]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - kernel/sched/pelt.c
Linux 4.20.17
[thirdparty/kernel/stable.git] / kernel / sched / pelt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Per Entity Load Tracking
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 *
23 * Move PELT related code from fair.c into this pelt.c file
24 * Author: Vincent Guittot <vincent.guittot@linaro.org>
25 */
26
27 #include <linux/sched.h>
28 #include "sched.h"
29 #include "sched-pelt.h"
30 #include "pelt.h"
31
32 /*
33 * Approximate:
34 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
35 */
36 static u64 decay_load(u64 val, u64 n)
37 {
38 unsigned int local_n;
39
40 if (unlikely(n > LOAD_AVG_PERIOD * 63))
41 return 0;
42
43 /* after bounds checking we can collapse to 32-bit */
44 local_n = n;
45
46 /*
47 * As y^PERIOD = 1/2, we can combine
48 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
49 * With a look-up table which covers y^n (n<PERIOD)
50 *
51 * To achieve constant time decay_load.
52 */
53 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
54 val >>= local_n / LOAD_AVG_PERIOD;
55 local_n %= LOAD_AVG_PERIOD;
56 }
57
58 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
59 return val;
60 }
61
62 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
63 {
64 u32 c1, c2, c3 = d3; /* y^0 == 1 */
65
66 /*
67 * c1 = d1 y^p
68 */
69 c1 = decay_load((u64)d1, periods);
70
71 /*
72 * p-1
73 * c2 = 1024 \Sum y^n
74 * n=1
75 *
76 * inf inf
77 * = 1024 ( \Sum y^n - \Sum y^n - y^0 )
78 * n=0 n=p
79 */
80 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
81
82 return c1 + c2 + c3;
83 }
84
85 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
86
87 /*
88 * Accumulate the three separate parts of the sum; d1 the remainder
89 * of the last (incomplete) period, d2 the span of full periods and d3
90 * the remainder of the (incomplete) current period.
91 *
92 * d1 d2 d3
93 * ^ ^ ^
94 * | | |
95 * |<->|<----------------->|<--->|
96 * ... |---x---|------| ... |------|-----x (now)
97 *
98 * p-1
99 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
100 * n=1
101 *
102 * = u y^p + (Step 1)
103 *
104 * p-1
105 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2)
106 * n=1
107 */
108 static __always_inline u32
109 accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
110 unsigned long load, unsigned long runnable, int running)
111 {
112 unsigned long scale_freq, scale_cpu;
113 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
114 u64 periods;
115
116 scale_freq = arch_scale_freq_capacity(cpu);
117 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
118
119 delta += sa->period_contrib;
120 periods = delta / 1024; /* A period is 1024us (~1ms) */
121
122 /*
123 * Step 1: decay old *_sum if we crossed period boundaries.
124 */
125 if (periods) {
126 sa->load_sum = decay_load(sa->load_sum, periods);
127 sa->runnable_load_sum =
128 decay_load(sa->runnable_load_sum, periods);
129 sa->util_sum = decay_load((u64)(sa->util_sum), periods);
130
131 /*
132 * Step 2
133 */
134 delta %= 1024;
135 contrib = __accumulate_pelt_segments(periods,
136 1024 - sa->period_contrib, delta);
137 }
138 sa->period_contrib = delta;
139
140 contrib = cap_scale(contrib, scale_freq);
141 if (load)
142 sa->load_sum += load * contrib;
143 if (runnable)
144 sa->runnable_load_sum += runnable * contrib;
145 if (running)
146 sa->util_sum += contrib * scale_cpu;
147
148 return periods;
149 }
150
151 /*
152 * We can represent the historical contribution to runnable average as the
153 * coefficients of a geometric series. To do this we sub-divide our runnable
154 * history into segments of approximately 1ms (1024us); label the segment that
155 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
156 *
157 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
158 * p0 p1 p2
159 * (now) (~1ms ago) (~2ms ago)
160 *
161 * Let u_i denote the fraction of p_i that the entity was runnable.
162 *
163 * We then designate the fractions u_i as our co-efficients, yielding the
164 * following representation of historical load:
165 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
166 *
167 * We choose y based on the with of a reasonably scheduling period, fixing:
168 * y^32 = 0.5
169 *
170 * This means that the contribution to load ~32ms ago (u_32) will be weighted
171 * approximately half as much as the contribution to load within the last ms
172 * (u_0).
173 *
174 * When a period "rolls over" and we have new u_0`, multiplying the previous
175 * sum again by y is sufficient to update:
176 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
177 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
178 */
179 static __always_inline int
180 ___update_load_sum(u64 now, int cpu, struct sched_avg *sa,
181 unsigned long load, unsigned long runnable, int running)
182 {
183 u64 delta;
184
185 delta = now - sa->last_update_time;
186 /*
187 * This should only happen when time goes backwards, which it
188 * unfortunately does during sched clock init when we swap over to TSC.
189 */
190 if ((s64)delta < 0) {
191 sa->last_update_time = now;
192 return 0;
193 }
194
195 /*
196 * Use 1024ns as the unit of measurement since it's a reasonable
197 * approximation of 1us and fast to compute.
198 */
199 delta >>= 10;
200 if (!delta)
201 return 0;
202
203 sa->last_update_time += delta << 10;
204
205 /*
206 * running is a subset of runnable (weight) so running can't be set if
207 * runnable is clear. But there are some corner cases where the current
208 * se has been already dequeued but cfs_rq->curr still points to it.
209 * This means that weight will be 0 but not running for a sched_entity
210 * but also for a cfs_rq if the latter becomes idle. As an example,
211 * this happens during idle_balance() which calls
212 * update_blocked_averages()
213 */
214 if (!load)
215 runnable = running = 0;
216
217 /*
218 * Now we know we crossed measurement unit boundaries. The *_avg
219 * accrues by two steps:
220 *
221 * Step 1: accumulate *_sum since last_update_time. If we haven't
222 * crossed period boundaries, finish.
223 */
224 if (!accumulate_sum(delta, cpu, sa, load, runnable, running))
225 return 0;
226
227 return 1;
228 }
229
230 static __always_inline void
231 ___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runnable)
232 {
233 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
234
235 /*
236 * Step 2: update *_avg.
237 */
238 sa->load_avg = div_u64(load * sa->load_sum, divider);
239 sa->runnable_load_avg = div_u64(runnable * sa->runnable_load_sum, divider);
240 WRITE_ONCE(sa->util_avg, sa->util_sum / divider);
241 }
242
243 /*
244 * sched_entity:
245 *
246 * task:
247 * se_runnable() == se_weight()
248 *
249 * group: [ see update_cfs_group() ]
250 * se_weight() = tg->weight * grq->load_avg / tg->load_avg
251 * se_runnable() = se_weight(se) * grq->runnable_load_avg / grq->load_avg
252 *
253 * load_sum := runnable_sum
254 * load_avg = se_weight(se) * runnable_avg
255 *
256 * runnable_load_sum := runnable_sum
257 * runnable_load_avg = se_runnable(se) * runnable_avg
258 *
259 * XXX collapse load_sum and runnable_load_sum
260 *
261 * cfq_rq:
262 *
263 * load_sum = \Sum se_weight(se) * se->avg.load_sum
264 * load_avg = \Sum se->avg.load_avg
265 *
266 * runnable_load_sum = \Sum se_runnable(se) * se->avg.runnable_load_sum
267 * runnable_load_avg = \Sum se->avg.runable_load_avg
268 */
269
270 int __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
271 {
272 if (___update_load_sum(now, cpu, &se->avg, 0, 0, 0)) {
273 ___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
274 return 1;
275 }
276
277 return 0;
278 }
279
280 int __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
281 {
282 if (___update_load_sum(now, cpu, &se->avg, !!se->on_rq, !!se->on_rq,
283 cfs_rq->curr == se)) {
284
285 ___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
286 cfs_se_util_change(&se->avg);
287 return 1;
288 }
289
290 return 0;
291 }
292
293 int __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
294 {
295 if (___update_load_sum(now, cpu, &cfs_rq->avg,
296 scale_load_down(cfs_rq->load.weight),
297 scale_load_down(cfs_rq->runnable_weight),
298 cfs_rq->curr != NULL)) {
299
300 ___update_load_avg(&cfs_rq->avg, 1, 1);
301 return 1;
302 }
303
304 return 0;
305 }
306
307 /*
308 * rt_rq:
309 *
310 * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
311 * util_sum = cpu_scale * load_sum
312 * runnable_load_sum = load_sum
313 *
314 * load_avg and runnable_load_avg are not supported and meaningless.
315 *
316 */
317
318 int update_rt_rq_load_avg(u64 now, struct rq *rq, int running)
319 {
320 if (___update_load_sum(now, rq->cpu, &rq->avg_rt,
321 running,
322 running,
323 running)) {
324
325 ___update_load_avg(&rq->avg_rt, 1, 1);
326 return 1;
327 }
328
329 return 0;
330 }
331
332 /*
333 * dl_rq:
334 *
335 * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
336 * util_sum = cpu_scale * load_sum
337 * runnable_load_sum = load_sum
338 *
339 */
340
341 int update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
342 {
343 if (___update_load_sum(now, rq->cpu, &rq->avg_dl,
344 running,
345 running,
346 running)) {
347
348 ___update_load_avg(&rq->avg_dl, 1, 1);
349 return 1;
350 }
351
352 return 0;
353 }
354
355 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
356 /*
357 * irq:
358 *
359 * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
360 * util_sum = cpu_scale * load_sum
361 * runnable_load_sum = load_sum
362 *
363 */
364
365 int update_irq_load_avg(struct rq *rq, u64 running)
366 {
367 int ret = 0;
368 /*
369 * We know the time that has been used by interrupt since last update
370 * but we don't when. Let be pessimistic and assume that interrupt has
371 * happened just before the update. This is not so far from reality
372 * because interrupt will most probably wake up task and trig an update
373 * of rq clock during which the metric si updated.
374 * We start to decay with normal context time and then we add the
375 * interrupt context time.
376 * We can safely remove running from rq->clock because
377 * rq->clock += delta with delta >= running
378 */
379 ret = ___update_load_sum(rq->clock - running, rq->cpu, &rq->avg_irq,
380 0,
381 0,
382 0);
383 ret += ___update_load_sum(rq->clock, rq->cpu, &rq->avg_irq,
384 1,
385 1,
386 1);
387
388 if (ret)
389 ___update_load_avg(&rq->avg_irq, 1, 1);
390
391 return ret;
392 }
393 #endif