]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - kernel/sched/topology.c
Linux 4.20.17
[thirdparty/kernel/stable.git] / kernel / sched / topology.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Scheduler topology setup/handling methods
4 */
5 #include "sched.h"
6
7 DEFINE_MUTEX(sched_domains_mutex);
8
9 /* Protected by sched_domains_mutex: */
10 static cpumask_var_t sched_domains_tmpmask;
11 static cpumask_var_t sched_domains_tmpmask2;
12
13 #ifdef CONFIG_SCHED_DEBUG
14
15 static int __init sched_debug_setup(char *str)
16 {
17 sched_debug_enabled = true;
18
19 return 0;
20 }
21 early_param("sched_debug", sched_debug_setup);
22
23 static inline bool sched_debug(void)
24 {
25 return sched_debug_enabled;
26 }
27
28 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
29 struct cpumask *groupmask)
30 {
31 struct sched_group *group = sd->groups;
32
33 cpumask_clear(groupmask);
34
35 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
36
37 if (!(sd->flags & SD_LOAD_BALANCE)) {
38 printk("does not load-balance\n");
39 if (sd->parent)
40 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
41 return -1;
42 }
43
44 printk(KERN_CONT "span=%*pbl level=%s\n",
45 cpumask_pr_args(sched_domain_span(sd)), sd->name);
46
47 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
48 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
49 }
50 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
51 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
52 }
53
54 printk(KERN_DEBUG "%*s groups:", level + 1, "");
55 do {
56 if (!group) {
57 printk("\n");
58 printk(KERN_ERR "ERROR: group is NULL\n");
59 break;
60 }
61
62 if (!cpumask_weight(sched_group_span(group))) {
63 printk(KERN_CONT "\n");
64 printk(KERN_ERR "ERROR: empty group\n");
65 break;
66 }
67
68 if (!(sd->flags & SD_OVERLAP) &&
69 cpumask_intersects(groupmask, sched_group_span(group))) {
70 printk(KERN_CONT "\n");
71 printk(KERN_ERR "ERROR: repeated CPUs\n");
72 break;
73 }
74
75 cpumask_or(groupmask, groupmask, sched_group_span(group));
76
77 printk(KERN_CONT " %d:{ span=%*pbl",
78 group->sgc->id,
79 cpumask_pr_args(sched_group_span(group)));
80
81 if ((sd->flags & SD_OVERLAP) &&
82 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
83 printk(KERN_CONT " mask=%*pbl",
84 cpumask_pr_args(group_balance_mask(group)));
85 }
86
87 if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
88 printk(KERN_CONT " cap=%lu", group->sgc->capacity);
89
90 if (group == sd->groups && sd->child &&
91 !cpumask_equal(sched_domain_span(sd->child),
92 sched_group_span(group))) {
93 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
94 }
95
96 printk(KERN_CONT " }");
97
98 group = group->next;
99
100 if (group != sd->groups)
101 printk(KERN_CONT ",");
102
103 } while (group != sd->groups);
104 printk(KERN_CONT "\n");
105
106 if (!cpumask_equal(sched_domain_span(sd), groupmask))
107 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
108
109 if (sd->parent &&
110 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
111 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
112 return 0;
113 }
114
115 static void sched_domain_debug(struct sched_domain *sd, int cpu)
116 {
117 int level = 0;
118
119 if (!sched_debug_enabled)
120 return;
121
122 if (!sd) {
123 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
124 return;
125 }
126
127 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
128
129 for (;;) {
130 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
131 break;
132 level++;
133 sd = sd->parent;
134 if (!sd)
135 break;
136 }
137 }
138 #else /* !CONFIG_SCHED_DEBUG */
139
140 # define sched_debug_enabled 0
141 # define sched_domain_debug(sd, cpu) do { } while (0)
142 static inline bool sched_debug(void)
143 {
144 return false;
145 }
146 #endif /* CONFIG_SCHED_DEBUG */
147
148 static int sd_degenerate(struct sched_domain *sd)
149 {
150 if (cpumask_weight(sched_domain_span(sd)) == 1)
151 return 1;
152
153 /* Following flags need at least 2 groups */
154 if (sd->flags & (SD_LOAD_BALANCE |
155 SD_BALANCE_NEWIDLE |
156 SD_BALANCE_FORK |
157 SD_BALANCE_EXEC |
158 SD_SHARE_CPUCAPACITY |
159 SD_ASYM_CPUCAPACITY |
160 SD_SHARE_PKG_RESOURCES |
161 SD_SHARE_POWERDOMAIN)) {
162 if (sd->groups != sd->groups->next)
163 return 0;
164 }
165
166 /* Following flags don't use groups */
167 if (sd->flags & (SD_WAKE_AFFINE))
168 return 0;
169
170 return 1;
171 }
172
173 static int
174 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
175 {
176 unsigned long cflags = sd->flags, pflags = parent->flags;
177
178 if (sd_degenerate(parent))
179 return 1;
180
181 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
182 return 0;
183
184 /* Flags needing groups don't count if only 1 group in parent */
185 if (parent->groups == parent->groups->next) {
186 pflags &= ~(SD_LOAD_BALANCE |
187 SD_BALANCE_NEWIDLE |
188 SD_BALANCE_FORK |
189 SD_BALANCE_EXEC |
190 SD_ASYM_CPUCAPACITY |
191 SD_SHARE_CPUCAPACITY |
192 SD_SHARE_PKG_RESOURCES |
193 SD_PREFER_SIBLING |
194 SD_SHARE_POWERDOMAIN);
195 if (nr_node_ids == 1)
196 pflags &= ~SD_SERIALIZE;
197 }
198 if (~cflags & pflags)
199 return 0;
200
201 return 1;
202 }
203
204 static void free_rootdomain(struct rcu_head *rcu)
205 {
206 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
207
208 cpupri_cleanup(&rd->cpupri);
209 cpudl_cleanup(&rd->cpudl);
210 free_cpumask_var(rd->dlo_mask);
211 free_cpumask_var(rd->rto_mask);
212 free_cpumask_var(rd->online);
213 free_cpumask_var(rd->span);
214 kfree(rd);
215 }
216
217 void rq_attach_root(struct rq *rq, struct root_domain *rd)
218 {
219 struct root_domain *old_rd = NULL;
220 unsigned long flags;
221
222 raw_spin_lock_irqsave(&rq->lock, flags);
223
224 if (rq->rd) {
225 old_rd = rq->rd;
226
227 if (cpumask_test_cpu(rq->cpu, old_rd->online))
228 set_rq_offline(rq);
229
230 cpumask_clear_cpu(rq->cpu, old_rd->span);
231
232 /*
233 * If we dont want to free the old_rd yet then
234 * set old_rd to NULL to skip the freeing later
235 * in this function:
236 */
237 if (!atomic_dec_and_test(&old_rd->refcount))
238 old_rd = NULL;
239 }
240
241 atomic_inc(&rd->refcount);
242 rq->rd = rd;
243
244 cpumask_set_cpu(rq->cpu, rd->span);
245 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
246 set_rq_online(rq);
247
248 raw_spin_unlock_irqrestore(&rq->lock, flags);
249
250 if (old_rd)
251 call_rcu_sched(&old_rd->rcu, free_rootdomain);
252 }
253
254 void sched_get_rd(struct root_domain *rd)
255 {
256 atomic_inc(&rd->refcount);
257 }
258
259 void sched_put_rd(struct root_domain *rd)
260 {
261 if (!atomic_dec_and_test(&rd->refcount))
262 return;
263
264 call_rcu_sched(&rd->rcu, free_rootdomain);
265 }
266
267 static int init_rootdomain(struct root_domain *rd)
268 {
269 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
270 goto out;
271 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
272 goto free_span;
273 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
274 goto free_online;
275 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
276 goto free_dlo_mask;
277
278 #ifdef HAVE_RT_PUSH_IPI
279 rd->rto_cpu = -1;
280 raw_spin_lock_init(&rd->rto_lock);
281 init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
282 #endif
283
284 init_dl_bw(&rd->dl_bw);
285 if (cpudl_init(&rd->cpudl) != 0)
286 goto free_rto_mask;
287
288 if (cpupri_init(&rd->cpupri) != 0)
289 goto free_cpudl;
290 return 0;
291
292 free_cpudl:
293 cpudl_cleanup(&rd->cpudl);
294 free_rto_mask:
295 free_cpumask_var(rd->rto_mask);
296 free_dlo_mask:
297 free_cpumask_var(rd->dlo_mask);
298 free_online:
299 free_cpumask_var(rd->online);
300 free_span:
301 free_cpumask_var(rd->span);
302 out:
303 return -ENOMEM;
304 }
305
306 /*
307 * By default the system creates a single root-domain with all CPUs as
308 * members (mimicking the global state we have today).
309 */
310 struct root_domain def_root_domain;
311
312 void init_defrootdomain(void)
313 {
314 init_rootdomain(&def_root_domain);
315
316 atomic_set(&def_root_domain.refcount, 1);
317 }
318
319 static struct root_domain *alloc_rootdomain(void)
320 {
321 struct root_domain *rd;
322
323 rd = kzalloc(sizeof(*rd), GFP_KERNEL);
324 if (!rd)
325 return NULL;
326
327 if (init_rootdomain(rd) != 0) {
328 kfree(rd);
329 return NULL;
330 }
331
332 return rd;
333 }
334
335 static void free_sched_groups(struct sched_group *sg, int free_sgc)
336 {
337 struct sched_group *tmp, *first;
338
339 if (!sg)
340 return;
341
342 first = sg;
343 do {
344 tmp = sg->next;
345
346 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
347 kfree(sg->sgc);
348
349 if (atomic_dec_and_test(&sg->ref))
350 kfree(sg);
351 sg = tmp;
352 } while (sg != first);
353 }
354
355 static void destroy_sched_domain(struct sched_domain *sd)
356 {
357 /*
358 * A normal sched domain may have multiple group references, an
359 * overlapping domain, having private groups, only one. Iterate,
360 * dropping group/capacity references, freeing where none remain.
361 */
362 free_sched_groups(sd->groups, 1);
363
364 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
365 kfree(sd->shared);
366 kfree(sd);
367 }
368
369 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
370 {
371 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
372
373 while (sd) {
374 struct sched_domain *parent = sd->parent;
375 destroy_sched_domain(sd);
376 sd = parent;
377 }
378 }
379
380 static void destroy_sched_domains(struct sched_domain *sd)
381 {
382 if (sd)
383 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
384 }
385
386 /*
387 * Keep a special pointer to the highest sched_domain that has
388 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
389 * allows us to avoid some pointer chasing select_idle_sibling().
390 *
391 * Also keep a unique ID per domain (we use the first CPU number in
392 * the cpumask of the domain), this allows us to quickly tell if
393 * two CPUs are in the same cache domain, see cpus_share_cache().
394 */
395 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
396 DEFINE_PER_CPU(int, sd_llc_size);
397 DEFINE_PER_CPU(int, sd_llc_id);
398 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
399 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
400 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
401 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
402
403 static void update_top_cache_domain(int cpu)
404 {
405 struct sched_domain_shared *sds = NULL;
406 struct sched_domain *sd;
407 int id = cpu;
408 int size = 1;
409
410 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
411 if (sd) {
412 id = cpumask_first(sched_domain_span(sd));
413 size = cpumask_weight(sched_domain_span(sd));
414 sds = sd->shared;
415 }
416
417 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
418 per_cpu(sd_llc_size, cpu) = size;
419 per_cpu(sd_llc_id, cpu) = id;
420 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
421
422 sd = lowest_flag_domain(cpu, SD_NUMA);
423 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
424
425 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
426 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
427 }
428
429 /*
430 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
431 * hold the hotplug lock.
432 */
433 static void
434 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
435 {
436 struct rq *rq = cpu_rq(cpu);
437 struct sched_domain *tmp;
438
439 /* Remove the sched domains which do not contribute to scheduling. */
440 for (tmp = sd; tmp; ) {
441 struct sched_domain *parent = tmp->parent;
442 if (!parent)
443 break;
444
445 if (sd_parent_degenerate(tmp, parent)) {
446 tmp->parent = parent->parent;
447 if (parent->parent)
448 parent->parent->child = tmp;
449 /*
450 * Transfer SD_PREFER_SIBLING down in case of a
451 * degenerate parent; the spans match for this
452 * so the property transfers.
453 */
454 if (parent->flags & SD_PREFER_SIBLING)
455 tmp->flags |= SD_PREFER_SIBLING;
456 destroy_sched_domain(parent);
457 } else
458 tmp = tmp->parent;
459 }
460
461 if (sd && sd_degenerate(sd)) {
462 tmp = sd;
463 sd = sd->parent;
464 destroy_sched_domain(tmp);
465 if (sd)
466 sd->child = NULL;
467 }
468
469 sched_domain_debug(sd, cpu);
470
471 rq_attach_root(rq, rd);
472 tmp = rq->sd;
473 rcu_assign_pointer(rq->sd, sd);
474 dirty_sched_domain_sysctl(cpu);
475 destroy_sched_domains(tmp);
476
477 update_top_cache_domain(cpu);
478 }
479
480 struct s_data {
481 struct sched_domain ** __percpu sd;
482 struct root_domain *rd;
483 };
484
485 enum s_alloc {
486 sa_rootdomain,
487 sa_sd,
488 sa_sd_storage,
489 sa_none,
490 };
491
492 /*
493 * Return the canonical balance CPU for this group, this is the first CPU
494 * of this group that's also in the balance mask.
495 *
496 * The balance mask are all those CPUs that could actually end up at this
497 * group. See build_balance_mask().
498 *
499 * Also see should_we_balance().
500 */
501 int group_balance_cpu(struct sched_group *sg)
502 {
503 return cpumask_first(group_balance_mask(sg));
504 }
505
506
507 /*
508 * NUMA topology (first read the regular topology blurb below)
509 *
510 * Given a node-distance table, for example:
511 *
512 * node 0 1 2 3
513 * 0: 10 20 30 20
514 * 1: 20 10 20 30
515 * 2: 30 20 10 20
516 * 3: 20 30 20 10
517 *
518 * which represents a 4 node ring topology like:
519 *
520 * 0 ----- 1
521 * | |
522 * | |
523 * | |
524 * 3 ----- 2
525 *
526 * We want to construct domains and groups to represent this. The way we go
527 * about doing this is to build the domains on 'hops'. For each NUMA level we
528 * construct the mask of all nodes reachable in @level hops.
529 *
530 * For the above NUMA topology that gives 3 levels:
531 *
532 * NUMA-2 0-3 0-3 0-3 0-3
533 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
534 *
535 * NUMA-1 0-1,3 0-2 1-3 0,2-3
536 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
537 *
538 * NUMA-0 0 1 2 3
539 *
540 *
541 * As can be seen; things don't nicely line up as with the regular topology.
542 * When we iterate a domain in child domain chunks some nodes can be
543 * represented multiple times -- hence the "overlap" naming for this part of
544 * the topology.
545 *
546 * In order to minimize this overlap, we only build enough groups to cover the
547 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
548 *
549 * Because:
550 *
551 * - the first group of each domain is its child domain; this
552 * gets us the first 0-1,3
553 * - the only uncovered node is 2, who's child domain is 1-3.
554 *
555 * However, because of the overlap, computing a unique CPU for each group is
556 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
557 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
558 * end up at those groups (they would end up in group: 0-1,3).
559 *
560 * To correct this we have to introduce the group balance mask. This mask
561 * will contain those CPUs in the group that can reach this group given the
562 * (child) domain tree.
563 *
564 * With this we can once again compute balance_cpu and sched_group_capacity
565 * relations.
566 *
567 * XXX include words on how balance_cpu is unique and therefore can be
568 * used for sched_group_capacity links.
569 *
570 *
571 * Another 'interesting' topology is:
572 *
573 * node 0 1 2 3
574 * 0: 10 20 20 30
575 * 1: 20 10 20 20
576 * 2: 20 20 10 20
577 * 3: 30 20 20 10
578 *
579 * Which looks a little like:
580 *
581 * 0 ----- 1
582 * | / |
583 * | / |
584 * | / |
585 * 2 ----- 3
586 *
587 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
588 * are not.
589 *
590 * This leads to a few particularly weird cases where the sched_domain's are
591 * not of the same number for each CPU. Consider:
592 *
593 * NUMA-2 0-3 0-3
594 * groups: {0-2},{1-3} {1-3},{0-2}
595 *
596 * NUMA-1 0-2 0-3 0-3 1-3
597 *
598 * NUMA-0 0 1 2 3
599 *
600 */
601
602
603 /*
604 * Build the balance mask; it contains only those CPUs that can arrive at this
605 * group and should be considered to continue balancing.
606 *
607 * We do this during the group creation pass, therefore the group information
608 * isn't complete yet, however since each group represents a (child) domain we
609 * can fully construct this using the sched_domain bits (which are already
610 * complete).
611 */
612 static void
613 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
614 {
615 const struct cpumask *sg_span = sched_group_span(sg);
616 struct sd_data *sdd = sd->private;
617 struct sched_domain *sibling;
618 int i;
619
620 cpumask_clear(mask);
621
622 for_each_cpu(i, sg_span) {
623 sibling = *per_cpu_ptr(sdd->sd, i);
624
625 /*
626 * Can happen in the asymmetric case, where these siblings are
627 * unused. The mask will not be empty because those CPUs that
628 * do have the top domain _should_ span the domain.
629 */
630 if (!sibling->child)
631 continue;
632
633 /* If we would not end up here, we can't continue from here */
634 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
635 continue;
636
637 cpumask_set_cpu(i, mask);
638 }
639
640 /* We must not have empty masks here */
641 WARN_ON_ONCE(cpumask_empty(mask));
642 }
643
644 /*
645 * XXX: This creates per-node group entries; since the load-balancer will
646 * immediately access remote memory to construct this group's load-balance
647 * statistics having the groups node local is of dubious benefit.
648 */
649 static struct sched_group *
650 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
651 {
652 struct sched_group *sg;
653 struct cpumask *sg_span;
654
655 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
656 GFP_KERNEL, cpu_to_node(cpu));
657
658 if (!sg)
659 return NULL;
660
661 sg_span = sched_group_span(sg);
662 if (sd->child)
663 cpumask_copy(sg_span, sched_domain_span(sd->child));
664 else
665 cpumask_copy(sg_span, sched_domain_span(sd));
666
667 atomic_inc(&sg->ref);
668 return sg;
669 }
670
671 static void init_overlap_sched_group(struct sched_domain *sd,
672 struct sched_group *sg)
673 {
674 struct cpumask *mask = sched_domains_tmpmask2;
675 struct sd_data *sdd = sd->private;
676 struct cpumask *sg_span;
677 int cpu;
678
679 build_balance_mask(sd, sg, mask);
680 cpu = cpumask_first_and(sched_group_span(sg), mask);
681
682 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
683 if (atomic_inc_return(&sg->sgc->ref) == 1)
684 cpumask_copy(group_balance_mask(sg), mask);
685 else
686 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
687
688 /*
689 * Initialize sgc->capacity such that even if we mess up the
690 * domains and no possible iteration will get us here, we won't
691 * die on a /0 trap.
692 */
693 sg_span = sched_group_span(sg);
694 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
695 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
696 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
697 }
698
699 static int
700 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
701 {
702 struct sched_group *first = NULL, *last = NULL, *sg;
703 const struct cpumask *span = sched_domain_span(sd);
704 struct cpumask *covered = sched_domains_tmpmask;
705 struct sd_data *sdd = sd->private;
706 struct sched_domain *sibling;
707 int i;
708
709 cpumask_clear(covered);
710
711 for_each_cpu_wrap(i, span, cpu) {
712 struct cpumask *sg_span;
713
714 if (cpumask_test_cpu(i, covered))
715 continue;
716
717 sibling = *per_cpu_ptr(sdd->sd, i);
718
719 /*
720 * Asymmetric node setups can result in situations where the
721 * domain tree is of unequal depth, make sure to skip domains
722 * that already cover the entire range.
723 *
724 * In that case build_sched_domains() will have terminated the
725 * iteration early and our sibling sd spans will be empty.
726 * Domains should always include the CPU they're built on, so
727 * check that.
728 */
729 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
730 continue;
731
732 sg = build_group_from_child_sched_domain(sibling, cpu);
733 if (!sg)
734 goto fail;
735
736 sg_span = sched_group_span(sg);
737 cpumask_or(covered, covered, sg_span);
738
739 init_overlap_sched_group(sd, sg);
740
741 if (!first)
742 first = sg;
743 if (last)
744 last->next = sg;
745 last = sg;
746 last->next = first;
747 }
748 sd->groups = first;
749
750 return 0;
751
752 fail:
753 free_sched_groups(first, 0);
754
755 return -ENOMEM;
756 }
757
758
759 /*
760 * Package topology (also see the load-balance blurb in fair.c)
761 *
762 * The scheduler builds a tree structure to represent a number of important
763 * topology features. By default (default_topology[]) these include:
764 *
765 * - Simultaneous multithreading (SMT)
766 * - Multi-Core Cache (MC)
767 * - Package (DIE)
768 *
769 * Where the last one more or less denotes everything up to a NUMA node.
770 *
771 * The tree consists of 3 primary data structures:
772 *
773 * sched_domain -> sched_group -> sched_group_capacity
774 * ^ ^ ^ ^
775 * `-' `-'
776 *
777 * The sched_domains are per-CPU and have a two way link (parent & child) and
778 * denote the ever growing mask of CPUs belonging to that level of topology.
779 *
780 * Each sched_domain has a circular (double) linked list of sched_group's, each
781 * denoting the domains of the level below (or individual CPUs in case of the
782 * first domain level). The sched_group linked by a sched_domain includes the
783 * CPU of that sched_domain [*].
784 *
785 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
786 *
787 * CPU 0 1 2 3 4 5 6 7
788 *
789 * DIE [ ]
790 * MC [ ] [ ]
791 * SMT [ ] [ ] [ ] [ ]
792 *
793 * - or -
794 *
795 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
796 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
797 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
798 *
799 * CPU 0 1 2 3 4 5 6 7
800 *
801 * One way to think about it is: sched_domain moves you up and down among these
802 * topology levels, while sched_group moves you sideways through it, at child
803 * domain granularity.
804 *
805 * sched_group_capacity ensures each unique sched_group has shared storage.
806 *
807 * There are two related construction problems, both require a CPU that
808 * uniquely identify each group (for a given domain):
809 *
810 * - The first is the balance_cpu (see should_we_balance() and the
811 * load-balance blub in fair.c); for each group we only want 1 CPU to
812 * continue balancing at a higher domain.
813 *
814 * - The second is the sched_group_capacity; we want all identical groups
815 * to share a single sched_group_capacity.
816 *
817 * Since these topologies are exclusive by construction. That is, its
818 * impossible for an SMT thread to belong to multiple cores, and cores to
819 * be part of multiple caches. There is a very clear and unique location
820 * for each CPU in the hierarchy.
821 *
822 * Therefore computing a unique CPU for each group is trivial (the iteration
823 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
824 * group), we can simply pick the first CPU in each group.
825 *
826 *
827 * [*] in other words, the first group of each domain is its child domain.
828 */
829
830 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
831 {
832 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
833 struct sched_domain *child = sd->child;
834 struct sched_group *sg;
835
836 if (child)
837 cpu = cpumask_first(sched_domain_span(child));
838
839 sg = *per_cpu_ptr(sdd->sg, cpu);
840 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
841
842 /* For claim_allocations: */
843 atomic_inc(&sg->ref);
844 atomic_inc(&sg->sgc->ref);
845
846 if (child) {
847 cpumask_copy(sched_group_span(sg), sched_domain_span(child));
848 cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
849 } else {
850 cpumask_set_cpu(cpu, sched_group_span(sg));
851 cpumask_set_cpu(cpu, group_balance_mask(sg));
852 }
853
854 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
855 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
856 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
857
858 return sg;
859 }
860
861 /*
862 * build_sched_groups will build a circular linked list of the groups
863 * covered by the given span, and will set each group's ->cpumask correctly,
864 * and ->cpu_capacity to 0.
865 *
866 * Assumes the sched_domain tree is fully constructed
867 */
868 static int
869 build_sched_groups(struct sched_domain *sd, int cpu)
870 {
871 struct sched_group *first = NULL, *last = NULL;
872 struct sd_data *sdd = sd->private;
873 const struct cpumask *span = sched_domain_span(sd);
874 struct cpumask *covered;
875 int i;
876
877 lockdep_assert_held(&sched_domains_mutex);
878 covered = sched_domains_tmpmask;
879
880 cpumask_clear(covered);
881
882 for_each_cpu_wrap(i, span, cpu) {
883 struct sched_group *sg;
884
885 if (cpumask_test_cpu(i, covered))
886 continue;
887
888 sg = get_group(i, sdd);
889
890 cpumask_or(covered, covered, sched_group_span(sg));
891
892 if (!first)
893 first = sg;
894 if (last)
895 last->next = sg;
896 last = sg;
897 }
898 last->next = first;
899 sd->groups = first;
900
901 return 0;
902 }
903
904 /*
905 * Initialize sched groups cpu_capacity.
906 *
907 * cpu_capacity indicates the capacity of sched group, which is used while
908 * distributing the load between different sched groups in a sched domain.
909 * Typically cpu_capacity for all the groups in a sched domain will be same
910 * unless there are asymmetries in the topology. If there are asymmetries,
911 * group having more cpu_capacity will pickup more load compared to the
912 * group having less cpu_capacity.
913 */
914 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
915 {
916 struct sched_group *sg = sd->groups;
917
918 WARN_ON(!sg);
919
920 do {
921 int cpu, max_cpu = -1;
922
923 sg->group_weight = cpumask_weight(sched_group_span(sg));
924
925 if (!(sd->flags & SD_ASYM_PACKING))
926 goto next;
927
928 for_each_cpu(cpu, sched_group_span(sg)) {
929 if (max_cpu < 0)
930 max_cpu = cpu;
931 else if (sched_asym_prefer(cpu, max_cpu))
932 max_cpu = cpu;
933 }
934 sg->asym_prefer_cpu = max_cpu;
935
936 next:
937 sg = sg->next;
938 } while (sg != sd->groups);
939
940 if (cpu != group_balance_cpu(sg))
941 return;
942
943 update_group_capacity(sd, cpu);
944 }
945
946 /*
947 * Initializers for schedule domains
948 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
949 */
950
951 static int default_relax_domain_level = -1;
952 int sched_domain_level_max;
953
954 static int __init setup_relax_domain_level(char *str)
955 {
956 if (kstrtoint(str, 0, &default_relax_domain_level))
957 pr_warn("Unable to set relax_domain_level\n");
958
959 return 1;
960 }
961 __setup("relax_domain_level=", setup_relax_domain_level);
962
963 static void set_domain_attribute(struct sched_domain *sd,
964 struct sched_domain_attr *attr)
965 {
966 int request;
967
968 if (!attr || attr->relax_domain_level < 0) {
969 if (default_relax_domain_level < 0)
970 return;
971 else
972 request = default_relax_domain_level;
973 } else
974 request = attr->relax_domain_level;
975 if (request < sd->level) {
976 /* Turn off idle balance on this domain: */
977 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
978 } else {
979 /* Turn on idle balance on this domain: */
980 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
981 }
982 }
983
984 static void __sdt_free(const struct cpumask *cpu_map);
985 static int __sdt_alloc(const struct cpumask *cpu_map);
986
987 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
988 const struct cpumask *cpu_map)
989 {
990 switch (what) {
991 case sa_rootdomain:
992 if (!atomic_read(&d->rd->refcount))
993 free_rootdomain(&d->rd->rcu);
994 /* Fall through */
995 case sa_sd:
996 free_percpu(d->sd);
997 /* Fall through */
998 case sa_sd_storage:
999 __sdt_free(cpu_map);
1000 /* Fall through */
1001 case sa_none:
1002 break;
1003 }
1004 }
1005
1006 static enum s_alloc
1007 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1008 {
1009 memset(d, 0, sizeof(*d));
1010
1011 if (__sdt_alloc(cpu_map))
1012 return sa_sd_storage;
1013 d->sd = alloc_percpu(struct sched_domain *);
1014 if (!d->sd)
1015 return sa_sd_storage;
1016 d->rd = alloc_rootdomain();
1017 if (!d->rd)
1018 return sa_sd;
1019
1020 return sa_rootdomain;
1021 }
1022
1023 /*
1024 * NULL the sd_data elements we've used to build the sched_domain and
1025 * sched_group structure so that the subsequent __free_domain_allocs()
1026 * will not free the data we're using.
1027 */
1028 static void claim_allocations(int cpu, struct sched_domain *sd)
1029 {
1030 struct sd_data *sdd = sd->private;
1031
1032 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1033 *per_cpu_ptr(sdd->sd, cpu) = NULL;
1034
1035 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1036 *per_cpu_ptr(sdd->sds, cpu) = NULL;
1037
1038 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1039 *per_cpu_ptr(sdd->sg, cpu) = NULL;
1040
1041 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1042 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
1043 }
1044
1045 #ifdef CONFIG_NUMA
1046 enum numa_topology_type sched_numa_topology_type;
1047
1048 static int sched_domains_numa_levels;
1049 static int sched_domains_curr_level;
1050
1051 int sched_max_numa_distance;
1052 static int *sched_domains_numa_distance;
1053 static struct cpumask ***sched_domains_numa_masks;
1054 #endif
1055
1056 /*
1057 * SD_flags allowed in topology descriptions.
1058 *
1059 * These flags are purely descriptive of the topology and do not prescribe
1060 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1061 * function:
1062 *
1063 * SD_SHARE_CPUCAPACITY - describes SMT topologies
1064 * SD_SHARE_PKG_RESOURCES - describes shared caches
1065 * SD_NUMA - describes NUMA topologies
1066 * SD_SHARE_POWERDOMAIN - describes shared power domain
1067 *
1068 * Odd one out, which beside describing the topology has a quirk also
1069 * prescribes the desired behaviour that goes along with it:
1070 *
1071 * SD_ASYM_PACKING - describes SMT quirks
1072 */
1073 #define TOPOLOGY_SD_FLAGS \
1074 (SD_SHARE_CPUCAPACITY | \
1075 SD_SHARE_PKG_RESOURCES | \
1076 SD_NUMA | \
1077 SD_ASYM_PACKING | \
1078 SD_SHARE_POWERDOMAIN)
1079
1080 static struct sched_domain *
1081 sd_init(struct sched_domain_topology_level *tl,
1082 const struct cpumask *cpu_map,
1083 struct sched_domain *child, int dflags, int cpu)
1084 {
1085 struct sd_data *sdd = &tl->data;
1086 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1087 int sd_id, sd_weight, sd_flags = 0;
1088
1089 #ifdef CONFIG_NUMA
1090 /*
1091 * Ugly hack to pass state to sd_numa_mask()...
1092 */
1093 sched_domains_curr_level = tl->numa_level;
1094 #endif
1095
1096 sd_weight = cpumask_weight(tl->mask(cpu));
1097
1098 if (tl->sd_flags)
1099 sd_flags = (*tl->sd_flags)();
1100 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1101 "wrong sd_flags in topology description\n"))
1102 sd_flags &= ~TOPOLOGY_SD_FLAGS;
1103
1104 /* Apply detected topology flags */
1105 sd_flags |= dflags;
1106
1107 *sd = (struct sched_domain){
1108 .min_interval = sd_weight,
1109 .max_interval = 2*sd_weight,
1110 .busy_factor = 32,
1111 .imbalance_pct = 125,
1112
1113 .cache_nice_tries = 0,
1114 .busy_idx = 0,
1115 .idle_idx = 0,
1116 .newidle_idx = 0,
1117 .wake_idx = 0,
1118 .forkexec_idx = 0,
1119
1120 .flags = 1*SD_LOAD_BALANCE
1121 | 1*SD_BALANCE_NEWIDLE
1122 | 1*SD_BALANCE_EXEC
1123 | 1*SD_BALANCE_FORK
1124 | 0*SD_BALANCE_WAKE
1125 | 1*SD_WAKE_AFFINE
1126 | 0*SD_SHARE_CPUCAPACITY
1127 | 0*SD_SHARE_PKG_RESOURCES
1128 | 0*SD_SERIALIZE
1129 | 1*SD_PREFER_SIBLING
1130 | 0*SD_NUMA
1131 | sd_flags
1132 ,
1133
1134 .last_balance = jiffies,
1135 .balance_interval = sd_weight,
1136 .smt_gain = 0,
1137 .max_newidle_lb_cost = 0,
1138 .next_decay_max_lb_cost = jiffies,
1139 .child = child,
1140 #ifdef CONFIG_SCHED_DEBUG
1141 .name = tl->name,
1142 #endif
1143 };
1144
1145 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1146 sd_id = cpumask_first(sched_domain_span(sd));
1147
1148 /*
1149 * Convert topological properties into behaviour.
1150 */
1151
1152 if (sd->flags & SD_ASYM_CPUCAPACITY) {
1153 struct sched_domain *t = sd;
1154
1155 /*
1156 * Don't attempt to spread across CPUs of different capacities.
1157 */
1158 if (sd->child)
1159 sd->child->flags &= ~SD_PREFER_SIBLING;
1160
1161 for_each_lower_domain(t)
1162 t->flags |= SD_BALANCE_WAKE;
1163 }
1164
1165 if (sd->flags & SD_SHARE_CPUCAPACITY) {
1166 sd->imbalance_pct = 110;
1167 sd->smt_gain = 1178; /* ~15% */
1168
1169 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1170 sd->imbalance_pct = 117;
1171 sd->cache_nice_tries = 1;
1172 sd->busy_idx = 2;
1173
1174 #ifdef CONFIG_NUMA
1175 } else if (sd->flags & SD_NUMA) {
1176 sd->cache_nice_tries = 2;
1177 sd->busy_idx = 3;
1178 sd->idle_idx = 2;
1179
1180 sd->flags &= ~SD_PREFER_SIBLING;
1181 sd->flags |= SD_SERIALIZE;
1182 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
1183 sd->flags &= ~(SD_BALANCE_EXEC |
1184 SD_BALANCE_FORK |
1185 SD_WAKE_AFFINE);
1186 }
1187
1188 #endif
1189 } else {
1190 sd->cache_nice_tries = 1;
1191 sd->busy_idx = 2;
1192 sd->idle_idx = 1;
1193 }
1194
1195 /*
1196 * For all levels sharing cache; connect a sched_domain_shared
1197 * instance.
1198 */
1199 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1200 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1201 atomic_inc(&sd->shared->ref);
1202 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1203 }
1204
1205 sd->private = sdd;
1206
1207 return sd;
1208 }
1209
1210 /*
1211 * Topology list, bottom-up.
1212 */
1213 static struct sched_domain_topology_level default_topology[] = {
1214 #ifdef CONFIG_SCHED_SMT
1215 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1216 #endif
1217 #ifdef CONFIG_SCHED_MC
1218 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1219 #endif
1220 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1221 { NULL, },
1222 };
1223
1224 static struct sched_domain_topology_level *sched_domain_topology =
1225 default_topology;
1226
1227 #define for_each_sd_topology(tl) \
1228 for (tl = sched_domain_topology; tl->mask; tl++)
1229
1230 void set_sched_topology(struct sched_domain_topology_level *tl)
1231 {
1232 if (WARN_ON_ONCE(sched_smp_initialized))
1233 return;
1234
1235 sched_domain_topology = tl;
1236 }
1237
1238 #ifdef CONFIG_NUMA
1239
1240 static const struct cpumask *sd_numa_mask(int cpu)
1241 {
1242 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1243 }
1244
1245 static void sched_numa_warn(const char *str)
1246 {
1247 static int done = false;
1248 int i,j;
1249
1250 if (done)
1251 return;
1252
1253 done = true;
1254
1255 printk(KERN_WARNING "ERROR: %s\n\n", str);
1256
1257 for (i = 0; i < nr_node_ids; i++) {
1258 printk(KERN_WARNING " ");
1259 for (j = 0; j < nr_node_ids; j++)
1260 printk(KERN_CONT "%02d ", node_distance(i,j));
1261 printk(KERN_CONT "\n");
1262 }
1263 printk(KERN_WARNING "\n");
1264 }
1265
1266 bool find_numa_distance(int distance)
1267 {
1268 int i;
1269
1270 if (distance == node_distance(0, 0))
1271 return true;
1272
1273 for (i = 0; i < sched_domains_numa_levels; i++) {
1274 if (sched_domains_numa_distance[i] == distance)
1275 return true;
1276 }
1277
1278 return false;
1279 }
1280
1281 /*
1282 * A system can have three types of NUMA topology:
1283 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1284 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1285 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1286 *
1287 * The difference between a glueless mesh topology and a backplane
1288 * topology lies in whether communication between not directly
1289 * connected nodes goes through intermediary nodes (where programs
1290 * could run), or through backplane controllers. This affects
1291 * placement of programs.
1292 *
1293 * The type of topology can be discerned with the following tests:
1294 * - If the maximum distance between any nodes is 1 hop, the system
1295 * is directly connected.
1296 * - If for two nodes A and B, located N > 1 hops away from each other,
1297 * there is an intermediary node C, which is < N hops away from both
1298 * nodes A and B, the system is a glueless mesh.
1299 */
1300 static void init_numa_topology_type(void)
1301 {
1302 int a, b, c, n;
1303
1304 n = sched_max_numa_distance;
1305
1306 if (sched_domains_numa_levels <= 2) {
1307 sched_numa_topology_type = NUMA_DIRECT;
1308 return;
1309 }
1310
1311 for_each_online_node(a) {
1312 for_each_online_node(b) {
1313 /* Find two nodes furthest removed from each other. */
1314 if (node_distance(a, b) < n)
1315 continue;
1316
1317 /* Is there an intermediary node between a and b? */
1318 for_each_online_node(c) {
1319 if (node_distance(a, c) < n &&
1320 node_distance(b, c) < n) {
1321 sched_numa_topology_type =
1322 NUMA_GLUELESS_MESH;
1323 return;
1324 }
1325 }
1326
1327 sched_numa_topology_type = NUMA_BACKPLANE;
1328 return;
1329 }
1330 }
1331 }
1332
1333 void sched_init_numa(void)
1334 {
1335 int next_distance, curr_distance = node_distance(0, 0);
1336 struct sched_domain_topology_level *tl;
1337 int level = 0;
1338 int i, j, k;
1339
1340 sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL);
1341 if (!sched_domains_numa_distance)
1342 return;
1343
1344 /* Includes NUMA identity node at level 0. */
1345 sched_domains_numa_distance[level++] = curr_distance;
1346 sched_domains_numa_levels = level;
1347
1348 /*
1349 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1350 * unique distances in the node_distance() table.
1351 *
1352 * Assumes node_distance(0,j) includes all distances in
1353 * node_distance(i,j) in order to avoid cubic time.
1354 */
1355 next_distance = curr_distance;
1356 for (i = 0; i < nr_node_ids; i++) {
1357 for (j = 0; j < nr_node_ids; j++) {
1358 for (k = 0; k < nr_node_ids; k++) {
1359 int distance = node_distance(i, k);
1360
1361 if (distance > curr_distance &&
1362 (distance < next_distance ||
1363 next_distance == curr_distance))
1364 next_distance = distance;
1365
1366 /*
1367 * While not a strong assumption it would be nice to know
1368 * about cases where if node A is connected to B, B is not
1369 * equally connected to A.
1370 */
1371 if (sched_debug() && node_distance(k, i) != distance)
1372 sched_numa_warn("Node-distance not symmetric");
1373
1374 if (sched_debug() && i && !find_numa_distance(distance))
1375 sched_numa_warn("Node-0 not representative");
1376 }
1377 if (next_distance != curr_distance) {
1378 sched_domains_numa_distance[level++] = next_distance;
1379 sched_domains_numa_levels = level;
1380 curr_distance = next_distance;
1381 } else break;
1382 }
1383
1384 /*
1385 * In case of sched_debug() we verify the above assumption.
1386 */
1387 if (!sched_debug())
1388 break;
1389 }
1390
1391 /*
1392 * 'level' contains the number of unique distances
1393 *
1394 * The sched_domains_numa_distance[] array includes the actual distance
1395 * numbers.
1396 */
1397
1398 /*
1399 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1400 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1401 * the array will contain less then 'level' members. This could be
1402 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1403 * in other functions.
1404 *
1405 * We reset it to 'level' at the end of this function.
1406 */
1407 sched_domains_numa_levels = 0;
1408
1409 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1410 if (!sched_domains_numa_masks)
1411 return;
1412
1413 /*
1414 * Now for each level, construct a mask per node which contains all
1415 * CPUs of nodes that are that many hops away from us.
1416 */
1417 for (i = 0; i < level; i++) {
1418 sched_domains_numa_masks[i] =
1419 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1420 if (!sched_domains_numa_masks[i])
1421 return;
1422
1423 for (j = 0; j < nr_node_ids; j++) {
1424 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1425 if (!mask)
1426 return;
1427
1428 sched_domains_numa_masks[i][j] = mask;
1429
1430 for_each_node(k) {
1431 if (node_distance(j, k) > sched_domains_numa_distance[i])
1432 continue;
1433
1434 cpumask_or(mask, mask, cpumask_of_node(k));
1435 }
1436 }
1437 }
1438
1439 /* Compute default topology size */
1440 for (i = 0; sched_domain_topology[i].mask; i++);
1441
1442 tl = kzalloc((i + level + 1) *
1443 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1444 if (!tl)
1445 return;
1446
1447 /*
1448 * Copy the default topology bits..
1449 */
1450 for (i = 0; sched_domain_topology[i].mask; i++)
1451 tl[i] = sched_domain_topology[i];
1452
1453 /*
1454 * Add the NUMA identity distance, aka single NODE.
1455 */
1456 tl[i++] = (struct sched_domain_topology_level){
1457 .mask = sd_numa_mask,
1458 .numa_level = 0,
1459 SD_INIT_NAME(NODE)
1460 };
1461
1462 /*
1463 * .. and append 'j' levels of NUMA goodness.
1464 */
1465 for (j = 1; j < level; i++, j++) {
1466 tl[i] = (struct sched_domain_topology_level){
1467 .mask = sd_numa_mask,
1468 .sd_flags = cpu_numa_flags,
1469 .flags = SDTL_OVERLAP,
1470 .numa_level = j,
1471 SD_INIT_NAME(NUMA)
1472 };
1473 }
1474
1475 sched_domain_topology = tl;
1476
1477 sched_domains_numa_levels = level;
1478 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1479
1480 init_numa_topology_type();
1481 }
1482
1483 void sched_domains_numa_masks_set(unsigned int cpu)
1484 {
1485 int node = cpu_to_node(cpu);
1486 int i, j;
1487
1488 for (i = 0; i < sched_domains_numa_levels; i++) {
1489 for (j = 0; j < nr_node_ids; j++) {
1490 if (node_distance(j, node) <= sched_domains_numa_distance[i])
1491 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1492 }
1493 }
1494 }
1495
1496 void sched_domains_numa_masks_clear(unsigned int cpu)
1497 {
1498 int i, j;
1499
1500 for (i = 0; i < sched_domains_numa_levels; i++) {
1501 for (j = 0; j < nr_node_ids; j++)
1502 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1503 }
1504 }
1505
1506 #endif /* CONFIG_NUMA */
1507
1508 static int __sdt_alloc(const struct cpumask *cpu_map)
1509 {
1510 struct sched_domain_topology_level *tl;
1511 int j;
1512
1513 for_each_sd_topology(tl) {
1514 struct sd_data *sdd = &tl->data;
1515
1516 sdd->sd = alloc_percpu(struct sched_domain *);
1517 if (!sdd->sd)
1518 return -ENOMEM;
1519
1520 sdd->sds = alloc_percpu(struct sched_domain_shared *);
1521 if (!sdd->sds)
1522 return -ENOMEM;
1523
1524 sdd->sg = alloc_percpu(struct sched_group *);
1525 if (!sdd->sg)
1526 return -ENOMEM;
1527
1528 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1529 if (!sdd->sgc)
1530 return -ENOMEM;
1531
1532 for_each_cpu(j, cpu_map) {
1533 struct sched_domain *sd;
1534 struct sched_domain_shared *sds;
1535 struct sched_group *sg;
1536 struct sched_group_capacity *sgc;
1537
1538 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1539 GFP_KERNEL, cpu_to_node(j));
1540 if (!sd)
1541 return -ENOMEM;
1542
1543 *per_cpu_ptr(sdd->sd, j) = sd;
1544
1545 sds = kzalloc_node(sizeof(struct sched_domain_shared),
1546 GFP_KERNEL, cpu_to_node(j));
1547 if (!sds)
1548 return -ENOMEM;
1549
1550 *per_cpu_ptr(sdd->sds, j) = sds;
1551
1552 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1553 GFP_KERNEL, cpu_to_node(j));
1554 if (!sg)
1555 return -ENOMEM;
1556
1557 sg->next = sg;
1558
1559 *per_cpu_ptr(sdd->sg, j) = sg;
1560
1561 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1562 GFP_KERNEL, cpu_to_node(j));
1563 if (!sgc)
1564 return -ENOMEM;
1565
1566 #ifdef CONFIG_SCHED_DEBUG
1567 sgc->id = j;
1568 #endif
1569
1570 *per_cpu_ptr(sdd->sgc, j) = sgc;
1571 }
1572 }
1573
1574 return 0;
1575 }
1576
1577 static void __sdt_free(const struct cpumask *cpu_map)
1578 {
1579 struct sched_domain_topology_level *tl;
1580 int j;
1581
1582 for_each_sd_topology(tl) {
1583 struct sd_data *sdd = &tl->data;
1584
1585 for_each_cpu(j, cpu_map) {
1586 struct sched_domain *sd;
1587
1588 if (sdd->sd) {
1589 sd = *per_cpu_ptr(sdd->sd, j);
1590 if (sd && (sd->flags & SD_OVERLAP))
1591 free_sched_groups(sd->groups, 0);
1592 kfree(*per_cpu_ptr(sdd->sd, j));
1593 }
1594
1595 if (sdd->sds)
1596 kfree(*per_cpu_ptr(sdd->sds, j));
1597 if (sdd->sg)
1598 kfree(*per_cpu_ptr(sdd->sg, j));
1599 if (sdd->sgc)
1600 kfree(*per_cpu_ptr(sdd->sgc, j));
1601 }
1602 free_percpu(sdd->sd);
1603 sdd->sd = NULL;
1604 free_percpu(sdd->sds);
1605 sdd->sds = NULL;
1606 free_percpu(sdd->sg);
1607 sdd->sg = NULL;
1608 free_percpu(sdd->sgc);
1609 sdd->sgc = NULL;
1610 }
1611 }
1612
1613 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1614 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1615 struct sched_domain *child, int dflags, int cpu)
1616 {
1617 struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu);
1618
1619 if (child) {
1620 sd->level = child->level + 1;
1621 sched_domain_level_max = max(sched_domain_level_max, sd->level);
1622 child->parent = sd;
1623
1624 if (!cpumask_subset(sched_domain_span(child),
1625 sched_domain_span(sd))) {
1626 pr_err("BUG: arch topology borken\n");
1627 #ifdef CONFIG_SCHED_DEBUG
1628 pr_err(" the %s domain not a subset of the %s domain\n",
1629 child->name, sd->name);
1630 #endif
1631 /* Fixup, ensure @sd has at least @child CPUs. */
1632 cpumask_or(sched_domain_span(sd),
1633 sched_domain_span(sd),
1634 sched_domain_span(child));
1635 }
1636
1637 }
1638 set_domain_attribute(sd, attr);
1639
1640 return sd;
1641 }
1642
1643 /*
1644 * Find the sched_domain_topology_level where all CPU capacities are visible
1645 * for all CPUs.
1646 */
1647 static struct sched_domain_topology_level
1648 *asym_cpu_capacity_level(const struct cpumask *cpu_map)
1649 {
1650 int i, j, asym_level = 0;
1651 bool asym = false;
1652 struct sched_domain_topology_level *tl, *asym_tl = NULL;
1653 unsigned long cap;
1654
1655 /* Is there any asymmetry? */
1656 cap = arch_scale_cpu_capacity(NULL, cpumask_first(cpu_map));
1657
1658 for_each_cpu(i, cpu_map) {
1659 if (arch_scale_cpu_capacity(NULL, i) != cap) {
1660 asym = true;
1661 break;
1662 }
1663 }
1664
1665 if (!asym)
1666 return NULL;
1667
1668 /*
1669 * Examine topology from all CPU's point of views to detect the lowest
1670 * sched_domain_topology_level where a highest capacity CPU is visible
1671 * to everyone.
1672 */
1673 for_each_cpu(i, cpu_map) {
1674 unsigned long max_capacity = arch_scale_cpu_capacity(NULL, i);
1675 int tl_id = 0;
1676
1677 for_each_sd_topology(tl) {
1678 if (tl_id < asym_level)
1679 goto next_level;
1680
1681 for_each_cpu_and(j, tl->mask(i), cpu_map) {
1682 unsigned long capacity;
1683
1684 capacity = arch_scale_cpu_capacity(NULL, j);
1685
1686 if (capacity <= max_capacity)
1687 continue;
1688
1689 max_capacity = capacity;
1690 asym_level = tl_id;
1691 asym_tl = tl;
1692 }
1693 next_level:
1694 tl_id++;
1695 }
1696 }
1697
1698 return asym_tl;
1699 }
1700
1701
1702 /*
1703 * Build sched domains for a given set of CPUs and attach the sched domains
1704 * to the individual CPUs
1705 */
1706 static int
1707 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1708 {
1709 enum s_alloc alloc_state;
1710 struct sched_domain *sd;
1711 struct s_data d;
1712 struct rq *rq = NULL;
1713 int i, ret = -ENOMEM;
1714 struct sched_domain_topology_level *tl_asym;
1715 bool has_asym = false;
1716
1717 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1718 if (alloc_state != sa_rootdomain)
1719 goto error;
1720
1721 tl_asym = asym_cpu_capacity_level(cpu_map);
1722
1723 /* Set up domains for CPUs specified by the cpu_map: */
1724 for_each_cpu(i, cpu_map) {
1725 struct sched_domain_topology_level *tl;
1726
1727 sd = NULL;
1728 for_each_sd_topology(tl) {
1729 int dflags = 0;
1730
1731 if (tl == tl_asym) {
1732 dflags |= SD_ASYM_CPUCAPACITY;
1733 has_asym = true;
1734 }
1735
1736 sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i);
1737
1738 if (tl == sched_domain_topology)
1739 *per_cpu_ptr(d.sd, i) = sd;
1740 if (tl->flags & SDTL_OVERLAP)
1741 sd->flags |= SD_OVERLAP;
1742 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
1743 break;
1744 }
1745 }
1746
1747 /* Build the groups for the domains */
1748 for_each_cpu(i, cpu_map) {
1749 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1750 sd->span_weight = cpumask_weight(sched_domain_span(sd));
1751 if (sd->flags & SD_OVERLAP) {
1752 if (build_overlap_sched_groups(sd, i))
1753 goto error;
1754 } else {
1755 if (build_sched_groups(sd, i))
1756 goto error;
1757 }
1758 }
1759 }
1760
1761 /* Calculate CPU capacity for physical packages and nodes */
1762 for (i = nr_cpumask_bits-1; i >= 0; i--) {
1763 if (!cpumask_test_cpu(i, cpu_map))
1764 continue;
1765
1766 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1767 claim_allocations(i, sd);
1768 init_sched_groups_capacity(i, sd);
1769 }
1770 }
1771
1772 /* Attach the domains */
1773 rcu_read_lock();
1774 for_each_cpu(i, cpu_map) {
1775 rq = cpu_rq(i);
1776 sd = *per_cpu_ptr(d.sd, i);
1777
1778 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
1779 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
1780 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
1781
1782 cpu_attach_domain(sd, d.rd, i);
1783 }
1784 rcu_read_unlock();
1785
1786 if (has_asym)
1787 static_branch_enable_cpuslocked(&sched_asym_cpucapacity);
1788
1789 if (rq && sched_debug_enabled) {
1790 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
1791 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
1792 }
1793
1794 ret = 0;
1795 error:
1796 __free_domain_allocs(&d, alloc_state, cpu_map);
1797
1798 return ret;
1799 }
1800
1801 /* Current sched domains: */
1802 static cpumask_var_t *doms_cur;
1803
1804 /* Number of sched domains in 'doms_cur': */
1805 static int ndoms_cur;
1806
1807 /* Attribues of custom domains in 'doms_cur' */
1808 static struct sched_domain_attr *dattr_cur;
1809
1810 /*
1811 * Special case: If a kmalloc() of a doms_cur partition (array of
1812 * cpumask) fails, then fallback to a single sched domain,
1813 * as determined by the single cpumask fallback_doms.
1814 */
1815 static cpumask_var_t fallback_doms;
1816
1817 /*
1818 * arch_update_cpu_topology lets virtualized architectures update the
1819 * CPU core maps. It is supposed to return 1 if the topology changed
1820 * or 0 if it stayed the same.
1821 */
1822 int __weak arch_update_cpu_topology(void)
1823 {
1824 return 0;
1825 }
1826
1827 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
1828 {
1829 int i;
1830 cpumask_var_t *doms;
1831
1832 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
1833 if (!doms)
1834 return NULL;
1835 for (i = 0; i < ndoms; i++) {
1836 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
1837 free_sched_domains(doms, i);
1838 return NULL;
1839 }
1840 }
1841 return doms;
1842 }
1843
1844 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
1845 {
1846 unsigned int i;
1847 for (i = 0; i < ndoms; i++)
1848 free_cpumask_var(doms[i]);
1849 kfree(doms);
1850 }
1851
1852 /*
1853 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
1854 * For now this just excludes isolated CPUs, but could be used to
1855 * exclude other special cases in the future.
1856 */
1857 int sched_init_domains(const struct cpumask *cpu_map)
1858 {
1859 int err;
1860
1861 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
1862 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
1863 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
1864
1865 arch_update_cpu_topology();
1866 ndoms_cur = 1;
1867 doms_cur = alloc_sched_domains(ndoms_cur);
1868 if (!doms_cur)
1869 doms_cur = &fallback_doms;
1870 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
1871 err = build_sched_domains(doms_cur[0], NULL);
1872 register_sched_domain_sysctl();
1873
1874 return err;
1875 }
1876
1877 /*
1878 * Detach sched domains from a group of CPUs specified in cpu_map
1879 * These CPUs will now be attached to the NULL domain
1880 */
1881 static void detach_destroy_domains(const struct cpumask *cpu_map)
1882 {
1883 int i;
1884
1885 rcu_read_lock();
1886 for_each_cpu(i, cpu_map)
1887 cpu_attach_domain(NULL, &def_root_domain, i);
1888 rcu_read_unlock();
1889 }
1890
1891 /* handle null as "default" */
1892 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
1893 struct sched_domain_attr *new, int idx_new)
1894 {
1895 struct sched_domain_attr tmp;
1896
1897 /* Fast path: */
1898 if (!new && !cur)
1899 return 1;
1900
1901 tmp = SD_ATTR_INIT;
1902
1903 return !memcmp(cur ? (cur + idx_cur) : &tmp,
1904 new ? (new + idx_new) : &tmp,
1905 sizeof(struct sched_domain_attr));
1906 }
1907
1908 /*
1909 * Partition sched domains as specified by the 'ndoms_new'
1910 * cpumasks in the array doms_new[] of cpumasks. This compares
1911 * doms_new[] to the current sched domain partitioning, doms_cur[].
1912 * It destroys each deleted domain and builds each new domain.
1913 *
1914 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
1915 * The masks don't intersect (don't overlap.) We should setup one
1916 * sched domain for each mask. CPUs not in any of the cpumasks will
1917 * not be load balanced. If the same cpumask appears both in the
1918 * current 'doms_cur' domains and in the new 'doms_new', we can leave
1919 * it as it is.
1920 *
1921 * The passed in 'doms_new' should be allocated using
1922 * alloc_sched_domains. This routine takes ownership of it and will
1923 * free_sched_domains it when done with it. If the caller failed the
1924 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
1925 * and partition_sched_domains() will fallback to the single partition
1926 * 'fallback_doms', it also forces the domains to be rebuilt.
1927 *
1928 * If doms_new == NULL it will be replaced with cpu_online_mask.
1929 * ndoms_new == 0 is a special case for destroying existing domains,
1930 * and it will not create the default domain.
1931 *
1932 * Call with hotplug lock held
1933 */
1934 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1935 struct sched_domain_attr *dattr_new)
1936 {
1937 int i, j, n;
1938 int new_topology;
1939
1940 mutex_lock(&sched_domains_mutex);
1941
1942 /* Always unregister in case we don't destroy any domains: */
1943 unregister_sched_domain_sysctl();
1944
1945 /* Let the architecture update CPU core mappings: */
1946 new_topology = arch_update_cpu_topology();
1947
1948 if (!doms_new) {
1949 WARN_ON_ONCE(dattr_new);
1950 n = 0;
1951 doms_new = alloc_sched_domains(1);
1952 if (doms_new) {
1953 n = 1;
1954 cpumask_and(doms_new[0], cpu_active_mask,
1955 housekeeping_cpumask(HK_FLAG_DOMAIN));
1956 }
1957 } else {
1958 n = ndoms_new;
1959 }
1960
1961 /* Destroy deleted domains: */
1962 for (i = 0; i < ndoms_cur; i++) {
1963 for (j = 0; j < n && !new_topology; j++) {
1964 if (cpumask_equal(doms_cur[i], doms_new[j])
1965 && dattrs_equal(dattr_cur, i, dattr_new, j))
1966 goto match1;
1967 }
1968 /* No match - a current sched domain not in new doms_new[] */
1969 detach_destroy_domains(doms_cur[i]);
1970 match1:
1971 ;
1972 }
1973
1974 n = ndoms_cur;
1975 if (!doms_new) {
1976 n = 0;
1977 doms_new = &fallback_doms;
1978 cpumask_and(doms_new[0], cpu_active_mask,
1979 housekeeping_cpumask(HK_FLAG_DOMAIN));
1980 }
1981
1982 /* Build new domains: */
1983 for (i = 0; i < ndoms_new; i++) {
1984 for (j = 0; j < n && !new_topology; j++) {
1985 if (cpumask_equal(doms_new[i], doms_cur[j])
1986 && dattrs_equal(dattr_new, i, dattr_cur, j))
1987 goto match2;
1988 }
1989 /* No match - add a new doms_new */
1990 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
1991 match2:
1992 ;
1993 }
1994
1995 /* Remember the new sched domains: */
1996 if (doms_cur != &fallback_doms)
1997 free_sched_domains(doms_cur, ndoms_cur);
1998
1999 kfree(dattr_cur);
2000 doms_cur = doms_new;
2001 dattr_cur = dattr_new;
2002 ndoms_cur = ndoms_new;
2003
2004 register_sched_domain_sysctl();
2005
2006 mutex_unlock(&sched_domains_mutex);
2007 }