]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/sched/fair.c
sched/fair: Do not migrate if the prev_cpu is idle
[thirdparty/linux.git] / kernel / sched / fair.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23
24 #include <linux/sched/mm.h>
25 #include <linux/sched/topology.h>
26
27 #include <linux/latencytop.h>
28 #include <linux/cpumask.h>
29 #include <linux/cpuidle.h>
30 #include <linux/slab.h>
31 #include <linux/profile.h>
32 #include <linux/interrupt.h>
33 #include <linux/mempolicy.h>
34 #include <linux/migrate.h>
35 #include <linux/task_work.h>
36 #include <linux/sched/isolation.h>
37
38 #include <trace/events/sched.h>
39
40 #include "sched.h"
41
42 /*
43 * Targeted preemption latency for CPU-bound tasks:
44 *
45 * NOTE: this latency value is not the same as the concept of
46 * 'timeslice length' - timeslices in CFS are of variable length
47 * and have no persistent notion like in traditional, time-slice
48 * based scheduling concepts.
49 *
50 * (to see the precise effective timeslice length of your workload,
51 * run vmstat and monitor the context-switches (cs) field)
52 *
53 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
54 */
55 unsigned int sysctl_sched_latency = 6000000ULL;
56 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
57
58 /*
59 * The initial- and re-scaling of tunables is configurable
60 *
61 * Options are:
62 *
63 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
64 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
65 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
66 *
67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
68 */
69 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
70
71 /*
72 * Minimal preemption granularity for CPU-bound tasks:
73 *
74 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
75 */
76 unsigned int sysctl_sched_min_granularity = 750000ULL;
77 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
78
79 /*
80 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
81 */
82 static unsigned int sched_nr_latency = 8;
83
84 /*
85 * After fork, child runs first. If set to 0 (default) then
86 * parent will (try to) run first.
87 */
88 unsigned int sysctl_sched_child_runs_first __read_mostly;
89
90 /*
91 * SCHED_OTHER wake-up granularity.
92 *
93 * This option delays the preemption effects of decoupled workloads
94 * and reduces their over-scheduling. Synchronous workloads will still
95 * have immediate wakeup/sleep latencies.
96 *
97 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
98 */
99 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
100 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
101
102 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
103
104 #ifdef CONFIG_SMP
105 /*
106 * For asym packing, by default the lower numbered cpu has higher priority.
107 */
108 int __weak arch_asym_cpu_priority(int cpu)
109 {
110 return -cpu;
111 }
112 #endif
113
114 #ifdef CONFIG_CFS_BANDWIDTH
115 /*
116 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
117 * each time a cfs_rq requests quota.
118 *
119 * Note: in the case that the slice exceeds the runtime remaining (either due
120 * to consumption or the quota being specified to be smaller than the slice)
121 * we will always only issue the remaining available time.
122 *
123 * (default: 5 msec, units: microseconds)
124 */
125 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
126 #endif
127
128 /*
129 * The margin used when comparing utilization with CPU capacity:
130 * util * margin < capacity * 1024
131 *
132 * (default: ~20%)
133 */
134 unsigned int capacity_margin = 1280;
135
136 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
137 {
138 lw->weight += inc;
139 lw->inv_weight = 0;
140 }
141
142 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
143 {
144 lw->weight -= dec;
145 lw->inv_weight = 0;
146 }
147
148 static inline void update_load_set(struct load_weight *lw, unsigned long w)
149 {
150 lw->weight = w;
151 lw->inv_weight = 0;
152 }
153
154 /*
155 * Increase the granularity value when there are more CPUs,
156 * because with more CPUs the 'effective latency' as visible
157 * to users decreases. But the relationship is not linear,
158 * so pick a second-best guess by going with the log2 of the
159 * number of CPUs.
160 *
161 * This idea comes from the SD scheduler of Con Kolivas:
162 */
163 static unsigned int get_update_sysctl_factor(void)
164 {
165 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
166 unsigned int factor;
167
168 switch (sysctl_sched_tunable_scaling) {
169 case SCHED_TUNABLESCALING_NONE:
170 factor = 1;
171 break;
172 case SCHED_TUNABLESCALING_LINEAR:
173 factor = cpus;
174 break;
175 case SCHED_TUNABLESCALING_LOG:
176 default:
177 factor = 1 + ilog2(cpus);
178 break;
179 }
180
181 return factor;
182 }
183
184 static void update_sysctl(void)
185 {
186 unsigned int factor = get_update_sysctl_factor();
187
188 #define SET_SYSCTL(name) \
189 (sysctl_##name = (factor) * normalized_sysctl_##name)
190 SET_SYSCTL(sched_min_granularity);
191 SET_SYSCTL(sched_latency);
192 SET_SYSCTL(sched_wakeup_granularity);
193 #undef SET_SYSCTL
194 }
195
196 void sched_init_granularity(void)
197 {
198 update_sysctl();
199 }
200
201 #define WMULT_CONST (~0U)
202 #define WMULT_SHIFT 32
203
204 static void __update_inv_weight(struct load_weight *lw)
205 {
206 unsigned long w;
207
208 if (likely(lw->inv_weight))
209 return;
210
211 w = scale_load_down(lw->weight);
212
213 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
214 lw->inv_weight = 1;
215 else if (unlikely(!w))
216 lw->inv_weight = WMULT_CONST;
217 else
218 lw->inv_weight = WMULT_CONST / w;
219 }
220
221 /*
222 * delta_exec * weight / lw.weight
223 * OR
224 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
225 *
226 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
227 * we're guaranteed shift stays positive because inv_weight is guaranteed to
228 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
229 *
230 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
231 * weight/lw.weight <= 1, and therefore our shift will also be positive.
232 */
233 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
234 {
235 u64 fact = scale_load_down(weight);
236 int shift = WMULT_SHIFT;
237
238 __update_inv_weight(lw);
239
240 if (unlikely(fact >> 32)) {
241 while (fact >> 32) {
242 fact >>= 1;
243 shift--;
244 }
245 }
246
247 /* hint to use a 32x32->64 mul */
248 fact = (u64)(u32)fact * lw->inv_weight;
249
250 while (fact >> 32) {
251 fact >>= 1;
252 shift--;
253 }
254
255 return mul_u64_u32_shr(delta_exec, fact, shift);
256 }
257
258
259 const struct sched_class fair_sched_class;
260
261 /**************************************************************
262 * CFS operations on generic schedulable entities:
263 */
264
265 #ifdef CONFIG_FAIR_GROUP_SCHED
266
267 /* cpu runqueue to which this cfs_rq is attached */
268 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
269 {
270 return cfs_rq->rq;
271 }
272
273 /* An entity is a task if it doesn't "own" a runqueue */
274 #define entity_is_task(se) (!se->my_q)
275
276 static inline struct task_struct *task_of(struct sched_entity *se)
277 {
278 SCHED_WARN_ON(!entity_is_task(se));
279 return container_of(se, struct task_struct, se);
280 }
281
282 /* Walk up scheduling entities hierarchy */
283 #define for_each_sched_entity(se) \
284 for (; se; se = se->parent)
285
286 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
287 {
288 return p->se.cfs_rq;
289 }
290
291 /* runqueue on which this entity is (to be) queued */
292 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
293 {
294 return se->cfs_rq;
295 }
296
297 /* runqueue "owned" by this group */
298 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
299 {
300 return grp->my_q;
301 }
302
303 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
304 {
305 if (!cfs_rq->on_list) {
306 struct rq *rq = rq_of(cfs_rq);
307 int cpu = cpu_of(rq);
308 /*
309 * Ensure we either appear before our parent (if already
310 * enqueued) or force our parent to appear after us when it is
311 * enqueued. The fact that we always enqueue bottom-up
312 * reduces this to two cases and a special case for the root
313 * cfs_rq. Furthermore, it also means that we will always reset
314 * tmp_alone_branch either when the branch is connected
315 * to a tree or when we reach the beg of the tree
316 */
317 if (cfs_rq->tg->parent &&
318 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
319 /*
320 * If parent is already on the list, we add the child
321 * just before. Thanks to circular linked property of
322 * the list, this means to put the child at the tail
323 * of the list that starts by parent.
324 */
325 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
326 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
327 /*
328 * The branch is now connected to its tree so we can
329 * reset tmp_alone_branch to the beginning of the
330 * list.
331 */
332 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
333 } else if (!cfs_rq->tg->parent) {
334 /*
335 * cfs rq without parent should be put
336 * at the tail of the list.
337 */
338 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
339 &rq->leaf_cfs_rq_list);
340 /*
341 * We have reach the beg of a tree so we can reset
342 * tmp_alone_branch to the beginning of the list.
343 */
344 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
345 } else {
346 /*
347 * The parent has not already been added so we want to
348 * make sure that it will be put after us.
349 * tmp_alone_branch points to the beg of the branch
350 * where we will add parent.
351 */
352 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
353 rq->tmp_alone_branch);
354 /*
355 * update tmp_alone_branch to points to the new beg
356 * of the branch
357 */
358 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
359 }
360
361 cfs_rq->on_list = 1;
362 }
363 }
364
365 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
366 {
367 if (cfs_rq->on_list) {
368 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
369 cfs_rq->on_list = 0;
370 }
371 }
372
373 /* Iterate thr' all leaf cfs_rq's on a runqueue */
374 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
375 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
376 leaf_cfs_rq_list)
377
378 /* Do the two (enqueued) entities belong to the same group ? */
379 static inline struct cfs_rq *
380 is_same_group(struct sched_entity *se, struct sched_entity *pse)
381 {
382 if (se->cfs_rq == pse->cfs_rq)
383 return se->cfs_rq;
384
385 return NULL;
386 }
387
388 static inline struct sched_entity *parent_entity(struct sched_entity *se)
389 {
390 return se->parent;
391 }
392
393 static void
394 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
395 {
396 int se_depth, pse_depth;
397
398 /*
399 * preemption test can be made between sibling entities who are in the
400 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
401 * both tasks until we find their ancestors who are siblings of common
402 * parent.
403 */
404
405 /* First walk up until both entities are at same depth */
406 se_depth = (*se)->depth;
407 pse_depth = (*pse)->depth;
408
409 while (se_depth > pse_depth) {
410 se_depth--;
411 *se = parent_entity(*se);
412 }
413
414 while (pse_depth > se_depth) {
415 pse_depth--;
416 *pse = parent_entity(*pse);
417 }
418
419 while (!is_same_group(*se, *pse)) {
420 *se = parent_entity(*se);
421 *pse = parent_entity(*pse);
422 }
423 }
424
425 #else /* !CONFIG_FAIR_GROUP_SCHED */
426
427 static inline struct task_struct *task_of(struct sched_entity *se)
428 {
429 return container_of(se, struct task_struct, se);
430 }
431
432 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
433 {
434 return container_of(cfs_rq, struct rq, cfs);
435 }
436
437 #define entity_is_task(se) 1
438
439 #define for_each_sched_entity(se) \
440 for (; se; se = NULL)
441
442 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
443 {
444 return &task_rq(p)->cfs;
445 }
446
447 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
448 {
449 struct task_struct *p = task_of(se);
450 struct rq *rq = task_rq(p);
451
452 return &rq->cfs;
453 }
454
455 /* runqueue "owned" by this group */
456 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
457 {
458 return NULL;
459 }
460
461 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
462 {
463 }
464
465 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
466 {
467 }
468
469 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
470 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
471
472 static inline struct sched_entity *parent_entity(struct sched_entity *se)
473 {
474 return NULL;
475 }
476
477 static inline void
478 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
479 {
480 }
481
482 #endif /* CONFIG_FAIR_GROUP_SCHED */
483
484 static __always_inline
485 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
486
487 /**************************************************************
488 * Scheduling class tree data structure manipulation methods:
489 */
490
491 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
492 {
493 s64 delta = (s64)(vruntime - max_vruntime);
494 if (delta > 0)
495 max_vruntime = vruntime;
496
497 return max_vruntime;
498 }
499
500 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
501 {
502 s64 delta = (s64)(vruntime - min_vruntime);
503 if (delta < 0)
504 min_vruntime = vruntime;
505
506 return min_vruntime;
507 }
508
509 static inline int entity_before(struct sched_entity *a,
510 struct sched_entity *b)
511 {
512 return (s64)(a->vruntime - b->vruntime) < 0;
513 }
514
515 static void update_min_vruntime(struct cfs_rq *cfs_rq)
516 {
517 struct sched_entity *curr = cfs_rq->curr;
518 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
519
520 u64 vruntime = cfs_rq->min_vruntime;
521
522 if (curr) {
523 if (curr->on_rq)
524 vruntime = curr->vruntime;
525 else
526 curr = NULL;
527 }
528
529 if (leftmost) { /* non-empty tree */
530 struct sched_entity *se;
531 se = rb_entry(leftmost, struct sched_entity, run_node);
532
533 if (!curr)
534 vruntime = se->vruntime;
535 else
536 vruntime = min_vruntime(vruntime, se->vruntime);
537 }
538
539 /* ensure we never gain time by being placed backwards. */
540 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
541 #ifndef CONFIG_64BIT
542 smp_wmb();
543 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
544 #endif
545 }
546
547 /*
548 * Enqueue an entity into the rb-tree:
549 */
550 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
551 {
552 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
553 struct rb_node *parent = NULL;
554 struct sched_entity *entry;
555 bool leftmost = true;
556
557 /*
558 * Find the right place in the rbtree:
559 */
560 while (*link) {
561 parent = *link;
562 entry = rb_entry(parent, struct sched_entity, run_node);
563 /*
564 * We dont care about collisions. Nodes with
565 * the same key stay together.
566 */
567 if (entity_before(se, entry)) {
568 link = &parent->rb_left;
569 } else {
570 link = &parent->rb_right;
571 leftmost = false;
572 }
573 }
574
575 rb_link_node(&se->run_node, parent, link);
576 rb_insert_color_cached(&se->run_node,
577 &cfs_rq->tasks_timeline, leftmost);
578 }
579
580 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
581 {
582 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
583 }
584
585 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
586 {
587 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
588
589 if (!left)
590 return NULL;
591
592 return rb_entry(left, struct sched_entity, run_node);
593 }
594
595 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
596 {
597 struct rb_node *next = rb_next(&se->run_node);
598
599 if (!next)
600 return NULL;
601
602 return rb_entry(next, struct sched_entity, run_node);
603 }
604
605 #ifdef CONFIG_SCHED_DEBUG
606 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
607 {
608 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
609
610 if (!last)
611 return NULL;
612
613 return rb_entry(last, struct sched_entity, run_node);
614 }
615
616 /**************************************************************
617 * Scheduling class statistics methods:
618 */
619
620 int sched_proc_update_handler(struct ctl_table *table, int write,
621 void __user *buffer, size_t *lenp,
622 loff_t *ppos)
623 {
624 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
625 unsigned int factor = get_update_sysctl_factor();
626
627 if (ret || !write)
628 return ret;
629
630 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
631 sysctl_sched_min_granularity);
632
633 #define WRT_SYSCTL(name) \
634 (normalized_sysctl_##name = sysctl_##name / (factor))
635 WRT_SYSCTL(sched_min_granularity);
636 WRT_SYSCTL(sched_latency);
637 WRT_SYSCTL(sched_wakeup_granularity);
638 #undef WRT_SYSCTL
639
640 return 0;
641 }
642 #endif
643
644 /*
645 * delta /= w
646 */
647 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
648 {
649 if (unlikely(se->load.weight != NICE_0_LOAD))
650 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
651
652 return delta;
653 }
654
655 /*
656 * The idea is to set a period in which each task runs once.
657 *
658 * When there are too many tasks (sched_nr_latency) we have to stretch
659 * this period because otherwise the slices get too small.
660 *
661 * p = (nr <= nl) ? l : l*nr/nl
662 */
663 static u64 __sched_period(unsigned long nr_running)
664 {
665 if (unlikely(nr_running > sched_nr_latency))
666 return nr_running * sysctl_sched_min_granularity;
667 else
668 return sysctl_sched_latency;
669 }
670
671 /*
672 * We calculate the wall-time slice from the period by taking a part
673 * proportional to the weight.
674 *
675 * s = p*P[w/rw]
676 */
677 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
678 {
679 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
680
681 for_each_sched_entity(se) {
682 struct load_weight *load;
683 struct load_weight lw;
684
685 cfs_rq = cfs_rq_of(se);
686 load = &cfs_rq->load;
687
688 if (unlikely(!se->on_rq)) {
689 lw = cfs_rq->load;
690
691 update_load_add(&lw, se->load.weight);
692 load = &lw;
693 }
694 slice = __calc_delta(slice, se->load.weight, load);
695 }
696 return slice;
697 }
698
699 /*
700 * We calculate the vruntime slice of a to-be-inserted task.
701 *
702 * vs = s/w
703 */
704 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
705 {
706 return calc_delta_fair(sched_slice(cfs_rq, se), se);
707 }
708
709 #ifdef CONFIG_SMP
710
711 #include "sched-pelt.h"
712
713 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
714 static unsigned long task_h_load(struct task_struct *p);
715
716 /* Give new sched_entity start runnable values to heavy its load in infant time */
717 void init_entity_runnable_average(struct sched_entity *se)
718 {
719 struct sched_avg *sa = &se->avg;
720
721 memset(sa, 0, sizeof(*sa));
722
723 /*
724 * Tasks are intialized with full load to be seen as heavy tasks until
725 * they get a chance to stabilize to their real load level.
726 * Group entities are intialized with zero load to reflect the fact that
727 * nothing has been attached to the task group yet.
728 */
729 if (entity_is_task(se))
730 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
731
732 se->runnable_weight = se->load.weight;
733
734 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
735 }
736
737 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
738 static void attach_entity_cfs_rq(struct sched_entity *se);
739
740 /*
741 * With new tasks being created, their initial util_avgs are extrapolated
742 * based on the cfs_rq's current util_avg:
743 *
744 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
745 *
746 * However, in many cases, the above util_avg does not give a desired
747 * value. Moreover, the sum of the util_avgs may be divergent, such
748 * as when the series is a harmonic series.
749 *
750 * To solve this problem, we also cap the util_avg of successive tasks to
751 * only 1/2 of the left utilization budget:
752 *
753 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
754 *
755 * where n denotes the nth task.
756 *
757 * For example, a simplest series from the beginning would be like:
758 *
759 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
760 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
761 *
762 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
763 * if util_avg > util_avg_cap.
764 */
765 void post_init_entity_util_avg(struct sched_entity *se)
766 {
767 struct cfs_rq *cfs_rq = cfs_rq_of(se);
768 struct sched_avg *sa = &se->avg;
769 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
770
771 if (cap > 0) {
772 if (cfs_rq->avg.util_avg != 0) {
773 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
774 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
775
776 if (sa->util_avg > cap)
777 sa->util_avg = cap;
778 } else {
779 sa->util_avg = cap;
780 }
781 }
782
783 if (entity_is_task(se)) {
784 struct task_struct *p = task_of(se);
785 if (p->sched_class != &fair_sched_class) {
786 /*
787 * For !fair tasks do:
788 *
789 update_cfs_rq_load_avg(now, cfs_rq);
790 attach_entity_load_avg(cfs_rq, se);
791 switched_from_fair(rq, p);
792 *
793 * such that the next switched_to_fair() has the
794 * expected state.
795 */
796 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
797 return;
798 }
799 }
800
801 attach_entity_cfs_rq(se);
802 }
803
804 #else /* !CONFIG_SMP */
805 void init_entity_runnable_average(struct sched_entity *se)
806 {
807 }
808 void post_init_entity_util_avg(struct sched_entity *se)
809 {
810 }
811 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
812 {
813 }
814 #endif /* CONFIG_SMP */
815
816 /*
817 * Update the current task's runtime statistics.
818 */
819 static void update_curr(struct cfs_rq *cfs_rq)
820 {
821 struct sched_entity *curr = cfs_rq->curr;
822 u64 now = rq_clock_task(rq_of(cfs_rq));
823 u64 delta_exec;
824
825 if (unlikely(!curr))
826 return;
827
828 delta_exec = now - curr->exec_start;
829 if (unlikely((s64)delta_exec <= 0))
830 return;
831
832 curr->exec_start = now;
833
834 schedstat_set(curr->statistics.exec_max,
835 max(delta_exec, curr->statistics.exec_max));
836
837 curr->sum_exec_runtime += delta_exec;
838 schedstat_add(cfs_rq->exec_clock, delta_exec);
839
840 curr->vruntime += calc_delta_fair(delta_exec, curr);
841 update_min_vruntime(cfs_rq);
842
843 if (entity_is_task(curr)) {
844 struct task_struct *curtask = task_of(curr);
845
846 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
847 cgroup_account_cputime(curtask, delta_exec);
848 account_group_exec_runtime(curtask, delta_exec);
849 }
850
851 account_cfs_rq_runtime(cfs_rq, delta_exec);
852 }
853
854 static void update_curr_fair(struct rq *rq)
855 {
856 update_curr(cfs_rq_of(&rq->curr->se));
857 }
858
859 static inline void
860 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
861 {
862 u64 wait_start, prev_wait_start;
863
864 if (!schedstat_enabled())
865 return;
866
867 wait_start = rq_clock(rq_of(cfs_rq));
868 prev_wait_start = schedstat_val(se->statistics.wait_start);
869
870 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
871 likely(wait_start > prev_wait_start))
872 wait_start -= prev_wait_start;
873
874 __schedstat_set(se->statistics.wait_start, wait_start);
875 }
876
877 static inline void
878 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
879 {
880 struct task_struct *p;
881 u64 delta;
882
883 if (!schedstat_enabled())
884 return;
885
886 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
887
888 if (entity_is_task(se)) {
889 p = task_of(se);
890 if (task_on_rq_migrating(p)) {
891 /*
892 * Preserve migrating task's wait time so wait_start
893 * time stamp can be adjusted to accumulate wait time
894 * prior to migration.
895 */
896 __schedstat_set(se->statistics.wait_start, delta);
897 return;
898 }
899 trace_sched_stat_wait(p, delta);
900 }
901
902 __schedstat_set(se->statistics.wait_max,
903 max(schedstat_val(se->statistics.wait_max), delta));
904 __schedstat_inc(se->statistics.wait_count);
905 __schedstat_add(se->statistics.wait_sum, delta);
906 __schedstat_set(se->statistics.wait_start, 0);
907 }
908
909 static inline void
910 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
911 {
912 struct task_struct *tsk = NULL;
913 u64 sleep_start, block_start;
914
915 if (!schedstat_enabled())
916 return;
917
918 sleep_start = schedstat_val(se->statistics.sleep_start);
919 block_start = schedstat_val(se->statistics.block_start);
920
921 if (entity_is_task(se))
922 tsk = task_of(se);
923
924 if (sleep_start) {
925 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
926
927 if ((s64)delta < 0)
928 delta = 0;
929
930 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
931 __schedstat_set(se->statistics.sleep_max, delta);
932
933 __schedstat_set(se->statistics.sleep_start, 0);
934 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
935
936 if (tsk) {
937 account_scheduler_latency(tsk, delta >> 10, 1);
938 trace_sched_stat_sleep(tsk, delta);
939 }
940 }
941 if (block_start) {
942 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
943
944 if ((s64)delta < 0)
945 delta = 0;
946
947 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
948 __schedstat_set(se->statistics.block_max, delta);
949
950 __schedstat_set(se->statistics.block_start, 0);
951 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
952
953 if (tsk) {
954 if (tsk->in_iowait) {
955 __schedstat_add(se->statistics.iowait_sum, delta);
956 __schedstat_inc(se->statistics.iowait_count);
957 trace_sched_stat_iowait(tsk, delta);
958 }
959
960 trace_sched_stat_blocked(tsk, delta);
961
962 /*
963 * Blocking time is in units of nanosecs, so shift by
964 * 20 to get a milliseconds-range estimation of the
965 * amount of time that the task spent sleeping:
966 */
967 if (unlikely(prof_on == SLEEP_PROFILING)) {
968 profile_hits(SLEEP_PROFILING,
969 (void *)get_wchan(tsk),
970 delta >> 20);
971 }
972 account_scheduler_latency(tsk, delta >> 10, 0);
973 }
974 }
975 }
976
977 /*
978 * Task is being enqueued - update stats:
979 */
980 static inline void
981 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
982 {
983 if (!schedstat_enabled())
984 return;
985
986 /*
987 * Are we enqueueing a waiting task? (for current tasks
988 * a dequeue/enqueue event is a NOP)
989 */
990 if (se != cfs_rq->curr)
991 update_stats_wait_start(cfs_rq, se);
992
993 if (flags & ENQUEUE_WAKEUP)
994 update_stats_enqueue_sleeper(cfs_rq, se);
995 }
996
997 static inline void
998 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
999 {
1000
1001 if (!schedstat_enabled())
1002 return;
1003
1004 /*
1005 * Mark the end of the wait period if dequeueing a
1006 * waiting task:
1007 */
1008 if (se != cfs_rq->curr)
1009 update_stats_wait_end(cfs_rq, se);
1010
1011 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1012 struct task_struct *tsk = task_of(se);
1013
1014 if (tsk->state & TASK_INTERRUPTIBLE)
1015 __schedstat_set(se->statistics.sleep_start,
1016 rq_clock(rq_of(cfs_rq)));
1017 if (tsk->state & TASK_UNINTERRUPTIBLE)
1018 __schedstat_set(se->statistics.block_start,
1019 rq_clock(rq_of(cfs_rq)));
1020 }
1021 }
1022
1023 /*
1024 * We are picking a new current task - update its stats:
1025 */
1026 static inline void
1027 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1028 {
1029 /*
1030 * We are starting a new run period:
1031 */
1032 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1033 }
1034
1035 /**************************************************
1036 * Scheduling class queueing methods:
1037 */
1038
1039 #ifdef CONFIG_NUMA_BALANCING
1040 /*
1041 * Approximate time to scan a full NUMA task in ms. The task scan period is
1042 * calculated based on the tasks virtual memory size and
1043 * numa_balancing_scan_size.
1044 */
1045 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1046 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1047
1048 /* Portion of address space to scan in MB */
1049 unsigned int sysctl_numa_balancing_scan_size = 256;
1050
1051 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1052 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1053
1054 struct numa_group {
1055 atomic_t refcount;
1056
1057 spinlock_t lock; /* nr_tasks, tasks */
1058 int nr_tasks;
1059 pid_t gid;
1060 int active_nodes;
1061
1062 struct rcu_head rcu;
1063 unsigned long total_faults;
1064 unsigned long max_faults_cpu;
1065 /*
1066 * Faults_cpu is used to decide whether memory should move
1067 * towards the CPU. As a consequence, these stats are weighted
1068 * more by CPU use than by memory faults.
1069 */
1070 unsigned long *faults_cpu;
1071 unsigned long faults[0];
1072 };
1073
1074 static inline unsigned long group_faults_priv(struct numa_group *ng);
1075 static inline unsigned long group_faults_shared(struct numa_group *ng);
1076
1077 static unsigned int task_nr_scan_windows(struct task_struct *p)
1078 {
1079 unsigned long rss = 0;
1080 unsigned long nr_scan_pages;
1081
1082 /*
1083 * Calculations based on RSS as non-present and empty pages are skipped
1084 * by the PTE scanner and NUMA hinting faults should be trapped based
1085 * on resident pages
1086 */
1087 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1088 rss = get_mm_rss(p->mm);
1089 if (!rss)
1090 rss = nr_scan_pages;
1091
1092 rss = round_up(rss, nr_scan_pages);
1093 return rss / nr_scan_pages;
1094 }
1095
1096 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1097 #define MAX_SCAN_WINDOW 2560
1098
1099 static unsigned int task_scan_min(struct task_struct *p)
1100 {
1101 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1102 unsigned int scan, floor;
1103 unsigned int windows = 1;
1104
1105 if (scan_size < MAX_SCAN_WINDOW)
1106 windows = MAX_SCAN_WINDOW / scan_size;
1107 floor = 1000 / windows;
1108
1109 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1110 return max_t(unsigned int, floor, scan);
1111 }
1112
1113 static unsigned int task_scan_start(struct task_struct *p)
1114 {
1115 unsigned long smin = task_scan_min(p);
1116 unsigned long period = smin;
1117
1118 /* Scale the maximum scan period with the amount of shared memory. */
1119 if (p->numa_group) {
1120 struct numa_group *ng = p->numa_group;
1121 unsigned long shared = group_faults_shared(ng);
1122 unsigned long private = group_faults_priv(ng);
1123
1124 period *= atomic_read(&ng->refcount);
1125 period *= shared + 1;
1126 period /= private + shared + 1;
1127 }
1128
1129 return max(smin, period);
1130 }
1131
1132 static unsigned int task_scan_max(struct task_struct *p)
1133 {
1134 unsigned long smin = task_scan_min(p);
1135 unsigned long smax;
1136
1137 /* Watch for min being lower than max due to floor calculations */
1138 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1139
1140 /* Scale the maximum scan period with the amount of shared memory. */
1141 if (p->numa_group) {
1142 struct numa_group *ng = p->numa_group;
1143 unsigned long shared = group_faults_shared(ng);
1144 unsigned long private = group_faults_priv(ng);
1145 unsigned long period = smax;
1146
1147 period *= atomic_read(&ng->refcount);
1148 period *= shared + 1;
1149 period /= private + shared + 1;
1150
1151 smax = max(smax, period);
1152 }
1153
1154 return max(smin, smax);
1155 }
1156
1157 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1158 {
1159 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1160 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1161 }
1162
1163 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1164 {
1165 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1166 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1167 }
1168
1169 /* Shared or private faults. */
1170 #define NR_NUMA_HINT_FAULT_TYPES 2
1171
1172 /* Memory and CPU locality */
1173 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1174
1175 /* Averaged statistics, and temporary buffers. */
1176 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1177
1178 pid_t task_numa_group_id(struct task_struct *p)
1179 {
1180 return p->numa_group ? p->numa_group->gid : 0;
1181 }
1182
1183 /*
1184 * The averaged statistics, shared & private, memory & cpu,
1185 * occupy the first half of the array. The second half of the
1186 * array is for current counters, which are averaged into the
1187 * first set by task_numa_placement.
1188 */
1189 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1190 {
1191 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1192 }
1193
1194 static inline unsigned long task_faults(struct task_struct *p, int nid)
1195 {
1196 if (!p->numa_faults)
1197 return 0;
1198
1199 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1200 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1201 }
1202
1203 static inline unsigned long group_faults(struct task_struct *p, int nid)
1204 {
1205 if (!p->numa_group)
1206 return 0;
1207
1208 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1209 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1210 }
1211
1212 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1213 {
1214 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1215 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1216 }
1217
1218 static inline unsigned long group_faults_priv(struct numa_group *ng)
1219 {
1220 unsigned long faults = 0;
1221 int node;
1222
1223 for_each_online_node(node) {
1224 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1225 }
1226
1227 return faults;
1228 }
1229
1230 static inline unsigned long group_faults_shared(struct numa_group *ng)
1231 {
1232 unsigned long faults = 0;
1233 int node;
1234
1235 for_each_online_node(node) {
1236 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1237 }
1238
1239 return faults;
1240 }
1241
1242 /*
1243 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1244 * considered part of a numa group's pseudo-interleaving set. Migrations
1245 * between these nodes are slowed down, to allow things to settle down.
1246 */
1247 #define ACTIVE_NODE_FRACTION 3
1248
1249 static bool numa_is_active_node(int nid, struct numa_group *ng)
1250 {
1251 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1252 }
1253
1254 /* Handle placement on systems where not all nodes are directly connected. */
1255 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1256 int maxdist, bool task)
1257 {
1258 unsigned long score = 0;
1259 int node;
1260
1261 /*
1262 * All nodes are directly connected, and the same distance
1263 * from each other. No need for fancy placement algorithms.
1264 */
1265 if (sched_numa_topology_type == NUMA_DIRECT)
1266 return 0;
1267
1268 /*
1269 * This code is called for each node, introducing N^2 complexity,
1270 * which should be ok given the number of nodes rarely exceeds 8.
1271 */
1272 for_each_online_node(node) {
1273 unsigned long faults;
1274 int dist = node_distance(nid, node);
1275
1276 /*
1277 * The furthest away nodes in the system are not interesting
1278 * for placement; nid was already counted.
1279 */
1280 if (dist == sched_max_numa_distance || node == nid)
1281 continue;
1282
1283 /*
1284 * On systems with a backplane NUMA topology, compare groups
1285 * of nodes, and move tasks towards the group with the most
1286 * memory accesses. When comparing two nodes at distance
1287 * "hoplimit", only nodes closer by than "hoplimit" are part
1288 * of each group. Skip other nodes.
1289 */
1290 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1291 dist > maxdist)
1292 continue;
1293
1294 /* Add up the faults from nearby nodes. */
1295 if (task)
1296 faults = task_faults(p, node);
1297 else
1298 faults = group_faults(p, node);
1299
1300 /*
1301 * On systems with a glueless mesh NUMA topology, there are
1302 * no fixed "groups of nodes". Instead, nodes that are not
1303 * directly connected bounce traffic through intermediate
1304 * nodes; a numa_group can occupy any set of nodes.
1305 * The further away a node is, the less the faults count.
1306 * This seems to result in good task placement.
1307 */
1308 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1309 faults *= (sched_max_numa_distance - dist);
1310 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1311 }
1312
1313 score += faults;
1314 }
1315
1316 return score;
1317 }
1318
1319 /*
1320 * These return the fraction of accesses done by a particular task, or
1321 * task group, on a particular numa node. The group weight is given a
1322 * larger multiplier, in order to group tasks together that are almost
1323 * evenly spread out between numa nodes.
1324 */
1325 static inline unsigned long task_weight(struct task_struct *p, int nid,
1326 int dist)
1327 {
1328 unsigned long faults, total_faults;
1329
1330 if (!p->numa_faults)
1331 return 0;
1332
1333 total_faults = p->total_numa_faults;
1334
1335 if (!total_faults)
1336 return 0;
1337
1338 faults = task_faults(p, nid);
1339 faults += score_nearby_nodes(p, nid, dist, true);
1340
1341 return 1000 * faults / total_faults;
1342 }
1343
1344 static inline unsigned long group_weight(struct task_struct *p, int nid,
1345 int dist)
1346 {
1347 unsigned long faults, total_faults;
1348
1349 if (!p->numa_group)
1350 return 0;
1351
1352 total_faults = p->numa_group->total_faults;
1353
1354 if (!total_faults)
1355 return 0;
1356
1357 faults = group_faults(p, nid);
1358 faults += score_nearby_nodes(p, nid, dist, false);
1359
1360 return 1000 * faults / total_faults;
1361 }
1362
1363 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1364 int src_nid, int dst_cpu)
1365 {
1366 struct numa_group *ng = p->numa_group;
1367 int dst_nid = cpu_to_node(dst_cpu);
1368 int last_cpupid, this_cpupid;
1369
1370 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1371
1372 /*
1373 * Multi-stage node selection is used in conjunction with a periodic
1374 * migration fault to build a temporal task<->page relation. By using
1375 * a two-stage filter we remove short/unlikely relations.
1376 *
1377 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1378 * a task's usage of a particular page (n_p) per total usage of this
1379 * page (n_t) (in a given time-span) to a probability.
1380 *
1381 * Our periodic faults will sample this probability and getting the
1382 * same result twice in a row, given these samples are fully
1383 * independent, is then given by P(n)^2, provided our sample period
1384 * is sufficiently short compared to the usage pattern.
1385 *
1386 * This quadric squishes small probabilities, making it less likely we
1387 * act on an unlikely task<->page relation.
1388 */
1389 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1390 if (!cpupid_pid_unset(last_cpupid) &&
1391 cpupid_to_nid(last_cpupid) != dst_nid)
1392 return false;
1393
1394 /* Always allow migrate on private faults */
1395 if (cpupid_match_pid(p, last_cpupid))
1396 return true;
1397
1398 /* A shared fault, but p->numa_group has not been set up yet. */
1399 if (!ng)
1400 return true;
1401
1402 /*
1403 * Destination node is much more heavily used than the source
1404 * node? Allow migration.
1405 */
1406 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1407 ACTIVE_NODE_FRACTION)
1408 return true;
1409
1410 /*
1411 * Distribute memory according to CPU & memory use on each node,
1412 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1413 *
1414 * faults_cpu(dst) 3 faults_cpu(src)
1415 * --------------- * - > ---------------
1416 * faults_mem(dst) 4 faults_mem(src)
1417 */
1418 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1419 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1420 }
1421
1422 static unsigned long weighted_cpuload(struct rq *rq);
1423 static unsigned long source_load(int cpu, int type);
1424 static unsigned long target_load(int cpu, int type);
1425 static unsigned long capacity_of(int cpu);
1426
1427 /* Cached statistics for all CPUs within a node */
1428 struct numa_stats {
1429 unsigned long nr_running;
1430 unsigned long load;
1431
1432 /* Total compute capacity of CPUs on a node */
1433 unsigned long compute_capacity;
1434
1435 /* Approximate capacity in terms of runnable tasks on a node */
1436 unsigned long task_capacity;
1437 int has_free_capacity;
1438 };
1439
1440 /*
1441 * XXX borrowed from update_sg_lb_stats
1442 */
1443 static void update_numa_stats(struct numa_stats *ns, int nid)
1444 {
1445 int smt, cpu, cpus = 0;
1446 unsigned long capacity;
1447
1448 memset(ns, 0, sizeof(*ns));
1449 for_each_cpu(cpu, cpumask_of_node(nid)) {
1450 struct rq *rq = cpu_rq(cpu);
1451
1452 ns->nr_running += rq->nr_running;
1453 ns->load += weighted_cpuload(rq);
1454 ns->compute_capacity += capacity_of(cpu);
1455
1456 cpus++;
1457 }
1458
1459 /*
1460 * If we raced with hotplug and there are no CPUs left in our mask
1461 * the @ns structure is NULL'ed and task_numa_compare() will
1462 * not find this node attractive.
1463 *
1464 * We'll either bail at !has_free_capacity, or we'll detect a huge
1465 * imbalance and bail there.
1466 */
1467 if (!cpus)
1468 return;
1469
1470 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1471 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1472 capacity = cpus / smt; /* cores */
1473
1474 ns->task_capacity = min_t(unsigned, capacity,
1475 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1476 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1477 }
1478
1479 struct task_numa_env {
1480 struct task_struct *p;
1481
1482 int src_cpu, src_nid;
1483 int dst_cpu, dst_nid;
1484
1485 struct numa_stats src_stats, dst_stats;
1486
1487 int imbalance_pct;
1488 int dist;
1489
1490 struct task_struct *best_task;
1491 long best_imp;
1492 int best_cpu;
1493 };
1494
1495 static void task_numa_assign(struct task_numa_env *env,
1496 struct task_struct *p, long imp)
1497 {
1498 if (env->best_task)
1499 put_task_struct(env->best_task);
1500 if (p)
1501 get_task_struct(p);
1502
1503 env->best_task = p;
1504 env->best_imp = imp;
1505 env->best_cpu = env->dst_cpu;
1506 }
1507
1508 static bool load_too_imbalanced(long src_load, long dst_load,
1509 struct task_numa_env *env)
1510 {
1511 long imb, old_imb;
1512 long orig_src_load, orig_dst_load;
1513 long src_capacity, dst_capacity;
1514
1515 /*
1516 * The load is corrected for the CPU capacity available on each node.
1517 *
1518 * src_load dst_load
1519 * ------------ vs ---------
1520 * src_capacity dst_capacity
1521 */
1522 src_capacity = env->src_stats.compute_capacity;
1523 dst_capacity = env->dst_stats.compute_capacity;
1524
1525 /* We care about the slope of the imbalance, not the direction. */
1526 if (dst_load < src_load)
1527 swap(dst_load, src_load);
1528
1529 /* Is the difference below the threshold? */
1530 imb = dst_load * src_capacity * 100 -
1531 src_load * dst_capacity * env->imbalance_pct;
1532 if (imb <= 0)
1533 return false;
1534
1535 /*
1536 * The imbalance is above the allowed threshold.
1537 * Compare it with the old imbalance.
1538 */
1539 orig_src_load = env->src_stats.load;
1540 orig_dst_load = env->dst_stats.load;
1541
1542 if (orig_dst_load < orig_src_load)
1543 swap(orig_dst_load, orig_src_load);
1544
1545 old_imb = orig_dst_load * src_capacity * 100 -
1546 orig_src_load * dst_capacity * env->imbalance_pct;
1547
1548 /* Would this change make things worse? */
1549 return (imb > old_imb);
1550 }
1551
1552 /*
1553 * This checks if the overall compute and NUMA accesses of the system would
1554 * be improved if the source tasks was migrated to the target dst_cpu taking
1555 * into account that it might be best if task running on the dst_cpu should
1556 * be exchanged with the source task
1557 */
1558 static void task_numa_compare(struct task_numa_env *env,
1559 long taskimp, long groupimp)
1560 {
1561 struct rq *src_rq = cpu_rq(env->src_cpu);
1562 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1563 struct task_struct *cur;
1564 long src_load, dst_load;
1565 long load;
1566 long imp = env->p->numa_group ? groupimp : taskimp;
1567 long moveimp = imp;
1568 int dist = env->dist;
1569
1570 rcu_read_lock();
1571 cur = task_rcu_dereference(&dst_rq->curr);
1572 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1573 cur = NULL;
1574
1575 /*
1576 * Because we have preemption enabled we can get migrated around and
1577 * end try selecting ourselves (current == env->p) as a swap candidate.
1578 */
1579 if (cur == env->p)
1580 goto unlock;
1581
1582 /*
1583 * "imp" is the fault differential for the source task between the
1584 * source and destination node. Calculate the total differential for
1585 * the source task and potential destination task. The more negative
1586 * the value is, the more rmeote accesses that would be expected to
1587 * be incurred if the tasks were swapped.
1588 */
1589 if (cur) {
1590 /* Skip this swap candidate if cannot move to the source cpu */
1591 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1592 goto unlock;
1593
1594 /*
1595 * If dst and source tasks are in the same NUMA group, or not
1596 * in any group then look only at task weights.
1597 */
1598 if (cur->numa_group == env->p->numa_group) {
1599 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1600 task_weight(cur, env->dst_nid, dist);
1601 /*
1602 * Add some hysteresis to prevent swapping the
1603 * tasks within a group over tiny differences.
1604 */
1605 if (cur->numa_group)
1606 imp -= imp/16;
1607 } else {
1608 /*
1609 * Compare the group weights. If a task is all by
1610 * itself (not part of a group), use the task weight
1611 * instead.
1612 */
1613 if (cur->numa_group)
1614 imp += group_weight(cur, env->src_nid, dist) -
1615 group_weight(cur, env->dst_nid, dist);
1616 else
1617 imp += task_weight(cur, env->src_nid, dist) -
1618 task_weight(cur, env->dst_nid, dist);
1619 }
1620 }
1621
1622 if (imp <= env->best_imp && moveimp <= env->best_imp)
1623 goto unlock;
1624
1625 if (!cur) {
1626 /* Is there capacity at our destination? */
1627 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1628 !env->dst_stats.has_free_capacity)
1629 goto unlock;
1630
1631 goto balance;
1632 }
1633
1634 /* Balance doesn't matter much if we're running a task per cpu */
1635 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1636 dst_rq->nr_running == 1)
1637 goto assign;
1638
1639 /*
1640 * In the overloaded case, try and keep the load balanced.
1641 */
1642 balance:
1643 load = task_h_load(env->p);
1644 dst_load = env->dst_stats.load + load;
1645 src_load = env->src_stats.load - load;
1646
1647 if (moveimp > imp && moveimp > env->best_imp) {
1648 /*
1649 * If the improvement from just moving env->p direction is
1650 * better than swapping tasks around, check if a move is
1651 * possible. Store a slightly smaller score than moveimp,
1652 * so an actually idle CPU will win.
1653 */
1654 if (!load_too_imbalanced(src_load, dst_load, env)) {
1655 imp = moveimp - 1;
1656 cur = NULL;
1657 goto assign;
1658 }
1659 }
1660
1661 if (imp <= env->best_imp)
1662 goto unlock;
1663
1664 if (cur) {
1665 load = task_h_load(cur);
1666 dst_load -= load;
1667 src_load += load;
1668 }
1669
1670 if (load_too_imbalanced(src_load, dst_load, env))
1671 goto unlock;
1672
1673 /*
1674 * One idle CPU per node is evaluated for a task numa move.
1675 * Call select_idle_sibling to maybe find a better one.
1676 */
1677 if (!cur) {
1678 /*
1679 * select_idle_siblings() uses an per-cpu cpumask that
1680 * can be used from IRQ context.
1681 */
1682 local_irq_disable();
1683 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1684 env->dst_cpu);
1685 local_irq_enable();
1686 }
1687
1688 assign:
1689 task_numa_assign(env, cur, imp);
1690 unlock:
1691 rcu_read_unlock();
1692 }
1693
1694 static void task_numa_find_cpu(struct task_numa_env *env,
1695 long taskimp, long groupimp)
1696 {
1697 int cpu;
1698
1699 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1700 /* Skip this CPU if the source task cannot migrate */
1701 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1702 continue;
1703
1704 env->dst_cpu = cpu;
1705 task_numa_compare(env, taskimp, groupimp);
1706 }
1707 }
1708
1709 /* Only move tasks to a NUMA node less busy than the current node. */
1710 static bool numa_has_capacity(struct task_numa_env *env)
1711 {
1712 struct numa_stats *src = &env->src_stats;
1713 struct numa_stats *dst = &env->dst_stats;
1714
1715 if (src->has_free_capacity && !dst->has_free_capacity)
1716 return false;
1717
1718 /*
1719 * Only consider a task move if the source has a higher load
1720 * than the destination, corrected for CPU capacity on each node.
1721 *
1722 * src->load dst->load
1723 * --------------------- vs ---------------------
1724 * src->compute_capacity dst->compute_capacity
1725 */
1726 if (src->load * dst->compute_capacity * env->imbalance_pct >
1727
1728 dst->load * src->compute_capacity * 100)
1729 return true;
1730
1731 return false;
1732 }
1733
1734 static int task_numa_migrate(struct task_struct *p)
1735 {
1736 struct task_numa_env env = {
1737 .p = p,
1738
1739 .src_cpu = task_cpu(p),
1740 .src_nid = task_node(p),
1741
1742 .imbalance_pct = 112,
1743
1744 .best_task = NULL,
1745 .best_imp = 0,
1746 .best_cpu = -1,
1747 };
1748 struct sched_domain *sd;
1749 unsigned long taskweight, groupweight;
1750 int nid, ret, dist;
1751 long taskimp, groupimp;
1752
1753 /*
1754 * Pick the lowest SD_NUMA domain, as that would have the smallest
1755 * imbalance and would be the first to start moving tasks about.
1756 *
1757 * And we want to avoid any moving of tasks about, as that would create
1758 * random movement of tasks -- counter the numa conditions we're trying
1759 * to satisfy here.
1760 */
1761 rcu_read_lock();
1762 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1763 if (sd)
1764 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1765 rcu_read_unlock();
1766
1767 /*
1768 * Cpusets can break the scheduler domain tree into smaller
1769 * balance domains, some of which do not cross NUMA boundaries.
1770 * Tasks that are "trapped" in such domains cannot be migrated
1771 * elsewhere, so there is no point in (re)trying.
1772 */
1773 if (unlikely(!sd)) {
1774 p->numa_preferred_nid = task_node(p);
1775 return -EINVAL;
1776 }
1777
1778 env.dst_nid = p->numa_preferred_nid;
1779 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1780 taskweight = task_weight(p, env.src_nid, dist);
1781 groupweight = group_weight(p, env.src_nid, dist);
1782 update_numa_stats(&env.src_stats, env.src_nid);
1783 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1784 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1785 update_numa_stats(&env.dst_stats, env.dst_nid);
1786
1787 /* Try to find a spot on the preferred nid. */
1788 if (numa_has_capacity(&env))
1789 task_numa_find_cpu(&env, taskimp, groupimp);
1790
1791 /*
1792 * Look at other nodes in these cases:
1793 * - there is no space available on the preferred_nid
1794 * - the task is part of a numa_group that is interleaved across
1795 * multiple NUMA nodes; in order to better consolidate the group,
1796 * we need to check other locations.
1797 */
1798 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1799 for_each_online_node(nid) {
1800 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1801 continue;
1802
1803 dist = node_distance(env.src_nid, env.dst_nid);
1804 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1805 dist != env.dist) {
1806 taskweight = task_weight(p, env.src_nid, dist);
1807 groupweight = group_weight(p, env.src_nid, dist);
1808 }
1809
1810 /* Only consider nodes where both task and groups benefit */
1811 taskimp = task_weight(p, nid, dist) - taskweight;
1812 groupimp = group_weight(p, nid, dist) - groupweight;
1813 if (taskimp < 0 && groupimp < 0)
1814 continue;
1815
1816 env.dist = dist;
1817 env.dst_nid = nid;
1818 update_numa_stats(&env.dst_stats, env.dst_nid);
1819 if (numa_has_capacity(&env))
1820 task_numa_find_cpu(&env, taskimp, groupimp);
1821 }
1822 }
1823
1824 /*
1825 * If the task is part of a workload that spans multiple NUMA nodes,
1826 * and is migrating into one of the workload's active nodes, remember
1827 * this node as the task's preferred numa node, so the workload can
1828 * settle down.
1829 * A task that migrated to a second choice node will be better off
1830 * trying for a better one later. Do not set the preferred node here.
1831 */
1832 if (p->numa_group) {
1833 struct numa_group *ng = p->numa_group;
1834
1835 if (env.best_cpu == -1)
1836 nid = env.src_nid;
1837 else
1838 nid = env.dst_nid;
1839
1840 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1841 sched_setnuma(p, env.dst_nid);
1842 }
1843
1844 /* No better CPU than the current one was found. */
1845 if (env.best_cpu == -1)
1846 return -EAGAIN;
1847
1848 /*
1849 * Reset the scan period if the task is being rescheduled on an
1850 * alternative node to recheck if the tasks is now properly placed.
1851 */
1852 p->numa_scan_period = task_scan_start(p);
1853
1854 if (env.best_task == NULL) {
1855 ret = migrate_task_to(p, env.best_cpu);
1856 if (ret != 0)
1857 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1858 return ret;
1859 }
1860
1861 ret = migrate_swap(p, env.best_task);
1862 if (ret != 0)
1863 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1864 put_task_struct(env.best_task);
1865 return ret;
1866 }
1867
1868 /* Attempt to migrate a task to a CPU on the preferred node. */
1869 static void numa_migrate_preferred(struct task_struct *p)
1870 {
1871 unsigned long interval = HZ;
1872
1873 /* This task has no NUMA fault statistics yet */
1874 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1875 return;
1876
1877 /* Periodically retry migrating the task to the preferred node */
1878 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1879 p->numa_migrate_retry = jiffies + interval;
1880
1881 /* Success if task is already running on preferred CPU */
1882 if (task_node(p) == p->numa_preferred_nid)
1883 return;
1884
1885 /* Otherwise, try migrate to a CPU on the preferred node */
1886 task_numa_migrate(p);
1887 }
1888
1889 /*
1890 * Find out how many nodes on the workload is actively running on. Do this by
1891 * tracking the nodes from which NUMA hinting faults are triggered. This can
1892 * be different from the set of nodes where the workload's memory is currently
1893 * located.
1894 */
1895 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1896 {
1897 unsigned long faults, max_faults = 0;
1898 int nid, active_nodes = 0;
1899
1900 for_each_online_node(nid) {
1901 faults = group_faults_cpu(numa_group, nid);
1902 if (faults > max_faults)
1903 max_faults = faults;
1904 }
1905
1906 for_each_online_node(nid) {
1907 faults = group_faults_cpu(numa_group, nid);
1908 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1909 active_nodes++;
1910 }
1911
1912 numa_group->max_faults_cpu = max_faults;
1913 numa_group->active_nodes = active_nodes;
1914 }
1915
1916 /*
1917 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1918 * increments. The more local the fault statistics are, the higher the scan
1919 * period will be for the next scan window. If local/(local+remote) ratio is
1920 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1921 * the scan period will decrease. Aim for 70% local accesses.
1922 */
1923 #define NUMA_PERIOD_SLOTS 10
1924 #define NUMA_PERIOD_THRESHOLD 7
1925
1926 /*
1927 * Increase the scan period (slow down scanning) if the majority of
1928 * our memory is already on our local node, or if the majority of
1929 * the page accesses are shared with other processes.
1930 * Otherwise, decrease the scan period.
1931 */
1932 static void update_task_scan_period(struct task_struct *p,
1933 unsigned long shared, unsigned long private)
1934 {
1935 unsigned int period_slot;
1936 int lr_ratio, ps_ratio;
1937 int diff;
1938
1939 unsigned long remote = p->numa_faults_locality[0];
1940 unsigned long local = p->numa_faults_locality[1];
1941
1942 /*
1943 * If there were no record hinting faults then either the task is
1944 * completely idle or all activity is areas that are not of interest
1945 * to automatic numa balancing. Related to that, if there were failed
1946 * migration then it implies we are migrating too quickly or the local
1947 * node is overloaded. In either case, scan slower
1948 */
1949 if (local + shared == 0 || p->numa_faults_locality[2]) {
1950 p->numa_scan_period = min(p->numa_scan_period_max,
1951 p->numa_scan_period << 1);
1952
1953 p->mm->numa_next_scan = jiffies +
1954 msecs_to_jiffies(p->numa_scan_period);
1955
1956 return;
1957 }
1958
1959 /*
1960 * Prepare to scale scan period relative to the current period.
1961 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1962 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1963 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1964 */
1965 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1966 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1967 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1968
1969 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1970 /*
1971 * Most memory accesses are local. There is no need to
1972 * do fast NUMA scanning, since memory is already local.
1973 */
1974 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1975 if (!slot)
1976 slot = 1;
1977 diff = slot * period_slot;
1978 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1979 /*
1980 * Most memory accesses are shared with other tasks.
1981 * There is no point in continuing fast NUMA scanning,
1982 * since other tasks may just move the memory elsewhere.
1983 */
1984 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1985 if (!slot)
1986 slot = 1;
1987 diff = slot * period_slot;
1988 } else {
1989 /*
1990 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1991 * yet they are not on the local NUMA node. Speed up
1992 * NUMA scanning to get the memory moved over.
1993 */
1994 int ratio = max(lr_ratio, ps_ratio);
1995 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1996 }
1997
1998 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1999 task_scan_min(p), task_scan_max(p));
2000 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2001 }
2002
2003 /*
2004 * Get the fraction of time the task has been running since the last
2005 * NUMA placement cycle. The scheduler keeps similar statistics, but
2006 * decays those on a 32ms period, which is orders of magnitude off
2007 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2008 * stats only if the task is so new there are no NUMA statistics yet.
2009 */
2010 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2011 {
2012 u64 runtime, delta, now;
2013 /* Use the start of this time slice to avoid calculations. */
2014 now = p->se.exec_start;
2015 runtime = p->se.sum_exec_runtime;
2016
2017 if (p->last_task_numa_placement) {
2018 delta = runtime - p->last_sum_exec_runtime;
2019 *period = now - p->last_task_numa_placement;
2020 } else {
2021 delta = p->se.avg.load_sum;
2022 *period = LOAD_AVG_MAX;
2023 }
2024
2025 p->last_sum_exec_runtime = runtime;
2026 p->last_task_numa_placement = now;
2027
2028 return delta;
2029 }
2030
2031 /*
2032 * Determine the preferred nid for a task in a numa_group. This needs to
2033 * be done in a way that produces consistent results with group_weight,
2034 * otherwise workloads might not converge.
2035 */
2036 static int preferred_group_nid(struct task_struct *p, int nid)
2037 {
2038 nodemask_t nodes;
2039 int dist;
2040
2041 /* Direct connections between all NUMA nodes. */
2042 if (sched_numa_topology_type == NUMA_DIRECT)
2043 return nid;
2044
2045 /*
2046 * On a system with glueless mesh NUMA topology, group_weight
2047 * scores nodes according to the number of NUMA hinting faults on
2048 * both the node itself, and on nearby nodes.
2049 */
2050 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2051 unsigned long score, max_score = 0;
2052 int node, max_node = nid;
2053
2054 dist = sched_max_numa_distance;
2055
2056 for_each_online_node(node) {
2057 score = group_weight(p, node, dist);
2058 if (score > max_score) {
2059 max_score = score;
2060 max_node = node;
2061 }
2062 }
2063 return max_node;
2064 }
2065
2066 /*
2067 * Finding the preferred nid in a system with NUMA backplane
2068 * interconnect topology is more involved. The goal is to locate
2069 * tasks from numa_groups near each other in the system, and
2070 * untangle workloads from different sides of the system. This requires
2071 * searching down the hierarchy of node groups, recursively searching
2072 * inside the highest scoring group of nodes. The nodemask tricks
2073 * keep the complexity of the search down.
2074 */
2075 nodes = node_online_map;
2076 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2077 unsigned long max_faults = 0;
2078 nodemask_t max_group = NODE_MASK_NONE;
2079 int a, b;
2080
2081 /* Are there nodes at this distance from each other? */
2082 if (!find_numa_distance(dist))
2083 continue;
2084
2085 for_each_node_mask(a, nodes) {
2086 unsigned long faults = 0;
2087 nodemask_t this_group;
2088 nodes_clear(this_group);
2089
2090 /* Sum group's NUMA faults; includes a==b case. */
2091 for_each_node_mask(b, nodes) {
2092 if (node_distance(a, b) < dist) {
2093 faults += group_faults(p, b);
2094 node_set(b, this_group);
2095 node_clear(b, nodes);
2096 }
2097 }
2098
2099 /* Remember the top group. */
2100 if (faults > max_faults) {
2101 max_faults = faults;
2102 max_group = this_group;
2103 /*
2104 * subtle: at the smallest distance there is
2105 * just one node left in each "group", the
2106 * winner is the preferred nid.
2107 */
2108 nid = a;
2109 }
2110 }
2111 /* Next round, evaluate the nodes within max_group. */
2112 if (!max_faults)
2113 break;
2114 nodes = max_group;
2115 }
2116 return nid;
2117 }
2118
2119 static void task_numa_placement(struct task_struct *p)
2120 {
2121 int seq, nid, max_nid = -1, max_group_nid = -1;
2122 unsigned long max_faults = 0, max_group_faults = 0;
2123 unsigned long fault_types[2] = { 0, 0 };
2124 unsigned long total_faults;
2125 u64 runtime, period;
2126 spinlock_t *group_lock = NULL;
2127
2128 /*
2129 * The p->mm->numa_scan_seq field gets updated without
2130 * exclusive access. Use READ_ONCE() here to ensure
2131 * that the field is read in a single access:
2132 */
2133 seq = READ_ONCE(p->mm->numa_scan_seq);
2134 if (p->numa_scan_seq == seq)
2135 return;
2136 p->numa_scan_seq = seq;
2137 p->numa_scan_period_max = task_scan_max(p);
2138
2139 total_faults = p->numa_faults_locality[0] +
2140 p->numa_faults_locality[1];
2141 runtime = numa_get_avg_runtime(p, &period);
2142
2143 /* If the task is part of a group prevent parallel updates to group stats */
2144 if (p->numa_group) {
2145 group_lock = &p->numa_group->lock;
2146 spin_lock_irq(group_lock);
2147 }
2148
2149 /* Find the node with the highest number of faults */
2150 for_each_online_node(nid) {
2151 /* Keep track of the offsets in numa_faults array */
2152 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2153 unsigned long faults = 0, group_faults = 0;
2154 int priv;
2155
2156 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2157 long diff, f_diff, f_weight;
2158
2159 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2160 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2161 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2162 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2163
2164 /* Decay existing window, copy faults since last scan */
2165 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2166 fault_types[priv] += p->numa_faults[membuf_idx];
2167 p->numa_faults[membuf_idx] = 0;
2168
2169 /*
2170 * Normalize the faults_from, so all tasks in a group
2171 * count according to CPU use, instead of by the raw
2172 * number of faults. Tasks with little runtime have
2173 * little over-all impact on throughput, and thus their
2174 * faults are less important.
2175 */
2176 f_weight = div64_u64(runtime << 16, period + 1);
2177 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2178 (total_faults + 1);
2179 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2180 p->numa_faults[cpubuf_idx] = 0;
2181
2182 p->numa_faults[mem_idx] += diff;
2183 p->numa_faults[cpu_idx] += f_diff;
2184 faults += p->numa_faults[mem_idx];
2185 p->total_numa_faults += diff;
2186 if (p->numa_group) {
2187 /*
2188 * safe because we can only change our own group
2189 *
2190 * mem_idx represents the offset for a given
2191 * nid and priv in a specific region because it
2192 * is at the beginning of the numa_faults array.
2193 */
2194 p->numa_group->faults[mem_idx] += diff;
2195 p->numa_group->faults_cpu[mem_idx] += f_diff;
2196 p->numa_group->total_faults += diff;
2197 group_faults += p->numa_group->faults[mem_idx];
2198 }
2199 }
2200
2201 if (faults > max_faults) {
2202 max_faults = faults;
2203 max_nid = nid;
2204 }
2205
2206 if (group_faults > max_group_faults) {
2207 max_group_faults = group_faults;
2208 max_group_nid = nid;
2209 }
2210 }
2211
2212 update_task_scan_period(p, fault_types[0], fault_types[1]);
2213
2214 if (p->numa_group) {
2215 numa_group_count_active_nodes(p->numa_group);
2216 spin_unlock_irq(group_lock);
2217 max_nid = preferred_group_nid(p, max_group_nid);
2218 }
2219
2220 if (max_faults) {
2221 /* Set the new preferred node */
2222 if (max_nid != p->numa_preferred_nid)
2223 sched_setnuma(p, max_nid);
2224
2225 if (task_node(p) != p->numa_preferred_nid)
2226 numa_migrate_preferred(p);
2227 }
2228 }
2229
2230 static inline int get_numa_group(struct numa_group *grp)
2231 {
2232 return atomic_inc_not_zero(&grp->refcount);
2233 }
2234
2235 static inline void put_numa_group(struct numa_group *grp)
2236 {
2237 if (atomic_dec_and_test(&grp->refcount))
2238 kfree_rcu(grp, rcu);
2239 }
2240
2241 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2242 int *priv)
2243 {
2244 struct numa_group *grp, *my_grp;
2245 struct task_struct *tsk;
2246 bool join = false;
2247 int cpu = cpupid_to_cpu(cpupid);
2248 int i;
2249
2250 if (unlikely(!p->numa_group)) {
2251 unsigned int size = sizeof(struct numa_group) +
2252 4*nr_node_ids*sizeof(unsigned long);
2253
2254 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2255 if (!grp)
2256 return;
2257
2258 atomic_set(&grp->refcount, 1);
2259 grp->active_nodes = 1;
2260 grp->max_faults_cpu = 0;
2261 spin_lock_init(&grp->lock);
2262 grp->gid = p->pid;
2263 /* Second half of the array tracks nids where faults happen */
2264 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2265 nr_node_ids;
2266
2267 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2268 grp->faults[i] = p->numa_faults[i];
2269
2270 grp->total_faults = p->total_numa_faults;
2271
2272 grp->nr_tasks++;
2273 rcu_assign_pointer(p->numa_group, grp);
2274 }
2275
2276 rcu_read_lock();
2277 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2278
2279 if (!cpupid_match_pid(tsk, cpupid))
2280 goto no_join;
2281
2282 grp = rcu_dereference(tsk->numa_group);
2283 if (!grp)
2284 goto no_join;
2285
2286 my_grp = p->numa_group;
2287 if (grp == my_grp)
2288 goto no_join;
2289
2290 /*
2291 * Only join the other group if its bigger; if we're the bigger group,
2292 * the other task will join us.
2293 */
2294 if (my_grp->nr_tasks > grp->nr_tasks)
2295 goto no_join;
2296
2297 /*
2298 * Tie-break on the grp address.
2299 */
2300 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2301 goto no_join;
2302
2303 /* Always join threads in the same process. */
2304 if (tsk->mm == current->mm)
2305 join = true;
2306
2307 /* Simple filter to avoid false positives due to PID collisions */
2308 if (flags & TNF_SHARED)
2309 join = true;
2310
2311 /* Update priv based on whether false sharing was detected */
2312 *priv = !join;
2313
2314 if (join && !get_numa_group(grp))
2315 goto no_join;
2316
2317 rcu_read_unlock();
2318
2319 if (!join)
2320 return;
2321
2322 BUG_ON(irqs_disabled());
2323 double_lock_irq(&my_grp->lock, &grp->lock);
2324
2325 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2326 my_grp->faults[i] -= p->numa_faults[i];
2327 grp->faults[i] += p->numa_faults[i];
2328 }
2329 my_grp->total_faults -= p->total_numa_faults;
2330 grp->total_faults += p->total_numa_faults;
2331
2332 my_grp->nr_tasks--;
2333 grp->nr_tasks++;
2334
2335 spin_unlock(&my_grp->lock);
2336 spin_unlock_irq(&grp->lock);
2337
2338 rcu_assign_pointer(p->numa_group, grp);
2339
2340 put_numa_group(my_grp);
2341 return;
2342
2343 no_join:
2344 rcu_read_unlock();
2345 return;
2346 }
2347
2348 void task_numa_free(struct task_struct *p)
2349 {
2350 struct numa_group *grp = p->numa_group;
2351 void *numa_faults = p->numa_faults;
2352 unsigned long flags;
2353 int i;
2354
2355 if (grp) {
2356 spin_lock_irqsave(&grp->lock, flags);
2357 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2358 grp->faults[i] -= p->numa_faults[i];
2359 grp->total_faults -= p->total_numa_faults;
2360
2361 grp->nr_tasks--;
2362 spin_unlock_irqrestore(&grp->lock, flags);
2363 RCU_INIT_POINTER(p->numa_group, NULL);
2364 put_numa_group(grp);
2365 }
2366
2367 p->numa_faults = NULL;
2368 kfree(numa_faults);
2369 }
2370
2371 /*
2372 * Got a PROT_NONE fault for a page on @node.
2373 */
2374 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2375 {
2376 struct task_struct *p = current;
2377 bool migrated = flags & TNF_MIGRATED;
2378 int cpu_node = task_node(current);
2379 int local = !!(flags & TNF_FAULT_LOCAL);
2380 struct numa_group *ng;
2381 int priv;
2382
2383 if (!static_branch_likely(&sched_numa_balancing))
2384 return;
2385
2386 /* for example, ksmd faulting in a user's mm */
2387 if (!p->mm)
2388 return;
2389
2390 /* Allocate buffer to track faults on a per-node basis */
2391 if (unlikely(!p->numa_faults)) {
2392 int size = sizeof(*p->numa_faults) *
2393 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2394
2395 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2396 if (!p->numa_faults)
2397 return;
2398
2399 p->total_numa_faults = 0;
2400 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2401 }
2402
2403 /*
2404 * First accesses are treated as private, otherwise consider accesses
2405 * to be private if the accessing pid has not changed
2406 */
2407 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2408 priv = 1;
2409 } else {
2410 priv = cpupid_match_pid(p, last_cpupid);
2411 if (!priv && !(flags & TNF_NO_GROUP))
2412 task_numa_group(p, last_cpupid, flags, &priv);
2413 }
2414
2415 /*
2416 * If a workload spans multiple NUMA nodes, a shared fault that
2417 * occurs wholly within the set of nodes that the workload is
2418 * actively using should be counted as local. This allows the
2419 * scan rate to slow down when a workload has settled down.
2420 */
2421 ng = p->numa_group;
2422 if (!priv && !local && ng && ng->active_nodes > 1 &&
2423 numa_is_active_node(cpu_node, ng) &&
2424 numa_is_active_node(mem_node, ng))
2425 local = 1;
2426
2427 task_numa_placement(p);
2428
2429 /*
2430 * Retry task to preferred node migration periodically, in case it
2431 * case it previously failed, or the scheduler moved us.
2432 */
2433 if (time_after(jiffies, p->numa_migrate_retry))
2434 numa_migrate_preferred(p);
2435
2436 if (migrated)
2437 p->numa_pages_migrated += pages;
2438 if (flags & TNF_MIGRATE_FAIL)
2439 p->numa_faults_locality[2] += pages;
2440
2441 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2442 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2443 p->numa_faults_locality[local] += pages;
2444 }
2445
2446 static void reset_ptenuma_scan(struct task_struct *p)
2447 {
2448 /*
2449 * We only did a read acquisition of the mmap sem, so
2450 * p->mm->numa_scan_seq is written to without exclusive access
2451 * and the update is not guaranteed to be atomic. That's not
2452 * much of an issue though, since this is just used for
2453 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2454 * expensive, to avoid any form of compiler optimizations:
2455 */
2456 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2457 p->mm->numa_scan_offset = 0;
2458 }
2459
2460 /*
2461 * The expensive part of numa migration is done from task_work context.
2462 * Triggered from task_tick_numa().
2463 */
2464 void task_numa_work(struct callback_head *work)
2465 {
2466 unsigned long migrate, next_scan, now = jiffies;
2467 struct task_struct *p = current;
2468 struct mm_struct *mm = p->mm;
2469 u64 runtime = p->se.sum_exec_runtime;
2470 struct vm_area_struct *vma;
2471 unsigned long start, end;
2472 unsigned long nr_pte_updates = 0;
2473 long pages, virtpages;
2474
2475 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2476
2477 work->next = work; /* protect against double add */
2478 /*
2479 * Who cares about NUMA placement when they're dying.
2480 *
2481 * NOTE: make sure not to dereference p->mm before this check,
2482 * exit_task_work() happens _after_ exit_mm() so we could be called
2483 * without p->mm even though we still had it when we enqueued this
2484 * work.
2485 */
2486 if (p->flags & PF_EXITING)
2487 return;
2488
2489 if (!mm->numa_next_scan) {
2490 mm->numa_next_scan = now +
2491 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2492 }
2493
2494 /*
2495 * Enforce maximal scan/migration frequency..
2496 */
2497 migrate = mm->numa_next_scan;
2498 if (time_before(now, migrate))
2499 return;
2500
2501 if (p->numa_scan_period == 0) {
2502 p->numa_scan_period_max = task_scan_max(p);
2503 p->numa_scan_period = task_scan_start(p);
2504 }
2505
2506 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2507 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2508 return;
2509
2510 /*
2511 * Delay this task enough that another task of this mm will likely win
2512 * the next time around.
2513 */
2514 p->node_stamp += 2 * TICK_NSEC;
2515
2516 start = mm->numa_scan_offset;
2517 pages = sysctl_numa_balancing_scan_size;
2518 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2519 virtpages = pages * 8; /* Scan up to this much virtual space */
2520 if (!pages)
2521 return;
2522
2523
2524 if (!down_read_trylock(&mm->mmap_sem))
2525 return;
2526 vma = find_vma(mm, start);
2527 if (!vma) {
2528 reset_ptenuma_scan(p);
2529 start = 0;
2530 vma = mm->mmap;
2531 }
2532 for (; vma; vma = vma->vm_next) {
2533 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2534 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2535 continue;
2536 }
2537
2538 /*
2539 * Shared library pages mapped by multiple processes are not
2540 * migrated as it is expected they are cache replicated. Avoid
2541 * hinting faults in read-only file-backed mappings or the vdso
2542 * as migrating the pages will be of marginal benefit.
2543 */
2544 if (!vma->vm_mm ||
2545 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2546 continue;
2547
2548 /*
2549 * Skip inaccessible VMAs to avoid any confusion between
2550 * PROT_NONE and NUMA hinting ptes
2551 */
2552 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2553 continue;
2554
2555 do {
2556 start = max(start, vma->vm_start);
2557 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2558 end = min(end, vma->vm_end);
2559 nr_pte_updates = change_prot_numa(vma, start, end);
2560
2561 /*
2562 * Try to scan sysctl_numa_balancing_size worth of
2563 * hpages that have at least one present PTE that
2564 * is not already pte-numa. If the VMA contains
2565 * areas that are unused or already full of prot_numa
2566 * PTEs, scan up to virtpages, to skip through those
2567 * areas faster.
2568 */
2569 if (nr_pte_updates)
2570 pages -= (end - start) >> PAGE_SHIFT;
2571 virtpages -= (end - start) >> PAGE_SHIFT;
2572
2573 start = end;
2574 if (pages <= 0 || virtpages <= 0)
2575 goto out;
2576
2577 cond_resched();
2578 } while (end != vma->vm_end);
2579 }
2580
2581 out:
2582 /*
2583 * It is possible to reach the end of the VMA list but the last few
2584 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2585 * would find the !migratable VMA on the next scan but not reset the
2586 * scanner to the start so check it now.
2587 */
2588 if (vma)
2589 mm->numa_scan_offset = start;
2590 else
2591 reset_ptenuma_scan(p);
2592 up_read(&mm->mmap_sem);
2593
2594 /*
2595 * Make sure tasks use at least 32x as much time to run other code
2596 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2597 * Usually update_task_scan_period slows down scanning enough; on an
2598 * overloaded system we need to limit overhead on a per task basis.
2599 */
2600 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2601 u64 diff = p->se.sum_exec_runtime - runtime;
2602 p->node_stamp += 32 * diff;
2603 }
2604 }
2605
2606 /*
2607 * Drive the periodic memory faults..
2608 */
2609 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2610 {
2611 struct callback_head *work = &curr->numa_work;
2612 u64 period, now;
2613
2614 /*
2615 * We don't care about NUMA placement if we don't have memory.
2616 */
2617 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2618 return;
2619
2620 /*
2621 * Using runtime rather than walltime has the dual advantage that
2622 * we (mostly) drive the selection from busy threads and that the
2623 * task needs to have done some actual work before we bother with
2624 * NUMA placement.
2625 */
2626 now = curr->se.sum_exec_runtime;
2627 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2628
2629 if (now > curr->node_stamp + period) {
2630 if (!curr->node_stamp)
2631 curr->numa_scan_period = task_scan_start(curr);
2632 curr->node_stamp += period;
2633
2634 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2635 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2636 task_work_add(curr, work, true);
2637 }
2638 }
2639 }
2640
2641 #else
2642 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2643 {
2644 }
2645
2646 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2647 {
2648 }
2649
2650 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2651 {
2652 }
2653
2654 #endif /* CONFIG_NUMA_BALANCING */
2655
2656 static void
2657 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2658 {
2659 update_load_add(&cfs_rq->load, se->load.weight);
2660 if (!parent_entity(se))
2661 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2662 #ifdef CONFIG_SMP
2663 if (entity_is_task(se)) {
2664 struct rq *rq = rq_of(cfs_rq);
2665
2666 account_numa_enqueue(rq, task_of(se));
2667 list_add(&se->group_node, &rq->cfs_tasks);
2668 }
2669 #endif
2670 cfs_rq->nr_running++;
2671 }
2672
2673 static void
2674 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2675 {
2676 update_load_sub(&cfs_rq->load, se->load.weight);
2677 if (!parent_entity(se))
2678 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2679 #ifdef CONFIG_SMP
2680 if (entity_is_task(se)) {
2681 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2682 list_del_init(&se->group_node);
2683 }
2684 #endif
2685 cfs_rq->nr_running--;
2686 }
2687
2688 /*
2689 * Signed add and clamp on underflow.
2690 *
2691 * Explicitly do a load-store to ensure the intermediate value never hits
2692 * memory. This allows lockless observations without ever seeing the negative
2693 * values.
2694 */
2695 #define add_positive(_ptr, _val) do { \
2696 typeof(_ptr) ptr = (_ptr); \
2697 typeof(_val) val = (_val); \
2698 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2699 \
2700 res = var + val; \
2701 \
2702 if (val < 0 && res > var) \
2703 res = 0; \
2704 \
2705 WRITE_ONCE(*ptr, res); \
2706 } while (0)
2707
2708 /*
2709 * Unsigned subtract and clamp on underflow.
2710 *
2711 * Explicitly do a load-store to ensure the intermediate value never hits
2712 * memory. This allows lockless observations without ever seeing the negative
2713 * values.
2714 */
2715 #define sub_positive(_ptr, _val) do { \
2716 typeof(_ptr) ptr = (_ptr); \
2717 typeof(*ptr) val = (_val); \
2718 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2719 res = var - val; \
2720 if (res > var) \
2721 res = 0; \
2722 WRITE_ONCE(*ptr, res); \
2723 } while (0)
2724
2725 #ifdef CONFIG_SMP
2726 /*
2727 * XXX we want to get rid of these helpers and use the full load resolution.
2728 */
2729 static inline long se_weight(struct sched_entity *se)
2730 {
2731 return scale_load_down(se->load.weight);
2732 }
2733
2734 static inline long se_runnable(struct sched_entity *se)
2735 {
2736 return scale_load_down(se->runnable_weight);
2737 }
2738
2739 static inline void
2740 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2741 {
2742 cfs_rq->runnable_weight += se->runnable_weight;
2743
2744 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2745 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2746 }
2747
2748 static inline void
2749 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2750 {
2751 cfs_rq->runnable_weight -= se->runnable_weight;
2752
2753 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2754 sub_positive(&cfs_rq->avg.runnable_load_sum,
2755 se_runnable(se) * se->avg.runnable_load_sum);
2756 }
2757
2758 static inline void
2759 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2760 {
2761 cfs_rq->avg.load_avg += se->avg.load_avg;
2762 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2763 }
2764
2765 static inline void
2766 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2767 {
2768 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2769 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2770 }
2771 #else
2772 static inline void
2773 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2774 static inline void
2775 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2776 static inline void
2777 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2778 static inline void
2779 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2780 #endif
2781
2782 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2783 unsigned long weight, unsigned long runnable)
2784 {
2785 if (se->on_rq) {
2786 /* commit outstanding execution time */
2787 if (cfs_rq->curr == se)
2788 update_curr(cfs_rq);
2789 account_entity_dequeue(cfs_rq, se);
2790 dequeue_runnable_load_avg(cfs_rq, se);
2791 }
2792 dequeue_load_avg(cfs_rq, se);
2793
2794 se->runnable_weight = runnable;
2795 update_load_set(&se->load, weight);
2796
2797 #ifdef CONFIG_SMP
2798 do {
2799 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2800
2801 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2802 se->avg.runnable_load_avg =
2803 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2804 } while (0);
2805 #endif
2806
2807 enqueue_load_avg(cfs_rq, se);
2808 if (se->on_rq) {
2809 account_entity_enqueue(cfs_rq, se);
2810 enqueue_runnable_load_avg(cfs_rq, se);
2811 }
2812 }
2813
2814 void reweight_task(struct task_struct *p, int prio)
2815 {
2816 struct sched_entity *se = &p->se;
2817 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2818 struct load_weight *load = &se->load;
2819 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2820
2821 reweight_entity(cfs_rq, se, weight, weight);
2822 load->inv_weight = sched_prio_to_wmult[prio];
2823 }
2824
2825 #ifdef CONFIG_FAIR_GROUP_SCHED
2826 # ifdef CONFIG_SMP
2827 /*
2828 * All this does is approximate the hierarchical proportion which includes that
2829 * global sum we all love to hate.
2830 *
2831 * That is, the weight of a group entity, is the proportional share of the
2832 * group weight based on the group runqueue weights. That is:
2833 *
2834 * tg->weight * grq->load.weight
2835 * ge->load.weight = ----------------------------- (1)
2836 * \Sum grq->load.weight
2837 *
2838 * Now, because computing that sum is prohibitively expensive to compute (been
2839 * there, done that) we approximate it with this average stuff. The average
2840 * moves slower and therefore the approximation is cheaper and more stable.
2841 *
2842 * So instead of the above, we substitute:
2843 *
2844 * grq->load.weight -> grq->avg.load_avg (2)
2845 *
2846 * which yields the following:
2847 *
2848 * tg->weight * grq->avg.load_avg
2849 * ge->load.weight = ------------------------------ (3)
2850 * tg->load_avg
2851 *
2852 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2853 *
2854 * That is shares_avg, and it is right (given the approximation (2)).
2855 *
2856 * The problem with it is that because the average is slow -- it was designed
2857 * to be exactly that of course -- this leads to transients in boundary
2858 * conditions. In specific, the case where the group was idle and we start the
2859 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2860 * yielding bad latency etc..
2861 *
2862 * Now, in that special case (1) reduces to:
2863 *
2864 * tg->weight * grq->load.weight
2865 * ge->load.weight = ----------------------------- = tg->weight (4)
2866 * grp->load.weight
2867 *
2868 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2869 *
2870 * So what we do is modify our approximation (3) to approach (4) in the (near)
2871 * UP case, like:
2872 *
2873 * ge->load.weight =
2874 *
2875 * tg->weight * grq->load.weight
2876 * --------------------------------------------------- (5)
2877 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2878 *
2879 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2880 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2881 *
2882 *
2883 * tg->weight * grq->load.weight
2884 * ge->load.weight = ----------------------------- (6)
2885 * tg_load_avg'
2886 *
2887 * Where:
2888 *
2889 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2890 * max(grq->load.weight, grq->avg.load_avg)
2891 *
2892 * And that is shares_weight and is icky. In the (near) UP case it approaches
2893 * (4) while in the normal case it approaches (3). It consistently
2894 * overestimates the ge->load.weight and therefore:
2895 *
2896 * \Sum ge->load.weight >= tg->weight
2897 *
2898 * hence icky!
2899 */
2900 static long calc_group_shares(struct cfs_rq *cfs_rq)
2901 {
2902 long tg_weight, tg_shares, load, shares;
2903 struct task_group *tg = cfs_rq->tg;
2904
2905 tg_shares = READ_ONCE(tg->shares);
2906
2907 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2908
2909 tg_weight = atomic_long_read(&tg->load_avg);
2910
2911 /* Ensure tg_weight >= load */
2912 tg_weight -= cfs_rq->tg_load_avg_contrib;
2913 tg_weight += load;
2914
2915 shares = (tg_shares * load);
2916 if (tg_weight)
2917 shares /= tg_weight;
2918
2919 /*
2920 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2921 * of a group with small tg->shares value. It is a floor value which is
2922 * assigned as a minimum load.weight to the sched_entity representing
2923 * the group on a CPU.
2924 *
2925 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2926 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2927 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2928 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2929 * instead of 0.
2930 */
2931 return clamp_t(long, shares, MIN_SHARES, tg_shares);
2932 }
2933
2934 /*
2935 * This calculates the effective runnable weight for a group entity based on
2936 * the group entity weight calculated above.
2937 *
2938 * Because of the above approximation (2), our group entity weight is
2939 * an load_avg based ratio (3). This means that it includes blocked load and
2940 * does not represent the runnable weight.
2941 *
2942 * Approximate the group entity's runnable weight per ratio from the group
2943 * runqueue:
2944 *
2945 * grq->avg.runnable_load_avg
2946 * ge->runnable_weight = ge->load.weight * -------------------------- (7)
2947 * grq->avg.load_avg
2948 *
2949 * However, analogous to above, since the avg numbers are slow, this leads to
2950 * transients in the from-idle case. Instead we use:
2951 *
2952 * ge->runnable_weight = ge->load.weight *
2953 *
2954 * max(grq->avg.runnable_load_avg, grq->runnable_weight)
2955 * ----------------------------------------------------- (8)
2956 * max(grq->avg.load_avg, grq->load.weight)
2957 *
2958 * Where these max() serve both to use the 'instant' values to fix the slow
2959 * from-idle and avoid the /0 on to-idle, similar to (6).
2960 */
2961 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
2962 {
2963 long runnable, load_avg;
2964
2965 load_avg = max(cfs_rq->avg.load_avg,
2966 scale_load_down(cfs_rq->load.weight));
2967
2968 runnable = max(cfs_rq->avg.runnable_load_avg,
2969 scale_load_down(cfs_rq->runnable_weight));
2970
2971 runnable *= shares;
2972 if (load_avg)
2973 runnable /= load_avg;
2974
2975 return clamp_t(long, runnable, MIN_SHARES, shares);
2976 }
2977 # endif /* CONFIG_SMP */
2978
2979 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2980
2981 /*
2982 * Recomputes the group entity based on the current state of its group
2983 * runqueue.
2984 */
2985 static void update_cfs_group(struct sched_entity *se)
2986 {
2987 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
2988 long shares, runnable;
2989
2990 if (!gcfs_rq)
2991 return;
2992
2993 if (throttled_hierarchy(gcfs_rq))
2994 return;
2995
2996 #ifndef CONFIG_SMP
2997 runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
2998
2999 if (likely(se->load.weight == shares))
3000 return;
3001 #else
3002 shares = calc_group_shares(gcfs_rq);
3003 runnable = calc_group_runnable(gcfs_rq, shares);
3004 #endif
3005
3006 reweight_entity(cfs_rq_of(se), se, shares, runnable);
3007 }
3008
3009 #else /* CONFIG_FAIR_GROUP_SCHED */
3010 static inline void update_cfs_group(struct sched_entity *se)
3011 {
3012 }
3013 #endif /* CONFIG_FAIR_GROUP_SCHED */
3014
3015 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
3016 {
3017 struct rq *rq = rq_of(cfs_rq);
3018
3019 if (&rq->cfs == cfs_rq) {
3020 /*
3021 * There are a few boundary cases this might miss but it should
3022 * get called often enough that that should (hopefully) not be
3023 * a real problem.
3024 *
3025 * It will not get called when we go idle, because the idle
3026 * thread is a different class (!fair), nor will the utilization
3027 * number include things like RT tasks.
3028 *
3029 * As is, the util number is not freq-invariant (we'd have to
3030 * implement arch_scale_freq_capacity() for that).
3031 *
3032 * See cpu_util().
3033 */
3034 cpufreq_update_util(rq, 0);
3035 }
3036 }
3037
3038 #ifdef CONFIG_SMP
3039 /*
3040 * Approximate:
3041 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
3042 */
3043 static u64 decay_load(u64 val, u64 n)
3044 {
3045 unsigned int local_n;
3046
3047 if (unlikely(n > LOAD_AVG_PERIOD * 63))
3048 return 0;
3049
3050 /* after bounds checking we can collapse to 32-bit */
3051 local_n = n;
3052
3053 /*
3054 * As y^PERIOD = 1/2, we can combine
3055 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
3056 * With a look-up table which covers y^n (n<PERIOD)
3057 *
3058 * To achieve constant time decay_load.
3059 */
3060 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
3061 val >>= local_n / LOAD_AVG_PERIOD;
3062 local_n %= LOAD_AVG_PERIOD;
3063 }
3064
3065 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
3066 return val;
3067 }
3068
3069 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
3070 {
3071 u32 c1, c2, c3 = d3; /* y^0 == 1 */
3072
3073 /*
3074 * c1 = d1 y^p
3075 */
3076 c1 = decay_load((u64)d1, periods);
3077
3078 /*
3079 * p-1
3080 * c2 = 1024 \Sum y^n
3081 * n=1
3082 *
3083 * inf inf
3084 * = 1024 ( \Sum y^n - \Sum y^n - y^0 )
3085 * n=0 n=p
3086 */
3087 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
3088
3089 return c1 + c2 + c3;
3090 }
3091
3092 /*
3093 * Accumulate the three separate parts of the sum; d1 the remainder
3094 * of the last (incomplete) period, d2 the span of full periods and d3
3095 * the remainder of the (incomplete) current period.
3096 *
3097 * d1 d2 d3
3098 * ^ ^ ^
3099 * | | |
3100 * |<->|<----------------->|<--->|
3101 * ... |---x---|------| ... |------|-----x (now)
3102 *
3103 * p-1
3104 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
3105 * n=1
3106 *
3107 * = u y^p + (Step 1)
3108 *
3109 * p-1
3110 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2)
3111 * n=1
3112 */
3113 static __always_inline u32
3114 accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
3115 unsigned long load, unsigned long runnable, int running)
3116 {
3117 unsigned long scale_freq, scale_cpu;
3118 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
3119 u64 periods;
3120
3121 scale_freq = arch_scale_freq_capacity(cpu);
3122 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
3123
3124 delta += sa->period_contrib;
3125 periods = delta / 1024; /* A period is 1024us (~1ms) */
3126
3127 /*
3128 * Step 1: decay old *_sum if we crossed period boundaries.
3129 */
3130 if (periods) {
3131 sa->load_sum = decay_load(sa->load_sum, periods);
3132 sa->runnable_load_sum =
3133 decay_load(sa->runnable_load_sum, periods);
3134 sa->util_sum = decay_load((u64)(sa->util_sum), periods);
3135
3136 /*
3137 * Step 2
3138 */
3139 delta %= 1024;
3140 contrib = __accumulate_pelt_segments(periods,
3141 1024 - sa->period_contrib, delta);
3142 }
3143 sa->period_contrib = delta;
3144
3145 contrib = cap_scale(contrib, scale_freq);
3146 if (load)
3147 sa->load_sum += load * contrib;
3148 if (runnable)
3149 sa->runnable_load_sum += runnable * contrib;
3150 if (running)
3151 sa->util_sum += contrib * scale_cpu;
3152
3153 return periods;
3154 }
3155
3156 /*
3157 * We can represent the historical contribution to runnable average as the
3158 * coefficients of a geometric series. To do this we sub-divide our runnable
3159 * history into segments of approximately 1ms (1024us); label the segment that
3160 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
3161 *
3162 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
3163 * p0 p1 p2
3164 * (now) (~1ms ago) (~2ms ago)
3165 *
3166 * Let u_i denote the fraction of p_i that the entity was runnable.
3167 *
3168 * We then designate the fractions u_i as our co-efficients, yielding the
3169 * following representation of historical load:
3170 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
3171 *
3172 * We choose y based on the with of a reasonably scheduling period, fixing:
3173 * y^32 = 0.5
3174 *
3175 * This means that the contribution to load ~32ms ago (u_32) will be weighted
3176 * approximately half as much as the contribution to load within the last ms
3177 * (u_0).
3178 *
3179 * When a period "rolls over" and we have new u_0`, multiplying the previous
3180 * sum again by y is sufficient to update:
3181 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
3182 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
3183 */
3184 static __always_inline int
3185 ___update_load_sum(u64 now, int cpu, struct sched_avg *sa,
3186 unsigned long load, unsigned long runnable, int running)
3187 {
3188 u64 delta;
3189
3190 delta = now - sa->last_update_time;
3191 /*
3192 * This should only happen when time goes backwards, which it
3193 * unfortunately does during sched clock init when we swap over to TSC.
3194 */
3195 if ((s64)delta < 0) {
3196 sa->last_update_time = now;
3197 return 0;
3198 }
3199
3200 /*
3201 * Use 1024ns as the unit of measurement since it's a reasonable
3202 * approximation of 1us and fast to compute.
3203 */
3204 delta >>= 10;
3205 if (!delta)
3206 return 0;
3207
3208 sa->last_update_time += delta << 10;
3209
3210 /*
3211 * running is a subset of runnable (weight) so running can't be set if
3212 * runnable is clear. But there are some corner cases where the current
3213 * se has been already dequeued but cfs_rq->curr still points to it.
3214 * This means that weight will be 0 but not running for a sched_entity
3215 * but also for a cfs_rq if the latter becomes idle. As an example,
3216 * this happens during idle_balance() which calls
3217 * update_blocked_averages()
3218 */
3219 if (!load)
3220 runnable = running = 0;
3221
3222 /*
3223 * Now we know we crossed measurement unit boundaries. The *_avg
3224 * accrues by two steps:
3225 *
3226 * Step 1: accumulate *_sum since last_update_time. If we haven't
3227 * crossed period boundaries, finish.
3228 */
3229 if (!accumulate_sum(delta, cpu, sa, load, runnable, running))
3230 return 0;
3231
3232 return 1;
3233 }
3234
3235 static __always_inline void
3236 ___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runnable)
3237 {
3238 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3239
3240 /*
3241 * Step 2: update *_avg.
3242 */
3243 sa->load_avg = div_u64(load * sa->load_sum, divider);
3244 sa->runnable_load_avg = div_u64(runnable * sa->runnable_load_sum, divider);
3245 sa->util_avg = sa->util_sum / divider;
3246 }
3247
3248 /*
3249 * sched_entity:
3250 *
3251 * task:
3252 * se_runnable() == se_weight()
3253 *
3254 * group: [ see update_cfs_group() ]
3255 * se_weight() = tg->weight * grq->load_avg / tg->load_avg
3256 * se_runnable() = se_weight(se) * grq->runnable_load_avg / grq->load_avg
3257 *
3258 * load_sum := runnable_sum
3259 * load_avg = se_weight(se) * runnable_avg
3260 *
3261 * runnable_load_sum := runnable_sum
3262 * runnable_load_avg = se_runnable(se) * runnable_avg
3263 *
3264 * XXX collapse load_sum and runnable_load_sum
3265 *
3266 * cfq_rs:
3267 *
3268 * load_sum = \Sum se_weight(se) * se->avg.load_sum
3269 * load_avg = \Sum se->avg.load_avg
3270 *
3271 * runnable_load_sum = \Sum se_runnable(se) * se->avg.runnable_load_sum
3272 * runnable_load_avg = \Sum se->avg.runable_load_avg
3273 */
3274
3275 static int
3276 __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
3277 {
3278 if (entity_is_task(se))
3279 se->runnable_weight = se->load.weight;
3280
3281 if (___update_load_sum(now, cpu, &se->avg, 0, 0, 0)) {
3282 ___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
3283 return 1;
3284 }
3285
3286 return 0;
3287 }
3288
3289 static int
3290 __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
3291 {
3292 if (entity_is_task(se))
3293 se->runnable_weight = se->load.weight;
3294
3295 if (___update_load_sum(now, cpu, &se->avg, !!se->on_rq, !!se->on_rq,
3296 cfs_rq->curr == se)) {
3297
3298 ___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
3299 return 1;
3300 }
3301
3302 return 0;
3303 }
3304
3305 static int
3306 __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
3307 {
3308 if (___update_load_sum(now, cpu, &cfs_rq->avg,
3309 scale_load_down(cfs_rq->load.weight),
3310 scale_load_down(cfs_rq->runnable_weight),
3311 cfs_rq->curr != NULL)) {
3312
3313 ___update_load_avg(&cfs_rq->avg, 1, 1);
3314 return 1;
3315 }
3316
3317 return 0;
3318 }
3319
3320 #ifdef CONFIG_FAIR_GROUP_SCHED
3321 /**
3322 * update_tg_load_avg - update the tg's load avg
3323 * @cfs_rq: the cfs_rq whose avg changed
3324 * @force: update regardless of how small the difference
3325 *
3326 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3327 * However, because tg->load_avg is a global value there are performance
3328 * considerations.
3329 *
3330 * In order to avoid having to look at the other cfs_rq's, we use a
3331 * differential update where we store the last value we propagated. This in
3332 * turn allows skipping updates if the differential is 'small'.
3333 *
3334 * Updating tg's load_avg is necessary before update_cfs_share().
3335 */
3336 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3337 {
3338 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3339
3340 /*
3341 * No need to update load_avg for root_task_group as it is not used.
3342 */
3343 if (cfs_rq->tg == &root_task_group)
3344 return;
3345
3346 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3347 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3348 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3349 }
3350 }
3351
3352 /*
3353 * Called within set_task_rq() right before setting a task's cpu. The
3354 * caller only guarantees p->pi_lock is held; no other assumptions,
3355 * including the state of rq->lock, should be made.
3356 */
3357 void set_task_rq_fair(struct sched_entity *se,
3358 struct cfs_rq *prev, struct cfs_rq *next)
3359 {
3360 u64 p_last_update_time;
3361 u64 n_last_update_time;
3362
3363 if (!sched_feat(ATTACH_AGE_LOAD))
3364 return;
3365
3366 /*
3367 * We are supposed to update the task to "current" time, then its up to
3368 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3369 * getting what current time is, so simply throw away the out-of-date
3370 * time. This will result in the wakee task is less decayed, but giving
3371 * the wakee more load sounds not bad.
3372 */
3373 if (!(se->avg.last_update_time && prev))
3374 return;
3375
3376 #ifndef CONFIG_64BIT
3377 {
3378 u64 p_last_update_time_copy;
3379 u64 n_last_update_time_copy;
3380
3381 do {
3382 p_last_update_time_copy = prev->load_last_update_time_copy;
3383 n_last_update_time_copy = next->load_last_update_time_copy;
3384
3385 smp_rmb();
3386
3387 p_last_update_time = prev->avg.last_update_time;
3388 n_last_update_time = next->avg.last_update_time;
3389
3390 } while (p_last_update_time != p_last_update_time_copy ||
3391 n_last_update_time != n_last_update_time_copy);
3392 }
3393 #else
3394 p_last_update_time = prev->avg.last_update_time;
3395 n_last_update_time = next->avg.last_update_time;
3396 #endif
3397 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3398 se->avg.last_update_time = n_last_update_time;
3399 }
3400
3401
3402 /*
3403 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3404 * propagate its contribution. The key to this propagation is the invariant
3405 * that for each group:
3406 *
3407 * ge->avg == grq->avg (1)
3408 *
3409 * _IFF_ we look at the pure running and runnable sums. Because they
3410 * represent the very same entity, just at different points in the hierarchy.
3411 *
3412 * Per the above update_tg_cfs_util() is trivial and simply copies the running
3413 * sum over (but still wrong, because the group entity and group rq do not have
3414 * their PELT windows aligned).
3415 *
3416 * However, update_tg_cfs_runnable() is more complex. So we have:
3417 *
3418 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3419 *
3420 * And since, like util, the runnable part should be directly transferable,
3421 * the following would _appear_ to be the straight forward approach:
3422 *
3423 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3424 *
3425 * And per (1) we have:
3426 *
3427 * ge->avg.runnable_avg == grq->avg.runnable_avg
3428 *
3429 * Which gives:
3430 *
3431 * ge->load.weight * grq->avg.load_avg
3432 * ge->avg.load_avg = ----------------------------------- (4)
3433 * grq->load.weight
3434 *
3435 * Except that is wrong!
3436 *
3437 * Because while for entities historical weight is not important and we
3438 * really only care about our future and therefore can consider a pure
3439 * runnable sum, runqueues can NOT do this.
3440 *
3441 * We specifically want runqueues to have a load_avg that includes
3442 * historical weights. Those represent the blocked load, the load we expect
3443 * to (shortly) return to us. This only works by keeping the weights as
3444 * integral part of the sum. We therefore cannot decompose as per (3).
3445 *
3446 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3447 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3448 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3449 * runnable section of these tasks overlap (or not). If they were to perfectly
3450 * align the rq as a whole would be runnable 2/3 of the time. If however we
3451 * always have at least 1 runnable task, the rq as a whole is always runnable.
3452 *
3453 * So we'll have to approximate.. :/
3454 *
3455 * Given the constraint:
3456 *
3457 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3458 *
3459 * We can construct a rule that adds runnable to a rq by assuming minimal
3460 * overlap.
3461 *
3462 * On removal, we'll assume each task is equally runnable; which yields:
3463 *
3464 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3465 *
3466 * XXX: only do this for the part of runnable > running ?
3467 *
3468 */
3469
3470 static inline void
3471 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3472 {
3473 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3474
3475 /* Nothing to update */
3476 if (!delta)
3477 return;
3478
3479 /*
3480 * The relation between sum and avg is:
3481 *
3482 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3483 *
3484 * however, the PELT windows are not aligned between grq and gse.
3485 */
3486
3487 /* Set new sched_entity's utilization */
3488 se->avg.util_avg = gcfs_rq->avg.util_avg;
3489 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3490
3491 /* Update parent cfs_rq utilization */
3492 add_positive(&cfs_rq->avg.util_avg, delta);
3493 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3494 }
3495
3496 static inline void
3497 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3498 {
3499 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3500 unsigned long runnable_load_avg, load_avg;
3501 u64 runnable_load_sum, load_sum = 0;
3502 s64 delta_sum;
3503
3504 if (!runnable_sum)
3505 return;
3506
3507 gcfs_rq->prop_runnable_sum = 0;
3508
3509 if (runnable_sum >= 0) {
3510 /*
3511 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3512 * the CPU is saturated running == runnable.
3513 */
3514 runnable_sum += se->avg.load_sum;
3515 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3516 } else {
3517 /*
3518 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3519 * assuming all tasks are equally runnable.
3520 */
3521 if (scale_load_down(gcfs_rq->load.weight)) {
3522 load_sum = div_s64(gcfs_rq->avg.load_sum,
3523 scale_load_down(gcfs_rq->load.weight));
3524 }
3525
3526 /* But make sure to not inflate se's runnable */
3527 runnable_sum = min(se->avg.load_sum, load_sum);
3528 }
3529
3530 /*
3531 * runnable_sum can't be lower than running_sum
3532 * As running sum is scale with cpu capacity wehreas the runnable sum
3533 * is not we rescale running_sum 1st
3534 */
3535 running_sum = se->avg.util_sum /
3536 arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
3537 runnable_sum = max(runnable_sum, running_sum);
3538
3539 load_sum = (s64)se_weight(se) * runnable_sum;
3540 load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3541
3542 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3543 delta_avg = load_avg - se->avg.load_avg;
3544
3545 se->avg.load_sum = runnable_sum;
3546 se->avg.load_avg = load_avg;
3547 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3548 add_positive(&cfs_rq->avg.load_sum, delta_sum);
3549
3550 runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3551 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3552 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3553 delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3554
3555 se->avg.runnable_load_sum = runnable_sum;
3556 se->avg.runnable_load_avg = runnable_load_avg;
3557
3558 if (se->on_rq) {
3559 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3560 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3561 }
3562 }
3563
3564 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3565 {
3566 cfs_rq->propagate = 1;
3567 cfs_rq->prop_runnable_sum += runnable_sum;
3568 }
3569
3570 /* Update task and its cfs_rq load average */
3571 static inline int propagate_entity_load_avg(struct sched_entity *se)
3572 {
3573 struct cfs_rq *cfs_rq, *gcfs_rq;
3574
3575 if (entity_is_task(se))
3576 return 0;
3577
3578 gcfs_rq = group_cfs_rq(se);
3579 if (!gcfs_rq->propagate)
3580 return 0;
3581
3582 gcfs_rq->propagate = 0;
3583
3584 cfs_rq = cfs_rq_of(se);
3585
3586 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3587
3588 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3589 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3590
3591 return 1;
3592 }
3593
3594 /*
3595 * Check if we need to update the load and the utilization of a blocked
3596 * group_entity:
3597 */
3598 static inline bool skip_blocked_update(struct sched_entity *se)
3599 {
3600 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3601
3602 /*
3603 * If sched_entity still have not zero load or utilization, we have to
3604 * decay it:
3605 */
3606 if (se->avg.load_avg || se->avg.util_avg)
3607 return false;
3608
3609 /*
3610 * If there is a pending propagation, we have to update the load and
3611 * the utilization of the sched_entity:
3612 */
3613 if (gcfs_rq->propagate)
3614 return false;
3615
3616 /*
3617 * Otherwise, the load and the utilization of the sched_entity is
3618 * already zero and there is no pending propagation, so it will be a
3619 * waste of time to try to decay it:
3620 */
3621 return true;
3622 }
3623
3624 #else /* CONFIG_FAIR_GROUP_SCHED */
3625
3626 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3627
3628 static inline int propagate_entity_load_avg(struct sched_entity *se)
3629 {
3630 return 0;
3631 }
3632
3633 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3634
3635 #endif /* CONFIG_FAIR_GROUP_SCHED */
3636
3637 /**
3638 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3639 * @now: current time, as per cfs_rq_clock_task()
3640 * @cfs_rq: cfs_rq to update
3641 *
3642 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3643 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3644 * post_init_entity_util_avg().
3645 *
3646 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3647 *
3648 * Returns true if the load decayed or we removed load.
3649 *
3650 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3651 * call update_tg_load_avg() when this function returns true.
3652 */
3653 static inline int
3654 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3655 {
3656 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3657 struct sched_avg *sa = &cfs_rq->avg;
3658 int decayed = 0;
3659
3660 if (cfs_rq->removed.nr) {
3661 unsigned long r;
3662 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3663
3664 raw_spin_lock(&cfs_rq->removed.lock);
3665 swap(cfs_rq->removed.util_avg, removed_util);
3666 swap(cfs_rq->removed.load_avg, removed_load);
3667 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3668 cfs_rq->removed.nr = 0;
3669 raw_spin_unlock(&cfs_rq->removed.lock);
3670
3671 r = removed_load;
3672 sub_positive(&sa->load_avg, r);
3673 sub_positive(&sa->load_sum, r * divider);
3674
3675 r = removed_util;
3676 sub_positive(&sa->util_avg, r);
3677 sub_positive(&sa->util_sum, r * divider);
3678
3679 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3680
3681 decayed = 1;
3682 }
3683
3684 decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3685
3686 #ifndef CONFIG_64BIT
3687 smp_wmb();
3688 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3689 #endif
3690
3691 if (decayed)
3692 cfs_rq_util_change(cfs_rq);
3693
3694 return decayed;
3695 }
3696
3697 /**
3698 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3699 * @cfs_rq: cfs_rq to attach to
3700 * @se: sched_entity to attach
3701 *
3702 * Must call update_cfs_rq_load_avg() before this, since we rely on
3703 * cfs_rq->avg.last_update_time being current.
3704 */
3705 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3706 {
3707 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3708
3709 /*
3710 * When we attach the @se to the @cfs_rq, we must align the decay
3711 * window because without that, really weird and wonderful things can
3712 * happen.
3713 *
3714 * XXX illustrate
3715 */
3716 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3717 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3718
3719 /*
3720 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3721 * period_contrib. This isn't strictly correct, but since we're
3722 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3723 * _sum a little.
3724 */
3725 se->avg.util_sum = se->avg.util_avg * divider;
3726
3727 se->avg.load_sum = divider;
3728 if (se_weight(se)) {
3729 se->avg.load_sum =
3730 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3731 }
3732
3733 se->avg.runnable_load_sum = se->avg.load_sum;
3734
3735 enqueue_load_avg(cfs_rq, se);
3736 cfs_rq->avg.util_avg += se->avg.util_avg;
3737 cfs_rq->avg.util_sum += se->avg.util_sum;
3738
3739 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3740
3741 cfs_rq_util_change(cfs_rq);
3742 }
3743
3744 /**
3745 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3746 * @cfs_rq: cfs_rq to detach from
3747 * @se: sched_entity to detach
3748 *
3749 * Must call update_cfs_rq_load_avg() before this, since we rely on
3750 * cfs_rq->avg.last_update_time being current.
3751 */
3752 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3753 {
3754 dequeue_load_avg(cfs_rq, se);
3755 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3756 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3757
3758 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3759
3760 cfs_rq_util_change(cfs_rq);
3761 }
3762
3763 /*
3764 * Optional action to be done while updating the load average
3765 */
3766 #define UPDATE_TG 0x1
3767 #define SKIP_AGE_LOAD 0x2
3768 #define DO_ATTACH 0x4
3769
3770 /* Update task and its cfs_rq load average */
3771 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3772 {
3773 u64 now = cfs_rq_clock_task(cfs_rq);
3774 struct rq *rq = rq_of(cfs_rq);
3775 int cpu = cpu_of(rq);
3776 int decayed;
3777
3778 /*
3779 * Track task load average for carrying it to new CPU after migrated, and
3780 * track group sched_entity load average for task_h_load calc in migration
3781 */
3782 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3783 __update_load_avg_se(now, cpu, cfs_rq, se);
3784
3785 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3786 decayed |= propagate_entity_load_avg(se);
3787
3788 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3789
3790 attach_entity_load_avg(cfs_rq, se);
3791 update_tg_load_avg(cfs_rq, 0);
3792
3793 } else if (decayed && (flags & UPDATE_TG))
3794 update_tg_load_avg(cfs_rq, 0);
3795 }
3796
3797 #ifndef CONFIG_64BIT
3798 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3799 {
3800 u64 last_update_time_copy;
3801 u64 last_update_time;
3802
3803 do {
3804 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3805 smp_rmb();
3806 last_update_time = cfs_rq->avg.last_update_time;
3807 } while (last_update_time != last_update_time_copy);
3808
3809 return last_update_time;
3810 }
3811 #else
3812 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3813 {
3814 return cfs_rq->avg.last_update_time;
3815 }
3816 #endif
3817
3818 /*
3819 * Synchronize entity load avg of dequeued entity without locking
3820 * the previous rq.
3821 */
3822 void sync_entity_load_avg(struct sched_entity *se)
3823 {
3824 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3825 u64 last_update_time;
3826
3827 last_update_time = cfs_rq_last_update_time(cfs_rq);
3828 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3829 }
3830
3831 /*
3832 * Task first catches up with cfs_rq, and then subtract
3833 * itself from the cfs_rq (task must be off the queue now).
3834 */
3835 void remove_entity_load_avg(struct sched_entity *se)
3836 {
3837 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3838 unsigned long flags;
3839
3840 /*
3841 * tasks cannot exit without having gone through wake_up_new_task() ->
3842 * post_init_entity_util_avg() which will have added things to the
3843 * cfs_rq, so we can remove unconditionally.
3844 *
3845 * Similarly for groups, they will have passed through
3846 * post_init_entity_util_avg() before unregister_sched_fair_group()
3847 * calls this.
3848 */
3849
3850 sync_entity_load_avg(se);
3851
3852 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3853 ++cfs_rq->removed.nr;
3854 cfs_rq->removed.util_avg += se->avg.util_avg;
3855 cfs_rq->removed.load_avg += se->avg.load_avg;
3856 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */
3857 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3858 }
3859
3860 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3861 {
3862 return cfs_rq->avg.runnable_load_avg;
3863 }
3864
3865 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3866 {
3867 return cfs_rq->avg.load_avg;
3868 }
3869
3870 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3871
3872 #else /* CONFIG_SMP */
3873
3874 static inline int
3875 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3876 {
3877 return 0;
3878 }
3879
3880 #define UPDATE_TG 0x0
3881 #define SKIP_AGE_LOAD 0x0
3882 #define DO_ATTACH 0x0
3883
3884 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3885 {
3886 cfs_rq_util_change(cfs_rq);
3887 }
3888
3889 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3890
3891 static inline void
3892 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3893 static inline void
3894 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3895
3896 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3897 {
3898 return 0;
3899 }
3900
3901 #endif /* CONFIG_SMP */
3902
3903 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3904 {
3905 #ifdef CONFIG_SCHED_DEBUG
3906 s64 d = se->vruntime - cfs_rq->min_vruntime;
3907
3908 if (d < 0)
3909 d = -d;
3910
3911 if (d > 3*sysctl_sched_latency)
3912 schedstat_inc(cfs_rq->nr_spread_over);
3913 #endif
3914 }
3915
3916 static void
3917 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3918 {
3919 u64 vruntime = cfs_rq->min_vruntime;
3920
3921 /*
3922 * The 'current' period is already promised to the current tasks,
3923 * however the extra weight of the new task will slow them down a
3924 * little, place the new task so that it fits in the slot that
3925 * stays open at the end.
3926 */
3927 if (initial && sched_feat(START_DEBIT))
3928 vruntime += sched_vslice(cfs_rq, se);
3929
3930 /* sleeps up to a single latency don't count. */
3931 if (!initial) {
3932 unsigned long thresh = sysctl_sched_latency;
3933
3934 /*
3935 * Halve their sleep time's effect, to allow
3936 * for a gentler effect of sleepers:
3937 */
3938 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3939 thresh >>= 1;
3940
3941 vruntime -= thresh;
3942 }
3943
3944 /* ensure we never gain time by being placed backwards. */
3945 se->vruntime = max_vruntime(se->vruntime, vruntime);
3946 }
3947
3948 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3949
3950 static inline void check_schedstat_required(void)
3951 {
3952 #ifdef CONFIG_SCHEDSTATS
3953 if (schedstat_enabled())
3954 return;
3955
3956 /* Force schedstat enabled if a dependent tracepoint is active */
3957 if (trace_sched_stat_wait_enabled() ||
3958 trace_sched_stat_sleep_enabled() ||
3959 trace_sched_stat_iowait_enabled() ||
3960 trace_sched_stat_blocked_enabled() ||
3961 trace_sched_stat_runtime_enabled()) {
3962 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3963 "stat_blocked and stat_runtime require the "
3964 "kernel parameter schedstats=enable or "
3965 "kernel.sched_schedstats=1\n");
3966 }
3967 #endif
3968 }
3969
3970
3971 /*
3972 * MIGRATION
3973 *
3974 * dequeue
3975 * update_curr()
3976 * update_min_vruntime()
3977 * vruntime -= min_vruntime
3978 *
3979 * enqueue
3980 * update_curr()
3981 * update_min_vruntime()
3982 * vruntime += min_vruntime
3983 *
3984 * this way the vruntime transition between RQs is done when both
3985 * min_vruntime are up-to-date.
3986 *
3987 * WAKEUP (remote)
3988 *
3989 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
3990 * vruntime -= min_vruntime
3991 *
3992 * enqueue
3993 * update_curr()
3994 * update_min_vruntime()
3995 * vruntime += min_vruntime
3996 *
3997 * this way we don't have the most up-to-date min_vruntime on the originating
3998 * CPU and an up-to-date min_vruntime on the destination CPU.
3999 */
4000
4001 static void
4002 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4003 {
4004 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4005 bool curr = cfs_rq->curr == se;
4006
4007 /*
4008 * If we're the current task, we must renormalise before calling
4009 * update_curr().
4010 */
4011 if (renorm && curr)
4012 se->vruntime += cfs_rq->min_vruntime;
4013
4014 update_curr(cfs_rq);
4015
4016 /*
4017 * Otherwise, renormalise after, such that we're placed at the current
4018 * moment in time, instead of some random moment in the past. Being
4019 * placed in the past could significantly boost this task to the
4020 * fairness detriment of existing tasks.
4021 */
4022 if (renorm && !curr)
4023 se->vruntime += cfs_rq->min_vruntime;
4024
4025 /*
4026 * When enqueuing a sched_entity, we must:
4027 * - Update loads to have both entity and cfs_rq synced with now.
4028 * - Add its load to cfs_rq->runnable_avg
4029 * - For group_entity, update its weight to reflect the new share of
4030 * its group cfs_rq
4031 * - Add its new weight to cfs_rq->load.weight
4032 */
4033 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4034 update_cfs_group(se);
4035 enqueue_runnable_load_avg(cfs_rq, se);
4036 account_entity_enqueue(cfs_rq, se);
4037
4038 if (flags & ENQUEUE_WAKEUP)
4039 place_entity(cfs_rq, se, 0);
4040
4041 check_schedstat_required();
4042 update_stats_enqueue(cfs_rq, se, flags);
4043 check_spread(cfs_rq, se);
4044 if (!curr)
4045 __enqueue_entity(cfs_rq, se);
4046 se->on_rq = 1;
4047
4048 if (cfs_rq->nr_running == 1) {
4049 list_add_leaf_cfs_rq(cfs_rq);
4050 check_enqueue_throttle(cfs_rq);
4051 }
4052 }
4053
4054 static void __clear_buddies_last(struct sched_entity *se)
4055 {
4056 for_each_sched_entity(se) {
4057 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4058 if (cfs_rq->last != se)
4059 break;
4060
4061 cfs_rq->last = NULL;
4062 }
4063 }
4064
4065 static void __clear_buddies_next(struct sched_entity *se)
4066 {
4067 for_each_sched_entity(se) {
4068 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4069 if (cfs_rq->next != se)
4070 break;
4071
4072 cfs_rq->next = NULL;
4073 }
4074 }
4075
4076 static void __clear_buddies_skip(struct sched_entity *se)
4077 {
4078 for_each_sched_entity(se) {
4079 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4080 if (cfs_rq->skip != se)
4081 break;
4082
4083 cfs_rq->skip = NULL;
4084 }
4085 }
4086
4087 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4088 {
4089 if (cfs_rq->last == se)
4090 __clear_buddies_last(se);
4091
4092 if (cfs_rq->next == se)
4093 __clear_buddies_next(se);
4094
4095 if (cfs_rq->skip == se)
4096 __clear_buddies_skip(se);
4097 }
4098
4099 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4100
4101 static void
4102 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4103 {
4104 /*
4105 * Update run-time statistics of the 'current'.
4106 */
4107 update_curr(cfs_rq);
4108
4109 /*
4110 * When dequeuing a sched_entity, we must:
4111 * - Update loads to have both entity and cfs_rq synced with now.
4112 * - Substract its load from the cfs_rq->runnable_avg.
4113 * - Substract its previous weight from cfs_rq->load.weight.
4114 * - For group entity, update its weight to reflect the new share
4115 * of its group cfs_rq.
4116 */
4117 update_load_avg(cfs_rq, se, UPDATE_TG);
4118 dequeue_runnable_load_avg(cfs_rq, se);
4119
4120 update_stats_dequeue(cfs_rq, se, flags);
4121
4122 clear_buddies(cfs_rq, se);
4123
4124 if (se != cfs_rq->curr)
4125 __dequeue_entity(cfs_rq, se);
4126 se->on_rq = 0;
4127 account_entity_dequeue(cfs_rq, se);
4128
4129 /*
4130 * Normalize after update_curr(); which will also have moved
4131 * min_vruntime if @se is the one holding it back. But before doing
4132 * update_min_vruntime() again, which will discount @se's position and
4133 * can move min_vruntime forward still more.
4134 */
4135 if (!(flags & DEQUEUE_SLEEP))
4136 se->vruntime -= cfs_rq->min_vruntime;
4137
4138 /* return excess runtime on last dequeue */
4139 return_cfs_rq_runtime(cfs_rq);
4140
4141 update_cfs_group(se);
4142
4143 /*
4144 * Now advance min_vruntime if @se was the entity holding it back,
4145 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4146 * put back on, and if we advance min_vruntime, we'll be placed back
4147 * further than we started -- ie. we'll be penalized.
4148 */
4149 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
4150 update_min_vruntime(cfs_rq);
4151 }
4152
4153 /*
4154 * Preempt the current task with a newly woken task if needed:
4155 */
4156 static void
4157 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4158 {
4159 unsigned long ideal_runtime, delta_exec;
4160 struct sched_entity *se;
4161 s64 delta;
4162
4163 ideal_runtime = sched_slice(cfs_rq, curr);
4164 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4165 if (delta_exec > ideal_runtime) {
4166 resched_curr(rq_of(cfs_rq));
4167 /*
4168 * The current task ran long enough, ensure it doesn't get
4169 * re-elected due to buddy favours.
4170 */
4171 clear_buddies(cfs_rq, curr);
4172 return;
4173 }
4174
4175 /*
4176 * Ensure that a task that missed wakeup preemption by a
4177 * narrow margin doesn't have to wait for a full slice.
4178 * This also mitigates buddy induced latencies under load.
4179 */
4180 if (delta_exec < sysctl_sched_min_granularity)
4181 return;
4182
4183 se = __pick_first_entity(cfs_rq);
4184 delta = curr->vruntime - se->vruntime;
4185
4186 if (delta < 0)
4187 return;
4188
4189 if (delta > ideal_runtime)
4190 resched_curr(rq_of(cfs_rq));
4191 }
4192
4193 static void
4194 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4195 {
4196 /* 'current' is not kept within the tree. */
4197 if (se->on_rq) {
4198 /*
4199 * Any task has to be enqueued before it get to execute on
4200 * a CPU. So account for the time it spent waiting on the
4201 * runqueue.
4202 */
4203 update_stats_wait_end(cfs_rq, se);
4204 __dequeue_entity(cfs_rq, se);
4205 update_load_avg(cfs_rq, se, UPDATE_TG);
4206 }
4207
4208 update_stats_curr_start(cfs_rq, se);
4209 cfs_rq->curr = se;
4210
4211 /*
4212 * Track our maximum slice length, if the CPU's load is at
4213 * least twice that of our own weight (i.e. dont track it
4214 * when there are only lesser-weight tasks around):
4215 */
4216 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4217 schedstat_set(se->statistics.slice_max,
4218 max((u64)schedstat_val(se->statistics.slice_max),
4219 se->sum_exec_runtime - se->prev_sum_exec_runtime));
4220 }
4221
4222 se->prev_sum_exec_runtime = se->sum_exec_runtime;
4223 }
4224
4225 static int
4226 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4227
4228 /*
4229 * Pick the next process, keeping these things in mind, in this order:
4230 * 1) keep things fair between processes/task groups
4231 * 2) pick the "next" process, since someone really wants that to run
4232 * 3) pick the "last" process, for cache locality
4233 * 4) do not run the "skip" process, if something else is available
4234 */
4235 static struct sched_entity *
4236 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4237 {
4238 struct sched_entity *left = __pick_first_entity(cfs_rq);
4239 struct sched_entity *se;
4240
4241 /*
4242 * If curr is set we have to see if its left of the leftmost entity
4243 * still in the tree, provided there was anything in the tree at all.
4244 */
4245 if (!left || (curr && entity_before(curr, left)))
4246 left = curr;
4247
4248 se = left; /* ideally we run the leftmost entity */
4249
4250 /*
4251 * Avoid running the skip buddy, if running something else can
4252 * be done without getting too unfair.
4253 */
4254 if (cfs_rq->skip == se) {
4255 struct sched_entity *second;
4256
4257 if (se == curr) {
4258 second = __pick_first_entity(cfs_rq);
4259 } else {
4260 second = __pick_next_entity(se);
4261 if (!second || (curr && entity_before(curr, second)))
4262 second = curr;
4263 }
4264
4265 if (second && wakeup_preempt_entity(second, left) < 1)
4266 se = second;
4267 }
4268
4269 /*
4270 * Prefer last buddy, try to return the CPU to a preempted task.
4271 */
4272 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4273 se = cfs_rq->last;
4274
4275 /*
4276 * Someone really wants this to run. If it's not unfair, run it.
4277 */
4278 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4279 se = cfs_rq->next;
4280
4281 clear_buddies(cfs_rq, se);
4282
4283 return se;
4284 }
4285
4286 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4287
4288 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4289 {
4290 /*
4291 * If still on the runqueue then deactivate_task()
4292 * was not called and update_curr() has to be done:
4293 */
4294 if (prev->on_rq)
4295 update_curr(cfs_rq);
4296
4297 /* throttle cfs_rqs exceeding runtime */
4298 check_cfs_rq_runtime(cfs_rq);
4299
4300 check_spread(cfs_rq, prev);
4301
4302 if (prev->on_rq) {
4303 update_stats_wait_start(cfs_rq, prev);
4304 /* Put 'current' back into the tree. */
4305 __enqueue_entity(cfs_rq, prev);
4306 /* in !on_rq case, update occurred at dequeue */
4307 update_load_avg(cfs_rq, prev, 0);
4308 }
4309 cfs_rq->curr = NULL;
4310 }
4311
4312 static void
4313 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4314 {
4315 /*
4316 * Update run-time statistics of the 'current'.
4317 */
4318 update_curr(cfs_rq);
4319
4320 /*
4321 * Ensure that runnable average is periodically updated.
4322 */
4323 update_load_avg(cfs_rq, curr, UPDATE_TG);
4324 update_cfs_group(curr);
4325
4326 #ifdef CONFIG_SCHED_HRTICK
4327 /*
4328 * queued ticks are scheduled to match the slice, so don't bother
4329 * validating it and just reschedule.
4330 */
4331 if (queued) {
4332 resched_curr(rq_of(cfs_rq));
4333 return;
4334 }
4335 /*
4336 * don't let the period tick interfere with the hrtick preemption
4337 */
4338 if (!sched_feat(DOUBLE_TICK) &&
4339 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4340 return;
4341 #endif
4342
4343 if (cfs_rq->nr_running > 1)
4344 check_preempt_tick(cfs_rq, curr);
4345 }
4346
4347
4348 /**************************************************
4349 * CFS bandwidth control machinery
4350 */
4351
4352 #ifdef CONFIG_CFS_BANDWIDTH
4353
4354 #ifdef HAVE_JUMP_LABEL
4355 static struct static_key __cfs_bandwidth_used;
4356
4357 static inline bool cfs_bandwidth_used(void)
4358 {
4359 return static_key_false(&__cfs_bandwidth_used);
4360 }
4361
4362 void cfs_bandwidth_usage_inc(void)
4363 {
4364 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4365 }
4366
4367 void cfs_bandwidth_usage_dec(void)
4368 {
4369 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4370 }
4371 #else /* HAVE_JUMP_LABEL */
4372 static bool cfs_bandwidth_used(void)
4373 {
4374 return true;
4375 }
4376
4377 void cfs_bandwidth_usage_inc(void) {}
4378 void cfs_bandwidth_usage_dec(void) {}
4379 #endif /* HAVE_JUMP_LABEL */
4380
4381 /*
4382 * default period for cfs group bandwidth.
4383 * default: 0.1s, units: nanoseconds
4384 */
4385 static inline u64 default_cfs_period(void)
4386 {
4387 return 100000000ULL;
4388 }
4389
4390 static inline u64 sched_cfs_bandwidth_slice(void)
4391 {
4392 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4393 }
4394
4395 /*
4396 * Replenish runtime according to assigned quota and update expiration time.
4397 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4398 * additional synchronization around rq->lock.
4399 *
4400 * requires cfs_b->lock
4401 */
4402 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4403 {
4404 u64 now;
4405
4406 if (cfs_b->quota == RUNTIME_INF)
4407 return;
4408
4409 now = sched_clock_cpu(smp_processor_id());
4410 cfs_b->runtime = cfs_b->quota;
4411 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4412 }
4413
4414 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4415 {
4416 return &tg->cfs_bandwidth;
4417 }
4418
4419 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4420 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4421 {
4422 if (unlikely(cfs_rq->throttle_count))
4423 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4424
4425 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4426 }
4427
4428 /* returns 0 on failure to allocate runtime */
4429 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4430 {
4431 struct task_group *tg = cfs_rq->tg;
4432 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4433 u64 amount = 0, min_amount, expires;
4434
4435 /* note: this is a positive sum as runtime_remaining <= 0 */
4436 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4437
4438 raw_spin_lock(&cfs_b->lock);
4439 if (cfs_b->quota == RUNTIME_INF)
4440 amount = min_amount;
4441 else {
4442 start_cfs_bandwidth(cfs_b);
4443
4444 if (cfs_b->runtime > 0) {
4445 amount = min(cfs_b->runtime, min_amount);
4446 cfs_b->runtime -= amount;
4447 cfs_b->idle = 0;
4448 }
4449 }
4450 expires = cfs_b->runtime_expires;
4451 raw_spin_unlock(&cfs_b->lock);
4452
4453 cfs_rq->runtime_remaining += amount;
4454 /*
4455 * we may have advanced our local expiration to account for allowed
4456 * spread between our sched_clock and the one on which runtime was
4457 * issued.
4458 */
4459 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4460 cfs_rq->runtime_expires = expires;
4461
4462 return cfs_rq->runtime_remaining > 0;
4463 }
4464
4465 /*
4466 * Note: This depends on the synchronization provided by sched_clock and the
4467 * fact that rq->clock snapshots this value.
4468 */
4469 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4470 {
4471 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4472
4473 /* if the deadline is ahead of our clock, nothing to do */
4474 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4475 return;
4476
4477 if (cfs_rq->runtime_remaining < 0)
4478 return;
4479
4480 /*
4481 * If the local deadline has passed we have to consider the
4482 * possibility that our sched_clock is 'fast' and the global deadline
4483 * has not truly expired.
4484 *
4485 * Fortunately we can check determine whether this the case by checking
4486 * whether the global deadline has advanced. It is valid to compare
4487 * cfs_b->runtime_expires without any locks since we only care about
4488 * exact equality, so a partial write will still work.
4489 */
4490
4491 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
4492 /* extend local deadline, drift is bounded above by 2 ticks */
4493 cfs_rq->runtime_expires += TICK_NSEC;
4494 } else {
4495 /* global deadline is ahead, expiration has passed */
4496 cfs_rq->runtime_remaining = 0;
4497 }
4498 }
4499
4500 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4501 {
4502 /* dock delta_exec before expiring quota (as it could span periods) */
4503 cfs_rq->runtime_remaining -= delta_exec;
4504 expire_cfs_rq_runtime(cfs_rq);
4505
4506 if (likely(cfs_rq->runtime_remaining > 0))
4507 return;
4508
4509 /*
4510 * if we're unable to extend our runtime we resched so that the active
4511 * hierarchy can be throttled
4512 */
4513 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4514 resched_curr(rq_of(cfs_rq));
4515 }
4516
4517 static __always_inline
4518 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4519 {
4520 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4521 return;
4522
4523 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4524 }
4525
4526 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4527 {
4528 return cfs_bandwidth_used() && cfs_rq->throttled;
4529 }
4530
4531 /* check whether cfs_rq, or any parent, is throttled */
4532 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4533 {
4534 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4535 }
4536
4537 /*
4538 * Ensure that neither of the group entities corresponding to src_cpu or
4539 * dest_cpu are members of a throttled hierarchy when performing group
4540 * load-balance operations.
4541 */
4542 static inline int throttled_lb_pair(struct task_group *tg,
4543 int src_cpu, int dest_cpu)
4544 {
4545 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4546
4547 src_cfs_rq = tg->cfs_rq[src_cpu];
4548 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4549
4550 return throttled_hierarchy(src_cfs_rq) ||
4551 throttled_hierarchy(dest_cfs_rq);
4552 }
4553
4554 /* updated child weight may affect parent so we have to do this bottom up */
4555 static int tg_unthrottle_up(struct task_group *tg, void *data)
4556 {
4557 struct rq *rq = data;
4558 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4559
4560 cfs_rq->throttle_count--;
4561 if (!cfs_rq->throttle_count) {
4562 /* adjust cfs_rq_clock_task() */
4563 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4564 cfs_rq->throttled_clock_task;
4565 }
4566
4567 return 0;
4568 }
4569
4570 static int tg_throttle_down(struct task_group *tg, void *data)
4571 {
4572 struct rq *rq = data;
4573 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4574
4575 /* group is entering throttled state, stop time */
4576 if (!cfs_rq->throttle_count)
4577 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4578 cfs_rq->throttle_count++;
4579
4580 return 0;
4581 }
4582
4583 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4584 {
4585 struct rq *rq = rq_of(cfs_rq);
4586 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4587 struct sched_entity *se;
4588 long task_delta, dequeue = 1;
4589 bool empty;
4590
4591 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4592
4593 /* freeze hierarchy runnable averages while throttled */
4594 rcu_read_lock();
4595 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4596 rcu_read_unlock();
4597
4598 task_delta = cfs_rq->h_nr_running;
4599 for_each_sched_entity(se) {
4600 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4601 /* throttled entity or throttle-on-deactivate */
4602 if (!se->on_rq)
4603 break;
4604
4605 if (dequeue)
4606 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4607 qcfs_rq->h_nr_running -= task_delta;
4608
4609 if (qcfs_rq->load.weight)
4610 dequeue = 0;
4611 }
4612
4613 if (!se)
4614 sub_nr_running(rq, task_delta);
4615
4616 cfs_rq->throttled = 1;
4617 cfs_rq->throttled_clock = rq_clock(rq);
4618 raw_spin_lock(&cfs_b->lock);
4619 empty = list_empty(&cfs_b->throttled_cfs_rq);
4620
4621 /*
4622 * Add to the _head_ of the list, so that an already-started
4623 * distribute_cfs_runtime will not see us
4624 */
4625 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4626
4627 /*
4628 * If we're the first throttled task, make sure the bandwidth
4629 * timer is running.
4630 */
4631 if (empty)
4632 start_cfs_bandwidth(cfs_b);
4633
4634 raw_spin_unlock(&cfs_b->lock);
4635 }
4636
4637 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4638 {
4639 struct rq *rq = rq_of(cfs_rq);
4640 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4641 struct sched_entity *se;
4642 int enqueue = 1;
4643 long task_delta;
4644
4645 se = cfs_rq->tg->se[cpu_of(rq)];
4646
4647 cfs_rq->throttled = 0;
4648
4649 update_rq_clock(rq);
4650
4651 raw_spin_lock(&cfs_b->lock);
4652 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4653 list_del_rcu(&cfs_rq->throttled_list);
4654 raw_spin_unlock(&cfs_b->lock);
4655
4656 /* update hierarchical throttle state */
4657 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4658
4659 if (!cfs_rq->load.weight)
4660 return;
4661
4662 task_delta = cfs_rq->h_nr_running;
4663 for_each_sched_entity(se) {
4664 if (se->on_rq)
4665 enqueue = 0;
4666
4667 cfs_rq = cfs_rq_of(se);
4668 if (enqueue)
4669 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4670 cfs_rq->h_nr_running += task_delta;
4671
4672 if (cfs_rq_throttled(cfs_rq))
4673 break;
4674 }
4675
4676 if (!se)
4677 add_nr_running(rq, task_delta);
4678
4679 /* determine whether we need to wake up potentially idle cpu */
4680 if (rq->curr == rq->idle && rq->cfs.nr_running)
4681 resched_curr(rq);
4682 }
4683
4684 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4685 u64 remaining, u64 expires)
4686 {
4687 struct cfs_rq *cfs_rq;
4688 u64 runtime;
4689 u64 starting_runtime = remaining;
4690
4691 rcu_read_lock();
4692 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4693 throttled_list) {
4694 struct rq *rq = rq_of(cfs_rq);
4695 struct rq_flags rf;
4696
4697 rq_lock(rq, &rf);
4698 if (!cfs_rq_throttled(cfs_rq))
4699 goto next;
4700
4701 runtime = -cfs_rq->runtime_remaining + 1;
4702 if (runtime > remaining)
4703 runtime = remaining;
4704 remaining -= runtime;
4705
4706 cfs_rq->runtime_remaining += runtime;
4707 cfs_rq->runtime_expires = expires;
4708
4709 /* we check whether we're throttled above */
4710 if (cfs_rq->runtime_remaining > 0)
4711 unthrottle_cfs_rq(cfs_rq);
4712
4713 next:
4714 rq_unlock(rq, &rf);
4715
4716 if (!remaining)
4717 break;
4718 }
4719 rcu_read_unlock();
4720
4721 return starting_runtime - remaining;
4722 }
4723
4724 /*
4725 * Responsible for refilling a task_group's bandwidth and unthrottling its
4726 * cfs_rqs as appropriate. If there has been no activity within the last
4727 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4728 * used to track this state.
4729 */
4730 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4731 {
4732 u64 runtime, runtime_expires;
4733 int throttled;
4734
4735 /* no need to continue the timer with no bandwidth constraint */
4736 if (cfs_b->quota == RUNTIME_INF)
4737 goto out_deactivate;
4738
4739 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4740 cfs_b->nr_periods += overrun;
4741
4742 /*
4743 * idle depends on !throttled (for the case of a large deficit), and if
4744 * we're going inactive then everything else can be deferred
4745 */
4746 if (cfs_b->idle && !throttled)
4747 goto out_deactivate;
4748
4749 __refill_cfs_bandwidth_runtime(cfs_b);
4750
4751 if (!throttled) {
4752 /* mark as potentially idle for the upcoming period */
4753 cfs_b->idle = 1;
4754 return 0;
4755 }
4756
4757 /* account preceding periods in which throttling occurred */
4758 cfs_b->nr_throttled += overrun;
4759
4760 runtime_expires = cfs_b->runtime_expires;
4761
4762 /*
4763 * This check is repeated as we are holding onto the new bandwidth while
4764 * we unthrottle. This can potentially race with an unthrottled group
4765 * trying to acquire new bandwidth from the global pool. This can result
4766 * in us over-using our runtime if it is all used during this loop, but
4767 * only by limited amounts in that extreme case.
4768 */
4769 while (throttled && cfs_b->runtime > 0) {
4770 runtime = cfs_b->runtime;
4771 raw_spin_unlock(&cfs_b->lock);
4772 /* we can't nest cfs_b->lock while distributing bandwidth */
4773 runtime = distribute_cfs_runtime(cfs_b, runtime,
4774 runtime_expires);
4775 raw_spin_lock(&cfs_b->lock);
4776
4777 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4778
4779 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4780 }
4781
4782 /*
4783 * While we are ensured activity in the period following an
4784 * unthrottle, this also covers the case in which the new bandwidth is
4785 * insufficient to cover the existing bandwidth deficit. (Forcing the
4786 * timer to remain active while there are any throttled entities.)
4787 */
4788 cfs_b->idle = 0;
4789
4790 return 0;
4791
4792 out_deactivate:
4793 return 1;
4794 }
4795
4796 /* a cfs_rq won't donate quota below this amount */
4797 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4798 /* minimum remaining period time to redistribute slack quota */
4799 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4800 /* how long we wait to gather additional slack before distributing */
4801 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4802
4803 /*
4804 * Are we near the end of the current quota period?
4805 *
4806 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4807 * hrtimer base being cleared by hrtimer_start. In the case of
4808 * migrate_hrtimers, base is never cleared, so we are fine.
4809 */
4810 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4811 {
4812 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4813 u64 remaining;
4814
4815 /* if the call-back is running a quota refresh is already occurring */
4816 if (hrtimer_callback_running(refresh_timer))
4817 return 1;
4818
4819 /* is a quota refresh about to occur? */
4820 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4821 if (remaining < min_expire)
4822 return 1;
4823
4824 return 0;
4825 }
4826
4827 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4828 {
4829 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4830
4831 /* if there's a quota refresh soon don't bother with slack */
4832 if (runtime_refresh_within(cfs_b, min_left))
4833 return;
4834
4835 hrtimer_start(&cfs_b->slack_timer,
4836 ns_to_ktime(cfs_bandwidth_slack_period),
4837 HRTIMER_MODE_REL);
4838 }
4839
4840 /* we know any runtime found here is valid as update_curr() precedes return */
4841 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4842 {
4843 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4844 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4845
4846 if (slack_runtime <= 0)
4847 return;
4848
4849 raw_spin_lock(&cfs_b->lock);
4850 if (cfs_b->quota != RUNTIME_INF &&
4851 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4852 cfs_b->runtime += slack_runtime;
4853
4854 /* we are under rq->lock, defer unthrottling using a timer */
4855 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4856 !list_empty(&cfs_b->throttled_cfs_rq))
4857 start_cfs_slack_bandwidth(cfs_b);
4858 }
4859 raw_spin_unlock(&cfs_b->lock);
4860
4861 /* even if it's not valid for return we don't want to try again */
4862 cfs_rq->runtime_remaining -= slack_runtime;
4863 }
4864
4865 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4866 {
4867 if (!cfs_bandwidth_used())
4868 return;
4869
4870 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4871 return;
4872
4873 __return_cfs_rq_runtime(cfs_rq);
4874 }
4875
4876 /*
4877 * This is done with a timer (instead of inline with bandwidth return) since
4878 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4879 */
4880 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4881 {
4882 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4883 u64 expires;
4884
4885 /* confirm we're still not at a refresh boundary */
4886 raw_spin_lock(&cfs_b->lock);
4887 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4888 raw_spin_unlock(&cfs_b->lock);
4889 return;
4890 }
4891
4892 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4893 runtime = cfs_b->runtime;
4894
4895 expires = cfs_b->runtime_expires;
4896 raw_spin_unlock(&cfs_b->lock);
4897
4898 if (!runtime)
4899 return;
4900
4901 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4902
4903 raw_spin_lock(&cfs_b->lock);
4904 if (expires == cfs_b->runtime_expires)
4905 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4906 raw_spin_unlock(&cfs_b->lock);
4907 }
4908
4909 /*
4910 * When a group wakes up we want to make sure that its quota is not already
4911 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4912 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4913 */
4914 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4915 {
4916 if (!cfs_bandwidth_used())
4917 return;
4918
4919 /* an active group must be handled by the update_curr()->put() path */
4920 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4921 return;
4922
4923 /* ensure the group is not already throttled */
4924 if (cfs_rq_throttled(cfs_rq))
4925 return;
4926
4927 /* update runtime allocation */
4928 account_cfs_rq_runtime(cfs_rq, 0);
4929 if (cfs_rq->runtime_remaining <= 0)
4930 throttle_cfs_rq(cfs_rq);
4931 }
4932
4933 static void sync_throttle(struct task_group *tg, int cpu)
4934 {
4935 struct cfs_rq *pcfs_rq, *cfs_rq;
4936
4937 if (!cfs_bandwidth_used())
4938 return;
4939
4940 if (!tg->parent)
4941 return;
4942
4943 cfs_rq = tg->cfs_rq[cpu];
4944 pcfs_rq = tg->parent->cfs_rq[cpu];
4945
4946 cfs_rq->throttle_count = pcfs_rq->throttle_count;
4947 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4948 }
4949
4950 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4951 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4952 {
4953 if (!cfs_bandwidth_used())
4954 return false;
4955
4956 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4957 return false;
4958
4959 /*
4960 * it's possible for a throttled entity to be forced into a running
4961 * state (e.g. set_curr_task), in this case we're finished.
4962 */
4963 if (cfs_rq_throttled(cfs_rq))
4964 return true;
4965
4966 throttle_cfs_rq(cfs_rq);
4967 return true;
4968 }
4969
4970 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4971 {
4972 struct cfs_bandwidth *cfs_b =
4973 container_of(timer, struct cfs_bandwidth, slack_timer);
4974
4975 do_sched_cfs_slack_timer(cfs_b);
4976
4977 return HRTIMER_NORESTART;
4978 }
4979
4980 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4981 {
4982 struct cfs_bandwidth *cfs_b =
4983 container_of(timer, struct cfs_bandwidth, period_timer);
4984 int overrun;
4985 int idle = 0;
4986
4987 raw_spin_lock(&cfs_b->lock);
4988 for (;;) {
4989 overrun = hrtimer_forward_now(timer, cfs_b->period);
4990 if (!overrun)
4991 break;
4992
4993 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4994 }
4995 if (idle)
4996 cfs_b->period_active = 0;
4997 raw_spin_unlock(&cfs_b->lock);
4998
4999 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5000 }
5001
5002 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5003 {
5004 raw_spin_lock_init(&cfs_b->lock);
5005 cfs_b->runtime = 0;
5006 cfs_b->quota = RUNTIME_INF;
5007 cfs_b->period = ns_to_ktime(default_cfs_period());
5008
5009 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5010 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5011 cfs_b->period_timer.function = sched_cfs_period_timer;
5012 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5013 cfs_b->slack_timer.function = sched_cfs_slack_timer;
5014 }
5015
5016 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5017 {
5018 cfs_rq->runtime_enabled = 0;
5019 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5020 }
5021
5022 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5023 {
5024 lockdep_assert_held(&cfs_b->lock);
5025
5026 if (!cfs_b->period_active) {
5027 cfs_b->period_active = 1;
5028 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5029 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5030 }
5031 }
5032
5033 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5034 {
5035 /* init_cfs_bandwidth() was not called */
5036 if (!cfs_b->throttled_cfs_rq.next)
5037 return;
5038
5039 hrtimer_cancel(&cfs_b->period_timer);
5040 hrtimer_cancel(&cfs_b->slack_timer);
5041 }
5042
5043 /*
5044 * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
5045 *
5046 * The race is harmless, since modifying bandwidth settings of unhooked group
5047 * bits doesn't do much.
5048 */
5049
5050 /* cpu online calback */
5051 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5052 {
5053 struct task_group *tg;
5054
5055 lockdep_assert_held(&rq->lock);
5056
5057 rcu_read_lock();
5058 list_for_each_entry_rcu(tg, &task_groups, list) {
5059 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5060 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5061
5062 raw_spin_lock(&cfs_b->lock);
5063 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5064 raw_spin_unlock(&cfs_b->lock);
5065 }
5066 rcu_read_unlock();
5067 }
5068
5069 /* cpu offline callback */
5070 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5071 {
5072 struct task_group *tg;
5073
5074 lockdep_assert_held(&rq->lock);
5075
5076 rcu_read_lock();
5077 list_for_each_entry_rcu(tg, &task_groups, list) {
5078 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5079
5080 if (!cfs_rq->runtime_enabled)
5081 continue;
5082
5083 /*
5084 * clock_task is not advancing so we just need to make sure
5085 * there's some valid quota amount
5086 */
5087 cfs_rq->runtime_remaining = 1;
5088 /*
5089 * Offline rq is schedulable till cpu is completely disabled
5090 * in take_cpu_down(), so we prevent new cfs throttling here.
5091 */
5092 cfs_rq->runtime_enabled = 0;
5093
5094 if (cfs_rq_throttled(cfs_rq))
5095 unthrottle_cfs_rq(cfs_rq);
5096 }
5097 rcu_read_unlock();
5098 }
5099
5100 #else /* CONFIG_CFS_BANDWIDTH */
5101 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
5102 {
5103 return rq_clock_task(rq_of(cfs_rq));
5104 }
5105
5106 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5107 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5108 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5109 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5110 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5111
5112 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5113 {
5114 return 0;
5115 }
5116
5117 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5118 {
5119 return 0;
5120 }
5121
5122 static inline int throttled_lb_pair(struct task_group *tg,
5123 int src_cpu, int dest_cpu)
5124 {
5125 return 0;
5126 }
5127
5128 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5129
5130 #ifdef CONFIG_FAIR_GROUP_SCHED
5131 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5132 #endif
5133
5134 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5135 {
5136 return NULL;
5137 }
5138 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5139 static inline void update_runtime_enabled(struct rq *rq) {}
5140 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5141
5142 #endif /* CONFIG_CFS_BANDWIDTH */
5143
5144 /**************************************************
5145 * CFS operations on tasks:
5146 */
5147
5148 #ifdef CONFIG_SCHED_HRTICK
5149 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5150 {
5151 struct sched_entity *se = &p->se;
5152 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5153
5154 SCHED_WARN_ON(task_rq(p) != rq);
5155
5156 if (rq->cfs.h_nr_running > 1) {
5157 u64 slice = sched_slice(cfs_rq, se);
5158 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5159 s64 delta = slice - ran;
5160
5161 if (delta < 0) {
5162 if (rq->curr == p)
5163 resched_curr(rq);
5164 return;
5165 }
5166 hrtick_start(rq, delta);
5167 }
5168 }
5169
5170 /*
5171 * called from enqueue/dequeue and updates the hrtick when the
5172 * current task is from our class and nr_running is low enough
5173 * to matter.
5174 */
5175 static void hrtick_update(struct rq *rq)
5176 {
5177 struct task_struct *curr = rq->curr;
5178
5179 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5180 return;
5181
5182 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5183 hrtick_start_fair(rq, curr);
5184 }
5185 #else /* !CONFIG_SCHED_HRTICK */
5186 static inline void
5187 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5188 {
5189 }
5190
5191 static inline void hrtick_update(struct rq *rq)
5192 {
5193 }
5194 #endif
5195
5196 /*
5197 * The enqueue_task method is called before nr_running is
5198 * increased. Here we update the fair scheduling stats and
5199 * then put the task into the rbtree:
5200 */
5201 static void
5202 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5203 {
5204 struct cfs_rq *cfs_rq;
5205 struct sched_entity *se = &p->se;
5206
5207 /*
5208 * If in_iowait is set, the code below may not trigger any cpufreq
5209 * utilization updates, so do it here explicitly with the IOWAIT flag
5210 * passed.
5211 */
5212 if (p->in_iowait)
5213 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5214
5215 for_each_sched_entity(se) {
5216 if (se->on_rq)
5217 break;
5218 cfs_rq = cfs_rq_of(se);
5219 enqueue_entity(cfs_rq, se, flags);
5220
5221 /*
5222 * end evaluation on encountering a throttled cfs_rq
5223 *
5224 * note: in the case of encountering a throttled cfs_rq we will
5225 * post the final h_nr_running increment below.
5226 */
5227 if (cfs_rq_throttled(cfs_rq))
5228 break;
5229 cfs_rq->h_nr_running++;
5230
5231 flags = ENQUEUE_WAKEUP;
5232 }
5233
5234 for_each_sched_entity(se) {
5235 cfs_rq = cfs_rq_of(se);
5236 cfs_rq->h_nr_running++;
5237
5238 if (cfs_rq_throttled(cfs_rq))
5239 break;
5240
5241 update_load_avg(cfs_rq, se, UPDATE_TG);
5242 update_cfs_group(se);
5243 }
5244
5245 if (!se)
5246 add_nr_running(rq, 1);
5247
5248 hrtick_update(rq);
5249 }
5250
5251 static void set_next_buddy(struct sched_entity *se);
5252
5253 /*
5254 * The dequeue_task method is called before nr_running is
5255 * decreased. We remove the task from the rbtree and
5256 * update the fair scheduling stats:
5257 */
5258 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5259 {
5260 struct cfs_rq *cfs_rq;
5261 struct sched_entity *se = &p->se;
5262 int task_sleep = flags & DEQUEUE_SLEEP;
5263
5264 for_each_sched_entity(se) {
5265 cfs_rq = cfs_rq_of(se);
5266 dequeue_entity(cfs_rq, se, flags);
5267
5268 /*
5269 * end evaluation on encountering a throttled cfs_rq
5270 *
5271 * note: in the case of encountering a throttled cfs_rq we will
5272 * post the final h_nr_running decrement below.
5273 */
5274 if (cfs_rq_throttled(cfs_rq))
5275 break;
5276 cfs_rq->h_nr_running--;
5277
5278 /* Don't dequeue parent if it has other entities besides us */
5279 if (cfs_rq->load.weight) {
5280 /* Avoid re-evaluating load for this entity: */
5281 se = parent_entity(se);
5282 /*
5283 * Bias pick_next to pick a task from this cfs_rq, as
5284 * p is sleeping when it is within its sched_slice.
5285 */
5286 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5287 set_next_buddy(se);
5288 break;
5289 }
5290 flags |= DEQUEUE_SLEEP;
5291 }
5292
5293 for_each_sched_entity(se) {
5294 cfs_rq = cfs_rq_of(se);
5295 cfs_rq->h_nr_running--;
5296
5297 if (cfs_rq_throttled(cfs_rq))
5298 break;
5299
5300 update_load_avg(cfs_rq, se, UPDATE_TG);
5301 update_cfs_group(se);
5302 }
5303
5304 if (!se)
5305 sub_nr_running(rq, 1);
5306
5307 hrtick_update(rq);
5308 }
5309
5310 #ifdef CONFIG_SMP
5311
5312 /* Working cpumask for: load_balance, load_balance_newidle. */
5313 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5314 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5315
5316 #ifdef CONFIG_NO_HZ_COMMON
5317 /*
5318 * per rq 'load' arrray crap; XXX kill this.
5319 */
5320
5321 /*
5322 * The exact cpuload calculated at every tick would be:
5323 *
5324 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5325 *
5326 * If a cpu misses updates for n ticks (as it was idle) and update gets
5327 * called on the n+1-th tick when cpu may be busy, then we have:
5328 *
5329 * load_n = (1 - 1/2^i)^n * load_0
5330 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
5331 *
5332 * decay_load_missed() below does efficient calculation of
5333 *
5334 * load' = (1 - 1/2^i)^n * load
5335 *
5336 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5337 * This allows us to precompute the above in said factors, thereby allowing the
5338 * reduction of an arbitrary n in O(log_2 n) steps. (See also
5339 * fixed_power_int())
5340 *
5341 * The calculation is approximated on a 128 point scale.
5342 */
5343 #define DEGRADE_SHIFT 7
5344
5345 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5346 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5347 { 0, 0, 0, 0, 0, 0, 0, 0 },
5348 { 64, 32, 8, 0, 0, 0, 0, 0 },
5349 { 96, 72, 40, 12, 1, 0, 0, 0 },
5350 { 112, 98, 75, 43, 15, 1, 0, 0 },
5351 { 120, 112, 98, 76, 45, 16, 2, 0 }
5352 };
5353
5354 /*
5355 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5356 * would be when CPU is idle and so we just decay the old load without
5357 * adding any new load.
5358 */
5359 static unsigned long
5360 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5361 {
5362 int j = 0;
5363
5364 if (!missed_updates)
5365 return load;
5366
5367 if (missed_updates >= degrade_zero_ticks[idx])
5368 return 0;
5369
5370 if (idx == 1)
5371 return load >> missed_updates;
5372
5373 while (missed_updates) {
5374 if (missed_updates % 2)
5375 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5376
5377 missed_updates >>= 1;
5378 j++;
5379 }
5380 return load;
5381 }
5382 #endif /* CONFIG_NO_HZ_COMMON */
5383
5384 /**
5385 * __cpu_load_update - update the rq->cpu_load[] statistics
5386 * @this_rq: The rq to update statistics for
5387 * @this_load: The current load
5388 * @pending_updates: The number of missed updates
5389 *
5390 * Update rq->cpu_load[] statistics. This function is usually called every
5391 * scheduler tick (TICK_NSEC).
5392 *
5393 * This function computes a decaying average:
5394 *
5395 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5396 *
5397 * Because of NOHZ it might not get called on every tick which gives need for
5398 * the @pending_updates argument.
5399 *
5400 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5401 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5402 * = A * (A * load[i]_n-2 + B) + B
5403 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5404 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5405 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5406 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5407 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5408 *
5409 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5410 * any change in load would have resulted in the tick being turned back on.
5411 *
5412 * For regular NOHZ, this reduces to:
5413 *
5414 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5415 *
5416 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5417 * term.
5418 */
5419 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5420 unsigned long pending_updates)
5421 {
5422 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5423 int i, scale;
5424
5425 this_rq->nr_load_updates++;
5426
5427 /* Update our load: */
5428 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5429 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5430 unsigned long old_load, new_load;
5431
5432 /* scale is effectively 1 << i now, and >> i divides by scale */
5433
5434 old_load = this_rq->cpu_load[i];
5435 #ifdef CONFIG_NO_HZ_COMMON
5436 old_load = decay_load_missed(old_load, pending_updates - 1, i);
5437 if (tickless_load) {
5438 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5439 /*
5440 * old_load can never be a negative value because a
5441 * decayed tickless_load cannot be greater than the
5442 * original tickless_load.
5443 */
5444 old_load += tickless_load;
5445 }
5446 #endif
5447 new_load = this_load;
5448 /*
5449 * Round up the averaging division if load is increasing. This
5450 * prevents us from getting stuck on 9 if the load is 10, for
5451 * example.
5452 */
5453 if (new_load > old_load)
5454 new_load += scale - 1;
5455
5456 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5457 }
5458
5459 sched_avg_update(this_rq);
5460 }
5461
5462 /* Used instead of source_load when we know the type == 0 */
5463 static unsigned long weighted_cpuload(struct rq *rq)
5464 {
5465 return cfs_rq_runnable_load_avg(&rq->cfs);
5466 }
5467
5468 #ifdef CONFIG_NO_HZ_COMMON
5469 /*
5470 * There is no sane way to deal with nohz on smp when using jiffies because the
5471 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5472 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5473 *
5474 * Therefore we need to avoid the delta approach from the regular tick when
5475 * possible since that would seriously skew the load calculation. This is why we
5476 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5477 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5478 * loop exit, nohz_idle_balance, nohz full exit...)
5479 *
5480 * This means we might still be one tick off for nohz periods.
5481 */
5482
5483 static void cpu_load_update_nohz(struct rq *this_rq,
5484 unsigned long curr_jiffies,
5485 unsigned long load)
5486 {
5487 unsigned long pending_updates;
5488
5489 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5490 if (pending_updates) {
5491 this_rq->last_load_update_tick = curr_jiffies;
5492 /*
5493 * In the regular NOHZ case, we were idle, this means load 0.
5494 * In the NOHZ_FULL case, we were non-idle, we should consider
5495 * its weighted load.
5496 */
5497 cpu_load_update(this_rq, load, pending_updates);
5498 }
5499 }
5500
5501 /*
5502 * Called from nohz_idle_balance() to update the load ratings before doing the
5503 * idle balance.
5504 */
5505 static void cpu_load_update_idle(struct rq *this_rq)
5506 {
5507 /*
5508 * bail if there's load or we're actually up-to-date.
5509 */
5510 if (weighted_cpuload(this_rq))
5511 return;
5512
5513 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5514 }
5515
5516 /*
5517 * Record CPU load on nohz entry so we know the tickless load to account
5518 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5519 * than other cpu_load[idx] but it should be fine as cpu_load readers
5520 * shouldn't rely into synchronized cpu_load[*] updates.
5521 */
5522 void cpu_load_update_nohz_start(void)
5523 {
5524 struct rq *this_rq = this_rq();
5525
5526 /*
5527 * This is all lockless but should be fine. If weighted_cpuload changes
5528 * concurrently we'll exit nohz. And cpu_load write can race with
5529 * cpu_load_update_idle() but both updater would be writing the same.
5530 */
5531 this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5532 }
5533
5534 /*
5535 * Account the tickless load in the end of a nohz frame.
5536 */
5537 void cpu_load_update_nohz_stop(void)
5538 {
5539 unsigned long curr_jiffies = READ_ONCE(jiffies);
5540 struct rq *this_rq = this_rq();
5541 unsigned long load;
5542 struct rq_flags rf;
5543
5544 if (curr_jiffies == this_rq->last_load_update_tick)
5545 return;
5546
5547 load = weighted_cpuload(this_rq);
5548 rq_lock(this_rq, &rf);
5549 update_rq_clock(this_rq);
5550 cpu_load_update_nohz(this_rq, curr_jiffies, load);
5551 rq_unlock(this_rq, &rf);
5552 }
5553 #else /* !CONFIG_NO_HZ_COMMON */
5554 static inline void cpu_load_update_nohz(struct rq *this_rq,
5555 unsigned long curr_jiffies,
5556 unsigned long load) { }
5557 #endif /* CONFIG_NO_HZ_COMMON */
5558
5559 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5560 {
5561 #ifdef CONFIG_NO_HZ_COMMON
5562 /* See the mess around cpu_load_update_nohz(). */
5563 this_rq->last_load_update_tick = READ_ONCE(jiffies);
5564 #endif
5565 cpu_load_update(this_rq, load, 1);
5566 }
5567
5568 /*
5569 * Called from scheduler_tick()
5570 */
5571 void cpu_load_update_active(struct rq *this_rq)
5572 {
5573 unsigned long load = weighted_cpuload(this_rq);
5574
5575 if (tick_nohz_tick_stopped())
5576 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5577 else
5578 cpu_load_update_periodic(this_rq, load);
5579 }
5580
5581 /*
5582 * Return a low guess at the load of a migration-source cpu weighted
5583 * according to the scheduling class and "nice" value.
5584 *
5585 * We want to under-estimate the load of migration sources, to
5586 * balance conservatively.
5587 */
5588 static unsigned long source_load(int cpu, int type)
5589 {
5590 struct rq *rq = cpu_rq(cpu);
5591 unsigned long total = weighted_cpuload(rq);
5592
5593 if (type == 0 || !sched_feat(LB_BIAS))
5594 return total;
5595
5596 return min(rq->cpu_load[type-1], total);
5597 }
5598
5599 /*
5600 * Return a high guess at the load of a migration-target cpu weighted
5601 * according to the scheduling class and "nice" value.
5602 */
5603 static unsigned long target_load(int cpu, int type)
5604 {
5605 struct rq *rq = cpu_rq(cpu);
5606 unsigned long total = weighted_cpuload(rq);
5607
5608 if (type == 0 || !sched_feat(LB_BIAS))
5609 return total;
5610
5611 return max(rq->cpu_load[type-1], total);
5612 }
5613
5614 static unsigned long capacity_of(int cpu)
5615 {
5616 return cpu_rq(cpu)->cpu_capacity;
5617 }
5618
5619 static unsigned long capacity_orig_of(int cpu)
5620 {
5621 return cpu_rq(cpu)->cpu_capacity_orig;
5622 }
5623
5624 static unsigned long cpu_avg_load_per_task(int cpu)
5625 {
5626 struct rq *rq = cpu_rq(cpu);
5627 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5628 unsigned long load_avg = weighted_cpuload(rq);
5629
5630 if (nr_running)
5631 return load_avg / nr_running;
5632
5633 return 0;
5634 }
5635
5636 static void record_wakee(struct task_struct *p)
5637 {
5638 /*
5639 * Only decay a single time; tasks that have less then 1 wakeup per
5640 * jiffy will not have built up many flips.
5641 */
5642 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5643 current->wakee_flips >>= 1;
5644 current->wakee_flip_decay_ts = jiffies;
5645 }
5646
5647 if (current->last_wakee != p) {
5648 current->last_wakee = p;
5649 current->wakee_flips++;
5650 }
5651 }
5652
5653 /*
5654 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5655 *
5656 * A waker of many should wake a different task than the one last awakened
5657 * at a frequency roughly N times higher than one of its wakees.
5658 *
5659 * In order to determine whether we should let the load spread vs consolidating
5660 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5661 * partner, and a factor of lls_size higher frequency in the other.
5662 *
5663 * With both conditions met, we can be relatively sure that the relationship is
5664 * non-monogamous, with partner count exceeding socket size.
5665 *
5666 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5667 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5668 * socket size.
5669 */
5670 static int wake_wide(struct task_struct *p)
5671 {
5672 unsigned int master = current->wakee_flips;
5673 unsigned int slave = p->wakee_flips;
5674 int factor = this_cpu_read(sd_llc_size);
5675
5676 if (master < slave)
5677 swap(master, slave);
5678 if (slave < factor || master < slave * factor)
5679 return 0;
5680 return 1;
5681 }
5682
5683 /*
5684 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5685 * soonest. For the purpose of speed we only consider the waking and previous
5686 * CPU.
5687 *
5688 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5689 * cache-affine and is (or will be) idle.
5690 *
5691 * wake_affine_weight() - considers the weight to reflect the average
5692 * scheduling latency of the CPUs. This seems to work
5693 * for the overloaded case.
5694 */
5695 static int
5696 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5697 {
5698 /*
5699 * If this_cpu is idle, it implies the wakeup is from interrupt
5700 * context. Only allow the move if cache is shared. Otherwise an
5701 * interrupt intensive workload could force all tasks onto one
5702 * node depending on the IO topology or IRQ affinity settings.
5703 *
5704 * If the prev_cpu is idle and cache affine then avoid a migration.
5705 * There is no guarantee that the cache hot data from an interrupt
5706 * is more important than cache hot data on the prev_cpu and from
5707 * a cpufreq perspective, it's better to have higher utilisation
5708 * on one CPU.
5709 */
5710 if (idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5711 return idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5712
5713 if (sync && cpu_rq(this_cpu)->nr_running == 1)
5714 return this_cpu;
5715
5716 return nr_cpumask_bits;
5717 }
5718
5719 static int
5720 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5721 int this_cpu, int prev_cpu, int sync)
5722 {
5723 s64 this_eff_load, prev_eff_load;
5724 unsigned long task_load;
5725
5726 this_eff_load = target_load(this_cpu, sd->wake_idx);
5727 prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5728
5729 if (sync) {
5730 unsigned long current_load = task_h_load(current);
5731
5732 if (current_load > this_eff_load)
5733 return this_cpu;
5734
5735 this_eff_load -= current_load;
5736 }
5737
5738 task_load = task_h_load(p);
5739
5740 this_eff_load += task_load;
5741 if (sched_feat(WA_BIAS))
5742 this_eff_load *= 100;
5743 this_eff_load *= capacity_of(prev_cpu);
5744
5745 prev_eff_load -= task_load;
5746 if (sched_feat(WA_BIAS))
5747 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5748 prev_eff_load *= capacity_of(this_cpu);
5749
5750 return this_eff_load <= prev_eff_load ? this_cpu : nr_cpumask_bits;
5751 }
5752
5753 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5754 int prev_cpu, int sync)
5755 {
5756 int this_cpu = smp_processor_id();
5757 int target = nr_cpumask_bits;
5758
5759 if (sched_feat(WA_IDLE))
5760 target = wake_affine_idle(this_cpu, prev_cpu, sync);
5761
5762 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5763 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5764
5765 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5766 if (target == nr_cpumask_bits)
5767 return prev_cpu;
5768
5769 schedstat_inc(sd->ttwu_move_affine);
5770 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5771 return target;
5772 }
5773
5774 static inline unsigned long task_util(struct task_struct *p);
5775 static unsigned long cpu_util_wake(int cpu, struct task_struct *p);
5776
5777 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5778 {
5779 return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0);
5780 }
5781
5782 /*
5783 * find_idlest_group finds and returns the least busy CPU group within the
5784 * domain.
5785 *
5786 * Assumes p is allowed on at least one CPU in sd.
5787 */
5788 static struct sched_group *
5789 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5790 int this_cpu, int sd_flag)
5791 {
5792 struct sched_group *idlest = NULL, *group = sd->groups;
5793 struct sched_group *most_spare_sg = NULL;
5794 unsigned long min_runnable_load = ULONG_MAX;
5795 unsigned long this_runnable_load = ULONG_MAX;
5796 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5797 unsigned long most_spare = 0, this_spare = 0;
5798 int load_idx = sd->forkexec_idx;
5799 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5800 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5801 (sd->imbalance_pct-100) / 100;
5802
5803 if (sd_flag & SD_BALANCE_WAKE)
5804 load_idx = sd->wake_idx;
5805
5806 do {
5807 unsigned long load, avg_load, runnable_load;
5808 unsigned long spare_cap, max_spare_cap;
5809 int local_group;
5810 int i;
5811
5812 /* Skip over this group if it has no CPUs allowed */
5813 if (!cpumask_intersects(sched_group_span(group),
5814 &p->cpus_allowed))
5815 continue;
5816
5817 local_group = cpumask_test_cpu(this_cpu,
5818 sched_group_span(group));
5819
5820 /*
5821 * Tally up the load of all CPUs in the group and find
5822 * the group containing the CPU with most spare capacity.
5823 */
5824 avg_load = 0;
5825 runnable_load = 0;
5826 max_spare_cap = 0;
5827
5828 for_each_cpu(i, sched_group_span(group)) {
5829 /* Bias balancing toward cpus of our domain */
5830 if (local_group)
5831 load = source_load(i, load_idx);
5832 else
5833 load = target_load(i, load_idx);
5834
5835 runnable_load += load;
5836
5837 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5838
5839 spare_cap = capacity_spare_wake(i, p);
5840
5841 if (spare_cap > max_spare_cap)
5842 max_spare_cap = spare_cap;
5843 }
5844
5845 /* Adjust by relative CPU capacity of the group */
5846 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5847 group->sgc->capacity;
5848 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5849 group->sgc->capacity;
5850
5851 if (local_group) {
5852 this_runnable_load = runnable_load;
5853 this_avg_load = avg_load;
5854 this_spare = max_spare_cap;
5855 } else {
5856 if (min_runnable_load > (runnable_load + imbalance)) {
5857 /*
5858 * The runnable load is significantly smaller
5859 * so we can pick this new cpu
5860 */
5861 min_runnable_load = runnable_load;
5862 min_avg_load = avg_load;
5863 idlest = group;
5864 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5865 (100*min_avg_load > imbalance_scale*avg_load)) {
5866 /*
5867 * The runnable loads are close so take the
5868 * blocked load into account through avg_load.
5869 */
5870 min_avg_load = avg_load;
5871 idlest = group;
5872 }
5873
5874 if (most_spare < max_spare_cap) {
5875 most_spare = max_spare_cap;
5876 most_spare_sg = group;
5877 }
5878 }
5879 } while (group = group->next, group != sd->groups);
5880
5881 /*
5882 * The cross-over point between using spare capacity or least load
5883 * is too conservative for high utilization tasks on partially
5884 * utilized systems if we require spare_capacity > task_util(p),
5885 * so we allow for some task stuffing by using
5886 * spare_capacity > task_util(p)/2.
5887 *
5888 * Spare capacity can't be used for fork because the utilization has
5889 * not been set yet, we must first select a rq to compute the initial
5890 * utilization.
5891 */
5892 if (sd_flag & SD_BALANCE_FORK)
5893 goto skip_spare;
5894
5895 if (this_spare > task_util(p) / 2 &&
5896 imbalance_scale*this_spare > 100*most_spare)
5897 return NULL;
5898
5899 if (most_spare > task_util(p) / 2)
5900 return most_spare_sg;
5901
5902 skip_spare:
5903 if (!idlest)
5904 return NULL;
5905
5906 if (min_runnable_load > (this_runnable_load + imbalance))
5907 return NULL;
5908
5909 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5910 (100*this_avg_load < imbalance_scale*min_avg_load))
5911 return NULL;
5912
5913 return idlest;
5914 }
5915
5916 /*
5917 * find_idlest_group_cpu - find the idlest cpu among the cpus in group.
5918 */
5919 static int
5920 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5921 {
5922 unsigned long load, min_load = ULONG_MAX;
5923 unsigned int min_exit_latency = UINT_MAX;
5924 u64 latest_idle_timestamp = 0;
5925 int least_loaded_cpu = this_cpu;
5926 int shallowest_idle_cpu = -1;
5927 int i;
5928
5929 /* Check if we have any choice: */
5930 if (group->group_weight == 1)
5931 return cpumask_first(sched_group_span(group));
5932
5933 /* Traverse only the allowed CPUs */
5934 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5935 if (idle_cpu(i)) {
5936 struct rq *rq = cpu_rq(i);
5937 struct cpuidle_state *idle = idle_get_state(rq);
5938 if (idle && idle->exit_latency < min_exit_latency) {
5939 /*
5940 * We give priority to a CPU whose idle state
5941 * has the smallest exit latency irrespective
5942 * of any idle timestamp.
5943 */
5944 min_exit_latency = idle->exit_latency;
5945 latest_idle_timestamp = rq->idle_stamp;
5946 shallowest_idle_cpu = i;
5947 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5948 rq->idle_stamp > latest_idle_timestamp) {
5949 /*
5950 * If equal or no active idle state, then
5951 * the most recently idled CPU might have
5952 * a warmer cache.
5953 */
5954 latest_idle_timestamp = rq->idle_stamp;
5955 shallowest_idle_cpu = i;
5956 }
5957 } else if (shallowest_idle_cpu == -1) {
5958 load = weighted_cpuload(cpu_rq(i));
5959 if (load < min_load) {
5960 min_load = load;
5961 least_loaded_cpu = i;
5962 }
5963 }
5964 }
5965
5966 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5967 }
5968
5969 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5970 int cpu, int prev_cpu, int sd_flag)
5971 {
5972 int new_cpu = cpu;
5973
5974 if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
5975 return prev_cpu;
5976
5977 while (sd) {
5978 struct sched_group *group;
5979 struct sched_domain *tmp;
5980 int weight;
5981
5982 if (!(sd->flags & sd_flag)) {
5983 sd = sd->child;
5984 continue;
5985 }
5986
5987 group = find_idlest_group(sd, p, cpu, sd_flag);
5988 if (!group) {
5989 sd = sd->child;
5990 continue;
5991 }
5992
5993 new_cpu = find_idlest_group_cpu(group, p, cpu);
5994 if (new_cpu == cpu) {
5995 /* Now try balancing at a lower domain level of cpu */
5996 sd = sd->child;
5997 continue;
5998 }
5999
6000 /* Now try balancing at a lower domain level of new_cpu */
6001 cpu = new_cpu;
6002 weight = sd->span_weight;
6003 sd = NULL;
6004 for_each_domain(cpu, tmp) {
6005 if (weight <= tmp->span_weight)
6006 break;
6007 if (tmp->flags & sd_flag)
6008 sd = tmp;
6009 }
6010 /* while loop will break here if sd == NULL */
6011 }
6012
6013 return new_cpu;
6014 }
6015
6016 #ifdef CONFIG_SCHED_SMT
6017
6018 static inline void set_idle_cores(int cpu, int val)
6019 {
6020 struct sched_domain_shared *sds;
6021
6022 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6023 if (sds)
6024 WRITE_ONCE(sds->has_idle_cores, val);
6025 }
6026
6027 static inline bool test_idle_cores(int cpu, bool def)
6028 {
6029 struct sched_domain_shared *sds;
6030
6031 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6032 if (sds)
6033 return READ_ONCE(sds->has_idle_cores);
6034
6035 return def;
6036 }
6037
6038 /*
6039 * Scans the local SMT mask to see if the entire core is idle, and records this
6040 * information in sd_llc_shared->has_idle_cores.
6041 *
6042 * Since SMT siblings share all cache levels, inspecting this limited remote
6043 * state should be fairly cheap.
6044 */
6045 void __update_idle_core(struct rq *rq)
6046 {
6047 int core = cpu_of(rq);
6048 int cpu;
6049
6050 rcu_read_lock();
6051 if (test_idle_cores(core, true))
6052 goto unlock;
6053
6054 for_each_cpu(cpu, cpu_smt_mask(core)) {
6055 if (cpu == core)
6056 continue;
6057
6058 if (!idle_cpu(cpu))
6059 goto unlock;
6060 }
6061
6062 set_idle_cores(core, 1);
6063 unlock:
6064 rcu_read_unlock();
6065 }
6066
6067 /*
6068 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6069 * there are no idle cores left in the system; tracked through
6070 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6071 */
6072 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6073 {
6074 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6075 int core, cpu;
6076
6077 if (!static_branch_likely(&sched_smt_present))
6078 return -1;
6079
6080 if (!test_idle_cores(target, false))
6081 return -1;
6082
6083 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
6084
6085 for_each_cpu_wrap(core, cpus, target) {
6086 bool idle = true;
6087
6088 for_each_cpu(cpu, cpu_smt_mask(core)) {
6089 cpumask_clear_cpu(cpu, cpus);
6090 if (!idle_cpu(cpu))
6091 idle = false;
6092 }
6093
6094 if (idle)
6095 return core;
6096 }
6097
6098 /*
6099 * Failed to find an idle core; stop looking for one.
6100 */
6101 set_idle_cores(target, 0);
6102
6103 return -1;
6104 }
6105
6106 /*
6107 * Scan the local SMT mask for idle CPUs.
6108 */
6109 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6110 {
6111 int cpu;
6112
6113 if (!static_branch_likely(&sched_smt_present))
6114 return -1;
6115
6116 for_each_cpu(cpu, cpu_smt_mask(target)) {
6117 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6118 continue;
6119 if (idle_cpu(cpu))
6120 return cpu;
6121 }
6122
6123 return -1;
6124 }
6125
6126 #else /* CONFIG_SCHED_SMT */
6127
6128 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6129 {
6130 return -1;
6131 }
6132
6133 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6134 {
6135 return -1;
6136 }
6137
6138 #endif /* CONFIG_SCHED_SMT */
6139
6140 /*
6141 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6142 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6143 * average idle time for this rq (as found in rq->avg_idle).
6144 */
6145 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6146 {
6147 struct sched_domain *this_sd;
6148 u64 avg_cost, avg_idle;
6149 u64 time, cost;
6150 s64 delta;
6151 int cpu, nr = INT_MAX;
6152
6153 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6154 if (!this_sd)
6155 return -1;
6156
6157 /*
6158 * Due to large variance we need a large fuzz factor; hackbench in
6159 * particularly is sensitive here.
6160 */
6161 avg_idle = this_rq()->avg_idle / 512;
6162 avg_cost = this_sd->avg_scan_cost + 1;
6163
6164 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6165 return -1;
6166
6167 if (sched_feat(SIS_PROP)) {
6168 u64 span_avg = sd->span_weight * avg_idle;
6169 if (span_avg > 4*avg_cost)
6170 nr = div_u64(span_avg, avg_cost);
6171 else
6172 nr = 4;
6173 }
6174
6175 time = local_clock();
6176
6177 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6178 if (!--nr)
6179 return -1;
6180 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6181 continue;
6182 if (idle_cpu(cpu))
6183 break;
6184 }
6185
6186 time = local_clock() - time;
6187 cost = this_sd->avg_scan_cost;
6188 delta = (s64)(time - cost) / 8;
6189 this_sd->avg_scan_cost += delta;
6190
6191 return cpu;
6192 }
6193
6194 /*
6195 * Try and locate an idle core/thread in the LLC cache domain.
6196 */
6197 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6198 {
6199 struct sched_domain *sd;
6200 int i;
6201
6202 if (idle_cpu(target))
6203 return target;
6204
6205 /*
6206 * If the previous cpu is cache affine and idle, don't be stupid.
6207 */
6208 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
6209 return prev;
6210
6211 sd = rcu_dereference(per_cpu(sd_llc, target));
6212 if (!sd)
6213 return target;
6214
6215 i = select_idle_core(p, sd, target);
6216 if ((unsigned)i < nr_cpumask_bits)
6217 return i;
6218
6219 i = select_idle_cpu(p, sd, target);
6220 if ((unsigned)i < nr_cpumask_bits)
6221 return i;
6222
6223 i = select_idle_smt(p, sd, target);
6224 if ((unsigned)i < nr_cpumask_bits)
6225 return i;
6226
6227 return target;
6228 }
6229
6230 /*
6231 * cpu_util returns the amount of capacity of a CPU that is used by CFS
6232 * tasks. The unit of the return value must be the one of capacity so we can
6233 * compare the utilization with the capacity of the CPU that is available for
6234 * CFS task (ie cpu_capacity).
6235 *
6236 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6237 * recent utilization of currently non-runnable tasks on a CPU. It represents
6238 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6239 * capacity_orig is the cpu_capacity available at the highest frequency
6240 * (arch_scale_freq_capacity()).
6241 * The utilization of a CPU converges towards a sum equal to or less than the
6242 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6243 * the running time on this CPU scaled by capacity_curr.
6244 *
6245 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6246 * higher than capacity_orig because of unfortunate rounding in
6247 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6248 * the average stabilizes with the new running time. We need to check that the
6249 * utilization stays within the range of [0..capacity_orig] and cap it if
6250 * necessary. Without utilization capping, a group could be seen as overloaded
6251 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6252 * available capacity. We allow utilization to overshoot capacity_curr (but not
6253 * capacity_orig) as it useful for predicting the capacity required after task
6254 * migrations (scheduler-driven DVFS).
6255 */
6256 static unsigned long cpu_util(int cpu)
6257 {
6258 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
6259 unsigned long capacity = capacity_orig_of(cpu);
6260
6261 return (util >= capacity) ? capacity : util;
6262 }
6263
6264 static inline unsigned long task_util(struct task_struct *p)
6265 {
6266 return p->se.avg.util_avg;
6267 }
6268
6269 /*
6270 * cpu_util_wake: Compute cpu utilization with any contributions from
6271 * the waking task p removed.
6272 */
6273 static unsigned long cpu_util_wake(int cpu, struct task_struct *p)
6274 {
6275 unsigned long util, capacity;
6276
6277 /* Task has no contribution or is new */
6278 if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
6279 return cpu_util(cpu);
6280
6281 capacity = capacity_orig_of(cpu);
6282 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
6283
6284 return (util >= capacity) ? capacity : util;
6285 }
6286
6287 /*
6288 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6289 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6290 *
6291 * In that case WAKE_AFFINE doesn't make sense and we'll let
6292 * BALANCE_WAKE sort things out.
6293 */
6294 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6295 {
6296 long min_cap, max_cap;
6297
6298 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6299 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6300
6301 /* Minimum capacity is close to max, no need to abort wake_affine */
6302 if (max_cap - min_cap < max_cap >> 3)
6303 return 0;
6304
6305 /* Bring task utilization in sync with prev_cpu */
6306 sync_entity_load_avg(&p->se);
6307
6308 return min_cap * 1024 < task_util(p) * capacity_margin;
6309 }
6310
6311 /*
6312 * select_task_rq_fair: Select target runqueue for the waking task in domains
6313 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6314 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6315 *
6316 * Balances load by selecting the idlest cpu in the idlest group, or under
6317 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
6318 *
6319 * Returns the target cpu number.
6320 *
6321 * preempt must be disabled.
6322 */
6323 static int
6324 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6325 {
6326 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
6327 int cpu = smp_processor_id();
6328 int new_cpu = prev_cpu;
6329 int want_affine = 0;
6330 int sync = wake_flags & WF_SYNC;
6331
6332 if (sd_flag & SD_BALANCE_WAKE) {
6333 record_wakee(p);
6334 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6335 && cpumask_test_cpu(cpu, &p->cpus_allowed);
6336 }
6337
6338 rcu_read_lock();
6339 for_each_domain(cpu, tmp) {
6340 if (!(tmp->flags & SD_LOAD_BALANCE))
6341 break;
6342
6343 /*
6344 * If both cpu and prev_cpu are part of this domain,
6345 * cpu is a valid SD_WAKE_AFFINE target.
6346 */
6347 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6348 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6349 affine_sd = tmp;
6350 break;
6351 }
6352
6353 if (tmp->flags & sd_flag)
6354 sd = tmp;
6355 else if (!want_affine)
6356 break;
6357 }
6358
6359 if (affine_sd) {
6360 sd = NULL; /* Prefer wake_affine over balance flags */
6361 if (cpu == prev_cpu)
6362 goto pick_cpu;
6363
6364 new_cpu = wake_affine(affine_sd, p, prev_cpu, sync);
6365 }
6366
6367 if (sd && !(sd_flag & SD_BALANCE_FORK)) {
6368 /*
6369 * We're going to need the task's util for capacity_spare_wake
6370 * in find_idlest_group. Sync it up to prev_cpu's
6371 * last_update_time.
6372 */
6373 sync_entity_load_avg(&p->se);
6374 }
6375
6376 if (!sd) {
6377 pick_cpu:
6378 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
6379 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6380
6381 } else {
6382 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6383 }
6384 rcu_read_unlock();
6385
6386 return new_cpu;
6387 }
6388
6389 static void detach_entity_cfs_rq(struct sched_entity *se);
6390
6391 /*
6392 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6393 * cfs_rq_of(p) references at time of call are still valid and identify the
6394 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6395 */
6396 static void migrate_task_rq_fair(struct task_struct *p)
6397 {
6398 /*
6399 * As blocked tasks retain absolute vruntime the migration needs to
6400 * deal with this by subtracting the old and adding the new
6401 * min_vruntime -- the latter is done by enqueue_entity() when placing
6402 * the task on the new runqueue.
6403 */
6404 if (p->state == TASK_WAKING) {
6405 struct sched_entity *se = &p->se;
6406 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6407 u64 min_vruntime;
6408
6409 #ifndef CONFIG_64BIT
6410 u64 min_vruntime_copy;
6411
6412 do {
6413 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6414 smp_rmb();
6415 min_vruntime = cfs_rq->min_vruntime;
6416 } while (min_vruntime != min_vruntime_copy);
6417 #else
6418 min_vruntime = cfs_rq->min_vruntime;
6419 #endif
6420
6421 se->vruntime -= min_vruntime;
6422 }
6423
6424 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6425 /*
6426 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6427 * rq->lock and can modify state directly.
6428 */
6429 lockdep_assert_held(&task_rq(p)->lock);
6430 detach_entity_cfs_rq(&p->se);
6431
6432 } else {
6433 /*
6434 * We are supposed to update the task to "current" time, then
6435 * its up to date and ready to go to new CPU/cfs_rq. But we
6436 * have difficulty in getting what current time is, so simply
6437 * throw away the out-of-date time. This will result in the
6438 * wakee task is less decayed, but giving the wakee more load
6439 * sounds not bad.
6440 */
6441 remove_entity_load_avg(&p->se);
6442 }
6443
6444 /* Tell new CPU we are migrated */
6445 p->se.avg.last_update_time = 0;
6446
6447 /* We have migrated, no longer consider this task hot */
6448 p->se.exec_start = 0;
6449 }
6450
6451 static void task_dead_fair(struct task_struct *p)
6452 {
6453 remove_entity_load_avg(&p->se);
6454 }
6455 #endif /* CONFIG_SMP */
6456
6457 static unsigned long wakeup_gran(struct sched_entity *se)
6458 {
6459 unsigned long gran = sysctl_sched_wakeup_granularity;
6460
6461 /*
6462 * Since its curr running now, convert the gran from real-time
6463 * to virtual-time in his units.
6464 *
6465 * By using 'se' instead of 'curr' we penalize light tasks, so
6466 * they get preempted easier. That is, if 'se' < 'curr' then
6467 * the resulting gran will be larger, therefore penalizing the
6468 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6469 * be smaller, again penalizing the lighter task.
6470 *
6471 * This is especially important for buddies when the leftmost
6472 * task is higher priority than the buddy.
6473 */
6474 return calc_delta_fair(gran, se);
6475 }
6476
6477 /*
6478 * Should 'se' preempt 'curr'.
6479 *
6480 * |s1
6481 * |s2
6482 * |s3
6483 * g
6484 * |<--->|c
6485 *
6486 * w(c, s1) = -1
6487 * w(c, s2) = 0
6488 * w(c, s3) = 1
6489 *
6490 */
6491 static int
6492 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6493 {
6494 s64 gran, vdiff = curr->vruntime - se->vruntime;
6495
6496 if (vdiff <= 0)
6497 return -1;
6498
6499 gran = wakeup_gran(se);
6500 if (vdiff > gran)
6501 return 1;
6502
6503 return 0;
6504 }
6505
6506 static void set_last_buddy(struct sched_entity *se)
6507 {
6508 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6509 return;
6510
6511 for_each_sched_entity(se) {
6512 if (SCHED_WARN_ON(!se->on_rq))
6513 return;
6514 cfs_rq_of(se)->last = se;
6515 }
6516 }
6517
6518 static void set_next_buddy(struct sched_entity *se)
6519 {
6520 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6521 return;
6522
6523 for_each_sched_entity(se) {
6524 if (SCHED_WARN_ON(!se->on_rq))
6525 return;
6526 cfs_rq_of(se)->next = se;
6527 }
6528 }
6529
6530 static void set_skip_buddy(struct sched_entity *se)
6531 {
6532 for_each_sched_entity(se)
6533 cfs_rq_of(se)->skip = se;
6534 }
6535
6536 /*
6537 * Preempt the current task with a newly woken task if needed:
6538 */
6539 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6540 {
6541 struct task_struct *curr = rq->curr;
6542 struct sched_entity *se = &curr->se, *pse = &p->se;
6543 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6544 int scale = cfs_rq->nr_running >= sched_nr_latency;
6545 int next_buddy_marked = 0;
6546
6547 if (unlikely(se == pse))
6548 return;
6549
6550 /*
6551 * This is possible from callers such as attach_tasks(), in which we
6552 * unconditionally check_prempt_curr() after an enqueue (which may have
6553 * lead to a throttle). This both saves work and prevents false
6554 * next-buddy nomination below.
6555 */
6556 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6557 return;
6558
6559 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6560 set_next_buddy(pse);
6561 next_buddy_marked = 1;
6562 }
6563
6564 /*
6565 * We can come here with TIF_NEED_RESCHED already set from new task
6566 * wake up path.
6567 *
6568 * Note: this also catches the edge-case of curr being in a throttled
6569 * group (e.g. via set_curr_task), since update_curr() (in the
6570 * enqueue of curr) will have resulted in resched being set. This
6571 * prevents us from potentially nominating it as a false LAST_BUDDY
6572 * below.
6573 */
6574 if (test_tsk_need_resched(curr))
6575 return;
6576
6577 /* Idle tasks are by definition preempted by non-idle tasks. */
6578 if (unlikely(curr->policy == SCHED_IDLE) &&
6579 likely(p->policy != SCHED_IDLE))
6580 goto preempt;
6581
6582 /*
6583 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6584 * is driven by the tick):
6585 */
6586 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6587 return;
6588
6589 find_matching_se(&se, &pse);
6590 update_curr(cfs_rq_of(se));
6591 BUG_ON(!pse);
6592 if (wakeup_preempt_entity(se, pse) == 1) {
6593 /*
6594 * Bias pick_next to pick the sched entity that is
6595 * triggering this preemption.
6596 */
6597 if (!next_buddy_marked)
6598 set_next_buddy(pse);
6599 goto preempt;
6600 }
6601
6602 return;
6603
6604 preempt:
6605 resched_curr(rq);
6606 /*
6607 * Only set the backward buddy when the current task is still
6608 * on the rq. This can happen when a wakeup gets interleaved
6609 * with schedule on the ->pre_schedule() or idle_balance()
6610 * point, either of which can * drop the rq lock.
6611 *
6612 * Also, during early boot the idle thread is in the fair class,
6613 * for obvious reasons its a bad idea to schedule back to it.
6614 */
6615 if (unlikely(!se->on_rq || curr == rq->idle))
6616 return;
6617
6618 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6619 set_last_buddy(se);
6620 }
6621
6622 static struct task_struct *
6623 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6624 {
6625 struct cfs_rq *cfs_rq = &rq->cfs;
6626 struct sched_entity *se;
6627 struct task_struct *p;
6628 int new_tasks;
6629
6630 again:
6631 if (!cfs_rq->nr_running)
6632 goto idle;
6633
6634 #ifdef CONFIG_FAIR_GROUP_SCHED
6635 if (prev->sched_class != &fair_sched_class)
6636 goto simple;
6637
6638 /*
6639 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6640 * likely that a next task is from the same cgroup as the current.
6641 *
6642 * Therefore attempt to avoid putting and setting the entire cgroup
6643 * hierarchy, only change the part that actually changes.
6644 */
6645
6646 do {
6647 struct sched_entity *curr = cfs_rq->curr;
6648
6649 /*
6650 * Since we got here without doing put_prev_entity() we also
6651 * have to consider cfs_rq->curr. If it is still a runnable
6652 * entity, update_curr() will update its vruntime, otherwise
6653 * forget we've ever seen it.
6654 */
6655 if (curr) {
6656 if (curr->on_rq)
6657 update_curr(cfs_rq);
6658 else
6659 curr = NULL;
6660
6661 /*
6662 * This call to check_cfs_rq_runtime() will do the
6663 * throttle and dequeue its entity in the parent(s).
6664 * Therefore the nr_running test will indeed
6665 * be correct.
6666 */
6667 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6668 cfs_rq = &rq->cfs;
6669
6670 if (!cfs_rq->nr_running)
6671 goto idle;
6672
6673 goto simple;
6674 }
6675 }
6676
6677 se = pick_next_entity(cfs_rq, curr);
6678 cfs_rq = group_cfs_rq(se);
6679 } while (cfs_rq);
6680
6681 p = task_of(se);
6682
6683 /*
6684 * Since we haven't yet done put_prev_entity and if the selected task
6685 * is a different task than we started out with, try and touch the
6686 * least amount of cfs_rqs.
6687 */
6688 if (prev != p) {
6689 struct sched_entity *pse = &prev->se;
6690
6691 while (!(cfs_rq = is_same_group(se, pse))) {
6692 int se_depth = se->depth;
6693 int pse_depth = pse->depth;
6694
6695 if (se_depth <= pse_depth) {
6696 put_prev_entity(cfs_rq_of(pse), pse);
6697 pse = parent_entity(pse);
6698 }
6699 if (se_depth >= pse_depth) {
6700 set_next_entity(cfs_rq_of(se), se);
6701 se = parent_entity(se);
6702 }
6703 }
6704
6705 put_prev_entity(cfs_rq, pse);
6706 set_next_entity(cfs_rq, se);
6707 }
6708
6709 goto done;
6710 simple:
6711 #endif
6712
6713 put_prev_task(rq, prev);
6714
6715 do {
6716 se = pick_next_entity(cfs_rq, NULL);
6717 set_next_entity(cfs_rq, se);
6718 cfs_rq = group_cfs_rq(se);
6719 } while (cfs_rq);
6720
6721 p = task_of(se);
6722
6723 done: __maybe_unused
6724 #ifdef CONFIG_SMP
6725 /*
6726 * Move the next running task to the front of
6727 * the list, so our cfs_tasks list becomes MRU
6728 * one.
6729 */
6730 list_move(&p->se.group_node, &rq->cfs_tasks);
6731 #endif
6732
6733 if (hrtick_enabled(rq))
6734 hrtick_start_fair(rq, p);
6735
6736 return p;
6737
6738 idle:
6739 new_tasks = idle_balance(rq, rf);
6740
6741 /*
6742 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6743 * possible for any higher priority task to appear. In that case we
6744 * must re-start the pick_next_entity() loop.
6745 */
6746 if (new_tasks < 0)
6747 return RETRY_TASK;
6748
6749 if (new_tasks > 0)
6750 goto again;
6751
6752 return NULL;
6753 }
6754
6755 /*
6756 * Account for a descheduled task:
6757 */
6758 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6759 {
6760 struct sched_entity *se = &prev->se;
6761 struct cfs_rq *cfs_rq;
6762
6763 for_each_sched_entity(se) {
6764 cfs_rq = cfs_rq_of(se);
6765 put_prev_entity(cfs_rq, se);
6766 }
6767 }
6768
6769 /*
6770 * sched_yield() is very simple
6771 *
6772 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6773 */
6774 static void yield_task_fair(struct rq *rq)
6775 {
6776 struct task_struct *curr = rq->curr;
6777 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6778 struct sched_entity *se = &curr->se;
6779
6780 /*
6781 * Are we the only task in the tree?
6782 */
6783 if (unlikely(rq->nr_running == 1))
6784 return;
6785
6786 clear_buddies(cfs_rq, se);
6787
6788 if (curr->policy != SCHED_BATCH) {
6789 update_rq_clock(rq);
6790 /*
6791 * Update run-time statistics of the 'current'.
6792 */
6793 update_curr(cfs_rq);
6794 /*
6795 * Tell update_rq_clock() that we've just updated,
6796 * so we don't do microscopic update in schedule()
6797 * and double the fastpath cost.
6798 */
6799 rq_clock_skip_update(rq, true);
6800 }
6801
6802 set_skip_buddy(se);
6803 }
6804
6805 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6806 {
6807 struct sched_entity *se = &p->se;
6808
6809 /* throttled hierarchies are not runnable */
6810 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6811 return false;
6812
6813 /* Tell the scheduler that we'd really like pse to run next. */
6814 set_next_buddy(se);
6815
6816 yield_task_fair(rq);
6817
6818 return true;
6819 }
6820
6821 #ifdef CONFIG_SMP
6822 /**************************************************
6823 * Fair scheduling class load-balancing methods.
6824 *
6825 * BASICS
6826 *
6827 * The purpose of load-balancing is to achieve the same basic fairness the
6828 * per-cpu scheduler provides, namely provide a proportional amount of compute
6829 * time to each task. This is expressed in the following equation:
6830 *
6831 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6832 *
6833 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6834 * W_i,0 is defined as:
6835 *
6836 * W_i,0 = \Sum_j w_i,j (2)
6837 *
6838 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6839 * is derived from the nice value as per sched_prio_to_weight[].
6840 *
6841 * The weight average is an exponential decay average of the instantaneous
6842 * weight:
6843 *
6844 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6845 *
6846 * C_i is the compute capacity of cpu i, typically it is the
6847 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6848 * can also include other factors [XXX].
6849 *
6850 * To achieve this balance we define a measure of imbalance which follows
6851 * directly from (1):
6852 *
6853 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
6854 *
6855 * We them move tasks around to minimize the imbalance. In the continuous
6856 * function space it is obvious this converges, in the discrete case we get
6857 * a few fun cases generally called infeasible weight scenarios.
6858 *
6859 * [XXX expand on:
6860 * - infeasible weights;
6861 * - local vs global optima in the discrete case. ]
6862 *
6863 *
6864 * SCHED DOMAINS
6865 *
6866 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6867 * for all i,j solution, we create a tree of cpus that follows the hardware
6868 * topology where each level pairs two lower groups (or better). This results
6869 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6870 * tree to only the first of the previous level and we decrease the frequency
6871 * of load-balance at each level inv. proportional to the number of cpus in
6872 * the groups.
6873 *
6874 * This yields:
6875 *
6876 * log_2 n 1 n
6877 * \Sum { --- * --- * 2^i } = O(n) (5)
6878 * i = 0 2^i 2^i
6879 * `- size of each group
6880 * | | `- number of cpus doing load-balance
6881 * | `- freq
6882 * `- sum over all levels
6883 *
6884 * Coupled with a limit on how many tasks we can migrate every balance pass,
6885 * this makes (5) the runtime complexity of the balancer.
6886 *
6887 * An important property here is that each CPU is still (indirectly) connected
6888 * to every other cpu in at most O(log n) steps:
6889 *
6890 * The adjacency matrix of the resulting graph is given by:
6891 *
6892 * log_2 n
6893 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6894 * k = 0
6895 *
6896 * And you'll find that:
6897 *
6898 * A^(log_2 n)_i,j != 0 for all i,j (7)
6899 *
6900 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6901 * The task movement gives a factor of O(m), giving a convergence complexity
6902 * of:
6903 *
6904 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6905 *
6906 *
6907 * WORK CONSERVING
6908 *
6909 * In order to avoid CPUs going idle while there's still work to do, new idle
6910 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6911 * tree itself instead of relying on other CPUs to bring it work.
6912 *
6913 * This adds some complexity to both (5) and (8) but it reduces the total idle
6914 * time.
6915 *
6916 * [XXX more?]
6917 *
6918 *
6919 * CGROUPS
6920 *
6921 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6922 *
6923 * s_k,i
6924 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6925 * S_k
6926 *
6927 * Where
6928 *
6929 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6930 *
6931 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6932 *
6933 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6934 * property.
6935 *
6936 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6937 * rewrite all of this once again.]
6938 */
6939
6940 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6941
6942 enum fbq_type { regular, remote, all };
6943
6944 #define LBF_ALL_PINNED 0x01
6945 #define LBF_NEED_BREAK 0x02
6946 #define LBF_DST_PINNED 0x04
6947 #define LBF_SOME_PINNED 0x08
6948
6949 struct lb_env {
6950 struct sched_domain *sd;
6951
6952 struct rq *src_rq;
6953 int src_cpu;
6954
6955 int dst_cpu;
6956 struct rq *dst_rq;
6957
6958 struct cpumask *dst_grpmask;
6959 int new_dst_cpu;
6960 enum cpu_idle_type idle;
6961 long imbalance;
6962 /* The set of CPUs under consideration for load-balancing */
6963 struct cpumask *cpus;
6964
6965 unsigned int flags;
6966
6967 unsigned int loop;
6968 unsigned int loop_break;
6969 unsigned int loop_max;
6970
6971 enum fbq_type fbq_type;
6972 struct list_head tasks;
6973 };
6974
6975 /*
6976 * Is this task likely cache-hot:
6977 */
6978 static int task_hot(struct task_struct *p, struct lb_env *env)
6979 {
6980 s64 delta;
6981
6982 lockdep_assert_held(&env->src_rq->lock);
6983
6984 if (p->sched_class != &fair_sched_class)
6985 return 0;
6986
6987 if (unlikely(p->policy == SCHED_IDLE))
6988 return 0;
6989
6990 /*
6991 * Buddy candidates are cache hot:
6992 */
6993 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6994 (&p->se == cfs_rq_of(&p->se)->next ||
6995 &p->se == cfs_rq_of(&p->se)->last))
6996 return 1;
6997
6998 if (sysctl_sched_migration_cost == -1)
6999 return 1;
7000 if (sysctl_sched_migration_cost == 0)
7001 return 0;
7002
7003 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7004
7005 return delta < (s64)sysctl_sched_migration_cost;
7006 }
7007
7008 #ifdef CONFIG_NUMA_BALANCING
7009 /*
7010 * Returns 1, if task migration degrades locality
7011 * Returns 0, if task migration improves locality i.e migration preferred.
7012 * Returns -1, if task migration is not affected by locality.
7013 */
7014 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7015 {
7016 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7017 unsigned long src_faults, dst_faults;
7018 int src_nid, dst_nid;
7019
7020 if (!static_branch_likely(&sched_numa_balancing))
7021 return -1;
7022
7023 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7024 return -1;
7025
7026 src_nid = cpu_to_node(env->src_cpu);
7027 dst_nid = cpu_to_node(env->dst_cpu);
7028
7029 if (src_nid == dst_nid)
7030 return -1;
7031
7032 /* Migrating away from the preferred node is always bad. */
7033 if (src_nid == p->numa_preferred_nid) {
7034 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7035 return 1;
7036 else
7037 return -1;
7038 }
7039
7040 /* Encourage migration to the preferred node. */
7041 if (dst_nid == p->numa_preferred_nid)
7042 return 0;
7043
7044 /* Leaving a core idle is often worse than degrading locality. */
7045 if (env->idle != CPU_NOT_IDLE)
7046 return -1;
7047
7048 if (numa_group) {
7049 src_faults = group_faults(p, src_nid);
7050 dst_faults = group_faults(p, dst_nid);
7051 } else {
7052 src_faults = task_faults(p, src_nid);
7053 dst_faults = task_faults(p, dst_nid);
7054 }
7055
7056 return dst_faults < src_faults;
7057 }
7058
7059 #else
7060 static inline int migrate_degrades_locality(struct task_struct *p,
7061 struct lb_env *env)
7062 {
7063 return -1;
7064 }
7065 #endif
7066
7067 /*
7068 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7069 */
7070 static
7071 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7072 {
7073 int tsk_cache_hot;
7074
7075 lockdep_assert_held(&env->src_rq->lock);
7076
7077 /*
7078 * We do not migrate tasks that are:
7079 * 1) throttled_lb_pair, or
7080 * 2) cannot be migrated to this CPU due to cpus_allowed, or
7081 * 3) running (obviously), or
7082 * 4) are cache-hot on their current CPU.
7083 */
7084 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7085 return 0;
7086
7087 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
7088 int cpu;
7089
7090 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7091
7092 env->flags |= LBF_SOME_PINNED;
7093
7094 /*
7095 * Remember if this task can be migrated to any other cpu in
7096 * our sched_group. We may want to revisit it if we couldn't
7097 * meet load balance goals by pulling other tasks on src_cpu.
7098 *
7099 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7100 * already computed one in current iteration.
7101 */
7102 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7103 return 0;
7104
7105 /* Prevent to re-select dst_cpu via env's cpus */
7106 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7107 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
7108 env->flags |= LBF_DST_PINNED;
7109 env->new_dst_cpu = cpu;
7110 break;
7111 }
7112 }
7113
7114 return 0;
7115 }
7116
7117 /* Record that we found atleast one task that could run on dst_cpu */
7118 env->flags &= ~LBF_ALL_PINNED;
7119
7120 if (task_running(env->src_rq, p)) {
7121 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7122 return 0;
7123 }
7124
7125 /*
7126 * Aggressive migration if:
7127 * 1) destination numa is preferred
7128 * 2) task is cache cold, or
7129 * 3) too many balance attempts have failed.
7130 */
7131 tsk_cache_hot = migrate_degrades_locality(p, env);
7132 if (tsk_cache_hot == -1)
7133 tsk_cache_hot = task_hot(p, env);
7134
7135 if (tsk_cache_hot <= 0 ||
7136 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7137 if (tsk_cache_hot == 1) {
7138 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7139 schedstat_inc(p->se.statistics.nr_forced_migrations);
7140 }
7141 return 1;
7142 }
7143
7144 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7145 return 0;
7146 }
7147
7148 /*
7149 * detach_task() -- detach the task for the migration specified in env
7150 */
7151 static void detach_task(struct task_struct *p, struct lb_env *env)
7152 {
7153 lockdep_assert_held(&env->src_rq->lock);
7154
7155 p->on_rq = TASK_ON_RQ_MIGRATING;
7156 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7157 set_task_cpu(p, env->dst_cpu);
7158 }
7159
7160 /*
7161 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7162 * part of active balancing operations within "domain".
7163 *
7164 * Returns a task if successful and NULL otherwise.
7165 */
7166 static struct task_struct *detach_one_task(struct lb_env *env)
7167 {
7168 struct task_struct *p;
7169
7170 lockdep_assert_held(&env->src_rq->lock);
7171
7172 list_for_each_entry_reverse(p,
7173 &env->src_rq->cfs_tasks, se.group_node) {
7174 if (!can_migrate_task(p, env))
7175 continue;
7176
7177 detach_task(p, env);
7178
7179 /*
7180 * Right now, this is only the second place where
7181 * lb_gained[env->idle] is updated (other is detach_tasks)
7182 * so we can safely collect stats here rather than
7183 * inside detach_tasks().
7184 */
7185 schedstat_inc(env->sd->lb_gained[env->idle]);
7186 return p;
7187 }
7188 return NULL;
7189 }
7190
7191 static const unsigned int sched_nr_migrate_break = 32;
7192
7193 /*
7194 * detach_tasks() -- tries to detach up to imbalance weighted load from
7195 * busiest_rq, as part of a balancing operation within domain "sd".
7196 *
7197 * Returns number of detached tasks if successful and 0 otherwise.
7198 */
7199 static int detach_tasks(struct lb_env *env)
7200 {
7201 struct list_head *tasks = &env->src_rq->cfs_tasks;
7202 struct task_struct *p;
7203 unsigned long load;
7204 int detached = 0;
7205
7206 lockdep_assert_held(&env->src_rq->lock);
7207
7208 if (env->imbalance <= 0)
7209 return 0;
7210
7211 while (!list_empty(tasks)) {
7212 /*
7213 * We don't want to steal all, otherwise we may be treated likewise,
7214 * which could at worst lead to a livelock crash.
7215 */
7216 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7217 break;
7218
7219 p = list_last_entry(tasks, struct task_struct, se.group_node);
7220
7221 env->loop++;
7222 /* We've more or less seen every task there is, call it quits */
7223 if (env->loop > env->loop_max)
7224 break;
7225
7226 /* take a breather every nr_migrate tasks */
7227 if (env->loop > env->loop_break) {
7228 env->loop_break += sched_nr_migrate_break;
7229 env->flags |= LBF_NEED_BREAK;
7230 break;
7231 }
7232
7233 if (!can_migrate_task(p, env))
7234 goto next;
7235
7236 load = task_h_load(p);
7237
7238 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7239 goto next;
7240
7241 if ((load / 2) > env->imbalance)
7242 goto next;
7243
7244 detach_task(p, env);
7245 list_add(&p->se.group_node, &env->tasks);
7246
7247 detached++;
7248 env->imbalance -= load;
7249
7250 #ifdef CONFIG_PREEMPT
7251 /*
7252 * NEWIDLE balancing is a source of latency, so preemptible
7253 * kernels will stop after the first task is detached to minimize
7254 * the critical section.
7255 */
7256 if (env->idle == CPU_NEWLY_IDLE)
7257 break;
7258 #endif
7259
7260 /*
7261 * We only want to steal up to the prescribed amount of
7262 * weighted load.
7263 */
7264 if (env->imbalance <= 0)
7265 break;
7266
7267 continue;
7268 next:
7269 list_move(&p->se.group_node, tasks);
7270 }
7271
7272 /*
7273 * Right now, this is one of only two places we collect this stat
7274 * so we can safely collect detach_one_task() stats here rather
7275 * than inside detach_one_task().
7276 */
7277 schedstat_add(env->sd->lb_gained[env->idle], detached);
7278
7279 return detached;
7280 }
7281
7282 /*
7283 * attach_task() -- attach the task detached by detach_task() to its new rq.
7284 */
7285 static void attach_task(struct rq *rq, struct task_struct *p)
7286 {
7287 lockdep_assert_held(&rq->lock);
7288
7289 BUG_ON(task_rq(p) != rq);
7290 activate_task(rq, p, ENQUEUE_NOCLOCK);
7291 p->on_rq = TASK_ON_RQ_QUEUED;
7292 check_preempt_curr(rq, p, 0);
7293 }
7294
7295 /*
7296 * attach_one_task() -- attaches the task returned from detach_one_task() to
7297 * its new rq.
7298 */
7299 static void attach_one_task(struct rq *rq, struct task_struct *p)
7300 {
7301 struct rq_flags rf;
7302
7303 rq_lock(rq, &rf);
7304 update_rq_clock(rq);
7305 attach_task(rq, p);
7306 rq_unlock(rq, &rf);
7307 }
7308
7309 /*
7310 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7311 * new rq.
7312 */
7313 static void attach_tasks(struct lb_env *env)
7314 {
7315 struct list_head *tasks = &env->tasks;
7316 struct task_struct *p;
7317 struct rq_flags rf;
7318
7319 rq_lock(env->dst_rq, &rf);
7320 update_rq_clock(env->dst_rq);
7321
7322 while (!list_empty(tasks)) {
7323 p = list_first_entry(tasks, struct task_struct, se.group_node);
7324 list_del_init(&p->se.group_node);
7325
7326 attach_task(env->dst_rq, p);
7327 }
7328
7329 rq_unlock(env->dst_rq, &rf);
7330 }
7331
7332 #ifdef CONFIG_FAIR_GROUP_SCHED
7333
7334 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7335 {
7336 if (cfs_rq->load.weight)
7337 return false;
7338
7339 if (cfs_rq->avg.load_sum)
7340 return false;
7341
7342 if (cfs_rq->avg.util_sum)
7343 return false;
7344
7345 if (cfs_rq->avg.runnable_load_sum)
7346 return false;
7347
7348 return true;
7349 }
7350
7351 static void update_blocked_averages(int cpu)
7352 {
7353 struct rq *rq = cpu_rq(cpu);
7354 struct cfs_rq *cfs_rq, *pos;
7355 struct rq_flags rf;
7356
7357 rq_lock_irqsave(rq, &rf);
7358 update_rq_clock(rq);
7359
7360 /*
7361 * Iterates the task_group tree in a bottom up fashion, see
7362 * list_add_leaf_cfs_rq() for details.
7363 */
7364 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7365 struct sched_entity *se;
7366
7367 /* throttled entities do not contribute to load */
7368 if (throttled_hierarchy(cfs_rq))
7369 continue;
7370
7371 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7372 update_tg_load_avg(cfs_rq, 0);
7373
7374 /* Propagate pending load changes to the parent, if any: */
7375 se = cfs_rq->tg->se[cpu];
7376 if (se && !skip_blocked_update(se))
7377 update_load_avg(cfs_rq_of(se), se, 0);
7378
7379 /*
7380 * There can be a lot of idle CPU cgroups. Don't let fully
7381 * decayed cfs_rqs linger on the list.
7382 */
7383 if (cfs_rq_is_decayed(cfs_rq))
7384 list_del_leaf_cfs_rq(cfs_rq);
7385 }
7386 rq_unlock_irqrestore(rq, &rf);
7387 }
7388
7389 /*
7390 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7391 * This needs to be done in a top-down fashion because the load of a child
7392 * group is a fraction of its parents load.
7393 */
7394 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7395 {
7396 struct rq *rq = rq_of(cfs_rq);
7397 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7398 unsigned long now = jiffies;
7399 unsigned long load;
7400
7401 if (cfs_rq->last_h_load_update == now)
7402 return;
7403
7404 cfs_rq->h_load_next = NULL;
7405 for_each_sched_entity(se) {
7406 cfs_rq = cfs_rq_of(se);
7407 cfs_rq->h_load_next = se;
7408 if (cfs_rq->last_h_load_update == now)
7409 break;
7410 }
7411
7412 if (!se) {
7413 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7414 cfs_rq->last_h_load_update = now;
7415 }
7416
7417 while ((se = cfs_rq->h_load_next) != NULL) {
7418 load = cfs_rq->h_load;
7419 load = div64_ul(load * se->avg.load_avg,
7420 cfs_rq_load_avg(cfs_rq) + 1);
7421 cfs_rq = group_cfs_rq(se);
7422 cfs_rq->h_load = load;
7423 cfs_rq->last_h_load_update = now;
7424 }
7425 }
7426
7427 static unsigned long task_h_load(struct task_struct *p)
7428 {
7429 struct cfs_rq *cfs_rq = task_cfs_rq(p);
7430
7431 update_cfs_rq_h_load(cfs_rq);
7432 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7433 cfs_rq_load_avg(cfs_rq) + 1);
7434 }
7435 #else
7436 static inline void update_blocked_averages(int cpu)
7437 {
7438 struct rq *rq = cpu_rq(cpu);
7439 struct cfs_rq *cfs_rq = &rq->cfs;
7440 struct rq_flags rf;
7441
7442 rq_lock_irqsave(rq, &rf);
7443 update_rq_clock(rq);
7444 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7445 rq_unlock_irqrestore(rq, &rf);
7446 }
7447
7448 static unsigned long task_h_load(struct task_struct *p)
7449 {
7450 return p->se.avg.load_avg;
7451 }
7452 #endif
7453
7454 /********** Helpers for find_busiest_group ************************/
7455
7456 enum group_type {
7457 group_other = 0,
7458 group_imbalanced,
7459 group_overloaded,
7460 };
7461
7462 /*
7463 * sg_lb_stats - stats of a sched_group required for load_balancing
7464 */
7465 struct sg_lb_stats {
7466 unsigned long avg_load; /*Avg load across the CPUs of the group */
7467 unsigned long group_load; /* Total load over the CPUs of the group */
7468 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7469 unsigned long load_per_task;
7470 unsigned long group_capacity;
7471 unsigned long group_util; /* Total utilization of the group */
7472 unsigned int sum_nr_running; /* Nr tasks running in the group */
7473 unsigned int idle_cpus;
7474 unsigned int group_weight;
7475 enum group_type group_type;
7476 int group_no_capacity;
7477 #ifdef CONFIG_NUMA_BALANCING
7478 unsigned int nr_numa_running;
7479 unsigned int nr_preferred_running;
7480 #endif
7481 };
7482
7483 /*
7484 * sd_lb_stats - Structure to store the statistics of a sched_domain
7485 * during load balancing.
7486 */
7487 struct sd_lb_stats {
7488 struct sched_group *busiest; /* Busiest group in this sd */
7489 struct sched_group *local; /* Local group in this sd */
7490 unsigned long total_running;
7491 unsigned long total_load; /* Total load of all groups in sd */
7492 unsigned long total_capacity; /* Total capacity of all groups in sd */
7493 unsigned long avg_load; /* Average load across all groups in sd */
7494
7495 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7496 struct sg_lb_stats local_stat; /* Statistics of the local group */
7497 };
7498
7499 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7500 {
7501 /*
7502 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7503 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7504 * We must however clear busiest_stat::avg_load because
7505 * update_sd_pick_busiest() reads this before assignment.
7506 */
7507 *sds = (struct sd_lb_stats){
7508 .busiest = NULL,
7509 .local = NULL,
7510 .total_running = 0UL,
7511 .total_load = 0UL,
7512 .total_capacity = 0UL,
7513 .busiest_stat = {
7514 .avg_load = 0UL,
7515 .sum_nr_running = 0,
7516 .group_type = group_other,
7517 },
7518 };
7519 }
7520
7521 /**
7522 * get_sd_load_idx - Obtain the load index for a given sched domain.
7523 * @sd: The sched_domain whose load_idx is to be obtained.
7524 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7525 *
7526 * Return: The load index.
7527 */
7528 static inline int get_sd_load_idx(struct sched_domain *sd,
7529 enum cpu_idle_type idle)
7530 {
7531 int load_idx;
7532
7533 switch (idle) {
7534 case CPU_NOT_IDLE:
7535 load_idx = sd->busy_idx;
7536 break;
7537
7538 case CPU_NEWLY_IDLE:
7539 load_idx = sd->newidle_idx;
7540 break;
7541 default:
7542 load_idx = sd->idle_idx;
7543 break;
7544 }
7545
7546 return load_idx;
7547 }
7548
7549 static unsigned long scale_rt_capacity(int cpu)
7550 {
7551 struct rq *rq = cpu_rq(cpu);
7552 u64 total, used, age_stamp, avg;
7553 s64 delta;
7554
7555 /*
7556 * Since we're reading these variables without serialization make sure
7557 * we read them once before doing sanity checks on them.
7558 */
7559 age_stamp = READ_ONCE(rq->age_stamp);
7560 avg = READ_ONCE(rq->rt_avg);
7561 delta = __rq_clock_broken(rq) - age_stamp;
7562
7563 if (unlikely(delta < 0))
7564 delta = 0;
7565
7566 total = sched_avg_period() + delta;
7567
7568 used = div_u64(avg, total);
7569
7570 if (likely(used < SCHED_CAPACITY_SCALE))
7571 return SCHED_CAPACITY_SCALE - used;
7572
7573 return 1;
7574 }
7575
7576 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7577 {
7578 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7579 struct sched_group *sdg = sd->groups;
7580
7581 cpu_rq(cpu)->cpu_capacity_orig = capacity;
7582
7583 capacity *= scale_rt_capacity(cpu);
7584 capacity >>= SCHED_CAPACITY_SHIFT;
7585
7586 if (!capacity)
7587 capacity = 1;
7588
7589 cpu_rq(cpu)->cpu_capacity = capacity;
7590 sdg->sgc->capacity = capacity;
7591 sdg->sgc->min_capacity = capacity;
7592 }
7593
7594 void update_group_capacity(struct sched_domain *sd, int cpu)
7595 {
7596 struct sched_domain *child = sd->child;
7597 struct sched_group *group, *sdg = sd->groups;
7598 unsigned long capacity, min_capacity;
7599 unsigned long interval;
7600
7601 interval = msecs_to_jiffies(sd->balance_interval);
7602 interval = clamp(interval, 1UL, max_load_balance_interval);
7603 sdg->sgc->next_update = jiffies + interval;
7604
7605 if (!child) {
7606 update_cpu_capacity(sd, cpu);
7607 return;
7608 }
7609
7610 capacity = 0;
7611 min_capacity = ULONG_MAX;
7612
7613 if (child->flags & SD_OVERLAP) {
7614 /*
7615 * SD_OVERLAP domains cannot assume that child groups
7616 * span the current group.
7617 */
7618
7619 for_each_cpu(cpu, sched_group_span(sdg)) {
7620 struct sched_group_capacity *sgc;
7621 struct rq *rq = cpu_rq(cpu);
7622
7623 /*
7624 * build_sched_domains() -> init_sched_groups_capacity()
7625 * gets here before we've attached the domains to the
7626 * runqueues.
7627 *
7628 * Use capacity_of(), which is set irrespective of domains
7629 * in update_cpu_capacity().
7630 *
7631 * This avoids capacity from being 0 and
7632 * causing divide-by-zero issues on boot.
7633 */
7634 if (unlikely(!rq->sd)) {
7635 capacity += capacity_of(cpu);
7636 } else {
7637 sgc = rq->sd->groups->sgc;
7638 capacity += sgc->capacity;
7639 }
7640
7641 min_capacity = min(capacity, min_capacity);
7642 }
7643 } else {
7644 /*
7645 * !SD_OVERLAP domains can assume that child groups
7646 * span the current group.
7647 */
7648
7649 group = child->groups;
7650 do {
7651 struct sched_group_capacity *sgc = group->sgc;
7652
7653 capacity += sgc->capacity;
7654 min_capacity = min(sgc->min_capacity, min_capacity);
7655 group = group->next;
7656 } while (group != child->groups);
7657 }
7658
7659 sdg->sgc->capacity = capacity;
7660 sdg->sgc->min_capacity = min_capacity;
7661 }
7662
7663 /*
7664 * Check whether the capacity of the rq has been noticeably reduced by side
7665 * activity. The imbalance_pct is used for the threshold.
7666 * Return true is the capacity is reduced
7667 */
7668 static inline int
7669 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7670 {
7671 return ((rq->cpu_capacity * sd->imbalance_pct) <
7672 (rq->cpu_capacity_orig * 100));
7673 }
7674
7675 /*
7676 * Group imbalance indicates (and tries to solve) the problem where balancing
7677 * groups is inadequate due to ->cpus_allowed constraints.
7678 *
7679 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7680 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7681 * Something like:
7682 *
7683 * { 0 1 2 3 } { 4 5 6 7 }
7684 * * * * *
7685 *
7686 * If we were to balance group-wise we'd place two tasks in the first group and
7687 * two tasks in the second group. Clearly this is undesired as it will overload
7688 * cpu 3 and leave one of the cpus in the second group unused.
7689 *
7690 * The current solution to this issue is detecting the skew in the first group
7691 * by noticing the lower domain failed to reach balance and had difficulty
7692 * moving tasks due to affinity constraints.
7693 *
7694 * When this is so detected; this group becomes a candidate for busiest; see
7695 * update_sd_pick_busiest(). And calculate_imbalance() and
7696 * find_busiest_group() avoid some of the usual balance conditions to allow it
7697 * to create an effective group imbalance.
7698 *
7699 * This is a somewhat tricky proposition since the next run might not find the
7700 * group imbalance and decide the groups need to be balanced again. A most
7701 * subtle and fragile situation.
7702 */
7703
7704 static inline int sg_imbalanced(struct sched_group *group)
7705 {
7706 return group->sgc->imbalance;
7707 }
7708
7709 /*
7710 * group_has_capacity returns true if the group has spare capacity that could
7711 * be used by some tasks.
7712 * We consider that a group has spare capacity if the * number of task is
7713 * smaller than the number of CPUs or if the utilization is lower than the
7714 * available capacity for CFS tasks.
7715 * For the latter, we use a threshold to stabilize the state, to take into
7716 * account the variance of the tasks' load and to return true if the available
7717 * capacity in meaningful for the load balancer.
7718 * As an example, an available capacity of 1% can appear but it doesn't make
7719 * any benefit for the load balance.
7720 */
7721 static inline bool
7722 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7723 {
7724 if (sgs->sum_nr_running < sgs->group_weight)
7725 return true;
7726
7727 if ((sgs->group_capacity * 100) >
7728 (sgs->group_util * env->sd->imbalance_pct))
7729 return true;
7730
7731 return false;
7732 }
7733
7734 /*
7735 * group_is_overloaded returns true if the group has more tasks than it can
7736 * handle.
7737 * group_is_overloaded is not equals to !group_has_capacity because a group
7738 * with the exact right number of tasks, has no more spare capacity but is not
7739 * overloaded so both group_has_capacity and group_is_overloaded return
7740 * false.
7741 */
7742 static inline bool
7743 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7744 {
7745 if (sgs->sum_nr_running <= sgs->group_weight)
7746 return false;
7747
7748 if ((sgs->group_capacity * 100) <
7749 (sgs->group_util * env->sd->imbalance_pct))
7750 return true;
7751
7752 return false;
7753 }
7754
7755 /*
7756 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7757 * per-CPU capacity than sched_group ref.
7758 */
7759 static inline bool
7760 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7761 {
7762 return sg->sgc->min_capacity * capacity_margin <
7763 ref->sgc->min_capacity * 1024;
7764 }
7765
7766 static inline enum
7767 group_type group_classify(struct sched_group *group,
7768 struct sg_lb_stats *sgs)
7769 {
7770 if (sgs->group_no_capacity)
7771 return group_overloaded;
7772
7773 if (sg_imbalanced(group))
7774 return group_imbalanced;
7775
7776 return group_other;
7777 }
7778
7779 /**
7780 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7781 * @env: The load balancing environment.
7782 * @group: sched_group whose statistics are to be updated.
7783 * @load_idx: Load index of sched_domain of this_cpu for load calc.
7784 * @local_group: Does group contain this_cpu.
7785 * @sgs: variable to hold the statistics for this group.
7786 * @overload: Indicate more than one runnable task for any CPU.
7787 */
7788 static inline void update_sg_lb_stats(struct lb_env *env,
7789 struct sched_group *group, int load_idx,
7790 int local_group, struct sg_lb_stats *sgs,
7791 bool *overload)
7792 {
7793 unsigned long load;
7794 int i, nr_running;
7795
7796 memset(sgs, 0, sizeof(*sgs));
7797
7798 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7799 struct rq *rq = cpu_rq(i);
7800
7801 /* Bias balancing toward cpus of our domain */
7802 if (local_group)
7803 load = target_load(i, load_idx);
7804 else
7805 load = source_load(i, load_idx);
7806
7807 sgs->group_load += load;
7808 sgs->group_util += cpu_util(i);
7809 sgs->sum_nr_running += rq->cfs.h_nr_running;
7810
7811 nr_running = rq->nr_running;
7812 if (nr_running > 1)
7813 *overload = true;
7814
7815 #ifdef CONFIG_NUMA_BALANCING
7816 sgs->nr_numa_running += rq->nr_numa_running;
7817 sgs->nr_preferred_running += rq->nr_preferred_running;
7818 #endif
7819 sgs->sum_weighted_load += weighted_cpuload(rq);
7820 /*
7821 * No need to call idle_cpu() if nr_running is not 0
7822 */
7823 if (!nr_running && idle_cpu(i))
7824 sgs->idle_cpus++;
7825 }
7826
7827 /* Adjust by relative CPU capacity of the group */
7828 sgs->group_capacity = group->sgc->capacity;
7829 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7830
7831 if (sgs->sum_nr_running)
7832 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7833
7834 sgs->group_weight = group->group_weight;
7835
7836 sgs->group_no_capacity = group_is_overloaded(env, sgs);
7837 sgs->group_type = group_classify(group, sgs);
7838 }
7839
7840 /**
7841 * update_sd_pick_busiest - return 1 on busiest group
7842 * @env: The load balancing environment.
7843 * @sds: sched_domain statistics
7844 * @sg: sched_group candidate to be checked for being the busiest
7845 * @sgs: sched_group statistics
7846 *
7847 * Determine if @sg is a busier group than the previously selected
7848 * busiest group.
7849 *
7850 * Return: %true if @sg is a busier group than the previously selected
7851 * busiest group. %false otherwise.
7852 */
7853 static bool update_sd_pick_busiest(struct lb_env *env,
7854 struct sd_lb_stats *sds,
7855 struct sched_group *sg,
7856 struct sg_lb_stats *sgs)
7857 {
7858 struct sg_lb_stats *busiest = &sds->busiest_stat;
7859
7860 if (sgs->group_type > busiest->group_type)
7861 return true;
7862
7863 if (sgs->group_type < busiest->group_type)
7864 return false;
7865
7866 if (sgs->avg_load <= busiest->avg_load)
7867 return false;
7868
7869 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7870 goto asym_packing;
7871
7872 /*
7873 * Candidate sg has no more than one task per CPU and
7874 * has higher per-CPU capacity. Migrating tasks to less
7875 * capable CPUs may harm throughput. Maximize throughput,
7876 * power/energy consequences are not considered.
7877 */
7878 if (sgs->sum_nr_running <= sgs->group_weight &&
7879 group_smaller_cpu_capacity(sds->local, sg))
7880 return false;
7881
7882 asym_packing:
7883 /* This is the busiest node in its class. */
7884 if (!(env->sd->flags & SD_ASYM_PACKING))
7885 return true;
7886
7887 /* No ASYM_PACKING if target cpu is already busy */
7888 if (env->idle == CPU_NOT_IDLE)
7889 return true;
7890 /*
7891 * ASYM_PACKING needs to move all the work to the highest
7892 * prority CPUs in the group, therefore mark all groups
7893 * of lower priority than ourself as busy.
7894 */
7895 if (sgs->sum_nr_running &&
7896 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7897 if (!sds->busiest)
7898 return true;
7899
7900 /* Prefer to move from lowest priority cpu's work */
7901 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7902 sg->asym_prefer_cpu))
7903 return true;
7904 }
7905
7906 return false;
7907 }
7908
7909 #ifdef CONFIG_NUMA_BALANCING
7910 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7911 {
7912 if (sgs->sum_nr_running > sgs->nr_numa_running)
7913 return regular;
7914 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7915 return remote;
7916 return all;
7917 }
7918
7919 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7920 {
7921 if (rq->nr_running > rq->nr_numa_running)
7922 return regular;
7923 if (rq->nr_running > rq->nr_preferred_running)
7924 return remote;
7925 return all;
7926 }
7927 #else
7928 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7929 {
7930 return all;
7931 }
7932
7933 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7934 {
7935 return regular;
7936 }
7937 #endif /* CONFIG_NUMA_BALANCING */
7938
7939 /**
7940 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7941 * @env: The load balancing environment.
7942 * @sds: variable to hold the statistics for this sched_domain.
7943 */
7944 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7945 {
7946 struct sched_domain *child = env->sd->child;
7947 struct sched_group *sg = env->sd->groups;
7948 struct sg_lb_stats *local = &sds->local_stat;
7949 struct sg_lb_stats tmp_sgs;
7950 int load_idx, prefer_sibling = 0;
7951 bool overload = false;
7952
7953 if (child && child->flags & SD_PREFER_SIBLING)
7954 prefer_sibling = 1;
7955
7956 load_idx = get_sd_load_idx(env->sd, env->idle);
7957
7958 do {
7959 struct sg_lb_stats *sgs = &tmp_sgs;
7960 int local_group;
7961
7962 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
7963 if (local_group) {
7964 sds->local = sg;
7965 sgs = local;
7966
7967 if (env->idle != CPU_NEWLY_IDLE ||
7968 time_after_eq(jiffies, sg->sgc->next_update))
7969 update_group_capacity(env->sd, env->dst_cpu);
7970 }
7971
7972 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7973 &overload);
7974
7975 if (local_group)
7976 goto next_group;
7977
7978 /*
7979 * In case the child domain prefers tasks go to siblings
7980 * first, lower the sg capacity so that we'll try
7981 * and move all the excess tasks away. We lower the capacity
7982 * of a group only if the local group has the capacity to fit
7983 * these excess tasks. The extra check prevents the case where
7984 * you always pull from the heaviest group when it is already
7985 * under-utilized (possible with a large weight task outweighs
7986 * the tasks on the system).
7987 */
7988 if (prefer_sibling && sds->local &&
7989 group_has_capacity(env, local) &&
7990 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
7991 sgs->group_no_capacity = 1;
7992 sgs->group_type = group_classify(sg, sgs);
7993 }
7994
7995 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7996 sds->busiest = sg;
7997 sds->busiest_stat = *sgs;
7998 }
7999
8000 next_group:
8001 /* Now, start updating sd_lb_stats */
8002 sds->total_running += sgs->sum_nr_running;
8003 sds->total_load += sgs->group_load;
8004 sds->total_capacity += sgs->group_capacity;
8005
8006 sg = sg->next;
8007 } while (sg != env->sd->groups);
8008
8009 if (env->sd->flags & SD_NUMA)
8010 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8011
8012 if (!env->sd->parent) {
8013 /* update overload indicator if we are at root domain */
8014 if (env->dst_rq->rd->overload != overload)
8015 env->dst_rq->rd->overload = overload;
8016 }
8017 }
8018
8019 /**
8020 * check_asym_packing - Check to see if the group is packed into the
8021 * sched domain.
8022 *
8023 * This is primarily intended to used at the sibling level. Some
8024 * cores like POWER7 prefer to use lower numbered SMT threads. In the
8025 * case of POWER7, it can move to lower SMT modes only when higher
8026 * threads are idle. When in lower SMT modes, the threads will
8027 * perform better since they share less core resources. Hence when we
8028 * have idle threads, we want them to be the higher ones.
8029 *
8030 * This packing function is run on idle threads. It checks to see if
8031 * the busiest CPU in this domain (core in the P7 case) has a higher
8032 * CPU number than the packing function is being run on. Here we are
8033 * assuming lower CPU number will be equivalent to lower a SMT thread
8034 * number.
8035 *
8036 * Return: 1 when packing is required and a task should be moved to
8037 * this CPU. The amount of the imbalance is returned in env->imbalance.
8038 *
8039 * @env: The load balancing environment.
8040 * @sds: Statistics of the sched_domain which is to be packed
8041 */
8042 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8043 {
8044 int busiest_cpu;
8045
8046 if (!(env->sd->flags & SD_ASYM_PACKING))
8047 return 0;
8048
8049 if (env->idle == CPU_NOT_IDLE)
8050 return 0;
8051
8052 if (!sds->busiest)
8053 return 0;
8054
8055 busiest_cpu = sds->busiest->asym_prefer_cpu;
8056 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8057 return 0;
8058
8059 env->imbalance = DIV_ROUND_CLOSEST(
8060 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
8061 SCHED_CAPACITY_SCALE);
8062
8063 return 1;
8064 }
8065
8066 /**
8067 * fix_small_imbalance - Calculate the minor imbalance that exists
8068 * amongst the groups of a sched_domain, during
8069 * load balancing.
8070 * @env: The load balancing environment.
8071 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
8072 */
8073 static inline
8074 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8075 {
8076 unsigned long tmp, capa_now = 0, capa_move = 0;
8077 unsigned int imbn = 2;
8078 unsigned long scaled_busy_load_per_task;
8079 struct sg_lb_stats *local, *busiest;
8080
8081 local = &sds->local_stat;
8082 busiest = &sds->busiest_stat;
8083
8084 if (!local->sum_nr_running)
8085 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8086 else if (busiest->load_per_task > local->load_per_task)
8087 imbn = 1;
8088
8089 scaled_busy_load_per_task =
8090 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8091 busiest->group_capacity;
8092
8093 if (busiest->avg_load + scaled_busy_load_per_task >=
8094 local->avg_load + (scaled_busy_load_per_task * imbn)) {
8095 env->imbalance = busiest->load_per_task;
8096 return;
8097 }
8098
8099 /*
8100 * OK, we don't have enough imbalance to justify moving tasks,
8101 * however we may be able to increase total CPU capacity used by
8102 * moving them.
8103 */
8104
8105 capa_now += busiest->group_capacity *
8106 min(busiest->load_per_task, busiest->avg_load);
8107 capa_now += local->group_capacity *
8108 min(local->load_per_task, local->avg_load);
8109 capa_now /= SCHED_CAPACITY_SCALE;
8110
8111 /* Amount of load we'd subtract */
8112 if (busiest->avg_load > scaled_busy_load_per_task) {
8113 capa_move += busiest->group_capacity *
8114 min(busiest->load_per_task,
8115 busiest->avg_load - scaled_busy_load_per_task);
8116 }
8117
8118 /* Amount of load we'd add */
8119 if (busiest->avg_load * busiest->group_capacity <
8120 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8121 tmp = (busiest->avg_load * busiest->group_capacity) /
8122 local->group_capacity;
8123 } else {
8124 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8125 local->group_capacity;
8126 }
8127 capa_move += local->group_capacity *
8128 min(local->load_per_task, local->avg_load + tmp);
8129 capa_move /= SCHED_CAPACITY_SCALE;
8130
8131 /* Move if we gain throughput */
8132 if (capa_move > capa_now)
8133 env->imbalance = busiest->load_per_task;
8134 }
8135
8136 /**
8137 * calculate_imbalance - Calculate the amount of imbalance present within the
8138 * groups of a given sched_domain during load balance.
8139 * @env: load balance environment
8140 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8141 */
8142 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8143 {
8144 unsigned long max_pull, load_above_capacity = ~0UL;
8145 struct sg_lb_stats *local, *busiest;
8146
8147 local = &sds->local_stat;
8148 busiest = &sds->busiest_stat;
8149
8150 if (busiest->group_type == group_imbalanced) {
8151 /*
8152 * In the group_imb case we cannot rely on group-wide averages
8153 * to ensure cpu-load equilibrium, look at wider averages. XXX
8154 */
8155 busiest->load_per_task =
8156 min(busiest->load_per_task, sds->avg_load);
8157 }
8158
8159 /*
8160 * Avg load of busiest sg can be less and avg load of local sg can
8161 * be greater than avg load across all sgs of sd because avg load
8162 * factors in sg capacity and sgs with smaller group_type are
8163 * skipped when updating the busiest sg:
8164 */
8165 if (busiest->avg_load <= sds->avg_load ||
8166 local->avg_load >= sds->avg_load) {
8167 env->imbalance = 0;
8168 return fix_small_imbalance(env, sds);
8169 }
8170
8171 /*
8172 * If there aren't any idle cpus, avoid creating some.
8173 */
8174 if (busiest->group_type == group_overloaded &&
8175 local->group_type == group_overloaded) {
8176 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8177 if (load_above_capacity > busiest->group_capacity) {
8178 load_above_capacity -= busiest->group_capacity;
8179 load_above_capacity *= scale_load_down(NICE_0_LOAD);
8180 load_above_capacity /= busiest->group_capacity;
8181 } else
8182 load_above_capacity = ~0UL;
8183 }
8184
8185 /*
8186 * We're trying to get all the cpus to the average_load, so we don't
8187 * want to push ourselves above the average load, nor do we wish to
8188 * reduce the max loaded cpu below the average load. At the same time,
8189 * we also don't want to reduce the group load below the group
8190 * capacity. Thus we look for the minimum possible imbalance.
8191 */
8192 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8193
8194 /* How much load to actually move to equalise the imbalance */
8195 env->imbalance = min(
8196 max_pull * busiest->group_capacity,
8197 (sds->avg_load - local->avg_load) * local->group_capacity
8198 ) / SCHED_CAPACITY_SCALE;
8199
8200 /*
8201 * if *imbalance is less than the average load per runnable task
8202 * there is no guarantee that any tasks will be moved so we'll have
8203 * a think about bumping its value to force at least one task to be
8204 * moved
8205 */
8206 if (env->imbalance < busiest->load_per_task)
8207 return fix_small_imbalance(env, sds);
8208 }
8209
8210 /******* find_busiest_group() helpers end here *********************/
8211
8212 /**
8213 * find_busiest_group - Returns the busiest group within the sched_domain
8214 * if there is an imbalance.
8215 *
8216 * Also calculates the amount of weighted load which should be moved
8217 * to restore balance.
8218 *
8219 * @env: The load balancing environment.
8220 *
8221 * Return: - The busiest group if imbalance exists.
8222 */
8223 static struct sched_group *find_busiest_group(struct lb_env *env)
8224 {
8225 struct sg_lb_stats *local, *busiest;
8226 struct sd_lb_stats sds;
8227
8228 init_sd_lb_stats(&sds);
8229
8230 /*
8231 * Compute the various statistics relavent for load balancing at
8232 * this level.
8233 */
8234 update_sd_lb_stats(env, &sds);
8235 local = &sds.local_stat;
8236 busiest = &sds.busiest_stat;
8237
8238 /* ASYM feature bypasses nice load balance check */
8239 if (check_asym_packing(env, &sds))
8240 return sds.busiest;
8241
8242 /* There is no busy sibling group to pull tasks from */
8243 if (!sds.busiest || busiest->sum_nr_running == 0)
8244 goto out_balanced;
8245
8246 /* XXX broken for overlapping NUMA groups */
8247 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8248 / sds.total_capacity;
8249
8250 /*
8251 * If the busiest group is imbalanced the below checks don't
8252 * work because they assume all things are equal, which typically
8253 * isn't true due to cpus_allowed constraints and the like.
8254 */
8255 if (busiest->group_type == group_imbalanced)
8256 goto force_balance;
8257
8258 /*
8259 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8260 * capacities from resulting in underutilization due to avg_load.
8261 */
8262 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8263 busiest->group_no_capacity)
8264 goto force_balance;
8265
8266 /*
8267 * If the local group is busier than the selected busiest group
8268 * don't try and pull any tasks.
8269 */
8270 if (local->avg_load >= busiest->avg_load)
8271 goto out_balanced;
8272
8273 /*
8274 * Don't pull any tasks if this group is already above the domain
8275 * average load.
8276 */
8277 if (local->avg_load >= sds.avg_load)
8278 goto out_balanced;
8279
8280 if (env->idle == CPU_IDLE) {
8281 /*
8282 * This cpu is idle. If the busiest group is not overloaded
8283 * and there is no imbalance between this and busiest group
8284 * wrt idle cpus, it is balanced. The imbalance becomes
8285 * significant if the diff is greater than 1 otherwise we
8286 * might end up to just move the imbalance on another group
8287 */
8288 if ((busiest->group_type != group_overloaded) &&
8289 (local->idle_cpus <= (busiest->idle_cpus + 1)))
8290 goto out_balanced;
8291 } else {
8292 /*
8293 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8294 * imbalance_pct to be conservative.
8295 */
8296 if (100 * busiest->avg_load <=
8297 env->sd->imbalance_pct * local->avg_load)
8298 goto out_balanced;
8299 }
8300
8301 force_balance:
8302 /* Looks like there is an imbalance. Compute it */
8303 calculate_imbalance(env, &sds);
8304 return sds.busiest;
8305
8306 out_balanced:
8307 env->imbalance = 0;
8308 return NULL;
8309 }
8310
8311 /*
8312 * find_busiest_queue - find the busiest runqueue among the cpus in group.
8313 */
8314 static struct rq *find_busiest_queue(struct lb_env *env,
8315 struct sched_group *group)
8316 {
8317 struct rq *busiest = NULL, *rq;
8318 unsigned long busiest_load = 0, busiest_capacity = 1;
8319 int i;
8320
8321 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8322 unsigned long capacity, wl;
8323 enum fbq_type rt;
8324
8325 rq = cpu_rq(i);
8326 rt = fbq_classify_rq(rq);
8327
8328 /*
8329 * We classify groups/runqueues into three groups:
8330 * - regular: there are !numa tasks
8331 * - remote: there are numa tasks that run on the 'wrong' node
8332 * - all: there is no distinction
8333 *
8334 * In order to avoid migrating ideally placed numa tasks,
8335 * ignore those when there's better options.
8336 *
8337 * If we ignore the actual busiest queue to migrate another
8338 * task, the next balance pass can still reduce the busiest
8339 * queue by moving tasks around inside the node.
8340 *
8341 * If we cannot move enough load due to this classification
8342 * the next pass will adjust the group classification and
8343 * allow migration of more tasks.
8344 *
8345 * Both cases only affect the total convergence complexity.
8346 */
8347 if (rt > env->fbq_type)
8348 continue;
8349
8350 capacity = capacity_of(i);
8351
8352 wl = weighted_cpuload(rq);
8353
8354 /*
8355 * When comparing with imbalance, use weighted_cpuload()
8356 * which is not scaled with the cpu capacity.
8357 */
8358
8359 if (rq->nr_running == 1 && wl > env->imbalance &&
8360 !check_cpu_capacity(rq, env->sd))
8361 continue;
8362
8363 /*
8364 * For the load comparisons with the other cpu's, consider
8365 * the weighted_cpuload() scaled with the cpu capacity, so
8366 * that the load can be moved away from the cpu that is
8367 * potentially running at a lower capacity.
8368 *
8369 * Thus we're looking for max(wl_i / capacity_i), crosswise
8370 * multiplication to rid ourselves of the division works out
8371 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
8372 * our previous maximum.
8373 */
8374 if (wl * busiest_capacity > busiest_load * capacity) {
8375 busiest_load = wl;
8376 busiest_capacity = capacity;
8377 busiest = rq;
8378 }
8379 }
8380
8381 return busiest;
8382 }
8383
8384 /*
8385 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8386 * so long as it is large enough.
8387 */
8388 #define MAX_PINNED_INTERVAL 512
8389
8390 static int need_active_balance(struct lb_env *env)
8391 {
8392 struct sched_domain *sd = env->sd;
8393
8394 if (env->idle == CPU_NEWLY_IDLE) {
8395
8396 /*
8397 * ASYM_PACKING needs to force migrate tasks from busy but
8398 * lower priority CPUs in order to pack all tasks in the
8399 * highest priority CPUs.
8400 */
8401 if ((sd->flags & SD_ASYM_PACKING) &&
8402 sched_asym_prefer(env->dst_cpu, env->src_cpu))
8403 return 1;
8404 }
8405
8406 /*
8407 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8408 * It's worth migrating the task if the src_cpu's capacity is reduced
8409 * because of other sched_class or IRQs if more capacity stays
8410 * available on dst_cpu.
8411 */
8412 if ((env->idle != CPU_NOT_IDLE) &&
8413 (env->src_rq->cfs.h_nr_running == 1)) {
8414 if ((check_cpu_capacity(env->src_rq, sd)) &&
8415 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8416 return 1;
8417 }
8418
8419 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8420 }
8421
8422 static int active_load_balance_cpu_stop(void *data);
8423
8424 static int should_we_balance(struct lb_env *env)
8425 {
8426 struct sched_group *sg = env->sd->groups;
8427 int cpu, balance_cpu = -1;
8428
8429 /*
8430 * Ensure the balancing environment is consistent; can happen
8431 * when the softirq triggers 'during' hotplug.
8432 */
8433 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8434 return 0;
8435
8436 /*
8437 * In the newly idle case, we will allow all the cpu's
8438 * to do the newly idle load balance.
8439 */
8440 if (env->idle == CPU_NEWLY_IDLE)
8441 return 1;
8442
8443 /* Try to find first idle cpu */
8444 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8445 if (!idle_cpu(cpu))
8446 continue;
8447
8448 balance_cpu = cpu;
8449 break;
8450 }
8451
8452 if (balance_cpu == -1)
8453 balance_cpu = group_balance_cpu(sg);
8454
8455 /*
8456 * First idle cpu or the first cpu(busiest) in this sched group
8457 * is eligible for doing load balancing at this and above domains.
8458 */
8459 return balance_cpu == env->dst_cpu;
8460 }
8461
8462 /*
8463 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8464 * tasks if there is an imbalance.
8465 */
8466 static int load_balance(int this_cpu, struct rq *this_rq,
8467 struct sched_domain *sd, enum cpu_idle_type idle,
8468 int *continue_balancing)
8469 {
8470 int ld_moved, cur_ld_moved, active_balance = 0;
8471 struct sched_domain *sd_parent = sd->parent;
8472 struct sched_group *group;
8473 struct rq *busiest;
8474 struct rq_flags rf;
8475 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8476
8477 struct lb_env env = {
8478 .sd = sd,
8479 .dst_cpu = this_cpu,
8480 .dst_rq = this_rq,
8481 .dst_grpmask = sched_group_span(sd->groups),
8482 .idle = idle,
8483 .loop_break = sched_nr_migrate_break,
8484 .cpus = cpus,
8485 .fbq_type = all,
8486 .tasks = LIST_HEAD_INIT(env.tasks),
8487 };
8488
8489 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8490
8491 schedstat_inc(sd->lb_count[idle]);
8492
8493 redo:
8494 if (!should_we_balance(&env)) {
8495 *continue_balancing = 0;
8496 goto out_balanced;
8497 }
8498
8499 group = find_busiest_group(&env);
8500 if (!group) {
8501 schedstat_inc(sd->lb_nobusyg[idle]);
8502 goto out_balanced;
8503 }
8504
8505 busiest = find_busiest_queue(&env, group);
8506 if (!busiest) {
8507 schedstat_inc(sd->lb_nobusyq[idle]);
8508 goto out_balanced;
8509 }
8510
8511 BUG_ON(busiest == env.dst_rq);
8512
8513 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8514
8515 env.src_cpu = busiest->cpu;
8516 env.src_rq = busiest;
8517
8518 ld_moved = 0;
8519 if (busiest->nr_running > 1) {
8520 /*
8521 * Attempt to move tasks. If find_busiest_group has found
8522 * an imbalance but busiest->nr_running <= 1, the group is
8523 * still unbalanced. ld_moved simply stays zero, so it is
8524 * correctly treated as an imbalance.
8525 */
8526 env.flags |= LBF_ALL_PINNED;
8527 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8528
8529 more_balance:
8530 rq_lock_irqsave(busiest, &rf);
8531 update_rq_clock(busiest);
8532
8533 /*
8534 * cur_ld_moved - load moved in current iteration
8535 * ld_moved - cumulative load moved across iterations
8536 */
8537 cur_ld_moved = detach_tasks(&env);
8538
8539 /*
8540 * We've detached some tasks from busiest_rq. Every
8541 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8542 * unlock busiest->lock, and we are able to be sure
8543 * that nobody can manipulate the tasks in parallel.
8544 * See task_rq_lock() family for the details.
8545 */
8546
8547 rq_unlock(busiest, &rf);
8548
8549 if (cur_ld_moved) {
8550 attach_tasks(&env);
8551 ld_moved += cur_ld_moved;
8552 }
8553
8554 local_irq_restore(rf.flags);
8555
8556 if (env.flags & LBF_NEED_BREAK) {
8557 env.flags &= ~LBF_NEED_BREAK;
8558 goto more_balance;
8559 }
8560
8561 /*
8562 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8563 * us and move them to an alternate dst_cpu in our sched_group
8564 * where they can run. The upper limit on how many times we
8565 * iterate on same src_cpu is dependent on number of cpus in our
8566 * sched_group.
8567 *
8568 * This changes load balance semantics a bit on who can move
8569 * load to a given_cpu. In addition to the given_cpu itself
8570 * (or a ilb_cpu acting on its behalf where given_cpu is
8571 * nohz-idle), we now have balance_cpu in a position to move
8572 * load to given_cpu. In rare situations, this may cause
8573 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8574 * _independently_ and at _same_ time to move some load to
8575 * given_cpu) causing exceess load to be moved to given_cpu.
8576 * This however should not happen so much in practice and
8577 * moreover subsequent load balance cycles should correct the
8578 * excess load moved.
8579 */
8580 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8581
8582 /* Prevent to re-select dst_cpu via env's cpus */
8583 cpumask_clear_cpu(env.dst_cpu, env.cpus);
8584
8585 env.dst_rq = cpu_rq(env.new_dst_cpu);
8586 env.dst_cpu = env.new_dst_cpu;
8587 env.flags &= ~LBF_DST_PINNED;
8588 env.loop = 0;
8589 env.loop_break = sched_nr_migrate_break;
8590
8591 /*
8592 * Go back to "more_balance" rather than "redo" since we
8593 * need to continue with same src_cpu.
8594 */
8595 goto more_balance;
8596 }
8597
8598 /*
8599 * We failed to reach balance because of affinity.
8600 */
8601 if (sd_parent) {
8602 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8603
8604 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8605 *group_imbalance = 1;
8606 }
8607
8608 /* All tasks on this runqueue were pinned by CPU affinity */
8609 if (unlikely(env.flags & LBF_ALL_PINNED)) {
8610 cpumask_clear_cpu(cpu_of(busiest), cpus);
8611 /*
8612 * Attempting to continue load balancing at the current
8613 * sched_domain level only makes sense if there are
8614 * active CPUs remaining as possible busiest CPUs to
8615 * pull load from which are not contained within the
8616 * destination group that is receiving any migrated
8617 * load.
8618 */
8619 if (!cpumask_subset(cpus, env.dst_grpmask)) {
8620 env.loop = 0;
8621 env.loop_break = sched_nr_migrate_break;
8622 goto redo;
8623 }
8624 goto out_all_pinned;
8625 }
8626 }
8627
8628 if (!ld_moved) {
8629 schedstat_inc(sd->lb_failed[idle]);
8630 /*
8631 * Increment the failure counter only on periodic balance.
8632 * We do not want newidle balance, which can be very
8633 * frequent, pollute the failure counter causing
8634 * excessive cache_hot migrations and active balances.
8635 */
8636 if (idle != CPU_NEWLY_IDLE)
8637 sd->nr_balance_failed++;
8638
8639 if (need_active_balance(&env)) {
8640 unsigned long flags;
8641
8642 raw_spin_lock_irqsave(&busiest->lock, flags);
8643
8644 /* don't kick the active_load_balance_cpu_stop,
8645 * if the curr task on busiest cpu can't be
8646 * moved to this_cpu
8647 */
8648 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8649 raw_spin_unlock_irqrestore(&busiest->lock,
8650 flags);
8651 env.flags |= LBF_ALL_PINNED;
8652 goto out_one_pinned;
8653 }
8654
8655 /*
8656 * ->active_balance synchronizes accesses to
8657 * ->active_balance_work. Once set, it's cleared
8658 * only after active load balance is finished.
8659 */
8660 if (!busiest->active_balance) {
8661 busiest->active_balance = 1;
8662 busiest->push_cpu = this_cpu;
8663 active_balance = 1;
8664 }
8665 raw_spin_unlock_irqrestore(&busiest->lock, flags);
8666
8667 if (active_balance) {
8668 stop_one_cpu_nowait(cpu_of(busiest),
8669 active_load_balance_cpu_stop, busiest,
8670 &busiest->active_balance_work);
8671 }
8672
8673 /* We've kicked active balancing, force task migration. */
8674 sd->nr_balance_failed = sd->cache_nice_tries+1;
8675 }
8676 } else
8677 sd->nr_balance_failed = 0;
8678
8679 if (likely(!active_balance)) {
8680 /* We were unbalanced, so reset the balancing interval */
8681 sd->balance_interval = sd->min_interval;
8682 } else {
8683 /*
8684 * If we've begun active balancing, start to back off. This
8685 * case may not be covered by the all_pinned logic if there
8686 * is only 1 task on the busy runqueue (because we don't call
8687 * detach_tasks).
8688 */
8689 if (sd->balance_interval < sd->max_interval)
8690 sd->balance_interval *= 2;
8691 }
8692
8693 goto out;
8694
8695 out_balanced:
8696 /*
8697 * We reach balance although we may have faced some affinity
8698 * constraints. Clear the imbalance flag if it was set.
8699 */
8700 if (sd_parent) {
8701 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8702
8703 if (*group_imbalance)
8704 *group_imbalance = 0;
8705 }
8706
8707 out_all_pinned:
8708 /*
8709 * We reach balance because all tasks are pinned at this level so
8710 * we can't migrate them. Let the imbalance flag set so parent level
8711 * can try to migrate them.
8712 */
8713 schedstat_inc(sd->lb_balanced[idle]);
8714
8715 sd->nr_balance_failed = 0;
8716
8717 out_one_pinned:
8718 /* tune up the balancing interval */
8719 if (((env.flags & LBF_ALL_PINNED) &&
8720 sd->balance_interval < MAX_PINNED_INTERVAL) ||
8721 (sd->balance_interval < sd->max_interval))
8722 sd->balance_interval *= 2;
8723
8724 ld_moved = 0;
8725 out:
8726 return ld_moved;
8727 }
8728
8729 static inline unsigned long
8730 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8731 {
8732 unsigned long interval = sd->balance_interval;
8733
8734 if (cpu_busy)
8735 interval *= sd->busy_factor;
8736
8737 /* scale ms to jiffies */
8738 interval = msecs_to_jiffies(interval);
8739 interval = clamp(interval, 1UL, max_load_balance_interval);
8740
8741 return interval;
8742 }
8743
8744 static inline void
8745 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8746 {
8747 unsigned long interval, next;
8748
8749 /* used by idle balance, so cpu_busy = 0 */
8750 interval = get_sd_balance_interval(sd, 0);
8751 next = sd->last_balance + interval;
8752
8753 if (time_after(*next_balance, next))
8754 *next_balance = next;
8755 }
8756
8757 /*
8758 * idle_balance is called by schedule() if this_cpu is about to become
8759 * idle. Attempts to pull tasks from other CPUs.
8760 */
8761 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
8762 {
8763 unsigned long next_balance = jiffies + HZ;
8764 int this_cpu = this_rq->cpu;
8765 struct sched_domain *sd;
8766 int pulled_task = 0;
8767 u64 curr_cost = 0;
8768
8769 /*
8770 * We must set idle_stamp _before_ calling idle_balance(), such that we
8771 * measure the duration of idle_balance() as idle time.
8772 */
8773 this_rq->idle_stamp = rq_clock(this_rq);
8774
8775 /*
8776 * Do not pull tasks towards !active CPUs...
8777 */
8778 if (!cpu_active(this_cpu))
8779 return 0;
8780
8781 /*
8782 * This is OK, because current is on_cpu, which avoids it being picked
8783 * for load-balance and preemption/IRQs are still disabled avoiding
8784 * further scheduler activity on it and we're being very careful to
8785 * re-start the picking loop.
8786 */
8787 rq_unpin_lock(this_rq, rf);
8788
8789 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8790 !this_rq->rd->overload) {
8791 rcu_read_lock();
8792 sd = rcu_dereference_check_sched_domain(this_rq->sd);
8793 if (sd)
8794 update_next_balance(sd, &next_balance);
8795 rcu_read_unlock();
8796
8797 goto out;
8798 }
8799
8800 raw_spin_unlock(&this_rq->lock);
8801
8802 update_blocked_averages(this_cpu);
8803 rcu_read_lock();
8804 for_each_domain(this_cpu, sd) {
8805 int continue_balancing = 1;
8806 u64 t0, domain_cost;
8807
8808 if (!(sd->flags & SD_LOAD_BALANCE))
8809 continue;
8810
8811 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8812 update_next_balance(sd, &next_balance);
8813 break;
8814 }
8815
8816 if (sd->flags & SD_BALANCE_NEWIDLE) {
8817 t0 = sched_clock_cpu(this_cpu);
8818
8819 pulled_task = load_balance(this_cpu, this_rq,
8820 sd, CPU_NEWLY_IDLE,
8821 &continue_balancing);
8822
8823 domain_cost = sched_clock_cpu(this_cpu) - t0;
8824 if (domain_cost > sd->max_newidle_lb_cost)
8825 sd->max_newidle_lb_cost = domain_cost;
8826
8827 curr_cost += domain_cost;
8828 }
8829
8830 update_next_balance(sd, &next_balance);
8831
8832 /*
8833 * Stop searching for tasks to pull if there are
8834 * now runnable tasks on this rq.
8835 */
8836 if (pulled_task || this_rq->nr_running > 0)
8837 break;
8838 }
8839 rcu_read_unlock();
8840
8841 raw_spin_lock(&this_rq->lock);
8842
8843 if (curr_cost > this_rq->max_idle_balance_cost)
8844 this_rq->max_idle_balance_cost = curr_cost;
8845
8846 /*
8847 * While browsing the domains, we released the rq lock, a task could
8848 * have been enqueued in the meantime. Since we're not going idle,
8849 * pretend we pulled a task.
8850 */
8851 if (this_rq->cfs.h_nr_running && !pulled_task)
8852 pulled_task = 1;
8853
8854 out:
8855 /* Move the next balance forward */
8856 if (time_after(this_rq->next_balance, next_balance))
8857 this_rq->next_balance = next_balance;
8858
8859 /* Is there a task of a high priority class? */
8860 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8861 pulled_task = -1;
8862
8863 if (pulled_task)
8864 this_rq->idle_stamp = 0;
8865
8866 rq_repin_lock(this_rq, rf);
8867
8868 return pulled_task;
8869 }
8870
8871 /*
8872 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8873 * running tasks off the busiest CPU onto idle CPUs. It requires at
8874 * least 1 task to be running on each physical CPU where possible, and
8875 * avoids physical / logical imbalances.
8876 */
8877 static int active_load_balance_cpu_stop(void *data)
8878 {
8879 struct rq *busiest_rq = data;
8880 int busiest_cpu = cpu_of(busiest_rq);
8881 int target_cpu = busiest_rq->push_cpu;
8882 struct rq *target_rq = cpu_rq(target_cpu);
8883 struct sched_domain *sd;
8884 struct task_struct *p = NULL;
8885 struct rq_flags rf;
8886
8887 rq_lock_irq(busiest_rq, &rf);
8888 /*
8889 * Between queueing the stop-work and running it is a hole in which
8890 * CPUs can become inactive. We should not move tasks from or to
8891 * inactive CPUs.
8892 */
8893 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
8894 goto out_unlock;
8895
8896 /* make sure the requested cpu hasn't gone down in the meantime */
8897 if (unlikely(busiest_cpu != smp_processor_id() ||
8898 !busiest_rq->active_balance))
8899 goto out_unlock;
8900
8901 /* Is there any task to move? */
8902 if (busiest_rq->nr_running <= 1)
8903 goto out_unlock;
8904
8905 /*
8906 * This condition is "impossible", if it occurs
8907 * we need to fix it. Originally reported by
8908 * Bjorn Helgaas on a 128-cpu setup.
8909 */
8910 BUG_ON(busiest_rq == target_rq);
8911
8912 /* Search for an sd spanning us and the target CPU. */
8913 rcu_read_lock();
8914 for_each_domain(target_cpu, sd) {
8915 if ((sd->flags & SD_LOAD_BALANCE) &&
8916 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8917 break;
8918 }
8919
8920 if (likely(sd)) {
8921 struct lb_env env = {
8922 .sd = sd,
8923 .dst_cpu = target_cpu,
8924 .dst_rq = target_rq,
8925 .src_cpu = busiest_rq->cpu,
8926 .src_rq = busiest_rq,
8927 .idle = CPU_IDLE,
8928 /*
8929 * can_migrate_task() doesn't need to compute new_dst_cpu
8930 * for active balancing. Since we have CPU_IDLE, but no
8931 * @dst_grpmask we need to make that test go away with lying
8932 * about DST_PINNED.
8933 */
8934 .flags = LBF_DST_PINNED,
8935 };
8936
8937 schedstat_inc(sd->alb_count);
8938 update_rq_clock(busiest_rq);
8939
8940 p = detach_one_task(&env);
8941 if (p) {
8942 schedstat_inc(sd->alb_pushed);
8943 /* Active balancing done, reset the failure counter. */
8944 sd->nr_balance_failed = 0;
8945 } else {
8946 schedstat_inc(sd->alb_failed);
8947 }
8948 }
8949 rcu_read_unlock();
8950 out_unlock:
8951 busiest_rq->active_balance = 0;
8952 rq_unlock(busiest_rq, &rf);
8953
8954 if (p)
8955 attach_one_task(target_rq, p);
8956
8957 local_irq_enable();
8958
8959 return 0;
8960 }
8961
8962 static inline int on_null_domain(struct rq *rq)
8963 {
8964 return unlikely(!rcu_dereference_sched(rq->sd));
8965 }
8966
8967 #ifdef CONFIG_NO_HZ_COMMON
8968 /*
8969 * idle load balancing details
8970 * - When one of the busy CPUs notice that there may be an idle rebalancing
8971 * needed, they will kick the idle load balancer, which then does idle
8972 * load balancing for all the idle CPUs.
8973 */
8974 static struct {
8975 cpumask_var_t idle_cpus_mask;
8976 atomic_t nr_cpus;
8977 unsigned long next_balance; /* in jiffy units */
8978 } nohz ____cacheline_aligned;
8979
8980 static inline int find_new_ilb(void)
8981 {
8982 int ilb = cpumask_first(nohz.idle_cpus_mask);
8983
8984 if (ilb < nr_cpu_ids && idle_cpu(ilb))
8985 return ilb;
8986
8987 return nr_cpu_ids;
8988 }
8989
8990 /*
8991 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8992 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8993 * CPU (if there is one).
8994 */
8995 static void nohz_balancer_kick(void)
8996 {
8997 int ilb_cpu;
8998
8999 nohz.next_balance++;
9000
9001 ilb_cpu = find_new_ilb();
9002
9003 if (ilb_cpu >= nr_cpu_ids)
9004 return;
9005
9006 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
9007 return;
9008 /*
9009 * Use smp_send_reschedule() instead of resched_cpu().
9010 * This way we generate a sched IPI on the target cpu which
9011 * is idle. And the softirq performing nohz idle load balance
9012 * will be run before returning from the IPI.
9013 */
9014 smp_send_reschedule(ilb_cpu);
9015 return;
9016 }
9017
9018 void nohz_balance_exit_idle(unsigned int cpu)
9019 {
9020 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
9021 /*
9022 * Completely isolated CPUs don't ever set, so we must test.
9023 */
9024 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
9025 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
9026 atomic_dec(&nohz.nr_cpus);
9027 }
9028 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
9029 }
9030 }
9031
9032 static inline void set_cpu_sd_state_busy(void)
9033 {
9034 struct sched_domain *sd;
9035 int cpu = smp_processor_id();
9036
9037 rcu_read_lock();
9038 sd = rcu_dereference(per_cpu(sd_llc, cpu));
9039
9040 if (!sd || !sd->nohz_idle)
9041 goto unlock;
9042 sd->nohz_idle = 0;
9043
9044 atomic_inc(&sd->shared->nr_busy_cpus);
9045 unlock:
9046 rcu_read_unlock();
9047 }
9048
9049 void set_cpu_sd_state_idle(void)
9050 {
9051 struct sched_domain *sd;
9052 int cpu = smp_processor_id();
9053
9054 rcu_read_lock();
9055 sd = rcu_dereference(per_cpu(sd_llc, cpu));
9056
9057 if (!sd || sd->nohz_idle)
9058 goto unlock;
9059 sd->nohz_idle = 1;
9060
9061 atomic_dec(&sd->shared->nr_busy_cpus);
9062 unlock:
9063 rcu_read_unlock();
9064 }
9065
9066 /*
9067 * This routine will record that the cpu is going idle with tick stopped.
9068 * This info will be used in performing idle load balancing in the future.
9069 */
9070 void nohz_balance_enter_idle(int cpu)
9071 {
9072 /*
9073 * If this cpu is going down, then nothing needs to be done.
9074 */
9075 if (!cpu_active(cpu))
9076 return;
9077
9078 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
9079 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9080 return;
9081
9082 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
9083 return;
9084
9085 /*
9086 * If we're a completely isolated CPU, we don't play.
9087 */
9088 if (on_null_domain(cpu_rq(cpu)))
9089 return;
9090
9091 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9092 atomic_inc(&nohz.nr_cpus);
9093 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
9094 }
9095 #endif
9096
9097 static DEFINE_SPINLOCK(balancing);
9098
9099 /*
9100 * Scale the max load_balance interval with the number of CPUs in the system.
9101 * This trades load-balance latency on larger machines for less cross talk.
9102 */
9103 void update_max_interval(void)
9104 {
9105 max_load_balance_interval = HZ*num_online_cpus()/10;
9106 }
9107
9108 /*
9109 * It checks each scheduling domain to see if it is due to be balanced,
9110 * and initiates a balancing operation if so.
9111 *
9112 * Balancing parameters are set up in init_sched_domains.
9113 */
9114 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9115 {
9116 int continue_balancing = 1;
9117 int cpu = rq->cpu;
9118 unsigned long interval;
9119 struct sched_domain *sd;
9120 /* Earliest time when we have to do rebalance again */
9121 unsigned long next_balance = jiffies + 60*HZ;
9122 int update_next_balance = 0;
9123 int need_serialize, need_decay = 0;
9124 u64 max_cost = 0;
9125
9126 update_blocked_averages(cpu);
9127
9128 rcu_read_lock();
9129 for_each_domain(cpu, sd) {
9130 /*
9131 * Decay the newidle max times here because this is a regular
9132 * visit to all the domains. Decay ~1% per second.
9133 */
9134 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9135 sd->max_newidle_lb_cost =
9136 (sd->max_newidle_lb_cost * 253) / 256;
9137 sd->next_decay_max_lb_cost = jiffies + HZ;
9138 need_decay = 1;
9139 }
9140 max_cost += sd->max_newidle_lb_cost;
9141
9142 if (!(sd->flags & SD_LOAD_BALANCE))
9143 continue;
9144
9145 /*
9146 * Stop the load balance at this level. There is another
9147 * CPU in our sched group which is doing load balancing more
9148 * actively.
9149 */
9150 if (!continue_balancing) {
9151 if (need_decay)
9152 continue;
9153 break;
9154 }
9155
9156 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9157
9158 need_serialize = sd->flags & SD_SERIALIZE;
9159 if (need_serialize) {
9160 if (!spin_trylock(&balancing))
9161 goto out;
9162 }
9163
9164 if (time_after_eq(jiffies, sd->last_balance + interval)) {
9165 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9166 /*
9167 * The LBF_DST_PINNED logic could have changed
9168 * env->dst_cpu, so we can't know our idle
9169 * state even if we migrated tasks. Update it.
9170 */
9171 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9172 }
9173 sd->last_balance = jiffies;
9174 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9175 }
9176 if (need_serialize)
9177 spin_unlock(&balancing);
9178 out:
9179 if (time_after(next_balance, sd->last_balance + interval)) {
9180 next_balance = sd->last_balance + interval;
9181 update_next_balance = 1;
9182 }
9183 }
9184 if (need_decay) {
9185 /*
9186 * Ensure the rq-wide value also decays but keep it at a
9187 * reasonable floor to avoid funnies with rq->avg_idle.
9188 */
9189 rq->max_idle_balance_cost =
9190 max((u64)sysctl_sched_migration_cost, max_cost);
9191 }
9192 rcu_read_unlock();
9193
9194 /*
9195 * next_balance will be updated only when there is a need.
9196 * When the cpu is attached to null domain for ex, it will not be
9197 * updated.
9198 */
9199 if (likely(update_next_balance)) {
9200 rq->next_balance = next_balance;
9201
9202 #ifdef CONFIG_NO_HZ_COMMON
9203 /*
9204 * If this CPU has been elected to perform the nohz idle
9205 * balance. Other idle CPUs have already rebalanced with
9206 * nohz_idle_balance() and nohz.next_balance has been
9207 * updated accordingly. This CPU is now running the idle load
9208 * balance for itself and we need to update the
9209 * nohz.next_balance accordingly.
9210 */
9211 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9212 nohz.next_balance = rq->next_balance;
9213 #endif
9214 }
9215 }
9216
9217 #ifdef CONFIG_NO_HZ_COMMON
9218 /*
9219 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9220 * rebalancing for all the cpus for whom scheduler ticks are stopped.
9221 */
9222 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9223 {
9224 int this_cpu = this_rq->cpu;
9225 struct rq *rq;
9226 int balance_cpu;
9227 /* Earliest time when we have to do rebalance again */
9228 unsigned long next_balance = jiffies + 60*HZ;
9229 int update_next_balance = 0;
9230
9231 if (idle != CPU_IDLE ||
9232 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
9233 goto end;
9234
9235 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9236 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9237 continue;
9238
9239 /*
9240 * If this cpu gets work to do, stop the load balancing
9241 * work being done for other cpus. Next load
9242 * balancing owner will pick it up.
9243 */
9244 if (need_resched())
9245 break;
9246
9247 rq = cpu_rq(balance_cpu);
9248
9249 /*
9250 * If time for next balance is due,
9251 * do the balance.
9252 */
9253 if (time_after_eq(jiffies, rq->next_balance)) {
9254 struct rq_flags rf;
9255
9256 rq_lock_irq(rq, &rf);
9257 update_rq_clock(rq);
9258 cpu_load_update_idle(rq);
9259 rq_unlock_irq(rq, &rf);
9260
9261 rebalance_domains(rq, CPU_IDLE);
9262 }
9263
9264 if (time_after(next_balance, rq->next_balance)) {
9265 next_balance = rq->next_balance;
9266 update_next_balance = 1;
9267 }
9268 }
9269
9270 /*
9271 * next_balance will be updated only when there is a need.
9272 * When the CPU is attached to null domain for ex, it will not be
9273 * updated.
9274 */
9275 if (likely(update_next_balance))
9276 nohz.next_balance = next_balance;
9277 end:
9278 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
9279 }
9280
9281 /*
9282 * Current heuristic for kicking the idle load balancer in the presence
9283 * of an idle cpu in the system.
9284 * - This rq has more than one task.
9285 * - This rq has at least one CFS task and the capacity of the CPU is
9286 * significantly reduced because of RT tasks or IRQs.
9287 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
9288 * multiple busy cpu.
9289 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
9290 * domain span are idle.
9291 */
9292 static inline bool nohz_kick_needed(struct rq *rq)
9293 {
9294 unsigned long now = jiffies;
9295 struct sched_domain_shared *sds;
9296 struct sched_domain *sd;
9297 int nr_busy, i, cpu = rq->cpu;
9298 bool kick = false;
9299
9300 if (unlikely(rq->idle_balance))
9301 return false;
9302
9303 /*
9304 * We may be recently in ticked or tickless idle mode. At the first
9305 * busy tick after returning from idle, we will update the busy stats.
9306 */
9307 set_cpu_sd_state_busy();
9308 nohz_balance_exit_idle(cpu);
9309
9310 /*
9311 * None are in tickless mode and hence no need for NOHZ idle load
9312 * balancing.
9313 */
9314 if (likely(!atomic_read(&nohz.nr_cpus)))
9315 return false;
9316
9317 if (time_before(now, nohz.next_balance))
9318 return false;
9319
9320 if (rq->nr_running >= 2)
9321 return true;
9322
9323 rcu_read_lock();
9324 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9325 if (sds) {
9326 /*
9327 * XXX: write a coherent comment on why we do this.
9328 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
9329 */
9330 nr_busy = atomic_read(&sds->nr_busy_cpus);
9331 if (nr_busy > 1) {
9332 kick = true;
9333 goto unlock;
9334 }
9335
9336 }
9337
9338 sd = rcu_dereference(rq->sd);
9339 if (sd) {
9340 if ((rq->cfs.h_nr_running >= 1) &&
9341 check_cpu_capacity(rq, sd)) {
9342 kick = true;
9343 goto unlock;
9344 }
9345 }
9346
9347 sd = rcu_dereference(per_cpu(sd_asym, cpu));
9348 if (sd) {
9349 for_each_cpu(i, sched_domain_span(sd)) {
9350 if (i == cpu ||
9351 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9352 continue;
9353
9354 if (sched_asym_prefer(i, cpu)) {
9355 kick = true;
9356 goto unlock;
9357 }
9358 }
9359 }
9360 unlock:
9361 rcu_read_unlock();
9362 return kick;
9363 }
9364 #else
9365 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
9366 #endif
9367
9368 /*
9369 * run_rebalance_domains is triggered when needed from the scheduler tick.
9370 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9371 */
9372 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9373 {
9374 struct rq *this_rq = this_rq();
9375 enum cpu_idle_type idle = this_rq->idle_balance ?
9376 CPU_IDLE : CPU_NOT_IDLE;
9377
9378 /*
9379 * If this cpu has a pending nohz_balance_kick, then do the
9380 * balancing on behalf of the other idle cpus whose ticks are
9381 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9382 * give the idle cpus a chance to load balance. Else we may
9383 * load balance only within the local sched_domain hierarchy
9384 * and abort nohz_idle_balance altogether if we pull some load.
9385 */
9386 nohz_idle_balance(this_rq, idle);
9387 rebalance_domains(this_rq, idle);
9388 }
9389
9390 /*
9391 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
9392 */
9393 void trigger_load_balance(struct rq *rq)
9394 {
9395 /* Don't need to rebalance while attached to NULL domain */
9396 if (unlikely(on_null_domain(rq)))
9397 return;
9398
9399 if (time_after_eq(jiffies, rq->next_balance))
9400 raise_softirq(SCHED_SOFTIRQ);
9401 #ifdef CONFIG_NO_HZ_COMMON
9402 if (nohz_kick_needed(rq))
9403 nohz_balancer_kick();
9404 #endif
9405 }
9406
9407 static void rq_online_fair(struct rq *rq)
9408 {
9409 update_sysctl();
9410
9411 update_runtime_enabled(rq);
9412 }
9413
9414 static void rq_offline_fair(struct rq *rq)
9415 {
9416 update_sysctl();
9417
9418 /* Ensure any throttled groups are reachable by pick_next_task */
9419 unthrottle_offline_cfs_rqs(rq);
9420 }
9421
9422 #endif /* CONFIG_SMP */
9423
9424 /*
9425 * scheduler tick hitting a task of our scheduling class:
9426 */
9427 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9428 {
9429 struct cfs_rq *cfs_rq;
9430 struct sched_entity *se = &curr->se;
9431
9432 for_each_sched_entity(se) {
9433 cfs_rq = cfs_rq_of(se);
9434 entity_tick(cfs_rq, se, queued);
9435 }
9436
9437 if (static_branch_unlikely(&sched_numa_balancing))
9438 task_tick_numa(rq, curr);
9439 }
9440
9441 /*
9442 * called on fork with the child task as argument from the parent's context
9443 * - child not yet on the tasklist
9444 * - preemption disabled
9445 */
9446 static void task_fork_fair(struct task_struct *p)
9447 {
9448 struct cfs_rq *cfs_rq;
9449 struct sched_entity *se = &p->se, *curr;
9450 struct rq *rq = this_rq();
9451 struct rq_flags rf;
9452
9453 rq_lock(rq, &rf);
9454 update_rq_clock(rq);
9455
9456 cfs_rq = task_cfs_rq(current);
9457 curr = cfs_rq->curr;
9458 if (curr) {
9459 update_curr(cfs_rq);
9460 se->vruntime = curr->vruntime;
9461 }
9462 place_entity(cfs_rq, se, 1);
9463
9464 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
9465 /*
9466 * Upon rescheduling, sched_class::put_prev_task() will place
9467 * 'current' within the tree based on its new key value.
9468 */
9469 swap(curr->vruntime, se->vruntime);
9470 resched_curr(rq);
9471 }
9472
9473 se->vruntime -= cfs_rq->min_vruntime;
9474 rq_unlock(rq, &rf);
9475 }
9476
9477 /*
9478 * Priority of the task has changed. Check to see if we preempt
9479 * the current task.
9480 */
9481 static void
9482 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9483 {
9484 if (!task_on_rq_queued(p))
9485 return;
9486
9487 /*
9488 * Reschedule if we are currently running on this runqueue and
9489 * our priority decreased, or if we are not currently running on
9490 * this runqueue and our priority is higher than the current's
9491 */
9492 if (rq->curr == p) {
9493 if (p->prio > oldprio)
9494 resched_curr(rq);
9495 } else
9496 check_preempt_curr(rq, p, 0);
9497 }
9498
9499 static inline bool vruntime_normalized(struct task_struct *p)
9500 {
9501 struct sched_entity *se = &p->se;
9502
9503 /*
9504 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9505 * the dequeue_entity(.flags=0) will already have normalized the
9506 * vruntime.
9507 */
9508 if (p->on_rq)
9509 return true;
9510
9511 /*
9512 * When !on_rq, vruntime of the task has usually NOT been normalized.
9513 * But there are some cases where it has already been normalized:
9514 *
9515 * - A forked child which is waiting for being woken up by
9516 * wake_up_new_task().
9517 * - A task which has been woken up by try_to_wake_up() and
9518 * waiting for actually being woken up by sched_ttwu_pending().
9519 */
9520 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9521 return true;
9522
9523 return false;
9524 }
9525
9526 #ifdef CONFIG_FAIR_GROUP_SCHED
9527 /*
9528 * Propagate the changes of the sched_entity across the tg tree to make it
9529 * visible to the root
9530 */
9531 static void propagate_entity_cfs_rq(struct sched_entity *se)
9532 {
9533 struct cfs_rq *cfs_rq;
9534
9535 /* Start to propagate at parent */
9536 se = se->parent;
9537
9538 for_each_sched_entity(se) {
9539 cfs_rq = cfs_rq_of(se);
9540
9541 if (cfs_rq_throttled(cfs_rq))
9542 break;
9543
9544 update_load_avg(cfs_rq, se, UPDATE_TG);
9545 }
9546 }
9547 #else
9548 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9549 #endif
9550
9551 static void detach_entity_cfs_rq(struct sched_entity *se)
9552 {
9553 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9554
9555 /* Catch up with the cfs_rq and remove our load when we leave */
9556 update_load_avg(cfs_rq, se, 0);
9557 detach_entity_load_avg(cfs_rq, se);
9558 update_tg_load_avg(cfs_rq, false);
9559 propagate_entity_cfs_rq(se);
9560 }
9561
9562 static void attach_entity_cfs_rq(struct sched_entity *se)
9563 {
9564 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9565
9566 #ifdef CONFIG_FAIR_GROUP_SCHED
9567 /*
9568 * Since the real-depth could have been changed (only FAIR
9569 * class maintain depth value), reset depth properly.
9570 */
9571 se->depth = se->parent ? se->parent->depth + 1 : 0;
9572 #endif
9573
9574 /* Synchronize entity with its cfs_rq */
9575 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9576 attach_entity_load_avg(cfs_rq, se);
9577 update_tg_load_avg(cfs_rq, false);
9578 propagate_entity_cfs_rq(se);
9579 }
9580
9581 static void detach_task_cfs_rq(struct task_struct *p)
9582 {
9583 struct sched_entity *se = &p->se;
9584 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9585
9586 if (!vruntime_normalized(p)) {
9587 /*
9588 * Fix up our vruntime so that the current sleep doesn't
9589 * cause 'unlimited' sleep bonus.
9590 */
9591 place_entity(cfs_rq, se, 0);
9592 se->vruntime -= cfs_rq->min_vruntime;
9593 }
9594
9595 detach_entity_cfs_rq(se);
9596 }
9597
9598 static void attach_task_cfs_rq(struct task_struct *p)
9599 {
9600 struct sched_entity *se = &p->se;
9601 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9602
9603 attach_entity_cfs_rq(se);
9604
9605 if (!vruntime_normalized(p))
9606 se->vruntime += cfs_rq->min_vruntime;
9607 }
9608
9609 static void switched_from_fair(struct rq *rq, struct task_struct *p)
9610 {
9611 detach_task_cfs_rq(p);
9612 }
9613
9614 static void switched_to_fair(struct rq *rq, struct task_struct *p)
9615 {
9616 attach_task_cfs_rq(p);
9617
9618 if (task_on_rq_queued(p)) {
9619 /*
9620 * We were most likely switched from sched_rt, so
9621 * kick off the schedule if running, otherwise just see
9622 * if we can still preempt the current task.
9623 */
9624 if (rq->curr == p)
9625 resched_curr(rq);
9626 else
9627 check_preempt_curr(rq, p, 0);
9628 }
9629 }
9630
9631 /* Account for a task changing its policy or group.
9632 *
9633 * This routine is mostly called to set cfs_rq->curr field when a task
9634 * migrates between groups/classes.
9635 */
9636 static void set_curr_task_fair(struct rq *rq)
9637 {
9638 struct sched_entity *se = &rq->curr->se;
9639
9640 for_each_sched_entity(se) {
9641 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9642
9643 set_next_entity(cfs_rq, se);
9644 /* ensure bandwidth has been allocated on our new cfs_rq */
9645 account_cfs_rq_runtime(cfs_rq, 0);
9646 }
9647 }
9648
9649 void init_cfs_rq(struct cfs_rq *cfs_rq)
9650 {
9651 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
9652 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9653 #ifndef CONFIG_64BIT
9654 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9655 #endif
9656 #ifdef CONFIG_SMP
9657 raw_spin_lock_init(&cfs_rq->removed.lock);
9658 #endif
9659 }
9660
9661 #ifdef CONFIG_FAIR_GROUP_SCHED
9662 static void task_set_group_fair(struct task_struct *p)
9663 {
9664 struct sched_entity *se = &p->se;
9665
9666 set_task_rq(p, task_cpu(p));
9667 se->depth = se->parent ? se->parent->depth + 1 : 0;
9668 }
9669
9670 static void task_move_group_fair(struct task_struct *p)
9671 {
9672 detach_task_cfs_rq(p);
9673 set_task_rq(p, task_cpu(p));
9674
9675 #ifdef CONFIG_SMP
9676 /* Tell se's cfs_rq has been changed -- migrated */
9677 p->se.avg.last_update_time = 0;
9678 #endif
9679 attach_task_cfs_rq(p);
9680 }
9681
9682 static void task_change_group_fair(struct task_struct *p, int type)
9683 {
9684 switch (type) {
9685 case TASK_SET_GROUP:
9686 task_set_group_fair(p);
9687 break;
9688
9689 case TASK_MOVE_GROUP:
9690 task_move_group_fair(p);
9691 break;
9692 }
9693 }
9694
9695 void free_fair_sched_group(struct task_group *tg)
9696 {
9697 int i;
9698
9699 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9700
9701 for_each_possible_cpu(i) {
9702 if (tg->cfs_rq)
9703 kfree(tg->cfs_rq[i]);
9704 if (tg->se)
9705 kfree(tg->se[i]);
9706 }
9707
9708 kfree(tg->cfs_rq);
9709 kfree(tg->se);
9710 }
9711
9712 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9713 {
9714 struct sched_entity *se;
9715 struct cfs_rq *cfs_rq;
9716 int i;
9717
9718 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9719 if (!tg->cfs_rq)
9720 goto err;
9721 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9722 if (!tg->se)
9723 goto err;
9724
9725 tg->shares = NICE_0_LOAD;
9726
9727 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9728
9729 for_each_possible_cpu(i) {
9730 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9731 GFP_KERNEL, cpu_to_node(i));
9732 if (!cfs_rq)
9733 goto err;
9734
9735 se = kzalloc_node(sizeof(struct sched_entity),
9736 GFP_KERNEL, cpu_to_node(i));
9737 if (!se)
9738 goto err_free_rq;
9739
9740 init_cfs_rq(cfs_rq);
9741 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9742 init_entity_runnable_average(se);
9743 }
9744
9745 return 1;
9746
9747 err_free_rq:
9748 kfree(cfs_rq);
9749 err:
9750 return 0;
9751 }
9752
9753 void online_fair_sched_group(struct task_group *tg)
9754 {
9755 struct sched_entity *se;
9756 struct rq *rq;
9757 int i;
9758
9759 for_each_possible_cpu(i) {
9760 rq = cpu_rq(i);
9761 se = tg->se[i];
9762
9763 raw_spin_lock_irq(&rq->lock);
9764 update_rq_clock(rq);
9765 attach_entity_cfs_rq(se);
9766 sync_throttle(tg, i);
9767 raw_spin_unlock_irq(&rq->lock);
9768 }
9769 }
9770
9771 void unregister_fair_sched_group(struct task_group *tg)
9772 {
9773 unsigned long flags;
9774 struct rq *rq;
9775 int cpu;
9776
9777 for_each_possible_cpu(cpu) {
9778 if (tg->se[cpu])
9779 remove_entity_load_avg(tg->se[cpu]);
9780
9781 /*
9782 * Only empty task groups can be destroyed; so we can speculatively
9783 * check on_list without danger of it being re-added.
9784 */
9785 if (!tg->cfs_rq[cpu]->on_list)
9786 continue;
9787
9788 rq = cpu_rq(cpu);
9789
9790 raw_spin_lock_irqsave(&rq->lock, flags);
9791 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9792 raw_spin_unlock_irqrestore(&rq->lock, flags);
9793 }
9794 }
9795
9796 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9797 struct sched_entity *se, int cpu,
9798 struct sched_entity *parent)
9799 {
9800 struct rq *rq = cpu_rq(cpu);
9801
9802 cfs_rq->tg = tg;
9803 cfs_rq->rq = rq;
9804 init_cfs_rq_runtime(cfs_rq);
9805
9806 tg->cfs_rq[cpu] = cfs_rq;
9807 tg->se[cpu] = se;
9808
9809 /* se could be NULL for root_task_group */
9810 if (!se)
9811 return;
9812
9813 if (!parent) {
9814 se->cfs_rq = &rq->cfs;
9815 se->depth = 0;
9816 } else {
9817 se->cfs_rq = parent->my_q;
9818 se->depth = parent->depth + 1;
9819 }
9820
9821 se->my_q = cfs_rq;
9822 /* guarantee group entities always have weight */
9823 update_load_set(&se->load, NICE_0_LOAD);
9824 se->parent = parent;
9825 }
9826
9827 static DEFINE_MUTEX(shares_mutex);
9828
9829 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9830 {
9831 int i;
9832
9833 /*
9834 * We can't change the weight of the root cgroup.
9835 */
9836 if (!tg->se[0])
9837 return -EINVAL;
9838
9839 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9840
9841 mutex_lock(&shares_mutex);
9842 if (tg->shares == shares)
9843 goto done;
9844
9845 tg->shares = shares;
9846 for_each_possible_cpu(i) {
9847 struct rq *rq = cpu_rq(i);
9848 struct sched_entity *se = tg->se[i];
9849 struct rq_flags rf;
9850
9851 /* Propagate contribution to hierarchy */
9852 rq_lock_irqsave(rq, &rf);
9853 update_rq_clock(rq);
9854 for_each_sched_entity(se) {
9855 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9856 update_cfs_group(se);
9857 }
9858 rq_unlock_irqrestore(rq, &rf);
9859 }
9860
9861 done:
9862 mutex_unlock(&shares_mutex);
9863 return 0;
9864 }
9865 #else /* CONFIG_FAIR_GROUP_SCHED */
9866
9867 void free_fair_sched_group(struct task_group *tg) { }
9868
9869 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9870 {
9871 return 1;
9872 }
9873
9874 void online_fair_sched_group(struct task_group *tg) { }
9875
9876 void unregister_fair_sched_group(struct task_group *tg) { }
9877
9878 #endif /* CONFIG_FAIR_GROUP_SCHED */
9879
9880
9881 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9882 {
9883 struct sched_entity *se = &task->se;
9884 unsigned int rr_interval = 0;
9885
9886 /*
9887 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9888 * idle runqueue:
9889 */
9890 if (rq->cfs.load.weight)
9891 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9892
9893 return rr_interval;
9894 }
9895
9896 /*
9897 * All the scheduling class methods:
9898 */
9899 const struct sched_class fair_sched_class = {
9900 .next = &idle_sched_class,
9901 .enqueue_task = enqueue_task_fair,
9902 .dequeue_task = dequeue_task_fair,
9903 .yield_task = yield_task_fair,
9904 .yield_to_task = yield_to_task_fair,
9905
9906 .check_preempt_curr = check_preempt_wakeup,
9907
9908 .pick_next_task = pick_next_task_fair,
9909 .put_prev_task = put_prev_task_fair,
9910
9911 #ifdef CONFIG_SMP
9912 .select_task_rq = select_task_rq_fair,
9913 .migrate_task_rq = migrate_task_rq_fair,
9914
9915 .rq_online = rq_online_fair,
9916 .rq_offline = rq_offline_fair,
9917
9918 .task_dead = task_dead_fair,
9919 .set_cpus_allowed = set_cpus_allowed_common,
9920 #endif
9921
9922 .set_curr_task = set_curr_task_fair,
9923 .task_tick = task_tick_fair,
9924 .task_fork = task_fork_fair,
9925
9926 .prio_changed = prio_changed_fair,
9927 .switched_from = switched_from_fair,
9928 .switched_to = switched_to_fair,
9929
9930 .get_rr_interval = get_rr_interval_fair,
9931
9932 .update_curr = update_curr_fair,
9933
9934 #ifdef CONFIG_FAIR_GROUP_SCHED
9935 .task_change_group = task_change_group_fair,
9936 #endif
9937 };
9938
9939 #ifdef CONFIG_SCHED_DEBUG
9940 void print_cfs_stats(struct seq_file *m, int cpu)
9941 {
9942 struct cfs_rq *cfs_rq, *pos;
9943
9944 rcu_read_lock();
9945 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
9946 print_cfs_rq(m, cpu, cfs_rq);
9947 rcu_read_unlock();
9948 }
9949
9950 #ifdef CONFIG_NUMA_BALANCING
9951 void show_numa_stats(struct task_struct *p, struct seq_file *m)
9952 {
9953 int node;
9954 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9955
9956 for_each_online_node(node) {
9957 if (p->numa_faults) {
9958 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9959 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9960 }
9961 if (p->numa_group) {
9962 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9963 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9964 }
9965 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9966 }
9967 }
9968 #endif /* CONFIG_NUMA_BALANCING */
9969 #endif /* CONFIG_SCHED_DEBUG */
9970
9971 __init void init_sched_fair_class(void)
9972 {
9973 #ifdef CONFIG_SMP
9974 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9975
9976 #ifdef CONFIG_NO_HZ_COMMON
9977 nohz.next_balance = jiffies;
9978 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
9979 #endif
9980 #endif /* SMP */
9981
9982 }