]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - kernel/sched/fair.c
Merge tag 'kvm-x86-mmu-6.7' of https://github.com/kvm-x86/linux into HEAD
[thirdparty/kernel/stable.git] / kernel / sched / fair.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
51
52 #include <asm/switch_to.h>
53
54 #include <linux/sched/cond_resched.h>
55
56 #include "sched.h"
57 #include "stats.h"
58 #include "autogroup.h"
59
60 /*
61 * The initial- and re-scaling of tunables is configurable
62 *
63 * Options are:
64 *
65 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
66 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
67 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
68 *
69 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
70 */
71 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
72
73 /*
74 * Minimal preemption granularity for CPU-bound tasks:
75 *
76 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
77 */
78 unsigned int sysctl_sched_base_slice = 750000ULL;
79 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL;
80
81 /*
82 * After fork, child runs first. If set to 0 (default) then
83 * parent will (try to) run first.
84 */
85 unsigned int sysctl_sched_child_runs_first __read_mostly;
86
87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
88
89 int sched_thermal_decay_shift;
90 static int __init setup_sched_thermal_decay_shift(char *str)
91 {
92 int _shift = 0;
93
94 if (kstrtoint(str, 0, &_shift))
95 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
96
97 sched_thermal_decay_shift = clamp(_shift, 0, 10);
98 return 1;
99 }
100 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
101
102 #ifdef CONFIG_SMP
103 /*
104 * For asym packing, by default the lower numbered CPU has higher priority.
105 */
106 int __weak arch_asym_cpu_priority(int cpu)
107 {
108 return -cpu;
109 }
110
111 /*
112 * The margin used when comparing utilization with CPU capacity.
113 *
114 * (default: ~20%)
115 */
116 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
117
118 /*
119 * The margin used when comparing CPU capacities.
120 * is 'cap1' noticeably greater than 'cap2'
121 *
122 * (default: ~5%)
123 */
124 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
125 #endif
126
127 #ifdef CONFIG_CFS_BANDWIDTH
128 /*
129 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
130 * each time a cfs_rq requests quota.
131 *
132 * Note: in the case that the slice exceeds the runtime remaining (either due
133 * to consumption or the quota being specified to be smaller than the slice)
134 * we will always only issue the remaining available time.
135 *
136 * (default: 5 msec, units: microseconds)
137 */
138 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
139 #endif
140
141 #ifdef CONFIG_NUMA_BALANCING
142 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
143 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
144 #endif
145
146 #ifdef CONFIG_SYSCTL
147 static struct ctl_table sched_fair_sysctls[] = {
148 {
149 .procname = "sched_child_runs_first",
150 .data = &sysctl_sched_child_runs_first,
151 .maxlen = sizeof(unsigned int),
152 .mode = 0644,
153 .proc_handler = proc_dointvec,
154 },
155 #ifdef CONFIG_CFS_BANDWIDTH
156 {
157 .procname = "sched_cfs_bandwidth_slice_us",
158 .data = &sysctl_sched_cfs_bandwidth_slice,
159 .maxlen = sizeof(unsigned int),
160 .mode = 0644,
161 .proc_handler = proc_dointvec_minmax,
162 .extra1 = SYSCTL_ONE,
163 },
164 #endif
165 #ifdef CONFIG_NUMA_BALANCING
166 {
167 .procname = "numa_balancing_promote_rate_limit_MBps",
168 .data = &sysctl_numa_balancing_promote_rate_limit,
169 .maxlen = sizeof(unsigned int),
170 .mode = 0644,
171 .proc_handler = proc_dointvec_minmax,
172 .extra1 = SYSCTL_ZERO,
173 },
174 #endif /* CONFIG_NUMA_BALANCING */
175 {}
176 };
177
178 static int __init sched_fair_sysctl_init(void)
179 {
180 register_sysctl_init("kernel", sched_fair_sysctls);
181 return 0;
182 }
183 late_initcall(sched_fair_sysctl_init);
184 #endif
185
186 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
187 {
188 lw->weight += inc;
189 lw->inv_weight = 0;
190 }
191
192 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
193 {
194 lw->weight -= dec;
195 lw->inv_weight = 0;
196 }
197
198 static inline void update_load_set(struct load_weight *lw, unsigned long w)
199 {
200 lw->weight = w;
201 lw->inv_weight = 0;
202 }
203
204 /*
205 * Increase the granularity value when there are more CPUs,
206 * because with more CPUs the 'effective latency' as visible
207 * to users decreases. But the relationship is not linear,
208 * so pick a second-best guess by going with the log2 of the
209 * number of CPUs.
210 *
211 * This idea comes from the SD scheduler of Con Kolivas:
212 */
213 static unsigned int get_update_sysctl_factor(void)
214 {
215 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
216 unsigned int factor;
217
218 switch (sysctl_sched_tunable_scaling) {
219 case SCHED_TUNABLESCALING_NONE:
220 factor = 1;
221 break;
222 case SCHED_TUNABLESCALING_LINEAR:
223 factor = cpus;
224 break;
225 case SCHED_TUNABLESCALING_LOG:
226 default:
227 factor = 1 + ilog2(cpus);
228 break;
229 }
230
231 return factor;
232 }
233
234 static void update_sysctl(void)
235 {
236 unsigned int factor = get_update_sysctl_factor();
237
238 #define SET_SYSCTL(name) \
239 (sysctl_##name = (factor) * normalized_sysctl_##name)
240 SET_SYSCTL(sched_base_slice);
241 #undef SET_SYSCTL
242 }
243
244 void __init sched_init_granularity(void)
245 {
246 update_sysctl();
247 }
248
249 #define WMULT_CONST (~0U)
250 #define WMULT_SHIFT 32
251
252 static void __update_inv_weight(struct load_weight *lw)
253 {
254 unsigned long w;
255
256 if (likely(lw->inv_weight))
257 return;
258
259 w = scale_load_down(lw->weight);
260
261 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
262 lw->inv_weight = 1;
263 else if (unlikely(!w))
264 lw->inv_weight = WMULT_CONST;
265 else
266 lw->inv_weight = WMULT_CONST / w;
267 }
268
269 /*
270 * delta_exec * weight / lw.weight
271 * OR
272 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
273 *
274 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
275 * we're guaranteed shift stays positive because inv_weight is guaranteed to
276 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
277 *
278 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
279 * weight/lw.weight <= 1, and therefore our shift will also be positive.
280 */
281 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
282 {
283 u64 fact = scale_load_down(weight);
284 u32 fact_hi = (u32)(fact >> 32);
285 int shift = WMULT_SHIFT;
286 int fs;
287
288 __update_inv_weight(lw);
289
290 if (unlikely(fact_hi)) {
291 fs = fls(fact_hi);
292 shift -= fs;
293 fact >>= fs;
294 }
295
296 fact = mul_u32_u32(fact, lw->inv_weight);
297
298 fact_hi = (u32)(fact >> 32);
299 if (fact_hi) {
300 fs = fls(fact_hi);
301 shift -= fs;
302 fact >>= fs;
303 }
304
305 return mul_u64_u32_shr(delta_exec, fact, shift);
306 }
307
308 /*
309 * delta /= w
310 */
311 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
312 {
313 if (unlikely(se->load.weight != NICE_0_LOAD))
314 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
315
316 return delta;
317 }
318
319 const struct sched_class fair_sched_class;
320
321 /**************************************************************
322 * CFS operations on generic schedulable entities:
323 */
324
325 #ifdef CONFIG_FAIR_GROUP_SCHED
326
327 /* Walk up scheduling entities hierarchy */
328 #define for_each_sched_entity(se) \
329 for (; se; se = se->parent)
330
331 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
332 {
333 struct rq *rq = rq_of(cfs_rq);
334 int cpu = cpu_of(rq);
335
336 if (cfs_rq->on_list)
337 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
338
339 cfs_rq->on_list = 1;
340
341 /*
342 * Ensure we either appear before our parent (if already
343 * enqueued) or force our parent to appear after us when it is
344 * enqueued. The fact that we always enqueue bottom-up
345 * reduces this to two cases and a special case for the root
346 * cfs_rq. Furthermore, it also means that we will always reset
347 * tmp_alone_branch either when the branch is connected
348 * to a tree or when we reach the top of the tree
349 */
350 if (cfs_rq->tg->parent &&
351 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
352 /*
353 * If parent is already on the list, we add the child
354 * just before. Thanks to circular linked property of
355 * the list, this means to put the child at the tail
356 * of the list that starts by parent.
357 */
358 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
359 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
360 /*
361 * The branch is now connected to its tree so we can
362 * reset tmp_alone_branch to the beginning of the
363 * list.
364 */
365 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
366 return true;
367 }
368
369 if (!cfs_rq->tg->parent) {
370 /*
371 * cfs rq without parent should be put
372 * at the tail of the list.
373 */
374 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
375 &rq->leaf_cfs_rq_list);
376 /*
377 * We have reach the top of a tree so we can reset
378 * tmp_alone_branch to the beginning of the list.
379 */
380 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
381 return true;
382 }
383
384 /*
385 * The parent has not already been added so we want to
386 * make sure that it will be put after us.
387 * tmp_alone_branch points to the begin of the branch
388 * where we will add parent.
389 */
390 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
391 /*
392 * update tmp_alone_branch to points to the new begin
393 * of the branch
394 */
395 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
396 return false;
397 }
398
399 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
400 {
401 if (cfs_rq->on_list) {
402 struct rq *rq = rq_of(cfs_rq);
403
404 /*
405 * With cfs_rq being unthrottled/throttled during an enqueue,
406 * it can happen the tmp_alone_branch points the a leaf that
407 * we finally want to del. In this case, tmp_alone_branch moves
408 * to the prev element but it will point to rq->leaf_cfs_rq_list
409 * at the end of the enqueue.
410 */
411 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
412 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
413
414 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
415 cfs_rq->on_list = 0;
416 }
417 }
418
419 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
420 {
421 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
422 }
423
424 /* Iterate thr' all leaf cfs_rq's on a runqueue */
425 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
426 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
427 leaf_cfs_rq_list)
428
429 /* Do the two (enqueued) entities belong to the same group ? */
430 static inline struct cfs_rq *
431 is_same_group(struct sched_entity *se, struct sched_entity *pse)
432 {
433 if (se->cfs_rq == pse->cfs_rq)
434 return se->cfs_rq;
435
436 return NULL;
437 }
438
439 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
440 {
441 return se->parent;
442 }
443
444 static void
445 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
446 {
447 int se_depth, pse_depth;
448
449 /*
450 * preemption test can be made between sibling entities who are in the
451 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
452 * both tasks until we find their ancestors who are siblings of common
453 * parent.
454 */
455
456 /* First walk up until both entities are at same depth */
457 se_depth = (*se)->depth;
458 pse_depth = (*pse)->depth;
459
460 while (se_depth > pse_depth) {
461 se_depth--;
462 *se = parent_entity(*se);
463 }
464
465 while (pse_depth > se_depth) {
466 pse_depth--;
467 *pse = parent_entity(*pse);
468 }
469
470 while (!is_same_group(*se, *pse)) {
471 *se = parent_entity(*se);
472 *pse = parent_entity(*pse);
473 }
474 }
475
476 static int tg_is_idle(struct task_group *tg)
477 {
478 return tg->idle > 0;
479 }
480
481 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
482 {
483 return cfs_rq->idle > 0;
484 }
485
486 static int se_is_idle(struct sched_entity *se)
487 {
488 if (entity_is_task(se))
489 return task_has_idle_policy(task_of(se));
490 return cfs_rq_is_idle(group_cfs_rq(se));
491 }
492
493 #else /* !CONFIG_FAIR_GROUP_SCHED */
494
495 #define for_each_sched_entity(se) \
496 for (; se; se = NULL)
497
498 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
499 {
500 return true;
501 }
502
503 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
504 {
505 }
506
507 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
508 {
509 }
510
511 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
512 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
513
514 static inline struct sched_entity *parent_entity(struct sched_entity *se)
515 {
516 return NULL;
517 }
518
519 static inline void
520 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
521 {
522 }
523
524 static inline int tg_is_idle(struct task_group *tg)
525 {
526 return 0;
527 }
528
529 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
530 {
531 return 0;
532 }
533
534 static int se_is_idle(struct sched_entity *se)
535 {
536 return 0;
537 }
538
539 #endif /* CONFIG_FAIR_GROUP_SCHED */
540
541 static __always_inline
542 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
543
544 /**************************************************************
545 * Scheduling class tree data structure manipulation methods:
546 */
547
548 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
549 {
550 s64 delta = (s64)(vruntime - max_vruntime);
551 if (delta > 0)
552 max_vruntime = vruntime;
553
554 return max_vruntime;
555 }
556
557 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
558 {
559 s64 delta = (s64)(vruntime - min_vruntime);
560 if (delta < 0)
561 min_vruntime = vruntime;
562
563 return min_vruntime;
564 }
565
566 static inline bool entity_before(const struct sched_entity *a,
567 const struct sched_entity *b)
568 {
569 return (s64)(a->vruntime - b->vruntime) < 0;
570 }
571
572 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
573 {
574 return (s64)(se->vruntime - cfs_rq->min_vruntime);
575 }
576
577 #define __node_2_se(node) \
578 rb_entry((node), struct sched_entity, run_node)
579
580 /*
581 * Compute virtual time from the per-task service numbers:
582 *
583 * Fair schedulers conserve lag:
584 *
585 * \Sum lag_i = 0
586 *
587 * Where lag_i is given by:
588 *
589 * lag_i = S - s_i = w_i * (V - v_i)
590 *
591 * Where S is the ideal service time and V is it's virtual time counterpart.
592 * Therefore:
593 *
594 * \Sum lag_i = 0
595 * \Sum w_i * (V - v_i) = 0
596 * \Sum w_i * V - w_i * v_i = 0
597 *
598 * From which we can solve an expression for V in v_i (which we have in
599 * se->vruntime):
600 *
601 * \Sum v_i * w_i \Sum v_i * w_i
602 * V = -------------- = --------------
603 * \Sum w_i W
604 *
605 * Specifically, this is the weighted average of all entity virtual runtimes.
606 *
607 * [[ NOTE: this is only equal to the ideal scheduler under the condition
608 * that join/leave operations happen at lag_i = 0, otherwise the
609 * virtual time has non-continguous motion equivalent to:
610 *
611 * V +-= lag_i / W
612 *
613 * Also see the comment in place_entity() that deals with this. ]]
614 *
615 * However, since v_i is u64, and the multiplcation could easily overflow
616 * transform it into a relative form that uses smaller quantities:
617 *
618 * Substitute: v_i == (v_i - v0) + v0
619 *
620 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i
621 * V = ---------------------------- = --------------------- + v0
622 * W W
623 *
624 * Which we track using:
625 *
626 * v0 := cfs_rq->min_vruntime
627 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
628 * \Sum w_i := cfs_rq->avg_load
629 *
630 * Since min_vruntime is a monotonic increasing variable that closely tracks
631 * the per-task service, these deltas: (v_i - v), will be in the order of the
632 * maximal (virtual) lag induced in the system due to quantisation.
633 *
634 * Also, we use scale_load_down() to reduce the size.
635 *
636 * As measured, the max (key * weight) value was ~44 bits for a kernel build.
637 */
638 static void
639 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
640 {
641 unsigned long weight = scale_load_down(se->load.weight);
642 s64 key = entity_key(cfs_rq, se);
643
644 cfs_rq->avg_vruntime += key * weight;
645 cfs_rq->avg_load += weight;
646 }
647
648 static void
649 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
650 {
651 unsigned long weight = scale_load_down(se->load.weight);
652 s64 key = entity_key(cfs_rq, se);
653
654 cfs_rq->avg_vruntime -= key * weight;
655 cfs_rq->avg_load -= weight;
656 }
657
658 static inline
659 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
660 {
661 /*
662 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
663 */
664 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
665 }
666
667 /*
668 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
669 * For this to be so, the result of this function must have a left bias.
670 */
671 u64 avg_vruntime(struct cfs_rq *cfs_rq)
672 {
673 struct sched_entity *curr = cfs_rq->curr;
674 s64 avg = cfs_rq->avg_vruntime;
675 long load = cfs_rq->avg_load;
676
677 if (curr && curr->on_rq) {
678 unsigned long weight = scale_load_down(curr->load.weight);
679
680 avg += entity_key(cfs_rq, curr) * weight;
681 load += weight;
682 }
683
684 if (load) {
685 /* sign flips effective floor / ceil */
686 if (avg < 0)
687 avg -= (load - 1);
688 avg = div_s64(avg, load);
689 }
690
691 return cfs_rq->min_vruntime + avg;
692 }
693
694 /*
695 * lag_i = S - s_i = w_i * (V - v_i)
696 *
697 * However, since V is approximated by the weighted average of all entities it
698 * is possible -- by addition/removal/reweight to the tree -- to move V around
699 * and end up with a larger lag than we started with.
700 *
701 * Limit this to either double the slice length with a minimum of TICK_NSEC
702 * since that is the timing granularity.
703 *
704 * EEVDF gives the following limit for a steady state system:
705 *
706 * -r_max < lag < max(r_max, q)
707 *
708 * XXX could add max_slice to the augmented data to track this.
709 */
710 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
711 {
712 s64 lag, limit;
713
714 SCHED_WARN_ON(!se->on_rq);
715 lag = avg_vruntime(cfs_rq) - se->vruntime;
716
717 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
718 se->vlag = clamp(lag, -limit, limit);
719 }
720
721 /*
722 * Entity is eligible once it received less service than it ought to have,
723 * eg. lag >= 0.
724 *
725 * lag_i = S - s_i = w_i*(V - v_i)
726 *
727 * lag_i >= 0 -> V >= v_i
728 *
729 * \Sum (v_i - v)*w_i
730 * V = ------------------ + v
731 * \Sum w_i
732 *
733 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
734 *
735 * Note: using 'avg_vruntime() > se->vruntime' is inacurate due
736 * to the loss in precision caused by the division.
737 */
738 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
739 {
740 struct sched_entity *curr = cfs_rq->curr;
741 s64 avg = cfs_rq->avg_vruntime;
742 long load = cfs_rq->avg_load;
743
744 if (curr && curr->on_rq) {
745 unsigned long weight = scale_load_down(curr->load.weight);
746
747 avg += entity_key(cfs_rq, curr) * weight;
748 load += weight;
749 }
750
751 return avg >= entity_key(cfs_rq, se) * load;
752 }
753
754 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
755 {
756 u64 min_vruntime = cfs_rq->min_vruntime;
757 /*
758 * open coded max_vruntime() to allow updating avg_vruntime
759 */
760 s64 delta = (s64)(vruntime - min_vruntime);
761 if (delta > 0) {
762 avg_vruntime_update(cfs_rq, delta);
763 min_vruntime = vruntime;
764 }
765 return min_vruntime;
766 }
767
768 static void update_min_vruntime(struct cfs_rq *cfs_rq)
769 {
770 struct sched_entity *se = __pick_first_entity(cfs_rq);
771 struct sched_entity *curr = cfs_rq->curr;
772
773 u64 vruntime = cfs_rq->min_vruntime;
774
775 if (curr) {
776 if (curr->on_rq)
777 vruntime = curr->vruntime;
778 else
779 curr = NULL;
780 }
781
782 if (se) {
783 if (!curr)
784 vruntime = se->vruntime;
785 else
786 vruntime = min_vruntime(vruntime, se->vruntime);
787 }
788
789 /* ensure we never gain time by being placed backwards. */
790 u64_u32_store(cfs_rq->min_vruntime,
791 __update_min_vruntime(cfs_rq, vruntime));
792 }
793
794 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
795 {
796 return entity_before(__node_2_se(a), __node_2_se(b));
797 }
798
799 #define deadline_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
800
801 static inline void __update_min_deadline(struct sched_entity *se, struct rb_node *node)
802 {
803 if (node) {
804 struct sched_entity *rse = __node_2_se(node);
805 if (deadline_gt(min_deadline, se, rse))
806 se->min_deadline = rse->min_deadline;
807 }
808 }
809
810 /*
811 * se->min_deadline = min(se->deadline, left->min_deadline, right->min_deadline)
812 */
813 static inline bool min_deadline_update(struct sched_entity *se, bool exit)
814 {
815 u64 old_min_deadline = se->min_deadline;
816 struct rb_node *node = &se->run_node;
817
818 se->min_deadline = se->deadline;
819 __update_min_deadline(se, node->rb_right);
820 __update_min_deadline(se, node->rb_left);
821
822 return se->min_deadline == old_min_deadline;
823 }
824
825 RB_DECLARE_CALLBACKS(static, min_deadline_cb, struct sched_entity,
826 run_node, min_deadline, min_deadline_update);
827
828 /*
829 * Enqueue an entity into the rb-tree:
830 */
831 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
832 {
833 avg_vruntime_add(cfs_rq, se);
834 se->min_deadline = se->deadline;
835 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
836 __entity_less, &min_deadline_cb);
837 }
838
839 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
840 {
841 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
842 &min_deadline_cb);
843 avg_vruntime_sub(cfs_rq, se);
844 }
845
846 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
847 {
848 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
849
850 if (!left)
851 return NULL;
852
853 return __node_2_se(left);
854 }
855
856 /*
857 * Earliest Eligible Virtual Deadline First
858 *
859 * In order to provide latency guarantees for different request sizes
860 * EEVDF selects the best runnable task from two criteria:
861 *
862 * 1) the task must be eligible (must be owed service)
863 *
864 * 2) from those tasks that meet 1), we select the one
865 * with the earliest virtual deadline.
866 *
867 * We can do this in O(log n) time due to an augmented RB-tree. The
868 * tree keeps the entries sorted on service, but also functions as a
869 * heap based on the deadline by keeping:
870 *
871 * se->min_deadline = min(se->deadline, se->{left,right}->min_deadline)
872 *
873 * Which allows an EDF like search on (sub)trees.
874 */
875 static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq)
876 {
877 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
878 struct sched_entity *curr = cfs_rq->curr;
879 struct sched_entity *best = NULL;
880 struct sched_entity *best_left = NULL;
881
882 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
883 curr = NULL;
884 best = curr;
885
886 /*
887 * Once selected, run a task until it either becomes non-eligible or
888 * until it gets a new slice. See the HACK in set_next_entity().
889 */
890 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
891 return curr;
892
893 while (node) {
894 struct sched_entity *se = __node_2_se(node);
895
896 /*
897 * If this entity is not eligible, try the left subtree.
898 */
899 if (!entity_eligible(cfs_rq, se)) {
900 node = node->rb_left;
901 continue;
902 }
903
904 /*
905 * Now we heap search eligible trees for the best (min_)deadline
906 */
907 if (!best || deadline_gt(deadline, best, se))
908 best = se;
909
910 /*
911 * Every se in a left branch is eligible, keep track of the
912 * branch with the best min_deadline
913 */
914 if (node->rb_left) {
915 struct sched_entity *left = __node_2_se(node->rb_left);
916
917 if (!best_left || deadline_gt(min_deadline, best_left, left))
918 best_left = left;
919
920 /*
921 * min_deadline is in the left branch. rb_left and all
922 * descendants are eligible, so immediately switch to the second
923 * loop.
924 */
925 if (left->min_deadline == se->min_deadline)
926 break;
927 }
928
929 /* min_deadline is at this node, no need to look right */
930 if (se->deadline == se->min_deadline)
931 break;
932
933 /* else min_deadline is in the right branch. */
934 node = node->rb_right;
935 }
936
937 /*
938 * We ran into an eligible node which is itself the best.
939 * (Or nr_running == 0 and both are NULL)
940 */
941 if (!best_left || (s64)(best_left->min_deadline - best->deadline) > 0)
942 return best;
943
944 /*
945 * Now best_left and all of its children are eligible, and we are just
946 * looking for deadline == min_deadline
947 */
948 node = &best_left->run_node;
949 while (node) {
950 struct sched_entity *se = __node_2_se(node);
951
952 /* min_deadline is the current node */
953 if (se->deadline == se->min_deadline)
954 return se;
955
956 /* min_deadline is in the left branch */
957 if (node->rb_left &&
958 __node_2_se(node->rb_left)->min_deadline == se->min_deadline) {
959 node = node->rb_left;
960 continue;
961 }
962
963 /* else min_deadline is in the right branch */
964 node = node->rb_right;
965 }
966 return NULL;
967 }
968
969 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
970 {
971 struct sched_entity *se = __pick_eevdf(cfs_rq);
972
973 if (!se) {
974 struct sched_entity *left = __pick_first_entity(cfs_rq);
975 if (left) {
976 pr_err("EEVDF scheduling fail, picking leftmost\n");
977 return left;
978 }
979 }
980
981 return se;
982 }
983
984 #ifdef CONFIG_SCHED_DEBUG
985 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
986 {
987 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
988
989 if (!last)
990 return NULL;
991
992 return __node_2_se(last);
993 }
994
995 /**************************************************************
996 * Scheduling class statistics methods:
997 */
998 #ifdef CONFIG_SMP
999 int sched_update_scaling(void)
1000 {
1001 unsigned int factor = get_update_sysctl_factor();
1002
1003 #define WRT_SYSCTL(name) \
1004 (normalized_sysctl_##name = sysctl_##name / (factor))
1005 WRT_SYSCTL(sched_base_slice);
1006 #undef WRT_SYSCTL
1007
1008 return 0;
1009 }
1010 #endif
1011 #endif
1012
1013 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1014
1015 /*
1016 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1017 * this is probably good enough.
1018 */
1019 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1020 {
1021 if ((s64)(se->vruntime - se->deadline) < 0)
1022 return;
1023
1024 /*
1025 * For EEVDF the virtual time slope is determined by w_i (iow.
1026 * nice) while the request time r_i is determined by
1027 * sysctl_sched_base_slice.
1028 */
1029 se->slice = sysctl_sched_base_slice;
1030
1031 /*
1032 * EEVDF: vd_i = ve_i + r_i / w_i
1033 */
1034 se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1035
1036 /*
1037 * The task has consumed its request, reschedule.
1038 */
1039 if (cfs_rq->nr_running > 1) {
1040 resched_curr(rq_of(cfs_rq));
1041 clear_buddies(cfs_rq, se);
1042 }
1043 }
1044
1045 #include "pelt.h"
1046 #ifdef CONFIG_SMP
1047
1048 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1049 static unsigned long task_h_load(struct task_struct *p);
1050 static unsigned long capacity_of(int cpu);
1051
1052 /* Give new sched_entity start runnable values to heavy its load in infant time */
1053 void init_entity_runnable_average(struct sched_entity *se)
1054 {
1055 struct sched_avg *sa = &se->avg;
1056
1057 memset(sa, 0, sizeof(*sa));
1058
1059 /*
1060 * Tasks are initialized with full load to be seen as heavy tasks until
1061 * they get a chance to stabilize to their real load level.
1062 * Group entities are initialized with zero load to reflect the fact that
1063 * nothing has been attached to the task group yet.
1064 */
1065 if (entity_is_task(se))
1066 sa->load_avg = scale_load_down(se->load.weight);
1067
1068 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
1069 }
1070
1071 /*
1072 * With new tasks being created, their initial util_avgs are extrapolated
1073 * based on the cfs_rq's current util_avg:
1074 *
1075 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
1076 *
1077 * However, in many cases, the above util_avg does not give a desired
1078 * value. Moreover, the sum of the util_avgs may be divergent, such
1079 * as when the series is a harmonic series.
1080 *
1081 * To solve this problem, we also cap the util_avg of successive tasks to
1082 * only 1/2 of the left utilization budget:
1083 *
1084 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1085 *
1086 * where n denotes the nth task and cpu_scale the CPU capacity.
1087 *
1088 * For example, for a CPU with 1024 of capacity, a simplest series from
1089 * the beginning would be like:
1090 *
1091 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
1092 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1093 *
1094 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1095 * if util_avg > util_avg_cap.
1096 */
1097 void post_init_entity_util_avg(struct task_struct *p)
1098 {
1099 struct sched_entity *se = &p->se;
1100 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1101 struct sched_avg *sa = &se->avg;
1102 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1103 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1104
1105 if (p->sched_class != &fair_sched_class) {
1106 /*
1107 * For !fair tasks do:
1108 *
1109 update_cfs_rq_load_avg(now, cfs_rq);
1110 attach_entity_load_avg(cfs_rq, se);
1111 switched_from_fair(rq, p);
1112 *
1113 * such that the next switched_to_fair() has the
1114 * expected state.
1115 */
1116 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1117 return;
1118 }
1119
1120 if (cap > 0) {
1121 if (cfs_rq->avg.util_avg != 0) {
1122 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
1123 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1124
1125 if (sa->util_avg > cap)
1126 sa->util_avg = cap;
1127 } else {
1128 sa->util_avg = cap;
1129 }
1130 }
1131
1132 sa->runnable_avg = sa->util_avg;
1133 }
1134
1135 #else /* !CONFIG_SMP */
1136 void init_entity_runnable_average(struct sched_entity *se)
1137 {
1138 }
1139 void post_init_entity_util_avg(struct task_struct *p)
1140 {
1141 }
1142 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1143 {
1144 }
1145 #endif /* CONFIG_SMP */
1146
1147 /*
1148 * Update the current task's runtime statistics.
1149 */
1150 static void update_curr(struct cfs_rq *cfs_rq)
1151 {
1152 struct sched_entity *curr = cfs_rq->curr;
1153 u64 now = rq_clock_task(rq_of(cfs_rq));
1154 u64 delta_exec;
1155
1156 if (unlikely(!curr))
1157 return;
1158
1159 delta_exec = now - curr->exec_start;
1160 if (unlikely((s64)delta_exec <= 0))
1161 return;
1162
1163 curr->exec_start = now;
1164
1165 if (schedstat_enabled()) {
1166 struct sched_statistics *stats;
1167
1168 stats = __schedstats_from_se(curr);
1169 __schedstat_set(stats->exec_max,
1170 max(delta_exec, stats->exec_max));
1171 }
1172
1173 curr->sum_exec_runtime += delta_exec;
1174 schedstat_add(cfs_rq->exec_clock, delta_exec);
1175
1176 curr->vruntime += calc_delta_fair(delta_exec, curr);
1177 update_deadline(cfs_rq, curr);
1178 update_min_vruntime(cfs_rq);
1179
1180 if (entity_is_task(curr)) {
1181 struct task_struct *curtask = task_of(curr);
1182
1183 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
1184 cgroup_account_cputime(curtask, delta_exec);
1185 account_group_exec_runtime(curtask, delta_exec);
1186 }
1187
1188 account_cfs_rq_runtime(cfs_rq, delta_exec);
1189 }
1190
1191 static void update_curr_fair(struct rq *rq)
1192 {
1193 update_curr(cfs_rq_of(&rq->curr->se));
1194 }
1195
1196 static inline void
1197 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1198 {
1199 struct sched_statistics *stats;
1200 struct task_struct *p = NULL;
1201
1202 if (!schedstat_enabled())
1203 return;
1204
1205 stats = __schedstats_from_se(se);
1206
1207 if (entity_is_task(se))
1208 p = task_of(se);
1209
1210 __update_stats_wait_start(rq_of(cfs_rq), p, stats);
1211 }
1212
1213 static inline void
1214 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1215 {
1216 struct sched_statistics *stats;
1217 struct task_struct *p = NULL;
1218
1219 if (!schedstat_enabled())
1220 return;
1221
1222 stats = __schedstats_from_se(se);
1223
1224 /*
1225 * When the sched_schedstat changes from 0 to 1, some sched se
1226 * maybe already in the runqueue, the se->statistics.wait_start
1227 * will be 0.So it will let the delta wrong. We need to avoid this
1228 * scenario.
1229 */
1230 if (unlikely(!schedstat_val(stats->wait_start)))
1231 return;
1232
1233 if (entity_is_task(se))
1234 p = task_of(se);
1235
1236 __update_stats_wait_end(rq_of(cfs_rq), p, stats);
1237 }
1238
1239 static inline void
1240 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1241 {
1242 struct sched_statistics *stats;
1243 struct task_struct *tsk = NULL;
1244
1245 if (!schedstat_enabled())
1246 return;
1247
1248 stats = __schedstats_from_se(se);
1249
1250 if (entity_is_task(se))
1251 tsk = task_of(se);
1252
1253 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1254 }
1255
1256 /*
1257 * Task is being enqueued - update stats:
1258 */
1259 static inline void
1260 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1261 {
1262 if (!schedstat_enabled())
1263 return;
1264
1265 /*
1266 * Are we enqueueing a waiting task? (for current tasks
1267 * a dequeue/enqueue event is a NOP)
1268 */
1269 if (se != cfs_rq->curr)
1270 update_stats_wait_start_fair(cfs_rq, se);
1271
1272 if (flags & ENQUEUE_WAKEUP)
1273 update_stats_enqueue_sleeper_fair(cfs_rq, se);
1274 }
1275
1276 static inline void
1277 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1278 {
1279
1280 if (!schedstat_enabled())
1281 return;
1282
1283 /*
1284 * Mark the end of the wait period if dequeueing a
1285 * waiting task:
1286 */
1287 if (se != cfs_rq->curr)
1288 update_stats_wait_end_fair(cfs_rq, se);
1289
1290 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1291 struct task_struct *tsk = task_of(se);
1292 unsigned int state;
1293
1294 /* XXX racy against TTWU */
1295 state = READ_ONCE(tsk->__state);
1296 if (state & TASK_INTERRUPTIBLE)
1297 __schedstat_set(tsk->stats.sleep_start,
1298 rq_clock(rq_of(cfs_rq)));
1299 if (state & TASK_UNINTERRUPTIBLE)
1300 __schedstat_set(tsk->stats.block_start,
1301 rq_clock(rq_of(cfs_rq)));
1302 }
1303 }
1304
1305 /*
1306 * We are picking a new current task - update its stats:
1307 */
1308 static inline void
1309 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1310 {
1311 /*
1312 * We are starting a new run period:
1313 */
1314 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1315 }
1316
1317 /**************************************************
1318 * Scheduling class queueing methods:
1319 */
1320
1321 static inline bool is_core_idle(int cpu)
1322 {
1323 #ifdef CONFIG_SCHED_SMT
1324 int sibling;
1325
1326 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1327 if (cpu == sibling)
1328 continue;
1329
1330 if (!idle_cpu(sibling))
1331 return false;
1332 }
1333 #endif
1334
1335 return true;
1336 }
1337
1338 #ifdef CONFIG_NUMA
1339 #define NUMA_IMBALANCE_MIN 2
1340
1341 static inline long
1342 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1343 {
1344 /*
1345 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1346 * threshold. Above this threshold, individual tasks may be contending
1347 * for both memory bandwidth and any shared HT resources. This is an
1348 * approximation as the number of running tasks may not be related to
1349 * the number of busy CPUs due to sched_setaffinity.
1350 */
1351 if (dst_running > imb_numa_nr)
1352 return imbalance;
1353
1354 /*
1355 * Allow a small imbalance based on a simple pair of communicating
1356 * tasks that remain local when the destination is lightly loaded.
1357 */
1358 if (imbalance <= NUMA_IMBALANCE_MIN)
1359 return 0;
1360
1361 return imbalance;
1362 }
1363 #endif /* CONFIG_NUMA */
1364
1365 #ifdef CONFIG_NUMA_BALANCING
1366 /*
1367 * Approximate time to scan a full NUMA task in ms. The task scan period is
1368 * calculated based on the tasks virtual memory size and
1369 * numa_balancing_scan_size.
1370 */
1371 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1372 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1373
1374 /* Portion of address space to scan in MB */
1375 unsigned int sysctl_numa_balancing_scan_size = 256;
1376
1377 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1378 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1379
1380 /* The page with hint page fault latency < threshold in ms is considered hot */
1381 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1382
1383 struct numa_group {
1384 refcount_t refcount;
1385
1386 spinlock_t lock; /* nr_tasks, tasks */
1387 int nr_tasks;
1388 pid_t gid;
1389 int active_nodes;
1390
1391 struct rcu_head rcu;
1392 unsigned long total_faults;
1393 unsigned long max_faults_cpu;
1394 /*
1395 * faults[] array is split into two regions: faults_mem and faults_cpu.
1396 *
1397 * Faults_cpu is used to decide whether memory should move
1398 * towards the CPU. As a consequence, these stats are weighted
1399 * more by CPU use than by memory faults.
1400 */
1401 unsigned long faults[];
1402 };
1403
1404 /*
1405 * For functions that can be called in multiple contexts that permit reading
1406 * ->numa_group (see struct task_struct for locking rules).
1407 */
1408 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1409 {
1410 return rcu_dereference_check(p->numa_group, p == current ||
1411 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1412 }
1413
1414 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1415 {
1416 return rcu_dereference_protected(p->numa_group, p == current);
1417 }
1418
1419 static inline unsigned long group_faults_priv(struct numa_group *ng);
1420 static inline unsigned long group_faults_shared(struct numa_group *ng);
1421
1422 static unsigned int task_nr_scan_windows(struct task_struct *p)
1423 {
1424 unsigned long rss = 0;
1425 unsigned long nr_scan_pages;
1426
1427 /*
1428 * Calculations based on RSS as non-present and empty pages are skipped
1429 * by the PTE scanner and NUMA hinting faults should be trapped based
1430 * on resident pages
1431 */
1432 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1433 rss = get_mm_rss(p->mm);
1434 if (!rss)
1435 rss = nr_scan_pages;
1436
1437 rss = round_up(rss, nr_scan_pages);
1438 return rss / nr_scan_pages;
1439 }
1440
1441 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1442 #define MAX_SCAN_WINDOW 2560
1443
1444 static unsigned int task_scan_min(struct task_struct *p)
1445 {
1446 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1447 unsigned int scan, floor;
1448 unsigned int windows = 1;
1449
1450 if (scan_size < MAX_SCAN_WINDOW)
1451 windows = MAX_SCAN_WINDOW / scan_size;
1452 floor = 1000 / windows;
1453
1454 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1455 return max_t(unsigned int, floor, scan);
1456 }
1457
1458 static unsigned int task_scan_start(struct task_struct *p)
1459 {
1460 unsigned long smin = task_scan_min(p);
1461 unsigned long period = smin;
1462 struct numa_group *ng;
1463
1464 /* Scale the maximum scan period with the amount of shared memory. */
1465 rcu_read_lock();
1466 ng = rcu_dereference(p->numa_group);
1467 if (ng) {
1468 unsigned long shared = group_faults_shared(ng);
1469 unsigned long private = group_faults_priv(ng);
1470
1471 period *= refcount_read(&ng->refcount);
1472 period *= shared + 1;
1473 period /= private + shared + 1;
1474 }
1475 rcu_read_unlock();
1476
1477 return max(smin, period);
1478 }
1479
1480 static unsigned int task_scan_max(struct task_struct *p)
1481 {
1482 unsigned long smin = task_scan_min(p);
1483 unsigned long smax;
1484 struct numa_group *ng;
1485
1486 /* Watch for min being lower than max due to floor calculations */
1487 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1488
1489 /* Scale the maximum scan period with the amount of shared memory. */
1490 ng = deref_curr_numa_group(p);
1491 if (ng) {
1492 unsigned long shared = group_faults_shared(ng);
1493 unsigned long private = group_faults_priv(ng);
1494 unsigned long period = smax;
1495
1496 period *= refcount_read(&ng->refcount);
1497 period *= shared + 1;
1498 period /= private + shared + 1;
1499
1500 smax = max(smax, period);
1501 }
1502
1503 return max(smin, smax);
1504 }
1505
1506 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1507 {
1508 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1509 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1510 }
1511
1512 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1513 {
1514 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1515 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1516 }
1517
1518 /* Shared or private faults. */
1519 #define NR_NUMA_HINT_FAULT_TYPES 2
1520
1521 /* Memory and CPU locality */
1522 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1523
1524 /* Averaged statistics, and temporary buffers. */
1525 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1526
1527 pid_t task_numa_group_id(struct task_struct *p)
1528 {
1529 struct numa_group *ng;
1530 pid_t gid = 0;
1531
1532 rcu_read_lock();
1533 ng = rcu_dereference(p->numa_group);
1534 if (ng)
1535 gid = ng->gid;
1536 rcu_read_unlock();
1537
1538 return gid;
1539 }
1540
1541 /*
1542 * The averaged statistics, shared & private, memory & CPU,
1543 * occupy the first half of the array. The second half of the
1544 * array is for current counters, which are averaged into the
1545 * first set by task_numa_placement.
1546 */
1547 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1548 {
1549 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1550 }
1551
1552 static inline unsigned long task_faults(struct task_struct *p, int nid)
1553 {
1554 if (!p->numa_faults)
1555 return 0;
1556
1557 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1558 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1559 }
1560
1561 static inline unsigned long group_faults(struct task_struct *p, int nid)
1562 {
1563 struct numa_group *ng = deref_task_numa_group(p);
1564
1565 if (!ng)
1566 return 0;
1567
1568 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1569 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1570 }
1571
1572 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1573 {
1574 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1575 group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1576 }
1577
1578 static inline unsigned long group_faults_priv(struct numa_group *ng)
1579 {
1580 unsigned long faults = 0;
1581 int node;
1582
1583 for_each_online_node(node) {
1584 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1585 }
1586
1587 return faults;
1588 }
1589
1590 static inline unsigned long group_faults_shared(struct numa_group *ng)
1591 {
1592 unsigned long faults = 0;
1593 int node;
1594
1595 for_each_online_node(node) {
1596 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1597 }
1598
1599 return faults;
1600 }
1601
1602 /*
1603 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1604 * considered part of a numa group's pseudo-interleaving set. Migrations
1605 * between these nodes are slowed down, to allow things to settle down.
1606 */
1607 #define ACTIVE_NODE_FRACTION 3
1608
1609 static bool numa_is_active_node(int nid, struct numa_group *ng)
1610 {
1611 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1612 }
1613
1614 /* Handle placement on systems where not all nodes are directly connected. */
1615 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1616 int lim_dist, bool task)
1617 {
1618 unsigned long score = 0;
1619 int node, max_dist;
1620
1621 /*
1622 * All nodes are directly connected, and the same distance
1623 * from each other. No need for fancy placement algorithms.
1624 */
1625 if (sched_numa_topology_type == NUMA_DIRECT)
1626 return 0;
1627
1628 /* sched_max_numa_distance may be changed in parallel. */
1629 max_dist = READ_ONCE(sched_max_numa_distance);
1630 /*
1631 * This code is called for each node, introducing N^2 complexity,
1632 * which should be ok given the number of nodes rarely exceeds 8.
1633 */
1634 for_each_online_node(node) {
1635 unsigned long faults;
1636 int dist = node_distance(nid, node);
1637
1638 /*
1639 * The furthest away nodes in the system are not interesting
1640 * for placement; nid was already counted.
1641 */
1642 if (dist >= max_dist || node == nid)
1643 continue;
1644
1645 /*
1646 * On systems with a backplane NUMA topology, compare groups
1647 * of nodes, and move tasks towards the group with the most
1648 * memory accesses. When comparing two nodes at distance
1649 * "hoplimit", only nodes closer by than "hoplimit" are part
1650 * of each group. Skip other nodes.
1651 */
1652 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1653 continue;
1654
1655 /* Add up the faults from nearby nodes. */
1656 if (task)
1657 faults = task_faults(p, node);
1658 else
1659 faults = group_faults(p, node);
1660
1661 /*
1662 * On systems with a glueless mesh NUMA topology, there are
1663 * no fixed "groups of nodes". Instead, nodes that are not
1664 * directly connected bounce traffic through intermediate
1665 * nodes; a numa_group can occupy any set of nodes.
1666 * The further away a node is, the less the faults count.
1667 * This seems to result in good task placement.
1668 */
1669 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1670 faults *= (max_dist - dist);
1671 faults /= (max_dist - LOCAL_DISTANCE);
1672 }
1673
1674 score += faults;
1675 }
1676
1677 return score;
1678 }
1679
1680 /*
1681 * These return the fraction of accesses done by a particular task, or
1682 * task group, on a particular numa node. The group weight is given a
1683 * larger multiplier, in order to group tasks together that are almost
1684 * evenly spread out between numa nodes.
1685 */
1686 static inline unsigned long task_weight(struct task_struct *p, int nid,
1687 int dist)
1688 {
1689 unsigned long faults, total_faults;
1690
1691 if (!p->numa_faults)
1692 return 0;
1693
1694 total_faults = p->total_numa_faults;
1695
1696 if (!total_faults)
1697 return 0;
1698
1699 faults = task_faults(p, nid);
1700 faults += score_nearby_nodes(p, nid, dist, true);
1701
1702 return 1000 * faults / total_faults;
1703 }
1704
1705 static inline unsigned long group_weight(struct task_struct *p, int nid,
1706 int dist)
1707 {
1708 struct numa_group *ng = deref_task_numa_group(p);
1709 unsigned long faults, total_faults;
1710
1711 if (!ng)
1712 return 0;
1713
1714 total_faults = ng->total_faults;
1715
1716 if (!total_faults)
1717 return 0;
1718
1719 faults = group_faults(p, nid);
1720 faults += score_nearby_nodes(p, nid, dist, false);
1721
1722 return 1000 * faults / total_faults;
1723 }
1724
1725 /*
1726 * If memory tiering mode is enabled, cpupid of slow memory page is
1727 * used to record scan time instead of CPU and PID. When tiering mode
1728 * is disabled at run time, the scan time (in cpupid) will be
1729 * interpreted as CPU and PID. So CPU needs to be checked to avoid to
1730 * access out of array bound.
1731 */
1732 static inline bool cpupid_valid(int cpupid)
1733 {
1734 return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1735 }
1736
1737 /*
1738 * For memory tiering mode, if there are enough free pages (more than
1739 * enough watermark defined here) in fast memory node, to take full
1740 * advantage of fast memory capacity, all recently accessed slow
1741 * memory pages will be migrated to fast memory node without
1742 * considering hot threshold.
1743 */
1744 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1745 {
1746 int z;
1747 unsigned long enough_wmark;
1748
1749 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1750 pgdat->node_present_pages >> 4);
1751 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1752 struct zone *zone = pgdat->node_zones + z;
1753
1754 if (!populated_zone(zone))
1755 continue;
1756
1757 if (zone_watermark_ok(zone, 0,
1758 wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1759 ZONE_MOVABLE, 0))
1760 return true;
1761 }
1762 return false;
1763 }
1764
1765 /*
1766 * For memory tiering mode, when page tables are scanned, the scan
1767 * time will be recorded in struct page in addition to make page
1768 * PROT_NONE for slow memory page. So when the page is accessed, in
1769 * hint page fault handler, the hint page fault latency is calculated
1770 * via,
1771 *
1772 * hint page fault latency = hint page fault time - scan time
1773 *
1774 * The smaller the hint page fault latency, the higher the possibility
1775 * for the page to be hot.
1776 */
1777 static int numa_hint_fault_latency(struct page *page)
1778 {
1779 int last_time, time;
1780
1781 time = jiffies_to_msecs(jiffies);
1782 last_time = xchg_page_access_time(page, time);
1783
1784 return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1785 }
1786
1787 /*
1788 * For memory tiering mode, too high promotion/demotion throughput may
1789 * hurt application latency. So we provide a mechanism to rate limit
1790 * the number of pages that are tried to be promoted.
1791 */
1792 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1793 unsigned long rate_limit, int nr)
1794 {
1795 unsigned long nr_cand;
1796 unsigned int now, start;
1797
1798 now = jiffies_to_msecs(jiffies);
1799 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1800 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1801 start = pgdat->nbp_rl_start;
1802 if (now - start > MSEC_PER_SEC &&
1803 cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1804 pgdat->nbp_rl_nr_cand = nr_cand;
1805 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1806 return true;
1807 return false;
1808 }
1809
1810 #define NUMA_MIGRATION_ADJUST_STEPS 16
1811
1812 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1813 unsigned long rate_limit,
1814 unsigned int ref_th)
1815 {
1816 unsigned int now, start, th_period, unit_th, th;
1817 unsigned long nr_cand, ref_cand, diff_cand;
1818
1819 now = jiffies_to_msecs(jiffies);
1820 th_period = sysctl_numa_balancing_scan_period_max;
1821 start = pgdat->nbp_th_start;
1822 if (now - start > th_period &&
1823 cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1824 ref_cand = rate_limit *
1825 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1826 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1827 diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1828 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1829 th = pgdat->nbp_threshold ? : ref_th;
1830 if (diff_cand > ref_cand * 11 / 10)
1831 th = max(th - unit_th, unit_th);
1832 else if (diff_cand < ref_cand * 9 / 10)
1833 th = min(th + unit_th, ref_th * 2);
1834 pgdat->nbp_th_nr_cand = nr_cand;
1835 pgdat->nbp_threshold = th;
1836 }
1837 }
1838
1839 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1840 int src_nid, int dst_cpu)
1841 {
1842 struct numa_group *ng = deref_curr_numa_group(p);
1843 int dst_nid = cpu_to_node(dst_cpu);
1844 int last_cpupid, this_cpupid;
1845
1846 /*
1847 * The pages in slow memory node should be migrated according
1848 * to hot/cold instead of private/shared.
1849 */
1850 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1851 !node_is_toptier(src_nid)) {
1852 struct pglist_data *pgdat;
1853 unsigned long rate_limit;
1854 unsigned int latency, th, def_th;
1855
1856 pgdat = NODE_DATA(dst_nid);
1857 if (pgdat_free_space_enough(pgdat)) {
1858 /* workload changed, reset hot threshold */
1859 pgdat->nbp_threshold = 0;
1860 return true;
1861 }
1862
1863 def_th = sysctl_numa_balancing_hot_threshold;
1864 rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1865 (20 - PAGE_SHIFT);
1866 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1867
1868 th = pgdat->nbp_threshold ? : def_th;
1869 latency = numa_hint_fault_latency(page);
1870 if (latency >= th)
1871 return false;
1872
1873 return !numa_promotion_rate_limit(pgdat, rate_limit,
1874 thp_nr_pages(page));
1875 }
1876
1877 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1878 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1879
1880 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1881 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1882 return false;
1883
1884 /*
1885 * Allow first faults or private faults to migrate immediately early in
1886 * the lifetime of a task. The magic number 4 is based on waiting for
1887 * two full passes of the "multi-stage node selection" test that is
1888 * executed below.
1889 */
1890 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1891 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1892 return true;
1893
1894 /*
1895 * Multi-stage node selection is used in conjunction with a periodic
1896 * migration fault to build a temporal task<->page relation. By using
1897 * a two-stage filter we remove short/unlikely relations.
1898 *
1899 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1900 * a task's usage of a particular page (n_p) per total usage of this
1901 * page (n_t) (in a given time-span) to a probability.
1902 *
1903 * Our periodic faults will sample this probability and getting the
1904 * same result twice in a row, given these samples are fully
1905 * independent, is then given by P(n)^2, provided our sample period
1906 * is sufficiently short compared to the usage pattern.
1907 *
1908 * This quadric squishes small probabilities, making it less likely we
1909 * act on an unlikely task<->page relation.
1910 */
1911 if (!cpupid_pid_unset(last_cpupid) &&
1912 cpupid_to_nid(last_cpupid) != dst_nid)
1913 return false;
1914
1915 /* Always allow migrate on private faults */
1916 if (cpupid_match_pid(p, last_cpupid))
1917 return true;
1918
1919 /* A shared fault, but p->numa_group has not been set up yet. */
1920 if (!ng)
1921 return true;
1922
1923 /*
1924 * Destination node is much more heavily used than the source
1925 * node? Allow migration.
1926 */
1927 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1928 ACTIVE_NODE_FRACTION)
1929 return true;
1930
1931 /*
1932 * Distribute memory according to CPU & memory use on each node,
1933 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1934 *
1935 * faults_cpu(dst) 3 faults_cpu(src)
1936 * --------------- * - > ---------------
1937 * faults_mem(dst) 4 faults_mem(src)
1938 */
1939 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1940 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1941 }
1942
1943 /*
1944 * 'numa_type' describes the node at the moment of load balancing.
1945 */
1946 enum numa_type {
1947 /* The node has spare capacity that can be used to run more tasks. */
1948 node_has_spare = 0,
1949 /*
1950 * The node is fully used and the tasks don't compete for more CPU
1951 * cycles. Nevertheless, some tasks might wait before running.
1952 */
1953 node_fully_busy,
1954 /*
1955 * The node is overloaded and can't provide expected CPU cycles to all
1956 * tasks.
1957 */
1958 node_overloaded
1959 };
1960
1961 /* Cached statistics for all CPUs within a node */
1962 struct numa_stats {
1963 unsigned long load;
1964 unsigned long runnable;
1965 unsigned long util;
1966 /* Total compute capacity of CPUs on a node */
1967 unsigned long compute_capacity;
1968 unsigned int nr_running;
1969 unsigned int weight;
1970 enum numa_type node_type;
1971 int idle_cpu;
1972 };
1973
1974 struct task_numa_env {
1975 struct task_struct *p;
1976
1977 int src_cpu, src_nid;
1978 int dst_cpu, dst_nid;
1979 int imb_numa_nr;
1980
1981 struct numa_stats src_stats, dst_stats;
1982
1983 int imbalance_pct;
1984 int dist;
1985
1986 struct task_struct *best_task;
1987 long best_imp;
1988 int best_cpu;
1989 };
1990
1991 static unsigned long cpu_load(struct rq *rq);
1992 static unsigned long cpu_runnable(struct rq *rq);
1993
1994 static inline enum
1995 numa_type numa_classify(unsigned int imbalance_pct,
1996 struct numa_stats *ns)
1997 {
1998 if ((ns->nr_running > ns->weight) &&
1999 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2000 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2001 return node_overloaded;
2002
2003 if ((ns->nr_running < ns->weight) ||
2004 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2005 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2006 return node_has_spare;
2007
2008 return node_fully_busy;
2009 }
2010
2011 #ifdef CONFIG_SCHED_SMT
2012 /* Forward declarations of select_idle_sibling helpers */
2013 static inline bool test_idle_cores(int cpu);
2014 static inline int numa_idle_core(int idle_core, int cpu)
2015 {
2016 if (!static_branch_likely(&sched_smt_present) ||
2017 idle_core >= 0 || !test_idle_cores(cpu))
2018 return idle_core;
2019
2020 /*
2021 * Prefer cores instead of packing HT siblings
2022 * and triggering future load balancing.
2023 */
2024 if (is_core_idle(cpu))
2025 idle_core = cpu;
2026
2027 return idle_core;
2028 }
2029 #else
2030 static inline int numa_idle_core(int idle_core, int cpu)
2031 {
2032 return idle_core;
2033 }
2034 #endif
2035
2036 /*
2037 * Gather all necessary information to make NUMA balancing placement
2038 * decisions that are compatible with standard load balancer. This
2039 * borrows code and logic from update_sg_lb_stats but sharing a
2040 * common implementation is impractical.
2041 */
2042 static void update_numa_stats(struct task_numa_env *env,
2043 struct numa_stats *ns, int nid,
2044 bool find_idle)
2045 {
2046 int cpu, idle_core = -1;
2047
2048 memset(ns, 0, sizeof(*ns));
2049 ns->idle_cpu = -1;
2050
2051 rcu_read_lock();
2052 for_each_cpu(cpu, cpumask_of_node(nid)) {
2053 struct rq *rq = cpu_rq(cpu);
2054
2055 ns->load += cpu_load(rq);
2056 ns->runnable += cpu_runnable(rq);
2057 ns->util += cpu_util_cfs(cpu);
2058 ns->nr_running += rq->cfs.h_nr_running;
2059 ns->compute_capacity += capacity_of(cpu);
2060
2061 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2062 if (READ_ONCE(rq->numa_migrate_on) ||
2063 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2064 continue;
2065
2066 if (ns->idle_cpu == -1)
2067 ns->idle_cpu = cpu;
2068
2069 idle_core = numa_idle_core(idle_core, cpu);
2070 }
2071 }
2072 rcu_read_unlock();
2073
2074 ns->weight = cpumask_weight(cpumask_of_node(nid));
2075
2076 ns->node_type = numa_classify(env->imbalance_pct, ns);
2077
2078 if (idle_core >= 0)
2079 ns->idle_cpu = idle_core;
2080 }
2081
2082 static void task_numa_assign(struct task_numa_env *env,
2083 struct task_struct *p, long imp)
2084 {
2085 struct rq *rq = cpu_rq(env->dst_cpu);
2086
2087 /* Check if run-queue part of active NUMA balance. */
2088 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2089 int cpu;
2090 int start = env->dst_cpu;
2091
2092 /* Find alternative idle CPU. */
2093 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2094 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2095 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2096 continue;
2097 }
2098
2099 env->dst_cpu = cpu;
2100 rq = cpu_rq(env->dst_cpu);
2101 if (!xchg(&rq->numa_migrate_on, 1))
2102 goto assign;
2103 }
2104
2105 /* Failed to find an alternative idle CPU */
2106 return;
2107 }
2108
2109 assign:
2110 /*
2111 * Clear previous best_cpu/rq numa-migrate flag, since task now
2112 * found a better CPU to move/swap.
2113 */
2114 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2115 rq = cpu_rq(env->best_cpu);
2116 WRITE_ONCE(rq->numa_migrate_on, 0);
2117 }
2118
2119 if (env->best_task)
2120 put_task_struct(env->best_task);
2121 if (p)
2122 get_task_struct(p);
2123
2124 env->best_task = p;
2125 env->best_imp = imp;
2126 env->best_cpu = env->dst_cpu;
2127 }
2128
2129 static bool load_too_imbalanced(long src_load, long dst_load,
2130 struct task_numa_env *env)
2131 {
2132 long imb, old_imb;
2133 long orig_src_load, orig_dst_load;
2134 long src_capacity, dst_capacity;
2135
2136 /*
2137 * The load is corrected for the CPU capacity available on each node.
2138 *
2139 * src_load dst_load
2140 * ------------ vs ---------
2141 * src_capacity dst_capacity
2142 */
2143 src_capacity = env->src_stats.compute_capacity;
2144 dst_capacity = env->dst_stats.compute_capacity;
2145
2146 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2147
2148 orig_src_load = env->src_stats.load;
2149 orig_dst_load = env->dst_stats.load;
2150
2151 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2152
2153 /* Would this change make things worse? */
2154 return (imb > old_imb);
2155 }
2156
2157 /*
2158 * Maximum NUMA importance can be 1998 (2*999);
2159 * SMALLIMP @ 30 would be close to 1998/64.
2160 * Used to deter task migration.
2161 */
2162 #define SMALLIMP 30
2163
2164 /*
2165 * This checks if the overall compute and NUMA accesses of the system would
2166 * be improved if the source tasks was migrated to the target dst_cpu taking
2167 * into account that it might be best if task running on the dst_cpu should
2168 * be exchanged with the source task
2169 */
2170 static bool task_numa_compare(struct task_numa_env *env,
2171 long taskimp, long groupimp, bool maymove)
2172 {
2173 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2174 struct rq *dst_rq = cpu_rq(env->dst_cpu);
2175 long imp = p_ng ? groupimp : taskimp;
2176 struct task_struct *cur;
2177 long src_load, dst_load;
2178 int dist = env->dist;
2179 long moveimp = imp;
2180 long load;
2181 bool stopsearch = false;
2182
2183 if (READ_ONCE(dst_rq->numa_migrate_on))
2184 return false;
2185
2186 rcu_read_lock();
2187 cur = rcu_dereference(dst_rq->curr);
2188 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2189 cur = NULL;
2190
2191 /*
2192 * Because we have preemption enabled we can get migrated around and
2193 * end try selecting ourselves (current == env->p) as a swap candidate.
2194 */
2195 if (cur == env->p) {
2196 stopsearch = true;
2197 goto unlock;
2198 }
2199
2200 if (!cur) {
2201 if (maymove && moveimp >= env->best_imp)
2202 goto assign;
2203 else
2204 goto unlock;
2205 }
2206
2207 /* Skip this swap candidate if cannot move to the source cpu. */
2208 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2209 goto unlock;
2210
2211 /*
2212 * Skip this swap candidate if it is not moving to its preferred
2213 * node and the best task is.
2214 */
2215 if (env->best_task &&
2216 env->best_task->numa_preferred_nid == env->src_nid &&
2217 cur->numa_preferred_nid != env->src_nid) {
2218 goto unlock;
2219 }
2220
2221 /*
2222 * "imp" is the fault differential for the source task between the
2223 * source and destination node. Calculate the total differential for
2224 * the source task and potential destination task. The more negative
2225 * the value is, the more remote accesses that would be expected to
2226 * be incurred if the tasks were swapped.
2227 *
2228 * If dst and source tasks are in the same NUMA group, or not
2229 * in any group then look only at task weights.
2230 */
2231 cur_ng = rcu_dereference(cur->numa_group);
2232 if (cur_ng == p_ng) {
2233 /*
2234 * Do not swap within a group or between tasks that have
2235 * no group if there is spare capacity. Swapping does
2236 * not address the load imbalance and helps one task at
2237 * the cost of punishing another.
2238 */
2239 if (env->dst_stats.node_type == node_has_spare)
2240 goto unlock;
2241
2242 imp = taskimp + task_weight(cur, env->src_nid, dist) -
2243 task_weight(cur, env->dst_nid, dist);
2244 /*
2245 * Add some hysteresis to prevent swapping the
2246 * tasks within a group over tiny differences.
2247 */
2248 if (cur_ng)
2249 imp -= imp / 16;
2250 } else {
2251 /*
2252 * Compare the group weights. If a task is all by itself
2253 * (not part of a group), use the task weight instead.
2254 */
2255 if (cur_ng && p_ng)
2256 imp += group_weight(cur, env->src_nid, dist) -
2257 group_weight(cur, env->dst_nid, dist);
2258 else
2259 imp += task_weight(cur, env->src_nid, dist) -
2260 task_weight(cur, env->dst_nid, dist);
2261 }
2262
2263 /* Discourage picking a task already on its preferred node */
2264 if (cur->numa_preferred_nid == env->dst_nid)
2265 imp -= imp / 16;
2266
2267 /*
2268 * Encourage picking a task that moves to its preferred node.
2269 * This potentially makes imp larger than it's maximum of
2270 * 1998 (see SMALLIMP and task_weight for why) but in this
2271 * case, it does not matter.
2272 */
2273 if (cur->numa_preferred_nid == env->src_nid)
2274 imp += imp / 8;
2275
2276 if (maymove && moveimp > imp && moveimp > env->best_imp) {
2277 imp = moveimp;
2278 cur = NULL;
2279 goto assign;
2280 }
2281
2282 /*
2283 * Prefer swapping with a task moving to its preferred node over a
2284 * task that is not.
2285 */
2286 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2287 env->best_task->numa_preferred_nid != env->src_nid) {
2288 goto assign;
2289 }
2290
2291 /*
2292 * If the NUMA importance is less than SMALLIMP,
2293 * task migration might only result in ping pong
2294 * of tasks and also hurt performance due to cache
2295 * misses.
2296 */
2297 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2298 goto unlock;
2299
2300 /*
2301 * In the overloaded case, try and keep the load balanced.
2302 */
2303 load = task_h_load(env->p) - task_h_load(cur);
2304 if (!load)
2305 goto assign;
2306
2307 dst_load = env->dst_stats.load + load;
2308 src_load = env->src_stats.load - load;
2309
2310 if (load_too_imbalanced(src_load, dst_load, env))
2311 goto unlock;
2312
2313 assign:
2314 /* Evaluate an idle CPU for a task numa move. */
2315 if (!cur) {
2316 int cpu = env->dst_stats.idle_cpu;
2317
2318 /* Nothing cached so current CPU went idle since the search. */
2319 if (cpu < 0)
2320 cpu = env->dst_cpu;
2321
2322 /*
2323 * If the CPU is no longer truly idle and the previous best CPU
2324 * is, keep using it.
2325 */
2326 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2327 idle_cpu(env->best_cpu)) {
2328 cpu = env->best_cpu;
2329 }
2330
2331 env->dst_cpu = cpu;
2332 }
2333
2334 task_numa_assign(env, cur, imp);
2335
2336 /*
2337 * If a move to idle is allowed because there is capacity or load
2338 * balance improves then stop the search. While a better swap
2339 * candidate may exist, a search is not free.
2340 */
2341 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2342 stopsearch = true;
2343
2344 /*
2345 * If a swap candidate must be identified and the current best task
2346 * moves its preferred node then stop the search.
2347 */
2348 if (!maymove && env->best_task &&
2349 env->best_task->numa_preferred_nid == env->src_nid) {
2350 stopsearch = true;
2351 }
2352 unlock:
2353 rcu_read_unlock();
2354
2355 return stopsearch;
2356 }
2357
2358 static void task_numa_find_cpu(struct task_numa_env *env,
2359 long taskimp, long groupimp)
2360 {
2361 bool maymove = false;
2362 int cpu;
2363
2364 /*
2365 * If dst node has spare capacity, then check if there is an
2366 * imbalance that would be overruled by the load balancer.
2367 */
2368 if (env->dst_stats.node_type == node_has_spare) {
2369 unsigned int imbalance;
2370 int src_running, dst_running;
2371
2372 /*
2373 * Would movement cause an imbalance? Note that if src has
2374 * more running tasks that the imbalance is ignored as the
2375 * move improves the imbalance from the perspective of the
2376 * CPU load balancer.
2377 * */
2378 src_running = env->src_stats.nr_running - 1;
2379 dst_running = env->dst_stats.nr_running + 1;
2380 imbalance = max(0, dst_running - src_running);
2381 imbalance = adjust_numa_imbalance(imbalance, dst_running,
2382 env->imb_numa_nr);
2383
2384 /* Use idle CPU if there is no imbalance */
2385 if (!imbalance) {
2386 maymove = true;
2387 if (env->dst_stats.idle_cpu >= 0) {
2388 env->dst_cpu = env->dst_stats.idle_cpu;
2389 task_numa_assign(env, NULL, 0);
2390 return;
2391 }
2392 }
2393 } else {
2394 long src_load, dst_load, load;
2395 /*
2396 * If the improvement from just moving env->p direction is better
2397 * than swapping tasks around, check if a move is possible.
2398 */
2399 load = task_h_load(env->p);
2400 dst_load = env->dst_stats.load + load;
2401 src_load = env->src_stats.load - load;
2402 maymove = !load_too_imbalanced(src_load, dst_load, env);
2403 }
2404
2405 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2406 /* Skip this CPU if the source task cannot migrate */
2407 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2408 continue;
2409
2410 env->dst_cpu = cpu;
2411 if (task_numa_compare(env, taskimp, groupimp, maymove))
2412 break;
2413 }
2414 }
2415
2416 static int task_numa_migrate(struct task_struct *p)
2417 {
2418 struct task_numa_env env = {
2419 .p = p,
2420
2421 .src_cpu = task_cpu(p),
2422 .src_nid = task_node(p),
2423
2424 .imbalance_pct = 112,
2425
2426 .best_task = NULL,
2427 .best_imp = 0,
2428 .best_cpu = -1,
2429 };
2430 unsigned long taskweight, groupweight;
2431 struct sched_domain *sd;
2432 long taskimp, groupimp;
2433 struct numa_group *ng;
2434 struct rq *best_rq;
2435 int nid, ret, dist;
2436
2437 /*
2438 * Pick the lowest SD_NUMA domain, as that would have the smallest
2439 * imbalance and would be the first to start moving tasks about.
2440 *
2441 * And we want to avoid any moving of tasks about, as that would create
2442 * random movement of tasks -- counter the numa conditions we're trying
2443 * to satisfy here.
2444 */
2445 rcu_read_lock();
2446 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2447 if (sd) {
2448 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2449 env.imb_numa_nr = sd->imb_numa_nr;
2450 }
2451 rcu_read_unlock();
2452
2453 /*
2454 * Cpusets can break the scheduler domain tree into smaller
2455 * balance domains, some of which do not cross NUMA boundaries.
2456 * Tasks that are "trapped" in such domains cannot be migrated
2457 * elsewhere, so there is no point in (re)trying.
2458 */
2459 if (unlikely(!sd)) {
2460 sched_setnuma(p, task_node(p));
2461 return -EINVAL;
2462 }
2463
2464 env.dst_nid = p->numa_preferred_nid;
2465 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2466 taskweight = task_weight(p, env.src_nid, dist);
2467 groupweight = group_weight(p, env.src_nid, dist);
2468 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2469 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2470 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2471 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2472
2473 /* Try to find a spot on the preferred nid. */
2474 task_numa_find_cpu(&env, taskimp, groupimp);
2475
2476 /*
2477 * Look at other nodes in these cases:
2478 * - there is no space available on the preferred_nid
2479 * - the task is part of a numa_group that is interleaved across
2480 * multiple NUMA nodes; in order to better consolidate the group,
2481 * we need to check other locations.
2482 */
2483 ng = deref_curr_numa_group(p);
2484 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2485 for_each_node_state(nid, N_CPU) {
2486 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2487 continue;
2488
2489 dist = node_distance(env.src_nid, env.dst_nid);
2490 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2491 dist != env.dist) {
2492 taskweight = task_weight(p, env.src_nid, dist);
2493 groupweight = group_weight(p, env.src_nid, dist);
2494 }
2495
2496 /* Only consider nodes where both task and groups benefit */
2497 taskimp = task_weight(p, nid, dist) - taskweight;
2498 groupimp = group_weight(p, nid, dist) - groupweight;
2499 if (taskimp < 0 && groupimp < 0)
2500 continue;
2501
2502 env.dist = dist;
2503 env.dst_nid = nid;
2504 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2505 task_numa_find_cpu(&env, taskimp, groupimp);
2506 }
2507 }
2508
2509 /*
2510 * If the task is part of a workload that spans multiple NUMA nodes,
2511 * and is migrating into one of the workload's active nodes, remember
2512 * this node as the task's preferred numa node, so the workload can
2513 * settle down.
2514 * A task that migrated to a second choice node will be better off
2515 * trying for a better one later. Do not set the preferred node here.
2516 */
2517 if (ng) {
2518 if (env.best_cpu == -1)
2519 nid = env.src_nid;
2520 else
2521 nid = cpu_to_node(env.best_cpu);
2522
2523 if (nid != p->numa_preferred_nid)
2524 sched_setnuma(p, nid);
2525 }
2526
2527 /* No better CPU than the current one was found. */
2528 if (env.best_cpu == -1) {
2529 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2530 return -EAGAIN;
2531 }
2532
2533 best_rq = cpu_rq(env.best_cpu);
2534 if (env.best_task == NULL) {
2535 ret = migrate_task_to(p, env.best_cpu);
2536 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2537 if (ret != 0)
2538 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2539 return ret;
2540 }
2541
2542 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2543 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2544
2545 if (ret != 0)
2546 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2547 put_task_struct(env.best_task);
2548 return ret;
2549 }
2550
2551 /* Attempt to migrate a task to a CPU on the preferred node. */
2552 static void numa_migrate_preferred(struct task_struct *p)
2553 {
2554 unsigned long interval = HZ;
2555
2556 /* This task has no NUMA fault statistics yet */
2557 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2558 return;
2559
2560 /* Periodically retry migrating the task to the preferred node */
2561 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2562 p->numa_migrate_retry = jiffies + interval;
2563
2564 /* Success if task is already running on preferred CPU */
2565 if (task_node(p) == p->numa_preferred_nid)
2566 return;
2567
2568 /* Otherwise, try migrate to a CPU on the preferred node */
2569 task_numa_migrate(p);
2570 }
2571
2572 /*
2573 * Find out how many nodes the workload is actively running on. Do this by
2574 * tracking the nodes from which NUMA hinting faults are triggered. This can
2575 * be different from the set of nodes where the workload's memory is currently
2576 * located.
2577 */
2578 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2579 {
2580 unsigned long faults, max_faults = 0;
2581 int nid, active_nodes = 0;
2582
2583 for_each_node_state(nid, N_CPU) {
2584 faults = group_faults_cpu(numa_group, nid);
2585 if (faults > max_faults)
2586 max_faults = faults;
2587 }
2588
2589 for_each_node_state(nid, N_CPU) {
2590 faults = group_faults_cpu(numa_group, nid);
2591 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2592 active_nodes++;
2593 }
2594
2595 numa_group->max_faults_cpu = max_faults;
2596 numa_group->active_nodes = active_nodes;
2597 }
2598
2599 /*
2600 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2601 * increments. The more local the fault statistics are, the higher the scan
2602 * period will be for the next scan window. If local/(local+remote) ratio is
2603 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2604 * the scan period will decrease. Aim for 70% local accesses.
2605 */
2606 #define NUMA_PERIOD_SLOTS 10
2607 #define NUMA_PERIOD_THRESHOLD 7
2608
2609 /*
2610 * Increase the scan period (slow down scanning) if the majority of
2611 * our memory is already on our local node, or if the majority of
2612 * the page accesses are shared with other processes.
2613 * Otherwise, decrease the scan period.
2614 */
2615 static void update_task_scan_period(struct task_struct *p,
2616 unsigned long shared, unsigned long private)
2617 {
2618 unsigned int period_slot;
2619 int lr_ratio, ps_ratio;
2620 int diff;
2621
2622 unsigned long remote = p->numa_faults_locality[0];
2623 unsigned long local = p->numa_faults_locality[1];
2624
2625 /*
2626 * If there were no record hinting faults then either the task is
2627 * completely idle or all activity is in areas that are not of interest
2628 * to automatic numa balancing. Related to that, if there were failed
2629 * migration then it implies we are migrating too quickly or the local
2630 * node is overloaded. In either case, scan slower
2631 */
2632 if (local + shared == 0 || p->numa_faults_locality[2]) {
2633 p->numa_scan_period = min(p->numa_scan_period_max,
2634 p->numa_scan_period << 1);
2635
2636 p->mm->numa_next_scan = jiffies +
2637 msecs_to_jiffies(p->numa_scan_period);
2638
2639 return;
2640 }
2641
2642 /*
2643 * Prepare to scale scan period relative to the current period.
2644 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2645 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2646 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2647 */
2648 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2649 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2650 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2651
2652 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2653 /*
2654 * Most memory accesses are local. There is no need to
2655 * do fast NUMA scanning, since memory is already local.
2656 */
2657 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2658 if (!slot)
2659 slot = 1;
2660 diff = slot * period_slot;
2661 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2662 /*
2663 * Most memory accesses are shared with other tasks.
2664 * There is no point in continuing fast NUMA scanning,
2665 * since other tasks may just move the memory elsewhere.
2666 */
2667 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2668 if (!slot)
2669 slot = 1;
2670 diff = slot * period_slot;
2671 } else {
2672 /*
2673 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2674 * yet they are not on the local NUMA node. Speed up
2675 * NUMA scanning to get the memory moved over.
2676 */
2677 int ratio = max(lr_ratio, ps_ratio);
2678 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2679 }
2680
2681 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2682 task_scan_min(p), task_scan_max(p));
2683 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2684 }
2685
2686 /*
2687 * Get the fraction of time the task has been running since the last
2688 * NUMA placement cycle. The scheduler keeps similar statistics, but
2689 * decays those on a 32ms period, which is orders of magnitude off
2690 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2691 * stats only if the task is so new there are no NUMA statistics yet.
2692 */
2693 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2694 {
2695 u64 runtime, delta, now;
2696 /* Use the start of this time slice to avoid calculations. */
2697 now = p->se.exec_start;
2698 runtime = p->se.sum_exec_runtime;
2699
2700 if (p->last_task_numa_placement) {
2701 delta = runtime - p->last_sum_exec_runtime;
2702 *period = now - p->last_task_numa_placement;
2703
2704 /* Avoid time going backwards, prevent potential divide error: */
2705 if (unlikely((s64)*period < 0))
2706 *period = 0;
2707 } else {
2708 delta = p->se.avg.load_sum;
2709 *period = LOAD_AVG_MAX;
2710 }
2711
2712 p->last_sum_exec_runtime = runtime;
2713 p->last_task_numa_placement = now;
2714
2715 return delta;
2716 }
2717
2718 /*
2719 * Determine the preferred nid for a task in a numa_group. This needs to
2720 * be done in a way that produces consistent results with group_weight,
2721 * otherwise workloads might not converge.
2722 */
2723 static int preferred_group_nid(struct task_struct *p, int nid)
2724 {
2725 nodemask_t nodes;
2726 int dist;
2727
2728 /* Direct connections between all NUMA nodes. */
2729 if (sched_numa_topology_type == NUMA_DIRECT)
2730 return nid;
2731
2732 /*
2733 * On a system with glueless mesh NUMA topology, group_weight
2734 * scores nodes according to the number of NUMA hinting faults on
2735 * both the node itself, and on nearby nodes.
2736 */
2737 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2738 unsigned long score, max_score = 0;
2739 int node, max_node = nid;
2740
2741 dist = sched_max_numa_distance;
2742
2743 for_each_node_state(node, N_CPU) {
2744 score = group_weight(p, node, dist);
2745 if (score > max_score) {
2746 max_score = score;
2747 max_node = node;
2748 }
2749 }
2750 return max_node;
2751 }
2752
2753 /*
2754 * Finding the preferred nid in a system with NUMA backplane
2755 * interconnect topology is more involved. The goal is to locate
2756 * tasks from numa_groups near each other in the system, and
2757 * untangle workloads from different sides of the system. This requires
2758 * searching down the hierarchy of node groups, recursively searching
2759 * inside the highest scoring group of nodes. The nodemask tricks
2760 * keep the complexity of the search down.
2761 */
2762 nodes = node_states[N_CPU];
2763 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2764 unsigned long max_faults = 0;
2765 nodemask_t max_group = NODE_MASK_NONE;
2766 int a, b;
2767
2768 /* Are there nodes at this distance from each other? */
2769 if (!find_numa_distance(dist))
2770 continue;
2771
2772 for_each_node_mask(a, nodes) {
2773 unsigned long faults = 0;
2774 nodemask_t this_group;
2775 nodes_clear(this_group);
2776
2777 /* Sum group's NUMA faults; includes a==b case. */
2778 for_each_node_mask(b, nodes) {
2779 if (node_distance(a, b) < dist) {
2780 faults += group_faults(p, b);
2781 node_set(b, this_group);
2782 node_clear(b, nodes);
2783 }
2784 }
2785
2786 /* Remember the top group. */
2787 if (faults > max_faults) {
2788 max_faults = faults;
2789 max_group = this_group;
2790 /*
2791 * subtle: at the smallest distance there is
2792 * just one node left in each "group", the
2793 * winner is the preferred nid.
2794 */
2795 nid = a;
2796 }
2797 }
2798 /* Next round, evaluate the nodes within max_group. */
2799 if (!max_faults)
2800 break;
2801 nodes = max_group;
2802 }
2803 return nid;
2804 }
2805
2806 static void task_numa_placement(struct task_struct *p)
2807 {
2808 int seq, nid, max_nid = NUMA_NO_NODE;
2809 unsigned long max_faults = 0;
2810 unsigned long fault_types[2] = { 0, 0 };
2811 unsigned long total_faults;
2812 u64 runtime, period;
2813 spinlock_t *group_lock = NULL;
2814 struct numa_group *ng;
2815
2816 /*
2817 * The p->mm->numa_scan_seq field gets updated without
2818 * exclusive access. Use READ_ONCE() here to ensure
2819 * that the field is read in a single access:
2820 */
2821 seq = READ_ONCE(p->mm->numa_scan_seq);
2822 if (p->numa_scan_seq == seq)
2823 return;
2824 p->numa_scan_seq = seq;
2825 p->numa_scan_period_max = task_scan_max(p);
2826
2827 total_faults = p->numa_faults_locality[0] +
2828 p->numa_faults_locality[1];
2829 runtime = numa_get_avg_runtime(p, &period);
2830
2831 /* If the task is part of a group prevent parallel updates to group stats */
2832 ng = deref_curr_numa_group(p);
2833 if (ng) {
2834 group_lock = &ng->lock;
2835 spin_lock_irq(group_lock);
2836 }
2837
2838 /* Find the node with the highest number of faults */
2839 for_each_online_node(nid) {
2840 /* Keep track of the offsets in numa_faults array */
2841 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2842 unsigned long faults = 0, group_faults = 0;
2843 int priv;
2844
2845 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2846 long diff, f_diff, f_weight;
2847
2848 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2849 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2850 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2851 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2852
2853 /* Decay existing window, copy faults since last scan */
2854 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2855 fault_types[priv] += p->numa_faults[membuf_idx];
2856 p->numa_faults[membuf_idx] = 0;
2857
2858 /*
2859 * Normalize the faults_from, so all tasks in a group
2860 * count according to CPU use, instead of by the raw
2861 * number of faults. Tasks with little runtime have
2862 * little over-all impact on throughput, and thus their
2863 * faults are less important.
2864 */
2865 f_weight = div64_u64(runtime << 16, period + 1);
2866 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2867 (total_faults + 1);
2868 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2869 p->numa_faults[cpubuf_idx] = 0;
2870
2871 p->numa_faults[mem_idx] += diff;
2872 p->numa_faults[cpu_idx] += f_diff;
2873 faults += p->numa_faults[mem_idx];
2874 p->total_numa_faults += diff;
2875 if (ng) {
2876 /*
2877 * safe because we can only change our own group
2878 *
2879 * mem_idx represents the offset for a given
2880 * nid and priv in a specific region because it
2881 * is at the beginning of the numa_faults array.
2882 */
2883 ng->faults[mem_idx] += diff;
2884 ng->faults[cpu_idx] += f_diff;
2885 ng->total_faults += diff;
2886 group_faults += ng->faults[mem_idx];
2887 }
2888 }
2889
2890 if (!ng) {
2891 if (faults > max_faults) {
2892 max_faults = faults;
2893 max_nid = nid;
2894 }
2895 } else if (group_faults > max_faults) {
2896 max_faults = group_faults;
2897 max_nid = nid;
2898 }
2899 }
2900
2901 /* Cannot migrate task to CPU-less node */
2902 if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
2903 int near_nid = max_nid;
2904 int distance, near_distance = INT_MAX;
2905
2906 for_each_node_state(nid, N_CPU) {
2907 distance = node_distance(max_nid, nid);
2908 if (distance < near_distance) {
2909 near_nid = nid;
2910 near_distance = distance;
2911 }
2912 }
2913 max_nid = near_nid;
2914 }
2915
2916 if (ng) {
2917 numa_group_count_active_nodes(ng);
2918 spin_unlock_irq(group_lock);
2919 max_nid = preferred_group_nid(p, max_nid);
2920 }
2921
2922 if (max_faults) {
2923 /* Set the new preferred node */
2924 if (max_nid != p->numa_preferred_nid)
2925 sched_setnuma(p, max_nid);
2926 }
2927
2928 update_task_scan_period(p, fault_types[0], fault_types[1]);
2929 }
2930
2931 static inline int get_numa_group(struct numa_group *grp)
2932 {
2933 return refcount_inc_not_zero(&grp->refcount);
2934 }
2935
2936 static inline void put_numa_group(struct numa_group *grp)
2937 {
2938 if (refcount_dec_and_test(&grp->refcount))
2939 kfree_rcu(grp, rcu);
2940 }
2941
2942 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2943 int *priv)
2944 {
2945 struct numa_group *grp, *my_grp;
2946 struct task_struct *tsk;
2947 bool join = false;
2948 int cpu = cpupid_to_cpu(cpupid);
2949 int i;
2950
2951 if (unlikely(!deref_curr_numa_group(p))) {
2952 unsigned int size = sizeof(struct numa_group) +
2953 NR_NUMA_HINT_FAULT_STATS *
2954 nr_node_ids * sizeof(unsigned long);
2955
2956 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2957 if (!grp)
2958 return;
2959
2960 refcount_set(&grp->refcount, 1);
2961 grp->active_nodes = 1;
2962 grp->max_faults_cpu = 0;
2963 spin_lock_init(&grp->lock);
2964 grp->gid = p->pid;
2965
2966 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2967 grp->faults[i] = p->numa_faults[i];
2968
2969 grp->total_faults = p->total_numa_faults;
2970
2971 grp->nr_tasks++;
2972 rcu_assign_pointer(p->numa_group, grp);
2973 }
2974
2975 rcu_read_lock();
2976 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2977
2978 if (!cpupid_match_pid(tsk, cpupid))
2979 goto no_join;
2980
2981 grp = rcu_dereference(tsk->numa_group);
2982 if (!grp)
2983 goto no_join;
2984
2985 my_grp = deref_curr_numa_group(p);
2986 if (grp == my_grp)
2987 goto no_join;
2988
2989 /*
2990 * Only join the other group if its bigger; if we're the bigger group,
2991 * the other task will join us.
2992 */
2993 if (my_grp->nr_tasks > grp->nr_tasks)
2994 goto no_join;
2995
2996 /*
2997 * Tie-break on the grp address.
2998 */
2999 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3000 goto no_join;
3001
3002 /* Always join threads in the same process. */
3003 if (tsk->mm == current->mm)
3004 join = true;
3005
3006 /* Simple filter to avoid false positives due to PID collisions */
3007 if (flags & TNF_SHARED)
3008 join = true;
3009
3010 /* Update priv based on whether false sharing was detected */
3011 *priv = !join;
3012
3013 if (join && !get_numa_group(grp))
3014 goto no_join;
3015
3016 rcu_read_unlock();
3017
3018 if (!join)
3019 return;
3020
3021 WARN_ON_ONCE(irqs_disabled());
3022 double_lock_irq(&my_grp->lock, &grp->lock);
3023
3024 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3025 my_grp->faults[i] -= p->numa_faults[i];
3026 grp->faults[i] += p->numa_faults[i];
3027 }
3028 my_grp->total_faults -= p->total_numa_faults;
3029 grp->total_faults += p->total_numa_faults;
3030
3031 my_grp->nr_tasks--;
3032 grp->nr_tasks++;
3033
3034 spin_unlock(&my_grp->lock);
3035 spin_unlock_irq(&grp->lock);
3036
3037 rcu_assign_pointer(p->numa_group, grp);
3038
3039 put_numa_group(my_grp);
3040 return;
3041
3042 no_join:
3043 rcu_read_unlock();
3044 return;
3045 }
3046
3047 /*
3048 * Get rid of NUMA statistics associated with a task (either current or dead).
3049 * If @final is set, the task is dead and has reached refcount zero, so we can
3050 * safely free all relevant data structures. Otherwise, there might be
3051 * concurrent reads from places like load balancing and procfs, and we should
3052 * reset the data back to default state without freeing ->numa_faults.
3053 */
3054 void task_numa_free(struct task_struct *p, bool final)
3055 {
3056 /* safe: p either is current or is being freed by current */
3057 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3058 unsigned long *numa_faults = p->numa_faults;
3059 unsigned long flags;
3060 int i;
3061
3062 if (!numa_faults)
3063 return;
3064
3065 if (grp) {
3066 spin_lock_irqsave(&grp->lock, flags);
3067 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3068 grp->faults[i] -= p->numa_faults[i];
3069 grp->total_faults -= p->total_numa_faults;
3070
3071 grp->nr_tasks--;
3072 spin_unlock_irqrestore(&grp->lock, flags);
3073 RCU_INIT_POINTER(p->numa_group, NULL);
3074 put_numa_group(grp);
3075 }
3076
3077 if (final) {
3078 p->numa_faults = NULL;
3079 kfree(numa_faults);
3080 } else {
3081 p->total_numa_faults = 0;
3082 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3083 numa_faults[i] = 0;
3084 }
3085 }
3086
3087 /*
3088 * Got a PROT_NONE fault for a page on @node.
3089 */
3090 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3091 {
3092 struct task_struct *p = current;
3093 bool migrated = flags & TNF_MIGRATED;
3094 int cpu_node = task_node(current);
3095 int local = !!(flags & TNF_FAULT_LOCAL);
3096 struct numa_group *ng;
3097 int priv;
3098
3099 if (!static_branch_likely(&sched_numa_balancing))
3100 return;
3101
3102 /* for example, ksmd faulting in a user's mm */
3103 if (!p->mm)
3104 return;
3105
3106 /*
3107 * NUMA faults statistics are unnecessary for the slow memory
3108 * node for memory tiering mode.
3109 */
3110 if (!node_is_toptier(mem_node) &&
3111 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3112 !cpupid_valid(last_cpupid)))
3113 return;
3114
3115 /* Allocate buffer to track faults on a per-node basis */
3116 if (unlikely(!p->numa_faults)) {
3117 int size = sizeof(*p->numa_faults) *
3118 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3119
3120 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3121 if (!p->numa_faults)
3122 return;
3123
3124 p->total_numa_faults = 0;
3125 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3126 }
3127
3128 /*
3129 * First accesses are treated as private, otherwise consider accesses
3130 * to be private if the accessing pid has not changed
3131 */
3132 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3133 priv = 1;
3134 } else {
3135 priv = cpupid_match_pid(p, last_cpupid);
3136 if (!priv && !(flags & TNF_NO_GROUP))
3137 task_numa_group(p, last_cpupid, flags, &priv);
3138 }
3139
3140 /*
3141 * If a workload spans multiple NUMA nodes, a shared fault that
3142 * occurs wholly within the set of nodes that the workload is
3143 * actively using should be counted as local. This allows the
3144 * scan rate to slow down when a workload has settled down.
3145 */
3146 ng = deref_curr_numa_group(p);
3147 if (!priv && !local && ng && ng->active_nodes > 1 &&
3148 numa_is_active_node(cpu_node, ng) &&
3149 numa_is_active_node(mem_node, ng))
3150 local = 1;
3151
3152 /*
3153 * Retry to migrate task to preferred node periodically, in case it
3154 * previously failed, or the scheduler moved us.
3155 */
3156 if (time_after(jiffies, p->numa_migrate_retry)) {
3157 task_numa_placement(p);
3158 numa_migrate_preferred(p);
3159 }
3160
3161 if (migrated)
3162 p->numa_pages_migrated += pages;
3163 if (flags & TNF_MIGRATE_FAIL)
3164 p->numa_faults_locality[2] += pages;
3165
3166 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3167 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3168 p->numa_faults_locality[local] += pages;
3169 }
3170
3171 static void reset_ptenuma_scan(struct task_struct *p)
3172 {
3173 /*
3174 * We only did a read acquisition of the mmap sem, so
3175 * p->mm->numa_scan_seq is written to without exclusive access
3176 * and the update is not guaranteed to be atomic. That's not
3177 * much of an issue though, since this is just used for
3178 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3179 * expensive, to avoid any form of compiler optimizations:
3180 */
3181 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3182 p->mm->numa_scan_offset = 0;
3183 }
3184
3185 static bool vma_is_accessed(struct vm_area_struct *vma)
3186 {
3187 unsigned long pids;
3188 /*
3189 * Allow unconditional access first two times, so that all the (pages)
3190 * of VMAs get prot_none fault introduced irrespective of accesses.
3191 * This is also done to avoid any side effect of task scanning
3192 * amplifying the unfairness of disjoint set of VMAs' access.
3193 */
3194 if (READ_ONCE(current->mm->numa_scan_seq) < 2)
3195 return true;
3196
3197 pids = vma->numab_state->access_pids[0] | vma->numab_state->access_pids[1];
3198 return test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids);
3199 }
3200
3201 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3202
3203 /*
3204 * The expensive part of numa migration is done from task_work context.
3205 * Triggered from task_tick_numa().
3206 */
3207 static void task_numa_work(struct callback_head *work)
3208 {
3209 unsigned long migrate, next_scan, now = jiffies;
3210 struct task_struct *p = current;
3211 struct mm_struct *mm = p->mm;
3212 u64 runtime = p->se.sum_exec_runtime;
3213 struct vm_area_struct *vma;
3214 unsigned long start, end;
3215 unsigned long nr_pte_updates = 0;
3216 long pages, virtpages;
3217 struct vma_iterator vmi;
3218
3219 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3220
3221 work->next = work;
3222 /*
3223 * Who cares about NUMA placement when they're dying.
3224 *
3225 * NOTE: make sure not to dereference p->mm before this check,
3226 * exit_task_work() happens _after_ exit_mm() so we could be called
3227 * without p->mm even though we still had it when we enqueued this
3228 * work.
3229 */
3230 if (p->flags & PF_EXITING)
3231 return;
3232
3233 if (!mm->numa_next_scan) {
3234 mm->numa_next_scan = now +
3235 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3236 }
3237
3238 /*
3239 * Enforce maximal scan/migration frequency..
3240 */
3241 migrate = mm->numa_next_scan;
3242 if (time_before(now, migrate))
3243 return;
3244
3245 if (p->numa_scan_period == 0) {
3246 p->numa_scan_period_max = task_scan_max(p);
3247 p->numa_scan_period = task_scan_start(p);
3248 }
3249
3250 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3251 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3252 return;
3253
3254 /*
3255 * Delay this task enough that another task of this mm will likely win
3256 * the next time around.
3257 */
3258 p->node_stamp += 2 * TICK_NSEC;
3259
3260 start = mm->numa_scan_offset;
3261 pages = sysctl_numa_balancing_scan_size;
3262 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3263 virtpages = pages * 8; /* Scan up to this much virtual space */
3264 if (!pages)
3265 return;
3266
3267
3268 if (!mmap_read_trylock(mm))
3269 return;
3270 vma_iter_init(&vmi, mm, start);
3271 vma = vma_next(&vmi);
3272 if (!vma) {
3273 reset_ptenuma_scan(p);
3274 start = 0;
3275 vma_iter_set(&vmi, start);
3276 vma = vma_next(&vmi);
3277 }
3278
3279 do {
3280 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3281 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3282 continue;
3283 }
3284
3285 /*
3286 * Shared library pages mapped by multiple processes are not
3287 * migrated as it is expected they are cache replicated. Avoid
3288 * hinting faults in read-only file-backed mappings or the vdso
3289 * as migrating the pages will be of marginal benefit.
3290 */
3291 if (!vma->vm_mm ||
3292 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
3293 continue;
3294
3295 /*
3296 * Skip inaccessible VMAs to avoid any confusion between
3297 * PROT_NONE and NUMA hinting ptes
3298 */
3299 if (!vma_is_accessible(vma))
3300 continue;
3301
3302 /* Initialise new per-VMA NUMAB state. */
3303 if (!vma->numab_state) {
3304 vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
3305 GFP_KERNEL);
3306 if (!vma->numab_state)
3307 continue;
3308
3309 vma->numab_state->next_scan = now +
3310 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3311
3312 /* Reset happens after 4 times scan delay of scan start */
3313 vma->numab_state->next_pid_reset = vma->numab_state->next_scan +
3314 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3315 }
3316
3317 /*
3318 * Scanning the VMA's of short lived tasks add more overhead. So
3319 * delay the scan for new VMAs.
3320 */
3321 if (mm->numa_scan_seq && time_before(jiffies,
3322 vma->numab_state->next_scan))
3323 continue;
3324
3325 /* Do not scan the VMA if task has not accessed */
3326 if (!vma_is_accessed(vma))
3327 continue;
3328
3329 /*
3330 * RESET access PIDs regularly for old VMAs. Resetting after checking
3331 * vma for recent access to avoid clearing PID info before access..
3332 */
3333 if (mm->numa_scan_seq &&
3334 time_after(jiffies, vma->numab_state->next_pid_reset)) {
3335 vma->numab_state->next_pid_reset = vma->numab_state->next_pid_reset +
3336 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3337 vma->numab_state->access_pids[0] = READ_ONCE(vma->numab_state->access_pids[1]);
3338 vma->numab_state->access_pids[1] = 0;
3339 }
3340
3341 do {
3342 start = max(start, vma->vm_start);
3343 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3344 end = min(end, vma->vm_end);
3345 nr_pte_updates = change_prot_numa(vma, start, end);
3346
3347 /*
3348 * Try to scan sysctl_numa_balancing_size worth of
3349 * hpages that have at least one present PTE that
3350 * is not already pte-numa. If the VMA contains
3351 * areas that are unused or already full of prot_numa
3352 * PTEs, scan up to virtpages, to skip through those
3353 * areas faster.
3354 */
3355 if (nr_pte_updates)
3356 pages -= (end - start) >> PAGE_SHIFT;
3357 virtpages -= (end - start) >> PAGE_SHIFT;
3358
3359 start = end;
3360 if (pages <= 0 || virtpages <= 0)
3361 goto out;
3362
3363 cond_resched();
3364 } while (end != vma->vm_end);
3365 } for_each_vma(vmi, vma);
3366
3367 out:
3368 /*
3369 * It is possible to reach the end of the VMA list but the last few
3370 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3371 * would find the !migratable VMA on the next scan but not reset the
3372 * scanner to the start so check it now.
3373 */
3374 if (vma)
3375 mm->numa_scan_offset = start;
3376 else
3377 reset_ptenuma_scan(p);
3378 mmap_read_unlock(mm);
3379
3380 /*
3381 * Make sure tasks use at least 32x as much time to run other code
3382 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3383 * Usually update_task_scan_period slows down scanning enough; on an
3384 * overloaded system we need to limit overhead on a per task basis.
3385 */
3386 if (unlikely(p->se.sum_exec_runtime != runtime)) {
3387 u64 diff = p->se.sum_exec_runtime - runtime;
3388 p->node_stamp += 32 * diff;
3389 }
3390 }
3391
3392 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3393 {
3394 int mm_users = 0;
3395 struct mm_struct *mm = p->mm;
3396
3397 if (mm) {
3398 mm_users = atomic_read(&mm->mm_users);
3399 if (mm_users == 1) {
3400 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3401 mm->numa_scan_seq = 0;
3402 }
3403 }
3404 p->node_stamp = 0;
3405 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
3406 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
3407 p->numa_migrate_retry = 0;
3408 /* Protect against double add, see task_tick_numa and task_numa_work */
3409 p->numa_work.next = &p->numa_work;
3410 p->numa_faults = NULL;
3411 p->numa_pages_migrated = 0;
3412 p->total_numa_faults = 0;
3413 RCU_INIT_POINTER(p->numa_group, NULL);
3414 p->last_task_numa_placement = 0;
3415 p->last_sum_exec_runtime = 0;
3416
3417 init_task_work(&p->numa_work, task_numa_work);
3418
3419 /* New address space, reset the preferred nid */
3420 if (!(clone_flags & CLONE_VM)) {
3421 p->numa_preferred_nid = NUMA_NO_NODE;
3422 return;
3423 }
3424
3425 /*
3426 * New thread, keep existing numa_preferred_nid which should be copied
3427 * already by arch_dup_task_struct but stagger when scans start.
3428 */
3429 if (mm) {
3430 unsigned int delay;
3431
3432 delay = min_t(unsigned int, task_scan_max(current),
3433 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3434 delay += 2 * TICK_NSEC;
3435 p->node_stamp = delay;
3436 }
3437 }
3438
3439 /*
3440 * Drive the periodic memory faults..
3441 */
3442 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3443 {
3444 struct callback_head *work = &curr->numa_work;
3445 u64 period, now;
3446
3447 /*
3448 * We don't care about NUMA placement if we don't have memory.
3449 */
3450 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3451 return;
3452
3453 /*
3454 * Using runtime rather than walltime has the dual advantage that
3455 * we (mostly) drive the selection from busy threads and that the
3456 * task needs to have done some actual work before we bother with
3457 * NUMA placement.
3458 */
3459 now = curr->se.sum_exec_runtime;
3460 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3461
3462 if (now > curr->node_stamp + period) {
3463 if (!curr->node_stamp)
3464 curr->numa_scan_period = task_scan_start(curr);
3465 curr->node_stamp += period;
3466
3467 if (!time_before(jiffies, curr->mm->numa_next_scan))
3468 task_work_add(curr, work, TWA_RESUME);
3469 }
3470 }
3471
3472 static void update_scan_period(struct task_struct *p, int new_cpu)
3473 {
3474 int src_nid = cpu_to_node(task_cpu(p));
3475 int dst_nid = cpu_to_node(new_cpu);
3476
3477 if (!static_branch_likely(&sched_numa_balancing))
3478 return;
3479
3480 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3481 return;
3482
3483 if (src_nid == dst_nid)
3484 return;
3485
3486 /*
3487 * Allow resets if faults have been trapped before one scan
3488 * has completed. This is most likely due to a new task that
3489 * is pulled cross-node due to wakeups or load balancing.
3490 */
3491 if (p->numa_scan_seq) {
3492 /*
3493 * Avoid scan adjustments if moving to the preferred
3494 * node or if the task was not previously running on
3495 * the preferred node.
3496 */
3497 if (dst_nid == p->numa_preferred_nid ||
3498 (p->numa_preferred_nid != NUMA_NO_NODE &&
3499 src_nid != p->numa_preferred_nid))
3500 return;
3501 }
3502
3503 p->numa_scan_period = task_scan_start(p);
3504 }
3505
3506 #else
3507 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3508 {
3509 }
3510
3511 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3512 {
3513 }
3514
3515 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3516 {
3517 }
3518
3519 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3520 {
3521 }
3522
3523 #endif /* CONFIG_NUMA_BALANCING */
3524
3525 static void
3526 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3527 {
3528 update_load_add(&cfs_rq->load, se->load.weight);
3529 #ifdef CONFIG_SMP
3530 if (entity_is_task(se)) {
3531 struct rq *rq = rq_of(cfs_rq);
3532
3533 account_numa_enqueue(rq, task_of(se));
3534 list_add(&se->group_node, &rq->cfs_tasks);
3535 }
3536 #endif
3537 cfs_rq->nr_running++;
3538 if (se_is_idle(se))
3539 cfs_rq->idle_nr_running++;
3540 }
3541
3542 static void
3543 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3544 {
3545 update_load_sub(&cfs_rq->load, se->load.weight);
3546 #ifdef CONFIG_SMP
3547 if (entity_is_task(se)) {
3548 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3549 list_del_init(&se->group_node);
3550 }
3551 #endif
3552 cfs_rq->nr_running--;
3553 if (se_is_idle(se))
3554 cfs_rq->idle_nr_running--;
3555 }
3556
3557 /*
3558 * Signed add and clamp on underflow.
3559 *
3560 * Explicitly do a load-store to ensure the intermediate value never hits
3561 * memory. This allows lockless observations without ever seeing the negative
3562 * values.
3563 */
3564 #define add_positive(_ptr, _val) do { \
3565 typeof(_ptr) ptr = (_ptr); \
3566 typeof(_val) val = (_val); \
3567 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3568 \
3569 res = var + val; \
3570 \
3571 if (val < 0 && res > var) \
3572 res = 0; \
3573 \
3574 WRITE_ONCE(*ptr, res); \
3575 } while (0)
3576
3577 /*
3578 * Unsigned subtract and clamp on underflow.
3579 *
3580 * Explicitly do a load-store to ensure the intermediate value never hits
3581 * memory. This allows lockless observations without ever seeing the negative
3582 * values.
3583 */
3584 #define sub_positive(_ptr, _val) do { \
3585 typeof(_ptr) ptr = (_ptr); \
3586 typeof(*ptr) val = (_val); \
3587 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3588 res = var - val; \
3589 if (res > var) \
3590 res = 0; \
3591 WRITE_ONCE(*ptr, res); \
3592 } while (0)
3593
3594 /*
3595 * Remove and clamp on negative, from a local variable.
3596 *
3597 * A variant of sub_positive(), which does not use explicit load-store
3598 * and is thus optimized for local variable updates.
3599 */
3600 #define lsub_positive(_ptr, _val) do { \
3601 typeof(_ptr) ptr = (_ptr); \
3602 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3603 } while (0)
3604
3605 #ifdef CONFIG_SMP
3606 static inline void
3607 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3608 {
3609 cfs_rq->avg.load_avg += se->avg.load_avg;
3610 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3611 }
3612
3613 static inline void
3614 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3615 {
3616 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3617 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3618 /* See update_cfs_rq_load_avg() */
3619 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3620 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3621 }
3622 #else
3623 static inline void
3624 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3625 static inline void
3626 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3627 #endif
3628
3629 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3630 unsigned long weight)
3631 {
3632 unsigned long old_weight = se->load.weight;
3633
3634 if (se->on_rq) {
3635 /* commit outstanding execution time */
3636 if (cfs_rq->curr == se)
3637 update_curr(cfs_rq);
3638 else
3639 avg_vruntime_sub(cfs_rq, se);
3640 update_load_sub(&cfs_rq->load, se->load.weight);
3641 }
3642 dequeue_load_avg(cfs_rq, se);
3643
3644 update_load_set(&se->load, weight);
3645
3646 if (!se->on_rq) {
3647 /*
3648 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3649 * we need to scale se->vlag when w_i changes.
3650 */
3651 se->vlag = div_s64(se->vlag * old_weight, weight);
3652 } else {
3653 s64 deadline = se->deadline - se->vruntime;
3654 /*
3655 * When the weight changes, the virtual time slope changes and
3656 * we should adjust the relative virtual deadline accordingly.
3657 */
3658 deadline = div_s64(deadline * old_weight, weight);
3659 se->deadline = se->vruntime + deadline;
3660 if (se != cfs_rq->curr)
3661 min_deadline_cb_propagate(&se->run_node, NULL);
3662 }
3663
3664 #ifdef CONFIG_SMP
3665 do {
3666 u32 divider = get_pelt_divider(&se->avg);
3667
3668 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3669 } while (0);
3670 #endif
3671
3672 enqueue_load_avg(cfs_rq, se);
3673 if (se->on_rq) {
3674 update_load_add(&cfs_rq->load, se->load.weight);
3675 if (cfs_rq->curr != se)
3676 avg_vruntime_add(cfs_rq, se);
3677 }
3678 }
3679
3680 void reweight_task(struct task_struct *p, int prio)
3681 {
3682 struct sched_entity *se = &p->se;
3683 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3684 struct load_weight *load = &se->load;
3685 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3686
3687 reweight_entity(cfs_rq, se, weight);
3688 load->inv_weight = sched_prio_to_wmult[prio];
3689 }
3690
3691 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3692
3693 #ifdef CONFIG_FAIR_GROUP_SCHED
3694 #ifdef CONFIG_SMP
3695 /*
3696 * All this does is approximate the hierarchical proportion which includes that
3697 * global sum we all love to hate.
3698 *
3699 * That is, the weight of a group entity, is the proportional share of the
3700 * group weight based on the group runqueue weights. That is:
3701 *
3702 * tg->weight * grq->load.weight
3703 * ge->load.weight = ----------------------------- (1)
3704 * \Sum grq->load.weight
3705 *
3706 * Now, because computing that sum is prohibitively expensive to compute (been
3707 * there, done that) we approximate it with this average stuff. The average
3708 * moves slower and therefore the approximation is cheaper and more stable.
3709 *
3710 * So instead of the above, we substitute:
3711 *
3712 * grq->load.weight -> grq->avg.load_avg (2)
3713 *
3714 * which yields the following:
3715 *
3716 * tg->weight * grq->avg.load_avg
3717 * ge->load.weight = ------------------------------ (3)
3718 * tg->load_avg
3719 *
3720 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3721 *
3722 * That is shares_avg, and it is right (given the approximation (2)).
3723 *
3724 * The problem with it is that because the average is slow -- it was designed
3725 * to be exactly that of course -- this leads to transients in boundary
3726 * conditions. In specific, the case where the group was idle and we start the
3727 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3728 * yielding bad latency etc..
3729 *
3730 * Now, in that special case (1) reduces to:
3731 *
3732 * tg->weight * grq->load.weight
3733 * ge->load.weight = ----------------------------- = tg->weight (4)
3734 * grp->load.weight
3735 *
3736 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3737 *
3738 * So what we do is modify our approximation (3) to approach (4) in the (near)
3739 * UP case, like:
3740 *
3741 * ge->load.weight =
3742 *
3743 * tg->weight * grq->load.weight
3744 * --------------------------------------------------- (5)
3745 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3746 *
3747 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3748 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3749 *
3750 *
3751 * tg->weight * grq->load.weight
3752 * ge->load.weight = ----------------------------- (6)
3753 * tg_load_avg'
3754 *
3755 * Where:
3756 *
3757 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3758 * max(grq->load.weight, grq->avg.load_avg)
3759 *
3760 * And that is shares_weight and is icky. In the (near) UP case it approaches
3761 * (4) while in the normal case it approaches (3). It consistently
3762 * overestimates the ge->load.weight and therefore:
3763 *
3764 * \Sum ge->load.weight >= tg->weight
3765 *
3766 * hence icky!
3767 */
3768 static long calc_group_shares(struct cfs_rq *cfs_rq)
3769 {
3770 long tg_weight, tg_shares, load, shares;
3771 struct task_group *tg = cfs_rq->tg;
3772
3773 tg_shares = READ_ONCE(tg->shares);
3774
3775 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3776
3777 tg_weight = atomic_long_read(&tg->load_avg);
3778
3779 /* Ensure tg_weight >= load */
3780 tg_weight -= cfs_rq->tg_load_avg_contrib;
3781 tg_weight += load;
3782
3783 shares = (tg_shares * load);
3784 if (tg_weight)
3785 shares /= tg_weight;
3786
3787 /*
3788 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3789 * of a group with small tg->shares value. It is a floor value which is
3790 * assigned as a minimum load.weight to the sched_entity representing
3791 * the group on a CPU.
3792 *
3793 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3794 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3795 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3796 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3797 * instead of 0.
3798 */
3799 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3800 }
3801 #endif /* CONFIG_SMP */
3802
3803 /*
3804 * Recomputes the group entity based on the current state of its group
3805 * runqueue.
3806 */
3807 static void update_cfs_group(struct sched_entity *se)
3808 {
3809 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3810 long shares;
3811
3812 if (!gcfs_rq)
3813 return;
3814
3815 if (throttled_hierarchy(gcfs_rq))
3816 return;
3817
3818 #ifndef CONFIG_SMP
3819 shares = READ_ONCE(gcfs_rq->tg->shares);
3820
3821 if (likely(se->load.weight == shares))
3822 return;
3823 #else
3824 shares = calc_group_shares(gcfs_rq);
3825 #endif
3826
3827 reweight_entity(cfs_rq_of(se), se, shares);
3828 }
3829
3830 #else /* CONFIG_FAIR_GROUP_SCHED */
3831 static inline void update_cfs_group(struct sched_entity *se)
3832 {
3833 }
3834 #endif /* CONFIG_FAIR_GROUP_SCHED */
3835
3836 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3837 {
3838 struct rq *rq = rq_of(cfs_rq);
3839
3840 if (&rq->cfs == cfs_rq) {
3841 /*
3842 * There are a few boundary cases this might miss but it should
3843 * get called often enough that that should (hopefully) not be
3844 * a real problem.
3845 *
3846 * It will not get called when we go idle, because the idle
3847 * thread is a different class (!fair), nor will the utilization
3848 * number include things like RT tasks.
3849 *
3850 * As is, the util number is not freq-invariant (we'd have to
3851 * implement arch_scale_freq_capacity() for that).
3852 *
3853 * See cpu_util_cfs().
3854 */
3855 cpufreq_update_util(rq, flags);
3856 }
3857 }
3858
3859 #ifdef CONFIG_SMP
3860 static inline bool load_avg_is_decayed(struct sched_avg *sa)
3861 {
3862 if (sa->load_sum)
3863 return false;
3864
3865 if (sa->util_sum)
3866 return false;
3867
3868 if (sa->runnable_sum)
3869 return false;
3870
3871 /*
3872 * _avg must be null when _sum are null because _avg = _sum / divider
3873 * Make sure that rounding and/or propagation of PELT values never
3874 * break this.
3875 */
3876 SCHED_WARN_ON(sa->load_avg ||
3877 sa->util_avg ||
3878 sa->runnable_avg);
3879
3880 return true;
3881 }
3882
3883 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3884 {
3885 return u64_u32_load_copy(cfs_rq->avg.last_update_time,
3886 cfs_rq->last_update_time_copy);
3887 }
3888 #ifdef CONFIG_FAIR_GROUP_SCHED
3889 /*
3890 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3891 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3892 * bottom-up, we only have to test whether the cfs_rq before us on the list
3893 * is our child.
3894 * If cfs_rq is not on the list, test whether a child needs its to be added to
3895 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
3896 */
3897 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3898 {
3899 struct cfs_rq *prev_cfs_rq;
3900 struct list_head *prev;
3901
3902 if (cfs_rq->on_list) {
3903 prev = cfs_rq->leaf_cfs_rq_list.prev;
3904 } else {
3905 struct rq *rq = rq_of(cfs_rq);
3906
3907 prev = rq->tmp_alone_branch;
3908 }
3909
3910 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3911
3912 return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3913 }
3914
3915 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3916 {
3917 if (cfs_rq->load.weight)
3918 return false;
3919
3920 if (!load_avg_is_decayed(&cfs_rq->avg))
3921 return false;
3922
3923 if (child_cfs_rq_on_list(cfs_rq))
3924 return false;
3925
3926 return true;
3927 }
3928
3929 /**
3930 * update_tg_load_avg - update the tg's load avg
3931 * @cfs_rq: the cfs_rq whose avg changed
3932 *
3933 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3934 * However, because tg->load_avg is a global value there are performance
3935 * considerations.
3936 *
3937 * In order to avoid having to look at the other cfs_rq's, we use a
3938 * differential update where we store the last value we propagated. This in
3939 * turn allows skipping updates if the differential is 'small'.
3940 *
3941 * Updating tg's load_avg is necessary before update_cfs_share().
3942 */
3943 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3944 {
3945 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3946
3947 /*
3948 * No need to update load_avg for root_task_group as it is not used.
3949 */
3950 if (cfs_rq->tg == &root_task_group)
3951 return;
3952
3953 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3954 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3955 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3956 }
3957 }
3958
3959 /*
3960 * Called within set_task_rq() right before setting a task's CPU. The
3961 * caller only guarantees p->pi_lock is held; no other assumptions,
3962 * including the state of rq->lock, should be made.
3963 */
3964 void set_task_rq_fair(struct sched_entity *se,
3965 struct cfs_rq *prev, struct cfs_rq *next)
3966 {
3967 u64 p_last_update_time;
3968 u64 n_last_update_time;
3969
3970 if (!sched_feat(ATTACH_AGE_LOAD))
3971 return;
3972
3973 /*
3974 * We are supposed to update the task to "current" time, then its up to
3975 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3976 * getting what current time is, so simply throw away the out-of-date
3977 * time. This will result in the wakee task is less decayed, but giving
3978 * the wakee more load sounds not bad.
3979 */
3980 if (!(se->avg.last_update_time && prev))
3981 return;
3982
3983 p_last_update_time = cfs_rq_last_update_time(prev);
3984 n_last_update_time = cfs_rq_last_update_time(next);
3985
3986 __update_load_avg_blocked_se(p_last_update_time, se);
3987 se->avg.last_update_time = n_last_update_time;
3988 }
3989
3990 /*
3991 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3992 * propagate its contribution. The key to this propagation is the invariant
3993 * that for each group:
3994 *
3995 * ge->avg == grq->avg (1)
3996 *
3997 * _IFF_ we look at the pure running and runnable sums. Because they
3998 * represent the very same entity, just at different points in the hierarchy.
3999 *
4000 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4001 * and simply copies the running/runnable sum over (but still wrong, because
4002 * the group entity and group rq do not have their PELT windows aligned).
4003 *
4004 * However, update_tg_cfs_load() is more complex. So we have:
4005 *
4006 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
4007 *
4008 * And since, like util, the runnable part should be directly transferable,
4009 * the following would _appear_ to be the straight forward approach:
4010 *
4011 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
4012 *
4013 * And per (1) we have:
4014 *
4015 * ge->avg.runnable_avg == grq->avg.runnable_avg
4016 *
4017 * Which gives:
4018 *
4019 * ge->load.weight * grq->avg.load_avg
4020 * ge->avg.load_avg = ----------------------------------- (4)
4021 * grq->load.weight
4022 *
4023 * Except that is wrong!
4024 *
4025 * Because while for entities historical weight is not important and we
4026 * really only care about our future and therefore can consider a pure
4027 * runnable sum, runqueues can NOT do this.
4028 *
4029 * We specifically want runqueues to have a load_avg that includes
4030 * historical weights. Those represent the blocked load, the load we expect
4031 * to (shortly) return to us. This only works by keeping the weights as
4032 * integral part of the sum. We therefore cannot decompose as per (3).
4033 *
4034 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4035 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4036 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4037 * runnable section of these tasks overlap (or not). If they were to perfectly
4038 * align the rq as a whole would be runnable 2/3 of the time. If however we
4039 * always have at least 1 runnable task, the rq as a whole is always runnable.
4040 *
4041 * So we'll have to approximate.. :/
4042 *
4043 * Given the constraint:
4044 *
4045 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4046 *
4047 * We can construct a rule that adds runnable to a rq by assuming minimal
4048 * overlap.
4049 *
4050 * On removal, we'll assume each task is equally runnable; which yields:
4051 *
4052 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4053 *
4054 * XXX: only do this for the part of runnable > running ?
4055 *
4056 */
4057 static inline void
4058 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4059 {
4060 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4061 u32 new_sum, divider;
4062
4063 /* Nothing to update */
4064 if (!delta_avg)
4065 return;
4066
4067 /*
4068 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4069 * See ___update_load_avg() for details.
4070 */
4071 divider = get_pelt_divider(&cfs_rq->avg);
4072
4073
4074 /* Set new sched_entity's utilization */
4075 se->avg.util_avg = gcfs_rq->avg.util_avg;
4076 new_sum = se->avg.util_avg * divider;
4077 delta_sum = (long)new_sum - (long)se->avg.util_sum;
4078 se->avg.util_sum = new_sum;
4079
4080 /* Update parent cfs_rq utilization */
4081 add_positive(&cfs_rq->avg.util_avg, delta_avg);
4082 add_positive(&cfs_rq->avg.util_sum, delta_sum);
4083
4084 /* See update_cfs_rq_load_avg() */
4085 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4086 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4087 }
4088
4089 static inline void
4090 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4091 {
4092 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4093 u32 new_sum, divider;
4094
4095 /* Nothing to update */
4096 if (!delta_avg)
4097 return;
4098
4099 /*
4100 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4101 * See ___update_load_avg() for details.
4102 */
4103 divider = get_pelt_divider(&cfs_rq->avg);
4104
4105 /* Set new sched_entity's runnable */
4106 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4107 new_sum = se->avg.runnable_avg * divider;
4108 delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4109 se->avg.runnable_sum = new_sum;
4110
4111 /* Update parent cfs_rq runnable */
4112 add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4113 add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4114 /* See update_cfs_rq_load_avg() */
4115 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4116 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4117 }
4118
4119 static inline void
4120 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4121 {
4122 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4123 unsigned long load_avg;
4124 u64 load_sum = 0;
4125 s64 delta_sum;
4126 u32 divider;
4127
4128 if (!runnable_sum)
4129 return;
4130
4131 gcfs_rq->prop_runnable_sum = 0;
4132
4133 /*
4134 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4135 * See ___update_load_avg() for details.
4136 */
4137 divider = get_pelt_divider(&cfs_rq->avg);
4138
4139 if (runnable_sum >= 0) {
4140 /*
4141 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4142 * the CPU is saturated running == runnable.
4143 */
4144 runnable_sum += se->avg.load_sum;
4145 runnable_sum = min_t(long, runnable_sum, divider);
4146 } else {
4147 /*
4148 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4149 * assuming all tasks are equally runnable.
4150 */
4151 if (scale_load_down(gcfs_rq->load.weight)) {
4152 load_sum = div_u64(gcfs_rq->avg.load_sum,
4153 scale_load_down(gcfs_rq->load.weight));
4154 }
4155
4156 /* But make sure to not inflate se's runnable */
4157 runnable_sum = min(se->avg.load_sum, load_sum);
4158 }
4159
4160 /*
4161 * runnable_sum can't be lower than running_sum
4162 * Rescale running sum to be in the same range as runnable sum
4163 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
4164 * runnable_sum is in [0 : LOAD_AVG_MAX]
4165 */
4166 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4167 runnable_sum = max(runnable_sum, running_sum);
4168
4169 load_sum = se_weight(se) * runnable_sum;
4170 load_avg = div_u64(load_sum, divider);
4171
4172 delta_avg = load_avg - se->avg.load_avg;
4173 if (!delta_avg)
4174 return;
4175
4176 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4177
4178 se->avg.load_sum = runnable_sum;
4179 se->avg.load_avg = load_avg;
4180 add_positive(&cfs_rq->avg.load_avg, delta_avg);
4181 add_positive(&cfs_rq->avg.load_sum, delta_sum);
4182 /* See update_cfs_rq_load_avg() */
4183 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4184 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4185 }
4186
4187 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4188 {
4189 cfs_rq->propagate = 1;
4190 cfs_rq->prop_runnable_sum += runnable_sum;
4191 }
4192
4193 /* Update task and its cfs_rq load average */
4194 static inline int propagate_entity_load_avg(struct sched_entity *se)
4195 {
4196 struct cfs_rq *cfs_rq, *gcfs_rq;
4197
4198 if (entity_is_task(se))
4199 return 0;
4200
4201 gcfs_rq = group_cfs_rq(se);
4202 if (!gcfs_rq->propagate)
4203 return 0;
4204
4205 gcfs_rq->propagate = 0;
4206
4207 cfs_rq = cfs_rq_of(se);
4208
4209 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4210
4211 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4212 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4213 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4214
4215 trace_pelt_cfs_tp(cfs_rq);
4216 trace_pelt_se_tp(se);
4217
4218 return 1;
4219 }
4220
4221 /*
4222 * Check if we need to update the load and the utilization of a blocked
4223 * group_entity:
4224 */
4225 static inline bool skip_blocked_update(struct sched_entity *se)
4226 {
4227 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4228
4229 /*
4230 * If sched_entity still have not zero load or utilization, we have to
4231 * decay it:
4232 */
4233 if (se->avg.load_avg || se->avg.util_avg)
4234 return false;
4235
4236 /*
4237 * If there is a pending propagation, we have to update the load and
4238 * the utilization of the sched_entity:
4239 */
4240 if (gcfs_rq->propagate)
4241 return false;
4242
4243 /*
4244 * Otherwise, the load and the utilization of the sched_entity is
4245 * already zero and there is no pending propagation, so it will be a
4246 * waste of time to try to decay it:
4247 */
4248 return true;
4249 }
4250
4251 #else /* CONFIG_FAIR_GROUP_SCHED */
4252
4253 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4254
4255 static inline int propagate_entity_load_avg(struct sched_entity *se)
4256 {
4257 return 0;
4258 }
4259
4260 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4261
4262 #endif /* CONFIG_FAIR_GROUP_SCHED */
4263
4264 #ifdef CONFIG_NO_HZ_COMMON
4265 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4266 {
4267 u64 throttled = 0, now, lut;
4268 struct cfs_rq *cfs_rq;
4269 struct rq *rq;
4270 bool is_idle;
4271
4272 if (load_avg_is_decayed(&se->avg))
4273 return;
4274
4275 cfs_rq = cfs_rq_of(se);
4276 rq = rq_of(cfs_rq);
4277
4278 rcu_read_lock();
4279 is_idle = is_idle_task(rcu_dereference(rq->curr));
4280 rcu_read_unlock();
4281
4282 /*
4283 * The lag estimation comes with a cost we don't want to pay all the
4284 * time. Hence, limiting to the case where the source CPU is idle and
4285 * we know we are at the greatest risk to have an outdated clock.
4286 */
4287 if (!is_idle)
4288 return;
4289
4290 /*
4291 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4292 *
4293 * last_update_time (the cfs_rq's last_update_time)
4294 * = cfs_rq_clock_pelt()@cfs_rq_idle
4295 * = rq_clock_pelt()@cfs_rq_idle
4296 * - cfs->throttled_clock_pelt_time@cfs_rq_idle
4297 *
4298 * cfs_idle_lag (delta between rq's update and cfs_rq's update)
4299 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4300 *
4301 * rq_idle_lag (delta between now and rq's update)
4302 * = sched_clock_cpu() - rq_clock()@rq_idle
4303 *
4304 * We can then write:
4305 *
4306 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4307 * sched_clock_cpu() - rq_clock()@rq_idle
4308 * Where:
4309 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4310 * rq_clock()@rq_idle is rq->clock_idle
4311 * cfs->throttled_clock_pelt_time@cfs_rq_idle
4312 * is cfs_rq->throttled_pelt_idle
4313 */
4314
4315 #ifdef CONFIG_CFS_BANDWIDTH
4316 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4317 /* The clock has been stopped for throttling */
4318 if (throttled == U64_MAX)
4319 return;
4320 #endif
4321 now = u64_u32_load(rq->clock_pelt_idle);
4322 /*
4323 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4324 * is observed the old clock_pelt_idle value and the new clock_idle,
4325 * which lead to an underestimation. The opposite would lead to an
4326 * overestimation.
4327 */
4328 smp_rmb();
4329 lut = cfs_rq_last_update_time(cfs_rq);
4330
4331 now -= throttled;
4332 if (now < lut)
4333 /*
4334 * cfs_rq->avg.last_update_time is more recent than our
4335 * estimation, let's use it.
4336 */
4337 now = lut;
4338 else
4339 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4340
4341 __update_load_avg_blocked_se(now, se);
4342 }
4343 #else
4344 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4345 #endif
4346
4347 /**
4348 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4349 * @now: current time, as per cfs_rq_clock_pelt()
4350 * @cfs_rq: cfs_rq to update
4351 *
4352 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4353 * avg. The immediate corollary is that all (fair) tasks must be attached.
4354 *
4355 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4356 *
4357 * Return: true if the load decayed or we removed load.
4358 *
4359 * Since both these conditions indicate a changed cfs_rq->avg.load we should
4360 * call update_tg_load_avg() when this function returns true.
4361 */
4362 static inline int
4363 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4364 {
4365 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4366 struct sched_avg *sa = &cfs_rq->avg;
4367 int decayed = 0;
4368
4369 if (cfs_rq->removed.nr) {
4370 unsigned long r;
4371 u32 divider = get_pelt_divider(&cfs_rq->avg);
4372
4373 raw_spin_lock(&cfs_rq->removed.lock);
4374 swap(cfs_rq->removed.util_avg, removed_util);
4375 swap(cfs_rq->removed.load_avg, removed_load);
4376 swap(cfs_rq->removed.runnable_avg, removed_runnable);
4377 cfs_rq->removed.nr = 0;
4378 raw_spin_unlock(&cfs_rq->removed.lock);
4379
4380 r = removed_load;
4381 sub_positive(&sa->load_avg, r);
4382 sub_positive(&sa->load_sum, r * divider);
4383 /* See sa->util_sum below */
4384 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4385
4386 r = removed_util;
4387 sub_positive(&sa->util_avg, r);
4388 sub_positive(&sa->util_sum, r * divider);
4389 /*
4390 * Because of rounding, se->util_sum might ends up being +1 more than
4391 * cfs->util_sum. Although this is not a problem by itself, detaching
4392 * a lot of tasks with the rounding problem between 2 updates of
4393 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4394 * cfs_util_avg is not.
4395 * Check that util_sum is still above its lower bound for the new
4396 * util_avg. Given that period_contrib might have moved since the last
4397 * sync, we are only sure that util_sum must be above or equal to
4398 * util_avg * minimum possible divider
4399 */
4400 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4401
4402 r = removed_runnable;
4403 sub_positive(&sa->runnable_avg, r);
4404 sub_positive(&sa->runnable_sum, r * divider);
4405 /* See sa->util_sum above */
4406 sa->runnable_sum = max_t(u32, sa->runnable_sum,
4407 sa->runnable_avg * PELT_MIN_DIVIDER);
4408
4409 /*
4410 * removed_runnable is the unweighted version of removed_load so we
4411 * can use it to estimate removed_load_sum.
4412 */
4413 add_tg_cfs_propagate(cfs_rq,
4414 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4415
4416 decayed = 1;
4417 }
4418
4419 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4420 u64_u32_store_copy(sa->last_update_time,
4421 cfs_rq->last_update_time_copy,
4422 sa->last_update_time);
4423 return decayed;
4424 }
4425
4426 /**
4427 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4428 * @cfs_rq: cfs_rq to attach to
4429 * @se: sched_entity to attach
4430 *
4431 * Must call update_cfs_rq_load_avg() before this, since we rely on
4432 * cfs_rq->avg.last_update_time being current.
4433 */
4434 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4435 {
4436 /*
4437 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4438 * See ___update_load_avg() for details.
4439 */
4440 u32 divider = get_pelt_divider(&cfs_rq->avg);
4441
4442 /*
4443 * When we attach the @se to the @cfs_rq, we must align the decay
4444 * window because without that, really weird and wonderful things can
4445 * happen.
4446 *
4447 * XXX illustrate
4448 */
4449 se->avg.last_update_time = cfs_rq->avg.last_update_time;
4450 se->avg.period_contrib = cfs_rq->avg.period_contrib;
4451
4452 /*
4453 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4454 * period_contrib. This isn't strictly correct, but since we're
4455 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4456 * _sum a little.
4457 */
4458 se->avg.util_sum = se->avg.util_avg * divider;
4459
4460 se->avg.runnable_sum = se->avg.runnable_avg * divider;
4461
4462 se->avg.load_sum = se->avg.load_avg * divider;
4463 if (se_weight(se) < se->avg.load_sum)
4464 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4465 else
4466 se->avg.load_sum = 1;
4467
4468 enqueue_load_avg(cfs_rq, se);
4469 cfs_rq->avg.util_avg += se->avg.util_avg;
4470 cfs_rq->avg.util_sum += se->avg.util_sum;
4471 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4472 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4473
4474 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4475
4476 cfs_rq_util_change(cfs_rq, 0);
4477
4478 trace_pelt_cfs_tp(cfs_rq);
4479 }
4480
4481 /**
4482 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4483 * @cfs_rq: cfs_rq to detach from
4484 * @se: sched_entity to detach
4485 *
4486 * Must call update_cfs_rq_load_avg() before this, since we rely on
4487 * cfs_rq->avg.last_update_time being current.
4488 */
4489 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4490 {
4491 dequeue_load_avg(cfs_rq, se);
4492 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4493 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4494 /* See update_cfs_rq_load_avg() */
4495 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4496 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4497
4498 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4499 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4500 /* See update_cfs_rq_load_avg() */
4501 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4502 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4503
4504 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4505
4506 cfs_rq_util_change(cfs_rq, 0);
4507
4508 trace_pelt_cfs_tp(cfs_rq);
4509 }
4510
4511 /*
4512 * Optional action to be done while updating the load average
4513 */
4514 #define UPDATE_TG 0x1
4515 #define SKIP_AGE_LOAD 0x2
4516 #define DO_ATTACH 0x4
4517 #define DO_DETACH 0x8
4518
4519 /* Update task and its cfs_rq load average */
4520 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4521 {
4522 u64 now = cfs_rq_clock_pelt(cfs_rq);
4523 int decayed;
4524
4525 /*
4526 * Track task load average for carrying it to new CPU after migrated, and
4527 * track group sched_entity load average for task_h_load calc in migration
4528 */
4529 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4530 __update_load_avg_se(now, cfs_rq, se);
4531
4532 decayed = update_cfs_rq_load_avg(now, cfs_rq);
4533 decayed |= propagate_entity_load_avg(se);
4534
4535 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4536
4537 /*
4538 * DO_ATTACH means we're here from enqueue_entity().
4539 * !last_update_time means we've passed through
4540 * migrate_task_rq_fair() indicating we migrated.
4541 *
4542 * IOW we're enqueueing a task on a new CPU.
4543 */
4544 attach_entity_load_avg(cfs_rq, se);
4545 update_tg_load_avg(cfs_rq);
4546
4547 } else if (flags & DO_DETACH) {
4548 /*
4549 * DO_DETACH means we're here from dequeue_entity()
4550 * and we are migrating task out of the CPU.
4551 */
4552 detach_entity_load_avg(cfs_rq, se);
4553 update_tg_load_avg(cfs_rq);
4554 } else if (decayed) {
4555 cfs_rq_util_change(cfs_rq, 0);
4556
4557 if (flags & UPDATE_TG)
4558 update_tg_load_avg(cfs_rq);
4559 }
4560 }
4561
4562 /*
4563 * Synchronize entity load avg of dequeued entity without locking
4564 * the previous rq.
4565 */
4566 static void sync_entity_load_avg(struct sched_entity *se)
4567 {
4568 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4569 u64 last_update_time;
4570
4571 last_update_time = cfs_rq_last_update_time(cfs_rq);
4572 __update_load_avg_blocked_se(last_update_time, se);
4573 }
4574
4575 /*
4576 * Task first catches up with cfs_rq, and then subtract
4577 * itself from the cfs_rq (task must be off the queue now).
4578 */
4579 static void remove_entity_load_avg(struct sched_entity *se)
4580 {
4581 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4582 unsigned long flags;
4583
4584 /*
4585 * tasks cannot exit without having gone through wake_up_new_task() ->
4586 * enqueue_task_fair() which will have added things to the cfs_rq,
4587 * so we can remove unconditionally.
4588 */
4589
4590 sync_entity_load_avg(se);
4591
4592 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4593 ++cfs_rq->removed.nr;
4594 cfs_rq->removed.util_avg += se->avg.util_avg;
4595 cfs_rq->removed.load_avg += se->avg.load_avg;
4596 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
4597 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4598 }
4599
4600 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4601 {
4602 return cfs_rq->avg.runnable_avg;
4603 }
4604
4605 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4606 {
4607 return cfs_rq->avg.load_avg;
4608 }
4609
4610 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4611
4612 static inline unsigned long task_util(struct task_struct *p)
4613 {
4614 return READ_ONCE(p->se.avg.util_avg);
4615 }
4616
4617 static inline unsigned long _task_util_est(struct task_struct *p)
4618 {
4619 struct util_est ue = READ_ONCE(p->se.avg.util_est);
4620
4621 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
4622 }
4623
4624 static inline unsigned long task_util_est(struct task_struct *p)
4625 {
4626 return max(task_util(p), _task_util_est(p));
4627 }
4628
4629 #ifdef CONFIG_UCLAMP_TASK
4630 static inline unsigned long uclamp_task_util(struct task_struct *p,
4631 unsigned long uclamp_min,
4632 unsigned long uclamp_max)
4633 {
4634 return clamp(task_util_est(p), uclamp_min, uclamp_max);
4635 }
4636 #else
4637 static inline unsigned long uclamp_task_util(struct task_struct *p,
4638 unsigned long uclamp_min,
4639 unsigned long uclamp_max)
4640 {
4641 return task_util_est(p);
4642 }
4643 #endif
4644
4645 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4646 struct task_struct *p)
4647 {
4648 unsigned int enqueued;
4649
4650 if (!sched_feat(UTIL_EST))
4651 return;
4652
4653 /* Update root cfs_rq's estimated utilization */
4654 enqueued = cfs_rq->avg.util_est.enqueued;
4655 enqueued += _task_util_est(p);
4656 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4657
4658 trace_sched_util_est_cfs_tp(cfs_rq);
4659 }
4660
4661 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4662 struct task_struct *p)
4663 {
4664 unsigned int enqueued;
4665
4666 if (!sched_feat(UTIL_EST))
4667 return;
4668
4669 /* Update root cfs_rq's estimated utilization */
4670 enqueued = cfs_rq->avg.util_est.enqueued;
4671 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4672 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4673
4674 trace_sched_util_est_cfs_tp(cfs_rq);
4675 }
4676
4677 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4678
4679 /*
4680 * Check if a (signed) value is within a specified (unsigned) margin,
4681 * based on the observation that:
4682 *
4683 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4684 *
4685 * NOTE: this only works when value + margin < INT_MAX.
4686 */
4687 static inline bool within_margin(int value, int margin)
4688 {
4689 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4690 }
4691
4692 static inline void util_est_update(struct cfs_rq *cfs_rq,
4693 struct task_struct *p,
4694 bool task_sleep)
4695 {
4696 long last_ewma_diff, last_enqueued_diff;
4697 struct util_est ue;
4698
4699 if (!sched_feat(UTIL_EST))
4700 return;
4701
4702 /*
4703 * Skip update of task's estimated utilization when the task has not
4704 * yet completed an activation, e.g. being migrated.
4705 */
4706 if (!task_sleep)
4707 return;
4708
4709 /*
4710 * If the PELT values haven't changed since enqueue time,
4711 * skip the util_est update.
4712 */
4713 ue = p->se.avg.util_est;
4714 if (ue.enqueued & UTIL_AVG_UNCHANGED)
4715 return;
4716
4717 last_enqueued_diff = ue.enqueued;
4718
4719 /*
4720 * Reset EWMA on utilization increases, the moving average is used only
4721 * to smooth utilization decreases.
4722 */
4723 ue.enqueued = task_util(p);
4724 if (sched_feat(UTIL_EST_FASTUP)) {
4725 if (ue.ewma < ue.enqueued) {
4726 ue.ewma = ue.enqueued;
4727 goto done;
4728 }
4729 }
4730
4731 /*
4732 * Skip update of task's estimated utilization when its members are
4733 * already ~1% close to its last activation value.
4734 */
4735 last_ewma_diff = ue.enqueued - ue.ewma;
4736 last_enqueued_diff -= ue.enqueued;
4737 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4738 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4739 goto done;
4740
4741 return;
4742 }
4743
4744 /*
4745 * To avoid overestimation of actual task utilization, skip updates if
4746 * we cannot grant there is idle time in this CPU.
4747 */
4748 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4749 return;
4750
4751 /*
4752 * Update Task's estimated utilization
4753 *
4754 * When *p completes an activation we can consolidate another sample
4755 * of the task size. This is done by storing the current PELT value
4756 * as ue.enqueued and by using this value to update the Exponential
4757 * Weighted Moving Average (EWMA):
4758 *
4759 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4760 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4761 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4762 * = w * ( last_ewma_diff ) + ewma(t-1)
4763 * = w * (last_ewma_diff + ewma(t-1) / w)
4764 *
4765 * Where 'w' is the weight of new samples, which is configured to be
4766 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4767 */
4768 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4769 ue.ewma += last_ewma_diff;
4770 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4771 done:
4772 ue.enqueued |= UTIL_AVG_UNCHANGED;
4773 WRITE_ONCE(p->se.avg.util_est, ue);
4774
4775 trace_sched_util_est_se_tp(&p->se);
4776 }
4777
4778 static inline int util_fits_cpu(unsigned long util,
4779 unsigned long uclamp_min,
4780 unsigned long uclamp_max,
4781 int cpu)
4782 {
4783 unsigned long capacity_orig, capacity_orig_thermal;
4784 unsigned long capacity = capacity_of(cpu);
4785 bool fits, uclamp_max_fits;
4786
4787 /*
4788 * Check if the real util fits without any uclamp boost/cap applied.
4789 */
4790 fits = fits_capacity(util, capacity);
4791
4792 if (!uclamp_is_used())
4793 return fits;
4794
4795 /*
4796 * We must use capacity_orig_of() for comparing against uclamp_min and
4797 * uclamp_max. We only care about capacity pressure (by using
4798 * capacity_of()) for comparing against the real util.
4799 *
4800 * If a task is boosted to 1024 for example, we don't want a tiny
4801 * pressure to skew the check whether it fits a CPU or not.
4802 *
4803 * Similarly if a task is capped to capacity_orig_of(little_cpu), it
4804 * should fit a little cpu even if there's some pressure.
4805 *
4806 * Only exception is for thermal pressure since it has a direct impact
4807 * on available OPP of the system.
4808 *
4809 * We honour it for uclamp_min only as a drop in performance level
4810 * could result in not getting the requested minimum performance level.
4811 *
4812 * For uclamp_max, we can tolerate a drop in performance level as the
4813 * goal is to cap the task. So it's okay if it's getting less.
4814 */
4815 capacity_orig = capacity_orig_of(cpu);
4816 capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
4817
4818 /*
4819 * We want to force a task to fit a cpu as implied by uclamp_max.
4820 * But we do have some corner cases to cater for..
4821 *
4822 *
4823 * C=z
4824 * | ___
4825 * | C=y | |
4826 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
4827 * | C=x | | | |
4828 * | ___ | | | |
4829 * | | | | | | | (util somewhere in this region)
4830 * | | | | | | |
4831 * | | | | | | |
4832 * +----------------------------------------
4833 * cpu0 cpu1 cpu2
4834 *
4835 * In the above example if a task is capped to a specific performance
4836 * point, y, then when:
4837 *
4838 * * util = 80% of x then it does not fit on cpu0 and should migrate
4839 * to cpu1
4840 * * util = 80% of y then it is forced to fit on cpu1 to honour
4841 * uclamp_max request.
4842 *
4843 * which is what we're enforcing here. A task always fits if
4844 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
4845 * the normal upmigration rules should withhold still.
4846 *
4847 * Only exception is when we are on max capacity, then we need to be
4848 * careful not to block overutilized state. This is so because:
4849 *
4850 * 1. There's no concept of capping at max_capacity! We can't go
4851 * beyond this performance level anyway.
4852 * 2. The system is being saturated when we're operating near
4853 * max capacity, it doesn't make sense to block overutilized.
4854 */
4855 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
4856 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
4857 fits = fits || uclamp_max_fits;
4858
4859 /*
4860 *
4861 * C=z
4862 * | ___ (region a, capped, util >= uclamp_max)
4863 * | C=y | |
4864 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
4865 * | C=x | | | |
4866 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max)
4867 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
4868 * | | | | | | |
4869 * | | | | | | | (region c, boosted, util < uclamp_min)
4870 * +----------------------------------------
4871 * cpu0 cpu1 cpu2
4872 *
4873 * a) If util > uclamp_max, then we're capped, we don't care about
4874 * actual fitness value here. We only care if uclamp_max fits
4875 * capacity without taking margin/pressure into account.
4876 * See comment above.
4877 *
4878 * b) If uclamp_min <= util <= uclamp_max, then the normal
4879 * fits_capacity() rules apply. Except we need to ensure that we
4880 * enforce we remain within uclamp_max, see comment above.
4881 *
4882 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
4883 * need to take into account the boosted value fits the CPU without
4884 * taking margin/pressure into account.
4885 *
4886 * Cases (a) and (b) are handled in the 'fits' variable already. We
4887 * just need to consider an extra check for case (c) after ensuring we
4888 * handle the case uclamp_min > uclamp_max.
4889 */
4890 uclamp_min = min(uclamp_min, uclamp_max);
4891 if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
4892 return -1;
4893
4894 return fits;
4895 }
4896
4897 static inline int task_fits_cpu(struct task_struct *p, int cpu)
4898 {
4899 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
4900 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
4901 unsigned long util = task_util_est(p);
4902 /*
4903 * Return true only if the cpu fully fits the task requirements, which
4904 * include the utilization but also the performance hints.
4905 */
4906 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
4907 }
4908
4909 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4910 {
4911 if (!sched_asym_cpucap_active())
4912 return;
4913
4914 if (!p || p->nr_cpus_allowed == 1) {
4915 rq->misfit_task_load = 0;
4916 return;
4917 }
4918
4919 if (task_fits_cpu(p, cpu_of(rq))) {
4920 rq->misfit_task_load = 0;
4921 return;
4922 }
4923
4924 /*
4925 * Make sure that misfit_task_load will not be null even if
4926 * task_h_load() returns 0.
4927 */
4928 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4929 }
4930
4931 #else /* CONFIG_SMP */
4932
4933 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4934 {
4935 return true;
4936 }
4937
4938 #define UPDATE_TG 0x0
4939 #define SKIP_AGE_LOAD 0x0
4940 #define DO_ATTACH 0x0
4941 #define DO_DETACH 0x0
4942
4943 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4944 {
4945 cfs_rq_util_change(cfs_rq, 0);
4946 }
4947
4948 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4949
4950 static inline void
4951 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4952 static inline void
4953 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4954
4955 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4956 {
4957 return 0;
4958 }
4959
4960 static inline void
4961 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4962
4963 static inline void
4964 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4965
4966 static inline void
4967 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4968 bool task_sleep) {}
4969 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4970
4971 #endif /* CONFIG_SMP */
4972
4973 static void
4974 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4975 {
4976 u64 vslice, vruntime = avg_vruntime(cfs_rq);
4977 s64 lag = 0;
4978
4979 se->slice = sysctl_sched_base_slice;
4980 vslice = calc_delta_fair(se->slice, se);
4981
4982 /*
4983 * Due to how V is constructed as the weighted average of entities,
4984 * adding tasks with positive lag, or removing tasks with negative lag
4985 * will move 'time' backwards, this can screw around with the lag of
4986 * other tasks.
4987 *
4988 * EEVDF: placement strategy #1 / #2
4989 */
4990 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
4991 struct sched_entity *curr = cfs_rq->curr;
4992 unsigned long load;
4993
4994 lag = se->vlag;
4995
4996 /*
4997 * If we want to place a task and preserve lag, we have to
4998 * consider the effect of the new entity on the weighted
4999 * average and compensate for this, otherwise lag can quickly
5000 * evaporate.
5001 *
5002 * Lag is defined as:
5003 *
5004 * lag_i = S - s_i = w_i * (V - v_i)
5005 *
5006 * To avoid the 'w_i' term all over the place, we only track
5007 * the virtual lag:
5008 *
5009 * vl_i = V - v_i <=> v_i = V - vl_i
5010 *
5011 * And we take V to be the weighted average of all v:
5012 *
5013 * V = (\Sum w_j*v_j) / W
5014 *
5015 * Where W is: \Sum w_j
5016 *
5017 * Then, the weighted average after adding an entity with lag
5018 * vl_i is given by:
5019 *
5020 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5021 * = (W*V + w_i*(V - vl_i)) / (W + w_i)
5022 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5023 * = (V*(W + w_i) - w_i*l) / (W + w_i)
5024 * = V - w_i*vl_i / (W + w_i)
5025 *
5026 * And the actual lag after adding an entity with vl_i is:
5027 *
5028 * vl'_i = V' - v_i
5029 * = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5030 * = vl_i - w_i*vl_i / (W + w_i)
5031 *
5032 * Which is strictly less than vl_i. So in order to preserve lag
5033 * we should inflate the lag before placement such that the
5034 * effective lag after placement comes out right.
5035 *
5036 * As such, invert the above relation for vl'_i to get the vl_i
5037 * we need to use such that the lag after placement is the lag
5038 * we computed before dequeue.
5039 *
5040 * vl'_i = vl_i - w_i*vl_i / (W + w_i)
5041 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5042 *
5043 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5044 * = W*vl_i
5045 *
5046 * vl_i = (W + w_i)*vl'_i / W
5047 */
5048 load = cfs_rq->avg_load;
5049 if (curr && curr->on_rq)
5050 load += scale_load_down(curr->load.weight);
5051
5052 lag *= load + scale_load_down(se->load.weight);
5053 if (WARN_ON_ONCE(!load))
5054 load = 1;
5055 lag = div_s64(lag, load);
5056 }
5057
5058 se->vruntime = vruntime - lag;
5059
5060 /*
5061 * When joining the competition; the exisiting tasks will be,
5062 * on average, halfway through their slice, as such start tasks
5063 * off with half a slice to ease into the competition.
5064 */
5065 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5066 vslice /= 2;
5067
5068 /*
5069 * EEVDF: vd_i = ve_i + r_i/w_i
5070 */
5071 se->deadline = se->vruntime + vslice;
5072 }
5073
5074 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5075 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5076
5077 static inline bool cfs_bandwidth_used(void);
5078
5079 static void
5080 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5081 {
5082 bool curr = cfs_rq->curr == se;
5083
5084 /*
5085 * If we're the current task, we must renormalise before calling
5086 * update_curr().
5087 */
5088 if (curr)
5089 place_entity(cfs_rq, se, flags);
5090
5091 update_curr(cfs_rq);
5092
5093 /*
5094 * When enqueuing a sched_entity, we must:
5095 * - Update loads to have both entity and cfs_rq synced with now.
5096 * - For group_entity, update its runnable_weight to reflect the new
5097 * h_nr_running of its group cfs_rq.
5098 * - For group_entity, update its weight to reflect the new share of
5099 * its group cfs_rq
5100 * - Add its new weight to cfs_rq->load.weight
5101 */
5102 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5103 se_update_runnable(se);
5104 /*
5105 * XXX update_load_avg() above will have attached us to the pelt sum;
5106 * but update_cfs_group() here will re-adjust the weight and have to
5107 * undo/redo all that. Seems wasteful.
5108 */
5109 update_cfs_group(se);
5110
5111 /*
5112 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5113 * we can place the entity.
5114 */
5115 if (!curr)
5116 place_entity(cfs_rq, se, flags);
5117
5118 account_entity_enqueue(cfs_rq, se);
5119
5120 /* Entity has migrated, no longer consider this task hot */
5121 if (flags & ENQUEUE_MIGRATED)
5122 se->exec_start = 0;
5123
5124 check_schedstat_required();
5125 update_stats_enqueue_fair(cfs_rq, se, flags);
5126 if (!curr)
5127 __enqueue_entity(cfs_rq, se);
5128 se->on_rq = 1;
5129
5130 if (cfs_rq->nr_running == 1) {
5131 check_enqueue_throttle(cfs_rq);
5132 if (!throttled_hierarchy(cfs_rq)) {
5133 list_add_leaf_cfs_rq(cfs_rq);
5134 } else {
5135 #ifdef CONFIG_CFS_BANDWIDTH
5136 struct rq *rq = rq_of(cfs_rq);
5137
5138 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5139 cfs_rq->throttled_clock = rq_clock(rq);
5140 if (!cfs_rq->throttled_clock_self)
5141 cfs_rq->throttled_clock_self = rq_clock(rq);
5142 #endif
5143 }
5144 }
5145 }
5146
5147 static void __clear_buddies_next(struct sched_entity *se)
5148 {
5149 for_each_sched_entity(se) {
5150 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5151 if (cfs_rq->next != se)
5152 break;
5153
5154 cfs_rq->next = NULL;
5155 }
5156 }
5157
5158 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5159 {
5160 if (cfs_rq->next == se)
5161 __clear_buddies_next(se);
5162 }
5163
5164 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5165
5166 static void
5167 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5168 {
5169 int action = UPDATE_TG;
5170
5171 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5172 action |= DO_DETACH;
5173
5174 /*
5175 * Update run-time statistics of the 'current'.
5176 */
5177 update_curr(cfs_rq);
5178
5179 /*
5180 * When dequeuing a sched_entity, we must:
5181 * - Update loads to have both entity and cfs_rq synced with now.
5182 * - For group_entity, update its runnable_weight to reflect the new
5183 * h_nr_running of its group cfs_rq.
5184 * - Subtract its previous weight from cfs_rq->load.weight.
5185 * - For group entity, update its weight to reflect the new share
5186 * of its group cfs_rq.
5187 */
5188 update_load_avg(cfs_rq, se, action);
5189 se_update_runnable(se);
5190
5191 update_stats_dequeue_fair(cfs_rq, se, flags);
5192
5193 clear_buddies(cfs_rq, se);
5194
5195 update_entity_lag(cfs_rq, se);
5196 if (se != cfs_rq->curr)
5197 __dequeue_entity(cfs_rq, se);
5198 se->on_rq = 0;
5199 account_entity_dequeue(cfs_rq, se);
5200
5201 /* return excess runtime on last dequeue */
5202 return_cfs_rq_runtime(cfs_rq);
5203
5204 update_cfs_group(se);
5205
5206 /*
5207 * Now advance min_vruntime if @se was the entity holding it back,
5208 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5209 * put back on, and if we advance min_vruntime, we'll be placed back
5210 * further than we started -- ie. we'll be penalized.
5211 */
5212 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5213 update_min_vruntime(cfs_rq);
5214
5215 if (cfs_rq->nr_running == 0)
5216 update_idle_cfs_rq_clock_pelt(cfs_rq);
5217 }
5218
5219 static void
5220 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5221 {
5222 clear_buddies(cfs_rq, se);
5223
5224 /* 'current' is not kept within the tree. */
5225 if (se->on_rq) {
5226 /*
5227 * Any task has to be enqueued before it get to execute on
5228 * a CPU. So account for the time it spent waiting on the
5229 * runqueue.
5230 */
5231 update_stats_wait_end_fair(cfs_rq, se);
5232 __dequeue_entity(cfs_rq, se);
5233 update_load_avg(cfs_rq, se, UPDATE_TG);
5234 /*
5235 * HACK, stash a copy of deadline at the point of pick in vlag,
5236 * which isn't used until dequeue.
5237 */
5238 se->vlag = se->deadline;
5239 }
5240
5241 update_stats_curr_start(cfs_rq, se);
5242 cfs_rq->curr = se;
5243
5244 /*
5245 * Track our maximum slice length, if the CPU's load is at
5246 * least twice that of our own weight (i.e. dont track it
5247 * when there are only lesser-weight tasks around):
5248 */
5249 if (schedstat_enabled() &&
5250 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5251 struct sched_statistics *stats;
5252
5253 stats = __schedstats_from_se(se);
5254 __schedstat_set(stats->slice_max,
5255 max((u64)stats->slice_max,
5256 se->sum_exec_runtime - se->prev_sum_exec_runtime));
5257 }
5258
5259 se->prev_sum_exec_runtime = se->sum_exec_runtime;
5260 }
5261
5262 /*
5263 * Pick the next process, keeping these things in mind, in this order:
5264 * 1) keep things fair between processes/task groups
5265 * 2) pick the "next" process, since someone really wants that to run
5266 * 3) pick the "last" process, for cache locality
5267 * 4) do not run the "skip" process, if something else is available
5268 */
5269 static struct sched_entity *
5270 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
5271 {
5272 /*
5273 * Enabling NEXT_BUDDY will affect latency but not fairness.
5274 */
5275 if (sched_feat(NEXT_BUDDY) &&
5276 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next))
5277 return cfs_rq->next;
5278
5279 return pick_eevdf(cfs_rq);
5280 }
5281
5282 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5283
5284 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5285 {
5286 /*
5287 * If still on the runqueue then deactivate_task()
5288 * was not called and update_curr() has to be done:
5289 */
5290 if (prev->on_rq)
5291 update_curr(cfs_rq);
5292
5293 /* throttle cfs_rqs exceeding runtime */
5294 check_cfs_rq_runtime(cfs_rq);
5295
5296 if (prev->on_rq) {
5297 update_stats_wait_start_fair(cfs_rq, prev);
5298 /* Put 'current' back into the tree. */
5299 __enqueue_entity(cfs_rq, prev);
5300 /* in !on_rq case, update occurred at dequeue */
5301 update_load_avg(cfs_rq, prev, 0);
5302 }
5303 cfs_rq->curr = NULL;
5304 }
5305
5306 static void
5307 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5308 {
5309 /*
5310 * Update run-time statistics of the 'current'.
5311 */
5312 update_curr(cfs_rq);
5313
5314 /*
5315 * Ensure that runnable average is periodically updated.
5316 */
5317 update_load_avg(cfs_rq, curr, UPDATE_TG);
5318 update_cfs_group(curr);
5319
5320 #ifdef CONFIG_SCHED_HRTICK
5321 /*
5322 * queued ticks are scheduled to match the slice, so don't bother
5323 * validating it and just reschedule.
5324 */
5325 if (queued) {
5326 resched_curr(rq_of(cfs_rq));
5327 return;
5328 }
5329 /*
5330 * don't let the period tick interfere with the hrtick preemption
5331 */
5332 if (!sched_feat(DOUBLE_TICK) &&
5333 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5334 return;
5335 #endif
5336 }
5337
5338
5339 /**************************************************
5340 * CFS bandwidth control machinery
5341 */
5342
5343 #ifdef CONFIG_CFS_BANDWIDTH
5344
5345 #ifdef CONFIG_JUMP_LABEL
5346 static struct static_key __cfs_bandwidth_used;
5347
5348 static inline bool cfs_bandwidth_used(void)
5349 {
5350 return static_key_false(&__cfs_bandwidth_used);
5351 }
5352
5353 void cfs_bandwidth_usage_inc(void)
5354 {
5355 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5356 }
5357
5358 void cfs_bandwidth_usage_dec(void)
5359 {
5360 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5361 }
5362 #else /* CONFIG_JUMP_LABEL */
5363 static bool cfs_bandwidth_used(void)
5364 {
5365 return true;
5366 }
5367
5368 void cfs_bandwidth_usage_inc(void) {}
5369 void cfs_bandwidth_usage_dec(void) {}
5370 #endif /* CONFIG_JUMP_LABEL */
5371
5372 /*
5373 * default period for cfs group bandwidth.
5374 * default: 0.1s, units: nanoseconds
5375 */
5376 static inline u64 default_cfs_period(void)
5377 {
5378 return 100000000ULL;
5379 }
5380
5381 static inline u64 sched_cfs_bandwidth_slice(void)
5382 {
5383 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5384 }
5385
5386 /*
5387 * Replenish runtime according to assigned quota. We use sched_clock_cpu
5388 * directly instead of rq->clock to avoid adding additional synchronization
5389 * around rq->lock.
5390 *
5391 * requires cfs_b->lock
5392 */
5393 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5394 {
5395 s64 runtime;
5396
5397 if (unlikely(cfs_b->quota == RUNTIME_INF))
5398 return;
5399
5400 cfs_b->runtime += cfs_b->quota;
5401 runtime = cfs_b->runtime_snap - cfs_b->runtime;
5402 if (runtime > 0) {
5403 cfs_b->burst_time += runtime;
5404 cfs_b->nr_burst++;
5405 }
5406
5407 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5408 cfs_b->runtime_snap = cfs_b->runtime;
5409 }
5410
5411 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5412 {
5413 return &tg->cfs_bandwidth;
5414 }
5415
5416 /* returns 0 on failure to allocate runtime */
5417 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5418 struct cfs_rq *cfs_rq, u64 target_runtime)
5419 {
5420 u64 min_amount, amount = 0;
5421
5422 lockdep_assert_held(&cfs_b->lock);
5423
5424 /* note: this is a positive sum as runtime_remaining <= 0 */
5425 min_amount = target_runtime - cfs_rq->runtime_remaining;
5426
5427 if (cfs_b->quota == RUNTIME_INF)
5428 amount = min_amount;
5429 else {
5430 start_cfs_bandwidth(cfs_b);
5431
5432 if (cfs_b->runtime > 0) {
5433 amount = min(cfs_b->runtime, min_amount);
5434 cfs_b->runtime -= amount;
5435 cfs_b->idle = 0;
5436 }
5437 }
5438
5439 cfs_rq->runtime_remaining += amount;
5440
5441 return cfs_rq->runtime_remaining > 0;
5442 }
5443
5444 /* returns 0 on failure to allocate runtime */
5445 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5446 {
5447 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5448 int ret;
5449
5450 raw_spin_lock(&cfs_b->lock);
5451 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5452 raw_spin_unlock(&cfs_b->lock);
5453
5454 return ret;
5455 }
5456
5457 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5458 {
5459 /* dock delta_exec before expiring quota (as it could span periods) */
5460 cfs_rq->runtime_remaining -= delta_exec;
5461
5462 if (likely(cfs_rq->runtime_remaining > 0))
5463 return;
5464
5465 if (cfs_rq->throttled)
5466 return;
5467 /*
5468 * if we're unable to extend our runtime we resched so that the active
5469 * hierarchy can be throttled
5470 */
5471 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5472 resched_curr(rq_of(cfs_rq));
5473 }
5474
5475 static __always_inline
5476 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5477 {
5478 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5479 return;
5480
5481 __account_cfs_rq_runtime(cfs_rq, delta_exec);
5482 }
5483
5484 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5485 {
5486 return cfs_bandwidth_used() && cfs_rq->throttled;
5487 }
5488
5489 /* check whether cfs_rq, or any parent, is throttled */
5490 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5491 {
5492 return cfs_bandwidth_used() && cfs_rq->throttle_count;
5493 }
5494
5495 /*
5496 * Ensure that neither of the group entities corresponding to src_cpu or
5497 * dest_cpu are members of a throttled hierarchy when performing group
5498 * load-balance operations.
5499 */
5500 static inline int throttled_lb_pair(struct task_group *tg,
5501 int src_cpu, int dest_cpu)
5502 {
5503 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5504
5505 src_cfs_rq = tg->cfs_rq[src_cpu];
5506 dest_cfs_rq = tg->cfs_rq[dest_cpu];
5507
5508 return throttled_hierarchy(src_cfs_rq) ||
5509 throttled_hierarchy(dest_cfs_rq);
5510 }
5511
5512 static int tg_unthrottle_up(struct task_group *tg, void *data)
5513 {
5514 struct rq *rq = data;
5515 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5516
5517 cfs_rq->throttle_count--;
5518 if (!cfs_rq->throttle_count) {
5519 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5520 cfs_rq->throttled_clock_pelt;
5521
5522 /* Add cfs_rq with load or one or more already running entities to the list */
5523 if (!cfs_rq_is_decayed(cfs_rq))
5524 list_add_leaf_cfs_rq(cfs_rq);
5525
5526 if (cfs_rq->throttled_clock_self) {
5527 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5528
5529 cfs_rq->throttled_clock_self = 0;
5530
5531 if (SCHED_WARN_ON((s64)delta < 0))
5532 delta = 0;
5533
5534 cfs_rq->throttled_clock_self_time += delta;
5535 }
5536 }
5537
5538 return 0;
5539 }
5540
5541 static int tg_throttle_down(struct task_group *tg, void *data)
5542 {
5543 struct rq *rq = data;
5544 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5545
5546 /* group is entering throttled state, stop time */
5547 if (!cfs_rq->throttle_count) {
5548 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5549 list_del_leaf_cfs_rq(cfs_rq);
5550
5551 SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5552 if (cfs_rq->nr_running)
5553 cfs_rq->throttled_clock_self = rq_clock(rq);
5554 }
5555 cfs_rq->throttle_count++;
5556
5557 return 0;
5558 }
5559
5560 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5561 {
5562 struct rq *rq = rq_of(cfs_rq);
5563 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5564 struct sched_entity *se;
5565 long task_delta, idle_task_delta, dequeue = 1;
5566
5567 raw_spin_lock(&cfs_b->lock);
5568 /* This will start the period timer if necessary */
5569 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5570 /*
5571 * We have raced with bandwidth becoming available, and if we
5572 * actually throttled the timer might not unthrottle us for an
5573 * entire period. We additionally needed to make sure that any
5574 * subsequent check_cfs_rq_runtime calls agree not to throttle
5575 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5576 * for 1ns of runtime rather than just check cfs_b.
5577 */
5578 dequeue = 0;
5579 } else {
5580 list_add_tail_rcu(&cfs_rq->throttled_list,
5581 &cfs_b->throttled_cfs_rq);
5582 }
5583 raw_spin_unlock(&cfs_b->lock);
5584
5585 if (!dequeue)
5586 return false; /* Throttle no longer required. */
5587
5588 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5589
5590 /* freeze hierarchy runnable averages while throttled */
5591 rcu_read_lock();
5592 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5593 rcu_read_unlock();
5594
5595 task_delta = cfs_rq->h_nr_running;
5596 idle_task_delta = cfs_rq->idle_h_nr_running;
5597 for_each_sched_entity(se) {
5598 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5599 /* throttled entity or throttle-on-deactivate */
5600 if (!se->on_rq)
5601 goto done;
5602
5603 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5604
5605 if (cfs_rq_is_idle(group_cfs_rq(se)))
5606 idle_task_delta = cfs_rq->h_nr_running;
5607
5608 qcfs_rq->h_nr_running -= task_delta;
5609 qcfs_rq->idle_h_nr_running -= idle_task_delta;
5610
5611 if (qcfs_rq->load.weight) {
5612 /* Avoid re-evaluating load for this entity: */
5613 se = parent_entity(se);
5614 break;
5615 }
5616 }
5617
5618 for_each_sched_entity(se) {
5619 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5620 /* throttled entity or throttle-on-deactivate */
5621 if (!se->on_rq)
5622 goto done;
5623
5624 update_load_avg(qcfs_rq, se, 0);
5625 se_update_runnable(se);
5626
5627 if (cfs_rq_is_idle(group_cfs_rq(se)))
5628 idle_task_delta = cfs_rq->h_nr_running;
5629
5630 qcfs_rq->h_nr_running -= task_delta;
5631 qcfs_rq->idle_h_nr_running -= idle_task_delta;
5632 }
5633
5634 /* At this point se is NULL and we are at root level*/
5635 sub_nr_running(rq, task_delta);
5636
5637 done:
5638 /*
5639 * Note: distribution will already see us throttled via the
5640 * throttled-list. rq->lock protects completion.
5641 */
5642 cfs_rq->throttled = 1;
5643 SCHED_WARN_ON(cfs_rq->throttled_clock);
5644 if (cfs_rq->nr_running)
5645 cfs_rq->throttled_clock = rq_clock(rq);
5646 return true;
5647 }
5648
5649 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5650 {
5651 struct rq *rq = rq_of(cfs_rq);
5652 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5653 struct sched_entity *se;
5654 long task_delta, idle_task_delta;
5655
5656 se = cfs_rq->tg->se[cpu_of(rq)];
5657
5658 cfs_rq->throttled = 0;
5659
5660 update_rq_clock(rq);
5661
5662 raw_spin_lock(&cfs_b->lock);
5663 if (cfs_rq->throttled_clock) {
5664 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5665 cfs_rq->throttled_clock = 0;
5666 }
5667 list_del_rcu(&cfs_rq->throttled_list);
5668 raw_spin_unlock(&cfs_b->lock);
5669
5670 /* update hierarchical throttle state */
5671 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5672
5673 if (!cfs_rq->load.weight) {
5674 if (!cfs_rq->on_list)
5675 return;
5676 /*
5677 * Nothing to run but something to decay (on_list)?
5678 * Complete the branch.
5679 */
5680 for_each_sched_entity(se) {
5681 if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5682 break;
5683 }
5684 goto unthrottle_throttle;
5685 }
5686
5687 task_delta = cfs_rq->h_nr_running;
5688 idle_task_delta = cfs_rq->idle_h_nr_running;
5689 for_each_sched_entity(se) {
5690 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5691
5692 if (se->on_rq)
5693 break;
5694 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5695
5696 if (cfs_rq_is_idle(group_cfs_rq(se)))
5697 idle_task_delta = cfs_rq->h_nr_running;
5698
5699 qcfs_rq->h_nr_running += task_delta;
5700 qcfs_rq->idle_h_nr_running += idle_task_delta;
5701
5702 /* end evaluation on encountering a throttled cfs_rq */
5703 if (cfs_rq_throttled(qcfs_rq))
5704 goto unthrottle_throttle;
5705 }
5706
5707 for_each_sched_entity(se) {
5708 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5709
5710 update_load_avg(qcfs_rq, se, UPDATE_TG);
5711 se_update_runnable(se);
5712
5713 if (cfs_rq_is_idle(group_cfs_rq(se)))
5714 idle_task_delta = cfs_rq->h_nr_running;
5715
5716 qcfs_rq->h_nr_running += task_delta;
5717 qcfs_rq->idle_h_nr_running += idle_task_delta;
5718
5719 /* end evaluation on encountering a throttled cfs_rq */
5720 if (cfs_rq_throttled(qcfs_rq))
5721 goto unthrottle_throttle;
5722 }
5723
5724 /* At this point se is NULL and we are at root level*/
5725 add_nr_running(rq, task_delta);
5726
5727 unthrottle_throttle:
5728 assert_list_leaf_cfs_rq(rq);
5729
5730 /* Determine whether we need to wake up potentially idle CPU: */
5731 if (rq->curr == rq->idle && rq->cfs.nr_running)
5732 resched_curr(rq);
5733 }
5734
5735 #ifdef CONFIG_SMP
5736 static void __cfsb_csd_unthrottle(void *arg)
5737 {
5738 struct cfs_rq *cursor, *tmp;
5739 struct rq *rq = arg;
5740 struct rq_flags rf;
5741
5742 rq_lock(rq, &rf);
5743
5744 /*
5745 * Iterating over the list can trigger several call to
5746 * update_rq_clock() in unthrottle_cfs_rq().
5747 * Do it once and skip the potential next ones.
5748 */
5749 update_rq_clock(rq);
5750 rq_clock_start_loop_update(rq);
5751
5752 /*
5753 * Since we hold rq lock we're safe from concurrent manipulation of
5754 * the CSD list. However, this RCU critical section annotates the
5755 * fact that we pair with sched_free_group_rcu(), so that we cannot
5756 * race with group being freed in the window between removing it
5757 * from the list and advancing to the next entry in the list.
5758 */
5759 rcu_read_lock();
5760
5761 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
5762 throttled_csd_list) {
5763 list_del_init(&cursor->throttled_csd_list);
5764
5765 if (cfs_rq_throttled(cursor))
5766 unthrottle_cfs_rq(cursor);
5767 }
5768
5769 rcu_read_unlock();
5770
5771 rq_clock_stop_loop_update(rq);
5772 rq_unlock(rq, &rf);
5773 }
5774
5775 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5776 {
5777 struct rq *rq = rq_of(cfs_rq);
5778 bool first;
5779
5780 if (rq == this_rq()) {
5781 unthrottle_cfs_rq(cfs_rq);
5782 return;
5783 }
5784
5785 /* Already enqueued */
5786 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
5787 return;
5788
5789 first = list_empty(&rq->cfsb_csd_list);
5790 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
5791 if (first)
5792 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
5793 }
5794 #else
5795 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5796 {
5797 unthrottle_cfs_rq(cfs_rq);
5798 }
5799 #endif
5800
5801 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5802 {
5803 lockdep_assert_rq_held(rq_of(cfs_rq));
5804
5805 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
5806 cfs_rq->runtime_remaining <= 0))
5807 return;
5808
5809 __unthrottle_cfs_rq_async(cfs_rq);
5810 }
5811
5812 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5813 {
5814 struct cfs_rq *local_unthrottle = NULL;
5815 int this_cpu = smp_processor_id();
5816 u64 runtime, remaining = 1;
5817 bool throttled = false;
5818 struct cfs_rq *cfs_rq;
5819 struct rq_flags rf;
5820 struct rq *rq;
5821
5822 rcu_read_lock();
5823 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5824 throttled_list) {
5825 rq = rq_of(cfs_rq);
5826
5827 if (!remaining) {
5828 throttled = true;
5829 break;
5830 }
5831
5832 rq_lock_irqsave(rq, &rf);
5833 if (!cfs_rq_throttled(cfs_rq))
5834 goto next;
5835
5836 #ifdef CONFIG_SMP
5837 /* Already queued for async unthrottle */
5838 if (!list_empty(&cfs_rq->throttled_csd_list))
5839 goto next;
5840 #endif
5841
5842 /* By the above checks, this should never be true */
5843 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5844
5845 raw_spin_lock(&cfs_b->lock);
5846 runtime = -cfs_rq->runtime_remaining + 1;
5847 if (runtime > cfs_b->runtime)
5848 runtime = cfs_b->runtime;
5849 cfs_b->runtime -= runtime;
5850 remaining = cfs_b->runtime;
5851 raw_spin_unlock(&cfs_b->lock);
5852
5853 cfs_rq->runtime_remaining += runtime;
5854
5855 /* we check whether we're throttled above */
5856 if (cfs_rq->runtime_remaining > 0) {
5857 if (cpu_of(rq) != this_cpu ||
5858 SCHED_WARN_ON(local_unthrottle))
5859 unthrottle_cfs_rq_async(cfs_rq);
5860 else
5861 local_unthrottle = cfs_rq;
5862 } else {
5863 throttled = true;
5864 }
5865
5866 next:
5867 rq_unlock_irqrestore(rq, &rf);
5868 }
5869 rcu_read_unlock();
5870
5871 if (local_unthrottle) {
5872 rq = cpu_rq(this_cpu);
5873 rq_lock_irqsave(rq, &rf);
5874 if (cfs_rq_throttled(local_unthrottle))
5875 unthrottle_cfs_rq(local_unthrottle);
5876 rq_unlock_irqrestore(rq, &rf);
5877 }
5878
5879 return throttled;
5880 }
5881
5882 /*
5883 * Responsible for refilling a task_group's bandwidth and unthrottling its
5884 * cfs_rqs as appropriate. If there has been no activity within the last
5885 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5886 * used to track this state.
5887 */
5888 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5889 {
5890 int throttled;
5891
5892 /* no need to continue the timer with no bandwidth constraint */
5893 if (cfs_b->quota == RUNTIME_INF)
5894 goto out_deactivate;
5895
5896 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5897 cfs_b->nr_periods += overrun;
5898
5899 /* Refill extra burst quota even if cfs_b->idle */
5900 __refill_cfs_bandwidth_runtime(cfs_b);
5901
5902 /*
5903 * idle depends on !throttled (for the case of a large deficit), and if
5904 * we're going inactive then everything else can be deferred
5905 */
5906 if (cfs_b->idle && !throttled)
5907 goto out_deactivate;
5908
5909 if (!throttled) {
5910 /* mark as potentially idle for the upcoming period */
5911 cfs_b->idle = 1;
5912 return 0;
5913 }
5914
5915 /* account preceding periods in which throttling occurred */
5916 cfs_b->nr_throttled += overrun;
5917
5918 /*
5919 * This check is repeated as we release cfs_b->lock while we unthrottle.
5920 */
5921 while (throttled && cfs_b->runtime > 0) {
5922 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5923 /* we can't nest cfs_b->lock while distributing bandwidth */
5924 throttled = distribute_cfs_runtime(cfs_b);
5925 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5926 }
5927
5928 /*
5929 * While we are ensured activity in the period following an
5930 * unthrottle, this also covers the case in which the new bandwidth is
5931 * insufficient to cover the existing bandwidth deficit. (Forcing the
5932 * timer to remain active while there are any throttled entities.)
5933 */
5934 cfs_b->idle = 0;
5935
5936 return 0;
5937
5938 out_deactivate:
5939 return 1;
5940 }
5941
5942 /* a cfs_rq won't donate quota below this amount */
5943 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5944 /* minimum remaining period time to redistribute slack quota */
5945 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5946 /* how long we wait to gather additional slack before distributing */
5947 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5948
5949 /*
5950 * Are we near the end of the current quota period?
5951 *
5952 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5953 * hrtimer base being cleared by hrtimer_start. In the case of
5954 * migrate_hrtimers, base is never cleared, so we are fine.
5955 */
5956 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5957 {
5958 struct hrtimer *refresh_timer = &cfs_b->period_timer;
5959 s64 remaining;
5960
5961 /* if the call-back is running a quota refresh is already occurring */
5962 if (hrtimer_callback_running(refresh_timer))
5963 return 1;
5964
5965 /* is a quota refresh about to occur? */
5966 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5967 if (remaining < (s64)min_expire)
5968 return 1;
5969
5970 return 0;
5971 }
5972
5973 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5974 {
5975 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5976
5977 /* if there's a quota refresh soon don't bother with slack */
5978 if (runtime_refresh_within(cfs_b, min_left))
5979 return;
5980
5981 /* don't push forwards an existing deferred unthrottle */
5982 if (cfs_b->slack_started)
5983 return;
5984 cfs_b->slack_started = true;
5985
5986 hrtimer_start(&cfs_b->slack_timer,
5987 ns_to_ktime(cfs_bandwidth_slack_period),
5988 HRTIMER_MODE_REL);
5989 }
5990
5991 /* we know any runtime found here is valid as update_curr() precedes return */
5992 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5993 {
5994 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5995 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5996
5997 if (slack_runtime <= 0)
5998 return;
5999
6000 raw_spin_lock(&cfs_b->lock);
6001 if (cfs_b->quota != RUNTIME_INF) {
6002 cfs_b->runtime += slack_runtime;
6003
6004 /* we are under rq->lock, defer unthrottling using a timer */
6005 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6006 !list_empty(&cfs_b->throttled_cfs_rq))
6007 start_cfs_slack_bandwidth(cfs_b);
6008 }
6009 raw_spin_unlock(&cfs_b->lock);
6010
6011 /* even if it's not valid for return we don't want to try again */
6012 cfs_rq->runtime_remaining -= slack_runtime;
6013 }
6014
6015 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6016 {
6017 if (!cfs_bandwidth_used())
6018 return;
6019
6020 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6021 return;
6022
6023 __return_cfs_rq_runtime(cfs_rq);
6024 }
6025
6026 /*
6027 * This is done with a timer (instead of inline with bandwidth return) since
6028 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6029 */
6030 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6031 {
6032 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6033 unsigned long flags;
6034
6035 /* confirm we're still not at a refresh boundary */
6036 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6037 cfs_b->slack_started = false;
6038
6039 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6040 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6041 return;
6042 }
6043
6044 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6045 runtime = cfs_b->runtime;
6046
6047 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6048
6049 if (!runtime)
6050 return;
6051
6052 distribute_cfs_runtime(cfs_b);
6053 }
6054
6055 /*
6056 * When a group wakes up we want to make sure that its quota is not already
6057 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6058 * runtime as update_curr() throttling can not trigger until it's on-rq.
6059 */
6060 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6061 {
6062 if (!cfs_bandwidth_used())
6063 return;
6064
6065 /* an active group must be handled by the update_curr()->put() path */
6066 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6067 return;
6068
6069 /* ensure the group is not already throttled */
6070 if (cfs_rq_throttled(cfs_rq))
6071 return;
6072
6073 /* update runtime allocation */
6074 account_cfs_rq_runtime(cfs_rq, 0);
6075 if (cfs_rq->runtime_remaining <= 0)
6076 throttle_cfs_rq(cfs_rq);
6077 }
6078
6079 static void sync_throttle(struct task_group *tg, int cpu)
6080 {
6081 struct cfs_rq *pcfs_rq, *cfs_rq;
6082
6083 if (!cfs_bandwidth_used())
6084 return;
6085
6086 if (!tg->parent)
6087 return;
6088
6089 cfs_rq = tg->cfs_rq[cpu];
6090 pcfs_rq = tg->parent->cfs_rq[cpu];
6091
6092 cfs_rq->throttle_count = pcfs_rq->throttle_count;
6093 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6094 }
6095
6096 /* conditionally throttle active cfs_rq's from put_prev_entity() */
6097 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6098 {
6099 if (!cfs_bandwidth_used())
6100 return false;
6101
6102 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6103 return false;
6104
6105 /*
6106 * it's possible for a throttled entity to be forced into a running
6107 * state (e.g. set_curr_task), in this case we're finished.
6108 */
6109 if (cfs_rq_throttled(cfs_rq))
6110 return true;
6111
6112 return throttle_cfs_rq(cfs_rq);
6113 }
6114
6115 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6116 {
6117 struct cfs_bandwidth *cfs_b =
6118 container_of(timer, struct cfs_bandwidth, slack_timer);
6119
6120 do_sched_cfs_slack_timer(cfs_b);
6121
6122 return HRTIMER_NORESTART;
6123 }
6124
6125 extern const u64 max_cfs_quota_period;
6126
6127 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6128 {
6129 struct cfs_bandwidth *cfs_b =
6130 container_of(timer, struct cfs_bandwidth, period_timer);
6131 unsigned long flags;
6132 int overrun;
6133 int idle = 0;
6134 int count = 0;
6135
6136 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6137 for (;;) {
6138 overrun = hrtimer_forward_now(timer, cfs_b->period);
6139 if (!overrun)
6140 break;
6141
6142 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6143
6144 if (++count > 3) {
6145 u64 new, old = ktime_to_ns(cfs_b->period);
6146
6147 /*
6148 * Grow period by a factor of 2 to avoid losing precision.
6149 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6150 * to fail.
6151 */
6152 new = old * 2;
6153 if (new < max_cfs_quota_period) {
6154 cfs_b->period = ns_to_ktime(new);
6155 cfs_b->quota *= 2;
6156 cfs_b->burst *= 2;
6157
6158 pr_warn_ratelimited(
6159 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6160 smp_processor_id(),
6161 div_u64(new, NSEC_PER_USEC),
6162 div_u64(cfs_b->quota, NSEC_PER_USEC));
6163 } else {
6164 pr_warn_ratelimited(
6165 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6166 smp_processor_id(),
6167 div_u64(old, NSEC_PER_USEC),
6168 div_u64(cfs_b->quota, NSEC_PER_USEC));
6169 }
6170
6171 /* reset count so we don't come right back in here */
6172 count = 0;
6173 }
6174 }
6175 if (idle)
6176 cfs_b->period_active = 0;
6177 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6178
6179 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6180 }
6181
6182 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6183 {
6184 raw_spin_lock_init(&cfs_b->lock);
6185 cfs_b->runtime = 0;
6186 cfs_b->quota = RUNTIME_INF;
6187 cfs_b->period = ns_to_ktime(default_cfs_period());
6188 cfs_b->burst = 0;
6189 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6190
6191 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6192 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6193 cfs_b->period_timer.function = sched_cfs_period_timer;
6194
6195 /* Add a random offset so that timers interleave */
6196 hrtimer_set_expires(&cfs_b->period_timer,
6197 get_random_u32_below(cfs_b->period));
6198 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6199 cfs_b->slack_timer.function = sched_cfs_slack_timer;
6200 cfs_b->slack_started = false;
6201 }
6202
6203 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6204 {
6205 cfs_rq->runtime_enabled = 0;
6206 INIT_LIST_HEAD(&cfs_rq->throttled_list);
6207 #ifdef CONFIG_SMP
6208 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6209 #endif
6210 }
6211
6212 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6213 {
6214 lockdep_assert_held(&cfs_b->lock);
6215
6216 if (cfs_b->period_active)
6217 return;
6218
6219 cfs_b->period_active = 1;
6220 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6221 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6222 }
6223
6224 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6225 {
6226 int __maybe_unused i;
6227
6228 /* init_cfs_bandwidth() was not called */
6229 if (!cfs_b->throttled_cfs_rq.next)
6230 return;
6231
6232 hrtimer_cancel(&cfs_b->period_timer);
6233 hrtimer_cancel(&cfs_b->slack_timer);
6234
6235 /*
6236 * It is possible that we still have some cfs_rq's pending on a CSD
6237 * list, though this race is very rare. In order for this to occur, we
6238 * must have raced with the last task leaving the group while there
6239 * exist throttled cfs_rq(s), and the period_timer must have queued the
6240 * CSD item but the remote cpu has not yet processed it. To handle this,
6241 * we can simply flush all pending CSD work inline here. We're
6242 * guaranteed at this point that no additional cfs_rq of this group can
6243 * join a CSD list.
6244 */
6245 #ifdef CONFIG_SMP
6246 for_each_possible_cpu(i) {
6247 struct rq *rq = cpu_rq(i);
6248 unsigned long flags;
6249
6250 if (list_empty(&rq->cfsb_csd_list))
6251 continue;
6252
6253 local_irq_save(flags);
6254 __cfsb_csd_unthrottle(rq);
6255 local_irq_restore(flags);
6256 }
6257 #endif
6258 }
6259
6260 /*
6261 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6262 *
6263 * The race is harmless, since modifying bandwidth settings of unhooked group
6264 * bits doesn't do much.
6265 */
6266
6267 /* cpu online callback */
6268 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6269 {
6270 struct task_group *tg;
6271
6272 lockdep_assert_rq_held(rq);
6273
6274 rcu_read_lock();
6275 list_for_each_entry_rcu(tg, &task_groups, list) {
6276 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6277 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6278
6279 raw_spin_lock(&cfs_b->lock);
6280 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6281 raw_spin_unlock(&cfs_b->lock);
6282 }
6283 rcu_read_unlock();
6284 }
6285
6286 /* cpu offline callback */
6287 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6288 {
6289 struct task_group *tg;
6290
6291 lockdep_assert_rq_held(rq);
6292
6293 /*
6294 * The rq clock has already been updated in the
6295 * set_rq_offline(), so we should skip updating
6296 * the rq clock again in unthrottle_cfs_rq().
6297 */
6298 rq_clock_start_loop_update(rq);
6299
6300 rcu_read_lock();
6301 list_for_each_entry_rcu(tg, &task_groups, list) {
6302 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6303
6304 if (!cfs_rq->runtime_enabled)
6305 continue;
6306
6307 /*
6308 * clock_task is not advancing so we just need to make sure
6309 * there's some valid quota amount
6310 */
6311 cfs_rq->runtime_remaining = 1;
6312 /*
6313 * Offline rq is schedulable till CPU is completely disabled
6314 * in take_cpu_down(), so we prevent new cfs throttling here.
6315 */
6316 cfs_rq->runtime_enabled = 0;
6317
6318 if (cfs_rq_throttled(cfs_rq))
6319 unthrottle_cfs_rq(cfs_rq);
6320 }
6321 rcu_read_unlock();
6322
6323 rq_clock_stop_loop_update(rq);
6324 }
6325
6326 bool cfs_task_bw_constrained(struct task_struct *p)
6327 {
6328 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6329
6330 if (!cfs_bandwidth_used())
6331 return false;
6332
6333 if (cfs_rq->runtime_enabled ||
6334 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6335 return true;
6336
6337 return false;
6338 }
6339
6340 #ifdef CONFIG_NO_HZ_FULL
6341 /* called from pick_next_task_fair() */
6342 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6343 {
6344 int cpu = cpu_of(rq);
6345
6346 if (!sched_feat(HZ_BW) || !cfs_bandwidth_used())
6347 return;
6348
6349 if (!tick_nohz_full_cpu(cpu))
6350 return;
6351
6352 if (rq->nr_running != 1)
6353 return;
6354
6355 /*
6356 * We know there is only one task runnable and we've just picked it. The
6357 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6358 * be otherwise able to stop the tick. Just need to check if we are using
6359 * bandwidth control.
6360 */
6361 if (cfs_task_bw_constrained(p))
6362 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6363 }
6364 #endif
6365
6366 #else /* CONFIG_CFS_BANDWIDTH */
6367
6368 static inline bool cfs_bandwidth_used(void)
6369 {
6370 return false;
6371 }
6372
6373 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
6374 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
6375 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6376 static inline void sync_throttle(struct task_group *tg, int cpu) {}
6377 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6378
6379 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6380 {
6381 return 0;
6382 }
6383
6384 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6385 {
6386 return 0;
6387 }
6388
6389 static inline int throttled_lb_pair(struct task_group *tg,
6390 int src_cpu, int dest_cpu)
6391 {
6392 return 0;
6393 }
6394
6395 #ifdef CONFIG_FAIR_GROUP_SCHED
6396 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
6397 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6398 #endif
6399
6400 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6401 {
6402 return NULL;
6403 }
6404 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6405 static inline void update_runtime_enabled(struct rq *rq) {}
6406 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6407 #ifdef CONFIG_CGROUP_SCHED
6408 bool cfs_task_bw_constrained(struct task_struct *p)
6409 {
6410 return false;
6411 }
6412 #endif
6413 #endif /* CONFIG_CFS_BANDWIDTH */
6414
6415 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
6416 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6417 #endif
6418
6419 /**************************************************
6420 * CFS operations on tasks:
6421 */
6422
6423 #ifdef CONFIG_SCHED_HRTICK
6424 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6425 {
6426 struct sched_entity *se = &p->se;
6427
6428 SCHED_WARN_ON(task_rq(p) != rq);
6429
6430 if (rq->cfs.h_nr_running > 1) {
6431 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6432 u64 slice = se->slice;
6433 s64 delta = slice - ran;
6434
6435 if (delta < 0) {
6436 if (task_current(rq, p))
6437 resched_curr(rq);
6438 return;
6439 }
6440 hrtick_start(rq, delta);
6441 }
6442 }
6443
6444 /*
6445 * called from enqueue/dequeue and updates the hrtick when the
6446 * current task is from our class and nr_running is low enough
6447 * to matter.
6448 */
6449 static void hrtick_update(struct rq *rq)
6450 {
6451 struct task_struct *curr = rq->curr;
6452
6453 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
6454 return;
6455
6456 hrtick_start_fair(rq, curr);
6457 }
6458 #else /* !CONFIG_SCHED_HRTICK */
6459 static inline void
6460 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6461 {
6462 }
6463
6464 static inline void hrtick_update(struct rq *rq)
6465 {
6466 }
6467 #endif
6468
6469 #ifdef CONFIG_SMP
6470 static inline bool cpu_overutilized(int cpu)
6471 {
6472 unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6473 unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6474
6475 /* Return true only if the utilization doesn't fit CPU's capacity */
6476 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6477 }
6478
6479 static inline void update_overutilized_status(struct rq *rq)
6480 {
6481 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
6482 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
6483 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
6484 }
6485 }
6486 #else
6487 static inline void update_overutilized_status(struct rq *rq) { }
6488 #endif
6489
6490 /* Runqueue only has SCHED_IDLE tasks enqueued */
6491 static int sched_idle_rq(struct rq *rq)
6492 {
6493 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6494 rq->nr_running);
6495 }
6496
6497 #ifdef CONFIG_SMP
6498 static int sched_idle_cpu(int cpu)
6499 {
6500 return sched_idle_rq(cpu_rq(cpu));
6501 }
6502 #endif
6503
6504 /*
6505 * The enqueue_task method is called before nr_running is
6506 * increased. Here we update the fair scheduling stats and
6507 * then put the task into the rbtree:
6508 */
6509 static void
6510 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6511 {
6512 struct cfs_rq *cfs_rq;
6513 struct sched_entity *se = &p->se;
6514 int idle_h_nr_running = task_has_idle_policy(p);
6515 int task_new = !(flags & ENQUEUE_WAKEUP);
6516
6517 /*
6518 * The code below (indirectly) updates schedutil which looks at
6519 * the cfs_rq utilization to select a frequency.
6520 * Let's add the task's estimated utilization to the cfs_rq's
6521 * estimated utilization, before we update schedutil.
6522 */
6523 util_est_enqueue(&rq->cfs, p);
6524
6525 /*
6526 * If in_iowait is set, the code below may not trigger any cpufreq
6527 * utilization updates, so do it here explicitly with the IOWAIT flag
6528 * passed.
6529 */
6530 if (p->in_iowait)
6531 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6532
6533 for_each_sched_entity(se) {
6534 if (se->on_rq)
6535 break;
6536 cfs_rq = cfs_rq_of(se);
6537 enqueue_entity(cfs_rq, se, flags);
6538
6539 cfs_rq->h_nr_running++;
6540 cfs_rq->idle_h_nr_running += idle_h_nr_running;
6541
6542 if (cfs_rq_is_idle(cfs_rq))
6543 idle_h_nr_running = 1;
6544
6545 /* end evaluation on encountering a throttled cfs_rq */
6546 if (cfs_rq_throttled(cfs_rq))
6547 goto enqueue_throttle;
6548
6549 flags = ENQUEUE_WAKEUP;
6550 }
6551
6552 for_each_sched_entity(se) {
6553 cfs_rq = cfs_rq_of(se);
6554
6555 update_load_avg(cfs_rq, se, UPDATE_TG);
6556 se_update_runnable(se);
6557 update_cfs_group(se);
6558
6559 cfs_rq->h_nr_running++;
6560 cfs_rq->idle_h_nr_running += idle_h_nr_running;
6561
6562 if (cfs_rq_is_idle(cfs_rq))
6563 idle_h_nr_running = 1;
6564
6565 /* end evaluation on encountering a throttled cfs_rq */
6566 if (cfs_rq_throttled(cfs_rq))
6567 goto enqueue_throttle;
6568 }
6569
6570 /* At this point se is NULL and we are at root level*/
6571 add_nr_running(rq, 1);
6572
6573 /*
6574 * Since new tasks are assigned an initial util_avg equal to
6575 * half of the spare capacity of their CPU, tiny tasks have the
6576 * ability to cross the overutilized threshold, which will
6577 * result in the load balancer ruining all the task placement
6578 * done by EAS. As a way to mitigate that effect, do not account
6579 * for the first enqueue operation of new tasks during the
6580 * overutilized flag detection.
6581 *
6582 * A better way of solving this problem would be to wait for
6583 * the PELT signals of tasks to converge before taking them
6584 * into account, but that is not straightforward to implement,
6585 * and the following generally works well enough in practice.
6586 */
6587 if (!task_new)
6588 update_overutilized_status(rq);
6589
6590 enqueue_throttle:
6591 assert_list_leaf_cfs_rq(rq);
6592
6593 hrtick_update(rq);
6594 }
6595
6596 static void set_next_buddy(struct sched_entity *se);
6597
6598 /*
6599 * The dequeue_task method is called before nr_running is
6600 * decreased. We remove the task from the rbtree and
6601 * update the fair scheduling stats:
6602 */
6603 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6604 {
6605 struct cfs_rq *cfs_rq;
6606 struct sched_entity *se = &p->se;
6607 int task_sleep = flags & DEQUEUE_SLEEP;
6608 int idle_h_nr_running = task_has_idle_policy(p);
6609 bool was_sched_idle = sched_idle_rq(rq);
6610
6611 util_est_dequeue(&rq->cfs, p);
6612
6613 for_each_sched_entity(se) {
6614 cfs_rq = cfs_rq_of(se);
6615 dequeue_entity(cfs_rq, se, flags);
6616
6617 cfs_rq->h_nr_running--;
6618 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6619
6620 if (cfs_rq_is_idle(cfs_rq))
6621 idle_h_nr_running = 1;
6622
6623 /* end evaluation on encountering a throttled cfs_rq */
6624 if (cfs_rq_throttled(cfs_rq))
6625 goto dequeue_throttle;
6626
6627 /* Don't dequeue parent if it has other entities besides us */
6628 if (cfs_rq->load.weight) {
6629 /* Avoid re-evaluating load for this entity: */
6630 se = parent_entity(se);
6631 /*
6632 * Bias pick_next to pick a task from this cfs_rq, as
6633 * p is sleeping when it is within its sched_slice.
6634 */
6635 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
6636 set_next_buddy(se);
6637 break;
6638 }
6639 flags |= DEQUEUE_SLEEP;
6640 }
6641
6642 for_each_sched_entity(se) {
6643 cfs_rq = cfs_rq_of(se);
6644
6645 update_load_avg(cfs_rq, se, UPDATE_TG);
6646 se_update_runnable(se);
6647 update_cfs_group(se);
6648
6649 cfs_rq->h_nr_running--;
6650 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6651
6652 if (cfs_rq_is_idle(cfs_rq))
6653 idle_h_nr_running = 1;
6654
6655 /* end evaluation on encountering a throttled cfs_rq */
6656 if (cfs_rq_throttled(cfs_rq))
6657 goto dequeue_throttle;
6658
6659 }
6660
6661 /* At this point se is NULL and we are at root level*/
6662 sub_nr_running(rq, 1);
6663
6664 /* balance early to pull high priority tasks */
6665 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6666 rq->next_balance = jiffies;
6667
6668 dequeue_throttle:
6669 util_est_update(&rq->cfs, p, task_sleep);
6670 hrtick_update(rq);
6671 }
6672
6673 #ifdef CONFIG_SMP
6674
6675 /* Working cpumask for: load_balance, load_balance_newidle. */
6676 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6677 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
6678 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
6679
6680 #ifdef CONFIG_NO_HZ_COMMON
6681
6682 static struct {
6683 cpumask_var_t idle_cpus_mask;
6684 atomic_t nr_cpus;
6685 int has_blocked; /* Idle CPUS has blocked load */
6686 int needs_update; /* Newly idle CPUs need their next_balance collated */
6687 unsigned long next_balance; /* in jiffy units */
6688 unsigned long next_blocked; /* Next update of blocked load in jiffies */
6689 } nohz ____cacheline_aligned;
6690
6691 #endif /* CONFIG_NO_HZ_COMMON */
6692
6693 static unsigned long cpu_load(struct rq *rq)
6694 {
6695 return cfs_rq_load_avg(&rq->cfs);
6696 }
6697
6698 /*
6699 * cpu_load_without - compute CPU load without any contributions from *p
6700 * @cpu: the CPU which load is requested
6701 * @p: the task which load should be discounted
6702 *
6703 * The load of a CPU is defined by the load of tasks currently enqueued on that
6704 * CPU as well as tasks which are currently sleeping after an execution on that
6705 * CPU.
6706 *
6707 * This method returns the load of the specified CPU by discounting the load of
6708 * the specified task, whenever the task is currently contributing to the CPU
6709 * load.
6710 */
6711 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6712 {
6713 struct cfs_rq *cfs_rq;
6714 unsigned int load;
6715
6716 /* Task has no contribution or is new */
6717 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6718 return cpu_load(rq);
6719
6720 cfs_rq = &rq->cfs;
6721 load = READ_ONCE(cfs_rq->avg.load_avg);
6722
6723 /* Discount task's util from CPU's util */
6724 lsub_positive(&load, task_h_load(p));
6725
6726 return load;
6727 }
6728
6729 static unsigned long cpu_runnable(struct rq *rq)
6730 {
6731 return cfs_rq_runnable_avg(&rq->cfs);
6732 }
6733
6734 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6735 {
6736 struct cfs_rq *cfs_rq;
6737 unsigned int runnable;
6738
6739 /* Task has no contribution or is new */
6740 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6741 return cpu_runnable(rq);
6742
6743 cfs_rq = &rq->cfs;
6744 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6745
6746 /* Discount task's runnable from CPU's runnable */
6747 lsub_positive(&runnable, p->se.avg.runnable_avg);
6748
6749 return runnable;
6750 }
6751
6752 static unsigned long capacity_of(int cpu)
6753 {
6754 return cpu_rq(cpu)->cpu_capacity;
6755 }
6756
6757 static void record_wakee(struct task_struct *p)
6758 {
6759 /*
6760 * Only decay a single time; tasks that have less then 1 wakeup per
6761 * jiffy will not have built up many flips.
6762 */
6763 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6764 current->wakee_flips >>= 1;
6765 current->wakee_flip_decay_ts = jiffies;
6766 }
6767
6768 if (current->last_wakee != p) {
6769 current->last_wakee = p;
6770 current->wakee_flips++;
6771 }
6772 }
6773
6774 /*
6775 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
6776 *
6777 * A waker of many should wake a different task than the one last awakened
6778 * at a frequency roughly N times higher than one of its wakees.
6779 *
6780 * In order to determine whether we should let the load spread vs consolidating
6781 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6782 * partner, and a factor of lls_size higher frequency in the other.
6783 *
6784 * With both conditions met, we can be relatively sure that the relationship is
6785 * non-monogamous, with partner count exceeding socket size.
6786 *
6787 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6788 * whatever is irrelevant, spread criteria is apparent partner count exceeds
6789 * socket size.
6790 */
6791 static int wake_wide(struct task_struct *p)
6792 {
6793 unsigned int master = current->wakee_flips;
6794 unsigned int slave = p->wakee_flips;
6795 int factor = __this_cpu_read(sd_llc_size);
6796
6797 if (master < slave)
6798 swap(master, slave);
6799 if (slave < factor || master < slave * factor)
6800 return 0;
6801 return 1;
6802 }
6803
6804 /*
6805 * The purpose of wake_affine() is to quickly determine on which CPU we can run
6806 * soonest. For the purpose of speed we only consider the waking and previous
6807 * CPU.
6808 *
6809 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
6810 * cache-affine and is (or will be) idle.
6811 *
6812 * wake_affine_weight() - considers the weight to reflect the average
6813 * scheduling latency of the CPUs. This seems to work
6814 * for the overloaded case.
6815 */
6816 static int
6817 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
6818 {
6819 /*
6820 * If this_cpu is idle, it implies the wakeup is from interrupt
6821 * context. Only allow the move if cache is shared. Otherwise an
6822 * interrupt intensive workload could force all tasks onto one
6823 * node depending on the IO topology or IRQ affinity settings.
6824 *
6825 * If the prev_cpu is idle and cache affine then avoid a migration.
6826 * There is no guarantee that the cache hot data from an interrupt
6827 * is more important than cache hot data on the prev_cpu and from
6828 * a cpufreq perspective, it's better to have higher utilisation
6829 * on one CPU.
6830 */
6831 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
6832 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
6833
6834 if (sync && cpu_rq(this_cpu)->nr_running == 1)
6835 return this_cpu;
6836
6837 if (available_idle_cpu(prev_cpu))
6838 return prev_cpu;
6839
6840 return nr_cpumask_bits;
6841 }
6842
6843 static int
6844 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
6845 int this_cpu, int prev_cpu, int sync)
6846 {
6847 s64 this_eff_load, prev_eff_load;
6848 unsigned long task_load;
6849
6850 this_eff_load = cpu_load(cpu_rq(this_cpu));
6851
6852 if (sync) {
6853 unsigned long current_load = task_h_load(current);
6854
6855 if (current_load > this_eff_load)
6856 return this_cpu;
6857
6858 this_eff_load -= current_load;
6859 }
6860
6861 task_load = task_h_load(p);
6862
6863 this_eff_load += task_load;
6864 if (sched_feat(WA_BIAS))
6865 this_eff_load *= 100;
6866 this_eff_load *= capacity_of(prev_cpu);
6867
6868 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
6869 prev_eff_load -= task_load;
6870 if (sched_feat(WA_BIAS))
6871 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
6872 prev_eff_load *= capacity_of(this_cpu);
6873
6874 /*
6875 * If sync, adjust the weight of prev_eff_load such that if
6876 * prev_eff == this_eff that select_idle_sibling() will consider
6877 * stacking the wakee on top of the waker if no other CPU is
6878 * idle.
6879 */
6880 if (sync)
6881 prev_eff_load += 1;
6882
6883 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
6884 }
6885
6886 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
6887 int this_cpu, int prev_cpu, int sync)
6888 {
6889 int target = nr_cpumask_bits;
6890
6891 if (sched_feat(WA_IDLE))
6892 target = wake_affine_idle(this_cpu, prev_cpu, sync);
6893
6894 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
6895 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
6896
6897 schedstat_inc(p->stats.nr_wakeups_affine_attempts);
6898 if (target != this_cpu)
6899 return prev_cpu;
6900
6901 schedstat_inc(sd->ttwu_move_affine);
6902 schedstat_inc(p->stats.nr_wakeups_affine);
6903 return target;
6904 }
6905
6906 static struct sched_group *
6907 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
6908
6909 /*
6910 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
6911 */
6912 static int
6913 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6914 {
6915 unsigned long load, min_load = ULONG_MAX;
6916 unsigned int min_exit_latency = UINT_MAX;
6917 u64 latest_idle_timestamp = 0;
6918 int least_loaded_cpu = this_cpu;
6919 int shallowest_idle_cpu = -1;
6920 int i;
6921
6922 /* Check if we have any choice: */
6923 if (group->group_weight == 1)
6924 return cpumask_first(sched_group_span(group));
6925
6926 /* Traverse only the allowed CPUs */
6927 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
6928 struct rq *rq = cpu_rq(i);
6929
6930 if (!sched_core_cookie_match(rq, p))
6931 continue;
6932
6933 if (sched_idle_cpu(i))
6934 return i;
6935
6936 if (available_idle_cpu(i)) {
6937 struct cpuidle_state *idle = idle_get_state(rq);
6938 if (idle && idle->exit_latency < min_exit_latency) {
6939 /*
6940 * We give priority to a CPU whose idle state
6941 * has the smallest exit latency irrespective
6942 * of any idle timestamp.
6943 */
6944 min_exit_latency = idle->exit_latency;
6945 latest_idle_timestamp = rq->idle_stamp;
6946 shallowest_idle_cpu = i;
6947 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
6948 rq->idle_stamp > latest_idle_timestamp) {
6949 /*
6950 * If equal or no active idle state, then
6951 * the most recently idled CPU might have
6952 * a warmer cache.
6953 */
6954 latest_idle_timestamp = rq->idle_stamp;
6955 shallowest_idle_cpu = i;
6956 }
6957 } else if (shallowest_idle_cpu == -1) {
6958 load = cpu_load(cpu_rq(i));
6959 if (load < min_load) {
6960 min_load = load;
6961 least_loaded_cpu = i;
6962 }
6963 }
6964 }
6965
6966 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6967 }
6968
6969 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6970 int cpu, int prev_cpu, int sd_flag)
6971 {
6972 int new_cpu = cpu;
6973
6974 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6975 return prev_cpu;
6976
6977 /*
6978 * We need task's util for cpu_util_without, sync it up to
6979 * prev_cpu's last_update_time.
6980 */
6981 if (!(sd_flag & SD_BALANCE_FORK))
6982 sync_entity_load_avg(&p->se);
6983
6984 while (sd) {
6985 struct sched_group *group;
6986 struct sched_domain *tmp;
6987 int weight;
6988
6989 if (!(sd->flags & sd_flag)) {
6990 sd = sd->child;
6991 continue;
6992 }
6993
6994 group = find_idlest_group(sd, p, cpu);
6995 if (!group) {
6996 sd = sd->child;
6997 continue;
6998 }
6999
7000 new_cpu = find_idlest_group_cpu(group, p, cpu);
7001 if (new_cpu == cpu) {
7002 /* Now try balancing at a lower domain level of 'cpu': */
7003 sd = sd->child;
7004 continue;
7005 }
7006
7007 /* Now try balancing at a lower domain level of 'new_cpu': */
7008 cpu = new_cpu;
7009 weight = sd->span_weight;
7010 sd = NULL;
7011 for_each_domain(cpu, tmp) {
7012 if (weight <= tmp->span_weight)
7013 break;
7014 if (tmp->flags & sd_flag)
7015 sd = tmp;
7016 }
7017 }
7018
7019 return new_cpu;
7020 }
7021
7022 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7023 {
7024 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7025 sched_cpu_cookie_match(cpu_rq(cpu), p))
7026 return cpu;
7027
7028 return -1;
7029 }
7030
7031 #ifdef CONFIG_SCHED_SMT
7032 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7033 EXPORT_SYMBOL_GPL(sched_smt_present);
7034
7035 static inline void set_idle_cores(int cpu, int val)
7036 {
7037 struct sched_domain_shared *sds;
7038
7039 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7040 if (sds)
7041 WRITE_ONCE(sds->has_idle_cores, val);
7042 }
7043
7044 static inline bool test_idle_cores(int cpu)
7045 {
7046 struct sched_domain_shared *sds;
7047
7048 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7049 if (sds)
7050 return READ_ONCE(sds->has_idle_cores);
7051
7052 return false;
7053 }
7054
7055 /*
7056 * Scans the local SMT mask to see if the entire core is idle, and records this
7057 * information in sd_llc_shared->has_idle_cores.
7058 *
7059 * Since SMT siblings share all cache levels, inspecting this limited remote
7060 * state should be fairly cheap.
7061 */
7062 void __update_idle_core(struct rq *rq)
7063 {
7064 int core = cpu_of(rq);
7065 int cpu;
7066
7067 rcu_read_lock();
7068 if (test_idle_cores(core))
7069 goto unlock;
7070
7071 for_each_cpu(cpu, cpu_smt_mask(core)) {
7072 if (cpu == core)
7073 continue;
7074
7075 if (!available_idle_cpu(cpu))
7076 goto unlock;
7077 }
7078
7079 set_idle_cores(core, 1);
7080 unlock:
7081 rcu_read_unlock();
7082 }
7083
7084 /*
7085 * Scan the entire LLC domain for idle cores; this dynamically switches off if
7086 * there are no idle cores left in the system; tracked through
7087 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7088 */
7089 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7090 {
7091 bool idle = true;
7092 int cpu;
7093
7094 for_each_cpu(cpu, cpu_smt_mask(core)) {
7095 if (!available_idle_cpu(cpu)) {
7096 idle = false;
7097 if (*idle_cpu == -1) {
7098 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
7099 *idle_cpu = cpu;
7100 break;
7101 }
7102 continue;
7103 }
7104 break;
7105 }
7106 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
7107 *idle_cpu = cpu;
7108 }
7109
7110 if (idle)
7111 return core;
7112
7113 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7114 return -1;
7115 }
7116
7117 /*
7118 * Scan the local SMT mask for idle CPUs.
7119 */
7120 static int select_idle_smt(struct task_struct *p, int target)
7121 {
7122 int cpu;
7123
7124 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7125 if (cpu == target)
7126 continue;
7127 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7128 return cpu;
7129 }
7130
7131 return -1;
7132 }
7133
7134 #else /* CONFIG_SCHED_SMT */
7135
7136 static inline void set_idle_cores(int cpu, int val)
7137 {
7138 }
7139
7140 static inline bool test_idle_cores(int cpu)
7141 {
7142 return false;
7143 }
7144
7145 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7146 {
7147 return __select_idle_cpu(core, p);
7148 }
7149
7150 static inline int select_idle_smt(struct task_struct *p, int target)
7151 {
7152 return -1;
7153 }
7154
7155 #endif /* CONFIG_SCHED_SMT */
7156
7157 /*
7158 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7159 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7160 * average idle time for this rq (as found in rq->avg_idle).
7161 */
7162 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7163 {
7164 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7165 int i, cpu, idle_cpu = -1, nr = INT_MAX;
7166 struct sched_domain_shared *sd_share;
7167 struct rq *this_rq = this_rq();
7168 int this = smp_processor_id();
7169 struct sched_domain *this_sd = NULL;
7170 u64 time = 0;
7171
7172 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7173
7174 if (sched_feat(SIS_PROP) && !has_idle_core) {
7175 u64 avg_cost, avg_idle, span_avg;
7176 unsigned long now = jiffies;
7177
7178 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
7179 if (!this_sd)
7180 return -1;
7181
7182 /*
7183 * If we're busy, the assumption that the last idle period
7184 * predicts the future is flawed; age away the remaining
7185 * predicted idle time.
7186 */
7187 if (unlikely(this_rq->wake_stamp < now)) {
7188 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
7189 this_rq->wake_stamp++;
7190 this_rq->wake_avg_idle >>= 1;
7191 }
7192 }
7193
7194 avg_idle = this_rq->wake_avg_idle;
7195 avg_cost = this_sd->avg_scan_cost + 1;
7196
7197 span_avg = sd->span_weight * avg_idle;
7198 if (span_avg > 4*avg_cost)
7199 nr = div_u64(span_avg, avg_cost);
7200 else
7201 nr = 4;
7202
7203 time = cpu_clock(this);
7204 }
7205
7206 if (sched_feat(SIS_UTIL)) {
7207 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7208 if (sd_share) {
7209 /* because !--nr is the condition to stop scan */
7210 nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7211 /* overloaded LLC is unlikely to have idle cpu/core */
7212 if (nr == 1)
7213 return -1;
7214 }
7215 }
7216
7217 for_each_cpu_wrap(cpu, cpus, target + 1) {
7218 if (has_idle_core) {
7219 i = select_idle_core(p, cpu, cpus, &idle_cpu);
7220 if ((unsigned int)i < nr_cpumask_bits)
7221 return i;
7222
7223 } else {
7224 if (!--nr)
7225 return -1;
7226 idle_cpu = __select_idle_cpu(cpu, p);
7227 if ((unsigned int)idle_cpu < nr_cpumask_bits)
7228 break;
7229 }
7230 }
7231
7232 if (has_idle_core)
7233 set_idle_cores(target, false);
7234
7235 if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) {
7236 time = cpu_clock(this) - time;
7237
7238 /*
7239 * Account for the scan cost of wakeups against the average
7240 * idle time.
7241 */
7242 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
7243
7244 update_avg(&this_sd->avg_scan_cost, time);
7245 }
7246
7247 return idle_cpu;
7248 }
7249
7250 /*
7251 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7252 * the task fits. If no CPU is big enough, but there are idle ones, try to
7253 * maximize capacity.
7254 */
7255 static int
7256 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7257 {
7258 unsigned long task_util, util_min, util_max, best_cap = 0;
7259 int fits, best_fits = 0;
7260 int cpu, best_cpu = -1;
7261 struct cpumask *cpus;
7262
7263 cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7264 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7265
7266 task_util = task_util_est(p);
7267 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7268 util_max = uclamp_eff_value(p, UCLAMP_MAX);
7269
7270 for_each_cpu_wrap(cpu, cpus, target) {
7271 unsigned long cpu_cap = capacity_of(cpu);
7272
7273 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7274 continue;
7275
7276 fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7277
7278 /* This CPU fits with all requirements */
7279 if (fits > 0)
7280 return cpu;
7281 /*
7282 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7283 * Look for the CPU with best capacity.
7284 */
7285 else if (fits < 0)
7286 cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu));
7287
7288 /*
7289 * First, select CPU which fits better (-1 being better than 0).
7290 * Then, select the one with best capacity at same level.
7291 */
7292 if ((fits < best_fits) ||
7293 ((fits == best_fits) && (cpu_cap > best_cap))) {
7294 best_cap = cpu_cap;
7295 best_cpu = cpu;
7296 best_fits = fits;
7297 }
7298 }
7299
7300 return best_cpu;
7301 }
7302
7303 static inline bool asym_fits_cpu(unsigned long util,
7304 unsigned long util_min,
7305 unsigned long util_max,
7306 int cpu)
7307 {
7308 if (sched_asym_cpucap_active())
7309 /*
7310 * Return true only if the cpu fully fits the task requirements
7311 * which include the utilization and the performance hints.
7312 */
7313 return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7314
7315 return true;
7316 }
7317
7318 /*
7319 * Try and locate an idle core/thread in the LLC cache domain.
7320 */
7321 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7322 {
7323 bool has_idle_core = false;
7324 struct sched_domain *sd;
7325 unsigned long task_util, util_min, util_max;
7326 int i, recent_used_cpu;
7327
7328 /*
7329 * On asymmetric system, update task utilization because we will check
7330 * that the task fits with cpu's capacity.
7331 */
7332 if (sched_asym_cpucap_active()) {
7333 sync_entity_load_avg(&p->se);
7334 task_util = task_util_est(p);
7335 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7336 util_max = uclamp_eff_value(p, UCLAMP_MAX);
7337 }
7338
7339 /*
7340 * per-cpu select_rq_mask usage
7341 */
7342 lockdep_assert_irqs_disabled();
7343
7344 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7345 asym_fits_cpu(task_util, util_min, util_max, target))
7346 return target;
7347
7348 /*
7349 * If the previous CPU is cache affine and idle, don't be stupid:
7350 */
7351 if (prev != target && cpus_share_cache(prev, target) &&
7352 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7353 asym_fits_cpu(task_util, util_min, util_max, prev))
7354 return prev;
7355
7356 /*
7357 * Allow a per-cpu kthread to stack with the wakee if the
7358 * kworker thread and the tasks previous CPUs are the same.
7359 * The assumption is that the wakee queued work for the
7360 * per-cpu kthread that is now complete and the wakeup is
7361 * essentially a sync wakeup. An obvious example of this
7362 * pattern is IO completions.
7363 */
7364 if (is_per_cpu_kthread(current) &&
7365 in_task() &&
7366 prev == smp_processor_id() &&
7367 this_rq()->nr_running <= 1 &&
7368 asym_fits_cpu(task_util, util_min, util_max, prev)) {
7369 return prev;
7370 }
7371
7372 /* Check a recently used CPU as a potential idle candidate: */
7373 recent_used_cpu = p->recent_used_cpu;
7374 p->recent_used_cpu = prev;
7375 if (recent_used_cpu != prev &&
7376 recent_used_cpu != target &&
7377 cpus_share_cache(recent_used_cpu, target) &&
7378 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7379 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7380 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7381 return recent_used_cpu;
7382 }
7383
7384 /*
7385 * For asymmetric CPU capacity systems, our domain of interest is
7386 * sd_asym_cpucapacity rather than sd_llc.
7387 */
7388 if (sched_asym_cpucap_active()) {
7389 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7390 /*
7391 * On an asymmetric CPU capacity system where an exclusive
7392 * cpuset defines a symmetric island (i.e. one unique
7393 * capacity_orig value through the cpuset), the key will be set
7394 * but the CPUs within that cpuset will not have a domain with
7395 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7396 * capacity path.
7397 */
7398 if (sd) {
7399 i = select_idle_capacity(p, sd, target);
7400 return ((unsigned)i < nr_cpumask_bits) ? i : target;
7401 }
7402 }
7403
7404 sd = rcu_dereference(per_cpu(sd_llc, target));
7405 if (!sd)
7406 return target;
7407
7408 if (sched_smt_active()) {
7409 has_idle_core = test_idle_cores(target);
7410
7411 if (!has_idle_core && cpus_share_cache(prev, target)) {
7412 i = select_idle_smt(p, prev);
7413 if ((unsigned int)i < nr_cpumask_bits)
7414 return i;
7415 }
7416 }
7417
7418 i = select_idle_cpu(p, sd, has_idle_core, target);
7419 if ((unsigned)i < nr_cpumask_bits)
7420 return i;
7421
7422 return target;
7423 }
7424
7425 /**
7426 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7427 * @cpu: the CPU to get the utilization for
7428 * @p: task for which the CPU utilization should be predicted or NULL
7429 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7430 * @boost: 1 to enable boosting, otherwise 0
7431 *
7432 * The unit of the return value must be the same as the one of CPU capacity
7433 * so that CPU utilization can be compared with CPU capacity.
7434 *
7435 * CPU utilization is the sum of running time of runnable tasks plus the
7436 * recent utilization of currently non-runnable tasks on that CPU.
7437 * It represents the amount of CPU capacity currently used by CFS tasks in
7438 * the range [0..max CPU capacity] with max CPU capacity being the CPU
7439 * capacity at f_max.
7440 *
7441 * The estimated CPU utilization is defined as the maximum between CPU
7442 * utilization and sum of the estimated utilization of the currently
7443 * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7444 * previously-executed tasks, which helps better deduce how busy a CPU will
7445 * be when a long-sleeping task wakes up. The contribution to CPU utilization
7446 * of such a task would be significantly decayed at this point of time.
7447 *
7448 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7449 * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7450 * utilization. Boosting is implemented in cpu_util() so that internal
7451 * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7452 * latter via cpu_util_cfs_boost().
7453 *
7454 * CPU utilization can be higher than the current CPU capacity
7455 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7456 * of rounding errors as well as task migrations or wakeups of new tasks.
7457 * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7458 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7459 * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7460 * capacity. CPU utilization is allowed to overshoot current CPU capacity
7461 * though since this is useful for predicting the CPU capacity required
7462 * after task migrations (scheduler-driven DVFS).
7463 *
7464 * Return: (Boosted) (estimated) utilization for the specified CPU.
7465 */
7466 static unsigned long
7467 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7468 {
7469 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7470 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7471 unsigned long runnable;
7472
7473 if (boost) {
7474 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7475 util = max(util, runnable);
7476 }
7477
7478 /*
7479 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7480 * contribution. If @p migrates from another CPU to @cpu add its
7481 * contribution. In all the other cases @cpu is not impacted by the
7482 * migration so its util_avg is already correct.
7483 */
7484 if (p && task_cpu(p) == cpu && dst_cpu != cpu)
7485 lsub_positive(&util, task_util(p));
7486 else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
7487 util += task_util(p);
7488
7489 if (sched_feat(UTIL_EST)) {
7490 unsigned long util_est;
7491
7492 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
7493
7494 /*
7495 * During wake-up @p isn't enqueued yet and doesn't contribute
7496 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
7497 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7498 * has been enqueued.
7499 *
7500 * During exec (@dst_cpu = -1) @p is enqueued and does
7501 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
7502 * Remove it to "simulate" cpu_util without @p's contribution.
7503 *
7504 * Despite the task_on_rq_queued(@p) check there is still a
7505 * small window for a possible race when an exec
7506 * select_task_rq_fair() races with LB's detach_task().
7507 *
7508 * detach_task()
7509 * deactivate_task()
7510 * p->on_rq = TASK_ON_RQ_MIGRATING;
7511 * -------------------------------- A
7512 * dequeue_task() \
7513 * dequeue_task_fair() + Race Time
7514 * util_est_dequeue() /
7515 * -------------------------------- B
7516 *
7517 * The additional check "current == p" is required to further
7518 * reduce the race window.
7519 */
7520 if (dst_cpu == cpu)
7521 util_est += _task_util_est(p);
7522 else if (p && unlikely(task_on_rq_queued(p) || current == p))
7523 lsub_positive(&util_est, _task_util_est(p));
7524
7525 util = max(util, util_est);
7526 }
7527
7528 return min(util, capacity_orig_of(cpu));
7529 }
7530
7531 unsigned long cpu_util_cfs(int cpu)
7532 {
7533 return cpu_util(cpu, NULL, -1, 0);
7534 }
7535
7536 unsigned long cpu_util_cfs_boost(int cpu)
7537 {
7538 return cpu_util(cpu, NULL, -1, 1);
7539 }
7540
7541 /*
7542 * cpu_util_without: compute cpu utilization without any contributions from *p
7543 * @cpu: the CPU which utilization is requested
7544 * @p: the task which utilization should be discounted
7545 *
7546 * The utilization of a CPU is defined by the utilization of tasks currently
7547 * enqueued on that CPU as well as tasks which are currently sleeping after an
7548 * execution on that CPU.
7549 *
7550 * This method returns the utilization of the specified CPU by discounting the
7551 * utilization of the specified task, whenever the task is currently
7552 * contributing to the CPU utilization.
7553 */
7554 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7555 {
7556 /* Task has no contribution or is new */
7557 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7558 p = NULL;
7559
7560 return cpu_util(cpu, p, -1, 0);
7561 }
7562
7563 /*
7564 * energy_env - Utilization landscape for energy estimation.
7565 * @task_busy_time: Utilization contribution by the task for which we test the
7566 * placement. Given by eenv_task_busy_time().
7567 * @pd_busy_time: Utilization of the whole perf domain without the task
7568 * contribution. Given by eenv_pd_busy_time().
7569 * @cpu_cap: Maximum CPU capacity for the perf domain.
7570 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
7571 */
7572 struct energy_env {
7573 unsigned long task_busy_time;
7574 unsigned long pd_busy_time;
7575 unsigned long cpu_cap;
7576 unsigned long pd_cap;
7577 };
7578
7579 /*
7580 * Compute the task busy time for compute_energy(). This time cannot be
7581 * injected directly into effective_cpu_util() because of the IRQ scaling.
7582 * The latter only makes sense with the most recent CPUs where the task has
7583 * run.
7584 */
7585 static inline void eenv_task_busy_time(struct energy_env *eenv,
7586 struct task_struct *p, int prev_cpu)
7587 {
7588 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
7589 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
7590
7591 if (unlikely(irq >= max_cap))
7592 busy_time = max_cap;
7593 else
7594 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
7595
7596 eenv->task_busy_time = busy_time;
7597 }
7598
7599 /*
7600 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
7601 * utilization for each @pd_cpus, it however doesn't take into account
7602 * clamping since the ratio (utilization / cpu_capacity) is already enough to
7603 * scale the EM reported power consumption at the (eventually clamped)
7604 * cpu_capacity.
7605 *
7606 * The contribution of the task @p for which we want to estimate the
7607 * energy cost is removed (by cpu_util()) and must be calculated
7608 * separately (see eenv_task_busy_time). This ensures:
7609 *
7610 * - A stable PD utilization, no matter which CPU of that PD we want to place
7611 * the task on.
7612 *
7613 * - A fair comparison between CPUs as the task contribution (task_util())
7614 * will always be the same no matter which CPU utilization we rely on
7615 * (util_avg or util_est).
7616 *
7617 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
7618 * exceed @eenv->pd_cap.
7619 */
7620 static inline void eenv_pd_busy_time(struct energy_env *eenv,
7621 struct cpumask *pd_cpus,
7622 struct task_struct *p)
7623 {
7624 unsigned long busy_time = 0;
7625 int cpu;
7626
7627 for_each_cpu(cpu, pd_cpus) {
7628 unsigned long util = cpu_util(cpu, p, -1, 0);
7629
7630 busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
7631 }
7632
7633 eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
7634 }
7635
7636 /*
7637 * Compute the maximum utilization for compute_energy() when the task @p
7638 * is placed on the cpu @dst_cpu.
7639 *
7640 * Returns the maximum utilization among @eenv->cpus. This utilization can't
7641 * exceed @eenv->cpu_cap.
7642 */
7643 static inline unsigned long
7644 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
7645 struct task_struct *p, int dst_cpu)
7646 {
7647 unsigned long max_util = 0;
7648 int cpu;
7649
7650 for_each_cpu(cpu, pd_cpus) {
7651 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
7652 unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
7653 unsigned long eff_util;
7654
7655 /*
7656 * Performance domain frequency: utilization clamping
7657 * must be considered since it affects the selection
7658 * of the performance domain frequency.
7659 * NOTE: in case RT tasks are running, by default the
7660 * FREQUENCY_UTIL's utilization can be max OPP.
7661 */
7662 eff_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
7663 max_util = max(max_util, eff_util);
7664 }
7665
7666 return min(max_util, eenv->cpu_cap);
7667 }
7668
7669 /*
7670 * compute_energy(): Use the Energy Model to estimate the energy that @pd would
7671 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
7672 * contribution is ignored.
7673 */
7674 static inline unsigned long
7675 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
7676 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
7677 {
7678 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
7679 unsigned long busy_time = eenv->pd_busy_time;
7680
7681 if (dst_cpu >= 0)
7682 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
7683
7684 return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
7685 }
7686
7687 /*
7688 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
7689 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
7690 * spare capacity in each performance domain and uses it as a potential
7691 * candidate to execute the task. Then, it uses the Energy Model to figure
7692 * out which of the CPU candidates is the most energy-efficient.
7693 *
7694 * The rationale for this heuristic is as follows. In a performance domain,
7695 * all the most energy efficient CPU candidates (according to the Energy
7696 * Model) are those for which we'll request a low frequency. When there are
7697 * several CPUs for which the frequency request will be the same, we don't
7698 * have enough data to break the tie between them, because the Energy Model
7699 * only includes active power costs. With this model, if we assume that
7700 * frequency requests follow utilization (e.g. using schedutil), the CPU with
7701 * the maximum spare capacity in a performance domain is guaranteed to be among
7702 * the best candidates of the performance domain.
7703 *
7704 * In practice, it could be preferable from an energy standpoint to pack
7705 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7706 * but that could also hurt our chances to go cluster idle, and we have no
7707 * ways to tell with the current Energy Model if this is actually a good
7708 * idea or not. So, find_energy_efficient_cpu() basically favors
7709 * cluster-packing, and spreading inside a cluster. That should at least be
7710 * a good thing for latency, and this is consistent with the idea that most
7711 * of the energy savings of EAS come from the asymmetry of the system, and
7712 * not so much from breaking the tie between identical CPUs. That's also the
7713 * reason why EAS is enabled in the topology code only for systems where
7714 * SD_ASYM_CPUCAPACITY is set.
7715 *
7716 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7717 * they don't have any useful utilization data yet and it's not possible to
7718 * forecast their impact on energy consumption. Consequently, they will be
7719 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
7720 * to be energy-inefficient in some use-cases. The alternative would be to
7721 * bias new tasks towards specific types of CPUs first, or to try to infer
7722 * their util_avg from the parent task, but those heuristics could hurt
7723 * other use-cases too. So, until someone finds a better way to solve this,
7724 * let's keep things simple by re-using the existing slow path.
7725 */
7726 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
7727 {
7728 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7729 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
7730 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
7731 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
7732 struct root_domain *rd = this_rq()->rd;
7733 int cpu, best_energy_cpu, target = -1;
7734 int prev_fits = -1, best_fits = -1;
7735 unsigned long best_thermal_cap = 0;
7736 unsigned long prev_thermal_cap = 0;
7737 struct sched_domain *sd;
7738 struct perf_domain *pd;
7739 struct energy_env eenv;
7740
7741 rcu_read_lock();
7742 pd = rcu_dereference(rd->pd);
7743 if (!pd || READ_ONCE(rd->overutilized))
7744 goto unlock;
7745
7746 /*
7747 * Energy-aware wake-up happens on the lowest sched_domain starting
7748 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7749 */
7750 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7751 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
7752 sd = sd->parent;
7753 if (!sd)
7754 goto unlock;
7755
7756 target = prev_cpu;
7757
7758 sync_entity_load_avg(&p->se);
7759 if (!uclamp_task_util(p, p_util_min, p_util_max))
7760 goto unlock;
7761
7762 eenv_task_busy_time(&eenv, p, prev_cpu);
7763
7764 for (; pd; pd = pd->next) {
7765 unsigned long util_min = p_util_min, util_max = p_util_max;
7766 unsigned long cpu_cap, cpu_thermal_cap, util;
7767 unsigned long cur_delta, max_spare_cap = 0;
7768 unsigned long rq_util_min, rq_util_max;
7769 unsigned long prev_spare_cap = 0;
7770 int max_spare_cap_cpu = -1;
7771 unsigned long base_energy;
7772 int fits, max_fits = -1;
7773
7774 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
7775
7776 if (cpumask_empty(cpus))
7777 continue;
7778
7779 /* Account thermal pressure for the energy estimation */
7780 cpu = cpumask_first(cpus);
7781 cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
7782 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
7783
7784 eenv.cpu_cap = cpu_thermal_cap;
7785 eenv.pd_cap = 0;
7786
7787 for_each_cpu(cpu, cpus) {
7788 struct rq *rq = cpu_rq(cpu);
7789
7790 eenv.pd_cap += cpu_thermal_cap;
7791
7792 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7793 continue;
7794
7795 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
7796 continue;
7797
7798 util = cpu_util(cpu, p, cpu, 0);
7799 cpu_cap = capacity_of(cpu);
7800
7801 /*
7802 * Skip CPUs that cannot satisfy the capacity request.
7803 * IOW, placing the task there would make the CPU
7804 * overutilized. Take uclamp into account to see how
7805 * much capacity we can get out of the CPU; this is
7806 * aligned with sched_cpu_util().
7807 */
7808 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
7809 /*
7810 * Open code uclamp_rq_util_with() except for
7811 * the clamp() part. Ie: apply max aggregation
7812 * only. util_fits_cpu() logic requires to
7813 * operate on non clamped util but must use the
7814 * max-aggregated uclamp_{min, max}.
7815 */
7816 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
7817 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
7818
7819 util_min = max(rq_util_min, p_util_min);
7820 util_max = max(rq_util_max, p_util_max);
7821 }
7822
7823 fits = util_fits_cpu(util, util_min, util_max, cpu);
7824 if (!fits)
7825 continue;
7826
7827 lsub_positive(&cpu_cap, util);
7828
7829 if (cpu == prev_cpu) {
7830 /* Always use prev_cpu as a candidate. */
7831 prev_spare_cap = cpu_cap;
7832 prev_fits = fits;
7833 } else if ((fits > max_fits) ||
7834 ((fits == max_fits) && (cpu_cap > max_spare_cap))) {
7835 /*
7836 * Find the CPU with the maximum spare capacity
7837 * among the remaining CPUs in the performance
7838 * domain.
7839 */
7840 max_spare_cap = cpu_cap;
7841 max_spare_cap_cpu = cpu;
7842 max_fits = fits;
7843 }
7844 }
7845
7846 if (max_spare_cap_cpu < 0 && prev_spare_cap == 0)
7847 continue;
7848
7849 eenv_pd_busy_time(&eenv, cpus, p);
7850 /* Compute the 'base' energy of the pd, without @p */
7851 base_energy = compute_energy(&eenv, pd, cpus, p, -1);
7852
7853 /* Evaluate the energy impact of using prev_cpu. */
7854 if (prev_spare_cap > 0) {
7855 prev_delta = compute_energy(&eenv, pd, cpus, p,
7856 prev_cpu);
7857 /* CPU utilization has changed */
7858 if (prev_delta < base_energy)
7859 goto unlock;
7860 prev_delta -= base_energy;
7861 prev_thermal_cap = cpu_thermal_cap;
7862 best_delta = min(best_delta, prev_delta);
7863 }
7864
7865 /* Evaluate the energy impact of using max_spare_cap_cpu. */
7866 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
7867 /* Current best energy cpu fits better */
7868 if (max_fits < best_fits)
7869 continue;
7870
7871 /*
7872 * Both don't fit performance hint (i.e. uclamp_min)
7873 * but best energy cpu has better capacity.
7874 */
7875 if ((max_fits < 0) &&
7876 (cpu_thermal_cap <= best_thermal_cap))
7877 continue;
7878
7879 cur_delta = compute_energy(&eenv, pd, cpus, p,
7880 max_spare_cap_cpu);
7881 /* CPU utilization has changed */
7882 if (cur_delta < base_energy)
7883 goto unlock;
7884 cur_delta -= base_energy;
7885
7886 /*
7887 * Both fit for the task but best energy cpu has lower
7888 * energy impact.
7889 */
7890 if ((max_fits > 0) && (best_fits > 0) &&
7891 (cur_delta >= best_delta))
7892 continue;
7893
7894 best_delta = cur_delta;
7895 best_energy_cpu = max_spare_cap_cpu;
7896 best_fits = max_fits;
7897 best_thermal_cap = cpu_thermal_cap;
7898 }
7899 }
7900 rcu_read_unlock();
7901
7902 if ((best_fits > prev_fits) ||
7903 ((best_fits > 0) && (best_delta < prev_delta)) ||
7904 ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
7905 target = best_energy_cpu;
7906
7907 return target;
7908
7909 unlock:
7910 rcu_read_unlock();
7911
7912 return target;
7913 }
7914
7915 /*
7916 * select_task_rq_fair: Select target runqueue for the waking task in domains
7917 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
7918 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
7919 *
7920 * Balances load by selecting the idlest CPU in the idlest group, or under
7921 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
7922 *
7923 * Returns the target CPU number.
7924 */
7925 static int
7926 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
7927 {
7928 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
7929 struct sched_domain *tmp, *sd = NULL;
7930 int cpu = smp_processor_id();
7931 int new_cpu = prev_cpu;
7932 int want_affine = 0;
7933 /* SD_flags and WF_flags share the first nibble */
7934 int sd_flag = wake_flags & 0xF;
7935
7936 /*
7937 * required for stable ->cpus_allowed
7938 */
7939 lockdep_assert_held(&p->pi_lock);
7940 if (wake_flags & WF_TTWU) {
7941 record_wakee(p);
7942
7943 if ((wake_flags & WF_CURRENT_CPU) &&
7944 cpumask_test_cpu(cpu, p->cpus_ptr))
7945 return cpu;
7946
7947 if (sched_energy_enabled()) {
7948 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
7949 if (new_cpu >= 0)
7950 return new_cpu;
7951 new_cpu = prev_cpu;
7952 }
7953
7954 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
7955 }
7956
7957 rcu_read_lock();
7958 for_each_domain(cpu, tmp) {
7959 /*
7960 * If both 'cpu' and 'prev_cpu' are part of this domain,
7961 * cpu is a valid SD_WAKE_AFFINE target.
7962 */
7963 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
7964 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
7965 if (cpu != prev_cpu)
7966 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
7967
7968 sd = NULL; /* Prefer wake_affine over balance flags */
7969 break;
7970 }
7971
7972 /*
7973 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
7974 * usually do not have SD_BALANCE_WAKE set. That means wakeup
7975 * will usually go to the fast path.
7976 */
7977 if (tmp->flags & sd_flag)
7978 sd = tmp;
7979 else if (!want_affine)
7980 break;
7981 }
7982
7983 if (unlikely(sd)) {
7984 /* Slow path */
7985 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
7986 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
7987 /* Fast path */
7988 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
7989 }
7990 rcu_read_unlock();
7991
7992 return new_cpu;
7993 }
7994
7995 /*
7996 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
7997 * cfs_rq_of(p) references at time of call are still valid and identify the
7998 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
7999 */
8000 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8001 {
8002 struct sched_entity *se = &p->se;
8003
8004 if (!task_on_rq_migrating(p)) {
8005 remove_entity_load_avg(se);
8006
8007 /*
8008 * Here, the task's PELT values have been updated according to
8009 * the current rq's clock. But if that clock hasn't been
8010 * updated in a while, a substantial idle time will be missed,
8011 * leading to an inflation after wake-up on the new rq.
8012 *
8013 * Estimate the missing time from the cfs_rq last_update_time
8014 * and update sched_avg to improve the PELT continuity after
8015 * migration.
8016 */
8017 migrate_se_pelt_lag(se);
8018 }
8019
8020 /* Tell new CPU we are migrated */
8021 se->avg.last_update_time = 0;
8022
8023 update_scan_period(p, new_cpu);
8024 }
8025
8026 static void task_dead_fair(struct task_struct *p)
8027 {
8028 remove_entity_load_avg(&p->se);
8029 }
8030
8031 static int
8032 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8033 {
8034 if (rq->nr_running)
8035 return 1;
8036
8037 return newidle_balance(rq, rf) != 0;
8038 }
8039 #endif /* CONFIG_SMP */
8040
8041 static void set_next_buddy(struct sched_entity *se)
8042 {
8043 for_each_sched_entity(se) {
8044 if (SCHED_WARN_ON(!se->on_rq))
8045 return;
8046 if (se_is_idle(se))
8047 return;
8048 cfs_rq_of(se)->next = se;
8049 }
8050 }
8051
8052 /*
8053 * Preempt the current task with a newly woken task if needed:
8054 */
8055 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
8056 {
8057 struct task_struct *curr = rq->curr;
8058 struct sched_entity *se = &curr->se, *pse = &p->se;
8059 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8060 int next_buddy_marked = 0;
8061 int cse_is_idle, pse_is_idle;
8062
8063 if (unlikely(se == pse))
8064 return;
8065
8066 /*
8067 * This is possible from callers such as attach_tasks(), in which we
8068 * unconditionally check_preempt_curr() after an enqueue (which may have
8069 * lead to a throttle). This both saves work and prevents false
8070 * next-buddy nomination below.
8071 */
8072 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8073 return;
8074
8075 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
8076 set_next_buddy(pse);
8077 next_buddy_marked = 1;
8078 }
8079
8080 /*
8081 * We can come here with TIF_NEED_RESCHED already set from new task
8082 * wake up path.
8083 *
8084 * Note: this also catches the edge-case of curr being in a throttled
8085 * group (e.g. via set_curr_task), since update_curr() (in the
8086 * enqueue of curr) will have resulted in resched being set. This
8087 * prevents us from potentially nominating it as a false LAST_BUDDY
8088 * below.
8089 */
8090 if (test_tsk_need_resched(curr))
8091 return;
8092
8093 /* Idle tasks are by definition preempted by non-idle tasks. */
8094 if (unlikely(task_has_idle_policy(curr)) &&
8095 likely(!task_has_idle_policy(p)))
8096 goto preempt;
8097
8098 /*
8099 * Batch and idle tasks do not preempt non-idle tasks (their preemption
8100 * is driven by the tick):
8101 */
8102 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
8103 return;
8104
8105 find_matching_se(&se, &pse);
8106 WARN_ON_ONCE(!pse);
8107
8108 cse_is_idle = se_is_idle(se);
8109 pse_is_idle = se_is_idle(pse);
8110
8111 /*
8112 * Preempt an idle group in favor of a non-idle group (and don't preempt
8113 * in the inverse case).
8114 */
8115 if (cse_is_idle && !pse_is_idle)
8116 goto preempt;
8117 if (cse_is_idle != pse_is_idle)
8118 return;
8119
8120 cfs_rq = cfs_rq_of(se);
8121 update_curr(cfs_rq);
8122
8123 /*
8124 * XXX pick_eevdf(cfs_rq) != se ?
8125 */
8126 if (pick_eevdf(cfs_rq) == pse)
8127 goto preempt;
8128
8129 return;
8130
8131 preempt:
8132 resched_curr(rq);
8133 }
8134
8135 #ifdef CONFIG_SMP
8136 static struct task_struct *pick_task_fair(struct rq *rq)
8137 {
8138 struct sched_entity *se;
8139 struct cfs_rq *cfs_rq;
8140
8141 again:
8142 cfs_rq = &rq->cfs;
8143 if (!cfs_rq->nr_running)
8144 return NULL;
8145
8146 do {
8147 struct sched_entity *curr = cfs_rq->curr;
8148
8149 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */
8150 if (curr) {
8151 if (curr->on_rq)
8152 update_curr(cfs_rq);
8153 else
8154 curr = NULL;
8155
8156 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8157 goto again;
8158 }
8159
8160 se = pick_next_entity(cfs_rq, curr);
8161 cfs_rq = group_cfs_rq(se);
8162 } while (cfs_rq);
8163
8164 return task_of(se);
8165 }
8166 #endif
8167
8168 struct task_struct *
8169 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8170 {
8171 struct cfs_rq *cfs_rq = &rq->cfs;
8172 struct sched_entity *se;
8173 struct task_struct *p;
8174 int new_tasks;
8175
8176 again:
8177 if (!sched_fair_runnable(rq))
8178 goto idle;
8179
8180 #ifdef CONFIG_FAIR_GROUP_SCHED
8181 if (!prev || prev->sched_class != &fair_sched_class)
8182 goto simple;
8183
8184 /*
8185 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8186 * likely that a next task is from the same cgroup as the current.
8187 *
8188 * Therefore attempt to avoid putting and setting the entire cgroup
8189 * hierarchy, only change the part that actually changes.
8190 */
8191
8192 do {
8193 struct sched_entity *curr = cfs_rq->curr;
8194
8195 /*
8196 * Since we got here without doing put_prev_entity() we also
8197 * have to consider cfs_rq->curr. If it is still a runnable
8198 * entity, update_curr() will update its vruntime, otherwise
8199 * forget we've ever seen it.
8200 */
8201 if (curr) {
8202 if (curr->on_rq)
8203 update_curr(cfs_rq);
8204 else
8205 curr = NULL;
8206
8207 /*
8208 * This call to check_cfs_rq_runtime() will do the
8209 * throttle and dequeue its entity in the parent(s).
8210 * Therefore the nr_running test will indeed
8211 * be correct.
8212 */
8213 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
8214 cfs_rq = &rq->cfs;
8215
8216 if (!cfs_rq->nr_running)
8217 goto idle;
8218
8219 goto simple;
8220 }
8221 }
8222
8223 se = pick_next_entity(cfs_rq, curr);
8224 cfs_rq = group_cfs_rq(se);
8225 } while (cfs_rq);
8226
8227 p = task_of(se);
8228
8229 /*
8230 * Since we haven't yet done put_prev_entity and if the selected task
8231 * is a different task than we started out with, try and touch the
8232 * least amount of cfs_rqs.
8233 */
8234 if (prev != p) {
8235 struct sched_entity *pse = &prev->se;
8236
8237 while (!(cfs_rq = is_same_group(se, pse))) {
8238 int se_depth = se->depth;
8239 int pse_depth = pse->depth;
8240
8241 if (se_depth <= pse_depth) {
8242 put_prev_entity(cfs_rq_of(pse), pse);
8243 pse = parent_entity(pse);
8244 }
8245 if (se_depth >= pse_depth) {
8246 set_next_entity(cfs_rq_of(se), se);
8247 se = parent_entity(se);
8248 }
8249 }
8250
8251 put_prev_entity(cfs_rq, pse);
8252 set_next_entity(cfs_rq, se);
8253 }
8254
8255 goto done;
8256 simple:
8257 #endif
8258 if (prev)
8259 put_prev_task(rq, prev);
8260
8261 do {
8262 se = pick_next_entity(cfs_rq, NULL);
8263 set_next_entity(cfs_rq, se);
8264 cfs_rq = group_cfs_rq(se);
8265 } while (cfs_rq);
8266
8267 p = task_of(se);
8268
8269 done: __maybe_unused;
8270 #ifdef CONFIG_SMP
8271 /*
8272 * Move the next running task to the front of
8273 * the list, so our cfs_tasks list becomes MRU
8274 * one.
8275 */
8276 list_move(&p->se.group_node, &rq->cfs_tasks);
8277 #endif
8278
8279 if (hrtick_enabled_fair(rq))
8280 hrtick_start_fair(rq, p);
8281
8282 update_misfit_status(p, rq);
8283 sched_fair_update_stop_tick(rq, p);
8284
8285 return p;
8286
8287 idle:
8288 if (!rf)
8289 return NULL;
8290
8291 new_tasks = newidle_balance(rq, rf);
8292
8293 /*
8294 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
8295 * possible for any higher priority task to appear. In that case we
8296 * must re-start the pick_next_entity() loop.
8297 */
8298 if (new_tasks < 0)
8299 return RETRY_TASK;
8300
8301 if (new_tasks > 0)
8302 goto again;
8303
8304 /*
8305 * rq is about to be idle, check if we need to update the
8306 * lost_idle_time of clock_pelt
8307 */
8308 update_idle_rq_clock_pelt(rq);
8309
8310 return NULL;
8311 }
8312
8313 static struct task_struct *__pick_next_task_fair(struct rq *rq)
8314 {
8315 return pick_next_task_fair(rq, NULL, NULL);
8316 }
8317
8318 /*
8319 * Account for a descheduled task:
8320 */
8321 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
8322 {
8323 struct sched_entity *se = &prev->se;
8324 struct cfs_rq *cfs_rq;
8325
8326 for_each_sched_entity(se) {
8327 cfs_rq = cfs_rq_of(se);
8328 put_prev_entity(cfs_rq, se);
8329 }
8330 }
8331
8332 /*
8333 * sched_yield() is very simple
8334 */
8335 static void yield_task_fair(struct rq *rq)
8336 {
8337 struct task_struct *curr = rq->curr;
8338 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8339 struct sched_entity *se = &curr->se;
8340
8341 /*
8342 * Are we the only task in the tree?
8343 */
8344 if (unlikely(rq->nr_running == 1))
8345 return;
8346
8347 clear_buddies(cfs_rq, se);
8348
8349 update_rq_clock(rq);
8350 /*
8351 * Update run-time statistics of the 'current'.
8352 */
8353 update_curr(cfs_rq);
8354 /*
8355 * Tell update_rq_clock() that we've just updated,
8356 * so we don't do microscopic update in schedule()
8357 * and double the fastpath cost.
8358 */
8359 rq_clock_skip_update(rq);
8360
8361 se->deadline += calc_delta_fair(se->slice, se);
8362 }
8363
8364 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
8365 {
8366 struct sched_entity *se = &p->se;
8367
8368 /* throttled hierarchies are not runnable */
8369 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8370 return false;
8371
8372 /* Tell the scheduler that we'd really like pse to run next. */
8373 set_next_buddy(se);
8374
8375 yield_task_fair(rq);
8376
8377 return true;
8378 }
8379
8380 #ifdef CONFIG_SMP
8381 /**************************************************
8382 * Fair scheduling class load-balancing methods.
8383 *
8384 * BASICS
8385 *
8386 * The purpose of load-balancing is to achieve the same basic fairness the
8387 * per-CPU scheduler provides, namely provide a proportional amount of compute
8388 * time to each task. This is expressed in the following equation:
8389 *
8390 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
8391 *
8392 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
8393 * W_i,0 is defined as:
8394 *
8395 * W_i,0 = \Sum_j w_i,j (2)
8396 *
8397 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
8398 * is derived from the nice value as per sched_prio_to_weight[].
8399 *
8400 * The weight average is an exponential decay average of the instantaneous
8401 * weight:
8402 *
8403 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
8404 *
8405 * C_i is the compute capacity of CPU i, typically it is the
8406 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8407 * can also include other factors [XXX].
8408 *
8409 * To achieve this balance we define a measure of imbalance which follows
8410 * directly from (1):
8411 *
8412 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
8413 *
8414 * We them move tasks around to minimize the imbalance. In the continuous
8415 * function space it is obvious this converges, in the discrete case we get
8416 * a few fun cases generally called infeasible weight scenarios.
8417 *
8418 * [XXX expand on:
8419 * - infeasible weights;
8420 * - local vs global optima in the discrete case. ]
8421 *
8422 *
8423 * SCHED DOMAINS
8424 *
8425 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
8426 * for all i,j solution, we create a tree of CPUs that follows the hardware
8427 * topology where each level pairs two lower groups (or better). This results
8428 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
8429 * tree to only the first of the previous level and we decrease the frequency
8430 * of load-balance at each level inv. proportional to the number of CPUs in
8431 * the groups.
8432 *
8433 * This yields:
8434 *
8435 * log_2 n 1 n
8436 * \Sum { --- * --- * 2^i } = O(n) (5)
8437 * i = 0 2^i 2^i
8438 * `- size of each group
8439 * | | `- number of CPUs doing load-balance
8440 * | `- freq
8441 * `- sum over all levels
8442 *
8443 * Coupled with a limit on how many tasks we can migrate every balance pass,
8444 * this makes (5) the runtime complexity of the balancer.
8445 *
8446 * An important property here is that each CPU is still (indirectly) connected
8447 * to every other CPU in at most O(log n) steps:
8448 *
8449 * The adjacency matrix of the resulting graph is given by:
8450 *
8451 * log_2 n
8452 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
8453 * k = 0
8454 *
8455 * And you'll find that:
8456 *
8457 * A^(log_2 n)_i,j != 0 for all i,j (7)
8458 *
8459 * Showing there's indeed a path between every CPU in at most O(log n) steps.
8460 * The task movement gives a factor of O(m), giving a convergence complexity
8461 * of:
8462 *
8463 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
8464 *
8465 *
8466 * WORK CONSERVING
8467 *
8468 * In order to avoid CPUs going idle while there's still work to do, new idle
8469 * balancing is more aggressive and has the newly idle CPU iterate up the domain
8470 * tree itself instead of relying on other CPUs to bring it work.
8471 *
8472 * This adds some complexity to both (5) and (8) but it reduces the total idle
8473 * time.
8474 *
8475 * [XXX more?]
8476 *
8477 *
8478 * CGROUPS
8479 *
8480 * Cgroups make a horror show out of (2), instead of a simple sum we get:
8481 *
8482 * s_k,i
8483 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
8484 * S_k
8485 *
8486 * Where
8487 *
8488 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
8489 *
8490 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
8491 *
8492 * The big problem is S_k, its a global sum needed to compute a local (W_i)
8493 * property.
8494 *
8495 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
8496 * rewrite all of this once again.]
8497 */
8498
8499 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
8500
8501 enum fbq_type { regular, remote, all };
8502
8503 /*
8504 * 'group_type' describes the group of CPUs at the moment of load balancing.
8505 *
8506 * The enum is ordered by pulling priority, with the group with lowest priority
8507 * first so the group_type can simply be compared when selecting the busiest
8508 * group. See update_sd_pick_busiest().
8509 */
8510 enum group_type {
8511 /* The group has spare capacity that can be used to run more tasks. */
8512 group_has_spare = 0,
8513 /*
8514 * The group is fully used and the tasks don't compete for more CPU
8515 * cycles. Nevertheless, some tasks might wait before running.
8516 */
8517 group_fully_busy,
8518 /*
8519 * One task doesn't fit with CPU's capacity and must be migrated to a
8520 * more powerful CPU.
8521 */
8522 group_misfit_task,
8523 /*
8524 * Balance SMT group that's fully busy. Can benefit from migration
8525 * a task on SMT with busy sibling to another CPU on idle core.
8526 */
8527 group_smt_balance,
8528 /*
8529 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
8530 * and the task should be migrated to it instead of running on the
8531 * current CPU.
8532 */
8533 group_asym_packing,
8534 /*
8535 * The tasks' affinity constraints previously prevented the scheduler
8536 * from balancing the load across the system.
8537 */
8538 group_imbalanced,
8539 /*
8540 * The CPU is overloaded and can't provide expected CPU cycles to all
8541 * tasks.
8542 */
8543 group_overloaded
8544 };
8545
8546 enum migration_type {
8547 migrate_load = 0,
8548 migrate_util,
8549 migrate_task,
8550 migrate_misfit
8551 };
8552
8553 #define LBF_ALL_PINNED 0x01
8554 #define LBF_NEED_BREAK 0x02
8555 #define LBF_DST_PINNED 0x04
8556 #define LBF_SOME_PINNED 0x08
8557 #define LBF_ACTIVE_LB 0x10
8558
8559 struct lb_env {
8560 struct sched_domain *sd;
8561
8562 struct rq *src_rq;
8563 int src_cpu;
8564
8565 int dst_cpu;
8566 struct rq *dst_rq;
8567
8568 struct cpumask *dst_grpmask;
8569 int new_dst_cpu;
8570 enum cpu_idle_type idle;
8571 long imbalance;
8572 /* The set of CPUs under consideration for load-balancing */
8573 struct cpumask *cpus;
8574
8575 unsigned int flags;
8576
8577 unsigned int loop;
8578 unsigned int loop_break;
8579 unsigned int loop_max;
8580
8581 enum fbq_type fbq_type;
8582 enum migration_type migration_type;
8583 struct list_head tasks;
8584 };
8585
8586 /*
8587 * Is this task likely cache-hot:
8588 */
8589 static int task_hot(struct task_struct *p, struct lb_env *env)
8590 {
8591 s64 delta;
8592
8593 lockdep_assert_rq_held(env->src_rq);
8594
8595 if (p->sched_class != &fair_sched_class)
8596 return 0;
8597
8598 if (unlikely(task_has_idle_policy(p)))
8599 return 0;
8600
8601 /* SMT siblings share cache */
8602 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
8603 return 0;
8604
8605 /*
8606 * Buddy candidates are cache hot:
8607 */
8608 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
8609 (&p->se == cfs_rq_of(&p->se)->next))
8610 return 1;
8611
8612 if (sysctl_sched_migration_cost == -1)
8613 return 1;
8614
8615 /*
8616 * Don't migrate task if the task's cookie does not match
8617 * with the destination CPU's core cookie.
8618 */
8619 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
8620 return 1;
8621
8622 if (sysctl_sched_migration_cost == 0)
8623 return 0;
8624
8625 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
8626
8627 return delta < (s64)sysctl_sched_migration_cost;
8628 }
8629
8630 #ifdef CONFIG_NUMA_BALANCING
8631 /*
8632 * Returns 1, if task migration degrades locality
8633 * Returns 0, if task migration improves locality i.e migration preferred.
8634 * Returns -1, if task migration is not affected by locality.
8635 */
8636 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
8637 {
8638 struct numa_group *numa_group = rcu_dereference(p->numa_group);
8639 unsigned long src_weight, dst_weight;
8640 int src_nid, dst_nid, dist;
8641
8642 if (!static_branch_likely(&sched_numa_balancing))
8643 return -1;
8644
8645 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8646 return -1;
8647
8648 src_nid = cpu_to_node(env->src_cpu);
8649 dst_nid = cpu_to_node(env->dst_cpu);
8650
8651 if (src_nid == dst_nid)
8652 return -1;
8653
8654 /* Migrating away from the preferred node is always bad. */
8655 if (src_nid == p->numa_preferred_nid) {
8656 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8657 return 1;
8658 else
8659 return -1;
8660 }
8661
8662 /* Encourage migration to the preferred node. */
8663 if (dst_nid == p->numa_preferred_nid)
8664 return 0;
8665
8666 /* Leaving a core idle is often worse than degrading locality. */
8667 if (env->idle == CPU_IDLE)
8668 return -1;
8669
8670 dist = node_distance(src_nid, dst_nid);
8671 if (numa_group) {
8672 src_weight = group_weight(p, src_nid, dist);
8673 dst_weight = group_weight(p, dst_nid, dist);
8674 } else {
8675 src_weight = task_weight(p, src_nid, dist);
8676 dst_weight = task_weight(p, dst_nid, dist);
8677 }
8678
8679 return dst_weight < src_weight;
8680 }
8681
8682 #else
8683 static inline int migrate_degrades_locality(struct task_struct *p,
8684 struct lb_env *env)
8685 {
8686 return -1;
8687 }
8688 #endif
8689
8690 /*
8691 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8692 */
8693 static
8694 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8695 {
8696 int tsk_cache_hot;
8697
8698 lockdep_assert_rq_held(env->src_rq);
8699
8700 /*
8701 * We do not migrate tasks that are:
8702 * 1) throttled_lb_pair, or
8703 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8704 * 3) running (obviously), or
8705 * 4) are cache-hot on their current CPU.
8706 */
8707 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8708 return 0;
8709
8710 /* Disregard pcpu kthreads; they are where they need to be. */
8711 if (kthread_is_per_cpu(p))
8712 return 0;
8713
8714 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
8715 int cpu;
8716
8717 schedstat_inc(p->stats.nr_failed_migrations_affine);
8718
8719 env->flags |= LBF_SOME_PINNED;
8720
8721 /*
8722 * Remember if this task can be migrated to any other CPU in
8723 * our sched_group. We may want to revisit it if we couldn't
8724 * meet load balance goals by pulling other tasks on src_cpu.
8725 *
8726 * Avoid computing new_dst_cpu
8727 * - for NEWLY_IDLE
8728 * - if we have already computed one in current iteration
8729 * - if it's an active balance
8730 */
8731 if (env->idle == CPU_NEWLY_IDLE ||
8732 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
8733 return 0;
8734
8735 /* Prevent to re-select dst_cpu via env's CPUs: */
8736 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
8737 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
8738 env->flags |= LBF_DST_PINNED;
8739 env->new_dst_cpu = cpu;
8740 break;
8741 }
8742 }
8743
8744 return 0;
8745 }
8746
8747 /* Record that we found at least one task that could run on dst_cpu */
8748 env->flags &= ~LBF_ALL_PINNED;
8749
8750 if (task_on_cpu(env->src_rq, p)) {
8751 schedstat_inc(p->stats.nr_failed_migrations_running);
8752 return 0;
8753 }
8754
8755 /*
8756 * Aggressive migration if:
8757 * 1) active balance
8758 * 2) destination numa is preferred
8759 * 3) task is cache cold, or
8760 * 4) too many balance attempts have failed.
8761 */
8762 if (env->flags & LBF_ACTIVE_LB)
8763 return 1;
8764
8765 tsk_cache_hot = migrate_degrades_locality(p, env);
8766 if (tsk_cache_hot == -1)
8767 tsk_cache_hot = task_hot(p, env);
8768
8769 if (tsk_cache_hot <= 0 ||
8770 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
8771 if (tsk_cache_hot == 1) {
8772 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
8773 schedstat_inc(p->stats.nr_forced_migrations);
8774 }
8775 return 1;
8776 }
8777
8778 schedstat_inc(p->stats.nr_failed_migrations_hot);
8779 return 0;
8780 }
8781
8782 /*
8783 * detach_task() -- detach the task for the migration specified in env
8784 */
8785 static void detach_task(struct task_struct *p, struct lb_env *env)
8786 {
8787 lockdep_assert_rq_held(env->src_rq);
8788
8789 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
8790 set_task_cpu(p, env->dst_cpu);
8791 }
8792
8793 /*
8794 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
8795 * part of active balancing operations within "domain".
8796 *
8797 * Returns a task if successful and NULL otherwise.
8798 */
8799 static struct task_struct *detach_one_task(struct lb_env *env)
8800 {
8801 struct task_struct *p;
8802
8803 lockdep_assert_rq_held(env->src_rq);
8804
8805 list_for_each_entry_reverse(p,
8806 &env->src_rq->cfs_tasks, se.group_node) {
8807 if (!can_migrate_task(p, env))
8808 continue;
8809
8810 detach_task(p, env);
8811
8812 /*
8813 * Right now, this is only the second place where
8814 * lb_gained[env->idle] is updated (other is detach_tasks)
8815 * so we can safely collect stats here rather than
8816 * inside detach_tasks().
8817 */
8818 schedstat_inc(env->sd->lb_gained[env->idle]);
8819 return p;
8820 }
8821 return NULL;
8822 }
8823
8824 /*
8825 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
8826 * busiest_rq, as part of a balancing operation within domain "sd".
8827 *
8828 * Returns number of detached tasks if successful and 0 otherwise.
8829 */
8830 static int detach_tasks(struct lb_env *env)
8831 {
8832 struct list_head *tasks = &env->src_rq->cfs_tasks;
8833 unsigned long util, load;
8834 struct task_struct *p;
8835 int detached = 0;
8836
8837 lockdep_assert_rq_held(env->src_rq);
8838
8839 /*
8840 * Source run queue has been emptied by another CPU, clear
8841 * LBF_ALL_PINNED flag as we will not test any task.
8842 */
8843 if (env->src_rq->nr_running <= 1) {
8844 env->flags &= ~LBF_ALL_PINNED;
8845 return 0;
8846 }
8847
8848 if (env->imbalance <= 0)
8849 return 0;
8850
8851 while (!list_empty(tasks)) {
8852 /*
8853 * We don't want to steal all, otherwise we may be treated likewise,
8854 * which could at worst lead to a livelock crash.
8855 */
8856 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
8857 break;
8858
8859 env->loop++;
8860 /*
8861 * We've more or less seen every task there is, call it quits
8862 * unless we haven't found any movable task yet.
8863 */
8864 if (env->loop > env->loop_max &&
8865 !(env->flags & LBF_ALL_PINNED))
8866 break;
8867
8868 /* take a breather every nr_migrate tasks */
8869 if (env->loop > env->loop_break) {
8870 env->loop_break += SCHED_NR_MIGRATE_BREAK;
8871 env->flags |= LBF_NEED_BREAK;
8872 break;
8873 }
8874
8875 p = list_last_entry(tasks, struct task_struct, se.group_node);
8876
8877 if (!can_migrate_task(p, env))
8878 goto next;
8879
8880 switch (env->migration_type) {
8881 case migrate_load:
8882 /*
8883 * Depending of the number of CPUs and tasks and the
8884 * cgroup hierarchy, task_h_load() can return a null
8885 * value. Make sure that env->imbalance decreases
8886 * otherwise detach_tasks() will stop only after
8887 * detaching up to loop_max tasks.
8888 */
8889 load = max_t(unsigned long, task_h_load(p), 1);
8890
8891 if (sched_feat(LB_MIN) &&
8892 load < 16 && !env->sd->nr_balance_failed)
8893 goto next;
8894
8895 /*
8896 * Make sure that we don't migrate too much load.
8897 * Nevertheless, let relax the constraint if
8898 * scheduler fails to find a good waiting task to
8899 * migrate.
8900 */
8901 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
8902 goto next;
8903
8904 env->imbalance -= load;
8905 break;
8906
8907 case migrate_util:
8908 util = task_util_est(p);
8909
8910 if (util > env->imbalance)
8911 goto next;
8912
8913 env->imbalance -= util;
8914 break;
8915
8916 case migrate_task:
8917 env->imbalance--;
8918 break;
8919
8920 case migrate_misfit:
8921 /* This is not a misfit task */
8922 if (task_fits_cpu(p, env->src_cpu))
8923 goto next;
8924
8925 env->imbalance = 0;
8926 break;
8927 }
8928
8929 detach_task(p, env);
8930 list_add(&p->se.group_node, &env->tasks);
8931
8932 detached++;
8933
8934 #ifdef CONFIG_PREEMPTION
8935 /*
8936 * NEWIDLE balancing is a source of latency, so preemptible
8937 * kernels will stop after the first task is detached to minimize
8938 * the critical section.
8939 */
8940 if (env->idle == CPU_NEWLY_IDLE)
8941 break;
8942 #endif
8943
8944 /*
8945 * We only want to steal up to the prescribed amount of
8946 * load/util/tasks.
8947 */
8948 if (env->imbalance <= 0)
8949 break;
8950
8951 continue;
8952 next:
8953 list_move(&p->se.group_node, tasks);
8954 }
8955
8956 /*
8957 * Right now, this is one of only two places we collect this stat
8958 * so we can safely collect detach_one_task() stats here rather
8959 * than inside detach_one_task().
8960 */
8961 schedstat_add(env->sd->lb_gained[env->idle], detached);
8962
8963 return detached;
8964 }
8965
8966 /*
8967 * attach_task() -- attach the task detached by detach_task() to its new rq.
8968 */
8969 static void attach_task(struct rq *rq, struct task_struct *p)
8970 {
8971 lockdep_assert_rq_held(rq);
8972
8973 WARN_ON_ONCE(task_rq(p) != rq);
8974 activate_task(rq, p, ENQUEUE_NOCLOCK);
8975 check_preempt_curr(rq, p, 0);
8976 }
8977
8978 /*
8979 * attach_one_task() -- attaches the task returned from detach_one_task() to
8980 * its new rq.
8981 */
8982 static void attach_one_task(struct rq *rq, struct task_struct *p)
8983 {
8984 struct rq_flags rf;
8985
8986 rq_lock(rq, &rf);
8987 update_rq_clock(rq);
8988 attach_task(rq, p);
8989 rq_unlock(rq, &rf);
8990 }
8991
8992 /*
8993 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8994 * new rq.
8995 */
8996 static void attach_tasks(struct lb_env *env)
8997 {
8998 struct list_head *tasks = &env->tasks;
8999 struct task_struct *p;
9000 struct rq_flags rf;
9001
9002 rq_lock(env->dst_rq, &rf);
9003 update_rq_clock(env->dst_rq);
9004
9005 while (!list_empty(tasks)) {
9006 p = list_first_entry(tasks, struct task_struct, se.group_node);
9007 list_del_init(&p->se.group_node);
9008
9009 attach_task(env->dst_rq, p);
9010 }
9011
9012 rq_unlock(env->dst_rq, &rf);
9013 }
9014
9015 #ifdef CONFIG_NO_HZ_COMMON
9016 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9017 {
9018 if (cfs_rq->avg.load_avg)
9019 return true;
9020
9021 if (cfs_rq->avg.util_avg)
9022 return true;
9023
9024 return false;
9025 }
9026
9027 static inline bool others_have_blocked(struct rq *rq)
9028 {
9029 if (READ_ONCE(rq->avg_rt.util_avg))
9030 return true;
9031
9032 if (READ_ONCE(rq->avg_dl.util_avg))
9033 return true;
9034
9035 if (thermal_load_avg(rq))
9036 return true;
9037
9038 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
9039 if (READ_ONCE(rq->avg_irq.util_avg))
9040 return true;
9041 #endif
9042
9043 return false;
9044 }
9045
9046 static inline void update_blocked_load_tick(struct rq *rq)
9047 {
9048 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9049 }
9050
9051 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9052 {
9053 if (!has_blocked)
9054 rq->has_blocked_load = 0;
9055 }
9056 #else
9057 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
9058 static inline bool others_have_blocked(struct rq *rq) { return false; }
9059 static inline void update_blocked_load_tick(struct rq *rq) {}
9060 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9061 #endif
9062
9063 static bool __update_blocked_others(struct rq *rq, bool *done)
9064 {
9065 const struct sched_class *curr_class;
9066 u64 now = rq_clock_pelt(rq);
9067 unsigned long thermal_pressure;
9068 bool decayed;
9069
9070 /*
9071 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9072 * DL and IRQ signals have been updated before updating CFS.
9073 */
9074 curr_class = rq->curr->sched_class;
9075
9076 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
9077
9078 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
9079 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
9080 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
9081 update_irq_load_avg(rq, 0);
9082
9083 if (others_have_blocked(rq))
9084 *done = false;
9085
9086 return decayed;
9087 }
9088
9089 #ifdef CONFIG_FAIR_GROUP_SCHED
9090
9091 static bool __update_blocked_fair(struct rq *rq, bool *done)
9092 {
9093 struct cfs_rq *cfs_rq, *pos;
9094 bool decayed = false;
9095 int cpu = cpu_of(rq);
9096
9097 /*
9098 * Iterates the task_group tree in a bottom up fashion, see
9099 * list_add_leaf_cfs_rq() for details.
9100 */
9101 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9102 struct sched_entity *se;
9103
9104 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9105 update_tg_load_avg(cfs_rq);
9106
9107 if (cfs_rq->nr_running == 0)
9108 update_idle_cfs_rq_clock_pelt(cfs_rq);
9109
9110 if (cfs_rq == &rq->cfs)
9111 decayed = true;
9112 }
9113
9114 /* Propagate pending load changes to the parent, if any: */
9115 se = cfs_rq->tg->se[cpu];
9116 if (se && !skip_blocked_update(se))
9117 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9118
9119 /*
9120 * There can be a lot of idle CPU cgroups. Don't let fully
9121 * decayed cfs_rqs linger on the list.
9122 */
9123 if (cfs_rq_is_decayed(cfs_rq))
9124 list_del_leaf_cfs_rq(cfs_rq);
9125
9126 /* Don't need periodic decay once load/util_avg are null */
9127 if (cfs_rq_has_blocked(cfs_rq))
9128 *done = false;
9129 }
9130
9131 return decayed;
9132 }
9133
9134 /*
9135 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9136 * This needs to be done in a top-down fashion because the load of a child
9137 * group is a fraction of its parents load.
9138 */
9139 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9140 {
9141 struct rq *rq = rq_of(cfs_rq);
9142 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9143 unsigned long now = jiffies;
9144 unsigned long load;
9145
9146 if (cfs_rq->last_h_load_update == now)
9147 return;
9148
9149 WRITE_ONCE(cfs_rq->h_load_next, NULL);
9150 for_each_sched_entity(se) {
9151 cfs_rq = cfs_rq_of(se);
9152 WRITE_ONCE(cfs_rq->h_load_next, se);
9153 if (cfs_rq->last_h_load_update == now)
9154 break;
9155 }
9156
9157 if (!se) {
9158 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9159 cfs_rq->last_h_load_update = now;
9160 }
9161
9162 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9163 load = cfs_rq->h_load;
9164 load = div64_ul(load * se->avg.load_avg,
9165 cfs_rq_load_avg(cfs_rq) + 1);
9166 cfs_rq = group_cfs_rq(se);
9167 cfs_rq->h_load = load;
9168 cfs_rq->last_h_load_update = now;
9169 }
9170 }
9171
9172 static unsigned long task_h_load(struct task_struct *p)
9173 {
9174 struct cfs_rq *cfs_rq = task_cfs_rq(p);
9175
9176 update_cfs_rq_h_load(cfs_rq);
9177 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9178 cfs_rq_load_avg(cfs_rq) + 1);
9179 }
9180 #else
9181 static bool __update_blocked_fair(struct rq *rq, bool *done)
9182 {
9183 struct cfs_rq *cfs_rq = &rq->cfs;
9184 bool decayed;
9185
9186 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9187 if (cfs_rq_has_blocked(cfs_rq))
9188 *done = false;
9189
9190 return decayed;
9191 }
9192
9193 static unsigned long task_h_load(struct task_struct *p)
9194 {
9195 return p->se.avg.load_avg;
9196 }
9197 #endif
9198
9199 static void update_blocked_averages(int cpu)
9200 {
9201 bool decayed = false, done = true;
9202 struct rq *rq = cpu_rq(cpu);
9203 struct rq_flags rf;
9204
9205 rq_lock_irqsave(rq, &rf);
9206 update_blocked_load_tick(rq);
9207 update_rq_clock(rq);
9208
9209 decayed |= __update_blocked_others(rq, &done);
9210 decayed |= __update_blocked_fair(rq, &done);
9211
9212 update_blocked_load_status(rq, !done);
9213 if (decayed)
9214 cpufreq_update_util(rq, 0);
9215 rq_unlock_irqrestore(rq, &rf);
9216 }
9217
9218 /********** Helpers for find_busiest_group ************************/
9219
9220 /*
9221 * sg_lb_stats - stats of a sched_group required for load_balancing
9222 */
9223 struct sg_lb_stats {
9224 unsigned long avg_load; /*Avg load across the CPUs of the group */
9225 unsigned long group_load; /* Total load over the CPUs of the group */
9226 unsigned long group_capacity;
9227 unsigned long group_util; /* Total utilization over the CPUs of the group */
9228 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
9229 unsigned int sum_nr_running; /* Nr of tasks running in the group */
9230 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
9231 unsigned int idle_cpus;
9232 unsigned int group_weight;
9233 enum group_type group_type;
9234 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9235 unsigned int group_smt_balance; /* Task on busy SMT be moved */
9236 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
9237 #ifdef CONFIG_NUMA_BALANCING
9238 unsigned int nr_numa_running;
9239 unsigned int nr_preferred_running;
9240 #endif
9241 };
9242
9243 /*
9244 * sd_lb_stats - Structure to store the statistics of a sched_domain
9245 * during load balancing.
9246 */
9247 struct sd_lb_stats {
9248 struct sched_group *busiest; /* Busiest group in this sd */
9249 struct sched_group *local; /* Local group in this sd */
9250 unsigned long total_load; /* Total load of all groups in sd */
9251 unsigned long total_capacity; /* Total capacity of all groups in sd */
9252 unsigned long avg_load; /* Average load across all groups in sd */
9253 unsigned int prefer_sibling; /* tasks should go to sibling first */
9254
9255 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
9256 struct sg_lb_stats local_stat; /* Statistics of the local group */
9257 };
9258
9259 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9260 {
9261 /*
9262 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9263 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9264 * We must however set busiest_stat::group_type and
9265 * busiest_stat::idle_cpus to the worst busiest group because
9266 * update_sd_pick_busiest() reads these before assignment.
9267 */
9268 *sds = (struct sd_lb_stats){
9269 .busiest = NULL,
9270 .local = NULL,
9271 .total_load = 0UL,
9272 .total_capacity = 0UL,
9273 .busiest_stat = {
9274 .idle_cpus = UINT_MAX,
9275 .group_type = group_has_spare,
9276 },
9277 };
9278 }
9279
9280 static unsigned long scale_rt_capacity(int cpu)
9281 {
9282 struct rq *rq = cpu_rq(cpu);
9283 unsigned long max = arch_scale_cpu_capacity(cpu);
9284 unsigned long used, free;
9285 unsigned long irq;
9286
9287 irq = cpu_util_irq(rq);
9288
9289 if (unlikely(irq >= max))
9290 return 1;
9291
9292 /*
9293 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9294 * (running and not running) with weights 0 and 1024 respectively.
9295 * avg_thermal.load_avg tracks thermal pressure and the weighted
9296 * average uses the actual delta max capacity(load).
9297 */
9298 used = READ_ONCE(rq->avg_rt.util_avg);
9299 used += READ_ONCE(rq->avg_dl.util_avg);
9300 used += thermal_load_avg(rq);
9301
9302 if (unlikely(used >= max))
9303 return 1;
9304
9305 free = max - used;
9306
9307 return scale_irq_capacity(free, irq, max);
9308 }
9309
9310 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9311 {
9312 unsigned long capacity = scale_rt_capacity(cpu);
9313 struct sched_group *sdg = sd->groups;
9314
9315 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
9316
9317 if (!capacity)
9318 capacity = 1;
9319
9320 cpu_rq(cpu)->cpu_capacity = capacity;
9321 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9322
9323 sdg->sgc->capacity = capacity;
9324 sdg->sgc->min_capacity = capacity;
9325 sdg->sgc->max_capacity = capacity;
9326 }
9327
9328 void update_group_capacity(struct sched_domain *sd, int cpu)
9329 {
9330 struct sched_domain *child = sd->child;
9331 struct sched_group *group, *sdg = sd->groups;
9332 unsigned long capacity, min_capacity, max_capacity;
9333 unsigned long interval;
9334
9335 interval = msecs_to_jiffies(sd->balance_interval);
9336 interval = clamp(interval, 1UL, max_load_balance_interval);
9337 sdg->sgc->next_update = jiffies + interval;
9338
9339 if (!child) {
9340 update_cpu_capacity(sd, cpu);
9341 return;
9342 }
9343
9344 capacity = 0;
9345 min_capacity = ULONG_MAX;
9346 max_capacity = 0;
9347
9348 if (child->flags & SD_OVERLAP) {
9349 /*
9350 * SD_OVERLAP domains cannot assume that child groups
9351 * span the current group.
9352 */
9353
9354 for_each_cpu(cpu, sched_group_span(sdg)) {
9355 unsigned long cpu_cap = capacity_of(cpu);
9356
9357 capacity += cpu_cap;
9358 min_capacity = min(cpu_cap, min_capacity);
9359 max_capacity = max(cpu_cap, max_capacity);
9360 }
9361 } else {
9362 /*
9363 * !SD_OVERLAP domains can assume that child groups
9364 * span the current group.
9365 */
9366
9367 group = child->groups;
9368 do {
9369 struct sched_group_capacity *sgc = group->sgc;
9370
9371 capacity += sgc->capacity;
9372 min_capacity = min(sgc->min_capacity, min_capacity);
9373 max_capacity = max(sgc->max_capacity, max_capacity);
9374 group = group->next;
9375 } while (group != child->groups);
9376 }
9377
9378 sdg->sgc->capacity = capacity;
9379 sdg->sgc->min_capacity = min_capacity;
9380 sdg->sgc->max_capacity = max_capacity;
9381 }
9382
9383 /*
9384 * Check whether the capacity of the rq has been noticeably reduced by side
9385 * activity. The imbalance_pct is used for the threshold.
9386 * Return true is the capacity is reduced
9387 */
9388 static inline int
9389 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9390 {
9391 return ((rq->cpu_capacity * sd->imbalance_pct) <
9392 (rq->cpu_capacity_orig * 100));
9393 }
9394
9395 /*
9396 * Check whether a rq has a misfit task and if it looks like we can actually
9397 * help that task: we can migrate the task to a CPU of higher capacity, or
9398 * the task's current CPU is heavily pressured.
9399 */
9400 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
9401 {
9402 return rq->misfit_task_load &&
9403 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
9404 check_cpu_capacity(rq, sd));
9405 }
9406
9407 /*
9408 * Group imbalance indicates (and tries to solve) the problem where balancing
9409 * groups is inadequate due to ->cpus_ptr constraints.
9410 *
9411 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
9412 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
9413 * Something like:
9414 *
9415 * { 0 1 2 3 } { 4 5 6 7 }
9416 * * * * *
9417 *
9418 * If we were to balance group-wise we'd place two tasks in the first group and
9419 * two tasks in the second group. Clearly this is undesired as it will overload
9420 * cpu 3 and leave one of the CPUs in the second group unused.
9421 *
9422 * The current solution to this issue is detecting the skew in the first group
9423 * by noticing the lower domain failed to reach balance and had difficulty
9424 * moving tasks due to affinity constraints.
9425 *
9426 * When this is so detected; this group becomes a candidate for busiest; see
9427 * update_sd_pick_busiest(). And calculate_imbalance() and
9428 * find_busiest_group() avoid some of the usual balance conditions to allow it
9429 * to create an effective group imbalance.
9430 *
9431 * This is a somewhat tricky proposition since the next run might not find the
9432 * group imbalance and decide the groups need to be balanced again. A most
9433 * subtle and fragile situation.
9434 */
9435
9436 static inline int sg_imbalanced(struct sched_group *group)
9437 {
9438 return group->sgc->imbalance;
9439 }
9440
9441 /*
9442 * group_has_capacity returns true if the group has spare capacity that could
9443 * be used by some tasks.
9444 * We consider that a group has spare capacity if the number of task is
9445 * smaller than the number of CPUs or if the utilization is lower than the
9446 * available capacity for CFS tasks.
9447 * For the latter, we use a threshold to stabilize the state, to take into
9448 * account the variance of the tasks' load and to return true if the available
9449 * capacity in meaningful for the load balancer.
9450 * As an example, an available capacity of 1% can appear but it doesn't make
9451 * any benefit for the load balance.
9452 */
9453 static inline bool
9454 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9455 {
9456 if (sgs->sum_nr_running < sgs->group_weight)
9457 return true;
9458
9459 if ((sgs->group_capacity * imbalance_pct) <
9460 (sgs->group_runnable * 100))
9461 return false;
9462
9463 if ((sgs->group_capacity * 100) >
9464 (sgs->group_util * imbalance_pct))
9465 return true;
9466
9467 return false;
9468 }
9469
9470 /*
9471 * group_is_overloaded returns true if the group has more tasks than it can
9472 * handle.
9473 * group_is_overloaded is not equals to !group_has_capacity because a group
9474 * with the exact right number of tasks, has no more spare capacity but is not
9475 * overloaded so both group_has_capacity and group_is_overloaded return
9476 * false.
9477 */
9478 static inline bool
9479 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9480 {
9481 if (sgs->sum_nr_running <= sgs->group_weight)
9482 return false;
9483
9484 if ((sgs->group_capacity * 100) <
9485 (sgs->group_util * imbalance_pct))
9486 return true;
9487
9488 if ((sgs->group_capacity * imbalance_pct) <
9489 (sgs->group_runnable * 100))
9490 return true;
9491
9492 return false;
9493 }
9494
9495 static inline enum
9496 group_type group_classify(unsigned int imbalance_pct,
9497 struct sched_group *group,
9498 struct sg_lb_stats *sgs)
9499 {
9500 if (group_is_overloaded(imbalance_pct, sgs))
9501 return group_overloaded;
9502
9503 if (sg_imbalanced(group))
9504 return group_imbalanced;
9505
9506 if (sgs->group_asym_packing)
9507 return group_asym_packing;
9508
9509 if (sgs->group_smt_balance)
9510 return group_smt_balance;
9511
9512 if (sgs->group_misfit_task_load)
9513 return group_misfit_task;
9514
9515 if (!group_has_capacity(imbalance_pct, sgs))
9516 return group_fully_busy;
9517
9518 return group_has_spare;
9519 }
9520
9521 /**
9522 * sched_use_asym_prio - Check whether asym_packing priority must be used
9523 * @sd: The scheduling domain of the load balancing
9524 * @cpu: A CPU
9525 *
9526 * Always use CPU priority when balancing load between SMT siblings. When
9527 * balancing load between cores, it is not sufficient that @cpu is idle. Only
9528 * use CPU priority if the whole core is idle.
9529 *
9530 * Returns: True if the priority of @cpu must be followed. False otherwise.
9531 */
9532 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
9533 {
9534 if (!sched_smt_active())
9535 return true;
9536
9537 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
9538 }
9539
9540 /**
9541 * sched_asym - Check if the destination CPU can do asym_packing load balance
9542 * @env: The load balancing environment
9543 * @sds: Load-balancing data with statistics of the local group
9544 * @sgs: Load-balancing statistics of the candidate busiest group
9545 * @group: The candidate busiest group
9546 *
9547 * @env::dst_cpu can do asym_packing if it has higher priority than the
9548 * preferred CPU of @group.
9549 *
9550 * SMT is a special case. If we are balancing load between cores, @env::dst_cpu
9551 * can do asym_packing balance only if all its SMT siblings are idle. Also, it
9552 * can only do it if @group is an SMT group and has exactly on busy CPU. Larger
9553 * imbalances in the number of CPUS are dealt with in find_busiest_group().
9554 *
9555 * If we are balancing load within an SMT core, or at DIE domain level, always
9556 * proceed.
9557 *
9558 * Return: true if @env::dst_cpu can do with asym_packing load balance. False
9559 * otherwise.
9560 */
9561 static inline bool
9562 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs,
9563 struct sched_group *group)
9564 {
9565 /* Ensure that the whole local core is idle, if applicable. */
9566 if (!sched_use_asym_prio(env->sd, env->dst_cpu))
9567 return false;
9568
9569 /*
9570 * CPU priorities does not make sense for SMT cores with more than one
9571 * busy sibling.
9572 */
9573 if (group->flags & SD_SHARE_CPUCAPACITY) {
9574 if (sgs->group_weight - sgs->idle_cpus != 1)
9575 return false;
9576 }
9577
9578 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
9579 }
9580
9581 /* One group has more than one SMT CPU while the other group does not */
9582 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
9583 struct sched_group *sg2)
9584 {
9585 if (!sg1 || !sg2)
9586 return false;
9587
9588 return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
9589 (sg2->flags & SD_SHARE_CPUCAPACITY);
9590 }
9591
9592 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
9593 struct sched_group *group)
9594 {
9595 if (env->idle == CPU_NOT_IDLE)
9596 return false;
9597
9598 /*
9599 * For SMT source group, it is better to move a task
9600 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
9601 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
9602 * will not be on.
9603 */
9604 if (group->flags & SD_SHARE_CPUCAPACITY &&
9605 sgs->sum_h_nr_running > 1)
9606 return true;
9607
9608 return false;
9609 }
9610
9611 static inline long sibling_imbalance(struct lb_env *env,
9612 struct sd_lb_stats *sds,
9613 struct sg_lb_stats *busiest,
9614 struct sg_lb_stats *local)
9615 {
9616 int ncores_busiest, ncores_local;
9617 long imbalance;
9618
9619 if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running)
9620 return 0;
9621
9622 ncores_busiest = sds->busiest->cores;
9623 ncores_local = sds->local->cores;
9624
9625 if (ncores_busiest == ncores_local) {
9626 imbalance = busiest->sum_nr_running;
9627 lsub_positive(&imbalance, local->sum_nr_running);
9628 return imbalance;
9629 }
9630
9631 /* Balance such that nr_running/ncores ratio are same on both groups */
9632 imbalance = ncores_local * busiest->sum_nr_running;
9633 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
9634 /* Normalize imbalance and do rounding on normalization */
9635 imbalance = 2 * imbalance + ncores_local + ncores_busiest;
9636 imbalance /= ncores_local + ncores_busiest;
9637
9638 /* Take advantage of resource in an empty sched group */
9639 if (imbalance <= 1 && local->sum_nr_running == 0 &&
9640 busiest->sum_nr_running > 1)
9641 imbalance = 2;
9642
9643 return imbalance;
9644 }
9645
9646 static inline bool
9647 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
9648 {
9649 /*
9650 * When there is more than 1 task, the group_overloaded case already
9651 * takes care of cpu with reduced capacity
9652 */
9653 if (rq->cfs.h_nr_running != 1)
9654 return false;
9655
9656 return check_cpu_capacity(rq, sd);
9657 }
9658
9659 /**
9660 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
9661 * @env: The load balancing environment.
9662 * @sds: Load-balancing data with statistics of the local group.
9663 * @group: sched_group whose statistics are to be updated.
9664 * @sgs: variable to hold the statistics for this group.
9665 * @sg_status: Holds flag indicating the status of the sched_group
9666 */
9667 static inline void update_sg_lb_stats(struct lb_env *env,
9668 struct sd_lb_stats *sds,
9669 struct sched_group *group,
9670 struct sg_lb_stats *sgs,
9671 int *sg_status)
9672 {
9673 int i, nr_running, local_group;
9674
9675 memset(sgs, 0, sizeof(*sgs));
9676
9677 local_group = group == sds->local;
9678
9679 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9680 struct rq *rq = cpu_rq(i);
9681 unsigned long load = cpu_load(rq);
9682
9683 sgs->group_load += load;
9684 sgs->group_util += cpu_util_cfs(i);
9685 sgs->group_runnable += cpu_runnable(rq);
9686 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
9687
9688 nr_running = rq->nr_running;
9689 sgs->sum_nr_running += nr_running;
9690
9691 if (nr_running > 1)
9692 *sg_status |= SG_OVERLOAD;
9693
9694 if (cpu_overutilized(i))
9695 *sg_status |= SG_OVERUTILIZED;
9696
9697 #ifdef CONFIG_NUMA_BALANCING
9698 sgs->nr_numa_running += rq->nr_numa_running;
9699 sgs->nr_preferred_running += rq->nr_preferred_running;
9700 #endif
9701 /*
9702 * No need to call idle_cpu() if nr_running is not 0
9703 */
9704 if (!nr_running && idle_cpu(i)) {
9705 sgs->idle_cpus++;
9706 /* Idle cpu can't have misfit task */
9707 continue;
9708 }
9709
9710 if (local_group)
9711 continue;
9712
9713 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9714 /* Check for a misfit task on the cpu */
9715 if (sgs->group_misfit_task_load < rq->misfit_task_load) {
9716 sgs->group_misfit_task_load = rq->misfit_task_load;
9717 *sg_status |= SG_OVERLOAD;
9718 }
9719 } else if ((env->idle != CPU_NOT_IDLE) &&
9720 sched_reduced_capacity(rq, env->sd)) {
9721 /* Check for a task running on a CPU with reduced capacity */
9722 if (sgs->group_misfit_task_load < load)
9723 sgs->group_misfit_task_load = load;
9724 }
9725 }
9726
9727 sgs->group_capacity = group->sgc->capacity;
9728
9729 sgs->group_weight = group->group_weight;
9730
9731 /* Check if dst CPU is idle and preferred to this group */
9732 if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
9733 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
9734 sched_asym(env, sds, sgs, group)) {
9735 sgs->group_asym_packing = 1;
9736 }
9737
9738 /* Check for loaded SMT group to be balanced to dst CPU */
9739 if (!local_group && smt_balance(env, sgs, group))
9740 sgs->group_smt_balance = 1;
9741
9742 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
9743
9744 /* Computing avg_load makes sense only when group is overloaded */
9745 if (sgs->group_type == group_overloaded)
9746 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9747 sgs->group_capacity;
9748 }
9749
9750 /**
9751 * update_sd_pick_busiest - return 1 on busiest group
9752 * @env: The load balancing environment.
9753 * @sds: sched_domain statistics
9754 * @sg: sched_group candidate to be checked for being the busiest
9755 * @sgs: sched_group statistics
9756 *
9757 * Determine if @sg is a busier group than the previously selected
9758 * busiest group.
9759 *
9760 * Return: %true if @sg is a busier group than the previously selected
9761 * busiest group. %false otherwise.
9762 */
9763 static bool update_sd_pick_busiest(struct lb_env *env,
9764 struct sd_lb_stats *sds,
9765 struct sched_group *sg,
9766 struct sg_lb_stats *sgs)
9767 {
9768 struct sg_lb_stats *busiest = &sds->busiest_stat;
9769
9770 /* Make sure that there is at least one task to pull */
9771 if (!sgs->sum_h_nr_running)
9772 return false;
9773
9774 /*
9775 * Don't try to pull misfit tasks we can't help.
9776 * We can use max_capacity here as reduction in capacity on some
9777 * CPUs in the group should either be possible to resolve
9778 * internally or be covered by avg_load imbalance (eventually).
9779 */
9780 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9781 (sgs->group_type == group_misfit_task) &&
9782 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
9783 sds->local_stat.group_type != group_has_spare))
9784 return false;
9785
9786 if (sgs->group_type > busiest->group_type)
9787 return true;
9788
9789 if (sgs->group_type < busiest->group_type)
9790 return false;
9791
9792 /*
9793 * The candidate and the current busiest group are the same type of
9794 * group. Let check which one is the busiest according to the type.
9795 */
9796
9797 switch (sgs->group_type) {
9798 case group_overloaded:
9799 /* Select the overloaded group with highest avg_load. */
9800 if (sgs->avg_load <= busiest->avg_load)
9801 return false;
9802 break;
9803
9804 case group_imbalanced:
9805 /*
9806 * Select the 1st imbalanced group as we don't have any way to
9807 * choose one more than another.
9808 */
9809 return false;
9810
9811 case group_asym_packing:
9812 /* Prefer to move from lowest priority CPU's work */
9813 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
9814 return false;
9815 break;
9816
9817 case group_misfit_task:
9818 /*
9819 * If we have more than one misfit sg go with the biggest
9820 * misfit.
9821 */
9822 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
9823 return false;
9824 break;
9825
9826 case group_smt_balance:
9827 /*
9828 * Check if we have spare CPUs on either SMT group to
9829 * choose has spare or fully busy handling.
9830 */
9831 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
9832 goto has_spare;
9833
9834 fallthrough;
9835
9836 case group_fully_busy:
9837 /*
9838 * Select the fully busy group with highest avg_load. In
9839 * theory, there is no need to pull task from such kind of
9840 * group because tasks have all compute capacity that they need
9841 * but we can still improve the overall throughput by reducing
9842 * contention when accessing shared HW resources.
9843 *
9844 * XXX for now avg_load is not computed and always 0 so we
9845 * select the 1st one, except if @sg is composed of SMT
9846 * siblings.
9847 */
9848
9849 if (sgs->avg_load < busiest->avg_load)
9850 return false;
9851
9852 if (sgs->avg_load == busiest->avg_load) {
9853 /*
9854 * SMT sched groups need more help than non-SMT groups.
9855 * If @sg happens to also be SMT, either choice is good.
9856 */
9857 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
9858 return false;
9859 }
9860
9861 break;
9862
9863 case group_has_spare:
9864 /*
9865 * Do not pick sg with SMT CPUs over sg with pure CPUs,
9866 * as we do not want to pull task off SMT core with one task
9867 * and make the core idle.
9868 */
9869 if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
9870 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
9871 return false;
9872 else
9873 return true;
9874 }
9875 has_spare:
9876
9877 /*
9878 * Select not overloaded group with lowest number of idle cpus
9879 * and highest number of running tasks. We could also compare
9880 * the spare capacity which is more stable but it can end up
9881 * that the group has less spare capacity but finally more idle
9882 * CPUs which means less opportunity to pull tasks.
9883 */
9884 if (sgs->idle_cpus > busiest->idle_cpus)
9885 return false;
9886 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
9887 (sgs->sum_nr_running <= busiest->sum_nr_running))
9888 return false;
9889
9890 break;
9891 }
9892
9893 /*
9894 * Candidate sg has no more than one task per CPU and has higher
9895 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
9896 * throughput. Maximize throughput, power/energy consequences are not
9897 * considered.
9898 */
9899 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9900 (sgs->group_type <= group_fully_busy) &&
9901 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
9902 return false;
9903
9904 return true;
9905 }
9906
9907 #ifdef CONFIG_NUMA_BALANCING
9908 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9909 {
9910 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
9911 return regular;
9912 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
9913 return remote;
9914 return all;
9915 }
9916
9917 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9918 {
9919 if (rq->nr_running > rq->nr_numa_running)
9920 return regular;
9921 if (rq->nr_running > rq->nr_preferred_running)
9922 return remote;
9923 return all;
9924 }
9925 #else
9926 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9927 {
9928 return all;
9929 }
9930
9931 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9932 {
9933 return regular;
9934 }
9935 #endif /* CONFIG_NUMA_BALANCING */
9936
9937
9938 struct sg_lb_stats;
9939
9940 /*
9941 * task_running_on_cpu - return 1 if @p is running on @cpu.
9942 */
9943
9944 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
9945 {
9946 /* Task has no contribution or is new */
9947 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
9948 return 0;
9949
9950 if (task_on_rq_queued(p))
9951 return 1;
9952
9953 return 0;
9954 }
9955
9956 /**
9957 * idle_cpu_without - would a given CPU be idle without p ?
9958 * @cpu: the processor on which idleness is tested.
9959 * @p: task which should be ignored.
9960 *
9961 * Return: 1 if the CPU would be idle. 0 otherwise.
9962 */
9963 static int idle_cpu_without(int cpu, struct task_struct *p)
9964 {
9965 struct rq *rq = cpu_rq(cpu);
9966
9967 if (rq->curr != rq->idle && rq->curr != p)
9968 return 0;
9969
9970 /*
9971 * rq->nr_running can't be used but an updated version without the
9972 * impact of p on cpu must be used instead. The updated nr_running
9973 * be computed and tested before calling idle_cpu_without().
9974 */
9975
9976 #ifdef CONFIG_SMP
9977 if (rq->ttwu_pending)
9978 return 0;
9979 #endif
9980
9981 return 1;
9982 }
9983
9984 /*
9985 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
9986 * @sd: The sched_domain level to look for idlest group.
9987 * @group: sched_group whose statistics are to be updated.
9988 * @sgs: variable to hold the statistics for this group.
9989 * @p: The task for which we look for the idlest group/CPU.
9990 */
9991 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
9992 struct sched_group *group,
9993 struct sg_lb_stats *sgs,
9994 struct task_struct *p)
9995 {
9996 int i, nr_running;
9997
9998 memset(sgs, 0, sizeof(*sgs));
9999
10000 /* Assume that task can't fit any CPU of the group */
10001 if (sd->flags & SD_ASYM_CPUCAPACITY)
10002 sgs->group_misfit_task_load = 1;
10003
10004 for_each_cpu(i, sched_group_span(group)) {
10005 struct rq *rq = cpu_rq(i);
10006 unsigned int local;
10007
10008 sgs->group_load += cpu_load_without(rq, p);
10009 sgs->group_util += cpu_util_without(i, p);
10010 sgs->group_runnable += cpu_runnable_without(rq, p);
10011 local = task_running_on_cpu(i, p);
10012 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10013
10014 nr_running = rq->nr_running - local;
10015 sgs->sum_nr_running += nr_running;
10016
10017 /*
10018 * No need to call idle_cpu_without() if nr_running is not 0
10019 */
10020 if (!nr_running && idle_cpu_without(i, p))
10021 sgs->idle_cpus++;
10022
10023 /* Check if task fits in the CPU */
10024 if (sd->flags & SD_ASYM_CPUCAPACITY &&
10025 sgs->group_misfit_task_load &&
10026 task_fits_cpu(p, i))
10027 sgs->group_misfit_task_load = 0;
10028
10029 }
10030
10031 sgs->group_capacity = group->sgc->capacity;
10032
10033 sgs->group_weight = group->group_weight;
10034
10035 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10036
10037 /*
10038 * Computing avg_load makes sense only when group is fully busy or
10039 * overloaded
10040 */
10041 if (sgs->group_type == group_fully_busy ||
10042 sgs->group_type == group_overloaded)
10043 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10044 sgs->group_capacity;
10045 }
10046
10047 static bool update_pick_idlest(struct sched_group *idlest,
10048 struct sg_lb_stats *idlest_sgs,
10049 struct sched_group *group,
10050 struct sg_lb_stats *sgs)
10051 {
10052 if (sgs->group_type < idlest_sgs->group_type)
10053 return true;
10054
10055 if (sgs->group_type > idlest_sgs->group_type)
10056 return false;
10057
10058 /*
10059 * The candidate and the current idlest group are the same type of
10060 * group. Let check which one is the idlest according to the type.
10061 */
10062
10063 switch (sgs->group_type) {
10064 case group_overloaded:
10065 case group_fully_busy:
10066 /* Select the group with lowest avg_load. */
10067 if (idlest_sgs->avg_load <= sgs->avg_load)
10068 return false;
10069 break;
10070
10071 case group_imbalanced:
10072 case group_asym_packing:
10073 case group_smt_balance:
10074 /* Those types are not used in the slow wakeup path */
10075 return false;
10076
10077 case group_misfit_task:
10078 /* Select group with the highest max capacity */
10079 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10080 return false;
10081 break;
10082
10083 case group_has_spare:
10084 /* Select group with most idle CPUs */
10085 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10086 return false;
10087
10088 /* Select group with lowest group_util */
10089 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10090 idlest_sgs->group_util <= sgs->group_util)
10091 return false;
10092
10093 break;
10094 }
10095
10096 return true;
10097 }
10098
10099 /*
10100 * find_idlest_group() finds and returns the least busy CPU group within the
10101 * domain.
10102 *
10103 * Assumes p is allowed on at least one CPU in sd.
10104 */
10105 static struct sched_group *
10106 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10107 {
10108 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10109 struct sg_lb_stats local_sgs, tmp_sgs;
10110 struct sg_lb_stats *sgs;
10111 unsigned long imbalance;
10112 struct sg_lb_stats idlest_sgs = {
10113 .avg_load = UINT_MAX,
10114 .group_type = group_overloaded,
10115 };
10116
10117 do {
10118 int local_group;
10119
10120 /* Skip over this group if it has no CPUs allowed */
10121 if (!cpumask_intersects(sched_group_span(group),
10122 p->cpus_ptr))
10123 continue;
10124
10125 /* Skip over this group if no cookie matched */
10126 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10127 continue;
10128
10129 local_group = cpumask_test_cpu(this_cpu,
10130 sched_group_span(group));
10131
10132 if (local_group) {
10133 sgs = &local_sgs;
10134 local = group;
10135 } else {
10136 sgs = &tmp_sgs;
10137 }
10138
10139 update_sg_wakeup_stats(sd, group, sgs, p);
10140
10141 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10142 idlest = group;
10143 idlest_sgs = *sgs;
10144 }
10145
10146 } while (group = group->next, group != sd->groups);
10147
10148
10149 /* There is no idlest group to push tasks to */
10150 if (!idlest)
10151 return NULL;
10152
10153 /* The local group has been skipped because of CPU affinity */
10154 if (!local)
10155 return idlest;
10156
10157 /*
10158 * If the local group is idler than the selected idlest group
10159 * don't try and push the task.
10160 */
10161 if (local_sgs.group_type < idlest_sgs.group_type)
10162 return NULL;
10163
10164 /*
10165 * If the local group is busier than the selected idlest group
10166 * try and push the task.
10167 */
10168 if (local_sgs.group_type > idlest_sgs.group_type)
10169 return idlest;
10170
10171 switch (local_sgs.group_type) {
10172 case group_overloaded:
10173 case group_fully_busy:
10174
10175 /* Calculate allowed imbalance based on load */
10176 imbalance = scale_load_down(NICE_0_LOAD) *
10177 (sd->imbalance_pct-100) / 100;
10178
10179 /*
10180 * When comparing groups across NUMA domains, it's possible for
10181 * the local domain to be very lightly loaded relative to the
10182 * remote domains but "imbalance" skews the comparison making
10183 * remote CPUs look much more favourable. When considering
10184 * cross-domain, add imbalance to the load on the remote node
10185 * and consider staying local.
10186 */
10187
10188 if ((sd->flags & SD_NUMA) &&
10189 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10190 return NULL;
10191
10192 /*
10193 * If the local group is less loaded than the selected
10194 * idlest group don't try and push any tasks.
10195 */
10196 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10197 return NULL;
10198
10199 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10200 return NULL;
10201 break;
10202
10203 case group_imbalanced:
10204 case group_asym_packing:
10205 case group_smt_balance:
10206 /* Those type are not used in the slow wakeup path */
10207 return NULL;
10208
10209 case group_misfit_task:
10210 /* Select group with the highest max capacity */
10211 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10212 return NULL;
10213 break;
10214
10215 case group_has_spare:
10216 #ifdef CONFIG_NUMA
10217 if (sd->flags & SD_NUMA) {
10218 int imb_numa_nr = sd->imb_numa_nr;
10219 #ifdef CONFIG_NUMA_BALANCING
10220 int idlest_cpu;
10221 /*
10222 * If there is spare capacity at NUMA, try to select
10223 * the preferred node
10224 */
10225 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10226 return NULL;
10227
10228 idlest_cpu = cpumask_first(sched_group_span(idlest));
10229 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10230 return idlest;
10231 #endif /* CONFIG_NUMA_BALANCING */
10232 /*
10233 * Otherwise, keep the task close to the wakeup source
10234 * and improve locality if the number of running tasks
10235 * would remain below threshold where an imbalance is
10236 * allowed while accounting for the possibility the
10237 * task is pinned to a subset of CPUs. If there is a
10238 * real need of migration, periodic load balance will
10239 * take care of it.
10240 */
10241 if (p->nr_cpus_allowed != NR_CPUS) {
10242 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10243
10244 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10245 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10246 }
10247
10248 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10249 if (!adjust_numa_imbalance(imbalance,
10250 local_sgs.sum_nr_running + 1,
10251 imb_numa_nr)) {
10252 return NULL;
10253 }
10254 }
10255 #endif /* CONFIG_NUMA */
10256
10257 /*
10258 * Select group with highest number of idle CPUs. We could also
10259 * compare the utilization which is more stable but it can end
10260 * up that the group has less spare capacity but finally more
10261 * idle CPUs which means more opportunity to run task.
10262 */
10263 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10264 return NULL;
10265 break;
10266 }
10267
10268 return idlest;
10269 }
10270
10271 static void update_idle_cpu_scan(struct lb_env *env,
10272 unsigned long sum_util)
10273 {
10274 struct sched_domain_shared *sd_share;
10275 int llc_weight, pct;
10276 u64 x, y, tmp;
10277 /*
10278 * Update the number of CPUs to scan in LLC domain, which could
10279 * be used as a hint in select_idle_cpu(). The update of sd_share
10280 * could be expensive because it is within a shared cache line.
10281 * So the write of this hint only occurs during periodic load
10282 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10283 * can fire way more frequently than the former.
10284 */
10285 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10286 return;
10287
10288 llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10289 if (env->sd->span_weight != llc_weight)
10290 return;
10291
10292 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10293 if (!sd_share)
10294 return;
10295
10296 /*
10297 * The number of CPUs to search drops as sum_util increases, when
10298 * sum_util hits 85% or above, the scan stops.
10299 * The reason to choose 85% as the threshold is because this is the
10300 * imbalance_pct(117) when a LLC sched group is overloaded.
10301 *
10302 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1]
10303 * and y'= y / SCHED_CAPACITY_SCALE
10304 *
10305 * x is the ratio of sum_util compared to the CPU capacity:
10306 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10307 * y' is the ratio of CPUs to be scanned in the LLC domain,
10308 * and the number of CPUs to scan is calculated by:
10309 *
10310 * nr_scan = llc_weight * y' [2]
10311 *
10312 * When x hits the threshold of overloaded, AKA, when
10313 * x = 100 / pct, y drops to 0. According to [1],
10314 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10315 *
10316 * Scale x by SCHED_CAPACITY_SCALE:
10317 * x' = sum_util / llc_weight; [3]
10318 *
10319 * and finally [1] becomes:
10320 * y = SCHED_CAPACITY_SCALE -
10321 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4]
10322 *
10323 */
10324 /* equation [3] */
10325 x = sum_util;
10326 do_div(x, llc_weight);
10327
10328 /* equation [4] */
10329 pct = env->sd->imbalance_pct;
10330 tmp = x * x * pct * pct;
10331 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10332 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10333 y = SCHED_CAPACITY_SCALE - tmp;
10334
10335 /* equation [2] */
10336 y *= llc_weight;
10337 do_div(y, SCHED_CAPACITY_SCALE);
10338 if ((int)y != sd_share->nr_idle_scan)
10339 WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10340 }
10341
10342 /**
10343 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10344 * @env: The load balancing environment.
10345 * @sds: variable to hold the statistics for this sched_domain.
10346 */
10347
10348 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10349 {
10350 struct sched_group *sg = env->sd->groups;
10351 struct sg_lb_stats *local = &sds->local_stat;
10352 struct sg_lb_stats tmp_sgs;
10353 unsigned long sum_util = 0;
10354 int sg_status = 0;
10355
10356 do {
10357 struct sg_lb_stats *sgs = &tmp_sgs;
10358 int local_group;
10359
10360 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10361 if (local_group) {
10362 sds->local = sg;
10363 sgs = local;
10364
10365 if (env->idle != CPU_NEWLY_IDLE ||
10366 time_after_eq(jiffies, sg->sgc->next_update))
10367 update_group_capacity(env->sd, env->dst_cpu);
10368 }
10369
10370 update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
10371
10372 if (local_group)
10373 goto next_group;
10374
10375
10376 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
10377 sds->busiest = sg;
10378 sds->busiest_stat = *sgs;
10379 }
10380
10381 next_group:
10382 /* Now, start updating sd_lb_stats */
10383 sds->total_load += sgs->group_load;
10384 sds->total_capacity += sgs->group_capacity;
10385
10386 sum_util += sgs->group_util;
10387 sg = sg->next;
10388 } while (sg != env->sd->groups);
10389
10390 /*
10391 * Indicate that the child domain of the busiest group prefers tasks
10392 * go to a child's sibling domains first. NB the flags of a sched group
10393 * are those of the child domain.
10394 */
10395 if (sds->busiest)
10396 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
10397
10398
10399 if (env->sd->flags & SD_NUMA)
10400 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
10401
10402 if (!env->sd->parent) {
10403 struct root_domain *rd = env->dst_rq->rd;
10404
10405 /* update overload indicator if we are at root domain */
10406 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
10407
10408 /* Update over-utilization (tipping point, U >= 0) indicator */
10409 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
10410 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
10411 } else if (sg_status & SG_OVERUTILIZED) {
10412 struct root_domain *rd = env->dst_rq->rd;
10413
10414 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
10415 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
10416 }
10417
10418 update_idle_cpu_scan(env, sum_util);
10419 }
10420
10421 /**
10422 * calculate_imbalance - Calculate the amount of imbalance present within the
10423 * groups of a given sched_domain during load balance.
10424 * @env: load balance environment
10425 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
10426 */
10427 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
10428 {
10429 struct sg_lb_stats *local, *busiest;
10430
10431 local = &sds->local_stat;
10432 busiest = &sds->busiest_stat;
10433
10434 if (busiest->group_type == group_misfit_task) {
10435 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10436 /* Set imbalance to allow misfit tasks to be balanced. */
10437 env->migration_type = migrate_misfit;
10438 env->imbalance = 1;
10439 } else {
10440 /*
10441 * Set load imbalance to allow moving task from cpu
10442 * with reduced capacity.
10443 */
10444 env->migration_type = migrate_load;
10445 env->imbalance = busiest->group_misfit_task_load;
10446 }
10447 return;
10448 }
10449
10450 if (busiest->group_type == group_asym_packing) {
10451 /*
10452 * In case of asym capacity, we will try to migrate all load to
10453 * the preferred CPU.
10454 */
10455 env->migration_type = migrate_task;
10456 env->imbalance = busiest->sum_h_nr_running;
10457 return;
10458 }
10459
10460 if (busiest->group_type == group_smt_balance) {
10461 /* Reduce number of tasks sharing CPU capacity */
10462 env->migration_type = migrate_task;
10463 env->imbalance = 1;
10464 return;
10465 }
10466
10467 if (busiest->group_type == group_imbalanced) {
10468 /*
10469 * In the group_imb case we cannot rely on group-wide averages
10470 * to ensure CPU-load equilibrium, try to move any task to fix
10471 * the imbalance. The next load balance will take care of
10472 * balancing back the system.
10473 */
10474 env->migration_type = migrate_task;
10475 env->imbalance = 1;
10476 return;
10477 }
10478
10479 /*
10480 * Try to use spare capacity of local group without overloading it or
10481 * emptying busiest.
10482 */
10483 if (local->group_type == group_has_spare) {
10484 if ((busiest->group_type > group_fully_busy) &&
10485 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
10486 /*
10487 * If busiest is overloaded, try to fill spare
10488 * capacity. This might end up creating spare capacity
10489 * in busiest or busiest still being overloaded but
10490 * there is no simple way to directly compute the
10491 * amount of load to migrate in order to balance the
10492 * system.
10493 */
10494 env->migration_type = migrate_util;
10495 env->imbalance = max(local->group_capacity, local->group_util) -
10496 local->group_util;
10497
10498 /*
10499 * In some cases, the group's utilization is max or even
10500 * higher than capacity because of migrations but the
10501 * local CPU is (newly) idle. There is at least one
10502 * waiting task in this overloaded busiest group. Let's
10503 * try to pull it.
10504 */
10505 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
10506 env->migration_type = migrate_task;
10507 env->imbalance = 1;
10508 }
10509
10510 return;
10511 }
10512
10513 if (busiest->group_weight == 1 || sds->prefer_sibling) {
10514 /*
10515 * When prefer sibling, evenly spread running tasks on
10516 * groups.
10517 */
10518 env->migration_type = migrate_task;
10519 env->imbalance = sibling_imbalance(env, sds, busiest, local);
10520 } else {
10521
10522 /*
10523 * If there is no overload, we just want to even the number of
10524 * idle cpus.
10525 */
10526 env->migration_type = migrate_task;
10527 env->imbalance = max_t(long, 0,
10528 (local->idle_cpus - busiest->idle_cpus));
10529 }
10530
10531 #ifdef CONFIG_NUMA
10532 /* Consider allowing a small imbalance between NUMA groups */
10533 if (env->sd->flags & SD_NUMA) {
10534 env->imbalance = adjust_numa_imbalance(env->imbalance,
10535 local->sum_nr_running + 1,
10536 env->sd->imb_numa_nr);
10537 }
10538 #endif
10539
10540 /* Number of tasks to move to restore balance */
10541 env->imbalance >>= 1;
10542
10543 return;
10544 }
10545
10546 /*
10547 * Local is fully busy but has to take more load to relieve the
10548 * busiest group
10549 */
10550 if (local->group_type < group_overloaded) {
10551 /*
10552 * Local will become overloaded so the avg_load metrics are
10553 * finally needed.
10554 */
10555
10556 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
10557 local->group_capacity;
10558
10559 /*
10560 * If the local group is more loaded than the selected
10561 * busiest group don't try to pull any tasks.
10562 */
10563 if (local->avg_load >= busiest->avg_load) {
10564 env->imbalance = 0;
10565 return;
10566 }
10567
10568 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
10569 sds->total_capacity;
10570
10571 /*
10572 * If the local group is more loaded than the average system
10573 * load, don't try to pull any tasks.
10574 */
10575 if (local->avg_load >= sds->avg_load) {
10576 env->imbalance = 0;
10577 return;
10578 }
10579
10580 }
10581
10582 /*
10583 * Both group are or will become overloaded and we're trying to get all
10584 * the CPUs to the average_load, so we don't want to push ourselves
10585 * above the average load, nor do we wish to reduce the max loaded CPU
10586 * below the average load. At the same time, we also don't want to
10587 * reduce the group load below the group capacity. Thus we look for
10588 * the minimum possible imbalance.
10589 */
10590 env->migration_type = migrate_load;
10591 env->imbalance = min(
10592 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
10593 (sds->avg_load - local->avg_load) * local->group_capacity
10594 ) / SCHED_CAPACITY_SCALE;
10595 }
10596
10597 /******* find_busiest_group() helpers end here *********************/
10598
10599 /*
10600 * Decision matrix according to the local and busiest group type:
10601 *
10602 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
10603 * has_spare nr_idle balanced N/A N/A balanced balanced
10604 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
10605 * misfit_task force N/A N/A N/A N/A N/A
10606 * asym_packing force force N/A N/A force force
10607 * imbalanced force force N/A N/A force force
10608 * overloaded force force N/A N/A force avg_load
10609 *
10610 * N/A : Not Applicable because already filtered while updating
10611 * statistics.
10612 * balanced : The system is balanced for these 2 groups.
10613 * force : Calculate the imbalance as load migration is probably needed.
10614 * avg_load : Only if imbalance is significant enough.
10615 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
10616 * different in groups.
10617 */
10618
10619 /**
10620 * find_busiest_group - Returns the busiest group within the sched_domain
10621 * if there is an imbalance.
10622 * @env: The load balancing environment.
10623 *
10624 * Also calculates the amount of runnable load which should be moved
10625 * to restore balance.
10626 *
10627 * Return: - The busiest group if imbalance exists.
10628 */
10629 static struct sched_group *find_busiest_group(struct lb_env *env)
10630 {
10631 struct sg_lb_stats *local, *busiest;
10632 struct sd_lb_stats sds;
10633
10634 init_sd_lb_stats(&sds);
10635
10636 /*
10637 * Compute the various statistics relevant for load balancing at
10638 * this level.
10639 */
10640 update_sd_lb_stats(env, &sds);
10641
10642 /* There is no busy sibling group to pull tasks from */
10643 if (!sds.busiest)
10644 goto out_balanced;
10645
10646 busiest = &sds.busiest_stat;
10647
10648 /* Misfit tasks should be dealt with regardless of the avg load */
10649 if (busiest->group_type == group_misfit_task)
10650 goto force_balance;
10651
10652 if (sched_energy_enabled()) {
10653 struct root_domain *rd = env->dst_rq->rd;
10654
10655 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
10656 goto out_balanced;
10657 }
10658
10659 /* ASYM feature bypasses nice load balance check */
10660 if (busiest->group_type == group_asym_packing)
10661 goto force_balance;
10662
10663 /*
10664 * If the busiest group is imbalanced the below checks don't
10665 * work because they assume all things are equal, which typically
10666 * isn't true due to cpus_ptr constraints and the like.
10667 */
10668 if (busiest->group_type == group_imbalanced)
10669 goto force_balance;
10670
10671 local = &sds.local_stat;
10672 /*
10673 * If the local group is busier than the selected busiest group
10674 * don't try and pull any tasks.
10675 */
10676 if (local->group_type > busiest->group_type)
10677 goto out_balanced;
10678
10679 /*
10680 * When groups are overloaded, use the avg_load to ensure fairness
10681 * between tasks.
10682 */
10683 if (local->group_type == group_overloaded) {
10684 /*
10685 * If the local group is more loaded than the selected
10686 * busiest group don't try to pull any tasks.
10687 */
10688 if (local->avg_load >= busiest->avg_load)
10689 goto out_balanced;
10690
10691 /* XXX broken for overlapping NUMA groups */
10692 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
10693 sds.total_capacity;
10694
10695 /*
10696 * Don't pull any tasks if this group is already above the
10697 * domain average load.
10698 */
10699 if (local->avg_load >= sds.avg_load)
10700 goto out_balanced;
10701
10702 /*
10703 * If the busiest group is more loaded, use imbalance_pct to be
10704 * conservative.
10705 */
10706 if (100 * busiest->avg_load <=
10707 env->sd->imbalance_pct * local->avg_load)
10708 goto out_balanced;
10709 }
10710
10711 /*
10712 * Try to move all excess tasks to a sibling domain of the busiest
10713 * group's child domain.
10714 */
10715 if (sds.prefer_sibling && local->group_type == group_has_spare &&
10716 sibling_imbalance(env, &sds, busiest, local) > 1)
10717 goto force_balance;
10718
10719 if (busiest->group_type != group_overloaded) {
10720 if (env->idle == CPU_NOT_IDLE) {
10721 /*
10722 * If the busiest group is not overloaded (and as a
10723 * result the local one too) but this CPU is already
10724 * busy, let another idle CPU try to pull task.
10725 */
10726 goto out_balanced;
10727 }
10728
10729 if (busiest->group_type == group_smt_balance &&
10730 smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
10731 /* Let non SMT CPU pull from SMT CPU sharing with sibling */
10732 goto force_balance;
10733 }
10734
10735 if (busiest->group_weight > 1 &&
10736 local->idle_cpus <= (busiest->idle_cpus + 1)) {
10737 /*
10738 * If the busiest group is not overloaded
10739 * and there is no imbalance between this and busiest
10740 * group wrt idle CPUs, it is balanced. The imbalance
10741 * becomes significant if the diff is greater than 1
10742 * otherwise we might end up to just move the imbalance
10743 * on another group. Of course this applies only if
10744 * there is more than 1 CPU per group.
10745 */
10746 goto out_balanced;
10747 }
10748
10749 if (busiest->sum_h_nr_running == 1) {
10750 /*
10751 * busiest doesn't have any tasks waiting to run
10752 */
10753 goto out_balanced;
10754 }
10755 }
10756
10757 force_balance:
10758 /* Looks like there is an imbalance. Compute it */
10759 calculate_imbalance(env, &sds);
10760 return env->imbalance ? sds.busiest : NULL;
10761
10762 out_balanced:
10763 env->imbalance = 0;
10764 return NULL;
10765 }
10766
10767 /*
10768 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
10769 */
10770 static struct rq *find_busiest_queue(struct lb_env *env,
10771 struct sched_group *group)
10772 {
10773 struct rq *busiest = NULL, *rq;
10774 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
10775 unsigned int busiest_nr = 0;
10776 int i;
10777
10778 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10779 unsigned long capacity, load, util;
10780 unsigned int nr_running;
10781 enum fbq_type rt;
10782
10783 rq = cpu_rq(i);
10784 rt = fbq_classify_rq(rq);
10785
10786 /*
10787 * We classify groups/runqueues into three groups:
10788 * - regular: there are !numa tasks
10789 * - remote: there are numa tasks that run on the 'wrong' node
10790 * - all: there is no distinction
10791 *
10792 * In order to avoid migrating ideally placed numa tasks,
10793 * ignore those when there's better options.
10794 *
10795 * If we ignore the actual busiest queue to migrate another
10796 * task, the next balance pass can still reduce the busiest
10797 * queue by moving tasks around inside the node.
10798 *
10799 * If we cannot move enough load due to this classification
10800 * the next pass will adjust the group classification and
10801 * allow migration of more tasks.
10802 *
10803 * Both cases only affect the total convergence complexity.
10804 */
10805 if (rt > env->fbq_type)
10806 continue;
10807
10808 nr_running = rq->cfs.h_nr_running;
10809 if (!nr_running)
10810 continue;
10811
10812 capacity = capacity_of(i);
10813
10814 /*
10815 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
10816 * eventually lead to active_balancing high->low capacity.
10817 * Higher per-CPU capacity is considered better than balancing
10818 * average load.
10819 */
10820 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
10821 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
10822 nr_running == 1)
10823 continue;
10824
10825 /*
10826 * Make sure we only pull tasks from a CPU of lower priority
10827 * when balancing between SMT siblings.
10828 *
10829 * If balancing between cores, let lower priority CPUs help
10830 * SMT cores with more than one busy sibling.
10831 */
10832 if ((env->sd->flags & SD_ASYM_PACKING) &&
10833 sched_use_asym_prio(env->sd, i) &&
10834 sched_asym_prefer(i, env->dst_cpu) &&
10835 nr_running == 1)
10836 continue;
10837
10838 switch (env->migration_type) {
10839 case migrate_load:
10840 /*
10841 * When comparing with load imbalance, use cpu_load()
10842 * which is not scaled with the CPU capacity.
10843 */
10844 load = cpu_load(rq);
10845
10846 if (nr_running == 1 && load > env->imbalance &&
10847 !check_cpu_capacity(rq, env->sd))
10848 break;
10849
10850 /*
10851 * For the load comparisons with the other CPUs,
10852 * consider the cpu_load() scaled with the CPU
10853 * capacity, so that the load can be moved away
10854 * from the CPU that is potentially running at a
10855 * lower capacity.
10856 *
10857 * Thus we're looking for max(load_i / capacity_i),
10858 * crosswise multiplication to rid ourselves of the
10859 * division works out to:
10860 * load_i * capacity_j > load_j * capacity_i;
10861 * where j is our previous maximum.
10862 */
10863 if (load * busiest_capacity > busiest_load * capacity) {
10864 busiest_load = load;
10865 busiest_capacity = capacity;
10866 busiest = rq;
10867 }
10868 break;
10869
10870 case migrate_util:
10871 util = cpu_util_cfs_boost(i);
10872
10873 /*
10874 * Don't try to pull utilization from a CPU with one
10875 * running task. Whatever its utilization, we will fail
10876 * detach the task.
10877 */
10878 if (nr_running <= 1)
10879 continue;
10880
10881 if (busiest_util < util) {
10882 busiest_util = util;
10883 busiest = rq;
10884 }
10885 break;
10886
10887 case migrate_task:
10888 if (busiest_nr < nr_running) {
10889 busiest_nr = nr_running;
10890 busiest = rq;
10891 }
10892 break;
10893
10894 case migrate_misfit:
10895 /*
10896 * For ASYM_CPUCAPACITY domains with misfit tasks we
10897 * simply seek the "biggest" misfit task.
10898 */
10899 if (rq->misfit_task_load > busiest_load) {
10900 busiest_load = rq->misfit_task_load;
10901 busiest = rq;
10902 }
10903
10904 break;
10905
10906 }
10907 }
10908
10909 return busiest;
10910 }
10911
10912 /*
10913 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
10914 * so long as it is large enough.
10915 */
10916 #define MAX_PINNED_INTERVAL 512
10917
10918 static inline bool
10919 asym_active_balance(struct lb_env *env)
10920 {
10921 /*
10922 * ASYM_PACKING needs to force migrate tasks from busy but lower
10923 * priority CPUs in order to pack all tasks in the highest priority
10924 * CPUs. When done between cores, do it only if the whole core if the
10925 * whole core is idle.
10926 *
10927 * If @env::src_cpu is an SMT core with busy siblings, let
10928 * the lower priority @env::dst_cpu help it. Do not follow
10929 * CPU priority.
10930 */
10931 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
10932 sched_use_asym_prio(env->sd, env->dst_cpu) &&
10933 (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
10934 !sched_use_asym_prio(env->sd, env->src_cpu));
10935 }
10936
10937 static inline bool
10938 imbalanced_active_balance(struct lb_env *env)
10939 {
10940 struct sched_domain *sd = env->sd;
10941
10942 /*
10943 * The imbalanced case includes the case of pinned tasks preventing a fair
10944 * distribution of the load on the system but also the even distribution of the
10945 * threads on a system with spare capacity
10946 */
10947 if ((env->migration_type == migrate_task) &&
10948 (sd->nr_balance_failed > sd->cache_nice_tries+2))
10949 return 1;
10950
10951 return 0;
10952 }
10953
10954 static int need_active_balance(struct lb_env *env)
10955 {
10956 struct sched_domain *sd = env->sd;
10957
10958 if (asym_active_balance(env))
10959 return 1;
10960
10961 if (imbalanced_active_balance(env))
10962 return 1;
10963
10964 /*
10965 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
10966 * It's worth migrating the task if the src_cpu's capacity is reduced
10967 * because of other sched_class or IRQs if more capacity stays
10968 * available on dst_cpu.
10969 */
10970 if ((env->idle != CPU_NOT_IDLE) &&
10971 (env->src_rq->cfs.h_nr_running == 1)) {
10972 if ((check_cpu_capacity(env->src_rq, sd)) &&
10973 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
10974 return 1;
10975 }
10976
10977 if (env->migration_type == migrate_misfit)
10978 return 1;
10979
10980 return 0;
10981 }
10982
10983 static int active_load_balance_cpu_stop(void *data);
10984
10985 static int should_we_balance(struct lb_env *env)
10986 {
10987 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
10988 struct sched_group *sg = env->sd->groups;
10989 int cpu, idle_smt = -1;
10990
10991 /*
10992 * Ensure the balancing environment is consistent; can happen
10993 * when the softirq triggers 'during' hotplug.
10994 */
10995 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
10996 return 0;
10997
10998 /*
10999 * In the newly idle case, we will allow all the CPUs
11000 * to do the newly idle load balance.
11001 *
11002 * However, we bail out if we already have tasks or a wakeup pending,
11003 * to optimize wakeup latency.
11004 */
11005 if (env->idle == CPU_NEWLY_IDLE) {
11006 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11007 return 0;
11008 return 1;
11009 }
11010
11011 cpumask_copy(swb_cpus, group_balance_mask(sg));
11012 /* Try to find first idle CPU */
11013 for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11014 if (!idle_cpu(cpu))
11015 continue;
11016
11017 /*
11018 * Don't balance to idle SMT in busy core right away when
11019 * balancing cores, but remember the first idle SMT CPU for
11020 * later consideration. Find CPU on an idle core first.
11021 */
11022 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11023 if (idle_smt == -1)
11024 idle_smt = cpu;
11025 /*
11026 * If the core is not idle, and first SMT sibling which is
11027 * idle has been found, then its not needed to check other
11028 * SMT siblings for idleness:
11029 */
11030 #ifdef CONFIG_SCHED_SMT
11031 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11032 #endif
11033 continue;
11034 }
11035
11036 /* Are we the first idle CPU? */
11037 return cpu == env->dst_cpu;
11038 }
11039
11040 if (idle_smt == env->dst_cpu)
11041 return true;
11042
11043 /* Are we the first CPU of this group ? */
11044 return group_balance_cpu(sg) == env->dst_cpu;
11045 }
11046
11047 /*
11048 * Check this_cpu to ensure it is balanced within domain. Attempt to move
11049 * tasks if there is an imbalance.
11050 */
11051 static int load_balance(int this_cpu, struct rq *this_rq,
11052 struct sched_domain *sd, enum cpu_idle_type idle,
11053 int *continue_balancing)
11054 {
11055 int ld_moved, cur_ld_moved, active_balance = 0;
11056 struct sched_domain *sd_parent = sd->parent;
11057 struct sched_group *group;
11058 struct rq *busiest;
11059 struct rq_flags rf;
11060 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11061 struct lb_env env = {
11062 .sd = sd,
11063 .dst_cpu = this_cpu,
11064 .dst_rq = this_rq,
11065 .dst_grpmask = group_balance_mask(sd->groups),
11066 .idle = idle,
11067 .loop_break = SCHED_NR_MIGRATE_BREAK,
11068 .cpus = cpus,
11069 .fbq_type = all,
11070 .tasks = LIST_HEAD_INIT(env.tasks),
11071 };
11072
11073 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11074
11075 schedstat_inc(sd->lb_count[idle]);
11076
11077 redo:
11078 if (!should_we_balance(&env)) {
11079 *continue_balancing = 0;
11080 goto out_balanced;
11081 }
11082
11083 group = find_busiest_group(&env);
11084 if (!group) {
11085 schedstat_inc(sd->lb_nobusyg[idle]);
11086 goto out_balanced;
11087 }
11088
11089 busiest = find_busiest_queue(&env, group);
11090 if (!busiest) {
11091 schedstat_inc(sd->lb_nobusyq[idle]);
11092 goto out_balanced;
11093 }
11094
11095 WARN_ON_ONCE(busiest == env.dst_rq);
11096
11097 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11098
11099 env.src_cpu = busiest->cpu;
11100 env.src_rq = busiest;
11101
11102 ld_moved = 0;
11103 /* Clear this flag as soon as we find a pullable task */
11104 env.flags |= LBF_ALL_PINNED;
11105 if (busiest->nr_running > 1) {
11106 /*
11107 * Attempt to move tasks. If find_busiest_group has found
11108 * an imbalance but busiest->nr_running <= 1, the group is
11109 * still unbalanced. ld_moved simply stays zero, so it is
11110 * correctly treated as an imbalance.
11111 */
11112 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
11113
11114 more_balance:
11115 rq_lock_irqsave(busiest, &rf);
11116 update_rq_clock(busiest);
11117
11118 /*
11119 * cur_ld_moved - load moved in current iteration
11120 * ld_moved - cumulative load moved across iterations
11121 */
11122 cur_ld_moved = detach_tasks(&env);
11123
11124 /*
11125 * We've detached some tasks from busiest_rq. Every
11126 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11127 * unlock busiest->lock, and we are able to be sure
11128 * that nobody can manipulate the tasks in parallel.
11129 * See task_rq_lock() family for the details.
11130 */
11131
11132 rq_unlock(busiest, &rf);
11133
11134 if (cur_ld_moved) {
11135 attach_tasks(&env);
11136 ld_moved += cur_ld_moved;
11137 }
11138
11139 local_irq_restore(rf.flags);
11140
11141 if (env.flags & LBF_NEED_BREAK) {
11142 env.flags &= ~LBF_NEED_BREAK;
11143 /* Stop if we tried all running tasks */
11144 if (env.loop < busiest->nr_running)
11145 goto more_balance;
11146 }
11147
11148 /*
11149 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11150 * us and move them to an alternate dst_cpu in our sched_group
11151 * where they can run. The upper limit on how many times we
11152 * iterate on same src_cpu is dependent on number of CPUs in our
11153 * sched_group.
11154 *
11155 * This changes load balance semantics a bit on who can move
11156 * load to a given_cpu. In addition to the given_cpu itself
11157 * (or a ilb_cpu acting on its behalf where given_cpu is
11158 * nohz-idle), we now have balance_cpu in a position to move
11159 * load to given_cpu. In rare situations, this may cause
11160 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11161 * _independently_ and at _same_ time to move some load to
11162 * given_cpu) causing excess load to be moved to given_cpu.
11163 * This however should not happen so much in practice and
11164 * moreover subsequent load balance cycles should correct the
11165 * excess load moved.
11166 */
11167 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11168
11169 /* Prevent to re-select dst_cpu via env's CPUs */
11170 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
11171
11172 env.dst_rq = cpu_rq(env.new_dst_cpu);
11173 env.dst_cpu = env.new_dst_cpu;
11174 env.flags &= ~LBF_DST_PINNED;
11175 env.loop = 0;
11176 env.loop_break = SCHED_NR_MIGRATE_BREAK;
11177
11178 /*
11179 * Go back to "more_balance" rather than "redo" since we
11180 * need to continue with same src_cpu.
11181 */
11182 goto more_balance;
11183 }
11184
11185 /*
11186 * We failed to reach balance because of affinity.
11187 */
11188 if (sd_parent) {
11189 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11190
11191 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11192 *group_imbalance = 1;
11193 }
11194
11195 /* All tasks on this runqueue were pinned by CPU affinity */
11196 if (unlikely(env.flags & LBF_ALL_PINNED)) {
11197 __cpumask_clear_cpu(cpu_of(busiest), cpus);
11198 /*
11199 * Attempting to continue load balancing at the current
11200 * sched_domain level only makes sense if there are
11201 * active CPUs remaining as possible busiest CPUs to
11202 * pull load from which are not contained within the
11203 * destination group that is receiving any migrated
11204 * load.
11205 */
11206 if (!cpumask_subset(cpus, env.dst_grpmask)) {
11207 env.loop = 0;
11208 env.loop_break = SCHED_NR_MIGRATE_BREAK;
11209 goto redo;
11210 }
11211 goto out_all_pinned;
11212 }
11213 }
11214
11215 if (!ld_moved) {
11216 schedstat_inc(sd->lb_failed[idle]);
11217 /*
11218 * Increment the failure counter only on periodic balance.
11219 * We do not want newidle balance, which can be very
11220 * frequent, pollute the failure counter causing
11221 * excessive cache_hot migrations and active balances.
11222 */
11223 if (idle != CPU_NEWLY_IDLE)
11224 sd->nr_balance_failed++;
11225
11226 if (need_active_balance(&env)) {
11227 unsigned long flags;
11228
11229 raw_spin_rq_lock_irqsave(busiest, flags);
11230
11231 /*
11232 * Don't kick the active_load_balance_cpu_stop,
11233 * if the curr task on busiest CPU can't be
11234 * moved to this_cpu:
11235 */
11236 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11237 raw_spin_rq_unlock_irqrestore(busiest, flags);
11238 goto out_one_pinned;
11239 }
11240
11241 /* Record that we found at least one task that could run on this_cpu */
11242 env.flags &= ~LBF_ALL_PINNED;
11243
11244 /*
11245 * ->active_balance synchronizes accesses to
11246 * ->active_balance_work. Once set, it's cleared
11247 * only after active load balance is finished.
11248 */
11249 if (!busiest->active_balance) {
11250 busiest->active_balance = 1;
11251 busiest->push_cpu = this_cpu;
11252 active_balance = 1;
11253 }
11254 raw_spin_rq_unlock_irqrestore(busiest, flags);
11255
11256 if (active_balance) {
11257 stop_one_cpu_nowait(cpu_of(busiest),
11258 active_load_balance_cpu_stop, busiest,
11259 &busiest->active_balance_work);
11260 }
11261 }
11262 } else {
11263 sd->nr_balance_failed = 0;
11264 }
11265
11266 if (likely(!active_balance) || need_active_balance(&env)) {
11267 /* We were unbalanced, so reset the balancing interval */
11268 sd->balance_interval = sd->min_interval;
11269 }
11270
11271 goto out;
11272
11273 out_balanced:
11274 /*
11275 * We reach balance although we may have faced some affinity
11276 * constraints. Clear the imbalance flag only if other tasks got
11277 * a chance to move and fix the imbalance.
11278 */
11279 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11280 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11281
11282 if (*group_imbalance)
11283 *group_imbalance = 0;
11284 }
11285
11286 out_all_pinned:
11287 /*
11288 * We reach balance because all tasks are pinned at this level so
11289 * we can't migrate them. Let the imbalance flag set so parent level
11290 * can try to migrate them.
11291 */
11292 schedstat_inc(sd->lb_balanced[idle]);
11293
11294 sd->nr_balance_failed = 0;
11295
11296 out_one_pinned:
11297 ld_moved = 0;
11298
11299 /*
11300 * newidle_balance() disregards balance intervals, so we could
11301 * repeatedly reach this code, which would lead to balance_interval
11302 * skyrocketing in a short amount of time. Skip the balance_interval
11303 * increase logic to avoid that.
11304 */
11305 if (env.idle == CPU_NEWLY_IDLE)
11306 goto out;
11307
11308 /* tune up the balancing interval */
11309 if ((env.flags & LBF_ALL_PINNED &&
11310 sd->balance_interval < MAX_PINNED_INTERVAL) ||
11311 sd->balance_interval < sd->max_interval)
11312 sd->balance_interval *= 2;
11313 out:
11314 return ld_moved;
11315 }
11316
11317 static inline unsigned long
11318 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11319 {
11320 unsigned long interval = sd->balance_interval;
11321
11322 if (cpu_busy)
11323 interval *= sd->busy_factor;
11324
11325 /* scale ms to jiffies */
11326 interval = msecs_to_jiffies(interval);
11327
11328 /*
11329 * Reduce likelihood of busy balancing at higher domains racing with
11330 * balancing at lower domains by preventing their balancing periods
11331 * from being multiples of each other.
11332 */
11333 if (cpu_busy)
11334 interval -= 1;
11335
11336 interval = clamp(interval, 1UL, max_load_balance_interval);
11337
11338 return interval;
11339 }
11340
11341 static inline void
11342 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11343 {
11344 unsigned long interval, next;
11345
11346 /* used by idle balance, so cpu_busy = 0 */
11347 interval = get_sd_balance_interval(sd, 0);
11348 next = sd->last_balance + interval;
11349
11350 if (time_after(*next_balance, next))
11351 *next_balance = next;
11352 }
11353
11354 /*
11355 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11356 * running tasks off the busiest CPU onto idle CPUs. It requires at
11357 * least 1 task to be running on each physical CPU where possible, and
11358 * avoids physical / logical imbalances.
11359 */
11360 static int active_load_balance_cpu_stop(void *data)
11361 {
11362 struct rq *busiest_rq = data;
11363 int busiest_cpu = cpu_of(busiest_rq);
11364 int target_cpu = busiest_rq->push_cpu;
11365 struct rq *target_rq = cpu_rq(target_cpu);
11366 struct sched_domain *sd;
11367 struct task_struct *p = NULL;
11368 struct rq_flags rf;
11369
11370 rq_lock_irq(busiest_rq, &rf);
11371 /*
11372 * Between queueing the stop-work and running it is a hole in which
11373 * CPUs can become inactive. We should not move tasks from or to
11374 * inactive CPUs.
11375 */
11376 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11377 goto out_unlock;
11378
11379 /* Make sure the requested CPU hasn't gone down in the meantime: */
11380 if (unlikely(busiest_cpu != smp_processor_id() ||
11381 !busiest_rq->active_balance))
11382 goto out_unlock;
11383
11384 /* Is there any task to move? */
11385 if (busiest_rq->nr_running <= 1)
11386 goto out_unlock;
11387
11388 /*
11389 * This condition is "impossible", if it occurs
11390 * we need to fix it. Originally reported by
11391 * Bjorn Helgaas on a 128-CPU setup.
11392 */
11393 WARN_ON_ONCE(busiest_rq == target_rq);
11394
11395 /* Search for an sd spanning us and the target CPU. */
11396 rcu_read_lock();
11397 for_each_domain(target_cpu, sd) {
11398 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
11399 break;
11400 }
11401
11402 if (likely(sd)) {
11403 struct lb_env env = {
11404 .sd = sd,
11405 .dst_cpu = target_cpu,
11406 .dst_rq = target_rq,
11407 .src_cpu = busiest_rq->cpu,
11408 .src_rq = busiest_rq,
11409 .idle = CPU_IDLE,
11410 .flags = LBF_ACTIVE_LB,
11411 };
11412
11413 schedstat_inc(sd->alb_count);
11414 update_rq_clock(busiest_rq);
11415
11416 p = detach_one_task(&env);
11417 if (p) {
11418 schedstat_inc(sd->alb_pushed);
11419 /* Active balancing done, reset the failure counter. */
11420 sd->nr_balance_failed = 0;
11421 } else {
11422 schedstat_inc(sd->alb_failed);
11423 }
11424 }
11425 rcu_read_unlock();
11426 out_unlock:
11427 busiest_rq->active_balance = 0;
11428 rq_unlock(busiest_rq, &rf);
11429
11430 if (p)
11431 attach_one_task(target_rq, p);
11432
11433 local_irq_enable();
11434
11435 return 0;
11436 }
11437
11438 static DEFINE_SPINLOCK(balancing);
11439
11440 /*
11441 * Scale the max load_balance interval with the number of CPUs in the system.
11442 * This trades load-balance latency on larger machines for less cross talk.
11443 */
11444 void update_max_interval(void)
11445 {
11446 max_load_balance_interval = HZ*num_online_cpus()/10;
11447 }
11448
11449 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
11450 {
11451 if (cost > sd->max_newidle_lb_cost) {
11452 /*
11453 * Track max cost of a domain to make sure to not delay the
11454 * next wakeup on the CPU.
11455 */
11456 sd->max_newidle_lb_cost = cost;
11457 sd->last_decay_max_lb_cost = jiffies;
11458 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
11459 /*
11460 * Decay the newidle max times by ~1% per second to ensure that
11461 * it is not outdated and the current max cost is actually
11462 * shorter.
11463 */
11464 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
11465 sd->last_decay_max_lb_cost = jiffies;
11466
11467 return true;
11468 }
11469
11470 return false;
11471 }
11472
11473 /*
11474 * It checks each scheduling domain to see if it is due to be balanced,
11475 * and initiates a balancing operation if so.
11476 *
11477 * Balancing parameters are set up in init_sched_domains.
11478 */
11479 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
11480 {
11481 int continue_balancing = 1;
11482 int cpu = rq->cpu;
11483 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11484 unsigned long interval;
11485 struct sched_domain *sd;
11486 /* Earliest time when we have to do rebalance again */
11487 unsigned long next_balance = jiffies + 60*HZ;
11488 int update_next_balance = 0;
11489 int need_serialize, need_decay = 0;
11490 u64 max_cost = 0;
11491
11492 rcu_read_lock();
11493 for_each_domain(cpu, sd) {
11494 /*
11495 * Decay the newidle max times here because this is a regular
11496 * visit to all the domains.
11497 */
11498 need_decay = update_newidle_cost(sd, 0);
11499 max_cost += sd->max_newidle_lb_cost;
11500
11501 /*
11502 * Stop the load balance at this level. There is another
11503 * CPU in our sched group which is doing load balancing more
11504 * actively.
11505 */
11506 if (!continue_balancing) {
11507 if (need_decay)
11508 continue;
11509 break;
11510 }
11511
11512 interval = get_sd_balance_interval(sd, busy);
11513
11514 need_serialize = sd->flags & SD_SERIALIZE;
11515 if (need_serialize) {
11516 if (!spin_trylock(&balancing))
11517 goto out;
11518 }
11519
11520 if (time_after_eq(jiffies, sd->last_balance + interval)) {
11521 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
11522 /*
11523 * The LBF_DST_PINNED logic could have changed
11524 * env->dst_cpu, so we can't know our idle
11525 * state even if we migrated tasks. Update it.
11526 */
11527 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
11528 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11529 }
11530 sd->last_balance = jiffies;
11531 interval = get_sd_balance_interval(sd, busy);
11532 }
11533 if (need_serialize)
11534 spin_unlock(&balancing);
11535 out:
11536 if (time_after(next_balance, sd->last_balance + interval)) {
11537 next_balance = sd->last_balance + interval;
11538 update_next_balance = 1;
11539 }
11540 }
11541 if (need_decay) {
11542 /*
11543 * Ensure the rq-wide value also decays but keep it at a
11544 * reasonable floor to avoid funnies with rq->avg_idle.
11545 */
11546 rq->max_idle_balance_cost =
11547 max((u64)sysctl_sched_migration_cost, max_cost);
11548 }
11549 rcu_read_unlock();
11550
11551 /*
11552 * next_balance will be updated only when there is a need.
11553 * When the cpu is attached to null domain for ex, it will not be
11554 * updated.
11555 */
11556 if (likely(update_next_balance))
11557 rq->next_balance = next_balance;
11558
11559 }
11560
11561 static inline int on_null_domain(struct rq *rq)
11562 {
11563 return unlikely(!rcu_dereference_sched(rq->sd));
11564 }
11565
11566 #ifdef CONFIG_NO_HZ_COMMON
11567 /*
11568 * idle load balancing details
11569 * - When one of the busy CPUs notice that there may be an idle rebalancing
11570 * needed, they will kick the idle load balancer, which then does idle
11571 * load balancing for all the idle CPUs.
11572 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
11573 * anywhere yet.
11574 */
11575
11576 static inline int find_new_ilb(void)
11577 {
11578 int ilb;
11579 const struct cpumask *hk_mask;
11580
11581 hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
11582
11583 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
11584
11585 if (ilb == smp_processor_id())
11586 continue;
11587
11588 if (idle_cpu(ilb))
11589 return ilb;
11590 }
11591
11592 return nr_cpu_ids;
11593 }
11594
11595 /*
11596 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
11597 * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
11598 */
11599 static void kick_ilb(unsigned int flags)
11600 {
11601 int ilb_cpu;
11602
11603 /*
11604 * Increase nohz.next_balance only when if full ilb is triggered but
11605 * not if we only update stats.
11606 */
11607 if (flags & NOHZ_BALANCE_KICK)
11608 nohz.next_balance = jiffies+1;
11609
11610 ilb_cpu = find_new_ilb();
11611
11612 if (ilb_cpu >= nr_cpu_ids)
11613 return;
11614
11615 /*
11616 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
11617 * the first flag owns it; cleared by nohz_csd_func().
11618 */
11619 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
11620 if (flags & NOHZ_KICK_MASK)
11621 return;
11622
11623 /*
11624 * This way we generate an IPI on the target CPU which
11625 * is idle. And the softirq performing nohz idle load balance
11626 * will be run before returning from the IPI.
11627 */
11628 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
11629 }
11630
11631 /*
11632 * Current decision point for kicking the idle load balancer in the presence
11633 * of idle CPUs in the system.
11634 */
11635 static void nohz_balancer_kick(struct rq *rq)
11636 {
11637 unsigned long now = jiffies;
11638 struct sched_domain_shared *sds;
11639 struct sched_domain *sd;
11640 int nr_busy, i, cpu = rq->cpu;
11641 unsigned int flags = 0;
11642
11643 if (unlikely(rq->idle_balance))
11644 return;
11645
11646 /*
11647 * We may be recently in ticked or tickless idle mode. At the first
11648 * busy tick after returning from idle, we will update the busy stats.
11649 */
11650 nohz_balance_exit_idle(rq);
11651
11652 /*
11653 * None are in tickless mode and hence no need for NOHZ idle load
11654 * balancing.
11655 */
11656 if (likely(!atomic_read(&nohz.nr_cpus)))
11657 return;
11658
11659 if (READ_ONCE(nohz.has_blocked) &&
11660 time_after(now, READ_ONCE(nohz.next_blocked)))
11661 flags = NOHZ_STATS_KICK;
11662
11663 if (time_before(now, nohz.next_balance))
11664 goto out;
11665
11666 if (rq->nr_running >= 2) {
11667 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11668 goto out;
11669 }
11670
11671 rcu_read_lock();
11672
11673 sd = rcu_dereference(rq->sd);
11674 if (sd) {
11675 /*
11676 * If there's a CFS task and the current CPU has reduced
11677 * capacity; kick the ILB to see if there's a better CPU to run
11678 * on.
11679 */
11680 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
11681 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11682 goto unlock;
11683 }
11684 }
11685
11686 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
11687 if (sd) {
11688 /*
11689 * When ASYM_PACKING; see if there's a more preferred CPU
11690 * currently idle; in which case, kick the ILB to move tasks
11691 * around.
11692 *
11693 * When balancing betwen cores, all the SMT siblings of the
11694 * preferred CPU must be idle.
11695 */
11696 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
11697 if (sched_use_asym_prio(sd, i) &&
11698 sched_asym_prefer(i, cpu)) {
11699 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11700 goto unlock;
11701 }
11702 }
11703 }
11704
11705 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
11706 if (sd) {
11707 /*
11708 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
11709 * to run the misfit task on.
11710 */
11711 if (check_misfit_status(rq, sd)) {
11712 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11713 goto unlock;
11714 }
11715
11716 /*
11717 * For asymmetric systems, we do not want to nicely balance
11718 * cache use, instead we want to embrace asymmetry and only
11719 * ensure tasks have enough CPU capacity.
11720 *
11721 * Skip the LLC logic because it's not relevant in that case.
11722 */
11723 goto unlock;
11724 }
11725
11726 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
11727 if (sds) {
11728 /*
11729 * If there is an imbalance between LLC domains (IOW we could
11730 * increase the overall cache use), we need some less-loaded LLC
11731 * domain to pull some load. Likewise, we may need to spread
11732 * load within the current LLC domain (e.g. packed SMT cores but
11733 * other CPUs are idle). We can't really know from here how busy
11734 * the others are - so just get a nohz balance going if it looks
11735 * like this LLC domain has tasks we could move.
11736 */
11737 nr_busy = atomic_read(&sds->nr_busy_cpus);
11738 if (nr_busy > 1) {
11739 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11740 goto unlock;
11741 }
11742 }
11743 unlock:
11744 rcu_read_unlock();
11745 out:
11746 if (READ_ONCE(nohz.needs_update))
11747 flags |= NOHZ_NEXT_KICK;
11748
11749 if (flags)
11750 kick_ilb(flags);
11751 }
11752
11753 static void set_cpu_sd_state_busy(int cpu)
11754 {
11755 struct sched_domain *sd;
11756
11757 rcu_read_lock();
11758 sd = rcu_dereference(per_cpu(sd_llc, cpu));
11759
11760 if (!sd || !sd->nohz_idle)
11761 goto unlock;
11762 sd->nohz_idle = 0;
11763
11764 atomic_inc(&sd->shared->nr_busy_cpus);
11765 unlock:
11766 rcu_read_unlock();
11767 }
11768
11769 void nohz_balance_exit_idle(struct rq *rq)
11770 {
11771 SCHED_WARN_ON(rq != this_rq());
11772
11773 if (likely(!rq->nohz_tick_stopped))
11774 return;
11775
11776 rq->nohz_tick_stopped = 0;
11777 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
11778 atomic_dec(&nohz.nr_cpus);
11779
11780 set_cpu_sd_state_busy(rq->cpu);
11781 }
11782
11783 static void set_cpu_sd_state_idle(int cpu)
11784 {
11785 struct sched_domain *sd;
11786
11787 rcu_read_lock();
11788 sd = rcu_dereference(per_cpu(sd_llc, cpu));
11789
11790 if (!sd || sd->nohz_idle)
11791 goto unlock;
11792 sd->nohz_idle = 1;
11793
11794 atomic_dec(&sd->shared->nr_busy_cpus);
11795 unlock:
11796 rcu_read_unlock();
11797 }
11798
11799 /*
11800 * This routine will record that the CPU is going idle with tick stopped.
11801 * This info will be used in performing idle load balancing in the future.
11802 */
11803 void nohz_balance_enter_idle(int cpu)
11804 {
11805 struct rq *rq = cpu_rq(cpu);
11806
11807 SCHED_WARN_ON(cpu != smp_processor_id());
11808
11809 /* If this CPU is going down, then nothing needs to be done: */
11810 if (!cpu_active(cpu))
11811 return;
11812
11813 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
11814 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
11815 return;
11816
11817 /*
11818 * Can be set safely without rq->lock held
11819 * If a clear happens, it will have evaluated last additions because
11820 * rq->lock is held during the check and the clear
11821 */
11822 rq->has_blocked_load = 1;
11823
11824 /*
11825 * The tick is still stopped but load could have been added in the
11826 * meantime. We set the nohz.has_blocked flag to trig a check of the
11827 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
11828 * of nohz.has_blocked can only happen after checking the new load
11829 */
11830 if (rq->nohz_tick_stopped)
11831 goto out;
11832
11833 /* If we're a completely isolated CPU, we don't play: */
11834 if (on_null_domain(rq))
11835 return;
11836
11837 rq->nohz_tick_stopped = 1;
11838
11839 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
11840 atomic_inc(&nohz.nr_cpus);
11841
11842 /*
11843 * Ensures that if nohz_idle_balance() fails to observe our
11844 * @idle_cpus_mask store, it must observe the @has_blocked
11845 * and @needs_update stores.
11846 */
11847 smp_mb__after_atomic();
11848
11849 set_cpu_sd_state_idle(cpu);
11850
11851 WRITE_ONCE(nohz.needs_update, 1);
11852 out:
11853 /*
11854 * Each time a cpu enter idle, we assume that it has blocked load and
11855 * enable the periodic update of the load of idle cpus
11856 */
11857 WRITE_ONCE(nohz.has_blocked, 1);
11858 }
11859
11860 static bool update_nohz_stats(struct rq *rq)
11861 {
11862 unsigned int cpu = rq->cpu;
11863
11864 if (!rq->has_blocked_load)
11865 return false;
11866
11867 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
11868 return false;
11869
11870 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
11871 return true;
11872
11873 update_blocked_averages(cpu);
11874
11875 return rq->has_blocked_load;
11876 }
11877
11878 /*
11879 * Internal function that runs load balance for all idle cpus. The load balance
11880 * can be a simple update of blocked load or a complete load balance with
11881 * tasks movement depending of flags.
11882 */
11883 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
11884 {
11885 /* Earliest time when we have to do rebalance again */
11886 unsigned long now = jiffies;
11887 unsigned long next_balance = now + 60*HZ;
11888 bool has_blocked_load = false;
11889 int update_next_balance = 0;
11890 int this_cpu = this_rq->cpu;
11891 int balance_cpu;
11892 struct rq *rq;
11893
11894 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
11895
11896 /*
11897 * We assume there will be no idle load after this update and clear
11898 * the has_blocked flag. If a cpu enters idle in the mean time, it will
11899 * set the has_blocked flag and trigger another update of idle load.
11900 * Because a cpu that becomes idle, is added to idle_cpus_mask before
11901 * setting the flag, we are sure to not clear the state and not
11902 * check the load of an idle cpu.
11903 *
11904 * Same applies to idle_cpus_mask vs needs_update.
11905 */
11906 if (flags & NOHZ_STATS_KICK)
11907 WRITE_ONCE(nohz.has_blocked, 0);
11908 if (flags & NOHZ_NEXT_KICK)
11909 WRITE_ONCE(nohz.needs_update, 0);
11910
11911 /*
11912 * Ensures that if we miss the CPU, we must see the has_blocked
11913 * store from nohz_balance_enter_idle().
11914 */
11915 smp_mb();
11916
11917 /*
11918 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
11919 * chance for other idle cpu to pull load.
11920 */
11921 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
11922 if (!idle_cpu(balance_cpu))
11923 continue;
11924
11925 /*
11926 * If this CPU gets work to do, stop the load balancing
11927 * work being done for other CPUs. Next load
11928 * balancing owner will pick it up.
11929 */
11930 if (need_resched()) {
11931 if (flags & NOHZ_STATS_KICK)
11932 has_blocked_load = true;
11933 if (flags & NOHZ_NEXT_KICK)
11934 WRITE_ONCE(nohz.needs_update, 1);
11935 goto abort;
11936 }
11937
11938 rq = cpu_rq(balance_cpu);
11939
11940 if (flags & NOHZ_STATS_KICK)
11941 has_blocked_load |= update_nohz_stats(rq);
11942
11943 /*
11944 * If time for next balance is due,
11945 * do the balance.
11946 */
11947 if (time_after_eq(jiffies, rq->next_balance)) {
11948 struct rq_flags rf;
11949
11950 rq_lock_irqsave(rq, &rf);
11951 update_rq_clock(rq);
11952 rq_unlock_irqrestore(rq, &rf);
11953
11954 if (flags & NOHZ_BALANCE_KICK)
11955 rebalance_domains(rq, CPU_IDLE);
11956 }
11957
11958 if (time_after(next_balance, rq->next_balance)) {
11959 next_balance = rq->next_balance;
11960 update_next_balance = 1;
11961 }
11962 }
11963
11964 /*
11965 * next_balance will be updated only when there is a need.
11966 * When the CPU is attached to null domain for ex, it will not be
11967 * updated.
11968 */
11969 if (likely(update_next_balance))
11970 nohz.next_balance = next_balance;
11971
11972 if (flags & NOHZ_STATS_KICK)
11973 WRITE_ONCE(nohz.next_blocked,
11974 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
11975
11976 abort:
11977 /* There is still blocked load, enable periodic update */
11978 if (has_blocked_load)
11979 WRITE_ONCE(nohz.has_blocked, 1);
11980 }
11981
11982 /*
11983 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
11984 * rebalancing for all the cpus for whom scheduler ticks are stopped.
11985 */
11986 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11987 {
11988 unsigned int flags = this_rq->nohz_idle_balance;
11989
11990 if (!flags)
11991 return false;
11992
11993 this_rq->nohz_idle_balance = 0;
11994
11995 if (idle != CPU_IDLE)
11996 return false;
11997
11998 _nohz_idle_balance(this_rq, flags);
11999
12000 return true;
12001 }
12002
12003 /*
12004 * Check if we need to run the ILB for updating blocked load before entering
12005 * idle state.
12006 */
12007 void nohz_run_idle_balance(int cpu)
12008 {
12009 unsigned int flags;
12010
12011 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12012
12013 /*
12014 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12015 * (ie NOHZ_STATS_KICK set) and will do the same.
12016 */
12017 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12018 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12019 }
12020
12021 static void nohz_newidle_balance(struct rq *this_rq)
12022 {
12023 int this_cpu = this_rq->cpu;
12024
12025 /*
12026 * This CPU doesn't want to be disturbed by scheduler
12027 * housekeeping
12028 */
12029 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12030 return;
12031
12032 /* Will wake up very soon. No time for doing anything else*/
12033 if (this_rq->avg_idle < sysctl_sched_migration_cost)
12034 return;
12035
12036 /* Don't need to update blocked load of idle CPUs*/
12037 if (!READ_ONCE(nohz.has_blocked) ||
12038 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12039 return;
12040
12041 /*
12042 * Set the need to trigger ILB in order to update blocked load
12043 * before entering idle state.
12044 */
12045 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12046 }
12047
12048 #else /* !CONFIG_NO_HZ_COMMON */
12049 static inline void nohz_balancer_kick(struct rq *rq) { }
12050
12051 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12052 {
12053 return false;
12054 }
12055
12056 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12057 #endif /* CONFIG_NO_HZ_COMMON */
12058
12059 /*
12060 * newidle_balance is called by schedule() if this_cpu is about to become
12061 * idle. Attempts to pull tasks from other CPUs.
12062 *
12063 * Returns:
12064 * < 0 - we released the lock and there are !fair tasks present
12065 * 0 - failed, no new tasks
12066 * > 0 - success, new (fair) tasks present
12067 */
12068 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
12069 {
12070 unsigned long next_balance = jiffies + HZ;
12071 int this_cpu = this_rq->cpu;
12072 u64 t0, t1, curr_cost = 0;
12073 struct sched_domain *sd;
12074 int pulled_task = 0;
12075
12076 update_misfit_status(NULL, this_rq);
12077
12078 /*
12079 * There is a task waiting to run. No need to search for one.
12080 * Return 0; the task will be enqueued when switching to idle.
12081 */
12082 if (this_rq->ttwu_pending)
12083 return 0;
12084
12085 /*
12086 * We must set idle_stamp _before_ calling idle_balance(), such that we
12087 * measure the duration of idle_balance() as idle time.
12088 */
12089 this_rq->idle_stamp = rq_clock(this_rq);
12090
12091 /*
12092 * Do not pull tasks towards !active CPUs...
12093 */
12094 if (!cpu_active(this_cpu))
12095 return 0;
12096
12097 /*
12098 * This is OK, because current is on_cpu, which avoids it being picked
12099 * for load-balance and preemption/IRQs are still disabled avoiding
12100 * further scheduler activity on it and we're being very careful to
12101 * re-start the picking loop.
12102 */
12103 rq_unpin_lock(this_rq, rf);
12104
12105 rcu_read_lock();
12106 sd = rcu_dereference_check_sched_domain(this_rq->sd);
12107
12108 if (!READ_ONCE(this_rq->rd->overload) ||
12109 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12110
12111 if (sd)
12112 update_next_balance(sd, &next_balance);
12113 rcu_read_unlock();
12114
12115 goto out;
12116 }
12117 rcu_read_unlock();
12118
12119 raw_spin_rq_unlock(this_rq);
12120
12121 t0 = sched_clock_cpu(this_cpu);
12122 update_blocked_averages(this_cpu);
12123
12124 rcu_read_lock();
12125 for_each_domain(this_cpu, sd) {
12126 int continue_balancing = 1;
12127 u64 domain_cost;
12128
12129 update_next_balance(sd, &next_balance);
12130
12131 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12132 break;
12133
12134 if (sd->flags & SD_BALANCE_NEWIDLE) {
12135
12136 pulled_task = load_balance(this_cpu, this_rq,
12137 sd, CPU_NEWLY_IDLE,
12138 &continue_balancing);
12139
12140 t1 = sched_clock_cpu(this_cpu);
12141 domain_cost = t1 - t0;
12142 update_newidle_cost(sd, domain_cost);
12143
12144 curr_cost += domain_cost;
12145 t0 = t1;
12146 }
12147
12148 /*
12149 * Stop searching for tasks to pull if there are
12150 * now runnable tasks on this rq.
12151 */
12152 if (pulled_task || this_rq->nr_running > 0 ||
12153 this_rq->ttwu_pending)
12154 break;
12155 }
12156 rcu_read_unlock();
12157
12158 raw_spin_rq_lock(this_rq);
12159
12160 if (curr_cost > this_rq->max_idle_balance_cost)
12161 this_rq->max_idle_balance_cost = curr_cost;
12162
12163 /*
12164 * While browsing the domains, we released the rq lock, a task could
12165 * have been enqueued in the meantime. Since we're not going idle,
12166 * pretend we pulled a task.
12167 */
12168 if (this_rq->cfs.h_nr_running && !pulled_task)
12169 pulled_task = 1;
12170
12171 /* Is there a task of a high priority class? */
12172 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12173 pulled_task = -1;
12174
12175 out:
12176 /* Move the next balance forward */
12177 if (time_after(this_rq->next_balance, next_balance))
12178 this_rq->next_balance = next_balance;
12179
12180 if (pulled_task)
12181 this_rq->idle_stamp = 0;
12182 else
12183 nohz_newidle_balance(this_rq);
12184
12185 rq_repin_lock(this_rq, rf);
12186
12187 return pulled_task;
12188 }
12189
12190 /*
12191 * run_rebalance_domains is triggered when needed from the scheduler tick.
12192 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
12193 */
12194 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
12195 {
12196 struct rq *this_rq = this_rq();
12197 enum cpu_idle_type idle = this_rq->idle_balance ?
12198 CPU_IDLE : CPU_NOT_IDLE;
12199
12200 /*
12201 * If this CPU has a pending nohz_balance_kick, then do the
12202 * balancing on behalf of the other idle CPUs whose ticks are
12203 * stopped. Do nohz_idle_balance *before* rebalance_domains to
12204 * give the idle CPUs a chance to load balance. Else we may
12205 * load balance only within the local sched_domain hierarchy
12206 * and abort nohz_idle_balance altogether if we pull some load.
12207 */
12208 if (nohz_idle_balance(this_rq, idle))
12209 return;
12210
12211 /* normal load balance */
12212 update_blocked_averages(this_rq->cpu);
12213 rebalance_domains(this_rq, idle);
12214 }
12215
12216 /*
12217 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12218 */
12219 void trigger_load_balance(struct rq *rq)
12220 {
12221 /*
12222 * Don't need to rebalance while attached to NULL domain or
12223 * runqueue CPU is not active
12224 */
12225 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12226 return;
12227
12228 if (time_after_eq(jiffies, rq->next_balance))
12229 raise_softirq(SCHED_SOFTIRQ);
12230
12231 nohz_balancer_kick(rq);
12232 }
12233
12234 static void rq_online_fair(struct rq *rq)
12235 {
12236 update_sysctl();
12237
12238 update_runtime_enabled(rq);
12239 }
12240
12241 static void rq_offline_fair(struct rq *rq)
12242 {
12243 update_sysctl();
12244
12245 /* Ensure any throttled groups are reachable by pick_next_task */
12246 unthrottle_offline_cfs_rqs(rq);
12247 }
12248
12249 #endif /* CONFIG_SMP */
12250
12251 #ifdef CONFIG_SCHED_CORE
12252 static inline bool
12253 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12254 {
12255 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12256 u64 slice = se->slice;
12257
12258 return (rtime * min_nr_tasks > slice);
12259 }
12260
12261 #define MIN_NR_TASKS_DURING_FORCEIDLE 2
12262 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12263 {
12264 if (!sched_core_enabled(rq))
12265 return;
12266
12267 /*
12268 * If runqueue has only one task which used up its slice and
12269 * if the sibling is forced idle, then trigger schedule to
12270 * give forced idle task a chance.
12271 *
12272 * sched_slice() considers only this active rq and it gets the
12273 * whole slice. But during force idle, we have siblings acting
12274 * like a single runqueue and hence we need to consider runnable
12275 * tasks on this CPU and the forced idle CPU. Ideally, we should
12276 * go through the forced idle rq, but that would be a perf hit.
12277 * We can assume that the forced idle CPU has at least
12278 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12279 * if we need to give up the CPU.
12280 */
12281 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12282 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12283 resched_curr(rq);
12284 }
12285
12286 /*
12287 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12288 */
12289 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12290 bool forceidle)
12291 {
12292 for_each_sched_entity(se) {
12293 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12294
12295 if (forceidle) {
12296 if (cfs_rq->forceidle_seq == fi_seq)
12297 break;
12298 cfs_rq->forceidle_seq = fi_seq;
12299 }
12300
12301 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12302 }
12303 }
12304
12305 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12306 {
12307 struct sched_entity *se = &p->se;
12308
12309 if (p->sched_class != &fair_sched_class)
12310 return;
12311
12312 se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12313 }
12314
12315 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12316 bool in_fi)
12317 {
12318 struct rq *rq = task_rq(a);
12319 const struct sched_entity *sea = &a->se;
12320 const struct sched_entity *seb = &b->se;
12321 struct cfs_rq *cfs_rqa;
12322 struct cfs_rq *cfs_rqb;
12323 s64 delta;
12324
12325 SCHED_WARN_ON(task_rq(b)->core != rq->core);
12326
12327 #ifdef CONFIG_FAIR_GROUP_SCHED
12328 /*
12329 * Find an se in the hierarchy for tasks a and b, such that the se's
12330 * are immediate siblings.
12331 */
12332 while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12333 int sea_depth = sea->depth;
12334 int seb_depth = seb->depth;
12335
12336 if (sea_depth >= seb_depth)
12337 sea = parent_entity(sea);
12338 if (sea_depth <= seb_depth)
12339 seb = parent_entity(seb);
12340 }
12341
12342 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
12343 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
12344
12345 cfs_rqa = sea->cfs_rq;
12346 cfs_rqb = seb->cfs_rq;
12347 #else
12348 cfs_rqa = &task_rq(a)->cfs;
12349 cfs_rqb = &task_rq(b)->cfs;
12350 #endif
12351
12352 /*
12353 * Find delta after normalizing se's vruntime with its cfs_rq's
12354 * min_vruntime_fi, which would have been updated in prior calls
12355 * to se_fi_update().
12356 */
12357 delta = (s64)(sea->vruntime - seb->vruntime) +
12358 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
12359
12360 return delta > 0;
12361 }
12362
12363 static int task_is_throttled_fair(struct task_struct *p, int cpu)
12364 {
12365 struct cfs_rq *cfs_rq;
12366
12367 #ifdef CONFIG_FAIR_GROUP_SCHED
12368 cfs_rq = task_group(p)->cfs_rq[cpu];
12369 #else
12370 cfs_rq = &cpu_rq(cpu)->cfs;
12371 #endif
12372 return throttled_hierarchy(cfs_rq);
12373 }
12374 #else
12375 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
12376 #endif
12377
12378 /*
12379 * scheduler tick hitting a task of our scheduling class.
12380 *
12381 * NOTE: This function can be called remotely by the tick offload that
12382 * goes along full dynticks. Therefore no local assumption can be made
12383 * and everything must be accessed through the @rq and @curr passed in
12384 * parameters.
12385 */
12386 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
12387 {
12388 struct cfs_rq *cfs_rq;
12389 struct sched_entity *se = &curr->se;
12390
12391 for_each_sched_entity(se) {
12392 cfs_rq = cfs_rq_of(se);
12393 entity_tick(cfs_rq, se, queued);
12394 }
12395
12396 if (static_branch_unlikely(&sched_numa_balancing))
12397 task_tick_numa(rq, curr);
12398
12399 update_misfit_status(curr, rq);
12400 update_overutilized_status(task_rq(curr));
12401
12402 task_tick_core(rq, curr);
12403 }
12404
12405 /*
12406 * called on fork with the child task as argument from the parent's context
12407 * - child not yet on the tasklist
12408 * - preemption disabled
12409 */
12410 static void task_fork_fair(struct task_struct *p)
12411 {
12412 struct sched_entity *se = &p->se, *curr;
12413 struct cfs_rq *cfs_rq;
12414 struct rq *rq = this_rq();
12415 struct rq_flags rf;
12416
12417 rq_lock(rq, &rf);
12418 update_rq_clock(rq);
12419
12420 cfs_rq = task_cfs_rq(current);
12421 curr = cfs_rq->curr;
12422 if (curr)
12423 update_curr(cfs_rq);
12424 place_entity(cfs_rq, se, ENQUEUE_INITIAL);
12425 rq_unlock(rq, &rf);
12426 }
12427
12428 /*
12429 * Priority of the task has changed. Check to see if we preempt
12430 * the current task.
12431 */
12432 static void
12433 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
12434 {
12435 if (!task_on_rq_queued(p))
12436 return;
12437
12438 if (rq->cfs.nr_running == 1)
12439 return;
12440
12441 /*
12442 * Reschedule if we are currently running on this runqueue and
12443 * our priority decreased, or if we are not currently running on
12444 * this runqueue and our priority is higher than the current's
12445 */
12446 if (task_current(rq, p)) {
12447 if (p->prio > oldprio)
12448 resched_curr(rq);
12449 } else
12450 check_preempt_curr(rq, p, 0);
12451 }
12452
12453 #ifdef CONFIG_FAIR_GROUP_SCHED
12454 /*
12455 * Propagate the changes of the sched_entity across the tg tree to make it
12456 * visible to the root
12457 */
12458 static void propagate_entity_cfs_rq(struct sched_entity *se)
12459 {
12460 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12461
12462 if (cfs_rq_throttled(cfs_rq))
12463 return;
12464
12465 if (!throttled_hierarchy(cfs_rq))
12466 list_add_leaf_cfs_rq(cfs_rq);
12467
12468 /* Start to propagate at parent */
12469 se = se->parent;
12470
12471 for_each_sched_entity(se) {
12472 cfs_rq = cfs_rq_of(se);
12473
12474 update_load_avg(cfs_rq, se, UPDATE_TG);
12475
12476 if (cfs_rq_throttled(cfs_rq))
12477 break;
12478
12479 if (!throttled_hierarchy(cfs_rq))
12480 list_add_leaf_cfs_rq(cfs_rq);
12481 }
12482 }
12483 #else
12484 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
12485 #endif
12486
12487 static void detach_entity_cfs_rq(struct sched_entity *se)
12488 {
12489 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12490
12491 #ifdef CONFIG_SMP
12492 /*
12493 * In case the task sched_avg hasn't been attached:
12494 * - A forked task which hasn't been woken up by wake_up_new_task().
12495 * - A task which has been woken up by try_to_wake_up() but is
12496 * waiting for actually being woken up by sched_ttwu_pending().
12497 */
12498 if (!se->avg.last_update_time)
12499 return;
12500 #endif
12501
12502 /* Catch up with the cfs_rq and remove our load when we leave */
12503 update_load_avg(cfs_rq, se, 0);
12504 detach_entity_load_avg(cfs_rq, se);
12505 update_tg_load_avg(cfs_rq);
12506 propagate_entity_cfs_rq(se);
12507 }
12508
12509 static void attach_entity_cfs_rq(struct sched_entity *se)
12510 {
12511 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12512
12513 /* Synchronize entity with its cfs_rq */
12514 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
12515 attach_entity_load_avg(cfs_rq, se);
12516 update_tg_load_avg(cfs_rq);
12517 propagate_entity_cfs_rq(se);
12518 }
12519
12520 static void detach_task_cfs_rq(struct task_struct *p)
12521 {
12522 struct sched_entity *se = &p->se;
12523
12524 detach_entity_cfs_rq(se);
12525 }
12526
12527 static void attach_task_cfs_rq(struct task_struct *p)
12528 {
12529 struct sched_entity *se = &p->se;
12530
12531 attach_entity_cfs_rq(se);
12532 }
12533
12534 static void switched_from_fair(struct rq *rq, struct task_struct *p)
12535 {
12536 detach_task_cfs_rq(p);
12537 }
12538
12539 static void switched_to_fair(struct rq *rq, struct task_struct *p)
12540 {
12541 attach_task_cfs_rq(p);
12542
12543 if (task_on_rq_queued(p)) {
12544 /*
12545 * We were most likely switched from sched_rt, so
12546 * kick off the schedule if running, otherwise just see
12547 * if we can still preempt the current task.
12548 */
12549 if (task_current(rq, p))
12550 resched_curr(rq);
12551 else
12552 check_preempt_curr(rq, p, 0);
12553 }
12554 }
12555
12556 /* Account for a task changing its policy or group.
12557 *
12558 * This routine is mostly called to set cfs_rq->curr field when a task
12559 * migrates between groups/classes.
12560 */
12561 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
12562 {
12563 struct sched_entity *se = &p->se;
12564
12565 #ifdef CONFIG_SMP
12566 if (task_on_rq_queued(p)) {
12567 /*
12568 * Move the next running task to the front of the list, so our
12569 * cfs_tasks list becomes MRU one.
12570 */
12571 list_move(&se->group_node, &rq->cfs_tasks);
12572 }
12573 #endif
12574
12575 for_each_sched_entity(se) {
12576 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12577
12578 set_next_entity(cfs_rq, se);
12579 /* ensure bandwidth has been allocated on our new cfs_rq */
12580 account_cfs_rq_runtime(cfs_rq, 0);
12581 }
12582 }
12583
12584 void init_cfs_rq(struct cfs_rq *cfs_rq)
12585 {
12586 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
12587 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
12588 #ifdef CONFIG_SMP
12589 raw_spin_lock_init(&cfs_rq->removed.lock);
12590 #endif
12591 }
12592
12593 #ifdef CONFIG_FAIR_GROUP_SCHED
12594 static void task_change_group_fair(struct task_struct *p)
12595 {
12596 /*
12597 * We couldn't detach or attach a forked task which
12598 * hasn't been woken up by wake_up_new_task().
12599 */
12600 if (READ_ONCE(p->__state) == TASK_NEW)
12601 return;
12602
12603 detach_task_cfs_rq(p);
12604
12605 #ifdef CONFIG_SMP
12606 /* Tell se's cfs_rq has been changed -- migrated */
12607 p->se.avg.last_update_time = 0;
12608 #endif
12609 set_task_rq(p, task_cpu(p));
12610 attach_task_cfs_rq(p);
12611 }
12612
12613 void free_fair_sched_group(struct task_group *tg)
12614 {
12615 int i;
12616
12617 for_each_possible_cpu(i) {
12618 if (tg->cfs_rq)
12619 kfree(tg->cfs_rq[i]);
12620 if (tg->se)
12621 kfree(tg->se[i]);
12622 }
12623
12624 kfree(tg->cfs_rq);
12625 kfree(tg->se);
12626 }
12627
12628 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12629 {
12630 struct sched_entity *se;
12631 struct cfs_rq *cfs_rq;
12632 int i;
12633
12634 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
12635 if (!tg->cfs_rq)
12636 goto err;
12637 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
12638 if (!tg->se)
12639 goto err;
12640
12641 tg->shares = NICE_0_LOAD;
12642
12643 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
12644
12645 for_each_possible_cpu(i) {
12646 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
12647 GFP_KERNEL, cpu_to_node(i));
12648 if (!cfs_rq)
12649 goto err;
12650
12651 se = kzalloc_node(sizeof(struct sched_entity_stats),
12652 GFP_KERNEL, cpu_to_node(i));
12653 if (!se)
12654 goto err_free_rq;
12655
12656 init_cfs_rq(cfs_rq);
12657 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
12658 init_entity_runnable_average(se);
12659 }
12660
12661 return 1;
12662
12663 err_free_rq:
12664 kfree(cfs_rq);
12665 err:
12666 return 0;
12667 }
12668
12669 void online_fair_sched_group(struct task_group *tg)
12670 {
12671 struct sched_entity *se;
12672 struct rq_flags rf;
12673 struct rq *rq;
12674 int i;
12675
12676 for_each_possible_cpu(i) {
12677 rq = cpu_rq(i);
12678 se = tg->se[i];
12679 rq_lock_irq(rq, &rf);
12680 update_rq_clock(rq);
12681 attach_entity_cfs_rq(se);
12682 sync_throttle(tg, i);
12683 rq_unlock_irq(rq, &rf);
12684 }
12685 }
12686
12687 void unregister_fair_sched_group(struct task_group *tg)
12688 {
12689 unsigned long flags;
12690 struct rq *rq;
12691 int cpu;
12692
12693 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
12694
12695 for_each_possible_cpu(cpu) {
12696 if (tg->se[cpu])
12697 remove_entity_load_avg(tg->se[cpu]);
12698
12699 /*
12700 * Only empty task groups can be destroyed; so we can speculatively
12701 * check on_list without danger of it being re-added.
12702 */
12703 if (!tg->cfs_rq[cpu]->on_list)
12704 continue;
12705
12706 rq = cpu_rq(cpu);
12707
12708 raw_spin_rq_lock_irqsave(rq, flags);
12709 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
12710 raw_spin_rq_unlock_irqrestore(rq, flags);
12711 }
12712 }
12713
12714 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
12715 struct sched_entity *se, int cpu,
12716 struct sched_entity *parent)
12717 {
12718 struct rq *rq = cpu_rq(cpu);
12719
12720 cfs_rq->tg = tg;
12721 cfs_rq->rq = rq;
12722 init_cfs_rq_runtime(cfs_rq);
12723
12724 tg->cfs_rq[cpu] = cfs_rq;
12725 tg->se[cpu] = se;
12726
12727 /* se could be NULL for root_task_group */
12728 if (!se)
12729 return;
12730
12731 if (!parent) {
12732 se->cfs_rq = &rq->cfs;
12733 se->depth = 0;
12734 } else {
12735 se->cfs_rq = parent->my_q;
12736 se->depth = parent->depth + 1;
12737 }
12738
12739 se->my_q = cfs_rq;
12740 /* guarantee group entities always have weight */
12741 update_load_set(&se->load, NICE_0_LOAD);
12742 se->parent = parent;
12743 }
12744
12745 static DEFINE_MUTEX(shares_mutex);
12746
12747 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
12748 {
12749 int i;
12750
12751 lockdep_assert_held(&shares_mutex);
12752
12753 /*
12754 * We can't change the weight of the root cgroup.
12755 */
12756 if (!tg->se[0])
12757 return -EINVAL;
12758
12759 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
12760
12761 if (tg->shares == shares)
12762 return 0;
12763
12764 tg->shares = shares;
12765 for_each_possible_cpu(i) {
12766 struct rq *rq = cpu_rq(i);
12767 struct sched_entity *se = tg->se[i];
12768 struct rq_flags rf;
12769
12770 /* Propagate contribution to hierarchy */
12771 rq_lock_irqsave(rq, &rf);
12772 update_rq_clock(rq);
12773 for_each_sched_entity(se) {
12774 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
12775 update_cfs_group(se);
12776 }
12777 rq_unlock_irqrestore(rq, &rf);
12778 }
12779
12780 return 0;
12781 }
12782
12783 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
12784 {
12785 int ret;
12786
12787 mutex_lock(&shares_mutex);
12788 if (tg_is_idle(tg))
12789 ret = -EINVAL;
12790 else
12791 ret = __sched_group_set_shares(tg, shares);
12792 mutex_unlock(&shares_mutex);
12793
12794 return ret;
12795 }
12796
12797 int sched_group_set_idle(struct task_group *tg, long idle)
12798 {
12799 int i;
12800
12801 if (tg == &root_task_group)
12802 return -EINVAL;
12803
12804 if (idle < 0 || idle > 1)
12805 return -EINVAL;
12806
12807 mutex_lock(&shares_mutex);
12808
12809 if (tg->idle == idle) {
12810 mutex_unlock(&shares_mutex);
12811 return 0;
12812 }
12813
12814 tg->idle = idle;
12815
12816 for_each_possible_cpu(i) {
12817 struct rq *rq = cpu_rq(i);
12818 struct sched_entity *se = tg->se[i];
12819 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
12820 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
12821 long idle_task_delta;
12822 struct rq_flags rf;
12823
12824 rq_lock_irqsave(rq, &rf);
12825
12826 grp_cfs_rq->idle = idle;
12827 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
12828 goto next_cpu;
12829
12830 if (se->on_rq) {
12831 parent_cfs_rq = cfs_rq_of(se);
12832 if (cfs_rq_is_idle(grp_cfs_rq))
12833 parent_cfs_rq->idle_nr_running++;
12834 else
12835 parent_cfs_rq->idle_nr_running--;
12836 }
12837
12838 idle_task_delta = grp_cfs_rq->h_nr_running -
12839 grp_cfs_rq->idle_h_nr_running;
12840 if (!cfs_rq_is_idle(grp_cfs_rq))
12841 idle_task_delta *= -1;
12842
12843 for_each_sched_entity(se) {
12844 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12845
12846 if (!se->on_rq)
12847 break;
12848
12849 cfs_rq->idle_h_nr_running += idle_task_delta;
12850
12851 /* Already accounted at parent level and above. */
12852 if (cfs_rq_is_idle(cfs_rq))
12853 break;
12854 }
12855
12856 next_cpu:
12857 rq_unlock_irqrestore(rq, &rf);
12858 }
12859
12860 /* Idle groups have minimum weight. */
12861 if (tg_is_idle(tg))
12862 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
12863 else
12864 __sched_group_set_shares(tg, NICE_0_LOAD);
12865
12866 mutex_unlock(&shares_mutex);
12867 return 0;
12868 }
12869
12870 #else /* CONFIG_FAIR_GROUP_SCHED */
12871
12872 void free_fair_sched_group(struct task_group *tg) { }
12873
12874 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12875 {
12876 return 1;
12877 }
12878
12879 void online_fair_sched_group(struct task_group *tg) { }
12880
12881 void unregister_fair_sched_group(struct task_group *tg) { }
12882
12883 #endif /* CONFIG_FAIR_GROUP_SCHED */
12884
12885
12886 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
12887 {
12888 struct sched_entity *se = &task->se;
12889 unsigned int rr_interval = 0;
12890
12891 /*
12892 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
12893 * idle runqueue:
12894 */
12895 if (rq->cfs.load.weight)
12896 rr_interval = NS_TO_JIFFIES(se->slice);
12897
12898 return rr_interval;
12899 }
12900
12901 /*
12902 * All the scheduling class methods:
12903 */
12904 DEFINE_SCHED_CLASS(fair) = {
12905
12906 .enqueue_task = enqueue_task_fair,
12907 .dequeue_task = dequeue_task_fair,
12908 .yield_task = yield_task_fair,
12909 .yield_to_task = yield_to_task_fair,
12910
12911 .check_preempt_curr = check_preempt_wakeup,
12912
12913 .pick_next_task = __pick_next_task_fair,
12914 .put_prev_task = put_prev_task_fair,
12915 .set_next_task = set_next_task_fair,
12916
12917 #ifdef CONFIG_SMP
12918 .balance = balance_fair,
12919 .pick_task = pick_task_fair,
12920 .select_task_rq = select_task_rq_fair,
12921 .migrate_task_rq = migrate_task_rq_fair,
12922
12923 .rq_online = rq_online_fair,
12924 .rq_offline = rq_offline_fair,
12925
12926 .task_dead = task_dead_fair,
12927 .set_cpus_allowed = set_cpus_allowed_common,
12928 #endif
12929
12930 .task_tick = task_tick_fair,
12931 .task_fork = task_fork_fair,
12932
12933 .prio_changed = prio_changed_fair,
12934 .switched_from = switched_from_fair,
12935 .switched_to = switched_to_fair,
12936
12937 .get_rr_interval = get_rr_interval_fair,
12938
12939 .update_curr = update_curr_fair,
12940
12941 #ifdef CONFIG_FAIR_GROUP_SCHED
12942 .task_change_group = task_change_group_fair,
12943 #endif
12944
12945 #ifdef CONFIG_SCHED_CORE
12946 .task_is_throttled = task_is_throttled_fair,
12947 #endif
12948
12949 #ifdef CONFIG_UCLAMP_TASK
12950 .uclamp_enabled = 1,
12951 #endif
12952 };
12953
12954 #ifdef CONFIG_SCHED_DEBUG
12955 void print_cfs_stats(struct seq_file *m, int cpu)
12956 {
12957 struct cfs_rq *cfs_rq, *pos;
12958
12959 rcu_read_lock();
12960 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
12961 print_cfs_rq(m, cpu, cfs_rq);
12962 rcu_read_unlock();
12963 }
12964
12965 #ifdef CONFIG_NUMA_BALANCING
12966 void show_numa_stats(struct task_struct *p, struct seq_file *m)
12967 {
12968 int node;
12969 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
12970 struct numa_group *ng;
12971
12972 rcu_read_lock();
12973 ng = rcu_dereference(p->numa_group);
12974 for_each_online_node(node) {
12975 if (p->numa_faults) {
12976 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
12977 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
12978 }
12979 if (ng) {
12980 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
12981 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
12982 }
12983 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
12984 }
12985 rcu_read_unlock();
12986 }
12987 #endif /* CONFIG_NUMA_BALANCING */
12988 #endif /* CONFIG_SCHED_DEBUG */
12989
12990 __init void init_sched_fair_class(void)
12991 {
12992 #ifdef CONFIG_SMP
12993 int i;
12994
12995 for_each_possible_cpu(i) {
12996 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
12997 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i));
12998 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
12999 GFP_KERNEL, cpu_to_node(i));
13000
13001 #ifdef CONFIG_CFS_BANDWIDTH
13002 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13003 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13004 #endif
13005 }
13006
13007 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
13008
13009 #ifdef CONFIG_NO_HZ_COMMON
13010 nohz.next_balance = jiffies;
13011 nohz.next_blocked = jiffies;
13012 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13013 #endif
13014 #endif /* SMP */
13015
13016 }