]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - kernel/sched/sched.h
Merge branch 'sched/urgent' into sched/core, to pick up fixes
[thirdparty/kernel/linux.git] / kernel / sched / sched.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Scheduler internal types and methods:
4 */
5 #include <linux/sched.h>
6
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/stat.h>
27 #include <linux/sched/sysctl.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/task_stack.h>
30 #include <linux/sched/topology.h>
31 #include <linux/sched/user.h>
32 #include <linux/sched/wake_q.h>
33 #include <linux/sched/xacct.h>
34
35 #include <uapi/linux/sched/types.h>
36
37 #include <linux/binfmts.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/context_tracking.h>
41 #include <linux/cpufreq.h>
42 #include <linux/cpuidle.h>
43 #include <linux/cpuset.h>
44 #include <linux/ctype.h>
45 #include <linux/debugfs.h>
46 #include <linux/delayacct.h>
47 #include <linux/init_task.h>
48 #include <linux/kprobes.h>
49 #include <linux/kthread.h>
50 #include <linux/membarrier.h>
51 #include <linux/migrate.h>
52 #include <linux/mmu_context.h>
53 #include <linux/nmi.h>
54 #include <linux/proc_fs.h>
55 #include <linux/prefetch.h>
56 #include <linux/profile.h>
57 #include <linux/rcupdate_wait.h>
58 #include <linux/security.h>
59 #include <linux/stackprotector.h>
60 #include <linux/stop_machine.h>
61 #include <linux/suspend.h>
62 #include <linux/swait.h>
63 #include <linux/syscalls.h>
64 #include <linux/task_work.h>
65 #include <linux/tsacct_kern.h>
66
67 #include <asm/tlb.h>
68
69 #ifdef CONFIG_PARAVIRT
70 # include <asm/paravirt.h>
71 #endif
72
73 #include "cpupri.h"
74 #include "cpudeadline.h"
75
76 #ifdef CONFIG_SCHED_DEBUG
77 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
78 #else
79 # define SCHED_WARN_ON(x) ({ (void)(x), 0; })
80 #endif
81
82 struct rq;
83 struct cpuidle_state;
84
85 /* task_struct::on_rq states: */
86 #define TASK_ON_RQ_QUEUED 1
87 #define TASK_ON_RQ_MIGRATING 2
88
89 extern __read_mostly int scheduler_running;
90
91 extern unsigned long calc_load_update;
92 extern atomic_long_t calc_load_tasks;
93
94 extern void calc_global_load_tick(struct rq *this_rq);
95 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
96
97 #ifdef CONFIG_SMP
98 extern void cpu_load_update_active(struct rq *this_rq);
99 #else
100 static inline void cpu_load_update_active(struct rq *this_rq) { }
101 #endif
102
103 /*
104 * Helpers for converting nanosecond timing to jiffy resolution
105 */
106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107
108 /*
109 * Increase resolution of nice-level calculations for 64-bit architectures.
110 * The extra resolution improves shares distribution and load balancing of
111 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
112 * hierarchies, especially on larger systems. This is not a user-visible change
113 * and does not change the user-interface for setting shares/weights.
114 *
115 * We increase resolution only if we have enough bits to allow this increased
116 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
117 * are pretty high and the returns do not justify the increased costs.
118 *
119 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
120 * increase coverage and consistency always enable it on 64-bit platforms.
121 */
122 #ifdef CONFIG_64BIT
123 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
124 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
125 # define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
126 #else
127 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
128 # define scale_load(w) (w)
129 # define scale_load_down(w) (w)
130 #endif
131
132 /*
133 * Task weight (visible to users) and its load (invisible to users) have
134 * independent resolution, but they should be well calibrated. We use
135 * scale_load() and scale_load_down(w) to convert between them. The
136 * following must be true:
137 *
138 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
139 *
140 */
141 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
142
143 /*
144 * Single value that decides SCHED_DEADLINE internal math precision.
145 * 10 -> just above 1us
146 * 9 -> just above 0.5us
147 */
148 #define DL_SCALE 10
149
150 /*
151 * Single value that denotes runtime == period, ie unlimited time.
152 */
153 #define RUNTIME_INF ((u64)~0ULL)
154
155 static inline int idle_policy(int policy)
156 {
157 return policy == SCHED_IDLE;
158 }
159 static inline int fair_policy(int policy)
160 {
161 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
162 }
163
164 static inline int rt_policy(int policy)
165 {
166 return policy == SCHED_FIFO || policy == SCHED_RR;
167 }
168
169 static inline int dl_policy(int policy)
170 {
171 return policy == SCHED_DEADLINE;
172 }
173 static inline bool valid_policy(int policy)
174 {
175 return idle_policy(policy) || fair_policy(policy) ||
176 rt_policy(policy) || dl_policy(policy);
177 }
178
179 static inline int task_has_rt_policy(struct task_struct *p)
180 {
181 return rt_policy(p->policy);
182 }
183
184 static inline int task_has_dl_policy(struct task_struct *p)
185 {
186 return dl_policy(p->policy);
187 }
188
189 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
190
191 /*
192 * !! For sched_setattr_nocheck() (kernel) only !!
193 *
194 * This is actually gross. :(
195 *
196 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
197 * tasks, but still be able to sleep. We need this on platforms that cannot
198 * atomically change clock frequency. Remove once fast switching will be
199 * available on such platforms.
200 *
201 * SUGOV stands for SchedUtil GOVernor.
202 */
203 #define SCHED_FLAG_SUGOV 0x10000000
204
205 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
206 {
207 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
208 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
209 #else
210 return false;
211 #endif
212 }
213
214 /*
215 * Tells if entity @a should preempt entity @b.
216 */
217 static inline bool
218 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
219 {
220 return dl_entity_is_special(a) ||
221 dl_time_before(a->deadline, b->deadline);
222 }
223
224 /*
225 * This is the priority-queue data structure of the RT scheduling class:
226 */
227 struct rt_prio_array {
228 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
229 struct list_head queue[MAX_RT_PRIO];
230 };
231
232 struct rt_bandwidth {
233 /* nests inside the rq lock: */
234 raw_spinlock_t rt_runtime_lock;
235 ktime_t rt_period;
236 u64 rt_runtime;
237 struct hrtimer rt_period_timer;
238 unsigned int rt_period_active;
239 };
240
241 void __dl_clear_params(struct task_struct *p);
242
243 /*
244 * To keep the bandwidth of -deadline tasks and groups under control
245 * we need some place where:
246 * - store the maximum -deadline bandwidth of the system (the group);
247 * - cache the fraction of that bandwidth that is currently allocated.
248 *
249 * This is all done in the data structure below. It is similar to the
250 * one used for RT-throttling (rt_bandwidth), with the main difference
251 * that, since here we are only interested in admission control, we
252 * do not decrease any runtime while the group "executes", neither we
253 * need a timer to replenish it.
254 *
255 * With respect to SMP, the bandwidth is given on a per-CPU basis,
256 * meaning that:
257 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
258 * - dl_total_bw array contains, in the i-eth element, the currently
259 * allocated bandwidth on the i-eth CPU.
260 * Moreover, groups consume bandwidth on each CPU, while tasks only
261 * consume bandwidth on the CPU they're running on.
262 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
263 * that will be shown the next time the proc or cgroup controls will
264 * be red. It on its turn can be changed by writing on its own
265 * control.
266 */
267 struct dl_bandwidth {
268 raw_spinlock_t dl_runtime_lock;
269 u64 dl_runtime;
270 u64 dl_period;
271 };
272
273 static inline int dl_bandwidth_enabled(void)
274 {
275 return sysctl_sched_rt_runtime >= 0;
276 }
277
278 struct dl_bw {
279 raw_spinlock_t lock;
280 u64 bw;
281 u64 total_bw;
282 };
283
284 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
285
286 static inline
287 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
288 {
289 dl_b->total_bw -= tsk_bw;
290 __dl_update(dl_b, (s32)tsk_bw / cpus);
291 }
292
293 static inline
294 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
295 {
296 dl_b->total_bw += tsk_bw;
297 __dl_update(dl_b, -((s32)tsk_bw / cpus));
298 }
299
300 static inline
301 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
302 {
303 return dl_b->bw != -1 &&
304 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
305 }
306
307 extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
308 extern void init_dl_bw(struct dl_bw *dl_b);
309 extern int sched_dl_global_validate(void);
310 extern void sched_dl_do_global(void);
311 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
312 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
313 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
314 extern bool __checkparam_dl(const struct sched_attr *attr);
315 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
316 extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
317 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
318 extern bool dl_cpu_busy(unsigned int cpu);
319
320 #ifdef CONFIG_CGROUP_SCHED
321
322 #include <linux/cgroup.h>
323
324 struct cfs_rq;
325 struct rt_rq;
326
327 extern struct list_head task_groups;
328
329 struct cfs_bandwidth {
330 #ifdef CONFIG_CFS_BANDWIDTH
331 raw_spinlock_t lock;
332 ktime_t period;
333 u64 quota;
334 u64 runtime;
335 s64 hierarchical_quota;
336 u64 runtime_expires;
337 int expires_seq;
338
339 short idle;
340 short period_active;
341 struct hrtimer period_timer;
342 struct hrtimer slack_timer;
343 struct list_head throttled_cfs_rq;
344
345 /* Statistics: */
346 int nr_periods;
347 int nr_throttled;
348 u64 throttled_time;
349 #endif
350 };
351
352 /* Task group related information */
353 struct task_group {
354 struct cgroup_subsys_state css;
355
356 #ifdef CONFIG_FAIR_GROUP_SCHED
357 /* schedulable entities of this group on each CPU */
358 struct sched_entity **se;
359 /* runqueue "owned" by this group on each CPU */
360 struct cfs_rq **cfs_rq;
361 unsigned long shares;
362
363 #ifdef CONFIG_SMP
364 /*
365 * load_avg can be heavily contended at clock tick time, so put
366 * it in its own cacheline separated from the fields above which
367 * will also be accessed at each tick.
368 */
369 atomic_long_t load_avg ____cacheline_aligned;
370 #endif
371 #endif
372
373 #ifdef CONFIG_RT_GROUP_SCHED
374 struct sched_rt_entity **rt_se;
375 struct rt_rq **rt_rq;
376
377 struct rt_bandwidth rt_bandwidth;
378 #endif
379
380 struct rcu_head rcu;
381 struct list_head list;
382
383 struct task_group *parent;
384 struct list_head siblings;
385 struct list_head children;
386
387 #ifdef CONFIG_SCHED_AUTOGROUP
388 struct autogroup *autogroup;
389 #endif
390
391 struct cfs_bandwidth cfs_bandwidth;
392 };
393
394 #ifdef CONFIG_FAIR_GROUP_SCHED
395 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
396
397 /*
398 * A weight of 0 or 1 can cause arithmetics problems.
399 * A weight of a cfs_rq is the sum of weights of which entities
400 * are queued on this cfs_rq, so a weight of a entity should not be
401 * too large, so as the shares value of a task group.
402 * (The default weight is 1024 - so there's no practical
403 * limitation from this.)
404 */
405 #define MIN_SHARES (1UL << 1)
406 #define MAX_SHARES (1UL << 18)
407 #endif
408
409 typedef int (*tg_visitor)(struct task_group *, void *);
410
411 extern int walk_tg_tree_from(struct task_group *from,
412 tg_visitor down, tg_visitor up, void *data);
413
414 /*
415 * Iterate the full tree, calling @down when first entering a node and @up when
416 * leaving it for the final time.
417 *
418 * Caller must hold rcu_lock or sufficient equivalent.
419 */
420 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
421 {
422 return walk_tg_tree_from(&root_task_group, down, up, data);
423 }
424
425 extern int tg_nop(struct task_group *tg, void *data);
426
427 extern void free_fair_sched_group(struct task_group *tg);
428 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
429 extern void online_fair_sched_group(struct task_group *tg);
430 extern void unregister_fair_sched_group(struct task_group *tg);
431 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
432 struct sched_entity *se, int cpu,
433 struct sched_entity *parent);
434 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
435
436 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
437 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
438 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
439
440 extern void free_rt_sched_group(struct task_group *tg);
441 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
442 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
443 struct sched_rt_entity *rt_se, int cpu,
444 struct sched_rt_entity *parent);
445 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
446 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
447 extern long sched_group_rt_runtime(struct task_group *tg);
448 extern long sched_group_rt_period(struct task_group *tg);
449 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
450
451 extern struct task_group *sched_create_group(struct task_group *parent);
452 extern void sched_online_group(struct task_group *tg,
453 struct task_group *parent);
454 extern void sched_destroy_group(struct task_group *tg);
455 extern void sched_offline_group(struct task_group *tg);
456
457 extern void sched_move_task(struct task_struct *tsk);
458
459 #ifdef CONFIG_FAIR_GROUP_SCHED
460 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
461
462 #ifdef CONFIG_SMP
463 extern void set_task_rq_fair(struct sched_entity *se,
464 struct cfs_rq *prev, struct cfs_rq *next);
465 #else /* !CONFIG_SMP */
466 static inline void set_task_rq_fair(struct sched_entity *se,
467 struct cfs_rq *prev, struct cfs_rq *next) { }
468 #endif /* CONFIG_SMP */
469 #endif /* CONFIG_FAIR_GROUP_SCHED */
470
471 #else /* CONFIG_CGROUP_SCHED */
472
473 struct cfs_bandwidth { };
474
475 #endif /* CONFIG_CGROUP_SCHED */
476
477 /* CFS-related fields in a runqueue */
478 struct cfs_rq {
479 struct load_weight load;
480 unsigned long runnable_weight;
481 unsigned int nr_running;
482 unsigned int h_nr_running;
483
484 u64 exec_clock;
485 u64 min_vruntime;
486 #ifndef CONFIG_64BIT
487 u64 min_vruntime_copy;
488 #endif
489
490 struct rb_root_cached tasks_timeline;
491
492 /*
493 * 'curr' points to currently running entity on this cfs_rq.
494 * It is set to NULL otherwise (i.e when none are currently running).
495 */
496 struct sched_entity *curr;
497 struct sched_entity *next;
498 struct sched_entity *last;
499 struct sched_entity *skip;
500
501 #ifdef CONFIG_SCHED_DEBUG
502 unsigned int nr_spread_over;
503 #endif
504
505 #ifdef CONFIG_SMP
506 /*
507 * CFS load tracking
508 */
509 struct sched_avg avg;
510 #ifndef CONFIG_64BIT
511 u64 load_last_update_time_copy;
512 #endif
513 struct {
514 raw_spinlock_t lock ____cacheline_aligned;
515 int nr;
516 unsigned long load_avg;
517 unsigned long util_avg;
518 unsigned long runnable_sum;
519 } removed;
520
521 #ifdef CONFIG_FAIR_GROUP_SCHED
522 unsigned long tg_load_avg_contrib;
523 long propagate;
524 long prop_runnable_sum;
525
526 /*
527 * h_load = weight * f(tg)
528 *
529 * Where f(tg) is the recursive weight fraction assigned to
530 * this group.
531 */
532 unsigned long h_load;
533 u64 last_h_load_update;
534 struct sched_entity *h_load_next;
535 #endif /* CONFIG_FAIR_GROUP_SCHED */
536 #endif /* CONFIG_SMP */
537
538 #ifdef CONFIG_FAIR_GROUP_SCHED
539 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
540
541 /*
542 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
543 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
544 * (like users, containers etc.)
545 *
546 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
547 * This list is used during load balance.
548 */
549 int on_list;
550 struct list_head leaf_cfs_rq_list;
551 struct task_group *tg; /* group that "owns" this runqueue */
552
553 #ifdef CONFIG_CFS_BANDWIDTH
554 int runtime_enabled;
555 int expires_seq;
556 u64 runtime_expires;
557 s64 runtime_remaining;
558
559 u64 throttled_clock;
560 u64 throttled_clock_task;
561 u64 throttled_clock_task_time;
562 int throttled;
563 int throttle_count;
564 struct list_head throttled_list;
565 #endif /* CONFIG_CFS_BANDWIDTH */
566 #endif /* CONFIG_FAIR_GROUP_SCHED */
567 };
568
569 static inline int rt_bandwidth_enabled(void)
570 {
571 return sysctl_sched_rt_runtime >= 0;
572 }
573
574 /* RT IPI pull logic requires IRQ_WORK */
575 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
576 # define HAVE_RT_PUSH_IPI
577 #endif
578
579 /* Real-Time classes' related field in a runqueue: */
580 struct rt_rq {
581 struct rt_prio_array active;
582 unsigned int rt_nr_running;
583 unsigned int rr_nr_running;
584 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
585 struct {
586 int curr; /* highest queued rt task prio */
587 #ifdef CONFIG_SMP
588 int next; /* next highest */
589 #endif
590 } highest_prio;
591 #endif
592 #ifdef CONFIG_SMP
593 unsigned long rt_nr_migratory;
594 unsigned long rt_nr_total;
595 int overloaded;
596 struct plist_head pushable_tasks;
597
598 #endif /* CONFIG_SMP */
599 int rt_queued;
600
601 int rt_throttled;
602 u64 rt_time;
603 u64 rt_runtime;
604 /* Nests inside the rq lock: */
605 raw_spinlock_t rt_runtime_lock;
606
607 #ifdef CONFIG_RT_GROUP_SCHED
608 unsigned long rt_nr_boosted;
609
610 struct rq *rq;
611 struct task_group *tg;
612 #endif
613 };
614
615 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
616 {
617 return rt_rq->rt_queued && rt_rq->rt_nr_running;
618 }
619
620 /* Deadline class' related fields in a runqueue */
621 struct dl_rq {
622 /* runqueue is an rbtree, ordered by deadline */
623 struct rb_root_cached root;
624
625 unsigned long dl_nr_running;
626
627 #ifdef CONFIG_SMP
628 /*
629 * Deadline values of the currently executing and the
630 * earliest ready task on this rq. Caching these facilitates
631 * the decision wether or not a ready but not running task
632 * should migrate somewhere else.
633 */
634 struct {
635 u64 curr;
636 u64 next;
637 } earliest_dl;
638
639 unsigned long dl_nr_migratory;
640 int overloaded;
641
642 /*
643 * Tasks on this rq that can be pushed away. They are kept in
644 * an rb-tree, ordered by tasks' deadlines, with caching
645 * of the leftmost (earliest deadline) element.
646 */
647 struct rb_root_cached pushable_dl_tasks_root;
648 #else
649 struct dl_bw dl_bw;
650 #endif
651 /*
652 * "Active utilization" for this runqueue: increased when a
653 * task wakes up (becomes TASK_RUNNING) and decreased when a
654 * task blocks
655 */
656 u64 running_bw;
657
658 /*
659 * Utilization of the tasks "assigned" to this runqueue (including
660 * the tasks that are in runqueue and the tasks that executed on this
661 * CPU and blocked). Increased when a task moves to this runqueue, and
662 * decreased when the task moves away (migrates, changes scheduling
663 * policy, or terminates).
664 * This is needed to compute the "inactive utilization" for the
665 * runqueue (inactive utilization = this_bw - running_bw).
666 */
667 u64 this_bw;
668 u64 extra_bw;
669
670 /*
671 * Inverse of the fraction of CPU utilization that can be reclaimed
672 * by the GRUB algorithm.
673 */
674 u64 bw_ratio;
675 };
676
677 #ifdef CONFIG_FAIR_GROUP_SCHED
678 /* An entity is a task if it doesn't "own" a runqueue */
679 #define entity_is_task(se) (!se->my_q)
680 #else
681 #define entity_is_task(se) 1
682 #endif
683
684 #ifdef CONFIG_SMP
685 /*
686 * XXX we want to get rid of these helpers and use the full load resolution.
687 */
688 static inline long se_weight(struct sched_entity *se)
689 {
690 return scale_load_down(se->load.weight);
691 }
692
693 static inline long se_runnable(struct sched_entity *se)
694 {
695 return scale_load_down(se->runnable_weight);
696 }
697
698 static inline bool sched_asym_prefer(int a, int b)
699 {
700 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
701 }
702
703 /*
704 * We add the notion of a root-domain which will be used to define per-domain
705 * variables. Each exclusive cpuset essentially defines an island domain by
706 * fully partitioning the member CPUs from any other cpuset. Whenever a new
707 * exclusive cpuset is created, we also create and attach a new root-domain
708 * object.
709 *
710 */
711 struct root_domain {
712 atomic_t refcount;
713 atomic_t rto_count;
714 struct rcu_head rcu;
715 cpumask_var_t span;
716 cpumask_var_t online;
717
718 /*
719 * Indicate pullable load on at least one CPU, e.g:
720 * - More than one runnable task
721 * - Running task is misfit
722 */
723 int overload;
724
725 /*
726 * The bit corresponding to a CPU gets set here if such CPU has more
727 * than one runnable -deadline task (as it is below for RT tasks).
728 */
729 cpumask_var_t dlo_mask;
730 atomic_t dlo_count;
731 struct dl_bw dl_bw;
732 struct cpudl cpudl;
733
734 #ifdef HAVE_RT_PUSH_IPI
735 /*
736 * For IPI pull requests, loop across the rto_mask.
737 */
738 struct irq_work rto_push_work;
739 raw_spinlock_t rto_lock;
740 /* These are only updated and read within rto_lock */
741 int rto_loop;
742 int rto_cpu;
743 /* These atomics are updated outside of a lock */
744 atomic_t rto_loop_next;
745 atomic_t rto_loop_start;
746 #endif
747 /*
748 * The "RT overload" flag: it gets set if a CPU has more than
749 * one runnable RT task.
750 */
751 cpumask_var_t rto_mask;
752 struct cpupri cpupri;
753
754 unsigned long max_cpu_capacity;
755 };
756
757 extern struct root_domain def_root_domain;
758 extern struct mutex sched_domains_mutex;
759
760 extern void init_defrootdomain(void);
761 extern int sched_init_domains(const struct cpumask *cpu_map);
762 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
763 extern void sched_get_rd(struct root_domain *rd);
764 extern void sched_put_rd(struct root_domain *rd);
765
766 #ifdef HAVE_RT_PUSH_IPI
767 extern void rto_push_irq_work_func(struct irq_work *work);
768 #endif
769 #endif /* CONFIG_SMP */
770
771 /*
772 * This is the main, per-CPU runqueue data structure.
773 *
774 * Locking rule: those places that want to lock multiple runqueues
775 * (such as the load balancing or the thread migration code), lock
776 * acquire operations must be ordered by ascending &runqueue.
777 */
778 struct rq {
779 /* runqueue lock: */
780 raw_spinlock_t lock;
781
782 /*
783 * nr_running and cpu_load should be in the same cacheline because
784 * remote CPUs use both these fields when doing load calculation.
785 */
786 unsigned int nr_running;
787 #ifdef CONFIG_NUMA_BALANCING
788 unsigned int nr_numa_running;
789 unsigned int nr_preferred_running;
790 unsigned int numa_migrate_on;
791 #endif
792 #define CPU_LOAD_IDX_MAX 5
793 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
794 #ifdef CONFIG_NO_HZ_COMMON
795 #ifdef CONFIG_SMP
796 unsigned long last_load_update_tick;
797 unsigned long last_blocked_load_update_tick;
798 unsigned int has_blocked_load;
799 #endif /* CONFIG_SMP */
800 unsigned int nohz_tick_stopped;
801 atomic_t nohz_flags;
802 #endif /* CONFIG_NO_HZ_COMMON */
803
804 /* capture load from *all* tasks on this CPU: */
805 struct load_weight load;
806 unsigned long nr_load_updates;
807 u64 nr_switches;
808
809 struct cfs_rq cfs;
810 struct rt_rq rt;
811 struct dl_rq dl;
812
813 #ifdef CONFIG_FAIR_GROUP_SCHED
814 /* list of leaf cfs_rq on this CPU: */
815 struct list_head leaf_cfs_rq_list;
816 struct list_head *tmp_alone_branch;
817 #endif /* CONFIG_FAIR_GROUP_SCHED */
818
819 /*
820 * This is part of a global counter where only the total sum
821 * over all CPUs matters. A task can increase this counter on
822 * one CPU and if it got migrated afterwards it may decrease
823 * it on another CPU. Always updated under the runqueue lock:
824 */
825 unsigned long nr_uninterruptible;
826
827 struct task_struct *curr;
828 struct task_struct *idle;
829 struct task_struct *stop;
830 unsigned long next_balance;
831 struct mm_struct *prev_mm;
832
833 unsigned int clock_update_flags;
834 u64 clock;
835 u64 clock_task;
836
837 atomic_t nr_iowait;
838
839 #ifdef CONFIG_SMP
840 struct root_domain *rd;
841 struct sched_domain *sd;
842
843 unsigned long cpu_capacity;
844 unsigned long cpu_capacity_orig;
845
846 struct callback_head *balance_callback;
847
848 unsigned char idle_balance;
849
850 unsigned long misfit_task_load;
851
852 /* For active balancing */
853 int active_balance;
854 int push_cpu;
855 struct cpu_stop_work active_balance_work;
856
857 /* CPU of this runqueue: */
858 int cpu;
859 int online;
860
861 struct list_head cfs_tasks;
862
863 struct sched_avg avg_rt;
864 struct sched_avg avg_dl;
865 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
866 #define HAVE_SCHED_AVG_IRQ
867 struct sched_avg avg_irq;
868 #endif
869 u64 idle_stamp;
870 u64 avg_idle;
871
872 /* This is used to determine avg_idle's max value */
873 u64 max_idle_balance_cost;
874 #endif
875
876 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
877 u64 prev_irq_time;
878 #endif
879 #ifdef CONFIG_PARAVIRT
880 u64 prev_steal_time;
881 #endif
882 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
883 u64 prev_steal_time_rq;
884 #endif
885
886 /* calc_load related fields */
887 unsigned long calc_load_update;
888 long calc_load_active;
889
890 #ifdef CONFIG_SCHED_HRTICK
891 #ifdef CONFIG_SMP
892 int hrtick_csd_pending;
893 call_single_data_t hrtick_csd;
894 #endif
895 struct hrtimer hrtick_timer;
896 #endif
897
898 #ifdef CONFIG_SCHEDSTATS
899 /* latency stats */
900 struct sched_info rq_sched_info;
901 unsigned long long rq_cpu_time;
902 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
903
904 /* sys_sched_yield() stats */
905 unsigned int yld_count;
906
907 /* schedule() stats */
908 unsigned int sched_count;
909 unsigned int sched_goidle;
910
911 /* try_to_wake_up() stats */
912 unsigned int ttwu_count;
913 unsigned int ttwu_local;
914 #endif
915
916 #ifdef CONFIG_SMP
917 struct llist_head wake_list;
918 #endif
919
920 #ifdef CONFIG_CPU_IDLE
921 /* Must be inspected within a rcu lock section */
922 struct cpuidle_state *idle_state;
923 #endif
924 };
925
926 static inline int cpu_of(struct rq *rq)
927 {
928 #ifdef CONFIG_SMP
929 return rq->cpu;
930 #else
931 return 0;
932 #endif
933 }
934
935
936 #ifdef CONFIG_SCHED_SMT
937
938 extern struct static_key_false sched_smt_present;
939
940 extern void __update_idle_core(struct rq *rq);
941
942 static inline void update_idle_core(struct rq *rq)
943 {
944 if (static_branch_unlikely(&sched_smt_present))
945 __update_idle_core(rq);
946 }
947
948 #else
949 static inline void update_idle_core(struct rq *rq) { }
950 #endif
951
952 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
953
954 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
955 #define this_rq() this_cpu_ptr(&runqueues)
956 #define task_rq(p) cpu_rq(task_cpu(p))
957 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
958 #define raw_rq() raw_cpu_ptr(&runqueues)
959
960 static inline u64 __rq_clock_broken(struct rq *rq)
961 {
962 return READ_ONCE(rq->clock);
963 }
964
965 /*
966 * rq::clock_update_flags bits
967 *
968 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
969 * call to __schedule(). This is an optimisation to avoid
970 * neighbouring rq clock updates.
971 *
972 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
973 * in effect and calls to update_rq_clock() are being ignored.
974 *
975 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
976 * made to update_rq_clock() since the last time rq::lock was pinned.
977 *
978 * If inside of __schedule(), clock_update_flags will have been
979 * shifted left (a left shift is a cheap operation for the fast path
980 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
981 *
982 * if (rq-clock_update_flags >= RQCF_UPDATED)
983 *
984 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
985 * one position though, because the next rq_unpin_lock() will shift it
986 * back.
987 */
988 #define RQCF_REQ_SKIP 0x01
989 #define RQCF_ACT_SKIP 0x02
990 #define RQCF_UPDATED 0x04
991
992 static inline void assert_clock_updated(struct rq *rq)
993 {
994 /*
995 * The only reason for not seeing a clock update since the
996 * last rq_pin_lock() is if we're currently skipping updates.
997 */
998 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
999 }
1000
1001 static inline u64 rq_clock(struct rq *rq)
1002 {
1003 lockdep_assert_held(&rq->lock);
1004 assert_clock_updated(rq);
1005
1006 return rq->clock;
1007 }
1008
1009 static inline u64 rq_clock_task(struct rq *rq)
1010 {
1011 lockdep_assert_held(&rq->lock);
1012 assert_clock_updated(rq);
1013
1014 return rq->clock_task;
1015 }
1016
1017 static inline void rq_clock_skip_update(struct rq *rq)
1018 {
1019 lockdep_assert_held(&rq->lock);
1020 rq->clock_update_flags |= RQCF_REQ_SKIP;
1021 }
1022
1023 /*
1024 * See rt task throttling, which is the only time a skip
1025 * request is cancelled.
1026 */
1027 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1028 {
1029 lockdep_assert_held(&rq->lock);
1030 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1031 }
1032
1033 struct rq_flags {
1034 unsigned long flags;
1035 struct pin_cookie cookie;
1036 #ifdef CONFIG_SCHED_DEBUG
1037 /*
1038 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1039 * current pin context is stashed here in case it needs to be
1040 * restored in rq_repin_lock().
1041 */
1042 unsigned int clock_update_flags;
1043 #endif
1044 };
1045
1046 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1047 {
1048 rf->cookie = lockdep_pin_lock(&rq->lock);
1049
1050 #ifdef CONFIG_SCHED_DEBUG
1051 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1052 rf->clock_update_flags = 0;
1053 #endif
1054 }
1055
1056 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1057 {
1058 #ifdef CONFIG_SCHED_DEBUG
1059 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1060 rf->clock_update_flags = RQCF_UPDATED;
1061 #endif
1062
1063 lockdep_unpin_lock(&rq->lock, rf->cookie);
1064 }
1065
1066 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1067 {
1068 lockdep_repin_lock(&rq->lock, rf->cookie);
1069
1070 #ifdef CONFIG_SCHED_DEBUG
1071 /*
1072 * Restore the value we stashed in @rf for this pin context.
1073 */
1074 rq->clock_update_flags |= rf->clock_update_flags;
1075 #endif
1076 }
1077
1078 #ifdef CONFIG_NUMA
1079 enum numa_topology_type {
1080 NUMA_DIRECT,
1081 NUMA_GLUELESS_MESH,
1082 NUMA_BACKPLANE,
1083 };
1084 extern enum numa_topology_type sched_numa_topology_type;
1085 extern int sched_max_numa_distance;
1086 extern bool find_numa_distance(int distance);
1087 #endif
1088
1089 #ifdef CONFIG_NUMA
1090 extern void sched_init_numa(void);
1091 extern void sched_domains_numa_masks_set(unsigned int cpu);
1092 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1093 #else
1094 static inline void sched_init_numa(void) { }
1095 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1096 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1097 #endif
1098
1099 #ifdef CONFIG_NUMA_BALANCING
1100 /* The regions in numa_faults array from task_struct */
1101 enum numa_faults_stats {
1102 NUMA_MEM = 0,
1103 NUMA_CPU,
1104 NUMA_MEMBUF,
1105 NUMA_CPUBUF
1106 };
1107 extern void sched_setnuma(struct task_struct *p, int node);
1108 extern int migrate_task_to(struct task_struct *p, int cpu);
1109 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1110 int cpu, int scpu);
1111 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1112 #else
1113 static inline void
1114 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1115 {
1116 }
1117 #endif /* CONFIG_NUMA_BALANCING */
1118
1119 #ifdef CONFIG_SMP
1120
1121 static inline void
1122 queue_balance_callback(struct rq *rq,
1123 struct callback_head *head,
1124 void (*func)(struct rq *rq))
1125 {
1126 lockdep_assert_held(&rq->lock);
1127
1128 if (unlikely(head->next))
1129 return;
1130
1131 head->func = (void (*)(struct callback_head *))func;
1132 head->next = rq->balance_callback;
1133 rq->balance_callback = head;
1134 }
1135
1136 extern void sched_ttwu_pending(void);
1137
1138 #define rcu_dereference_check_sched_domain(p) \
1139 rcu_dereference_check((p), \
1140 lockdep_is_held(&sched_domains_mutex))
1141
1142 /*
1143 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1144 * See detach_destroy_domains: synchronize_sched for details.
1145 *
1146 * The domain tree of any CPU may only be accessed from within
1147 * preempt-disabled sections.
1148 */
1149 #define for_each_domain(cpu, __sd) \
1150 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1151 __sd; __sd = __sd->parent)
1152
1153 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1154
1155 /**
1156 * highest_flag_domain - Return highest sched_domain containing flag.
1157 * @cpu: The CPU whose highest level of sched domain is to
1158 * be returned.
1159 * @flag: The flag to check for the highest sched_domain
1160 * for the given CPU.
1161 *
1162 * Returns the highest sched_domain of a CPU which contains the given flag.
1163 */
1164 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1165 {
1166 struct sched_domain *sd, *hsd = NULL;
1167
1168 for_each_domain(cpu, sd) {
1169 if (!(sd->flags & flag))
1170 break;
1171 hsd = sd;
1172 }
1173
1174 return hsd;
1175 }
1176
1177 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1178 {
1179 struct sched_domain *sd;
1180
1181 for_each_domain(cpu, sd) {
1182 if (sd->flags & flag)
1183 break;
1184 }
1185
1186 return sd;
1187 }
1188
1189 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
1190 DECLARE_PER_CPU(int, sd_llc_size);
1191 DECLARE_PER_CPU(int, sd_llc_id);
1192 DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
1193 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
1194 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
1195 extern struct static_key_false sched_asym_cpucapacity;
1196
1197 struct sched_group_capacity {
1198 atomic_t ref;
1199 /*
1200 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1201 * for a single CPU.
1202 */
1203 unsigned long capacity;
1204 unsigned long min_capacity; /* Min per-CPU capacity in group */
1205 unsigned long max_capacity; /* Max per-CPU capacity in group */
1206 unsigned long next_update;
1207 int imbalance; /* XXX unrelated to capacity but shared group state */
1208
1209 #ifdef CONFIG_SCHED_DEBUG
1210 int id;
1211 #endif
1212
1213 unsigned long cpumask[0]; /* Balance mask */
1214 };
1215
1216 struct sched_group {
1217 struct sched_group *next; /* Must be a circular list */
1218 atomic_t ref;
1219
1220 unsigned int group_weight;
1221 struct sched_group_capacity *sgc;
1222 int asym_prefer_cpu; /* CPU of highest priority in group */
1223
1224 /*
1225 * The CPUs this group covers.
1226 *
1227 * NOTE: this field is variable length. (Allocated dynamically
1228 * by attaching extra space to the end of the structure,
1229 * depending on how many CPUs the kernel has booted up with)
1230 */
1231 unsigned long cpumask[0];
1232 };
1233
1234 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1235 {
1236 return to_cpumask(sg->cpumask);
1237 }
1238
1239 /*
1240 * See build_balance_mask().
1241 */
1242 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1243 {
1244 return to_cpumask(sg->sgc->cpumask);
1245 }
1246
1247 /**
1248 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1249 * @group: The group whose first CPU is to be returned.
1250 */
1251 static inline unsigned int group_first_cpu(struct sched_group *group)
1252 {
1253 return cpumask_first(sched_group_span(group));
1254 }
1255
1256 extern int group_balance_cpu(struct sched_group *sg);
1257
1258 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1259 void register_sched_domain_sysctl(void);
1260 void dirty_sched_domain_sysctl(int cpu);
1261 void unregister_sched_domain_sysctl(void);
1262 #else
1263 static inline void register_sched_domain_sysctl(void)
1264 {
1265 }
1266 static inline void dirty_sched_domain_sysctl(int cpu)
1267 {
1268 }
1269 static inline void unregister_sched_domain_sysctl(void)
1270 {
1271 }
1272 #endif
1273
1274 #else
1275
1276 static inline void sched_ttwu_pending(void) { }
1277
1278 #endif /* CONFIG_SMP */
1279
1280 #include "stats.h"
1281 #include "autogroup.h"
1282
1283 #ifdef CONFIG_CGROUP_SCHED
1284
1285 /*
1286 * Return the group to which this tasks belongs.
1287 *
1288 * We cannot use task_css() and friends because the cgroup subsystem
1289 * changes that value before the cgroup_subsys::attach() method is called,
1290 * therefore we cannot pin it and might observe the wrong value.
1291 *
1292 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1293 * core changes this before calling sched_move_task().
1294 *
1295 * Instead we use a 'copy' which is updated from sched_move_task() while
1296 * holding both task_struct::pi_lock and rq::lock.
1297 */
1298 static inline struct task_group *task_group(struct task_struct *p)
1299 {
1300 return p->sched_task_group;
1301 }
1302
1303 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1304 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1305 {
1306 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1307 struct task_group *tg = task_group(p);
1308 #endif
1309
1310 #ifdef CONFIG_FAIR_GROUP_SCHED
1311 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1312 p->se.cfs_rq = tg->cfs_rq[cpu];
1313 p->se.parent = tg->se[cpu];
1314 #endif
1315
1316 #ifdef CONFIG_RT_GROUP_SCHED
1317 p->rt.rt_rq = tg->rt_rq[cpu];
1318 p->rt.parent = tg->rt_se[cpu];
1319 #endif
1320 }
1321
1322 #else /* CONFIG_CGROUP_SCHED */
1323
1324 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1325 static inline struct task_group *task_group(struct task_struct *p)
1326 {
1327 return NULL;
1328 }
1329
1330 #endif /* CONFIG_CGROUP_SCHED */
1331
1332 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1333 {
1334 set_task_rq(p, cpu);
1335 #ifdef CONFIG_SMP
1336 /*
1337 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1338 * successfuly executed on another CPU. We must ensure that updates of
1339 * per-task data have been completed by this moment.
1340 */
1341 smp_wmb();
1342 #ifdef CONFIG_THREAD_INFO_IN_TASK
1343 p->cpu = cpu;
1344 #else
1345 task_thread_info(p)->cpu = cpu;
1346 #endif
1347 p->wake_cpu = cpu;
1348 #endif
1349 }
1350
1351 /*
1352 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1353 */
1354 #ifdef CONFIG_SCHED_DEBUG
1355 # include <linux/static_key.h>
1356 # define const_debug __read_mostly
1357 #else
1358 # define const_debug const
1359 #endif
1360
1361 #define SCHED_FEAT(name, enabled) \
1362 __SCHED_FEAT_##name ,
1363
1364 enum {
1365 #include "features.h"
1366 __SCHED_FEAT_NR,
1367 };
1368
1369 #undef SCHED_FEAT
1370
1371 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1372
1373 /*
1374 * To support run-time toggling of sched features, all the translation units
1375 * (but core.c) reference the sysctl_sched_features defined in core.c.
1376 */
1377 extern const_debug unsigned int sysctl_sched_features;
1378
1379 #define SCHED_FEAT(name, enabled) \
1380 static __always_inline bool static_branch_##name(struct static_key *key) \
1381 { \
1382 return static_key_##enabled(key); \
1383 }
1384
1385 #include "features.h"
1386 #undef SCHED_FEAT
1387
1388 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1389 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1390
1391 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1392
1393 /*
1394 * Each translation unit has its own copy of sysctl_sched_features to allow
1395 * constants propagation at compile time and compiler optimization based on
1396 * features default.
1397 */
1398 #define SCHED_FEAT(name, enabled) \
1399 (1UL << __SCHED_FEAT_##name) * enabled |
1400 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1401 #include "features.h"
1402 0;
1403 #undef SCHED_FEAT
1404
1405 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1406
1407 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1408
1409 extern struct static_key_false sched_numa_balancing;
1410 extern struct static_key_false sched_schedstats;
1411
1412 static inline u64 global_rt_period(void)
1413 {
1414 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1415 }
1416
1417 static inline u64 global_rt_runtime(void)
1418 {
1419 if (sysctl_sched_rt_runtime < 0)
1420 return RUNTIME_INF;
1421
1422 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1423 }
1424
1425 static inline int task_current(struct rq *rq, struct task_struct *p)
1426 {
1427 return rq->curr == p;
1428 }
1429
1430 static inline int task_running(struct rq *rq, struct task_struct *p)
1431 {
1432 #ifdef CONFIG_SMP
1433 return p->on_cpu;
1434 #else
1435 return task_current(rq, p);
1436 #endif
1437 }
1438
1439 static inline int task_on_rq_queued(struct task_struct *p)
1440 {
1441 return p->on_rq == TASK_ON_RQ_QUEUED;
1442 }
1443
1444 static inline int task_on_rq_migrating(struct task_struct *p)
1445 {
1446 return p->on_rq == TASK_ON_RQ_MIGRATING;
1447 }
1448
1449 /*
1450 * wake flags
1451 */
1452 #define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
1453 #define WF_FORK 0x02 /* Child wakeup after fork */
1454 #define WF_MIGRATED 0x4 /* Internal use, task got migrated */
1455
1456 /*
1457 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1458 * of tasks with abnormal "nice" values across CPUs the contribution that
1459 * each task makes to its run queue's load is weighted according to its
1460 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1461 * scaled version of the new time slice allocation that they receive on time
1462 * slice expiry etc.
1463 */
1464
1465 #define WEIGHT_IDLEPRIO 3
1466 #define WMULT_IDLEPRIO 1431655765
1467
1468 extern const int sched_prio_to_weight[40];
1469 extern const u32 sched_prio_to_wmult[40];
1470
1471 /*
1472 * {de,en}queue flags:
1473 *
1474 * DEQUEUE_SLEEP - task is no longer runnable
1475 * ENQUEUE_WAKEUP - task just became runnable
1476 *
1477 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1478 * are in a known state which allows modification. Such pairs
1479 * should preserve as much state as possible.
1480 *
1481 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1482 * in the runqueue.
1483 *
1484 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1485 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1486 * ENQUEUE_MIGRATED - the task was migrated during wakeup
1487 *
1488 */
1489
1490 #define DEQUEUE_SLEEP 0x01
1491 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
1492 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
1493 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
1494
1495 #define ENQUEUE_WAKEUP 0x01
1496 #define ENQUEUE_RESTORE 0x02
1497 #define ENQUEUE_MOVE 0x04
1498 #define ENQUEUE_NOCLOCK 0x08
1499
1500 #define ENQUEUE_HEAD 0x10
1501 #define ENQUEUE_REPLENISH 0x20
1502 #ifdef CONFIG_SMP
1503 #define ENQUEUE_MIGRATED 0x40
1504 #else
1505 #define ENQUEUE_MIGRATED 0x00
1506 #endif
1507
1508 #define RETRY_TASK ((void *)-1UL)
1509
1510 struct sched_class {
1511 const struct sched_class *next;
1512
1513 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1514 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1515 void (*yield_task) (struct rq *rq);
1516 bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
1517
1518 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1519
1520 /*
1521 * It is the responsibility of the pick_next_task() method that will
1522 * return the next task to call put_prev_task() on the @prev task or
1523 * something equivalent.
1524 *
1525 * May return RETRY_TASK when it finds a higher prio class has runnable
1526 * tasks.
1527 */
1528 struct task_struct * (*pick_next_task)(struct rq *rq,
1529 struct task_struct *prev,
1530 struct rq_flags *rf);
1531 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1532
1533 #ifdef CONFIG_SMP
1534 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1535 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1536
1537 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1538
1539 void (*set_cpus_allowed)(struct task_struct *p,
1540 const struct cpumask *newmask);
1541
1542 void (*rq_online)(struct rq *rq);
1543 void (*rq_offline)(struct rq *rq);
1544 #endif
1545
1546 void (*set_curr_task)(struct rq *rq);
1547 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1548 void (*task_fork)(struct task_struct *p);
1549 void (*task_dead)(struct task_struct *p);
1550
1551 /*
1552 * The switched_from() call is allowed to drop rq->lock, therefore we
1553 * cannot assume the switched_from/switched_to pair is serliazed by
1554 * rq->lock. They are however serialized by p->pi_lock.
1555 */
1556 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1557 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1558 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1559 int oldprio);
1560
1561 unsigned int (*get_rr_interval)(struct rq *rq,
1562 struct task_struct *task);
1563
1564 void (*update_curr)(struct rq *rq);
1565
1566 #define TASK_SET_GROUP 0
1567 #define TASK_MOVE_GROUP 1
1568
1569 #ifdef CONFIG_FAIR_GROUP_SCHED
1570 void (*task_change_group)(struct task_struct *p, int type);
1571 #endif
1572 };
1573
1574 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1575 {
1576 prev->sched_class->put_prev_task(rq, prev);
1577 }
1578
1579 static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1580 {
1581 curr->sched_class->set_curr_task(rq);
1582 }
1583
1584 #ifdef CONFIG_SMP
1585 #define sched_class_highest (&stop_sched_class)
1586 #else
1587 #define sched_class_highest (&dl_sched_class)
1588 #endif
1589 #define for_each_class(class) \
1590 for (class = sched_class_highest; class; class = class->next)
1591
1592 extern const struct sched_class stop_sched_class;
1593 extern const struct sched_class dl_sched_class;
1594 extern const struct sched_class rt_sched_class;
1595 extern const struct sched_class fair_sched_class;
1596 extern const struct sched_class idle_sched_class;
1597
1598
1599 #ifdef CONFIG_SMP
1600
1601 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1602
1603 extern void trigger_load_balance(struct rq *rq);
1604
1605 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1606
1607 #endif
1608
1609 #ifdef CONFIG_CPU_IDLE
1610 static inline void idle_set_state(struct rq *rq,
1611 struct cpuidle_state *idle_state)
1612 {
1613 rq->idle_state = idle_state;
1614 }
1615
1616 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1617 {
1618 SCHED_WARN_ON(!rcu_read_lock_held());
1619
1620 return rq->idle_state;
1621 }
1622 #else
1623 static inline void idle_set_state(struct rq *rq,
1624 struct cpuidle_state *idle_state)
1625 {
1626 }
1627
1628 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1629 {
1630 return NULL;
1631 }
1632 #endif
1633
1634 extern void schedule_idle(void);
1635
1636 extern void sysrq_sched_debug_show(void);
1637 extern void sched_init_granularity(void);
1638 extern void update_max_interval(void);
1639
1640 extern void init_sched_dl_class(void);
1641 extern void init_sched_rt_class(void);
1642 extern void init_sched_fair_class(void);
1643
1644 extern void reweight_task(struct task_struct *p, int prio);
1645
1646 extern void resched_curr(struct rq *rq);
1647 extern void resched_cpu(int cpu);
1648
1649 extern struct rt_bandwidth def_rt_bandwidth;
1650 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1651
1652 extern struct dl_bandwidth def_dl_bandwidth;
1653 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1654 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1655 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1656 extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
1657
1658 #define BW_SHIFT 20
1659 #define BW_UNIT (1 << BW_SHIFT)
1660 #define RATIO_SHIFT 8
1661 unsigned long to_ratio(u64 period, u64 runtime);
1662
1663 extern void init_entity_runnable_average(struct sched_entity *se);
1664 extern void post_init_entity_util_avg(struct sched_entity *se);
1665
1666 #ifdef CONFIG_NO_HZ_FULL
1667 extern bool sched_can_stop_tick(struct rq *rq);
1668 extern int __init sched_tick_offload_init(void);
1669
1670 /*
1671 * Tick may be needed by tasks in the runqueue depending on their policy and
1672 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1673 * nohz mode if necessary.
1674 */
1675 static inline void sched_update_tick_dependency(struct rq *rq)
1676 {
1677 int cpu;
1678
1679 if (!tick_nohz_full_enabled())
1680 return;
1681
1682 cpu = cpu_of(rq);
1683
1684 if (!tick_nohz_full_cpu(cpu))
1685 return;
1686
1687 if (sched_can_stop_tick(rq))
1688 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1689 else
1690 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1691 }
1692 #else
1693 static inline int sched_tick_offload_init(void) { return 0; }
1694 static inline void sched_update_tick_dependency(struct rq *rq) { }
1695 #endif
1696
1697 static inline void add_nr_running(struct rq *rq, unsigned count)
1698 {
1699 unsigned prev_nr = rq->nr_running;
1700
1701 rq->nr_running = prev_nr + count;
1702
1703 if (prev_nr < 2 && rq->nr_running >= 2) {
1704 #ifdef CONFIG_SMP
1705 if (!READ_ONCE(rq->rd->overload))
1706 WRITE_ONCE(rq->rd->overload, 1);
1707 #endif
1708 }
1709
1710 sched_update_tick_dependency(rq);
1711 }
1712
1713 static inline void sub_nr_running(struct rq *rq, unsigned count)
1714 {
1715 rq->nr_running -= count;
1716 /* Check if we still need preemption */
1717 sched_update_tick_dependency(rq);
1718 }
1719
1720 extern void update_rq_clock(struct rq *rq);
1721
1722 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1723 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1724
1725 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1726
1727 extern const_debug unsigned int sysctl_sched_nr_migrate;
1728 extern const_debug unsigned int sysctl_sched_migration_cost;
1729
1730 #ifdef CONFIG_SCHED_HRTICK
1731
1732 /*
1733 * Use hrtick when:
1734 * - enabled by features
1735 * - hrtimer is actually high res
1736 */
1737 static inline int hrtick_enabled(struct rq *rq)
1738 {
1739 if (!sched_feat(HRTICK))
1740 return 0;
1741 if (!cpu_active(cpu_of(rq)))
1742 return 0;
1743 return hrtimer_is_hres_active(&rq->hrtick_timer);
1744 }
1745
1746 void hrtick_start(struct rq *rq, u64 delay);
1747
1748 #else
1749
1750 static inline int hrtick_enabled(struct rq *rq)
1751 {
1752 return 0;
1753 }
1754
1755 #endif /* CONFIG_SCHED_HRTICK */
1756
1757 #ifndef arch_scale_freq_capacity
1758 static __always_inline
1759 unsigned long arch_scale_freq_capacity(int cpu)
1760 {
1761 return SCHED_CAPACITY_SCALE;
1762 }
1763 #endif
1764
1765 #ifdef CONFIG_SMP
1766 #ifndef arch_scale_cpu_capacity
1767 static __always_inline
1768 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1769 {
1770 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1771 return sd->smt_gain / sd->span_weight;
1772
1773 return SCHED_CAPACITY_SCALE;
1774 }
1775 #endif
1776 #else
1777 #ifndef arch_scale_cpu_capacity
1778 static __always_inline
1779 unsigned long arch_scale_cpu_capacity(void __always_unused *sd, int cpu)
1780 {
1781 return SCHED_CAPACITY_SCALE;
1782 }
1783 #endif
1784 #endif
1785
1786 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1787 __acquires(rq->lock);
1788
1789 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1790 __acquires(p->pi_lock)
1791 __acquires(rq->lock);
1792
1793 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1794 __releases(rq->lock)
1795 {
1796 rq_unpin_lock(rq, rf);
1797 raw_spin_unlock(&rq->lock);
1798 }
1799
1800 static inline void
1801 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1802 __releases(rq->lock)
1803 __releases(p->pi_lock)
1804 {
1805 rq_unpin_lock(rq, rf);
1806 raw_spin_unlock(&rq->lock);
1807 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1808 }
1809
1810 static inline void
1811 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1812 __acquires(rq->lock)
1813 {
1814 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1815 rq_pin_lock(rq, rf);
1816 }
1817
1818 static inline void
1819 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1820 __acquires(rq->lock)
1821 {
1822 raw_spin_lock_irq(&rq->lock);
1823 rq_pin_lock(rq, rf);
1824 }
1825
1826 static inline void
1827 rq_lock(struct rq *rq, struct rq_flags *rf)
1828 __acquires(rq->lock)
1829 {
1830 raw_spin_lock(&rq->lock);
1831 rq_pin_lock(rq, rf);
1832 }
1833
1834 static inline void
1835 rq_relock(struct rq *rq, struct rq_flags *rf)
1836 __acquires(rq->lock)
1837 {
1838 raw_spin_lock(&rq->lock);
1839 rq_repin_lock(rq, rf);
1840 }
1841
1842 static inline void
1843 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1844 __releases(rq->lock)
1845 {
1846 rq_unpin_lock(rq, rf);
1847 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1848 }
1849
1850 static inline void
1851 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1852 __releases(rq->lock)
1853 {
1854 rq_unpin_lock(rq, rf);
1855 raw_spin_unlock_irq(&rq->lock);
1856 }
1857
1858 static inline void
1859 rq_unlock(struct rq *rq, struct rq_flags *rf)
1860 __releases(rq->lock)
1861 {
1862 rq_unpin_lock(rq, rf);
1863 raw_spin_unlock(&rq->lock);
1864 }
1865
1866 #ifdef CONFIG_SMP
1867 #ifdef CONFIG_PREEMPT
1868
1869 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1870
1871 /*
1872 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1873 * way at the expense of forcing extra atomic operations in all
1874 * invocations. This assures that the double_lock is acquired using the
1875 * same underlying policy as the spinlock_t on this architecture, which
1876 * reduces latency compared to the unfair variant below. However, it
1877 * also adds more overhead and therefore may reduce throughput.
1878 */
1879 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1880 __releases(this_rq->lock)
1881 __acquires(busiest->lock)
1882 __acquires(this_rq->lock)
1883 {
1884 raw_spin_unlock(&this_rq->lock);
1885 double_rq_lock(this_rq, busiest);
1886
1887 return 1;
1888 }
1889
1890 #else
1891 /*
1892 * Unfair double_lock_balance: Optimizes throughput at the expense of
1893 * latency by eliminating extra atomic operations when the locks are
1894 * already in proper order on entry. This favors lower CPU-ids and will
1895 * grant the double lock to lower CPUs over higher ids under contention,
1896 * regardless of entry order into the function.
1897 */
1898 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1899 __releases(this_rq->lock)
1900 __acquires(busiest->lock)
1901 __acquires(this_rq->lock)
1902 {
1903 int ret = 0;
1904
1905 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1906 if (busiest < this_rq) {
1907 raw_spin_unlock(&this_rq->lock);
1908 raw_spin_lock(&busiest->lock);
1909 raw_spin_lock_nested(&this_rq->lock,
1910 SINGLE_DEPTH_NESTING);
1911 ret = 1;
1912 } else
1913 raw_spin_lock_nested(&busiest->lock,
1914 SINGLE_DEPTH_NESTING);
1915 }
1916 return ret;
1917 }
1918
1919 #endif /* CONFIG_PREEMPT */
1920
1921 /*
1922 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1923 */
1924 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1925 {
1926 if (unlikely(!irqs_disabled())) {
1927 /* printk() doesn't work well under rq->lock */
1928 raw_spin_unlock(&this_rq->lock);
1929 BUG_ON(1);
1930 }
1931
1932 return _double_lock_balance(this_rq, busiest);
1933 }
1934
1935 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1936 __releases(busiest->lock)
1937 {
1938 raw_spin_unlock(&busiest->lock);
1939 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1940 }
1941
1942 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1943 {
1944 if (l1 > l2)
1945 swap(l1, l2);
1946
1947 spin_lock(l1);
1948 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1949 }
1950
1951 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1952 {
1953 if (l1 > l2)
1954 swap(l1, l2);
1955
1956 spin_lock_irq(l1);
1957 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1958 }
1959
1960 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1961 {
1962 if (l1 > l2)
1963 swap(l1, l2);
1964
1965 raw_spin_lock(l1);
1966 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1967 }
1968
1969 /*
1970 * double_rq_lock - safely lock two runqueues
1971 *
1972 * Note this does not disable interrupts like task_rq_lock,
1973 * you need to do so manually before calling.
1974 */
1975 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1976 __acquires(rq1->lock)
1977 __acquires(rq2->lock)
1978 {
1979 BUG_ON(!irqs_disabled());
1980 if (rq1 == rq2) {
1981 raw_spin_lock(&rq1->lock);
1982 __acquire(rq2->lock); /* Fake it out ;) */
1983 } else {
1984 if (rq1 < rq2) {
1985 raw_spin_lock(&rq1->lock);
1986 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1987 } else {
1988 raw_spin_lock(&rq2->lock);
1989 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1990 }
1991 }
1992 }
1993
1994 /*
1995 * double_rq_unlock - safely unlock two runqueues
1996 *
1997 * Note this does not restore interrupts like task_rq_unlock,
1998 * you need to do so manually after calling.
1999 */
2000 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2001 __releases(rq1->lock)
2002 __releases(rq2->lock)
2003 {
2004 raw_spin_unlock(&rq1->lock);
2005 if (rq1 != rq2)
2006 raw_spin_unlock(&rq2->lock);
2007 else
2008 __release(rq2->lock);
2009 }
2010
2011 extern void set_rq_online (struct rq *rq);
2012 extern void set_rq_offline(struct rq *rq);
2013 extern bool sched_smp_initialized;
2014
2015 #else /* CONFIG_SMP */
2016
2017 /*
2018 * double_rq_lock - safely lock two runqueues
2019 *
2020 * Note this does not disable interrupts like task_rq_lock,
2021 * you need to do so manually before calling.
2022 */
2023 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2024 __acquires(rq1->lock)
2025 __acquires(rq2->lock)
2026 {
2027 BUG_ON(!irqs_disabled());
2028 BUG_ON(rq1 != rq2);
2029 raw_spin_lock(&rq1->lock);
2030 __acquire(rq2->lock); /* Fake it out ;) */
2031 }
2032
2033 /*
2034 * double_rq_unlock - safely unlock two runqueues
2035 *
2036 * Note this does not restore interrupts like task_rq_unlock,
2037 * you need to do so manually after calling.
2038 */
2039 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2040 __releases(rq1->lock)
2041 __releases(rq2->lock)
2042 {
2043 BUG_ON(rq1 != rq2);
2044 raw_spin_unlock(&rq1->lock);
2045 __release(rq2->lock);
2046 }
2047
2048 #endif
2049
2050 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2051 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2052
2053 #ifdef CONFIG_SCHED_DEBUG
2054 extern bool sched_debug_enabled;
2055
2056 extern void print_cfs_stats(struct seq_file *m, int cpu);
2057 extern void print_rt_stats(struct seq_file *m, int cpu);
2058 extern void print_dl_stats(struct seq_file *m, int cpu);
2059 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2060 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2061 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2062 #ifdef CONFIG_NUMA_BALANCING
2063 extern void
2064 show_numa_stats(struct task_struct *p, struct seq_file *m);
2065 extern void
2066 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2067 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2068 #endif /* CONFIG_NUMA_BALANCING */
2069 #endif /* CONFIG_SCHED_DEBUG */
2070
2071 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2072 extern void init_rt_rq(struct rt_rq *rt_rq);
2073 extern void init_dl_rq(struct dl_rq *dl_rq);
2074
2075 extern void cfs_bandwidth_usage_inc(void);
2076 extern void cfs_bandwidth_usage_dec(void);
2077
2078 #ifdef CONFIG_NO_HZ_COMMON
2079 #define NOHZ_BALANCE_KICK_BIT 0
2080 #define NOHZ_STATS_KICK_BIT 1
2081
2082 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
2083 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2084
2085 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2086
2087 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
2088
2089 extern void nohz_balance_exit_idle(struct rq *rq);
2090 #else
2091 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2092 #endif
2093
2094
2095 #ifdef CONFIG_SMP
2096 static inline
2097 void __dl_update(struct dl_bw *dl_b, s64 bw)
2098 {
2099 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2100 int i;
2101
2102 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2103 "sched RCU must be held");
2104 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2105 struct rq *rq = cpu_rq(i);
2106
2107 rq->dl.extra_bw += bw;
2108 }
2109 }
2110 #else
2111 static inline
2112 void __dl_update(struct dl_bw *dl_b, s64 bw)
2113 {
2114 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2115
2116 dl->extra_bw += bw;
2117 }
2118 #endif
2119
2120
2121 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2122 struct irqtime {
2123 u64 total;
2124 u64 tick_delta;
2125 u64 irq_start_time;
2126 struct u64_stats_sync sync;
2127 };
2128
2129 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2130
2131 /*
2132 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2133 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2134 * and never move forward.
2135 */
2136 static inline u64 irq_time_read(int cpu)
2137 {
2138 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2139 unsigned int seq;
2140 u64 total;
2141
2142 do {
2143 seq = __u64_stats_fetch_begin(&irqtime->sync);
2144 total = irqtime->total;
2145 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2146
2147 return total;
2148 }
2149 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2150
2151 #ifdef CONFIG_CPU_FREQ
2152 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
2153
2154 /**
2155 * cpufreq_update_util - Take a note about CPU utilization changes.
2156 * @rq: Runqueue to carry out the update for.
2157 * @flags: Update reason flags.
2158 *
2159 * This function is called by the scheduler on the CPU whose utilization is
2160 * being updated.
2161 *
2162 * It can only be called from RCU-sched read-side critical sections.
2163 *
2164 * The way cpufreq is currently arranged requires it to evaluate the CPU
2165 * performance state (frequency/voltage) on a regular basis to prevent it from
2166 * being stuck in a completely inadequate performance level for too long.
2167 * That is not guaranteed to happen if the updates are only triggered from CFS
2168 * and DL, though, because they may not be coming in if only RT tasks are
2169 * active all the time (or there are RT tasks only).
2170 *
2171 * As a workaround for that issue, this function is called periodically by the
2172 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2173 * but that really is a band-aid. Going forward it should be replaced with
2174 * solutions targeted more specifically at RT tasks.
2175 */
2176 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2177 {
2178 struct update_util_data *data;
2179
2180 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2181 cpu_of(rq)));
2182 if (data)
2183 data->func(data, rq_clock(rq), flags);
2184 }
2185 #else
2186 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2187 #endif /* CONFIG_CPU_FREQ */
2188
2189 #ifdef arch_scale_freq_capacity
2190 # ifndef arch_scale_freq_invariant
2191 # define arch_scale_freq_invariant() true
2192 # endif
2193 #else
2194 # define arch_scale_freq_invariant() false
2195 #endif
2196
2197 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2198 static inline unsigned long cpu_bw_dl(struct rq *rq)
2199 {
2200 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2201 }
2202
2203 static inline unsigned long cpu_util_dl(struct rq *rq)
2204 {
2205 return READ_ONCE(rq->avg_dl.util_avg);
2206 }
2207
2208 static inline unsigned long cpu_util_cfs(struct rq *rq)
2209 {
2210 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2211
2212 if (sched_feat(UTIL_EST)) {
2213 util = max_t(unsigned long, util,
2214 READ_ONCE(rq->cfs.avg.util_est.enqueued));
2215 }
2216
2217 return util;
2218 }
2219
2220 static inline unsigned long cpu_util_rt(struct rq *rq)
2221 {
2222 return READ_ONCE(rq->avg_rt.util_avg);
2223 }
2224 #endif
2225
2226 #ifdef HAVE_SCHED_AVG_IRQ
2227 static inline unsigned long cpu_util_irq(struct rq *rq)
2228 {
2229 return rq->avg_irq.util_avg;
2230 }
2231
2232 static inline
2233 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2234 {
2235 util *= (max - irq);
2236 util /= max;
2237
2238 return util;
2239
2240 }
2241 #else
2242 static inline unsigned long cpu_util_irq(struct rq *rq)
2243 {
2244 return 0;
2245 }
2246
2247 static inline
2248 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2249 {
2250 return util;
2251 }
2252 #endif