue its entity in the parent(s).
5960 * Therefore the 'simple' nr_running test will indeed
5961 * be correct.
5962 */
5963 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5964 goto simple;
5965 }
5966
5967 se = pick_next_entity(cfs_rq, curr);
5968 cfs_rq = group_cfs_rq(se);
5969 } while (cfs_rq);
5970
5971 p = task_of(se);
5972
5973 /*
5974 * Since we haven't yet done put_prev_entity and if the selected task
5975 * is a different task than we started out with, try and touch the
5976 * least amount of cfs_rqs.
5977 */
5978 if (prev != p) {
5979 struct sched_entity *pse = &prev->se;
5980
5981 while (!(cfs_rq = is_same_group(se, pse))) {
5982 int se_depth = se->depth;
5983 int pse_depth = pse->depth;
5984
5985 if (se_depth <= pse_depth) {
5986 put_prev_entity(cfs_rq_of(pse), pse);
5987 pse = parent_entity(pse);
5988 }
5989 if (se_depth >= pse_depth) {
5990 set_next_entity(cfs_rq_of(se), se);
5991 se = parent_entity(se);
5992 }
5993 }
5994
5995 put_prev_entity(cfs_rq, pse);
5996 set_next_entity(cfs_rq, se);
5997 }
5998
5999 if (hrtick_enabled(rq))
6000 hrtick_start_fair(rq, p);
6001
6002 return p;
6003 simple:
6004 cfs_rq = &rq->cfs;
6005 #endif
6006
6007 if (!cfs_rq->nr_running)
6008 goto idle;
6009
6010 put_prev_task(rq, prev);
6011
6012 do {
6013 se = pick_next_entity(cfs_rq, NULL);
6014 set_next_entity(cfs_rq, se);
6015 cfs_rq = group_cfs_rq(se);
6016 } while (cfs_rq);
6017
6018 p = task_of(se);
6019
6020 if (hrtick_enabled(rq))
6021 hrtick_start_fair(rq, p);
6022
6023 return p;
6024
6025 idle:
6026 /*
6027 * This is OK, because current is on_cpu, which avoids it being picked
6028 * for load-balance and preemption/IRQs are still disabled avoiding
6029 * further scheduler activity on it and we're being very careful to
6030 * re-start the picking loop.
6031 */
6032 lockdep_unpin_lock(&rq->lock, cookie);
6033 new_tasks = idle_balance(rq);
6034 lockdep_repin_lock(&rq->lock, cookie);
6035 /*
6036 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6037 * possible for any higher priority task to appear. In that case we
6038 * must re-start the pick_next_entity() loop.
6039 */
6040 if (new_tasks < 0)
6041 return RETRY_TASK;
6042
6043 if (new_tasks > 0)
6044 goto again;
6045
6046 return NULL;
6047 }
6048
6049 /*
6050 * Account for a descheduled task:
6051 */
6052 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6053 {
6054 struct sched_entity *se = &prev->se;
6055 struct cfs_rq *cfs_rq;
6056
6057 for_each_sched_entity(se) {
6058 cfs_rq = cfs_rq_of(se);
6059 put_prev_entity(cfs_rq, se);
6060 }
6061 }
6062
6063 /*
6064 * sched_yield() is very simple
6065 *
6066 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6067 */
6068 static void yield_task_fair(struct rq *rq)
6069 {
6070 struct task_struct *curr = rq->curr;
6071 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6072 struct sched_entity *se = &curr->se;
6073
6074 /*
6075 * Are we the only task in the tree?
6076 */
6077 if (unlikely(rq->nr_running == 1))
6078 return;
6079
6080 clear_buddies(cfs_rq, se);
6081
6082 if (curr->policy != SCHED_BATCH) {
6083 update_rq_clock(rq);
6084 /*
6085 * Update run-time statistics of the 'current'.
6086 */
6087 update_curr(cfs_rq);
6088 /*
6089 * Tell update_rq_clock() that we've just updated,
6090 * so we don't do microscopic update in schedule()
6091 * and double the fastpath cost.
6092 */
6093 rq_clock_skip_update(rq, true);
6094 }
6095
6096 set_skip_buddy(se);
6097 }
6098
6099 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6100 {
6101 struct sched_entity *se = &p->se;
6102
6103 /* throttled hierarchies are not runnable */
6104 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6105 return false;
6106
6107 /* Tell the scheduler that we'd really like pse to run next. */
6108 set_next_buddy(se);
6109
6110 yield_task_fair(rq);
6111
6112 return true;
6113 }
6114
6115 #ifdef CONFIG_SMP
6116 /**************************************************
6117 * Fair scheduling class load-balancing methods.
6118 *
6119 * BASICS
6120 *
6121 * The purpose of load-balancing is to achieve the same basic fairness the
6122 * per-cpu scheduler provides, namely provide a proportional amount of compute
6123 * time to each task. This is expressed in the following equation:
6124 *
6125 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6126 *
6127 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6128 * W_i,0 is defined as:
6129 *
6130 * W_i,0 = \Sum_j w_i,j (2)
6131 *
6132 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6133 * is derived from the nice value as per sched_prio_to_weight[].
6134 *
6135 * The weight average is an exponential decay average of the instantaneous
6136 * weight:
6137 *
6138 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6139 *
6140 * C_i is the compute capacity of cpu i, typically it is the
6141 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6142 * can also include other factors [XXX].
6143 *
6144 * To achieve this balance we define a measure of imbalance which follows
6145 * directly from (1):
6146 *
6147 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
6148 *
6149 * We them move tasks around to minimize the imbalance. In the continuous
6150 * function space it is obvious this converges, in the discrete case we get
6151 * a few fun cases generally called infeasible weight scenarios.
6152 *
6153 * [XXX expand on:
6154 * - infeasible weights;
6155 * - local vs global optima in the discrete case. ]
6156 *
6157 *
6158 * SCHED DOMAINS
6159 *
6160 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6161 * for all i,j solution, we create a tree of cpus that follows the hardware
6162 * topology where each level pairs two lower groups (or better). This results
6163 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6164 * tree to only the first of the previous level and we decrease the frequency
6165 * of load-balance at each level inv. proportional to the number of cpus in
6166 * the groups.
6167 *
6168 * This yields:
6169 *
6170 * log_2 n 1 n
6171 * \Sum { --- * --- * 2^i } = O(n) (5)
6172 * i = 0 2^i 2^i
6173 * `- size of each group
6174 * | | `- number of cpus doing load-balance
6175 * | `- freq
6176 * `- sum over all levels
6177 *
6178 * Coupled with a limit on how many tasks we can migrate every balance pass,
6179 * this makes (5) the runtime complexity of the balancer.
6180 *
6181 * An important property here is that each CPU is still (indirectly) connected
6182 * to every other cpu in at most O(log n) steps:
6183 *
6184 * The adjacency matrix of the resulting graph is given by:
6185 *
6186 * log_2 n
6187 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6188 * k = 0
6189 *
6190 * And you'll find that:
6191 *
6192 * A^(log_2 n)_i,j != 0 for all i,j (7)
6193 *
6194 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6195 * The task movement gives a factor of O(m), giving a convergence complexity
6196 * of:
6197 *
6198 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6199 *
6200 *
6201 * WORK CONSERVING
6202 *
6203 * In order to avoid CPUs going idle while there's still work to do, new idle
6204 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6205 * tree itself instead of relying on other CPUs to bring it work.
6206 *
6207 * This adds some complexity to both (5) and (8) but it reduces the total idle
6208 * time.
6209 *
6210 * [XXX more?]
6211 *
6212 *
6213 * CGROUPS
6214 *
6215 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6216 *
6217 * s_k,i
6218 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6219 * S_k
6220 *
6221 * Where
6222 *
6223 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6224 *
6225 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6226 *
6227 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6228 * property.
6229 *
6230 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6231 * rewrite all of this once again.]
6232 */
6233
6234 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6235
6236 enum fbq_type { regular, remote, all };
6237
6238 #define LBF_ALL_PINNED 0x01
6239 #define LBF_NEED_BREAK 0x02
6240 #define LBF_DST_PINNED 0x04
6241 #define LBF_SOME_PINNED 0x08
6242
6243 struct lb_env {
6244 struct sched_domain *sd;
6245
6246 struct rq *src_rq;
6247 int src_cpu;
6248
6249 int dst_cpu;
6250 struct rq *dst_rq;
6251
6252 struct cpumask *dst_grpmask;
6253 int new_dst_cpu;
6254 enum cpu_idle_type idle;
6255 long imbalance;
6256 /* The set of CPUs under consideration for load-balancing */
6257 struct cpumask *cpus;
6258
6259 unsigned int flags;
6260
6261 unsigned int loop;
6262 unsigned int loop_break;
6263 unsigned int loop_max;
6264
6265 enum fbq_type fbq_type;
6266 struct list_head tasks;
6267 };
6268
6269 /*
6270 * Is this task likely cache-hot:
6271 */
6272 static int task_hot(struct task_struct *p, struct lb_env *env)
6273 {
6274 s64 delta;
6275
6276 lockdep_assert_held(&env->src_rq->lock);
6277
6278 if (p->sched_class != &fair_sched_class)
6279 return 0;
6280
6281 if (unlikely(p->policy == SCHED_IDLE))
6282 return 0;
6283
6284 /*
6285 * Buddy candidates are cache hot:
6286 */
6287 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6288 (&p->se == cfs_rq_of(&p->se)->next ||
6289 &p->se == cfs_rq_of(&p->se)->last))
6290 return 1;
6291
6292 if (sysctl_sched_migration_cost == -1)
6293 return 1;
6294 if (sysctl_sched_migration_cost == 0)
6295 return 0;
6296
6297 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6298
6299 return delta < (s64)sysctl_sched_migration_cost;
6300 }
6301
6302 #ifdef CONFIG_NUMA_BALANCING
6303 /*
6304 * Returns 1, if task migration degrades locality
6305 * Returns 0, if task migration improves locality i.e migration preferred.
6306 * Returns -1, if task migration is not affected by locality.
6307 */
6308 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6309 {
6310 struct numa_group *numa_group = rcu_dereference(p->numa_group);
6311 unsigned long src_faults, dst_faults;
6312 int src_nid, dst_nid;
6313
6314 if (!static_branch_likely(&sched_numa_balancing))
6315 return -1;
6316
6317 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6318 return -1;
6319
6320 src_nid = cpu_to_node(env->src_cpu);
6321 dst_nid = cpu_to_node(env->dst_cpu);
6322
6323 if (src_nid == dst_nid)
6324 return -1;
6325
6326 /* Migrating away from the preferred node is always bad. */
6327 if (src_nid == p->numa_preferred_nid) {
6328 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6329 return 1;
6330 else
6331 return -1;
6332 }
6333
6334 /* Encourage migration to the preferred node. */
6335 if (dst_nid == p->numa_preferred_nid)
6336 return 0;
6337
6338 if (numa_group) {
6339 src_faults = group_faults(p, src_nid);
6340 dst_faults = group_faults(p, dst_nid);
6341 } else {
6342 src_faults = task_faults(p, src_nid);
6343 dst_faults = task_faults(p, dst_nid);
6344 }
6345
6346 return dst_faults < src_faults;
6347 }
6348
6349 #else
6350 static inline int migrate_degrades_locality(struct task_struct *p,
6351 struct lb_env *env)
6352 {
6353 return -1;
6354 }
6355 #endif
6356
6357 /*
6358 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6359 */
6360 static
6361 int can_migrate_task(struct task_struct *p, struct lb_env *env)
6362 {
6363 int tsk_cache_hot;
6364
6365 lockdep_assert_held(&env->src_rq->lock);
6366
6367 /*
6368 * We do not migrate tasks that are:
6369 * 1) throttled_lb_pair, or
6370 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6371 * 3) running (obviously), or
6372 * 4) are cache-hot on their current CPU.
6373 */
6374 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6375 return 0;
6376
6377 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
6378 int cpu;
6379
6380 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6381
6382 env->flags |= LBF_SOME_PINNED;
6383
6384 /*
6385 * Remember if this task can be migrated to any other cpu in
6386 * our sched_group. We may want to revisit it if we couldn't
6387 * meet load balance goals by pulling other tasks on src_cpu.
6388 *
6389 * Also avoid computing new_dst_cpu if we have already computed
6390 * one in current iteration.
6391 */
6392 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
6393 return 0;
6394
6395 /* Prevent to re-select dst_cpu via env's cpus */
6396 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6397 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6398 env->flags |= LBF_DST_PINNED;
6399 env->new_dst_cpu = cpu;
6400 break;
6401 }
6402 }
6403
6404 return 0;
6405 }
6406
6407 /* Record that we found atleast one task that could run on dst_cpu */
6408 env->flags &= ~LBF_ALL_PINNED;
6409
6410 if (task_running(env->src_rq, p)) {
6411 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
6412 return 0;
6413 }
6414
6415 /*
6416 * Aggressive migration if:
6417 * 1) destination numa is preferred
6418 * 2) task is cache cold, or
6419 * 3) too many balance attempts have failed.
6420 */
6421 tsk_cache_hot = migrate_degrades_locality(p, env);
6422 if (tsk_cache_hot == -1)
6423 tsk_cache_hot = task_hot(p, env);
6424
6425 if (tsk_cache_hot <= 0 ||
6426 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6427 if (tsk_cache_hot == 1) {
6428 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6429 schedstat_inc(p->se.statistics.nr_forced_migrations);
6430 }
6431 return 1;
6432 }
6433
6434 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
6435 return 0;
6436 }
6437
6438 /*
6439 * detach_task() -- detach the task for the migration specified in env
6440 */
6441 static void detach_task(struct task_struct *p, struct lb_env *env)
6442 {
6443 lockdep_assert_held(&env->src_rq->lock);
6444
6445 p->on_rq = TASK_ON_RQ_MIGRATING;
6446 deactivate_task(env->src_rq, p, 0);
6447 set_task_cpu(p, env->dst_cpu);
6448 }
6449
6450 /*
6451 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6452 * part of active balancing operations within "domain".
6453 *
6454 * Returns a task if successful and NULL otherwise.
6455 */
6456 static struct task_struct *detach_one_task(struct lb_env *env)
6457 {
6458 struct task_struct *p, *n;
6459
6460 lockdep_assert_held(&env->src_rq->lock);
6461
6462 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
6463 if (!can_migrate_task(p, env))
6464 continue;
6465
6466 detach_task(p, env);
6467
6468 /*
6469 * Right now, this is only the second place where
6470 * lb_gained[env->idle] is updated (other is detach_tasks)
6471 * so we can safely collect stats here rather than
6472 * inside detach_tasks().
6473 */
6474 schedstat_inc(env->sd->lb_gained[env->idle]);
6475 return p;
6476 }
6477 return NULL;
6478 }
6479
6480 static const unsigned int sched_nr_migrate_break = 32;
6481
6482 /*
6483 * detach_tasks() -- tries to detach up to imbalance weighted load from
6484 * busiest_rq, as part of a balancing operation within domain "sd".
6485 *
6486 * Returns number of detached tasks if successful and 0 otherwise.
6487 */
6488 static int detach_tasks(struct lb_env *env)
6489 {
6490 struct list_head *tasks = &env->src_rq->cfs_tasks;
6491 struct task_struct *p;
6492 unsigned long load;
6493 int detached = 0;
6494
6495 lockdep_assert_held(&env->src_rq->lock);
6496
6497 if (env->imbalance <= 0)
6498 return 0;
6499
6500 while (!list_empty(tasks)) {
6501 /*
6502 * We don't want to steal all, otherwise we may be treated likewise,
6503 * which could at worst lead to a livelock crash.
6504 */
6505 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6506 break;
6507
6508 p = list_first_entry(tasks, struct task_struct, se.group_node);
6509
6510 env->loop++;
6511 /* We've more or less seen every task there is, call it quits */
6512 if (env->loop > env->loop_max)
6513 break;
6514
6515 /* take a breather every nr_migrate tasks */
6516 if (env->loop > env->loop_break) {
6517 env->loop_break += sched_nr_migrate_break;
6518 env->flags |= LBF_NEED_BREAK;
6519 break;
6520 }
6521
6522 if (!can_migrate_task(p, env))
6523 goto next;
6524
6525 load = task_h_load(p);
6526
6527 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6528 goto next;
6529
6530 if ((load / 2) > env->imbalance)
6531 goto next;
6532
6533 detach_task(p, env);
6534 list_add(&p->se.group_node, &env->tasks);
6535
6536 detached++;
6537 env->imbalance -= load;
6538
6539 #ifdef CONFIG_PREEMPT
6540 /*
6541 * NEWIDLE balancing is a source of latency, so preemptible
6542 * kernels will stop after the first task is detached to minimize
6543 * the critical section.
6544 */
6545 if (env->idle == CPU_NEWLY_IDLE)
6546 break;
6547 #endif
6548
6549 /*
6550 * We only want to steal up to the prescribed amount of
6551 * weighted load.
6552 */
6553 if (env->imbalance <= 0)
6554 break;
6555
6556 continue;
6557 next:
6558 list_move_tail(&p->se.group_node, tasks);
6559 }
6560
6561 /*
6562 * Right now, this is one of only two places we collect this stat
6563 * so we can safely collect detach_one_task() stats here rather
6564 * than inside detach_one_task().
6565 */
6566 schedstat_add(env->sd->lb_gained[env->idle], detached);
6567
6568 return detached;
6569 }
6570
6571 /*
6572 * attach_task() -- attach the task detached by detach_task() to its new rq.
6573 */
6574 static void attach_task(struct rq *rq, struct task_struct *p)
6575 {
6576 lockdep_assert_held(&rq->lock);
6577
6578 BUG_ON(task_rq(p) != rq);
6579 activate_task(rq, p, 0);
6580 p->on_rq = TASK_ON_RQ_QUEUED;
6581 check_preempt_curr(rq, p, 0);
6582 }
6583
6584 /*
6585 * attach_one_task() -- attaches the task returned from detach_one_task() to
6586 * its new rq.
6587 */
6588 static void attach_one_task(struct rq *rq, struct task_struct *p)
6589 {
6590 raw_spin_lock(&rq->lock);
6591 attach_task(rq, p);
6592 raw_spin_unlock(&rq->lock);
6593 }
6594
6595 /*
6596 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6597 * new rq.
6598 */
6599 static void attach_tasks(struct lb_env *env)
6600 {
6601 struct list_head *tasks = &env->tasks;
6602 struct task_struct *p;
6603
6604 raw_spin_lock(&env->dst_rq->lock);
6605
6606 while (!list_empty(tasks)) {
6607 p = list_first_entry(tasks, struct task_struct, se.group_node);
6608 list_del_init(&p->se.group_node);
6609
6610 attach_task(env->dst_rq, p);
6611 }
6612
6613 raw_spin_unlock(&env->dst_rq->lock);
6614 }
6615
6616 #ifdef CONFIG_FAIR_GROUP_SCHED
6617 static void update_blocked_averages(int cpu)
6618 {
6619 struct rq *rq = cpu_rq(cpu);
6620 struct cfs_rq *cfs_rq;
6621 unsigned long flags;
6622
6623 raw_spin_lock_irqsave(&rq->lock, flags);
6624 update_rq_clock(rq);
6625
6626 /*
6627 * Iterates the task_group tree in a bottom up fashion, see
6628 * list_add_leaf_cfs_rq() for details.
6629 */
6630 for_each_leaf_cfs_rq(rq, cfs_rq) {
6631 /* throttled entities do not contribute to load */
6632 if (throttled_hierarchy(cfs_rq))
6633 continue;
6634
6635 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
6636 update_tg_load_avg(cfs_rq, 0);
6637 }
6638 raw_spin_unlock_irqrestore(&rq->lock, flags);
6639 }
6640
6641 /*
6642 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6643 * This needs to be done in a top-down fashion because the load of a child
6644 * group is a fraction of its parents load.
6645 */
6646 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6647 {
6648 struct rq *rq = rq_of(cfs_rq);
6649 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6650 unsigned long now = jiffies;
6651 unsigned long load;
6652
6653 if (cfs_rq->last_h_load_update == now)
6654 return;
6655
6656 cfs_rq->h_load_next = NULL;
6657 for_each_sched_entity(se) {
6658 cfs_rq = cfs_rq_of(se);
6659 cfs_rq->h_load_next = se;
6660 if (cfs_rq->last_h_load_update == now)
6661 break;
6662 }
6663
6664 if (!se) {
6665 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6666 cfs_rq->last_h_load_update = now;
6667 }
6668
6669 while ((se = cfs_rq->h_load_next) != NULL) {
6670 load = cfs_rq->h_load;
6671 load = div64_ul(load * se->avg.load_avg,
6672 cfs_rq_load_avg(cfs_rq) + 1);
6673 cfs_rq = group_cfs_rq(se);
6674 cfs_rq->h_load = load;
6675 cfs_rq->last_h_load_update = now;
6676 }
6677 }
6678
6679 static unsigned long task_h_load(struct task_struct *p)
6680 {
6681 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6682
6683 update_cfs_rq_h_load(cfs_rq);
6684 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6685 cfs_rq_load_avg(cfs_rq) + 1);
6686 }
6687 #else
6688 static inline void update_blocked_averages(int cpu)
6689 {
6690 struct rq *rq = cpu_rq(cpu);
6691 struct cfs_rq *cfs_rq = &rq->cfs;
6692 unsigned long flags;
6693
6694 raw_spin_lock_irqsave(&rq->lock, flags);
6695 update_rq_clock(rq);
6696 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6697 raw_spin_unlock_irqrestore(&rq->lock, flags);
6698 }
6699
6700 static unsigned long task_h_load(struct task_struct *p)
6701 {
6702 return p->se.avg.load_avg;
6703 }
6704 #endif
6705
6706 /********** Helpers for find_busiest_group ************************/
6707
6708 enum group_type {
6709 group_other = 0,
6710 group_imbalanced,
6711 group_overloaded,
6712 };
6713
6714 /*
6715 * sg_lb_stats - stats of a sched_group required for load_balancing
6716 */
6717 struct sg_lb_stats {
6718 unsigned long avg_load; /*Avg load across the CPUs of the group */
6719 unsigned long group_load; /* Total load over the CPUs of the group */
6720 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
6721 unsigned long load_per_task;
6722 unsigned long group_capacity;
6723 unsigned long group_util; /* Total utilization of the group */
6724 unsigned int sum_nr_running; /* Nr tasks running in the group */
6725 unsigned int idle_cpus;
6726 unsigned int group_weight;
6727 enum group_type group_type;
6728 int group_no_capacity;
6729 #ifdef CONFIG_NUMA_BALANCING
6730 unsigned int nr_numa_running;
6731 unsigned int nr_preferred_running;
6732 #endif
6733 };
6734
6735 /*
6736 * sd_lb_stats - Structure to store the statistics of a sched_domain
6737 * during load balancing.
6738 */
6739 struct sd_lb_stats {
6740 struct sched_group *busiest; /* Busiest group in this sd */
6741 struct sched_group *local; /* Local group in this sd */
6742 unsigned long total_load; /* Total load of all groups in sd */
6743 unsigned long total_capacity; /* Total capacity of all groups in sd */
6744 unsigned long avg_load; /* Average load across all groups in sd */
6745
6746 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6747 struct sg_lb_stats local_stat; /* Statistics of the local group */
6748 };
6749
6750 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6751 {
6752 /*
6753 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6754 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6755 * We must however clear busiest_stat::avg_load because
6756 * update_sd_pick_busiest() reads this before assignment.
6757 */
6758 *sds = (struct sd_lb_stats){
6759 .busiest = NULL,
6760 .local = NULL,
6761 .total_load = 0UL,
6762 .total_capacity = 0UL,
6763 .busiest_stat = {
6764 .avg_load = 0UL,
6765 .sum_nr_running = 0,
6766 .group_type = group_other,
6767 },
6768 };
6769 }
6770
6771 /**
6772 * get_sd_load_idx - Obtain the load index for a given sched domain.
6773 * @sd: The sched_domain whose load_idx is to be obtained.
6774 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6775 *
6776 * Return: The load index.
6777 */
6778 static inline int get_sd_load_idx(struct sched_domain *sd,
6779 enum cpu_idle_type idle)
6780 {
6781 int load_idx;
6782
6783 switch (idle) {
6784 case CPU_NOT_IDLE:
6785 load_idx = sd->busy_idx;
6786 break;
6787
6788 case CPU_NEWLY_IDLE:
6789 load_idx = sd->newidle_idx;
6790 break;
6791 default:
6792 load_idx = sd->idle_idx;
6793 break;
6794 }
6795
6796 return load_idx;
6797 }
6798
6799 static unsigned long scale_rt_capacity(int cpu)
6800 {
6801 struct rq *rq = cpu_rq(cpu);
6802 u64 total, used, age_stamp, avg;
6803 s64 delta;
6804
6805 /*
6806 * Since we're reading these variables without serialization make sure
6807 * we read them once before doing sanity checks on them.
6808 */
6809 age_stamp = READ_ONCE(rq->age_stamp);
6810 avg = READ_ONCE(rq->rt_avg);
6811 delta = __rq_clock_broken(rq) - age_stamp;
6812
6813 if (unlikely(delta < 0))
6814 delta = 0;
6815
6816 total = sched_avg_period() + delta;
6817
6818 used = div_u64(avg, total);
6819
6820 if (likely(used < SCHED_CAPACITY_SCALE))
6821 return SCHED_CAPACITY_SCALE - used;
6822
6823 return 1;
6824 }
6825
6826 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6827 {
6828 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6829 struct sched_group *sdg = sd->groups;
6830
6831 cpu_rq(cpu)->cpu_capacity_orig = capacity;
6832
6833 capacity *= scale_rt_capacity(cpu);
6834 capacity >>= SCHED_CAPACITY_SHIFT;
6835
6836 if (!capacity)
6837 capacity = 1;
6838
6839 cpu_rq(cpu)->cpu_capacity = capacity;
6840 sdg->sgc->capacity = capacity;
6841 }
6842
6843 void update_group_capacity(struct sched_domain *sd, int cpu)
6844 {
6845 struct sched_domain *child = sd->child;
6846 struct sched_group *group, *sdg = sd->groups;
6847 unsigned long capacity;
6848 unsigned long interval;
6849
6850 interval = msecs_to_jiffies(sd->balance_interval);
6851 interval = clamp(interval, 1UL, max_load_balance_interval);
6852 sdg->sgc->next_update = jiffies + interval;
6853
6854 if (!child) {
6855 update_cpu_capacity(sd, cpu);
6856 return;
6857 }
6858
6859 capacity = 0;
6860
6861 if (child->flags & SD_OVERLAP) {
6862 /*
6863 * SD_OVERLAP domains cannot assume that child groups
6864 * span the current group.
6865 */
6866
6867 for_each_cpu(cpu, sched_group_cpus(sdg)) {
6868 struct sched_group_capacity *sgc;
6869 struct rq *rq = cpu_rq(cpu);
6870
6871 /*
6872 * build_sched_domains() -> init_sched_groups_capacity()
6873 * gets here before we've attached the domains to the
6874 * runqueues.
6875 *
6876 * Use capacity_of(), which is set irrespective of domains
6877 * in update_cpu_capacity().
6878 *
6879 * This avoids capacity from being 0 and
6880 * causing divide-by-zero issues on boot.
6881 */
6882 if (unlikely(!rq->sd)) {
6883 capacity += capacity_of(cpu);
6884 continue;
6885 }
6886
6887 sgc = rq->sd->groups->sgc;
6888 capacity += sgc->capacity;
6889 }
6890 } else {
6891 /*
6892 * !SD_OVERLAP domains can assume that child groups
6893 * span the current group.
6894 */
6895
6896 group = child->groups;
6897 do {
6898 capacity += group->sgc->capacity;
6899 group = group->next;
6900 } while (group != child->groups);
6901 }
6902
6903 sdg->sgc->capacity = capacity;
6904 }
6905
6906 /*
6907 * Check whether the capacity of the rq has been noticeably reduced by side
6908 * activity. The imbalance_pct is used for the threshold.
6909 * Return true is the capacity is reduced
6910 */
6911 static inline int
6912 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6913 {
6914 return ((rq->cpu_capacity * sd->imbalance_pct) <
6915 (rq->cpu_capacity_orig * 100));
6916 }
6917
6918 /*
6919 * Group imbalance indicates (and tries to solve) the problem where balancing
6920 * groups is inadequate due to tsk_cpus_allowed() constraints.
6921 *
6922 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6923 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6924 * Something like:
6925 *
6926 * { 0 1 2 3 } { 4 5 6 7 }
6927 * * * * *
6928 *
6929 * If we were to balance group-wise we'd place two tasks in the first group and
6930 * two tasks in the second group. Clearly this is undesired as it will overload
6931 * cpu 3 and leave one of the cpus in the second group unused.
6932 *
6933 * The current solution to this issue is detecting the skew in the first group
6934 * by noticing the lower domain failed to reach balance and had difficulty
6935 * moving tasks due to affinity constraints.
6936 *
6937 * When this is so detected; this group becomes a candidate for busiest; see
6938 * update_sd_pick_busiest(). And calculate_imbalance() and
6939 * find_busiest_group() avoid some of the usual balance conditions to allow it
6940 * to create an effective group imbalance.
6941 *
6942 * This is a somewhat tricky proposition since the next run might not find the
6943 * group imbalance and decide the groups need to be balanced again. A most
6944 * subtle and fragile situation.
6945 */
6946
6947 static inline int sg_imbalanced(struct sched_group *group)
6948 {
6949 return group->sgc->imbalance;
6950 }
6951
6952 /*
6953 * group_has_capacity returns true if the group has spare capacity that could
6954 * be used by some tasks.
6955 * We consider that a group has spare capacity if the * number of task is
6956 * smaller than the number of CPUs or if the utilization is lower than the
6957 * available capacity for CFS tasks.
6958 * For the latter, we use a threshold to stabilize the state, to take into
6959 * account the variance of the tasks' load and to return true if the available
6960 * capacity in meaningful for the load balancer.
6961 * As an example, an available capacity of 1% can appear but it doesn't make
6962 * any benefit for the load balance.
6963 */
6964 static inline bool
6965 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6966 {
6967 if (sgs->sum_nr_running < sgs->group_weight)
6968 return true;
6969
6970 if ((sgs->group_capacity * 100) >
6971 (sgs->group_util * env->sd->imbalance_pct))
6972 return true;
6973
6974 return false;
6975 }
6976
6977 /*
6978 * group_is_overloaded returns true if the group has more tasks than it can
6979 * handle.
6980 * group_is_overloaded is not equals to !group_has_capacity because a group
6981 * with the exact right number of tasks, has no more spare capacity but is not
6982 * overloaded so both group_has_capacity and group_is_overloaded return
6983 * false.
6984 */
6985 static inline bool
6986 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6987 {
6988 if (sgs->sum_nr_running <= sgs->group_weight)
6989 return false;
6990
6991 if ((sgs->group_capacity * 100) <
6992 (sgs->group_util * env->sd->imbalance_pct))
6993 return true;
6994
6995 return false;
6996 }
6997
6998 static inline enum
6999 group_type group_classify(struct sched_group *group,
7000 struct sg_lb_stats *sgs)
7001 {
7002 if (sgs->group_no_capacity)
7003 return group_overloaded;
7004
7005 if (sg_imbalanced(group))
7006 return group_imbalanced;
7007
7008 return group_other;
7009 }
7010
7011 /**
7012 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7013 * @env: The load balancing environment.
7014 * @group: sched_group whose statistics are to be updated.
7015 * @load_idx: Load index of sched_domain of this_cpu for load calc.
7016 * @local_group: Does group contain this_cpu.
7017 * @sgs: variable to hold the statistics for this group.
7018 * @overload: Indicate more than one runnable task for any CPU.
7019 */
7020 static inline void update_sg_lb_stats(struct lb_env *env,
7021 struct sched_group *group, int load_idx,
7022 int local_group, struct sg_lb_stats *sgs,
7023 bool *overload)
7024 {
7025 unsigned long load;
7026 int i, nr_running;
7027
7028 memset(sgs, 0, sizeof(*sgs));
7029
7030 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7031 struct rq *rq = cpu_rq(i);
7032
7033 /* Bias balancing toward cpus of our domain */
7034 if (local_group)
7035 load = target_load(i, load_idx);
7036 else
7037 load = source_load(i, load_idx);
7038
7039 sgs->group_load += load;
7040 sgs->group_util += cpu_util(i);
7041 sgs->sum_nr_running += rq->cfs.h_nr_running;
7042
7043 nr_running = rq->nr_running;
7044 if (nr_running > 1)
7045 *overload = true;
7046
7047 #ifdef CONFIG_NUMA_BALANCING
7048 sgs->nr_numa_running += rq->nr_numa_running;
7049 sgs->nr_preferred_running += rq->nr_preferred_running;
7050 #endif
7051 sgs->sum_weighted_load += weighted_cpuload(i);
7052 /*
7053 * No need to call idle_cpu() if nr_running is not 0
7054 */
7055 if (!nr_running && idle_cpu(i))
7056 sgs->idle_cpus++;
7057 }
7058
7059 /* Adjust by relative CPU capacity of the group */
7060 sgs->group_capacity = group->sgc->capacity;
7061 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7062
7063 if (sgs->sum_nr_running)
7064 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7065
7066 sgs->group_weight = group->group_weight;
7067
7068 sgs->group_no_capacity = group_is_overloaded(env, sgs);
7069 sgs->group_type = group_classify(group, sgs);
7070 }
7071
7072 /**
7073 * update_sd_pick_busiest - return 1 on busiest group
7074 * @env: The load balancing environment.
7075 * @sds: sched_domain statistics
7076 * @sg: sched_group candidate to be checked for being the busiest
7077 * @sgs: sched_group statistics
7078 *
7079 * Determine if @sg is a busier group than the previously selected
7080 * busiest group.
7081 *
7082 * Return: %true if @sg is a busier group than the previously selected
7083 * busiest group. %false otherwise.
7084 */
7085 static bool update_sd_pick_busiest(struct lb_env *env,
7086 struct sd_lb_stats *sds,
7087 struct sched_group *sg,
7088 struct sg_lb_stats *sgs)
7089 {
7090 struct sg_lb_stats *busiest = &sds->busiest_stat;
7091
7092 if (sgs->group_type > busiest->group_type)
7093 return true;
7094
7095 if (sgs->group_type < busiest->group_type)
7096 return false;
7097
7098 if (sgs->avg_load <= busiest->avg_load)
7099 return false;
7100
7101 /* This is the busiest node in its class. */
7102 if (!(env->sd->flags & SD_ASYM_PACKING))
7103 return true;
7104
7105 /* No ASYM_PACKING if target cpu is already busy */
7106 if (env->idle == CPU_NOT_IDLE)
7107 return true;
7108 /*
7109 * ASYM_PACKING needs to move all the work to the lowest
7110 * numbered CPUs in the group, therefore mark all groups
7111 * higher than ourself as busy.
7112 */
7113 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
7114 if (!sds->busiest)
7115 return true;
7116
7117 /* Prefer to move from highest possible cpu's work */
7118 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
7119 return true;
7120 }
7121
7122 return false;
7123 }
7124
7125 #ifdef CONFIG_NUMA_BALANCING
7126 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7127 {
7128 if (sgs->sum_nr_running > sgs->nr_numa_running)
7129 return regular;
7130 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7131 return remote;
7132 return all;
7133 }
7134
7135 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7136 {
7137 if (rq->nr_running > rq->nr_numa_running)
7138 return regular;
7139 if (rq->nr_running > rq->nr_preferred_running)
7140 return remote;
7141 return all;
7142 }
7143 #else
7144 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7145 {
7146 return all;
7147 }
7148
7149 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7150 {
7151 return regular;
7152 }
7153 #endif /* CONFIG_NUMA_BALANCING */
7154
7155 /**
7156 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7157 * @env: The load balancing environment.
7158 * @sds: variable to hold the statistics for this sched_domain.
7159 */
7160 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7161 {
7162 struct sched_domain *child = env->sd->child;
7163 struct sched_group *sg = env->sd->groups;
7164 struct sg_lb_stats tmp_sgs;
7165 int load_idx, prefer_sibling = 0;
7166 bool overload = false;
7167
7168 if (child && child->flags & SD_PREFER_SIBLING)
7169 prefer_sibling = 1;
7170
7171 load_idx = get_sd_load_idx(env->sd, env->idle);
7172
7173 do {
7174 struct sg_lb_stats *sgs = &tmp_sgs;
7175 int local_group;
7176
7177 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
7178 if (local_group) {
7179 sds->local = sg;
7180 sgs = &sds->local_stat;
7181
7182 if (env->idle != CPU_NEWLY_IDLE ||
7183 time_after_eq(jiffies, sg->sgc->next_update))
7184 update_group_capacity(env->sd, env->dst_cpu);
7185 }
7186
7187 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7188 &overload);
7189
7190 if (local_group)
7191 goto next_group;
7192
7193 /*
7194 * In case the child domain prefers tasks go to siblings
7195 * first, lower the sg capacity so that we'll try
7196 * and move all the excess tasks away. We lower the capacity
7197 * of a group only if the local group has the capacity to fit
7198 * these excess tasks. The extra check prevents the case where
7199 * you always pull from the heaviest group when it is already
7200 * under-utilized (possible with a large weight task outweighs
7201 * the tasks on the system).
7202 */
7203 if (prefer_sibling && sds->local &&
7204 group_has_capacity(env, &sds->local_stat) &&
7205 (sgs->sum_nr_running > 1)) {
7206 sgs->group_no_capacity = 1;
7207 sgs->group_type = group_classify(sg, sgs);
7208 }
7209
7210 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7211 sds->busiest = sg;
7212 sds->busiest_stat = *sgs;
7213 }
7214
7215 next_group:
7216 /* Now, start updating sd_lb_stats */
7217 sds->total_load += sgs->group_load;
7218 sds->total_capacity += sgs->group_capacity;
7219
7220 sg = sg->next;
7221 } while (sg != env->sd->groups);
7222
7223 if (env->sd->flags & SD_NUMA)
7224 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7225
7226 if (!env->sd->parent) {
7227 /* update overload indicator if we are at root domain */
7228 if (env->dst_rq->rd->overload != overload)
7229 env->dst_rq->rd->overload = overload;
7230 }
7231
7232 }
7233
7234 /**
7235 * check_asym_packing - Check to see if the group is packed into the
7236 * sched doman.
7237 *
7238 * This is primarily intended to used at the sibling level. Some
7239 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7240 * case of POWER7, it can move to lower SMT modes only when higher
7241 * threads are idle. When in lower SMT modes, the threads will
7242 * perform better since they share less core resources. Hence when we
7243 * have idle threads, we want them to be the higher ones.
7244 *
7245 * This packing function is run on idle threads. It checks to see if
7246 * the busiest CPU in this domain (core in the P7 case) has a higher
7247 * CPU number than the packing function is being run on. Here we are
7248 * assuming lower CPU number will be equivalent to lower a SMT thread
7249 * number.
7250 *
7251 * Return: 1 when packing is required and a task should be moved to
7252 * this CPU. The amount of the imbalance is returned in *imbalance.
7253 *
7254 * @env: The load balancing environment.
7255 * @sds: Statistics of the sched_domain which is to be packed
7256 */
7257 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7258 {
7259 int busiest_cpu;
7260
7261 if (!(env->sd->flags & SD_ASYM_PACKING))
7262 return 0;
7263
7264 if (env->idle == CPU_NOT_IDLE)
7265 return 0;
7266
7267 if (!sds->busiest)
7268 return 0;
7269
7270 busiest_cpu = group_first_cpu(sds->busiest);
7271 if (env->dst_cpu > busiest_cpu)
7272 return 0;
7273
7274 env->imbalance = DIV_ROUND_CLOSEST(
7275 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7276 SCHED_CAPACITY_SCALE);
7277
7278 return 1;
7279 }
7280
7281 /**
7282 * fix_small_imbalance - Calculate the minor imbalance that exists
7283 * amongst the groups of a sched_domain, during
7284 * load balancing.
7285 * @env: The load balancing environment.
7286 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
7287 */
7288 static inline
7289 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7290 {
7291 unsigned long tmp, capa_now = 0, capa_move = 0;
7292 unsigned int imbn = 2;
7293 unsigned long scaled_busy_load_per_task;
7294 struct sg_lb_stats *local, *busiest;
7295
7296 local = &sds->local_stat;
7297 busiest = &sds->busiest_stat;
7298
7299 if (!local->sum_nr_running)
7300 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7301 else if (busiest->load_per_task > local->load_per_task)
7302 imbn = 1;
7303
7304 scaled_busy_load_per_task =
7305 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7306 busiest->group_capacity;
7307
7308 if (busiest->avg_load + scaled_busy_load_per_task >=
7309 local->avg_load + (scaled_busy_load_per_task * imbn)) {
7310 env->imbalance = busiest->load_per_task;
7311 return;
7312 }
7313
7314 /*
7315 * OK, we don't have enough imbalance to justify moving tasks,
7316 * however we may be able to increase total CPU capacity used by
7317 * moving them.
7318 */
7319
7320 capa_now += busiest->group_capacity *
7321 min(busiest->load_per_task, busiest->avg_load);
7322 capa_now += local->group_capacity *
7323 min(local->load_per_task, local->avg_load);
7324 capa_now /= SCHED_CAPACITY_SCALE;
7325
7326 /* Amount of load we'd subtract */
7327 if (busiest->avg_load > scaled_busy_load_per_task) {
7328 capa_move += busiest->group_capacity *
7329 min(busiest->load_per_task,
7330 busiest->avg_load - scaled_busy_load_per_task);
7331 }
7332
7333 /* Amount of load we'd add */
7334 if (busiest->avg_load * busiest->group_capacity <
7335 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7336 tmp = (busiest->avg_load * busiest->group_capacity) /
7337 local->group_capacity;
7338 } else {
7339 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7340 local->group_capacity;
7341 }
7342 capa_move += local->group_capacity *
7343 min(local->load_per_task, local->avg_load + tmp);
7344 capa_move /= SCHED_CAPACITY_SCALE;
7345
7346 /* Move if we gain throughput */
7347 if (capa_move > capa_now)
7348 env->imbalance = busiest->load_per_task;
7349 }
7350
7351 /**
7352 * calculate_imbalance - Calculate the amount of imbalance present within the
7353 * groups of a given sched_domain during load balance.
7354 * @env: load balance environment
7355 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
7356 */
7357 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7358 {
7359 unsigned long max_pull, load_above_capacity = ~0UL;
7360 struct sg_lb_stats *local, *busiest;
7361
7362 local = &sds->local_stat;
7363 busiest = &sds->busiest_stat;
7364
7365 if (busiest->group_type == group_imbalanced) {
7366 /*
7367 * In the group_imb case we cannot rely on group-wide averages
7368 * to ensure cpu-load equilibrium, look at wider averages. XXX
7369 */
7370 busiest->load_per_task =
7371 min(busiest->load_per_task, sds->avg_load);
7372 }
7373
7374 /*
7375 * Avg load of busiest sg can be less and avg load of local sg can
7376 * be greater than avg load across all sgs of sd because avg load
7377 * factors in sg capacity and sgs with smaller group_type are
7378 * skipped when updating the busiest sg:
7379 */
7380 if (busiest->avg_load <= sds->avg_load ||
7381 local->avg_load >= sds->avg_load) {
7382 env->imbalance = 0;
7383 return fix_small_imbalance(env, sds);
7384 }
7385
7386 /*
7387 * If there aren't any idle cpus, avoid creating some.
7388 */
7389 if (busiest->group_type == group_overloaded &&
7390 local->group_type == group_overloaded) {
7391 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7392 if (load_above_capacity > busiest->group_capacity) {
7393 load_above_capacity -= busiest->group_capacity;
7394 load_above_capacity *= scale_load_down(NICE_0_LOAD);
7395 load_above_capacity /= busiest->group_capacity;
7396 } else
7397 load_above_capacity = ~0UL;
7398 }
7399
7400 /*
7401 * We're trying to get all the cpus to the average_load, so we don't
7402 * want to push ourselves above the average load, nor do we wish to
7403 * reduce the max loaded cpu below the average load. At the same time,
7404 * we also don't want to reduce the group load below the group
7405 * capacity. Thus we look for the minimum possible imbalance.
7406 */
7407 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7408
7409 /* How much load to actually move to equalise the imbalance */
7410 env->imbalance = min(
7411 max_pull * busiest->group_capacity,
7412 (sds->avg_load - local->avg_load) * local->group_capacity
7413 ) / SCHED_CAPACITY_SCALE;
7414
7415 /*
7416 * if *imbalance is less than the average load per runnable task
7417 * there is no guarantee that any tasks will be moved so we'll have
7418 * a think about bumping its value to force at least one task to be
7419 * moved
7420 */
7421 if (env->imbalance < busiest->load_per_task)
7422 return fix_small_imbalance(env, sds);
7423 }
7424
7425 /******* find_busiest_group() helpers end here *********************/
7426
7427 /**
7428 * find_busiest_group - Returns the busiest group within the sched_domain
7429 * if there is an imbalance.
7430 *
7431 * Also calculates the amount of weighted load which should be moved
7432 * to restore balance.
7433 *
7434 * @env: The load balancing environment.
7435 *
7436 * Return: - The busiest group if imbalance exists.
7437 */
7438 static struct sched_group *find_busiest_group(struct lb_env *env)
7439 {
7440 struct sg_lb_stats *local, *busiest;
7441 struct sd_lb_stats sds;
7442
7443 init_sd_lb_stats(&sds);
7444
7445 /*
7446 * Compute the various statistics relavent for load balancing at
7447 * this level.
7448 */
7449 update_sd_lb_stats(env, &sds);
7450 local = &sds.local_stat;
7451 busiest = &sds.busiest_stat;
7452
7453 /* ASYM feature bypasses nice load balance check */
7454 if (check_asym_packing(env, &sds))
7455 return sds.busiest;
7456
7457 /* There is no busy sibling group to pull tasks from */
7458 if (!sds.busiest || busiest->sum_nr_running == 0)
7459 goto out_balanced;
7460
7461 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7462 / sds.total_capacity;
7463
7464 /*
7465 * If the busiest group is imbalanced the below checks don't
7466 * work because they assume all things are equal, which typically
7467 * isn't true due to cpus_allowed constraints and the like.
7468 */
7469 if (busiest->group_type == group_imbalanced)
7470 goto force_balance;
7471
7472 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7473 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7474 busiest->group_no_capacity)
7475 goto force_balance;
7476
7477 /*
7478 * If the local group is busier than the selected busiest group
7479 * don't try and pull any tasks.
7480 */
7481 if (local->avg_load >= busiest->avg_load)
7482 goto out_balanced;
7483
7484 /*
7485 * Don't pull any tasks if this group is already above the domain
7486 * average load.
7487 */
7488 if (local->avg_load >= sds.avg_load)
7489 goto out_balanced;
7490
7491 if (env->idle == CPU_IDLE) {
7492 /*
7493 * This cpu is idle. If the busiest group is not overloaded
7494 * and there is no imbalance between this and busiest group
7495 * wrt idle cpus, it is balanced. The imbalance becomes
7496 * significant if the diff is greater than 1 otherwise we
7497 * might end up to just move the imbalance on another group
7498 */
7499 if ((busiest->group_type != group_overloaded) &&
7500 (local->idle_cpus <= (busiest->idle_cpus + 1)))
7501 goto out_balanced;
7502 } else {
7503 /*
7504 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7505 * imbalance_pct to be conservative.
7506 */
7507 if (100 * busiest->avg_load <=
7508 env->sd->imbalance_pct * local->avg_load)
7509 goto out_balanced;
7510 }
7511
7512 force_balance:
7513 /* Looks like there is an imbalance. Compute it */
7514 calculate_imbalance(env, &sds);
7515 return sds.busiest;
7516
7517 out_balanced:
7518 env->imbalance = 0;
7519 return NULL;
7520 }
7521
7522 /*
7523 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7524 */
7525 static struct rq *find_busiest_queue(struct lb_env *env,
7526 struct sched_group *group)
7527 {
7528 struct rq *busiest = NULL, *rq;
7529 unsigned long busiest_load = 0, busiest_capacity = 1;
7530 int i;
7531
7532 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7533 unsigned long capacity, wl;
7534 enum fbq_type rt;
7535
7536 rq = cpu_rq(i);
7537 rt = fbq_classify_rq(rq);
7538
7539 /*
7540 * We classify groups/runqueues into three groups:
7541 * - regular: there are !numa tasks
7542 * - remote: there are numa tasks that run on the 'wrong' node
7543 * - all: there is no distinction
7544 *
7545 * In order to avoid migrating ideally placed numa tasks,
7546 * ignore those when there's better options.
7547 *
7548 * If we ignore the actual busiest queue to migrate another
7549 * task, the next balance pass can still reduce the busiest
7550 * queue by moving tasks around inside the node.
7551 *
7552 * If we cannot move enough load due to this classification
7553 * the next pass will adjust the group classification and
7554 * allow migration of more tasks.
7555 *
7556 * Both cases only affect the total convergence complexity.
7557 */
7558 if (rt > env->fbq_type)
7559 continue;
7560
7561 capacity = capacity_of(i);
7562
7563 wl = weighted_cpuload(i);
7564
7565 /*
7566 * When comparing with imbalance, use weighted_cpuload()
7567 * which is not scaled with the cpu capacity.
7568 */
7569
7570 if (rq->nr_running == 1 && wl > env->imbalance &&
7571 !check_cpu_capacity(rq, env->sd))
7572 continue;
7573
7574 /*
7575 * For the load comparisons with the other cpu's, consider
7576 * the weighted_cpuload() scaled with the cpu capacity, so
7577 * that the load can be moved away from the cpu that is
7578 * potentially running at a lower capacity.
7579 *
7580 * Thus we're looking for max(wl_i / capacity_i), crosswise
7581 * multiplication to rid ourselves of the division works out
7582 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7583 * our previous maximum.
7584 */
7585 if (wl * busiest_capacity > busiest_load * capacity) {
7586 busiest_load = wl;
7587 busiest_capacity = capacity;
7588 busiest = rq;
7589 }
7590 }
7591
7592 return busiest;
7593 }
7594
7595 /*
7596 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7597 * so long as it is large enough.
7598 */
7599 #define MAX_PINNED_INTERVAL 512
7600
7601 static int need_active_balance(struct lb_env *env)
7602 {
7603 struct sched_domain *sd = env->sd;
7604
7605 if (env->idle == CPU_NEWLY_IDLE) {
7606
7607 /*
7608 * ASYM_PACKING needs to force migrate tasks from busy but
7609 * higher numbered CPUs in order to pack all tasks in the
7610 * lowest numbered CPUs.
7611 */
7612 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7613 return 1;
7614 }
7615
7616 /*
7617 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7618 * It's worth migrating the task if the src_cpu's capacity is reduced
7619 * because of other sched_class or IRQs if more capacity stays
7620 * available on dst_cpu.
7621 */
7622 if ((env->idle != CPU_NOT_IDLE) &&
7623 (env->src_rq->cfs.h_nr_running == 1)) {
7624 if ((check_cpu_capacity(env->src_rq, sd)) &&
7625 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7626 return 1;
7627 }
7628
7629 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7630 }
7631
7632 static int active_load_balance_cpu_stop(void *data);
7633
7634 static int should_we_balance(struct lb_env *env)
7635 {
7636 struct sched_group *sg = env->sd->groups;
7637 struct cpumask *sg_cpus, *sg_mask;
7638 int cpu, balance_cpu = -1;
7639
7640 /*
7641 * In the newly idle case, we will allow all the cpu's
7642 * to do the newly idle load balance.
7643 */
7644 if (env->idle == CPU_NEWLY_IDLE)
7645 return 1;
7646
7647 sg_cpus = sched_group_cpus(sg);
7648 sg_mask = sched_group_mask(sg);
7649 /* Try to find first idle cpu */
7650 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7651 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7652 continue;
7653
7654 balance_cpu = cpu;
7655 break;
7656 }
7657
7658 if (balance_cpu == -1)
7659 balance_cpu = group_balance_cpu(sg);
7660
7661 /*
7662 * First idle cpu or the first cpu(busiest) in this sched group
7663 * is eligible for doing load balancing at this and above domains.
7664 */
7665 return balance_cpu == env->dst_cpu;
7666 }
7667
7668 /*
7669 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7670 * tasks if there is an imbalance.
7671 */
7672 static int load_balance(int this_cpu, struct rq *this_rq,
7673 struct sched_domain *sd, enum cpu_idle_type idle,
7674 int *continue_balancing)
7675 {
7676 int ld_moved, cur_ld_moved, active_balance = 0;
7677 struct sched_domain *sd_parent = sd->parent;
7678 struct sched_group *group;
7679 struct rq *busiest;
7680 unsigned long flags;
7681 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7682
7683 struct lb_env env = {
7684 .sd = sd,
7685 .dst_cpu = this_cpu,
7686 .dst_rq = this_rq,
7687 .dst_grpmask = sched_group_cpus(sd->groups),
7688 .idle = idle,
7689 .loop_break = sched_nr_migrate_break,
7690 .cpus = cpus,
7691 .fbq_type = all,
7692 .tasks = LIST_HEAD_INIT(env.tasks),
7693 };
7694
7695 /*
7696 * For NEWLY_IDLE load_balancing, we don't need to consider
7697 * other cpus in our group
7698 */
7699 if (idle == CPU_NEWLY_IDLE)
7700 env.dst_grpmask = NULL;
7701
7702 cpumask_copy(cpus, cpu_active_mask);
7703
7704 schedstat_inc(sd->lb_count[idle]);
7705
7706 redo:
7707 if (!should_we_balance(&env)) {
7708 *continue_balancing = 0;
7709 goto out_balanced;
7710 }
7711
7712 group = find_busiest_group(&env);
7713 if (!group) {
7714 schedstat_inc(sd->lb_nobusyg[idle]);
7715 goto out_balanced;
7716 }
7717
7718 busiest = find_busiest_queue(&env, group);
7719 if (!busiest) {
7720 schedstat_inc(sd->lb_nobusyq[idle]);
7721 goto out_balanced;
7722 }
7723
7724 BUG_ON(busiest == env.dst_rq);
7725
7726 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
7727
7728 env.src_cpu = busiest->cpu;
7729 env.src_rq = busiest;
7730
7731 ld_moved = 0;
7732 if (busiest->nr_running > 1) {
7733 /*
7734 * Attempt to move tasks. If find_busiest_group has found
7735 * an imbalance but busiest->nr_running <= 1, the group is
7736 * still unbalanced. ld_moved simply stays zero, so it is
7737 * correctly treated as an imbalance.
7738 */
7739 env.flags |= LBF_ALL_PINNED;
7740 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
7741
7742 more_balance:
7743 raw_spin_lock_irqsave(&busiest->lock, flags);
7744
7745 /*
7746 * cur_ld_moved - load moved in current iteration
7747 * ld_moved - cumulative load moved across iterations
7748 */
7749 cur_ld_moved = detach_tasks(&env);
7750
7751 /*
7752 * We've detached some tasks from busiest_rq. Every
7753 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7754 * unlock busiest->lock, and we are able to be sure
7755 * that nobody can manipulate the tasks in parallel.
7756 * See task_rq_lock() family for the details.
7757 */
7758
7759 raw_spin_unlock(&busiest->lock);
7760
7761 if (cur_ld_moved) {
7762 attach_tasks(&env);
7763 ld_moved += cur_ld_moved;
7764 }
7765
7766 local_irq_restore(flags);
7767
7768 if (env.flags & LBF_NEED_BREAK) {
7769 env.flags &= ~LBF_NEED_BREAK;
7770 goto more_balance;
7771 }
7772
7773 /*
7774 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7775 * us and move them to an alternate dst_cpu in our sched_group
7776 * where they can run. The upper limit on how many times we
7777 * iterate on same src_cpu is dependent on number of cpus in our
7778 * sched_group.
7779 *
7780 * This changes load balance semantics a bit on who can move
7781 * load to a given_cpu. In addition to the given_cpu itself
7782 * (or a ilb_cpu acting on its behalf where given_cpu is
7783 * nohz-idle), we now have balance_cpu in a position to move
7784 * load to given_cpu. In rare situations, this may cause
7785 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7786 * _independently_ and at _same_ time to move some load to
7787 * given_cpu) causing exceess load to be moved to given_cpu.
7788 * This however should not happen so much in practice and
7789 * moreover subsequent load balance cycles should correct the
7790 * excess load moved.
7791 */
7792 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7793
7794 /* Prevent to re-select dst_cpu via env's cpus */
7795 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7796
7797 env.dst_rq = cpu_rq(env.new_dst_cpu);
7798 env.dst_cpu = env.new_dst_cpu;
7799 env.flags &= ~LBF_DST_PINNED;
7800 env.loop = 0;
7801 env.loop_break = sched_nr_migrate_break;
7802
7803 /*
7804 * Go back to "more_balance" rather than "redo" since we
7805 * need to continue with same src_cpu.
7806 */
7807 goto more_balance;
7808 }
7809
7810 /*
7811 * We failed to reach balance because of affinity.
7812 */
7813 if (sd_parent) {
7814 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7815
7816 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7817 *group_imbalance = 1;
7818 }
7819
7820 /* All tasks on this runqueue were pinned by CPU affinity */
7821 if (unlikely(env.flags & LBF_ALL_PINNED)) {
7822 cpumask_clear_cpu(cpu_of(busiest), cpus);
7823 if (!cpumask_empty(cpus)) {
7824 env.loop = 0;
7825 env.loop_break = sched_nr_migrate_break;
7826 goto redo;
7827 }
7828 goto out_all_pinned;
7829 }
7830 }
7831
7832 if (!ld_moved) {
7833 schedstat_inc(sd->lb_failed[idle]);
7834 /*
7835 * Increment the failure counter only on periodic balance.
7836 * We do not want newidle balance, which can be very
7837 * frequent, pollute the failure counter causing
7838 * excessive cache_hot migrations and active balances.
7839 */
7840 if (idle != CPU_NEWLY_IDLE)
7841 sd->nr_balance_failed++;
7842
7843 if (need_active_balance(&env)) {
7844 raw_spin_lock_irqsave(&busiest->lock, flags);
7845
7846 /* don't kick the active_load_balance_cpu_stop,
7847 * if the curr task on busiest cpu can't be
7848 * moved to this_cpu
7849 */
7850 if (!cpumask_test_cpu(this_cpu,
7851 tsk_cpus_allowed(busiest->curr))) {
7852 raw_spin_unlock_irqrestore(&busiest->lock,
7853 flags);
7854 env.flags |= LBF_ALL_PINNED;
7855 goto out_one_pinned;
7856 }
7857
7858 /*
7859 * ->active_balance synchronizes accesses to
7860 * ->active_balance_work. Once set, it's cleared
7861 * only after active load balance is finished.
7862 */
7863 if (!busiest->active_balance) {
7864 busiest->active_balance = 1;
7865 busiest->push_cpu = this_cpu;
7866 active_balance = 1;
7867 }
7868 raw_spin_unlock_irqrestore(&busiest->lock, flags);
7869
7870 if (active_balance) {
7871 stop_one_cpu_nowait(cpu_of(busiest),
7872 active_load_balance_cpu_stop, busiest,
7873 &busiest->active_balance_work);
7874 }
7875
7876 /* We've kicked active balancing, force task migration. */
7877 sd->nr_balance_failed = sd->cache_nice_tries+1;
7878 }
7879 } else
7880 sd->nr_balance_failed = 0;
7881
7882 if (likely(!active_balance)) {
7883 /* We were unbalanced, so reset the balancing interval */
7884 sd->balance_interval = sd->min_interval;
7885 } else {
7886 /*
7887 * If we've begun active balancing, start to back off. This
7888 * case may not be covered by the all_pinned logic if there
7889 * is only 1 task on the busy runqueue (because we don't call
7890 * detach_tasks).
7891 */
7892 if (sd->balance_interval < sd->max_interval)
7893 sd->balance_interval *= 2;
7894 }
7895
7896 goto out;
7897
7898 out_balanced:
7899 /*
7900 * We reach balance although we may have faced some affinity
7901 * constraints. Clear the imbalance flag if it was set.
7902 */
7903 if (sd_parent) {
7904 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7905
7906 if (*group_imbalance)
7907 *group_imbalance = 0;
7908 }
7909
7910 out_all_pinned:
7911 /*
7912 * We reach balance because all tasks are pinned at this level so
7913 * we can't migrate them. Let the imbalance flag set so parent level
7914 * can try to migrate them.
7915 */
7916 schedstat_inc(sd->lb_balanced[idle]);
7917
7918 sd->nr_balance_failed = 0;
7919
7920 out_one_pinned:
7921 /* tune up the balancing interval */
7922 if (((env.flags & LBF_ALL_PINNED) &&
7923 sd->balance_interval < MAX_PINNED_INTERVAL) ||
7924 (sd->balance_interval < sd->max_interval))
7925 sd->balance_interval *= 2;
7926
7927 ld_moved = 0;
7928 out:
7929 return ld_moved;
7930 }
7931
7932 static inline unsigned long
7933 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7934 {
7935 unsigned long interval = sd->balance_interval;
7936
7937 if (cpu_busy)
7938 interval *= sd->busy_factor;
7939
7940 /* scale ms to jiffies */
7941 interval = msecs_to_jiffies(interval);
7942 interval = clamp(interval, 1UL, max_load_balance_interval);
7943
7944 return interval;
7945 }
7946
7947 static inline void
7948 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
7949 {
7950 unsigned long interval, next;
7951
7952 /* used by idle balance, so cpu_busy = 0 */
7953 interval = get_sd_balance_interval(sd, 0);
7954 next = sd->last_balance + interval;
7955
7956 if (time_after(*next_balance, next))
7957 *next_balance = next;
7958 }
7959
7960 /*
7961 * idle_balance is called by schedule() if this_cpu is about to become
7962 * idle. Attempts to pull tasks from other CPUs.
7963 */
7964 static int idle_balance(struct rq *this_rq)
7965 {
7966 unsigned long next_balance = jiffies + HZ;
7967 int this_cpu = this_rq->cpu;
7968 struct sched_domain *sd;
7969 int pulled_task = 0;
7970 u64 curr_cost = 0;
7971
7972 /*
7973 * We must set idle_stamp _before_ calling idle_balance(), such that we
7974 * measure the duration of idle_balance() as idle time.
7975 */
7976 this_rq->idle_stamp = rq_clock(this_rq);
7977
7978 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7979 !this_rq->rd->overload) {
7980 rcu_read_lock();
7981 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7982 if (sd)
7983 update_next_balance(sd, &next_balance);
7984 rcu_read_unlock();
7985
7986 goto out;
7987 }
7988
7989 raw_spin_unlock(&this_rq->lock);
7990
7991 update_blocked_averages(this_cpu);
7992 rcu_read_lock();
7993 for_each_domain(this_cpu, sd) {
7994 int continue_balancing = 1;
7995 u64 t0, domain_cost;
7996
7997 if (!(sd->flags & SD_LOAD_BALANCE))
7998 continue;
7999
8000 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8001 update_next_balance(sd, &next_balance);
8002 break;
8003 }
8004
8005 if (sd->flags & SD_BALANCE_NEWIDLE) {
8006 t0 = sched_clock_cpu(this_cpu);
8007
8008 pulled_task = load_balance(this_cpu, this_rq,
8009 sd, CPU_NEWLY_IDLE,
8010 &continue_balancing);
8011
8012 domain_cost = sched_clock_cpu(this_cpu) - t0;
8013 if (domain_cost > sd->max_newidle_lb_cost)
8014 sd->max_newidle_lb_cost = domain_cost;
8015
8016 curr_cost += domain_cost;
8017 }
8018
8019 update_next_balance(sd, &next_balance);
8020
8021 /*
8022 * Stop searching for tasks to pull if there are
8023 * now runnable tasks on this rq.
8024 */
8025 if (pulled_task || this_rq->nr_running > 0)
8026 break;
8027 }
8028 rcu_read_unlock();
8029
8030 raw_spin_lock(&this_rq->lock);
8031
8032 if (curr_cost > this_rq->max_idle_balance_cost)
8033 this_rq->max_idle_balance_cost = curr_cost;
8034
8035 /*
8036 * While browsing the domains, we released the rq lock, a task could
8037 * have been enqueued in the meantime. Since we're not going idle,
8038 * pretend we pulled a task.
8039 */
8040 if (this_rq->cfs.h_nr_running && !pulled_task)
8041 pulled_task = 1;
8042
8043 out:
8044 /* Move the next balance forward */
8045 if (time_after(this_rq->next_balance, next_balance))
8046 this_rq->next_balance = next_balance;
8047
8048 /* Is there a task of a high priority class? */
8049 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8050 pulled_task = -1;
8051
8052 if (pulled_task)
8053 this_rq->idle_stamp = 0;
8054
8055 return pulled_task;
8056 }
8057
8058 /*
8059 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8060 * running tasks off the busiest CPU onto idle CPUs. It requires at
8061 * least 1 task to be running on each physical CPU where possible, and
8062 * avoids physical / logical imbalances.
8063 */
8064 static int active_load_balance_cpu_stop(void *data)
8065 {
8066 struct rq *busiest_rq = data;
8067 int busiest_cpu = cpu_of(busiest_rq);
8068 int target_cpu = busiest_rq->push_cpu;
8069 struct rq *target_rq = cpu_rq(target_cpu);
8070 struct sched_domain *sd;
8071 struct task_struct *p = NULL;
8072
8073 raw_spin_lock_irq(&busiest_rq->lock);
8074
8075 /* make sure the requested cpu hasn't gone down in the meantime */
8076 if (unlikely(busiest_cpu != smp_processor_id() ||
8077 !busiest_rq->active_balance))
8078 goto out_unlock;
8079
8080 /* Is there any task to move? */
8081 if (busiest_rq->nr_running <= 1)
8082 goto out_unlock;
8083
8084 /*
8085 * This condition is "impossible", if it occurs
8086 * we need to fix it. Originally reported by
8087 * Bjorn Helgaas on a 128-cpu setup.
8088 */
8089 BUG_ON(busiest_rq == target_rq);
8090
8091 /* Search for an sd spanning us and the target CPU. */
8092 rcu_read_lock();
8093 for_each_domain(target_cpu, sd) {
8094 if ((sd->flags & SD_LOAD_BALANCE) &&
8095 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8096 break;
8097 }
8098
8099 if (likely(sd)) {
8100 struct lb_env env = {
8101 .sd = sd,
8102 .dst_cpu = target_cpu,
8103 .dst_rq = target_rq,
8104 .src_cpu = busiest_rq->cpu,
8105 .src_rq = busiest_rq,
8106 .idle = CPU_IDLE,
8107 };
8108
8109 schedstat_inc(sd->alb_count);
8110
8111 p = detach_one_task(&env);
8112 if (p) {
8113 schedstat_inc(sd->alb_pushed);
8114 /* Active balancing done, reset the failure counter. */
8115 sd->nr_balance_failed = 0;
8116 } else {
8117 schedstat_inc(sd->alb_failed);
8118 }
8119 }
8120 rcu_read_unlock();
8121 out_unlock:
8122 busiest_rq->active_balance = 0;
8123 raw_spin_unlock(&busiest_rq->lock);
8124
8125 if (p)
8126 attach_one_task(target_rq, p);
8127
8128 local_irq_enable();
8129
8130 return 0;
8131 }
8132
8133 static inline int on_null_domain(struct rq *rq)
8134 {
8135 return unlikely(!rcu_dereference_sched(rq->sd));
8136 }
8137
8138 #ifdef CONFIG_NO_HZ_COMMON
8139 /*
8140 * idle load balancing details
8141 * - When one of the busy CPUs notice that there may be an idle rebalancing
8142 * needed, they will kick the idle load balancer, which then does idle
8143 * load balancing for all the idle CPUs.
8144 */
8145 static struct {
8146 cpumask_var_t idle_cpus_mask;
8147 atomic_t nr_cpus;
8148 unsigned long next_balance; /* in jiffy units */
8149 } nohz ____cacheline_aligned;
8150
8151 static inline int find_new_ilb(void)
8152 {
8153 int ilb = cpumask_first(nohz.idle_cpus_mask);
8154
8155 if (ilb < nr_cpu_ids && idle_cpu(ilb))
8156 return ilb;
8157
8158 return nr_cpu_ids;
8159 }
8160
8161 /*
8162 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8163 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8164 * CPU (if there is one).
8165 */
8166 static void nohz_balancer_kick(void)
8167 {
8168 int ilb_cpu;
8169
8170 nohz.next_balance++;
8171
8172 ilb_cpu = find_new_ilb();
8173
8174 if (ilb_cpu >= nr_cpu_ids)
8175 return;
8176
8177 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
8178 return;
8179 /*
8180 * Use smp_send_reschedule() instead of resched_cpu().
8181 * This way we generate a sched IPI on the target cpu which
8182 * is idle. And the softirq performing nohz idle load balance
8183 * will be run before returning from the IPI.
8184 */
8185 smp_send_reschedule(ilb_cpu);
8186 return;
8187 }
8188
8189 void nohz_balance_exit_idle(unsigned int cpu)
8190 {
8191 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
8192 /*
8193 * Completely isolated CPUs don't ever set, so we must test.
8194 */
8195 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8196 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8197 atomic_dec(&nohz.nr_cpus);
8198 }
8199 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8200 }
8201 }
8202
8203 static inline void set_cpu_sd_state_busy(void)
8204 {
8205 struct sched_domain *sd;
8206 int cpu = smp_processor_id();
8207
8208 rcu_read_lock();
8209 sd = rcu_dereference(per_cpu(sd_llc, cpu));
8210
8211 if (!sd || !sd->nohz_idle)
8212 goto unlock;
8213 sd->nohz_idle = 0;
8214
8215 atomic_inc(&sd->shared->nr_busy_cpus);
8216 unlock:
8217 rcu_read_unlock();
8218 }
8219
8220 void set_cpu_sd_state_idle(void)
8221 {
8222 struct sched_domain *sd;
8223 int cpu = smp_processor_id();
8224
8225 rcu_read_lock();
8226 sd = rcu_dereference(per_cpu(sd_llc, cpu));
8227
8228 if (!sd || sd->nohz_idle)
8229 goto unlock;
8230 sd->nohz_idle = 1;
8231
8232 atomic_dec(&sd->shared->nr_busy_cpus);
8233 unlock:
8234 rcu_read_unlock();
8235 }
8236
8237 /*
8238 * This routine will record that the cpu is going idle with tick stopped.
8239 * This info will be used in performing idle load balancing in the future.
8240 */
8241 void nohz_balance_enter_idle(int cpu)
8242 {
8243 /*
8244 * If this cpu is going down, then nothing needs to be done.
8245 */
8246 if (!cpu_active(cpu))
8247 return;
8248
8249 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8250 return;
8251
8252 /*
8253 * If we're a completely isolated CPU, we don't play.
8254 */
8255 if (on_null_domain(cpu_rq(cpu)))
8256 return;
8257
8258 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8259 atomic_inc(&nohz.nr_cpus);
8260 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8261 }
8262 #endif
8263
8264 static DEFINE_SPINLOCK(balancing);
8265
8266 /*
8267 * Scale the max load_balance interval with the number of CPUs in the system.
8268 * This trades load-balance latency on larger machines for less cross talk.
8269 */
8270 void update_max_interval(void)
8271 {
8272 max_load_balance_interval = HZ*num_online_cpus()/10;
8273 }
8274
8275 /*
8276 * It checks each scheduling domain to see if it is due to be balanced,
8277 * and initiates a balancing operation if so.
8278 *
8279 * Balancing parameters are set up in init_sched_domains.
8280 */
8281 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8282 {
8283 int continue_balancing = 1;
8284 int cpu = rq->cpu;
8285 unsigned long interval;
8286 struct sched_domain *sd;
8287 /* Earliest time when we have to do rebalance again */
8288 unsigned long next_balance = jiffies + 60*HZ;
8289 int update_next_balance = 0;
8290 int need_serialize, need_decay = 0;
8291 u64 max_cost = 0;
8292
8293 update_blocked_averages(cpu);
8294
8295 rcu_read_lock();
8296 for_each_domain(cpu, sd) {
8297 /*
8298 * Decay the newidle max times here because this is a regular
8299 * visit to all the domains. Decay ~1% per second.
8300 */
8301 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8302 sd->max_newidle_lb_cost =
8303 (sd->max_newidle_lb_cost * 253) / 256;
8304 sd->next_decay_max_lb_cost = jiffies + HZ;
8305 need_decay = 1;
8306 }
8307 max_cost += sd->max_newidle_lb_cost;
8308
8309 if (!(sd->flags & SD_LOAD_BALANCE))
8310 continue;
8311
8312 /*
8313 * Stop the load balance at this level. There is another
8314 * CPU in our sched group which is doing load balancing more
8315 * actively.
8316 */
8317 if (!continue_balancing) {
8318 if (need_decay)
8319 continue;
8320 break;
8321 }
8322
8323 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8324
8325 need_serialize = sd->flags & SD_SERIALIZE;
8326 if (need_serialize) {
8327 if (!spin_trylock(&balancing))
8328 goto out;
8329 }
8330
8331 if (time_after_eq(jiffies, sd->last_balance + interval)) {
8332 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8333 /*
8334 * The LBF_DST_PINNED logic could have changed
8335 * env->dst_cpu, so we can't know our idle
8336 * state even if we migrated tasks. Update it.
8337 */
8338 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8339 }
8340 sd->last_balance = jiffies;
8341 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8342 }
8343 if (need_serialize)
8344 spin_unlock(&balancing);
8345 out:
8346 if (time_after(next_balance, sd->last_balance + interval)) {
8347 next_balance = sd->last_balance + interval;
8348 update_next_balance = 1;
8349 }
8350 }
8351 if (need_decay) {
8352 /*
8353 * Ensure the rq-wide value also decays but keep it at a
8354 * reasonable floor to avoid funnies with rq->avg_idle.
8355 */
8356 rq->max_idle_balance_cost =
8357 max((u64)sysctl_sched_migration_cost, max_cost);
8358 }
8359 rcu_read_unlock();
8360
8361 /*
8362 * next_balance will be updated only when there is a need.
8363 * When the cpu is attached to null domain for ex, it will not be
8364 * updated.
8365 */
8366 if (likely(update_next_balance)) {
8367 rq->next_balance = next_balance;
8368
8369 #ifdef CONFIG_NO_HZ_COMMON
8370 /*
8371 * If this CPU has been elected to perform the nohz idle
8372 * balance. Other idle CPUs have already rebalanced with
8373 * nohz_idle_balance() and nohz.next_balance has been
8374 * updated accordingly. This CPU is now running the idle load
8375 * balance for itself and we need to update the
8376 * nohz.next_balance accordingly.
8377 */
8378 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8379 nohz.next_balance = rq->next_balance;
8380 #endif
8381 }
8382 }
8383
8384 #ifdef CONFIG_NO_HZ_COMMON
8385 /*
8386 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8387 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8388 */
8389 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8390 {
8391 int this_cpu = this_rq->cpu;
8392 struct rq *rq;
8393 int balance_cpu;
8394 /* Earliest time when we have to do rebalance again */
8395 unsigned long next_balance = jiffies + 60*HZ;
8396 int update_next_balance = 0;
8397
8398 if (idle != CPU_IDLE ||
8399 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8400 goto end;
8401
8402 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8403 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8404 continue;
8405
8406 /*
8407 * If this cpu gets work to do, stop the load balancing
8408 * work being done for other cpus. Next load
8409 * balancing owner will pick it up.
8410 */
8411 if (need_resched())
8412 break;
8413
8414 rq = cpu_rq(balance_cpu);
8415
8416 /*
8417 * If time for next balance is due,
8418 * do the balance.
8419 */
8420 if (time_after_eq(jiffies, rq->next_balance)) {
8421 raw_spin_lock_irq(&rq->lock);
8422 update_rq_clock(rq);
8423 cpu_load_update_idle(rq);
8424 raw_spin_unlock_irq(&rq->lock);
8425 rebalance_domains(rq, CPU_IDLE);
8426 }
8427
8428 if (time_after(next_balance, rq->next_balance)) {
8429 next_balance = rq->next_balance;
8430 update_next_balance = 1;
8431 }
8432 }
8433
8434 /*
8435 * next_balance will be updated only when there is a need.
8436 * When the CPU is attached to null domain for ex, it will not be
8437 * updated.
8438 */
8439 if (likely(update_next_balance))
8440 nohz.next_balance = next_balance;
8441 end:
8442 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8443 }
8444
8445 /*
8446 * Current heuristic for kicking the idle load balancer in the presence
8447 * of an idle cpu in the system.
8448 * - This rq has more than one task.
8449 * - This rq has at least one CFS task and the capacity of the CPU is
8450 * significantly reduced because of RT tasks or IRQs.
8451 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8452 * multiple busy cpu.
8453 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8454 * domain span are idle.
8455 */
8456 static inline bool nohz_kick_needed(struct rq *rq)
8457 {
8458 unsigned long now = jiffies;
8459 struct sched_domain_shared *sds;
8460 struct sched_domain *sd;
8461 int nr_busy, cpu = rq->cpu;
8462 bool kick = false;
8463
8464 if (unlikely(rq->idle_balance))
8465 return false;
8466
8467 /*
8468 * We may be recently in ticked or tickless idle mode. At the first
8469 * busy tick after returning from idle, we will update the busy stats.
8470 */
8471 set_cpu_sd_state_busy();
8472 nohz_balance_exit_idle(cpu);
8473
8474 /*
8475 * None are in tickless mode and hence no need for NOHZ idle load
8476 * balancing.
8477 */
8478 if (likely(!atomic_read(&nohz.nr_cpus)))
8479 return false;
8480
8481 if (time_before(now, nohz.next_balance))
8482 return false;
8483
8484 if (rq->nr_running >= 2)
8485 return true;
8486
8487 rcu_read_lock();
8488 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
8489 if (sds) {
8490 /*
8491 * XXX: write a coherent comment on why we do this.
8492 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8493 */
8494 nr_busy = atomic_read(&sds->nr_busy_cpus);
8495 if (nr_busy > 1) {
8496 kick = true;
8497 goto unlock;
8498 }
8499
8500 }
8501
8502 sd = rcu_dereference(rq->sd);
8503 if (sd) {
8504 if ((rq->cfs.h_nr_running >= 1) &&
8505 check_cpu_capacity(rq, sd)) {
8506 kick = true;
8507 goto unlock;
8508 }
8509 }
8510
8511 sd = rcu_dereference(per_cpu(sd_asym, cpu));
8512 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
8513 sched_domain_span(sd)) < cpu)) {
8514 kick = true;
8515 goto unlock;
8516 }
8517
8518 unlock:
8519 rcu_read_unlock();
8520 return kick;
8521 }
8522 #else
8523 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8524 #endif
8525
8526 /*
8527 * run_rebalance_domains is triggered when needed from the scheduler tick.
8528 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8529 */
8530 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
8531 {
8532 struct rq *this_rq = this_rq();
8533 enum cpu_idle_type idle = this_rq->idle_balance ?
8534 CPU_IDLE : CPU_NOT_IDLE;
8535
8536 /*
8537 * If this cpu has a pending nohz_balance_kick, then do the
8538 * balancing on behalf of the other idle cpus whose ticks are
8539 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8540 * give the idle cpus a chance to load balance. Else we may
8541 * load balance only within the local sched_domain hierarchy
8542 * and abort nohz_idle_balance altogether if we pull some load.
8543 */
8544 nohz_idle_balance(this_rq, idle);
8545 rebalance_domains(this_rq, idle);
8546 }
8547
8548 /*
8549 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
8550 */
8551 void trigger_load_balance(struct rq *rq)
8552 {
8553 /* Don't need to rebalance while attached to NULL domain */
8554 if (unlikely(on_null_domain(rq)))
8555 return;
8556
8557 if (time_after_eq(jiffies, rq->next_balance))
8558 raise_softirq(SCHED_SOFTIRQ);
8559 #ifdef CONFIG_NO_HZ_COMMON
8560 if (nohz_kick_needed(rq))
8561 nohz_balancer_kick();
8562 #endif
8563 }
8564
8565 static void rq_online_fair(struct rq *rq)
8566 {
8567 update_sysctl();
8568
8569 update_runtime_enabled(rq);
8570 }
8571
8572 static void rq_offline_fair(struct rq *rq)
8573 {
8574 update_sysctl();
8575
8576 /* Ensure any throttled groups are reachable by pick_next_task */
8577 unthrottle_offline_cfs_rqs(rq);
8578 }
8579
8580 #endif /* CONFIG_SMP */
8581
8582 /*
8583 * scheduler tick hitting a task of our scheduling class:
8584 */
8585 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8586 {
8587 struct cfs_rq *cfs_rq;
8588 struct sched_entity *se = &curr->se;
8589
8590 for_each_sched_entity(se) {
8591 cfs_rq = cfs_rq_of(se);
8592 entity_tick(cfs_rq, se, queued);
8593 }
8594
8595 if (static_branch_unlikely(&sched_numa_balancing))
8596 task_tick_numa(rq, curr);
8597 }
8598
8599 /*
8600 * called on fork with the child task as argument from the parent's context
8601 * - child not yet on the tasklist
8602 * - preemption disabled
8603 */
8604 static void task_fork_fair(struct task_struct *p)
8605 {
8606 struct cfs_rq *cfs_rq;
8607 struct sched_entity *se = &p->se, *curr;
8608 struct rq *rq = this_rq();
8609
8610 raw_spin_lock(&rq->lock);
8611 update_rq_clock(rq);
8612
8613 cfs_rq = task_cfs_rq(current);
8614 curr = cfs_rq->curr;
8615 if (curr) {
8616 update_curr(cfs_rq);
8617 se->vruntime = curr->vruntime;
8618 }
8619 place_entity(cfs_rq, se, 1);
8620
8621 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
8622 /*
8623 * Upon rescheduling, sched_class::put_prev_task() will place
8624 * 'current' within the tree based on its new key value.
8625 */
8626 swap(curr->vruntime, se->vruntime);
8627 resched_curr(rq);
8628 }
8629
8630 se->vruntime -= cfs_rq->min_vruntime;
8631 raw_spin_unlock(&rq->lock);
8632 }
8633
8634 /*
8635 * Priority of the task has changed. Check to see if we preempt
8636 * the current task.
8637 */
8638 static void
8639 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8640 {
8641 if (!task_on_rq_queued(p))
8642 return;
8643
8644 /*
8645 * Reschedule if we are currently running on this runqueue and
8646 * our priority decreased, or if we are not currently running on
8647 * this runqueue and our priority is higher than the current's
8648 */
8649 if (rq->curr == p) {
8650 if (p->prio > oldprio)
8651 resched_curr(rq);
8652 } else
8653 check_preempt_curr(rq, p, 0);
8654 }
8655
8656 static inline bool vruntime_normalized(struct task_struct *p)
8657 {
8658 struct sched_entity *se = &p->se;
8659
8660 /*
8661 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8662 * the dequeue_entity(.flags=0) will already have normalized the
8663 * vruntime.
8664 */
8665 if (p->on_rq)
8666 return true;
8667
8668 /*
8669 * When !on_rq, vruntime of the task has usually NOT been normalized.
8670 * But there are some cases where it has already been normalized:
8671 *
8672 * - A forked child which is waiting for being woken up by
8673 * wake_up_new_task().
8674 * - A task which has been woken up by try_to_wake_up() and
8675 * waiting for actually being woken up by sched_ttwu_pending().
8676 */
8677 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8678 return true;
8679
8680 return false;
8681 }
8682
8683 static void detach_task_cfs_rq(struct task_struct *p)
8684 {
8685 struct sched_entity *se = &p->se;
8686 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8687 u64 now = cfs_rq_clock_task(cfs_rq);
8688
8689 if (!vruntime_normalized(p)) {
8690 /*
8691 * Fix up our vruntime so that the current sleep doesn't
8692 * cause 'unlimited' sleep bonus.
8693 */
8694 place_entity(cfs_rq, se, 0);
8695 se->vruntime -= cfs_rq->min_vruntime;
8696 }
8697
8698 /* Catch up with the cfs_rq and remove our load when we leave */
8699 update_cfs_rq_load_avg(now, cfs_rq, false);
8700 detach_entity_load_avg(cfs_rq, se);
8701 update_tg_load_avg(cfs_rq, false);
8702 }
8703
8704 static void attach_task_cfs_rq(struct task_struct *p)
8705 {
8706 struct sched_entity *se = &p->se;
8707 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8708 u64 now = cfs_rq_clock_task(cfs_rq);
8709
8710 #ifdef CONFIG_FAIR_GROUP_SCHED
8711 /*
8712 * Since the real-depth could have been changed (only FAIR
8713 * class maintain depth value), reset depth properly.
8714 */
8715 se->depth = se->parent ? se->parent->depth + 1 : 0;
8716 #endif
8717
8718 /* Synchronize task with its cfs_rq */
8719 update_cfs_rq_load_avg(now, cfs_rq, false);
8720 attach_entity_load_avg(cfs_rq, se);
8721 update_tg_load_avg(cfs_rq, false);
8722
8723 if (!vruntime_normalized(p))
8724 se->vruntime += cfs_rq->min_vruntime;
8725 }
8726
8727 static void switched_from_fair(struct rq *rq, struct task_struct *p)
8728 {
8729 detach_task_cfs_rq(p);
8730 }
8731
8732 static void switched_to_fair(struct rq *rq, struct task_struct *p)
8733 {
8734 attach_task_cfs_rq(p);
8735
8736 if (task_on_rq_queued(p)) {
8737 /*
8738 * We were most likely switched from sched_rt, so
8739 * kick off the schedule if running, otherwise just see
8740 * if we can still preempt the current task.
8741 */
8742 if (rq->curr == p)
8743 resched_curr(rq);
8744 else
8745 check_preempt_curr(rq, p, 0);
8746 }
8747 }
8748
8749 /* Account for a task changing its policy or group.
8750 *
8751 * This routine is mostly called to set cfs_rq->curr field when a task
8752 * migrates between groups/classes.
8753 */
8754 static void set_curr_task_fair(struct rq *rq)
8755 {
8756 struct sched_entity *se = &rq->curr->se;
8757
8758 for_each_sched_entity(se) {
8759 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8760
8761 set_next_entity(cfs_rq, se);
8762 /* ensure bandwidth has been allocated on our new cfs_rq */
8763 account_cfs_rq_runtime(cfs_rq, 0);
8764 }
8765 }
8766
8767 void init_cfs_rq(struct cfs_rq *cfs_rq)
8768 {
8769 cfs_rq->tasks_timeline = RB_ROOT;
8770 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8771 #ifndef CONFIG_64BIT
8772 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8773 #endif
8774 #ifdef CONFIG_SMP
8775 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8776 atomic_long_set(&cfs_rq->removed_util_avg, 0);
8777 #endif
8778 }
8779
8780 #ifdef CONFIG_FAIR_GROUP_SCHED
8781 static void task_set_group_fair(struct task_struct *p)
8782 {
8783 struct sched_entity *se = &p->se;
8784
8785 set_task_rq(p, task_cpu(p));
8786 se->depth = se->parent ? se->parent->depth + 1 : 0;
8787 }
8788
8789 static void task_move_group_fair(struct task_struct *p)
8790 {
8791 detach_task_cfs_rq(p);
8792 set_task_rq(p, task_cpu(p));
8793
8794 #ifdef CONFIG_SMP
8795 /* Tell se's cfs_rq has been changed -- migrated */
8796 p->se.avg.last_update_time = 0;
8797 #endif
8798 attach_task_cfs_rq(p);
8799 }
8800
8801 static void task_change_group_fair(struct task_struct *p, int type)
8802 {
8803 switch (type) {
8804 case TASK_SET_GROUP:
8805 task_set_group_fair(p);
8806 break;
8807
8808 case TASK_MOVE_GROUP:
8809 task_move_group_fair(p);
8810 break;
8811 }
8812 }
8813
8814 void free_fair_sched_group(struct task_group *tg)
8815 {
8816 int i;
8817
8818 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8819
8820 for_each_possible_cpu(i) {
8821 if (tg->cfs_rq)
8822 kfree(tg->cfs_rq[i]);
8823 if (tg->se)
8824 kfree(tg->se[i]);
8825 }
8826
8827 kfree(tg->cfs_rq);
8828 kfree(tg->se);
8829 }
8830
8831 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8832 {
8833 struct sched_entity *se;
8834 struct cfs_rq *cfs_rq;
8835 struct rq *rq;
8836 int i;
8837
8838 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8839 if (!tg->cfs_rq)
8840 goto err;
8841 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8842 if (!tg->se)
8843 goto err;
8844
8845 tg->shares = NICE_0_LOAD;
8846
8847 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8848
8849 for_each_possible_cpu(i) {
8850 rq = cpu_rq(i);
8851
8852 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8853 GFP_KERNEL, cpu_to_node(i));
8854 if (!cfs_rq)
8855 goto err;
8856
8857 se = kzalloc_node(sizeof(struct sched_entity),
8858 GFP_KERNEL, cpu_to_node(i));
8859 if (!se)
8860 goto err_free_rq;
8861
8862 init_cfs_rq(cfs_rq);
8863 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8864 init_entity_runnable_average(se);
8865 }
8866
8867 return 1;
8868
8869 err_free_rq:
8870 kfree(cfs_rq);
8871 err:
8872 return 0;
8873 }
8874
8875 void online_fair_sched_group(struct task_group *tg)
8876 {
8877 struct sched_entity *se;
8878 struct rq *rq;
8879 int i;
8880
8881 for_each_possible_cpu(i) {
8882 rq = cpu_rq(i);
8883 se = tg->se[i];
8884
8885 raw_spin_lock_irq(&rq->lock);
8886 post_init_entity_util_avg(se);
8887 sync_throttle(tg, i);
8888 raw_spin_unlock_irq(&rq->lock);
8889 }
8890 }
8891
8892 void unregister_fair_sched_group(struct task_group *tg)
8893 {
8894 unsigned long flags;
8895 struct rq *rq;
8896 int cpu;
8897
8898 for_each_possible_cpu(cpu) {
8899 if (tg->se[cpu])
8900 remove_entity_load_avg(tg->se[cpu]);
8901
8902 /*
8903 * Only empty task groups can be destroyed; so we can speculatively
8904 * check on_list without danger of it being re-added.
8905 */
8906 if (!tg->cfs_rq[cpu]->on_list)
8907 continue;
8908
8909 rq = cpu_rq(cpu);
8910
8911 raw_spin_lock_irqsave(&rq->lock, flags);
8912 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8913 raw_spin_unlock_irqrestore(&rq->lock, flags);
8914 }
8915 }
8916
8917 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8918 struct sched_entity *se, int cpu,
8919 struct sched_entity *parent)
8920 {
8921 struct rq *rq = cpu_rq(cpu);
8922
8923 cfs_rq->tg = tg;
8924 cfs_rq->rq = rq;
8925 init_cfs_rq_runtime(cfs_rq);
8926
8927 tg->cfs_rq[cpu] = cfs_rq;
8928 tg->se[cpu] = se;
8929
8930 /* se could be NULL for root_task_group */
8931 if (!se)
8932 return;
8933
8934 if (!parent) {
8935 se->cfs_rq = &rq->cfs;
8936 se->depth = 0;
8937 } else {
8938 se->cfs_rq = parent->my_q;
8939 se->depth = parent->depth + 1;
8940 }
8941
8942 se->my_q = cfs_rq;
8943 /* guarantee group entities always have weight */
8944 update_load_set(&se->load, NICE_0_LOAD);
8945 se->parent = parent;
8946 }
8947
8948 static DEFINE_MUTEX(shares_mutex);
8949
8950 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8951 {
8952 int i;
8953 unsigned long flags;
8954
8955 /*
8956 * We can't change the weight of the root cgroup.
8957 */
8958 if (!tg->se[0])
8959 return -EINVAL;
8960
8961 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8962
8963 mutex_lock(&shares_mutex);
8964 if (tg->shares == shares)
8965 goto done;
8966
8967 tg->shares = shares;
8968 for_each_possible_cpu(i) {
8969 struct rq *rq = cpu_rq(i);
8970 struct sched_entity *se;
8971
8972 se = tg->se[i];
8973 /* Propagate contribution to hierarchy */
8974 raw_spin_lock_irqsave(&rq->lock, flags);
8975
8976 /* Possible calls to update_curr() need rq clock */
8977 update_rq_clock(rq);
8978 for_each_sched_entity(se)
8979 update_cfs_shares(group_cfs_rq(se));
8980 raw_spin_unlock_irqrestore(&rq->lock, flags);
8981 }
8982
8983 done:
8984 mutex_unlock(&shares_mutex);
8985 return 0;
8986 }
8987 #else /* CONFIG_FAIR_GROUP_SCHED */
8988
8989 void free_fair_sched_group(struct task_group *tg) { }
8990
8991 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8992 {
8993 return 1;
8994 }
8995
8996 void online_fair_sched_group(struct task_group *tg) { }
8997
8998 void unregister_fair_sched_group(struct task_group *tg) { }
8999
9000 #endif /* CONFIG_FAIR_GROUP_SCHED */
9001
9002
9003 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9004 {
9005 struct sched_entity *se = &task->se;
9006 unsigned int rr_interval = 0;
9007
9008 /*
9009 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9010 * idle runqueue:
9011 */
9012 if (rq->cfs.load.weight)
9013 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9014
9015 return rr_interval;
9016 }
9017
9018 /*
9019 * All the scheduling class methods:
9020 */
9021 const struct sched_class fair_sched_class = {
9022 .next = &idle_sched_class,
9023 .enqueue_task = enqueue_task_fair,
9024 .dequeue_task = dequeue_task_fair,
9025 .yield_task = yield_task_fair,
9026 .yield_to_task = yield_to_task_fair,
9027
9028 .check_preempt_curr = check_preempt_wakeup,
9029
9030 .pick_next_task = pick_next_task_fair,
9031 .put_prev_task = put_prev_task_fair,
9032
9033 #ifdef CONFIG_SMP
9034 .select_task_rq = select_task_rq_fair,
9035 .migrate_task_rq = migrate_task_rq_fair,
9036
9037 .rq_online = rq_online_fair,
9038 .rq_offline = rq_offline_fair,
9039
9040 .task_dead = task_dead_fair,
9041 .set_cpus_allowed = set_cpus_allowed_common,
9042 #endif
9043
9044 .set_curr_task = set_curr_task_fair,
9045 .task_tick = task_tick_fair,
9046 .task_fork = task_fork_fair,
9047
9048 .prio_changed = prio_changed_fair,
9049 .switched_from = switched_from_fair,
9050 .switched_to = switched_to_fair,
9051
9052 .get_rr_interval = get_rr_interval_fair,
9053
9054 .update_curr = update_curr_fair,
9055
9056 #ifdef CONFIG_FAIR_GROUP_SCHED
9057 .task_change_group = task_change_group_fair,
9058 #endif
9059 };
9060
9061 #ifdef CONFIG_SCHED_DEBUG
9062 void print_cfs_stats(struct seq_file *m, int cpu)
9063 {
9064 struct cfs_rq *cfs_rq;
9065
9066 rcu_read_lock();
9067 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
9068 print_cfs_rq(m, cpu, cfs_rq);
9069 rcu_read_unlock();
9070 }
9071
9072 #ifdef CONFIG_NUMA_BALANCING
9073 void show_numa_stats(struct task_struct *p, struct seq_file *m)
9074 {
9075 int node;
9076 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9077
9078 for_each_online_node(node) {
9079 if (p->numa_faults) {
9080 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9081 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9082 }
9083 if (p->numa_group) {
9084 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9085 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9086 }
9087 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9088 }
9089 }
9090 #endif /* CONFIG_NUMA_BALANCING */
9091 #endif /* CONFIG_SCHED_DEBUG */
9092
9093 __init void init_sched_fair_class(void)
9094 {
9095 #ifdef CONFIG_SMP
9096 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9097
9098 #ifdef CONFIG_NO_HZ_COMMON
9099 nohz.next_balance = jiffies;
9100 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
9101 #endif
9102 #endif /* SMP */
9103
9104 }